WO2023008569A1 - Electrochemical device, electrolyte solution, and additive used for electrolyte solution - Google Patents

Electrochemical device, electrolyte solution, and additive used for electrolyte solution Download PDF

Info

Publication number
WO2023008569A1
WO2023008569A1 PCT/JP2022/029343 JP2022029343W WO2023008569A1 WO 2023008569 A1 WO2023008569 A1 WO 2023008569A1 JP 2022029343 W JP2022029343 W JP 2022029343W WO 2023008569 A1 WO2023008569 A1 WO 2023008569A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
electrolytic solution
negative electrode
electrochemical device
mass
Prior art date
Application number
PCT/JP2022/029343
Other languages
French (fr)
Japanese (ja)
Inventor
馨 今野
薫平 山田
洋介 池田
晃士 入江
Original Assignee
昭和電工マテリアルズ株式会社
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社, 昭和電工株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023538645A priority Critical patent/JPWO2023008569A1/ja
Publication of WO2023008569A1 publication Critical patent/WO2023008569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical device, an electrolytic solution, and an additive used in the electrolytic solution.
  • Patent Document 1 discloses a non-aqueous electrolytic solution containing a specific acrylate compound as an additive.
  • An object of the present invention is to improve the cycle characteristics of an electrochemical device having a negative electrode containing a silicon-based active material.
  • the present inventors have found that in an electrochemical device comprising a negative electrode containing a silicon-based active material, the use of an electrolytic solution containing a specific acrylate compound improves the cycle characteristics of the electrochemical device.
  • An electrochemical device comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein the negative electrode contains a silicon-based active material, and the electrolytic solution contains a compound represented by the following formula (1): , electrochemical devices.
  • R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
  • R 1 and R 2 in formula (1) are hydrogen atoms.
  • X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
  • the direct current resistance (discharge DCR) during discharge after storing the electrochemical device at high temperature can be reduced.
  • FIG. 1 is a perspective view showing a non-aqueous electrolyte secondary battery as an electrochemical device according to one embodiment
  • FIG. FIG. 2 is an exploded perspective view showing an electrode group of the secondary battery shown in FIG. 1
  • 4 is a graph showing the results of cycle tests in Examples and Comparative Examples. 4 is a graph showing measurement results of resistance increase rates in Examples and Comparative Examples. It is a graph which shows the result of the CV measurement of the electrolyte solution in an evaluation example. It is a graph which shows the result of the pH measurement of the electrolyte solution in an evaluation example.
  • FIG. 1 is a perspective view showing an electrochemical device according to one embodiment.
  • the electrochemical device is a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and a separator, and a bag-like battery casing 3 that accommodates the electrode group 2 .
  • a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the non-aqueous electrolyte secondary battery 1, respectively.
  • the battery outer casing 3 is filled with an electrolytic solution (not shown).
  • the nonaqueous electrolyte secondary battery 1 may be a battery having a shape other than the so-called "laminate type" as described above (coin type, cylindrical type, laminated type, etc.).
  • the battery outer package 3 may be a container made of, for example, a laminated film.
  • the laminated film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, or stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, or stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the non-aqueous electrolyte secondary battery 1 shown in FIG.
  • the electrode group 2 includes a positive electrode 6, a separator 7, and a negative electrode 8 in this order.
  • the positive electrode 6 and the negative electrode 8 are arranged so that the surfaces on the positive electrode mixture layer 10 side and the negative electrode mixture layer 12 side face the separator 7 , respectively.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9 .
  • a positive current collector tab 4 is provided on the positive current collector 9 .
  • the positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, or the like.
  • the positive electrode current collector 9 may be made of aluminum, copper, or the like whose surface is treated with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesiveness, conductivity, and oxidation resistance.
  • the thickness of the positive electrode current collector 9 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer 10 is, for example, 20 to 200 ⁇ m.
  • the positive electrode active material may be, for example, lithium oxide.
  • the positive electrode active material may be, for example, lithium phosphate.
  • lithium phosphates include lithium manganese phosphate ( LiMnPO4 ), lithium iron phosphate ( LiFePO4 ), lithium cobalt phosphate ( LiCoPO4 ) and lithium vanadium phosphate ( Li3V2 ( PO4). 3 ).
  • the content of the positive electrode active material may be 80% by mass or more, 85% by mass or more, or 99% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent may be carbon black such as acetylene black and ketjen black, or carbon materials such as graphite, graphene, and carbon nanotubes.
  • the content of the conductive agent may be, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 50% by mass or less, or 30% by mass, based on the total amount of the positive electrode mixture layer. or less, or 15% by mass or less.
  • Binders include resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber , isoprene rubber, butadiene rubber, ethylene-propylene rubber; Thermoplastic elastomers such as ethylene copolymers, styrene/isoprene/styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymers, propylene/ ⁇ - Soft resins such as olefin copolymers; polyvinylidene fluoride (PVDF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetra
  • the content of the binder may be, for example, 0.1% by mass or more, 1% by mass or more, or 1.5% by mass or more, and may be 30% by mass or less, or 20% by mass. % or less, or 10% by mass or less.
  • the separator 7 is particularly limited as long as it electronically insulates between the positive electrode 6 and the negative electrode 8, allows ions to pass therethrough, and has resistance to oxidation on the positive electrode 6 side and reducibility on the negative electrode 8 side. not.
  • materials (materials) for such a separator 7 include resins and inorganic substances.
  • the separator 7 is preferably a porous sheet or non-woven fabric made of polyolefin such as polyethylene, polypropylene, etc., from the viewpoint of being stable with respect to the electrolytic solution and excellent in liquid retention.
  • the separator 7 may be, for example, a separator in which a fibrous or particulate inorganic material is adhered to a thin-film base material such as non-woven fabric, woven fabric, or microporous film.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11 .
  • a negative electrode collector tab 5 is provided on the negative electrode collector 11 .
  • the negative electrode current collector 11 is made of copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like.
  • the negative electrode current collector 11 may be one in which the surface of copper, aluminum, or the like is treated with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesiveness, conductivity, and resistance to reduction.
  • the thickness of the negative electrode current collector 11 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the negative electrode mixture layer 12 contains a negative electrode active material.
  • the shape of the negative electrode active material may be, for example, particulate.
  • the negative electrode active material contains a silicon-based active material.
  • the silicon-based active material contains at least silicon (Si) as a constituent element.
  • the silicon-based active material may be a simple substance of silicon or a compound containing silicon and other elements.
  • the compound may be an alloy containing silicon and at least one selected from the group consisting of nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium.
  • the compound may be an oxide, nitride or carbide of silicon. Silicon oxides include, for example, SiOx (SiO, SiO2 , etc.) and LiSiO.
  • Nitrides of silicon include, for example, Si3N4 and Si2N2O . Examples of carbides of silicon include SiC.
  • the negative electrode active material may further contain a negative electrode active material other than the silicon-based active material.
  • negative electrode active materials other than silicon-based active materials include carbon-based active materials.
  • carbon materials that make up the carbon-based active material include amorphous carbon materials, natural graphite, composite carbon materials in which a film of an amorphous carbon material is formed on natural graphite, and artificial graphite (resin raw materials such as epoxy resin and phenol resin). , or those obtained by firing pitch-based raw materials obtained from petroleum, coal, etc.).
  • the carbon-based active material is preferably a graphite-based active material composed of graphite.
  • Graphite preferably has a carbon network interlayer (d002) of less than 0.34 nm, more preferably 0.3354 nm or more and 0.337 nm or less, as determined by wide-angle X-ray diffraction.
  • a carbon material (graphite) that satisfies such conditions is sometimes referred to as quasi-anisotropic carbon.
  • the negative electrode active material is composed of metal composite oxides, oxides or nitrides of group 4 elements such as tin and germanium, elemental lithium, lithium alloys such as lithium aluminum alloys, and the like. may further include a negative electrode active material.
  • the negative electrode active material preferably contains a silicon-based active material and a carbon-based active material, and more preferably contains a silicon-based active material and a graphite-based active material, from the viewpoint of further improving the performance of the electrochemical device such as low-temperature input characteristics.
  • the content of the silicon-based active material may be 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total amount of 100 parts by mass of the silicon-based active material and the carbon-based active material. , 30 parts by mass or less, 20 parts by mass or less, or 10 parts by mass or less.
  • the content of the negative electrode active material may be 80% by mass or more, 85% by mass or more, or 99% by mass or less based on the total amount of the negative electrode mixture layer.
  • the negative electrode mixture layer 12 may further contain a binder.
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer described above.
  • the negative electrode mixture layer 12 may further contain a thickener to adjust the viscosity.
  • the thickener is not particularly limited, but may be carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, salts thereof, and the like.
  • the thickener may be one of these alone or a mixture of two or more thereof.
  • the negative electrode mixture layer 12 contains a thickener
  • its content is not particularly limited.
  • the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more, based on the total amount of the negative electrode mixture layer. , more preferably 0.5% by mass or more.
  • the content of the thickener may be 5% by mass or less, preferably 3% by mass, based on the total amount of the negative electrode mixture layer. % or less, more preferably 2 mass % or less.
  • the electrolytic solution in one embodiment, contains a compound represented by the following formula (1), an electrolyte salt, and a non-aqueous solvent.
  • R 1 to R 3 each independently represent a hydrogen atom or a methyl group
  • X represents a divalent organic group.
  • the compound represented by formula (1) is an additive used in the electrolytic solution of the electrochemical device 1.
  • R 1 and R 2 are preferably hydrogen atoms.
  • R 3 is preferably a hydrogen atom from the viewpoint of further improving cycle characteristics.
  • X may be, for example, a divalent hydrocarbon group or an alkylene group.
  • the alkylene group may be linear or branched.
  • the number of carbon atoms in the divalent hydrocarbon group and alkylene group may be, for example, 1-6.
  • the lower limit of the number of carbon atoms may be 2 or more.
  • the upper limit of the carbon number may be 5 or less or 4 or less.
  • the alkylene group represented by X may be methylene, ethylene, propylene, butylene or pentylene, preferably ethylene.
  • X may be, for example, a divalent group in which part of the divalent hydrocarbon group is substituted with a heteroatom.
  • a heteroatom may be, for example, an oxygen atom.
  • X may be, for example, a divalent group having an ether structure in which a portion of a divalent hydrocarbon group is substituted with oxygen atoms.
  • X may be, for example, a divalent group represented by the following formula (2).
  • -X 1 -OX 2 - (2) In formula (2), X 1 and X 2 each independently represent an alkylene group.
  • the alkylene group may be linear or branched.
  • the number of carbon atoms in the alkylene groups represented by X 1 and X 2 may each independently be 1-6, 1-5, 1-4, 1-3, or 1-2.
  • the content of the compound represented by formula (1) is preferably 0.001% by mass or more, based on the total amount of the electrolyte, from the viewpoint of further improving the performance (especially cycle characteristics) of the electrochemical device. More preferably 0.005% by mass or more, still more preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 8% by mass or less, More preferably 5% by mass or less, still more preferably 3% by mass or less, particularly preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the electrolyte salt may be, for example, a lithium salt.
  • Lithium salts are, for example, LiPF6 , LiBF4, LiClO4, LiB( C6H5 ) 4 , LiCH3SO3 , CF3SO2OLi , LiN ( SO2F ) 2 ( Li[FSI], lithium bis fluorosulfonylimide), LiN(SO 2 CF 3 ) 2 (Li[TFSI], lithium bistrifluoromethanesulfonylimide), and LiN(SO 2 CF 2 CF 3 ) 2 at least one selected from the group consisting of good.
  • the lithium salt preferably contains LiPF 6 from the viewpoint of further improving solubility in solvents, charge/discharge characteristics, output characteristics, cycle characteristics, etc. of the secondary battery.
  • the concentration of the electrolyte salt is preferably 0.5 mol/L or more, more preferably 0.7 mol/L or more, and still more preferably 0.8 mol/L or more, based on the total amount of the non-aqueous solvent, from the viewpoint of excellent charge-discharge characteristics. and is preferably 1.5 mol/L or less, more preferably 1.3 mol/L or less, and still more preferably 1.2 mol/L or less.
  • Non-aqueous solvents are, for example, chain carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl butyl carbonate.
  • chain carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl butyl carbonate.
  • cyclic carbonate compounds such as ethylene carbonate, propylene carbonate and butylene carbonate.
  • chain carboxylic acid ester compounds such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • cyclic carboxylic acid ester compounds such as ⁇ -butyl lactone; Alternatively, chain ether compounds such as dimethoxymethane, dimethoxyethane and diethoxyethane. Alternatively, cyclic ether compounds such as tetrahydrofuran, tetrahydropyran, and dioxolane. Alternatively, it may be a nitrile compound such as acetonitrile, or a sulfur compound such as sulfolane.
  • the non-aqueous solvent may be one of these alone or a mixture of two or more, preferably a mixture of two or more.
  • the electrolytic solution may further contain materials other than the compound represented by Formula (1), the electrolyte salt, and the non-aqueous solvent.
  • materials include, for example, unsaturated cyclic carbonates, fluorine-containing cyclic carbonates, compounds containing nitrogen atoms, sulfur atoms, or nitrogen and sulfur atoms other than compounds represented by formula (1), cyclic carboxylic acid esters, and the like. can be
  • unsaturated cyclic carbonates examples include vinylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate (4,5-dimethylvinylene carbonate), ethylvinylene carbonate (4,5-diethylvinylene carbonate), diethylvinylene carbonate, vinylethylene carbonate, and the like. and preferably vinylene carbonate from the viewpoint of further improving the performance of the electrochemical device.
  • Fluorine-containing cyclic carbonates include, for example, 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2 -trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, etc., preferably 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC).
  • the compound containing a nitrogen atom other than the compound represented by formula (1) may be, for example, a nitrile compound such as succinonitrile.
  • Compounds containing a sulfur atom other than the compound represented by formula (1) may be, for example, cyclic sulfonate compounds such as 1,3-propanesultone and 1-propene-1,3-sultone.
  • the present inventors improved the cycle characteristics of an electrochemical device by using the electrolytic solution containing the compound represented by the above formula (1) in an electrochemical device provided with a negative electrode containing a silicon-based active material. I found that it can be done.
  • the present inventors presume the effects of using the compound represented by formula (1) in the electrolytic solution as follows. That is, the compound represented by the formula (1) forms a stable and dense film on the negative electrode containing the silicon-based active material, and this film suppresses the decomposition of the electrolyte, so that the cycle of the secondary battery is improved. It is considered that the improvement of the characteristics has been achieved.
  • the electrolytic solution containing the compound represented by the above formula (1) in an electrochemical device having a negative electrode containing a silicon-based active material, the compound forms a stable coating on the negative electrode containing a silicon-based active material, and this coating suppresses the decomposition of the electrolyte solution. DCR) can be reduced.
  • the method for manufacturing the non-aqueous electrolyte secondary battery 1 includes a first step of obtaining the positive electrode 6, a second step of obtaining the negative electrode 8, a third step of housing the electrode group 2 in the battery outer package 3, and a fourth step of injecting the electrolytic solution into the battery exterior body 3 .
  • the order of the first to fourth steps is arbitrary.
  • the material used for the positive electrode mixture layer 10 is dispersed in a dispersion medium using a kneader, a disperser, or the like to obtain a slurry-like positive electrode mixture.
  • the positive electrode 6 is obtained by coating the positive electrode current collector 9 by a dipping method, a spray method, or the like, and then volatilizing the dispersion medium. After volatilizing the dispersion medium, if necessary, a compression molding step using a roll press may be provided.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multi-layer structure by performing the steps from applying the positive electrode mixture to volatilizing the dispersion medium a plurality of times.
  • the dispersion medium may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP), or the like.
  • the second step may be the same as the first step described above, and the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as the first step described above. .
  • the electrode group 2 is formed by sandwiching the separator 7 between the produced positive electrode 6 and negative electrode 8 .
  • this electrode group 2 is accommodated in the battery outer package 3 .
  • the electrolytic solution is injected into the battery exterior body 3.
  • the electrolytic solution can be prepared, for example, by first dissolving the electrolyte salt in a solvent and then dissolving the other materials.
  • the electrochemical device may be a capacitor.
  • the capacitor may include an electrode group composed of a positive electrode, a negative electrode, and a separator, and a bag-like battery outer body that accommodates the electrode group.
  • the details of each component in the capacitor may be the same as those of the non-aqueous electrolyte secondary battery 1 .
  • Example 1 [Preparation of positive electrode] Acetylene black (AB) (4% by mass) as a conductive agent and PVDF (4% by mass) as a binder were successively added to nickel cobalt lithium manganate (92% by mass) as a positive electrode active material and mixed. . NMP as a dispersion medium was added to the resulting mixture, and the mixture was kneaded to prepare a slurry positive electrode mixture. A predetermined amount of this positive electrode mixture was evenly and homogeneously applied to an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector. Then, after volatilizing the dispersion medium, it was compressed to a density of 2.8 g/cm 3 by pressing to obtain a positive electrode.
  • a silicon-based active material SiOx (0 ⁇ x ⁇ 2.0), average particle size (50% particle size of volume cumulative particle size distribution); about 10 ⁇ m
  • a graphite-based active material artificial graphite, average particle size diameter (D50); about 23 ⁇ m.
  • SBR as a binder and carboxymethyl cellulose as a thickener were added to these active materials.
  • Water as a dispersion medium was added to the obtained mixture, and the mixture was kneaded to prepare a slurry-like negative electrode mixture.
  • this negative electrode mixture was evenly and homogeneously applied to a rolled copper foil having a thickness of 10 ⁇ m as a negative electrode current collector. Thereafter, after volatilizing the dispersion medium, the mixture was compressed to a density of 1.6 g/cm 3 by pressing to obtain a negative electrode.
  • a positive electrode cut into a square of 13.5 cm 2 was sandwiched between polyethylene porous sheets (thickness 30 ⁇ m) as a separator, and a negative electrode cut into a square of 14.3 cm 2 was overlaid to prepare an electrode group.
  • This electrode group was accommodated in a container (battery outer package) formed of an aluminum laminate film (trade name: aluminum laminate film, manufactured by Dai Nippon Printing Co., Ltd.). Next, 1 mL of the electrolytic solution was added into the container, and the container was thermally welded to produce a lithium ion secondary battery for evaluation.
  • a mixed solution of ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate 1/1/1 (volume ratio) containing 1 mol/L of LiPF 6 was mixed with a compound X represented by the following formula (X) to 0. 0.5% by mass, 1% by mass of vinylene carbonate, and 1% by mass of fluoroethylene carbonate (all based on the total amount of the electrolytic solution) were added.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution to which 0.2% by mass of compound X was added based on the total amount of the electrolytic solution was used.
  • Example 3 Lithium ion secondary was produced in the same manner as in Example 1 except that an electrolyte solution in which 0.5% by mass based on the total amount of the electrolyte solution was added with compound Y represented by the following formula (Y) instead of compound X was used. A battery was produced.
  • Example 2 Lithium ion secondary was produced in the same manner as in Example 1, except that an electrolyte solution in which 0.5% by mass of a compound Z represented by the following formula (Z) was added based on the total amount of the electrolyte solution was used instead of the compound X. A battery was produced.
  • Example 3 A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.2% by mass of hexamethylene diisocyanate (HDI) based on the total amount of the electrolytic solution was used instead of compound X.
  • HDI hexamethylene diisocyanate
  • the discharge capacity retention rates at the 500th cycle of Examples 1 to 3 using the electrolyte solution containing compound X or compound Y are 84.2%, 83.2%, and 83.7%, respectively. It was clarified that the cycle characteristics were improved more than the discharge capacity retention rate (81.5%) at the 100th cycle of Comparative Example 1, which did not contain. The reason for this is thought to be that compound X or compound Y forms a stable and dense film on the negative electrode, and this film suppresses the decomposition of the electrolytic solution, thereby improving the cycle characteristics of the secondary battery.
  • the discharge capacity retention rates of Comparative Example 2 using the electrolytic solution containing compound Z and Comparative Example 3 using the electrolytic solution containing HDI were 82.2% and 82.3%, respectively.
  • the current value at this time was I 0.2 C , and the voltage change 10 seconds after the start of discharge was ⁇ V 0.2 C.
  • constant-current charging at 0.2 C was performed up to an upper limit voltage of 4.2 V, followed by constant-voltage charging at 4.2 V (the charging termination condition was a current value of 0.02 C).
  • constant current discharge was performed at a current value of 0.5 C and a final voltage of 2.7 V.
  • the current value at this time was I 0.5 C
  • the voltage change 10 seconds after the start of discharge was ⁇ V 0.5 C.
  • the current value at 1C was evaluated as I 1C , and the voltage change ⁇ V 1C after 10 seconds from the start of discharge was evaluated.
  • linear An approximate straight line was drawn, and the slope thereof was taken as the discharge DCR value.
  • Examples 1 to 3 show resistance increase rates of 128%, 144%, and 138%, respectively, and suppress the resistance increase due to high-temperature storage more than Comparative Examples 1 and 3 (resistance increase rates of 153% and 158%, respectively). It became clear that it was possible. The reason for this is thought to be that compound X and compound Y formed a stable coating on the negative electrode, and this coating suppressed the decomposition of the electrolyte solution, thereby suppressing the increase in resistance of the secondary battery due to high-temperature storage.
  • the lithium ion secondary batteries of Examples 1 to 3 to which the electrolytic solution containing the compound X or the compound Y is applied are the lithium ion secondary batteries of Comparative Example 1 that do not contain the above compound, and the compound Z.
  • the lithium ion secondary batteries of Comparative Example 2 in which the electrolyte solution containing HDI was applied, and Comparative Example 3, in which the electrolyte solution containing HDI was applied, the lithium ion secondary battery exhibited excellent life characteristics and high-temperature storage characteristics.
  • the reduction stability of the electrolytic solution was evaluated by scanning the voltage range of 2.0 V to 0 V at 0.2 mV/s for 3 cycles in an environment of 25°C.
  • FIG. 5 shows the results of CV measurement in the third cycle.
  • the electrolytic solution of Evaluation Example 1-1 containing compound X and the electrolytic solution of Evaluation Example 1-2 containing compound Y were compared with the electrolytic solution of Evaluation Example 1-3 containing no additive.
  • the current between 2.0 V and 0 V is small, and the reductive decomposition of the electrolyte is suppressed.
  • the electrolytic solution of Evaluation Example 1-4 containing compound Z has a slightly smaller current than the electrolytic solution of Evaluation Example 1-3 containing no additive, but the electrolytic solutions of Evaluation Examples 1-1 and 1-2 No significant effect was observed. From these results, it is considered that the addition of a compound having a unique structure found in compound X and compound Y suppressed the reductive decomposition of the electrolytic solution, and thus the effect of improving the life and suppressing the increase in resistance was obtained.
  • the pH of the electrolytic solution was measured under the following conditions.
  • SYMBOLS 1 Non-aqueous electrolyte secondary battery (electrochemical device), 2... Electrode group, 3... Battery outer body, 4... Positive electrode collector tab, 5... Negative electrode collector tab, 6... Positive electrode, 7... Separator, 8... Negative electrode 9... Positive electrode current collector 10... Positive electrode mixture layer 11... Negative electrode current collector 12... Negative electrode mixture layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

An electrochemical device which is provided with a positive electrode, a negative electrode and an electrolyte solution, wherein: the negative electrode contains a silicon-based active material; and the electrolyte solution contains a compound represented by formula (1). In formula (1), each of R1 to R3 independently represents a hydrogen atom or a methyl group; and X represents a divalent organic group.

Description

電気化学デバイス、電解液、及び電解液に用いられる添加剤Electrochemical devices, electrolytes, and additives used in electrolytes
 本発明は、電気化学デバイス、電解液、及び電解液に用いられる添加剤に関する。 The present invention relates to an electrochemical device, an electrolytic solution, and an additive used in the electrolytic solution.
 近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される非水電解液二次電池、キャパシタ等の高性能な電気化学デバイスが必要とされている。電気化学デバイスの性能を向上させる手段としては、例えば、電解液に所定の添加剤を添加する方法が検討されている。例えば特許文献1には、特定のアクリレート化合物を添加剤として含有させた非水電解液が開示されている。 In recent years, due to the spread of portable electronic devices, electric vehicles, etc., there is a need for high-performance electrochemical devices such as non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries and capacitors. As means for improving the performance of electrochemical devices, for example, a method of adding a predetermined additive to the electrolytic solution has been investigated. For example, Patent Document 1 discloses a non-aqueous electrolytic solution containing a specific acrylate compound as an additive.
国際公開第2012/147502号パンフレットInternational Publication No. 2012/147502 Pamphlet
 本発明者らの検討によれば、同じ添加剤であっても、負極(負極活物質等)の種類が変わると、当該添加剤による効果も異なることが判明した。より具体的には、上記特許文献1に記載のアクリレート化合物の中でも、シリコン系活物質を含む負極を備える電気化学デバイスにおいて使用したときに、当該アクリレート化合物の添加による効果が大きく異なる。 According to the studies of the present inventors, it was found that even if the additive is the same, if the type of the negative electrode (negative electrode active material, etc.) changes, the effect of the additive is different. More specifically, among the acrylate compounds described in Patent Document 1, when used in an electrochemical device having a negative electrode containing a silicon-based active material, the addition of the acrylate compound has a significantly different effect.
 本発明は、シリコン系活物質を含む負極を備える電気化学デバイスのサイクル特性を向上させることを目的とする。 An object of the present invention is to improve the cycle characteristics of an electrochemical device having a negative electrode containing a silicon-based active material.
 本発明者らは、シリコン系活物質を含む負極を備える電気化学デバイスにおいて、特定のアクリレート化合物を含む電解液を用いると、電気化学デバイスのサイクル特性が向上することを見出した。 The present inventors have found that in an electrochemical device comprising a negative electrode containing a silicon-based active material, the use of an electrolytic solution containing a specific acrylate compound improves the cycle characteristics of the electrochemical device.
 本発明は、以下の側面を含む。
[1] 正極と、負極と、電解液と、を備える電気化学デバイスであって、負極は、シリコン系活物質を含有し、電解液は、下記式(1)で表される化合物を含有する、電気化学デバイス。
Figure JPOXMLDOC01-appb-C000004
式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。
[2] 式(1)におけるR及びRが水素原子である、[1]に記載の電気化学デバイス。
[3] 式(1)におけるXが炭素数1~6のアルキレン基である、[1]又は[2]に記載の電気化学デバイス。
[4] 式(1)におけるXがエチレン基である、[1]又は[2]に記載の電気化学デバイス。
[5] 式(1)で表される化合物の含有量が、電解液全量を基準として0.001質量%以上5質量%以下である、[1]~[4]のいずれかに記載の電気化学デバイス。
[6] 電気化学デバイスが、非水電解液二次電池又はキャパシタである、[1]~[5]のいずれかに記載の電気化学デバイス。
The present invention includes the following aspects.
[1] An electrochemical device comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein the negative electrode contains a silicon-based active material, and the electrolytic solution contains a compound represented by the following formula (1): , electrochemical devices.
Figure JPOXMLDOC01-appb-C000004
In formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
[2] The electrochemical device according to [1], wherein R 1 and R 2 in formula (1) are hydrogen atoms.
[3] The electrochemical device according to [1] or [2], wherein X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
[4] The electrochemical device according to [1] or [2], wherein X in formula (1) is an ethylene group.
[5] The electricity according to any one of [1] to [4], wherein the content of the compound represented by formula (1) is 0.001% by mass or more and 5% by mass or less based on the total amount of the electrolyte chemical device.
[6] The electrochemical device according to any one of [1] to [5], which is a non-aqueous electrolyte secondary battery or capacitor.
[7] シリコン系活物質を含有する負極を備える電気化学デバイスに用いられる電解液であって、下記式(1)で表される化合物を含有する、電解液。
Figure JPOXMLDOC01-appb-C000005
式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。
[8] 式(1)におけるR及びRが水素原子である、[7]に記載の電解液。
[9] 式(1)におけるXが炭素数1~6のアルキレン基である、[7]又は[8]に記載の電解液。
[10] 式(1)におけるXがエチレン基である、[7]又は[8]に記載の電解液。
[11] 式(1)で表される化合物の含有量が、電解液全量を基準として0.001質量%以上5質量%以下である、[7]~[10]のいずれかに記載の電解液。
[7] An electrolytic solution used in an electrochemical device having a negative electrode containing a silicon-based active material, the electrolytic solution containing a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
In formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
[8] The electrolytic solution according to [7], wherein R 1 and R 2 in formula (1) are hydrogen atoms.
[9] The electrolytic solution according to [7] or [8], wherein X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
[10] The electrolytic solution according to [7] or [8], wherein X in formula (1) is an ethylene group.
[11] The electrolysis according to any one of [7] to [10], wherein the content of the compound represented by formula (1) is 0.001% by mass or more and 5% by mass or less based on the total amount of the electrolytic solution. liquid.
[12] シリコン系活物質を含有する負極を備える電気化学デバイスの電解液に用いられる添加剤であって、下記式(1)で表される化合物を含有する、添加剤。
Figure JPOXMLDOC01-appb-C000006
式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。
[13] 式(1)におけるR及びRが水素原子である、[12]に記載の添加剤。
[14] 式(1)におけるXが炭素数1~6のアルキレン基である、[12]又は[13]に記載の添加剤。
[15] 式(1)におけるXがエチレン基である、[12]又は[13]に記載の添加剤。
[12] An additive used in an electrolytic solution of an electrochemical device having a negative electrode containing a silicon-based active material, the additive containing a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
In formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
[13] The additive according to [12], wherein R 1 and R 2 in formula (1) are hydrogen atoms.
[14] The additive according to [12] or [13], wherein X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
[15] The additive according to [12] or [13], wherein X in formula (1) is an ethylene group.
 本発明の一側面によれば、シリコン系活物質を含む負極を備える電気化学デバイスのサイクル特性を向上させることができる。本発明の他の一側面によれば、電気化学デバイスを高温下で保存した後の放電時の直流抵抗(放電DCR)を低減させることができる。 According to one aspect of the present invention, it is possible to improve the cycle characteristics of an electrochemical device provided with a negative electrode containing a silicon-based active material. According to another aspect of the present invention, the direct current resistance (discharge DCR) during discharge after storing the electrochemical device at high temperature can be reduced.
一実施形態に係る電気化学デバイスとしての非水電解液二次電池を示す斜視図である。1 is a perspective view showing a non-aqueous electrolyte secondary battery as an electrochemical device according to one embodiment; FIG. 図1に示した二次電池の電極群を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an electrode group of the secondary battery shown in FIG. 1; 実施例及び比較例におけるサイクル試験の結果を示すグラフである。4 is a graph showing the results of cycle tests in Examples and Comparative Examples. 実施例及び比較例における抵抗増加率の測定結果を示すグラフである。4 is a graph showing measurement results of resistance increase rates in Examples and Comparative Examples. 評価例における電解液のCV測定の結果を示すグラフである。It is a graph which shows the result of the CV measurement of the electrolyte solution in an evaluation example. 評価例における電解液のpH測定の結果を示すグラフである。It is a graph which shows the result of the pH measurement of the electrolyte solution in an evaluation example.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments.
 図1は、一実施形態に係る電気化学デバイスを示す斜視図である。本実施形態において、電気化学デバイスは非水電解液二次電池である。図1に示すように、非水電解液二次電池1は、正極、負極及びセパレータから構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が非水電解液二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。電池外装体3内には、電解液(図示せず)が充填されている。非水電解液二次電池1は、上述したようないわゆる「ラミネート型」以外の形状の電池(コイン型、円筒型、積層型等)であってもよい。 FIG. 1 is a perspective view showing an electrochemical device according to one embodiment. In this embodiment, the electrochemical device is a non-aqueous electrolyte secondary battery. As shown in FIG. 1 , the non-aqueous electrolyte secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and a separator, and a bag-like battery casing 3 that accommodates the electrode group 2 . A positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the non-aqueous electrolyte secondary battery 1, respectively. . The battery outer casing 3 is filled with an electrolytic solution (not shown). The nonaqueous electrolyte secondary battery 1 may be a battery having a shape other than the so-called "laminate type" as described above (coin type, cylindrical type, laminated type, etc.).
 電池外装体3は、例えばラミネートフィルムで形成された容器であってよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery outer package 3 may be a container made of, for example, a laminated film. The laminated film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, or stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した非水電解液二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2は、正極6と、セパレータ7と、負極8とをこの順に備えている。正極6及び負極8は、正極合剤層10側及び負極合剤層12側の面がそれぞれセパレータ7と対向するように配置されている。 FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the non-aqueous electrolyte secondary battery 1 shown in FIG. As shown in FIG. 2, the electrode group 2 includes a positive electrode 6, a separator 7, and a negative electrode 8 in this order. The positive electrode 6 and the negative electrode 8 are arranged so that the surfaces on the positive electrode mixture layer 10 side and the negative electrode mixture layer 12 side face the separator 7 , respectively.
 正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。 The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9 . A positive current collector tab 4 is provided on the positive current collector 9 .
 正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9は、接着性、導電性及び耐酸化性向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。正極集電体9の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。 The positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, or the like. The positive electrode current collector 9 may be made of aluminum, copper, or the like whose surface is treated with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The thickness of the positive electrode current collector 9 is, for example, 1 to 50 μm in terms of electrode strength and energy density.
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。正極合剤層10の厚さは、例えば20~200μmである。 In one embodiment, the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder. The thickness of the positive electrode mixture layer 10 is, for example, 20 to 200 μm.
 正極活物質は、例えばリチウム酸化物であってよい。リチウム酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn及びLiMn2-y(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0~1.2、y=0~0.9、z=2.0~2.3である。)が挙げられる。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y1+y2)Coy1Mny2(ただし、x及びzは上述したものと同様であり、y1=0~0.9、y2=0~0.9であり、かつ、y1+y2=0~0.9である。)であってよく、例えばLiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.22、LiNi0.8Co0.1Mn0.1であってよい。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y3+y4)Coy3Aly4(ただし、x及びzは上述したものと同様であり、y3=0~0.9、y4=0~0.9であり、かつ、y3+y4=0~0.9である。)であってよく、例えばLiNi0.8Co0.15Al0.05であってもよい。 The positive electrode active material may be, for example, lithium oxide. Examples of lithium oxides include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- yM y O z , Li x Mn 2 O 4 and Li x Mn 2- y My O 4 (wherein M is Na, Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al , Cr, Pb, Sb, V and B (wherein M is an element different from the other elements in each formula), x=0 to 1.2 , y=0 to 0.9 and z=2.0 to 2.3). Lithium oxide represented by Li x Ni 1-yM y O z is Li x Ni 1-(y1+y2) Co y1 Mn y2 O z (where x and z are the same as described above and y1= 0 to 0.9, y2=0 to 0.9, and y1+y2=0 to 0.9), for example LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.6Co0.2Mn0.2O2 , LiNi0.8Co0.1Mn0.1O2 . _ _ _ _ _ _ Lithium oxide represented by Li x Ni 1-yM y O z is Li x Ni 1-(y3+y4) Co y3 Al y4 O z (where x and z are the same as described above and y3= 0 to 0.9, y4=0 to 0.9, and y3+y4=0 to 0.9.), for example LiNi 0.8 Co 0.15 Al 0.05 O 2 There may be.
 正極活物質は、例えばリチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)及びリン酸バナジウムリチウム(Li(PO)が挙げられる。 The positive electrode active material may be, for example, lithium phosphate. Examples of lithium phosphates include lithium manganese phosphate ( LiMnPO4 ), lithium iron phosphate ( LiFePO4 ), lithium cobalt phosphate ( LiCoPO4 ) and lithium vanadium phosphate ( Li3V2 ( PO4). 3 ).
 正極活物質の含有量は、正極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。 The content of the positive electrode active material may be 80% by mass or more, 85% by mass or more, or 99% by mass or less based on the total amount of the positive electrode mixture layer.
 導電剤は、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどの炭素材料であってよい。導電剤の含有量は、正極合剤層全量を基準として、例えば、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、50質量%以下、30質量%以下、又は15質量%以下であってよい。 The conductive agent may be carbon black such as acetylene black and ketjen black, or carbon materials such as graphite, graphene, and carbon nanotubes. The content of the conductive agent may be, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 50% by mass or less, or 30% by mass, based on the total amount of the positive electrode mixture layer. or less, or 15% by mass or less.
 結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー;シンジオタクチック-1、2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素含有樹脂;ニトリル基含有モノマーをモノマー単位として有する樹脂;アルカリ金属イオン(例えばリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。 Binders include resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber , isoprene rubber, butadiene rubber, ethylene-propylene rubber; Thermoplastic elastomers such as ethylene copolymers, styrene/isoprene/styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymers, propylene/α - Soft resins such as olefin copolymers; polyvinylidene fluoride (PVDF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene/ethylene copolymers, polytetrafluoroethylene/vinylidene fluoride copolymers, etc. a resin having a nitrile group-containing monomer as a monomer unit; and a polymer composition having ion conductivity for alkali metal ions (eg, lithium ions).
 結着剤の含有量は、正極合剤層全量を基準として、例えば、0.1質量%以上、1質量%以上、又は1.5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。 The content of the binder, based on the total amount of the positive electrode mixture layer, may be, for example, 0.1% by mass or more, 1% by mass or more, or 1.5% by mass or more, and may be 30% by mass or less, or 20% by mass. % or less, or 10% by mass or less.
 セパレータ7は、正極6及び負極8間を電子的には絶縁する一方でイオンを透過させ、かつ、正極6側における酸化性及び負極8側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ7の材料(材質)としては、樹脂、無機物等が挙げられる。 The separator 7 is particularly limited as long as it electronically insulates between the positive electrode 6 and the negative electrode 8, allows ions to pass therethrough, and has resistance to oxidation on the positive electrode 6 side and reducibility on the negative electrode 8 side. not. Examples of materials (materials) for such a separator 7 include resins and inorganic substances.
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。セパレータ7は、電解液に対して安定で、保液性に優れる観点から、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィンで形成された多孔質シート又は不織布である。 Examples of resins include olefin-based polymers, fluorine-based polymers, cellulose-based polymers, polyimides, and nylons. The separator 7 is preferably a porous sheet or non-woven fabric made of polyolefin such as polyethylene, polypropylene, etc., from the viewpoint of being stable with respect to the electrolytic solution and excellent in liquid retention.
 無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩が挙げられる。セパレータ7は、例えば、不織布、織布、微多孔性フィルム等の薄膜状基材に、繊維状又は粒子状の無機物を付着させたセパレータであってよい。 Examples of inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate. The separator 7 may be, for example, a separator in which a fibrous or particulate inorganic material is adhered to a thin-film base material such as non-woven fabric, woven fabric, or microporous film.
 負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。 The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11 . A negative electrode collector tab 5 is provided on the negative electrode collector 11 .
 負極集電体11は、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等で形成されている。負極集電体11は、接着性、導電性、耐還元性向上の目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。負極集電体11の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。 The negative electrode current collector 11 is made of copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like. The negative electrode current collector 11 may be one in which the surface of copper, aluminum, or the like is treated with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesiveness, conductivity, and resistance to reduction. The thickness of the negative electrode current collector 11 is, for example, 1 to 50 μm in terms of electrode strength and energy density.
 負極合剤層12は、負極活物質を含有する。負極活物質の形状は、例えば、粒子状であってよい。負極活物質は、シリコン系活物質を含む。シリコン系活物質は、構成元素として少なくともシリコン(Si)を含む。シリコン系活物質は、シリコンの単体であってよく、シリコンとその他の元素とを含む化合物であってもよい。当該化合物は、シリコンと、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種とを含む合金であってよい。当該化合物は、シリコンの酸化物、窒化物、又は炭化物であってもよい。シリコンの酸化物としては、例えば、SiOx(SiO、SiO等)、及びLiSiOが挙げられる。シリコンの窒化物としては、例えば、Si及びSiOが挙げられる。シリコンの炭化物としては、例えばSiCが挙げられる。 The negative electrode mixture layer 12 contains a negative electrode active material. The shape of the negative electrode active material may be, for example, particulate. The negative electrode active material contains a silicon-based active material. The silicon-based active material contains at least silicon (Si) as a constituent element. The silicon-based active material may be a simple substance of silicon or a compound containing silicon and other elements. The compound may be an alloy containing silicon and at least one selected from the group consisting of nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium. The compound may be an oxide, nitride or carbide of silicon. Silicon oxides include, for example, SiOx (SiO, SiO2 , etc.) and LiSiO. Nitrides of silicon include, for example, Si3N4 and Si2N2O . Examples of carbides of silicon include SiC.
 負極活物質は、シリコン系活物質以外の負極活物質を更に含んでもよい。シリコン系活物質以外の負極活物質としては、例えば、炭素系活物質が挙げられる。炭素系活物質を構成する炭素材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られるもの)などが挙げられる。 The negative electrode active material may further contain a negative electrode active material other than the silicon-based active material. Examples of negative electrode active materials other than silicon-based active materials include carbon-based active materials. Examples of carbon materials that make up the carbon-based active material include amorphous carbon materials, natural graphite, composite carbon materials in which a film of an amorphous carbon material is formed on natural graphite, and artificial graphite (resin raw materials such as epoxy resin and phenol resin). , or those obtained by firing pitch-based raw materials obtained from petroleum, coal, etc.).
 炭素系活物質は、電気化学デバイスの高容量化の観点から、好ましくは黒鉛で構成される黒鉛系活物質である。黒鉛においては、好ましくはX線広角回折法における炭素網面層間(d002)が0.34nm未満であり、より好ましくは0.3354nm以上0.337nm以下である。このような条件を満たす炭素材料(黒鉛)を、擬似異方性炭素と称する場合がある。 From the viewpoint of increasing the capacity of electrochemical devices, the carbon-based active material is preferably a graphite-based active material composed of graphite. Graphite preferably has a carbon network interlayer (d002) of less than 0.34 nm, more preferably 0.3354 nm or more and 0.337 nm or less, as determined by wide-angle X-ray diffraction. A carbon material (graphite) that satisfies such conditions is sometimes referred to as quasi-anisotropic carbon.
 負極活物質は、上記の負極活物質以外にも、金属複合酸化物、錫、ゲルマニウム等の第四族元素の酸化物又は窒化物、リチウムの単体、リチウムアルミニウム合金等のリチウム合金などで構成される負極活物質を更に含んでもよい。 In addition to the above negative electrode active materials, the negative electrode active material is composed of metal composite oxides, oxides or nitrides of group 4 elements such as tin and germanium, elemental lithium, lithium alloys such as lithium aluminum alloys, and the like. may further include a negative electrode active material.
 負極活物質は、低温入力特性等の電気化学デバイスの性能を更に向上させる観点から、好ましくはシリコン系活物質及び炭素系活物質を含み、より好ましくはシリコン系活物質及び黒鉛系活物質を含む。この場合、シリコン系活物質の含有量は、シリコン系活物質及び炭素系活物質の合計量100質量部に対して、1質量部以上、2質量部以上、又は3質量部以上であってよく、30質量部以下、20質量部以下、又は10質量部以下であってよい。 The negative electrode active material preferably contains a silicon-based active material and a carbon-based active material, and more preferably contains a silicon-based active material and a graphite-based active material, from the viewpoint of further improving the performance of the electrochemical device such as low-temperature input characteristics. . In this case, the content of the silicon-based active material may be 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total amount of 100 parts by mass of the silicon-based active material and the carbon-based active material. , 30 parts by mass or less, 20 parts by mass or less, or 10 parts by mass or less.
 負極活物質の含有量は、負極合剤層全量を基準として、80質量%以上又は85質量%以上であってよく、99質量%以下であってよい。 The content of the negative electrode active material may be 80% by mass or more, 85% by mass or more, or 99% by mass or less based on the total amount of the negative electrode mixture layer.
 負極合剤層12は、結着剤を更に含有してよい。結着剤及びその含有量は、上述した正極合剤層における結着剤及びその含有量と同様であってよい。 The negative electrode mixture layer 12 may further contain a binder. The binder and its content may be the same as the binder and its content in the positive electrode mixture layer described above.
 負極合剤層12は、粘度を調節するために増粘剤を更に含有してもよい。増粘剤は、特に制限されないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等であってよい。増粘剤は、これらの1種単独又は2種以上の混合物であってよい。 The negative electrode mixture layer 12 may further contain a thickener to adjust the viscosity. The thickener is not particularly limited, but may be carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, salts thereof, and the like. The thickener may be one of these alone or a mixture of two or more thereof.
 負極合剤層12が増粘剤を含む場合、その含有量は特に制限されない。増粘剤の含有量は、負極合剤層の塗布性の観点からは、負極合剤層全量を基準として、0.1質量%以上であってよく、好ましくは0.2質量%以上であり、より好ましくは0.5質量%以上である。増粘剤の含有量は、電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、負極合剤層全量を基準として、5質量%以下であってよく、好ましくは3質量%以下であり、より好ましくは2質量%以下である。 When the negative electrode mixture layer 12 contains a thickener, its content is not particularly limited. From the viewpoint of coating properties of the negative electrode mixture layer, the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more, based on the total amount of the negative electrode mixture layer. , more preferably 0.5% by mass or more. From the viewpoint of suppressing a decrease in battery capacity or an increase in resistance between negative electrode active materials, the content of the thickener may be 5% by mass or less, preferably 3% by mass, based on the total amount of the negative electrode mixture layer. % or less, more preferably 2 mass % or less.
 電解液は、一実施形態において、下記式(1)で表される化合物と、電解質塩と、非水溶媒とを含有する。
Figure JPOXMLDOC01-appb-C000007
式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。
The electrolytic solution, in one embodiment, contains a compound represented by the following formula (1), an electrolyte salt, and a non-aqueous solvent.
Figure JPOXMLDOC01-appb-C000007
In formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
 言い換えれば、一実施形態において、式(1)で表される化合物は、電気化学デバイス1の電解液に用いられる添加剤である。 In other words, in one embodiment, the compound represented by formula (1) is an additive used in the electrolytic solution of the electrochemical device 1.
 R及びRは、好ましくは水素原子である。Rは、サイクル特性を更に向上させることができる観点から、好ましくは水素原子である。 R 1 and R 2 are preferably hydrogen atoms. R 3 is preferably a hydrogen atom from the viewpoint of further improving cycle characteristics.
 Xは、例えば、2価の炭化水素基であってよく、アルキレン基であってよい。当該アルキレン基は、直鎖状であっても分岐状であってもよい。2価の炭化水素基及びアルキレン基の炭素数は、例えば1~6であってよい。当該炭素数の下限値は、2以上であってもよい。当該炭素数の上限値は、5以下又は4以下であってもよい。Xで示されるアルキレン基は、メチレン基、エチレン基、プロピレン基、ブチレン基、又はペンチレン基であってよく、好ましくはエチレン基である。 X may be, for example, a divalent hydrocarbon group or an alkylene group. The alkylene group may be linear or branched. The number of carbon atoms in the divalent hydrocarbon group and alkylene group may be, for example, 1-6. The lower limit of the number of carbon atoms may be 2 or more. The upper limit of the carbon number may be 5 or less or 4 or less. The alkylene group represented by X may be methylene, ethylene, propylene, butylene or pentylene, preferably ethylene.
 Xは、例えば、2価の炭化水素基の一部がヘテロ原子で置換された2価の基であってもよい。ヘテロ原子は、例えば酸素原子であってよい。Xは、例えば、2価の炭化水素基の一部が酸素原子で置換されてエーテル構造を有する2価の基であってよい。Xは、例えば、下記式(2)で表される2価の基であってよい。
  -X-O-X-   (2)
式(2)中、X及びXは、それぞれ独立にアルキレン基を示す。当該アルキレン基は、直鎖状であっても分岐状であってもよい。X及びXで示されるアルキレン基の炭素数は、それぞれ独立に、1~6、1~5、1~4、1~3、又は1~2であってよい。
X may be, for example, a divalent group in which part of the divalent hydrocarbon group is substituted with a heteroatom. A heteroatom may be, for example, an oxygen atom. X may be, for example, a divalent group having an ether structure in which a portion of a divalent hydrocarbon group is substituted with oxygen atoms. X may be, for example, a divalent group represented by the following formula (2).
-X 1 -OX 2 - (2)
In formula (2), X 1 and X 2 each independently represent an alkylene group. The alkylene group may be linear or branched. The number of carbon atoms in the alkylene groups represented by X 1 and X 2 may each independently be 1-6, 1-5, 1-4, 1-3, or 1-2.
 式(1)で表される化合物の含有量は、電気化学デバイスの性能(特にサイクル特性)を更に向上させることができる観点から、電解液全量を基準として、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上、特に好ましくは0.05質量%以上、より更に好ましくは0.1質量%以上であり、好ましくは8質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下、より更に好ましくは1質量%以下であってもよい。 The content of the compound represented by formula (1) is preferably 0.001% by mass or more, based on the total amount of the electrolyte, from the viewpoint of further improving the performance (especially cycle characteristics) of the electrochemical device. More preferably 0.005% by mass or more, still more preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 8% by mass or less, More preferably 5% by mass or less, still more preferably 3% by mass or less, particularly preferably 2% by mass or less, and even more preferably 1% by mass or less.
 電解質塩は、例えばリチウム塩であってよい。リチウム塩は、例えば、LiPF、LiBF、LiClO、LiB(C、LiCHSO、CFSOOLi、LiN(SOF)(Li[FSI]、リチウムビスフルオロスルホニルイミド)、LiN(SOCF(Li[TFSI]、リチウムビストリフルオロメタンスルホニルイミド)、及びLiN(SOCFCFからなる群より選ばれる少なくとも1種であってよい。リチウム塩は、溶媒に対する溶解性、二次電池の充放電特性、出力特性、サイクル特性等に更に優れる観点から、好ましくはLiPFを含む。 The electrolyte salt may be, for example, a lithium salt. Lithium salts are, for example, LiPF6 , LiBF4, LiClO4, LiB( C6H5 ) 4 , LiCH3SO3 , CF3SO2OLi , LiN ( SO2F ) 2 ( Li[FSI], lithium bis fluorosulfonylimide), LiN(SO 2 CF 3 ) 2 (Li[TFSI], lithium bistrifluoromethanesulfonylimide), and LiN(SO 2 CF 2 CF 3 ) 2 at least one selected from the group consisting of good. The lithium salt preferably contains LiPF 6 from the viewpoint of further improving solubility in solvents, charge/discharge characteristics, output characteristics, cycle characteristics, etc. of the secondary battery.
 電解質塩の濃度は、充放電特性に優れる観点から、非水溶媒全量を基準として、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは1.5mol/L以下、より好ましくは1.3mol/L以下、更に好ましくは1.2mol/L以下である。 The concentration of the electrolyte salt is preferably 0.5 mol/L or more, more preferably 0.7 mol/L or more, and still more preferably 0.8 mol/L or more, based on the total amount of the non-aqueous solvent, from the viewpoint of excellent charge-discharge characteristics. and is preferably 1.5 mol/L or less, more preferably 1.3 mol/L or less, and still more preferably 1.2 mol/L or less.
 非水溶媒は、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート等の鎖状カーボネート化合物。又は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート化合物。又は、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等の鎖状カルボン酸エステル化合物。γ-ブチルラクトン等の環状カルボン酸エステル化合物。又は、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン等の鎖状エーテル化合物。又は、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン等の環状エーテル化合物。又は、アセトニトリル等のニトリル化合物、スルホラン等の硫黄化合物、であってよい。非水溶媒は、これらの1種単独又は2種以上の混合物であってよく、好ましくは2種以上の混合物である。 Non-aqueous solvents are, for example, chain carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl butyl carbonate. Alternatively, cyclic carbonate compounds such as ethylene carbonate, propylene carbonate and butylene carbonate. Alternatively, chain carboxylic acid ester compounds such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, and propyl propionate. cyclic carboxylic acid ester compounds such as γ-butyl lactone; Alternatively, chain ether compounds such as dimethoxymethane, dimethoxyethane and diethoxyethane. Alternatively, cyclic ether compounds such as tetrahydrofuran, tetrahydropyran, and dioxolane. Alternatively, it may be a nitrile compound such as acetonitrile, or a sulfur compound such as sulfolane. The non-aqueous solvent may be one of these alone or a mixture of two or more, preferably a mixture of two or more.
 電解液は、式(1)で表される化合物、電解質塩及び非水溶媒以外のその他の材料を更に含有してもよい。その他の材料は、例えば、不飽和環状カーボネート、フッ素含有環状カーボネート、式(1)で表される化合物以外の窒素原子、硫黄原子、又は窒素原子及び硫黄原子を含有する化合物、環状カルボン酸エステル等であってよい。 The electrolytic solution may further contain materials other than the compound represented by Formula (1), the electrolyte salt, and the non-aqueous solvent. Other materials include, for example, unsaturated cyclic carbonates, fluorine-containing cyclic carbonates, compounds containing nitrogen atoms, sulfur atoms, or nitrogen and sulfur atoms other than compounds represented by formula (1), cyclic carboxylic acid esters, and the like. can be
 不飽和環状カーボネートとしては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート(4,5-ジメチルビニレンカーボネート)、エチルビニレンカーボネート(4,5-ジエチルビニレンカーボネート)、ジエチルビニレンカーボネート、ビニルエチレンカーボネート等であってよく、電気化学デバイスの性能を更に向上させることができる観点から、好ましくは、ビニレンカーボネートである。フッ素含有環状カーボネートは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、1,1,2,2-テトラフルオロエチレンカーボネート等であってよく、好ましくは、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)である。式(1)で表される化合物以外の窒素原子を含有する化合物は、例えばスクシノニトリル等のニトリル化合物であってよい。式(1)で表される化合物以外の硫黄原子を含有する化合物は、例えば、1,3-プロパンスルトン、1-プロペン-1,3-スルトン等の環状スルホン酸エステル化合物であってよい。 Examples of unsaturated cyclic carbonates include vinylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate (4,5-dimethylvinylene carbonate), ethylvinylene carbonate (4,5-diethylvinylene carbonate), diethylvinylene carbonate, vinylethylene carbonate, and the like. and preferably vinylene carbonate from the viewpoint of further improving the performance of the electrochemical device. Fluorine-containing cyclic carbonates include, for example, 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2 -trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, etc., preferably 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC). The compound containing a nitrogen atom other than the compound represented by formula (1) may be, for example, a nitrile compound such as succinonitrile. Compounds containing a sulfur atom other than the compound represented by formula (1) may be, for example, cyclic sulfonate compounds such as 1,3-propanesultone and 1-propene-1,3-sultone.
 本発明者らは、上述した式(1)で表される化合物を含有する電解液を、シリコン系活物質を含む負極を備える電気化学デバイスに用いることによって、電気化学デバイスのサイクル特性を向上させることができることを見出した。本発明者らは、式(1)で表される化合物を含有する電解液に用いることによる作用効果を以下のように推察している。すなわち、式(1)で表される化合物が、シリコン系活物質を含む負極上に安定で緻密な被膜を形成し、この被膜により電解液の分解が抑制されるために、二次電池のサイクル特性の向上が達成できたと考えられる。また、一実施形態において、上述した式(1)で表される化合物を含有する電解液を、シリコン系活物質を含む負極を備える電気化学デバイスに用いることによって、式(1)で表される化合物がシリコン系活物質を含む負極上に安定な被膜を形成し、この被膜により電解液の分解が抑制されるために、高温下で保存した後の電気化学デバイスの放電時の直流抵抗(放電DCR)を低減させることができる。 The present inventors improved the cycle characteristics of an electrochemical device by using the electrolytic solution containing the compound represented by the above formula (1) in an electrochemical device provided with a negative electrode containing a silicon-based active material. I found that it can be done. The present inventors presume the effects of using the compound represented by formula (1) in the electrolytic solution as follows. That is, the compound represented by the formula (1) forms a stable and dense film on the negative electrode containing the silicon-based active material, and this film suppresses the decomposition of the electrolyte, so that the cycle of the secondary battery is improved. It is considered that the improvement of the characteristics has been achieved. Further, in one embodiment, by using the electrolytic solution containing the compound represented by the above formula (1) in an electrochemical device having a negative electrode containing a silicon-based active material, The compound forms a stable coating on the negative electrode containing a silicon-based active material, and this coating suppresses the decomposition of the electrolyte solution. DCR) can be reduced.
 続いて、非水電解液二次電池1の製造方法を説明する。非水電解液二次電池1の製造方法は、正極6を得る第1の工程と、負極8を得る第2の工程と、電極群2を電池外装体3に収容する第3の工程と、電解液を電池外装体3に注液する第4の工程と、を備える。第1~第4の工程の順序は任意である。 Next, a method for manufacturing the non-aqueous electrolyte secondary battery 1 will be described. The method for manufacturing the non-aqueous electrolyte secondary battery 1 includes a first step of obtaining the positive electrode 6, a second step of obtaining the negative electrode 8, a third step of housing the electrode group 2 in the battery outer package 3, and a fourth step of injecting the electrolytic solution into the battery exterior body 3 . The order of the first to fourth steps is arbitrary.
 第1の工程では、正極合剤層10に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより正極6を得る。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。 In the first step, the material used for the positive electrode mixture layer 10 is dispersed in a dispersion medium using a kneader, a disperser, or the like to obtain a slurry-like positive electrode mixture. The positive electrode 6 is obtained by coating the positive electrode current collector 9 by a dipping method, a spray method, or the like, and then volatilizing the dispersion medium. After volatilizing the dispersion medium, if necessary, a compression molding step using a roll press may be provided. The positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multi-layer structure by performing the steps from applying the positive electrode mixture to volatilizing the dispersion medium a plurality of times. The dispersion medium may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP), or the like.
 第2の工程は、上述した第1の工程と同様であってよく、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。 The second step may be the same as the first step described above, and the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as the first step described above. .
 第3の工程では、作製した正極6及び負極8の間にセパレータ7を挟み、電極群2を形成する。次いで、この電極群2を電池外装体3に収容する。 In the third step, the electrode group 2 is formed by sandwiching the separator 7 between the produced positive electrode 6 and negative electrode 8 . Next, this electrode group 2 is accommodated in the battery outer package 3 .
 第4の工程では、電解液を電池外装体3に注入する。電解液は、例えば、電解質塩をはじめに溶媒に溶解させてから、その他の材料を溶解させることにより調製することができる。 In the fourth step, the electrolytic solution is injected into the battery exterior body 3. The electrolytic solution can be prepared, for example, by first dissolving the electrolyte salt in a solvent and then dissolving the other materials.
 他の実施形態として、電気化学デバイスはキャパシタであってもよい。キャパシタは、上述した非水電解液二次電池1と同様に、正極、負極及びセパレータから構成される電極群と、電極群を収容する袋状の電池外装体とを備えていてよい。キャパシタにおける各構成要素の詳細は、非水電解液二次電池1と同様であってよい。 As another embodiment, the electrochemical device may be a capacitor. Like the non-aqueous electrolyte secondary battery 1 described above, the capacitor may include an electrode group composed of a positive electrode, a negative electrode, and a separator, and a bag-like battery outer body that accommodates the electrode group. The details of each component in the capacitor may be the same as those of the non-aqueous electrolyte secondary battery 1 .
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
[正極の作製]
 正極活物質としてのニッケルコバルトマンガン酸リチウム(92質量%)に、導電剤としてアセチレンブラック(AB)(4質量%)と、結着剤としてPVDF(4質量%)とを順次添加し、混合した。得られた混合物に対し、分散媒としてのNMPを添加し、混練することによりスラリー状の正極合剤を調製した。この正極合剤を正極集電体としての厚さ20μmのアルミニウム箔に均等且つ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度2.8g/cmまで圧密化して、正極を得た。
(Example 1)
[Preparation of positive electrode]
Acetylene black (AB) (4% by mass) as a conductive agent and PVDF (4% by mass) as a binder were successively added to nickel cobalt lithium manganate (92% by mass) as a positive electrode active material and mixed. . NMP as a dispersion medium was added to the resulting mixture, and the mixture was kneaded to prepare a slurry positive electrode mixture. A predetermined amount of this positive electrode mixture was evenly and homogeneously applied to an aluminum foil having a thickness of 20 μm as a positive electrode current collector. Then, after volatilizing the dispersion medium, it was compressed to a density of 2.8 g/cm 3 by pressing to obtain a positive electrode.
[負極の作製]
 負極活物質として、シリコン系活物質(SiOx(0<x<2.0)、平均粒径(体積累積粒度分布の50%粒径);約10μm)と黒鉛系活物質(人造黒鉛、平均粒径(D50);約23μm)とを用いた。これらの活物質に、結着剤としてのSBRと、増粘剤としてのカルボキシメチルセルロースとを添加した。これらの質量比については、黒鉛活物質:シリコン系活物質:結着剤:増粘剤=92:5:1.5:1.5とした。得られた混合物に対し、分散媒としての水を添加し、混練することによりスラリー状の負極合剤を調製した。この負極合剤を負極集電体としての厚さ10μmの圧延銅箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度1.6g/cmまで圧密化して、負極を得た。
[Preparation of negative electrode]
As the negative electrode active material, a silicon-based active material (SiOx (0<x<2.0), average particle size (50% particle size of volume cumulative particle size distribution); about 10 μm) and a graphite-based active material (artificial graphite, average particle size diameter (D50); about 23 μm). SBR as a binder and carboxymethyl cellulose as a thickener were added to these active materials. The mass ratio of these materials was graphite active material:silicon-based active material:binder:thickener=92:5:1.5:1.5. Water as a dispersion medium was added to the obtained mixture, and the mixture was kneaded to prepare a slurry-like negative electrode mixture. A predetermined amount of this negative electrode mixture was evenly and homogeneously applied to a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. Thereafter, after volatilizing the dispersion medium, the mixture was compressed to a density of 1.6 g/cm 3 by pressing to obtain a negative electrode.
[リチウムイオン二次電池の作製]
 13.5cmの四角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(厚さ30μm)で挟み、さらに14.3cmの四角形に切断した負極を重ね合わせて電極群を作製した。この電極群を、アルミニウム製のラミネートフィルム(商品名:アルミラミネートフィルム、大日本印刷株式会社製)で形成された容器(電池外装体)に収容した。次いで、容器の中に電解液を1mL添加し、容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/LのLiPFを含むエチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート=1/1/1(体積比)の混合溶液に、下記式(X)で表される化合物Xを0.5質量%と、ビニレンカーボネートを1質量%と、フルオロエチレンカーボネートを1質量%と(いずれも電解液全量基準)を添加したものを使用した。
Figure JPOXMLDOC01-appb-C000008
[Production of lithium ion secondary battery]
A positive electrode cut into a square of 13.5 cm 2 was sandwiched between polyethylene porous sheets (thickness 30 μm) as a separator, and a negative electrode cut into a square of 14.3 cm 2 was overlaid to prepare an electrode group. This electrode group was accommodated in a container (battery outer package) formed of an aluminum laminate film (trade name: aluminum laminate film, manufactured by Dai Nippon Printing Co., Ltd.). Next, 1 mL of the electrolytic solution was added into the container, and the container was thermally welded to produce a lithium ion secondary battery for evaluation. As the electrolytic solution, a mixed solution of ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate = 1/1/1 (volume ratio) containing 1 mol/L of LiPF 6 was mixed with a compound X represented by the following formula (X) to 0. 0.5% by mass, 1% by mass of vinylene carbonate, and 1% by mass of fluoroethylene carbonate (all based on the total amount of the electrolytic solution) were added.
Figure JPOXMLDOC01-appb-C000008
(実施例2)
 化合物Xを電解液全量基準で0.2質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution to which 0.2% by mass of compound X was added based on the total amount of the electrolytic solution was used.
(実施例3)
 化合物Xの代わりに下記式(Y)で表される化合物Yを、電解液全量基準で0.5質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Figure JPOXMLDOC01-appb-C000009
(Example 3)
Lithium ion secondary was produced in the same manner as in Example 1 except that an electrolyte solution in which 0.5% by mass based on the total amount of the electrolyte solution was added with compound Y represented by the following formula (Y) instead of compound X was used. A battery was produced.
Figure JPOXMLDOC01-appb-C000009
(比較例1)
 電解液に化合物Xを添加しなかったこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that the compound X was not added to the electrolytic solution.
(比較例2)
 化合物Xの代わりに下記式(Z)で表される化合物Zを、電解液全量基準で0.5質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Figure JPOXMLDOC01-appb-C000010
(Comparative example 2)
Lithium ion secondary was produced in the same manner as in Example 1, except that an electrolyte solution in which 0.5% by mass of a compound Z represented by the following formula (Z) was added based on the total amount of the electrolyte solution was used instead of the compound X. A battery was produced.
Figure JPOXMLDOC01-appb-C000010
(比較例3)
 化合物Xの代わりにヘキサメチレンジイソシアネート(HDI)を、電解液全量基準で0.2質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.2% by mass of hexamethylene diisocyanate (HDI) based on the total amount of the electrolytic solution was used instead of compound X.
[初回充放電]
 作製した各リチウムイオン電池について、以下に示す方法で初回充放電を実施した。まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.7Vの定電流放電を行った。この充放電サイクルを3回繰り返した(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)。
[Initial charge/discharge]
Each lithium ion battery produced was subjected to initial charge/discharge by the method described below. First, under an environment of 25° C., constant current charging was performed with a current value of 0.1 C up to an upper limit voltage of 4.2V, and then constant voltage charging was performed at 4.2V. A charge termination condition was a current value of 0.01C. Thereafter, constant current discharge was performed at a current value of 0.1C and a final voltage of 2.7V. This charging/discharging cycle was repeated three times (“C” used as a unit of current value means “current value (A)/battery capacity (Ah)”).
[サイクル特性の評価]
 初回充放電後に、充放電を繰り返すサイクル試験によって、各二次電池のサイクル特性を評価した。充電パターンとしては、45℃の環境下で、実施例1~3及び比較例1~2の二次電池について、0.5Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.05Cとした。放電については、1.0Cで定電流放電を2.7Vまで行い、放電容量を求めた。この一連の充放電を500サイクル繰り返し、充放電の度に放電容量を測定した。1サイクル目の充放電後の放電容量に対する、各サイクルでの放電容量の相対値(放電容量維持率(%))を求めた。サイクル試験の結果を、図3に示す。
[Evaluation of cycle characteristics]
After the initial charge/discharge, the cycle characteristics of each secondary battery were evaluated by a cycle test in which charge/discharge was repeated. As a charging pattern, in an environment of 45° C., the secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to constant current charging at a current value of 0.5 C up to an upper limit voltage of 4.2 V. Constant voltage charging was performed at 4.2V. A charge termination condition was a current value of 0.05C. As for the discharge, constant current discharge was performed at 1.0 C to 2.7 V, and the discharge capacity was obtained. This series of charging/discharging was repeated 500 cycles, and the discharge capacity was measured each time charging/discharging was performed. A relative value of the discharge capacity in each cycle (discharge capacity retention rate (%)) with respect to the discharge capacity after the first cycle of charge and discharge was determined. The results of the cycle test are shown in FIG.
 化合物X又は化合物Yを含有する電解液を用いた実施例1~3の500サイクル目の放電容量維持率はそれぞれ、84.2%、83.2%、83.7%であり、上記化合物を含まない比較例1の100サイクル目の放電容量維持率(81.5%)よりもサイクル特性が向上することが明らかになった。この理由として、化合物X又は化合物Yが負極上に安定で緻密な被膜を形成し、この被膜により電解液の分解が抑制されたために、二次電池のサイクル特性の向上が達成できたと考えられる。また、化合物Zを含有する電解液を用いた比較例2、及びHDIを含有する電解液を用いた比較例3の放電容量維持率は、それぞれ82.2%及び82.3%であり、化合物を含まない比較例1よりもサイクル特性が向上するものの、実施例1~3のサイクル特性向上効果の方が優れていた。この要因は明らかではないが、化合物X及び化合物Yは、化合物Z及びHDIと比較して、少量添加でも負極上に安定で緻密な被膜を形成できるため、電解液の分解抑制効果が大きく、サイクル特性が向上したと考えられる。 The discharge capacity retention rates at the 500th cycle of Examples 1 to 3 using the electrolyte solution containing compound X or compound Y are 84.2%, 83.2%, and 83.7%, respectively. It was clarified that the cycle characteristics were improved more than the discharge capacity retention rate (81.5%) at the 100th cycle of Comparative Example 1, which did not contain. The reason for this is thought to be that compound X or compound Y forms a stable and dense film on the negative electrode, and this film suppresses the decomposition of the electrolytic solution, thereby improving the cycle characteristics of the secondary battery. In addition, the discharge capacity retention rates of Comparative Example 2 using the electrolytic solution containing compound Z and Comparative Example 3 using the electrolytic solution containing HDI were 82.2% and 82.3%, respectively. Although the cycle characteristics are improved as compared with Comparative Example 1 which does not contain, the cycle characteristics improvement effect of Examples 1 to 3 was superior. Although the reason for this is not clear, compared to compound Z and HDI, compound X and compound Y can form a stable and dense coating on the negative electrode even when added in small amounts. It is considered that the characteristics have improved.
[高温保存試験]
 実施例1~3及び比較例1,3の各二次電池について、上述した初回充放電を行った後、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、それらの二次電池を60℃の恒温槽中で4週間保管した。
[High temperature storage test]
For each of the secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 3, after performing the above-described initial charge and discharge, constant current charging was performed at a current value of 0.1 C in an environment of 25 ° C. with an upper limit voltage of 4.2 V. After that, constant voltage charging was performed at 4.2V. A charge termination condition was a current value of 0.01C. After that, those secondary batteries were stored in a constant temperature bath at 60° C. for 4 weeks.
[放電DCRの測定]
 高温保存前の各二次電池の放電DCR(R1)、及び、高温保管後に25℃の環境下に30分間静置した後測定した放電DCR(R2)のそれぞれを測定し、測定されたR1及びR2を用いて、抵抗増加率(%)=R2/R1×100を算出した。結果を図4に示す。
 放電DCR(放電時の直流抵抗)は、以下のように測定した。
 まず、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.2C、放電開始10秒後の電圧変化をΔV0.2Cとした。次に、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った(充電終止条件は、電流値0.02Cとした)。その後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.5C、放電開始10秒後の電圧変化をΔV0.5Cとした。同様の充放電から1Cの電流値をI1C、放電開始10秒後の電圧変化ΔV1Cを評価した。その電流値―電圧変化の3点のプロット(I0.2C、ΔV0.2C)、(I0.5C、ΔV0.5C)、(I1C、ΔV1C)に最小二乗法を用いて一次近似直線を引き、その傾きを放電DCRの値とした。
[Measurement of discharge DCR]
The discharge DCR (R1) of each secondary battery before high temperature storage and the discharge DCR (R2) measured after standing in an environment of 25 ° C. for 30 minutes after high temperature storage were measured, and the measured R1 and Using R2, resistance increase rate (%)=R2/R1×100 was calculated. The results are shown in FIG.
Discharge DCR (direct current resistance during discharge) was measured as follows.
First, constant current charging at 0.2C was performed up to an upper limit voltage of 4.2V, and then constant voltage charging was performed at 4.2V. A charge termination condition was a current value of 0.02C. Thereafter, constant current discharge was performed at a current value of 0.2 C and a final voltage of 2.7 V. The current value at this time was I 0.2 C , and the voltage change 10 seconds after the start of discharge was ΔV 0.2 C. Next, constant-current charging at 0.2 C was performed up to an upper limit voltage of 4.2 V, followed by constant-voltage charging at 4.2 V (the charging termination condition was a current value of 0.02 C). Thereafter, constant current discharge was performed at a current value of 0.5 C and a final voltage of 2.7 V. The current value at this time was I 0.5 C , and the voltage change 10 seconds after the start of discharge was ΔV 0.5 C. From the same charge/discharge, the current value at 1C was evaluated as I 1C , and the voltage change ΔV 1C after 10 seconds from the start of discharge was evaluated. Using the least - squares method , linear An approximate straight line was drawn, and the slope thereof was taken as the discharge DCR value.
 実施例1~3は、それぞれ128%、144%、138%の抵抗増加率を示し、比較例1,3(それぞれ153%、158%の抵抗増加率)よりも、高温保存による抵抗上昇を抑制できることが明らかになった。この理由としては、化合物X及び化合物Yが負極上に安定な被膜を形成し、この被膜により電解液の分解が抑制されたために、高温保存による二次電池の抵抗増加を抑制できたと考えられる。 Examples 1 to 3 show resistance increase rates of 128%, 144%, and 138%, respectively, and suppress the resistance increase due to high-temperature storage more than Comparative Examples 1 and 3 (resistance increase rates of 153% and 158%, respectively). It became clear that it was possible. The reason for this is thought to be that compound X and compound Y formed a stable coating on the negative electrode, and this coating suppressed the decomposition of the electrolyte solution, thereby suppressing the increase in resistance of the secondary battery due to high-temperature storage.
 以上のように、化合物X又は化合物Yを含有する電解液を適用した実施例1~3のリチウムイオン二次電池は、上記化合物を含まない比較例1のリチウムイオン二次電池、化合物Zを含有する電解液を適用した比較例2、及びHDIを含有する電解液を適用した比較例3のリチウムイオン二次電池に比べて、優れた寿命特性及び高温保存特性を示した。 As described above, the lithium ion secondary batteries of Examples 1 to 3 to which the electrolytic solution containing the compound X or the compound Y is applied are the lithium ion secondary batteries of Comparative Example 1 that do not contain the above compound, and the compound Z. Compared to the lithium ion secondary batteries of Comparative Example 2, in which the electrolyte solution containing HDI was applied, and Comparative Example 3, in which the electrolyte solution containing HDI was applied, the lithium ion secondary battery exhibited excellent life characteristics and high-temperature storage characteristics.
(評価例1-1~1-4)
[電解液還元安定性の測定]
 電解液の還元安定性の評価のため、サイクリックボルタンメトリー(CV)を測定した。CV評価用セルとして作用極はSUS、対極は金属リチウム、セパレータは厚さ30μmのポリエチレン微孔膜、電解液を用いて2016型コインセルを作製した。電解液としては、1mol/LのLiPFを含むエチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート=1/1/1(体積比)の混合溶液に、表1に示す添加剤を電解液全量を基準とし表1に示す添加量で添加した評価例1-1~1-4の各電解液を用いた。CVの測定条件は、25℃の環境下において、0.2mV/sで2.0V~0Vの電圧範囲を3サイクル電位走査して、電解液の還元安定性を評価した。3サイクル目のCV測定の結果を図5に示す。
(Evaluation examples 1-1 to 1-4)
[Measurement of electrolyte reduction stability]
Cyclic voltammetry (CV) was measured to evaluate the reduction stability of the electrolytic solution. As a cell for CV evaluation, a 2016 type coin cell was prepared using SUS as a working electrode, metallic lithium as a counter electrode, a polyethylene microporous membrane having a thickness of 30 μm as a separator, and an electrolytic solution. As the electrolytic solution, a mixed solution of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate = 1/1/1 (volume ratio) containing 1 mol / L LiPF 6 was mixed with the additives shown in Table 1 based on the total amount of the electrolytic solution. Each electrolytic solution of Evaluation Examples 1-1 to 1-4, which was added in the amount shown in Table 1, was used. As for the CV measurement conditions, the reduction stability of the electrolytic solution was evaluated by scanning the voltage range of 2.0 V to 0 V at 0.2 mV/s for 3 cycles in an environment of 25°C. FIG. 5 shows the results of CV measurement in the third cycle.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 CV測定の結果、化合物Xを含む評価例1-1の電解液、及び化合物Yを含む評価例1-2の電解液は、添加剤を含まない評価例1-3の電解液と比較して、2.0V~0V間の電流が小さく電解液の還元分解が抑制されていると考えられる。また、化合物Zを含む評価例1-4の電解液は、添加剤を含まない評価例1-3の電解液よりもわずかに電流は小さいが、評価例1-1及び1-2の電解液よりも顕著な効果は確認されなかった。これらの結果から、化合物X及び化合物Yに見られる特有の構造を有する化合物を添加することによって、電解液の還元分解が抑制されたため、寿命向上及び抵抗増加抑制の効果が得られたと考えられる。 As a result of CV measurement, the electrolytic solution of Evaluation Example 1-1 containing compound X and the electrolytic solution of Evaluation Example 1-2 containing compound Y were compared with the electrolytic solution of Evaluation Example 1-3 containing no additive. , the current between 2.0 V and 0 V is small, and the reductive decomposition of the electrolyte is suppressed. In addition, the electrolytic solution of Evaluation Example 1-4 containing compound Z has a slightly smaller current than the electrolytic solution of Evaluation Example 1-3 containing no additive, but the electrolytic solutions of Evaluation Examples 1-1 and 1-2 No significant effect was observed. From these results, it is considered that the addition of a compound having a unique structure found in compound X and compound Y suppressed the reductive decomposition of the electrolytic solution, and thus the effect of improving the life and suppressing the increase in resistance was obtained.
(評価例2-1~2-5)
[電解液のpH測定]
 電解液のpHを以下の条件で測定した。電解液は、1mol/LのLiPFを含むエチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート=1/1/1(体積比)の混合溶液に、電解液全量を基準としビニレンカーボネートを1質量%添加し、表2に示す添加剤を電解液全量を基準とし表2に示す添加量で更に添加した電解液を用いた。純水50mlに上記電解液を3ml加え電解液のpHを測定した。pH測定は、自動滴定装置(商品名:COM-A19S、平沼産業製)を用いて25℃環境下で実施した。電極としては、ガラス電極(GE-101B)、参照電極(RE-201)を用いた。pH測定結果を、図6に示す。
(Evaluation examples 2-1 to 2-5)
[pH measurement of electrolytic solution]
The pH of the electrolytic solution was measured under the following conditions. The electrolytic solution is a mixed solution of ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate = 1/1/1 (volume ratio) containing 1 mol/L of LiPF6 , and 1% by mass of vinylene carbonate is added based on the total amount of the electrolytic solution. , an electrolytic solution in which the additive shown in Table 2 was further added in the amount shown in Table 2 based on the total amount of the electrolytic solution. 3 ml of the above electrolytic solution was added to 50 ml of pure water, and the pH of the electrolytic solution was measured. The pH measurement was carried out at 25° C. using an automatic titrator (trade name: COM-A19S, manufactured by Hiranuma Sangyo). As electrodes, a glass electrode (GE-101B) and a reference electrode (RE-201) were used. The pH measurement results are shown in FIG.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 pH測定の結果、化合物X又は化合物Yを含む評価例2-1、評価例2-2、評価例2-3の電解液pHは、それぞれ7.1、6.0、6.4であり、添加剤を含まない評価例2-4の電解液のpH3.9よりもpHが高く、中性に近いことが分かった。また、化合物Zを含む評価例2-5の電解液のpHは4.0であり、添加剤を含まない評価例2-4の電解液とほぼ同等のpHであることが分かった。これらの測定結果から、化合物X又は化合物Yを含む評価例2-1、評価例2-2、評価例2-3の電解液中において、リチウム塩(LiPF)由来のフッ酸(HF)が低減していると想定される。その結果、フッ酸によるシリコン系活物質の溶出等の劣化を抑制できたため、シリコン系活物質を含む電池の寿命の低下を抑制する効果が得られたと考えられる。 As a result of pH measurement, the pH of the electrolytic solutions of Evaluation Example 2-1, Evaluation Example 2-2, and Evaluation Example 2-3 containing compound X or compound Y were 7.1, 6.0, and 6.4, respectively. It was found that the pH was higher than the pH 3.9 of the electrolytic solution of Evaluation Example 2-4 containing no additive and was close to neutral. Further, the pH of the electrolytic solution of Evaluation Example 2-5 containing compound Z was 4.0, which was found to be substantially the same as the pH of the electrolytic solution of Evaluation Example 2-4 containing no additive. From these measurement results, in the electrolytic solutions of Evaluation Examples 2-1, 2-2, and 2-3 containing compound X or compound Y, hydrofluoric acid (HF) derived from lithium salt (LiPF 6 ) was added. assumed to be decreasing. As a result, deterioration such as elution of the silicon-based active material due to hydrofluoric acid could be suppressed, so it is considered that the effect of suppressing the deterioration of the life of the battery containing the silicon-based active material was obtained.
 1…非水電解液二次電池(電気化学デバイス)、2…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…セパレータ、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層。 DESCRIPTION OF SYMBOLS 1... Non-aqueous electrolyte secondary battery (electrochemical device), 2... Electrode group, 3... Battery outer body, 4... Positive electrode collector tab, 5... Negative electrode collector tab, 6... Positive electrode, 7... Separator, 8... Negative electrode 9... Positive electrode current collector 10... Positive electrode mixture layer 11... Negative electrode current collector 12... Negative electrode mixture layer.

Claims (15)

  1.  正極と、負極と、電解液と、を備える電気化学デバイスであって、
     前記負極は、シリコン系活物質を含有し、
     前記電解液は、下記式(1)で表される化合物を含有する、電気化学デバイス。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
    An electrochemical device comprising a positive electrode, a negative electrode, and an electrolytic solution,
    The negative electrode contains a silicon-based active material,
    The electrochemical device, wherein the electrolytic solution contains a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  2.  前記式(1)におけるR及びRが水素原子である、請求項1に記載の電気化学デバイス。 The electrochemical device according to claim 1, wherein R1 and R2 in formula (1) are hydrogen atoms.
  3.  前記式(1)におけるXが炭素数1~6のアルキレン基である、請求項1又は2に記載の電気化学デバイス。 The electrochemical device according to claim 1 or 2, wherein X in said formula (1) is an alkylene group having 1 to 6 carbon atoms.
  4.  前記式(1)におけるXがエチレン基である、請求項1又は2に記載の電気化学デバイス。 The electrochemical device according to claim 1 or 2, wherein X in said formula (1) is an ethylene group.
  5.  前記式(1)で表される化合物の含有量が、前記電解液全量を基準として0.001質量%以上5質量%以下である、請求項1~4のいずれか一項に記載の電気化学デバイス。 The electrochemistry according to any one of claims 1 to 4, wherein the content of the compound represented by the formula (1) is 0.001% by mass or more and 5% by mass or less based on the total amount of the electrolytic solution. device.
  6.  前記電気化学デバイスが、非水電解液二次電池又はキャパシタである、請求項1~5のいずれか一項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 5, wherein the electrochemical device is a non-aqueous electrolyte secondary battery or a capacitor.
  7.  シリコン系活物質を含有する負極を備える電気化学デバイスに用いられる電解液であって、
     下記式(1)で表される化合物を含有する、電解液。
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
    An electrolytic solution for use in an electrochemical device having a negative electrode containing a silicon-based active material,
    An electrolytic solution containing a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  8.  前記式(1)におけるR及びRが水素原子である、請求項7に記載の電解液。 The electrolytic solution according to claim 7, wherein R1 and R2 in formula (1) are hydrogen atoms.
  9.  前記式(1)におけるXが炭素数1~6のアルキレン基である、請求項7又は8に記載の電解液。 The electrolytic solution according to claim 7 or 8, wherein X in the formula (1) is an alkylene group having 1 to 6 carbon atoms.
  10.  前記式(1)におけるXがエチレン基である、請求項7又は8に記載の電解液。 The electrolytic solution according to claim 7 or 8, wherein X in the formula (1) is an ethylene group.
  11.  前記式(1)で表される化合物の含有量が、前記電解液全量を基準として0.001質量%以上5質量%以下である、請求項7~10のいずれか一項に記載の電解液。 The electrolyte solution according to any one of claims 7 to 10, wherein the content of the compound represented by the formula (1) is 0.001% by mass or more and 5% by mass or less based on the total amount of the electrolyte solution. .
  12.  シリコン系活物質を含有する負極を備える電気化学デバイスの電解液に用いられる添加剤であって、
     下記式(1)で表される化合物を含有する、添加剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、R~Rはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
    An additive used in an electrolyte solution of an electrochemical device having a negative electrode containing a silicon-based active material,
    An additive containing a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (1), R 1 to R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  13.  前記式(1)におけるR及びRが水素原子である、請求項12に記載の添加剤。 13. The additive according to claim 12, wherein R1 and R2 in formula (1) are hydrogen atoms.
  14.  前記式(1)におけるXが炭素数1~6のアルキレン基である、請求項12又は13に記載の添加剤。 The additive according to claim 12 or 13, wherein X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
  15.  前記式(1)におけるXがエチレン基である、請求項12又は13に記載の添加剤。 The additive according to claim 12 or 13, wherein X in formula (1) is an ethylene group.
PCT/JP2022/029343 2021-07-29 2022-07-29 Electrochemical device, electrolyte solution, and additive used for electrolyte solution WO2023008569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538645A JPWO2023008569A1 (en) 2021-07-29 2022-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124218 2021-07-29
JP2021124218 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008569A1 true WO2023008569A1 (en) 2023-02-02

Family

ID=85086096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029343 WO2023008569A1 (en) 2021-07-29 2022-07-29 Electrochemical device, electrolyte solution, and additive used for electrolyte solution

Country Status (2)

Country Link
JP (1) JPWO2023008569A1 (en)
WO (1) WO2023008569A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058224A1 (en) * 2011-10-17 2013-04-25 宇部興産株式会社 Non-aqueous electrolyte solution and electricity-storage device using same
WO2014030684A1 (en) * 2012-08-24 2014-02-27 宇部興産株式会社 Nonaqueous electrolyte solution and electricity storage device using same
WO2021158366A1 (en) * 2020-02-03 2021-08-12 Enevate Corporation Silicon-based energy storage devices with electrolyte containing cyanate based compounds
JP2022102227A (en) * 2020-12-25 2022-07-07 エルジー エナジー ソリューション リミテッド Agent for decreasing acid or water content of nonaqueous electrolyte, nonaqueous electrolyte containing the same, lithium secondary battery comprising nonaqueous electrolyte, and method for decreasing acid or water content of nonaqueous electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058224A1 (en) * 2011-10-17 2013-04-25 宇部興産株式会社 Non-aqueous electrolyte solution and electricity-storage device using same
WO2014030684A1 (en) * 2012-08-24 2014-02-27 宇部興産株式会社 Nonaqueous electrolyte solution and electricity storage device using same
WO2021158366A1 (en) * 2020-02-03 2021-08-12 Enevate Corporation Silicon-based energy storage devices with electrolyte containing cyanate based compounds
JP2022102227A (en) * 2020-12-25 2022-07-07 エルジー エナジー ソリューション リミテッド Agent for decreasing acid or water content of nonaqueous electrolyte, nonaqueous electrolyte containing the same, lithium secondary battery comprising nonaqueous electrolyte, and method for decreasing acid or water content of nonaqueous electrolyte

Also Published As

Publication number Publication date
JPWO2023008569A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP2015005443A (en) Lithium secondary battery
US20190131623A1 (en) Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device
JP2017174647A (en) Electrode structure and lithium secondary battery
JP7147754B2 (en) Electrolyte and electrochemical device
JP7127385B2 (en) Anodes and electrochemical devices
WO2023008569A1 (en) Electrochemical device, electrolyte solution, and additive used for electrolyte solution
KR102561972B1 (en) Electrolytes and Electrochemical Devices
WO2020116583A1 (en) Electrolyte and electrochemical device
WO2023190335A1 (en) Electrochemical device, and electrolyte solution for electrochemical device
JP7131553B2 (en) Electrolyte and electrochemical device
WO2023190363A1 (en) Electrochemical device, and electrolyte for electrochemical device
JP7415946B2 (en) Electrolytes and electrochemical devices
WO2020116578A1 (en) Electrolyte and electrochemical device
WO2020027004A1 (en) Electrolyte and electrochemical device
JP2024059181A (en) Electrochemical device, electrolyte, and additive used in electrolyte
JP2017152311A (en) Lithium ion secondary battery
WO2020027003A1 (en) Electrolyte and electrochemical device
WO2018220799A1 (en) Electrolytic solution and electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538645

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849629

Country of ref document: EP

Kind code of ref document: A1