WO2023190301A1 - Surveying system - Google Patents
Surveying system Download PDFInfo
- Publication number
- WO2023190301A1 WO2023190301A1 PCT/JP2023/012127 JP2023012127W WO2023190301A1 WO 2023190301 A1 WO2023190301 A1 WO 2023190301A1 JP 2023012127 W JP2023012127 W JP 2023012127W WO 2023190301 A1 WO2023190301 A1 WO 2023190301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- flying object
- flight
- section
- surveying system
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims description 164
- 230000003287 optical effect Effects 0.000 claims description 55
- 238000001514 detection method Methods 0.000 claims description 41
- 238000004364 calculation method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 22
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 25
- 238000004891 communication Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C7/00—Tracing profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C7/00—Tracing profiles
- G01C7/02—Tracing profiles of land surfaces
- G01C7/04—Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
Definitions
- the present invention relates to a surveying system using a small unmanned air vehicle (UAV: Unmanned Air Vehicle).
- UAV Unmanned Air Vehicle
- Patent No. 6707098 Japanese Patent Application Publication No. 2016-151423 Japanese Patent Application Publication No. 2018-189576
- the present invention provides a surveying system that can measure the flatness and horizontality of a surface to be measured before or after concrete hardens.
- the present invention is a surveying system that is remotely controllable and includes a flight device that has a flying object and a measuring instrument, and a remote control device that controls the flight of the flight device and is capable of wireless communication with the flight device,
- the flight device relates to a surveying system configured to measure the surface shape of a surface to be measured using the measuring device while flying the flying object along a predetermined flight path.
- a plurality of detectors are provided on at least a side surface of the flying object, and the flight device is configured to be able to detect obstacles over the entire circumference in the horizontal direction based on the measurement results of the detectors. It is related to the surveying system.
- the present invention also relates to a surveying system in which the flight device is configured to fly the flying object to avoid the obstacle based on the detection result of the detector.
- the measuring device is a laser scanner, and includes a distance measuring section that emits distance measuring light and measures distance by receiving reflected distance measuring light, and is provided on the optical axis of the distance measuring light, an optical axis deflection unit capable of two-dimensionally deflecting the optical axis of the distance measurement light; an emission direction detection unit that detects the polarization angle of the optical axis of the distance measurement light and performs angle measurement; and a measurement calculation control unit.
- the measurement calculation control section relates to a surveying system configured to drive the optical axis deflection section so that the distance measurement light is scanned in a predetermined scan pattern.
- the measuring instrument has a tilt detection section capable of detecting a tilt with respect to the vertical in real time
- the measurement calculation control section is configured to collect the distance measurement result by the distance measurement section and the measurement by the emission direction detection section.
- the present invention relates to a surveying system configured to calculate three-dimensional coordinates based on the angle result and correct the three-dimensional coordinates based on the detection result of the inclination detector.
- the measurement target surface is located inside a room
- the flight device determines the horizontal position of the flying object in the room with respect to the wall surface of the room based on the detection result of the detector.
- the present invention further includes a position measuring device capable of measuring the position of the flying device, the position measuring device being provided at a known position, and configured to be able to measure and track the position of the flying object. It is related to the system.
- the present invention also relates to a surveying system in which the remote control aircraft is configured to create a three-dimensional map of the entire surface to be measured based on the measurement results of the measuring device and the position of the flying object. .
- the flight path is set so that the measurement ranges of the measuring instruments overlap by a predetermined amount
- the remote control device is configured to three-dimensionally measure the entire surface to be measured based on the measurement results of the overlapped portion. It relates to a surveying system configured to create maps.
- a surveying system including a flight device that can be remotely controlled and has a flying object and a measuring instrument, and a remote control device that controls the flight of the flight device and can communicate wirelessly with the flight device.
- the flight device is configured to measure the surface shape of the surface to be measured using the measuring device while flying the flying object along a predetermined flight path, so that any part of the surface to be measured is uneven. It is possible to easily understand whether there is a slope or slope, and the accuracy of the leveling process can be improved.
- FIG. 1 is an explanatory diagram illustrating a surveying system according to a first embodiment of the present invention.
- 1 is a block diagram showing a control system of a flight device in a surveying system according to a first embodiment of the present invention
- FIG. 3 is a block diagram showing a control system of a laser scanner in the surveying system.
- FIG. 3 is a block diagram showing a control system of a remote control device in the surveying system.
- FIG. 2 is an explanatory diagram illustrating measurement using the surveying system according to the first embodiment of the present invention.
- FIG. 7 is an explanatory diagram illustrating measurement using a surveying system according to a second embodiment of the present invention.
- FIG. 7 is an explanatory diagram illustrating measurement using a surveying system according to a third embodiment of the present invention. It is an explanatory view explaining measurement using a surveying system concerning a 4th example of the present invention.
- FIG. 1 a first embodiment of the present invention will be described.
- the surveying system 1 is comprised of a flying device (UAV) 2 and a remote control aircraft 3.
- UAV flying device
- the flight device 2 mainly includes a flying object 4, a laser scanner 5 as a measuring device provided at the center of the lower surface of the flying object 4, and a pair of legs 6 provided on the lower surface of the flying object 4. , a plurality of detectors 7 provided on the side surface of the aircraft 4 , and an aircraft communication section 8 (described later) that communicates with the remote control aircraft 3 .
- the laser scanner 5 is shown facing in the horizontal direction for the sake of explanation.
- a reference point is set on the flying object 4.
- the reference point is, for example, the mechanical center of the flying object 4.
- the optical center of the laser scanner 5 is located on the vertical axis passing through the reference point, and the reference point and the optical center of the laser scanner 5 are located on the vertical axis passing through the reference point.
- the positional relationship (distance) is known.
- the axis passing through the reference point and the optical center of the laser scanner 5 is defined as the vertical axis. That is, as the flying object 4 tilts, the vertical axis tilts with respect to the vertical axis.
- the laser scanner 5 emits a laser beam emitted in pulses or in bursts as distance measuring light, and irradiates it onto a predetermined object to be measured via the optical axis deflection section. Further, the distance measuring light reflected by the object to be measured (reflected distance measuring light) is received by the laser scanner 5, and the distance to the object to be measured is measured based on the round trip time and the speed of light. Note that the irradiation position of the distance measuring light from the optical axis deflection section is the optical center of the laser scanner 5.
- the leg section 6 When the flying object 4 is in a horizontal attitude, the leg section 6 extends downward from the lower surface of the flying object 4, is bent to extend in the horizontal direction, and is further bent upward to the lower surface of the flying object 4. It is a member with a U-shaped cross section extending from the top. A pair, that is, two, of the leg portions 6 are provided on the flying object 4, and the horizontal portions of the leg portions 6 are parallel and serve as a ground contact portion when the flying object 4 lands.
- the remote control device 3 is, for example, a mobile terminal such as a smartphone or a tablet, or a device in which an input device is connected to or integrated with the mobile terminal.
- the remote control device 3 includes a calculation device having a calculation function, a storage section for storing data and programs, and a terminal communication section (described later).
- the remote control aircraft 3 is capable of wireless communication with the flight device 2 between the terminal communication unit and the aircraft communication unit 8. Further, the remote control device 3 is capable of remotely controlling the flight of the flight device 2 and the distance measuring operation of the laser scanner 5.
- the flying object 4 has a plurality of even numbered propeller frames 9 (9a to 9d in the figure) extending radially, and the center of the propeller frame 9 is the center of the flight device 2.
- a propeller unit is provided at the tip of each propeller frame 9, respectively.
- the propeller unit includes a propeller 11 (11a to 11d in the figure) provided at the tip of the propeller frame 9, and a propeller motor 12 (12a to 12d in the figure) that rotates the propeller 11.
- Each propeller 11 and each propeller motor 12 constitute a flight drive unit that generates thrust in the vertical and horizontal directions with respect to the flying object 4.
- the detector 7 is, for example, a LiDar (Light Detection and Ranging), which irradiates a predetermined measurement target with a laser beam and detects reflected light and scattered light, thereby determining the distance to the measurement target and the shape of the measurement target. Measurable.
- a LiDar Light Detection and Ranging
- each detector 7 is arranged so that the horizontal irradiation range of the laser beam overlaps the horizontal irradiation range of the laser beam of an adjacent detector 7 by a predetermined amount. That is, the detector 7 can perform measurements (obstacle detection processing) over the entire circumference in the horizontal direction.
- numeral 10 indicates a measurement range by the detector 7.
- the flight object 4 has a built-in flight control device 13 and an IMU 14.
- the flight control device 13 mainly includes an arithmetic control section 16, a storage section 17, a flight control section 18, a propeller motor driver section 19, a scanner control section 21, an imaging control section 22, an attitude detection section 23, and the aircraft communication section 8. It is equipped with.
- the scanner control section 21 is included in the flight control device 13, but it may be configured separately.
- the scanner control unit 21 may be provided in the laser scanner 5 and control signals may be exchanged between the aircraft 4 and the laser scanner 5 via the aircraft communication unit 8.
- the storage section 17 is formed with a program storage section and a data storage section.
- the program storage unit includes a flight control program for autonomously flying the flying object 4 at a predetermined height and a predetermined route, a distance measurement program for controlling the distance measurement operation by the laser scanner 5, and a distance measurement program for controlling the distance measurement operation of the IMU 14.
- An attitude detection program that calculates the attitude of the flying object 4 based on the detection result; a detection program that controls the measurement of the detector 7; a detection program that detects an obstacle based on the measurement result of the detector 7; Programs such as an avoidance program for avoiding obstacles and a communication program for transmitting acquired data to the remote control device 3 and receiving flight commands and measurement commands from the remote control device 3 are stored.
- the data storage unit stores design drawing data of a building to be measured, measurement data of the detector 7, direction data detected by the attitude detection unit 23, and attitude data detected by the attitude detection unit 23. At the same time, each data is further associated based on the time when each data was acquired.
- the flight control unit 18 drives the propeller motor 12 via the propeller motor driver unit 19 so that the propeller 11 rotates in a desired state based on a flight-related control signal. Thereby, the flight control unit 18 can cause the flying object 4 to fly in a predetermined direction. Further, the flight control unit 18 can tilt the flying object 4 about two axes orthogonal to the horizontal direction while maintaining the position of the flying object 4 (in a hovering state), and The flying object 4 can be rotated around a vertical axis perpendicular to the two axes.
- the imaging control unit 22 controls the measurement operation of the detector 7 based on a control signal issued from the calculation control unit 16.
- the detector 7 is, for example, LiDar, and is capable of scanning a predetermined irradiation range with a laser beam, and is capable of acquiring distance data and surface shape data of the measurement target irradiated with the laser beam.
- the attitude detection unit 23 detects the attitude of the flying object 4 based on the detection signal emitted from the IMU 14.
- a reference direction and a reference attitude are set in advance for the flying object 4, and the IMU 14 can detect the rotation angle based on the reference direction, that is, the direction of the flying object 4, and also detect the tilt angle based on the reference attitude. It is possible to detect angles and inclination directions.
- the detected rotation angle and orientation are output to the orientation detection section 23.
- the arithmetic control unit 16 executes various controls for causing the flying object 4 to fly and for scanning (measuring) the measurement target with the distance measuring light. Further, the calculation control section 16 calculates a control signal related to flight based on the control signal, the attitude and rotation angle of the flying object 4, and outputs the control signal to the flight control section 18.
- the laser scanner 5 includes a distance measurement section 24, a measurement calculation control section 25, a measurement storage section 26, an optical axis deflection section 27, an emission direction detection section 28, and an inclination detection section 29, which are housed in a housing 31. and are integrated.
- the distance measuring section 24 and the optical axis deflecting section 27 are arranged on a reference optical axis O (described later).
- the distance measuring section 24 has a distance measuring optical axis 32 passing through the center of the optical axis deflecting section 27.
- the distance measuring section 24 emits a laser beam as distance measuring light 33 onto the distance measuring optical axis 32, receives reflected distance measuring light 34 incident from above the distance measuring optical axis 32, and receives reflected distance measuring light 34 incident from above the distance measuring optical axis 32.
- Distance measurement of a predetermined measurement target is performed based on the following. Note that the distance measuring section 24 functions as a light wave distance meter. Further, distance measurement data obtained by the distance measurement section 24 is stored in the measurement storage section 26.
- pulsed light either continuous light, pulsed light, or intermittent modulated ranging light (burst light) may be used. Note that pulsed light and burst light are collectively referred to as pulsed light.
- the measurement calculation control section 25 develops and executes various programs according to the operating state of the laser scanner 5 to control the distance measurement section 24, the optical axis deflection section 27, etc., and executes measurements. do. Note that as the measurement calculation control section 25, a CPU specialized for this apparatus or a general-purpose CPU is used.
- the measurement storage unit 26 includes a measurement program for performing distance measurement, a deflection control program for controlling the deflection operation of the optical axis deflection unit 27, and a three-dimensional coordinate calculation based on the distance measurement result and the angle measurement result.
- Various programs are stored therein, such as a three-dimensional coordinate calculation program to perform the calculation, a correction program to correct the three-dimensional coordinates calculated based on the detection result of the inclination detection section 29, and a calculation program to perform various calculations.
- the measurement storage section 26 stores various data such as distance measurement data, angle measurement data, and three-dimensional coordinate data.
- the measurement storage section 26 various storage means are used, such as an HDD as a magnetic storage device, a built-in memory as a semiconductor storage device, a memory card, and a USB memory.
- the measurement storage section 26 may be detachable from the housing 31.
- the measurement storage unit 26 may be capable of sending data to an external storage device or an external data processing device via a desired communication means.
- the optical axis deflection unit 27 deflects the ranging optical axis 32 within a range of ⁇ 20°, for example, and emits the ranging light 33 along the ranging optical axis 32.
- the reference optical axis O is set to coincide with the distance measuring optical axis 32 which is not deflected by the optical axis deflecting section 27. Further, the reference optical axis O also coincides with the vertical axis of the flying object 4.
- the optical axis deflection section 27 the one disclosed in Patent Document 3 can be used.
- the optical axis deflection section 27 includes a pair of optical prisms 35 and 36.
- the optical prisms 35 and 36 are disk-shaped with the same diameter, and are arranged concentrically on the ranging optical axis 32, orthogonal to the ranging optical axis 32, and arranged in parallel at predetermined intervals. .
- the ranging optical axis 32 can be deflected at any angle from 0° to the maximum deflection angle with respect to the reference optical axis O.
- the optical prisms 35 and 36 are continuously driven, and the distance measuring optical axis 32 is continuously deflected, so that the reference optical axis O is centered.
- the distance measuring light 33 can be caused to perform two-dimensional scanning in a predetermined pattern. That is, a circle drawn by the ranging optical axis 32 centered on the reference optical axis O and deflected to the maximum angle of deviation becomes the measurement range 30 by the laser scanner 5 (see FIG. 1).
- the exit direction detection unit 28 detects the relative rotation angle of the optical prisms 35 and 36 and the integral rotation angle of the optical prisms 35 and 36, and detects the deflection direction (exit direction) of the distance measuring optical axis 32 in real time. do.
- the emission direction detection result (angle measurement result) is input to the measurement calculation control section 25, and the measurement calculation control section 25 stores the distance measurement result and the emission direction detection result in association with each other in the measurement storage section 26.
- the tilt detecting section 29 is a tilt detecting section using a gimbal mechanism disclosed in Patent Document 2, for example.
- the tilt detection section 29 can detect the tilt angle and tilt direction of the reference optical axis O with respect to the vertical.
- the detected tilt angle and tilt direction are input to the measurement calculation control section 25 and stored in the measurement storage section 26 in association with the distance measurement result and the detection result of the emission direction detected by the emission direction detection section 28. .
- the measurement calculation control unit 25 can calculate three-dimensional coordinates with the optical center of the laser scanner 5 as a reference based on the distance measurement result by the distance measurement unit 24 and the angle measurement result by the emission direction detection unit 28. Based on the tilt angle and tilt direction (posture) detected by the tilt detection section 29, the three-dimensional coordinates can be corrected to three-dimensional coordinates when the reference optical axis O is vertical.
- the measurement process by the laser scanner 5 is executed by the measurement calculation control unit 25, but part or all of the measurement process is executed by the scanner control unit 21 (the flight control device 13). You can also do it like this.
- FIG. 4 is a diagram showing a schematic configuration of the remote control device 3 and the relationship between the flight device 2 and the remote control device 3.
- the remote control device 3 includes a terminal calculation processing section 37 having a calculation function, a terminal storage section 38, a terminal communication section 39, an operation section 41, and a display section 42.
- the terminal arithmetic processing unit 37 has a clock signal generation unit, and associates the measurement data received from the flight device 2 by the detector 7, the measurement data by the laser scanner 5, etc. with a clock signal. Further, the terminal arithmetic processing unit 37 processes the received various data as time-series data based on the clock signal, and stores the data in the terminal storage unit 38.
- the terminal storage unit 38 includes a communication program for communicating with the flight device 2, a display program for displaying an operation screen, measurement results, etc., and a program for determining the flatness of the measurement target based on the measurement results of the laser scanner 5.
- a 3D map creation program to create a 3D map with information such as levelness, a surface condition prediction program to predict the surface shape of concrete after hardening based on the 3D map, and instructions input via a touch panel, etc. Programs such as operation programs for doing this are stored. Further, data such as design drawing data of a building to be measured is stored in advance in the terminal storage unit 38.
- the terminal communication unit 39 communicates with the flight device 2. Further, the operating section 41 operates the flying object 4 by inputting various instructions via buttons of a controller provided integrally with the display section 42 . Alternatively, all of the display section 42 may be a touch panel. If all of the display sections 42 are touch panels, the operation section 41 may be omitted. In this case, the display section 42 is provided with an operation panel for operating the flying object 4.
- the display unit 42 displays an operation screen, a measurement result screen showing the measurement results obtained by the laser scanner 5 and the detector 7, a three-dimensional map display screen displaying the created three-dimensional map, and the like.
- 43 indicates a room at a predetermined level in the structure
- 44 indicates a surface to be measured on which concrete is placed on the floor of the room 43
- 45 indicates an obstacle such as a pillar.
- 46 indicates a wall surface.
- 47 indicates a takeoff and landing base for the flight device 2 to take off and land
- 48 indicates a flight path on which the flying object 4 flies or has flown.
- the flight device 2 that has landed on the takeoff and landing base 47 is installed at a predetermined measurement start position. Further, the reference direction of the flight device 2 is set to a predetermined direction.
- the measurement start position is the left end of the room 43, and the reference direction of the flying object 4 is directed toward the wall surface 46, for example. In the following, the reference direction will be referred to as the front.
- the takeoff and landing base 47 is provided with a filter having a predetermined reflectance on its surface, for example, and the takeoff and landing base 47 is based on the received light intensity of the reflected ranging light 34 when the takeoff and landing base 47 is measured by the laser scanner 5.
- the base 47 is configured to be identifiable.
- the operator sends a measurement start instruction to the flight device 2 via the remote control device 3.
- the flight control device 13 raises the flying object 4 to a predetermined height, for example, 3 to 5 m, based on a preset flight control program, and then raises the flying object 4 forward (see FIG. 5).
- the robot is made to fly at a constant height and speed toward the center (downward with respect to the paper) at a constant height and speed.
- the laser scanner 5 starts measurement so as to scan the measurement target surface 44 in a predetermined scan pattern, and the measurement results are transmitted to the remote control device 3 in real time. let Furthermore, the obstacle detection process by the detector 7 is started.
- the diameter of the measurement range 30 by the laser scanner 5 is approximately 3.4 to 5.6 m.
- the flight control device 13 prevents the flying object 4 and the wall surface 46 from coming into contact with each other.
- the flying object 4 is made to turn 180 degrees at a predetermined turning radius. After the turn, the flight control device 13 causes the flying object 4 to fly forward again.
- the turning radius of the flying object 4 is determined by the measurement range 30 on the outward journey when the flying object 4 flies toward the wall surface 46 and the measurement range on the returning journey when the flying object 4 flies in a direction away from the wall surface 46.
- the range 30 is set to overlap by a predetermined amount. Further, even while the flying object 4 is turning, the measurement by the laser scanner 5 and the obstacle detection process by the detector 7 are continued.
- the flight control device 13 When the flight control device 13 detects the take-off and landing base 47 through measurement by the laser scanner 5, it lands the flying object 4 on the take-off and landing base 47, and ends the measurement process.
- the operator moves the flight device 2 together with the takeoff and landing base 47 by a preset distance in a direction substantially orthogonal to the flight path 48, and moves the flight device 2 along with the takeoff and landing base 47 by a preset distance through the remote control device 3 in the same manner as above. and send the measurement start instruction.
- the amount of movement of the flight device 2 and the takeoff and landing base 47 is determined by the distance at which the measurement range 30 on the return trip before movement and the measurement range 30 on the outbound trip after movement overlap by a predetermined amount. It has become.
- the travel distance of the flight device 2 and the takeoff and landing base 47 may be detected based on the detection results of the detector 7, or the detection results may be transmitted to the remote control aircraft 3.
- the obstacle 45 may exist on the flight path 48.
- the flight control device 13 executes an avoidance process for the obstacle 45.
- the flight control device 13 controls the flying object 4 based on the measurement results of each detector 7 so that the flying object 4 maintains a constant distance from the obstacle 45.
- the flight control device 13 moves the flying object 4 in a direction perpendicular to the flight path 48 and in which the obstacle 45 does not exist. fly.
- the direction in which the obstacle 45 does not exist can be determined based on the position in the measurement range 10 in which the obstacle 45 exists.
- the flight control device 13 When the obstacle 45 is no longer detected in front of the flying object 4 by the detector 7a, that is, when the flying object 4 is flown to a position where it does not come into contact with the obstacle 45, the flight control device 13: The flying object 4 is made to fly forward again. At this time, the obstacle 45 is detected by the detector 7b provided on the side of the flying object 4.
- the flight control device 13 moves the flying object 4 in a direction perpendicular to the flight path 48 and in the direction in which the obstacle 45 was present. fly again. At this time, the obstacle 45 is detected by the detector 7c provided at the rear of the flying object 4.
- the flight control device 13 causes the flying object 4 to fly toward the wall surface 46 again.
- the return of the flying object 4 to the flight path 48 after the avoidance process may be performed based on the position of the obstacle 45 within the measurement range 10, or based on the measurement result of the detector 7. It may be performed based on the position of the flying object 4 estimated based on.
- the measurement process of the measurement target surface 44 by the flight device 2 and the movement of the flight device 2 and the takeoff and landing base 47 are repeated sequentially, and when the measurement over the entire area of the measurement target surface 44 is completed, the measurement target surface 44 Measurement of flatness and levelness of the area has been completed.
- the terminal arithmetic processing section 37 performs the three-dimensional map creation process based on the measurement results by the laser scanner 5 and the design drawing data stored in the terminal storage section 38. Execute.
- the terminal calculation processing unit 37 extracts height data of each point scanned by the distance measuring light 33 from the measurement results of the laser scanner 5, and calculates the measurement target surface from the height data for each measurement process. 44 surface shape data are created.
- the terminal calculation processing unit 37 calculates a preset movement distance between the flight device 2 and the takeoff and landing base 47, a movement distance determined based on the detection result of the detector 7, or the surface shape of each overlapped portion. Registration of each surface shape data is performed based on the shape of the data. By executing the registration, each piece of surface shape data is integrated, and a three-dimensional map that is the surface shape data of the entire surface 44 to be measured is created.
- the created three-dimensional map is displayed on the display section 42 and stored in the terminal storage section 38. Note that the three-dimensional map may be displayed in different colors depending on the height.
- the three-dimensional map and the three-dimensional map after concrete hardening are accumulated at each construction site, and by creating a database of each three-dimensional map, the terminal calculation processing section 37 can The surface shape of concrete after hardening can be predicted based on the map.
- a surface shape prediction screen that is the prediction result is displayed on the display unit 42, and the analysis of the flatness and horizontality of the measurement target surface 44 is completed.
- the operator Based on the analysis results of the flatness and horizontality of the surface to be measured 44, the operator performs leveling of the concrete or corrections after leveling, and completes the concrete placing process.
- the laser scanner 5 mounted on the flight device 2 scans the surface of the measurement target surface 44 on which concrete has been placed from above with the distance measuring light 33, The surface shape of the measurement target surface 44 before concrete hardening is measured and analyzed.
- the three-dimensional map was created after the measurement process over the entire area of the measurement target surface 44 was completed, but the measurement results of the laser scanner 5 are transmitted in real time to the remote control device 3, and the The terminal arithmetic processing unit 37 may create a three-dimensional map in real time based on the measurement results of the laser scanner 5 and the position of the flying object 4.
- the operator can grasp the unevenness and inclination of the measurement target surface 44 in real time, improving work efficiency and shortening work time.
- the laser scanner 5 is equipped with the inclination detection section 29 having a gimbal mechanism, and can detect the inclination of the reference optical axis O with respect to the vertical in real time and correct the measurement result by the laser scanner 5. There is no need to feed back the inclination of the flying object 4 to the measurement results of the laser scanner 5.
- LiDar is used as the detector 7, but a TOF camera may be used instead of LiDar.
- FIG. 6 a second embodiment of the present invention will be described.
- the same parts as those in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.
- the laser scanner 5 performs measurements while the flying object 4 autonomously flies so as to reciprocate on the measurement target surface 44 in the vertical direction with respect to the paper and move parallel to the paper from left to right. It is configured so that the entire surface 44 to be measured can be measured in one flight.
- the flight path 48 of the aircraft 4 is set in advance based on the design drawing data stored in the terminal storage unit 38.
- the flight path 48 is set so that the measurement ranges on the outward and return flights overlap by a predetermined amount. Further, since the position of the obstacle 45 can be known from the design drawing data, the flight path 48 is set so as to avoid the obstacle 45.
- the flight control device 13 By transmitting a measurement start instruction via the remote control device 3, the flight control device 13 causes the flying object 4 to fly along the flight path 48 at a constant height and at a constant speed while controlling the laser beam.
- the measurement target surface 44 is measured by the scanner 5.
- the flight control device 13 estimates the horizontal position of the flying object 4 in the room 43 with respect to the wall surface based on the measurement results of each detector 7 (SLAM: Simultaneous Localization and Mapping). Further, the flight control device 13 calculates the position of the flying object 4 in the room 43 in real time based on a comparison between the estimated position of the flying object 4 and design drawing data.
- SLAM Simultaneous Localization and Mapping
- the obstacle 45 that does not exist in the design drawing data may exist on the flight path 48.
- the obstacle 45 is avoided by the avoidance process in the first embodiment.
- the flying object 4 is flown along the flight path 48 and the measurement is completed over the entire area of the measurement target surface 44, the measurement of the flatness and horizontality of the measurement target surface 44 is completed.
- the processing for analyzing the flatness and horizontality of the surface to be measured 44 is the same as in the first embodiment.
- the entire area of the measurement target surface 44 can be measured in one flight. Therefore, it is not necessary for the operator to transport the flight device 2 and the take-off and landing base 47 each time the operator makes a reciprocation, so that the work effort can be reduced and the work time can be shortened.
- the position of the flying object 4 in the room 43 can be estimated based on the detection results of each detector 7, so that the autonomous movement of the flying object 4 along the flight path 48 can be estimated. Flight becomes possible.
- the detector 7 is provided only on the side surface of the flying object 4, but by providing the detector 7 also on the upper and lower surfaces of the flying object 4, it is possible to The position (height) of the flying object 4 relative to the ceiling or floor can also be determined. In this case, the height of the flying object 4 may be arbitrary and does not need to be maintained constant, so that the flying object 4 can be easily controlled.
- FIG. 7 a third embodiment of the present invention will be described.
- the same parts as those in FIG. 5 are given the same reference numerals, and their explanations will be omitted.
- the surveying system 1 in the third embodiment further includes a position measuring device 51.
- the position measuring device 51 is, for example, a total station, and is capable of measuring and tracking the flying object 4 and a prism (not shown) provided at a known position (distance and direction) with respect to the mechanical center of the flying object 4. It is composed of
- the position measuring device 51 is installed at a point having known three-dimensional coordinates, and based on the measurement results of the prism and the distance and direction from the prism to the machine center, the position measurement device 51 calculates the measurement results of the laser scanner 5 (laser scanner 5). 5) can be converted into three-dimensional point group data using the installation position of the position measuring device 51 as a reference.
- the flight path 48 is set using a method similar to that of the second embodiment.
- the position and height of the flying object 4 are determined in real time and with high accuracy by being tracked and measured by the position measuring device 51. Therefore, the flatness and horizontality of the measurement target surface 44 can be measured with high precision.
- the tracking may be interrupted due to the obstacle 45.
- 52 indicates a lost position where tracking of the flying object 4 is interrupted
- 53 indicates a re-locked position where tracking is resumed.
- the flight control device 13 estimates the position of the flying object 4 based on the measurement results of the detector 7 and moves along the flight path 48, as in the second embodiment.
- the flying object 4 is made to fly.
- the position measuring device 51 predicts the re-locking position 53 where the flying object 4 can be tracked again, aim.
- the flight control device 13 moves the flying object 4 along the flight path based on the position of the flying object 4 measured by the position measuring device 51. 48.
- FIG. 8 a fourth embodiment of the present invention will be described.
- the same parts as those in FIG. 5 are given the same reference numerals, and their explanations will be omitted.
- the laser scanner 5 is configured to be able to measure not from below but from the sides.
- the surface to be measured 54 is a wall surface of a constructed building, etc.
- the surface to be measured 54 is measured by the laser scanner 5, and the surface shape data of the surface to be measured 54 is obtained.
- defects such as unevenness, peeling, and falling of the measurement target surface 54 can be detected.
- an infrared camera, a spectrometer, or the like may be separately provided so that the temperature distribution, salt concentration, etc. of the measurement target surface 54 can be measured.
- the position of the flying object 4 may be determined based on the measurement results of the detector 7 as in the second embodiment, or may be determined based on the measurement results of the detector 7 as in the third embodiment. , may be determined by a position measuring device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
A surveying system having a flying device (2) that is remotely steerable and has a flying body (4) and a measuring instrument (5), and a remote controller that controls the flight of the flying device and is capable of wirelessly communicating with the flying device, wherein the flying device is configured to measure the surface shape of a surface (44) to be measured by means of the measuring instrument while the flying body is made to fly along a predetermined flight path (48).
Description
本発明は、小型無人飛行体(UAV:Unmanned Air Vehicle)を用いた測量システムに関するものである。
The present invention relates to a surveying system using a small unmanned air vehicle (UAV: Unmanned Air Vehicle).
ビル等の建造物を建築する際には、各階の床面にコンクリートを打設し、更に打設したコンクリートが平坦且つ水平となる様に均し処理が行われる。
When constructing a structure such as a building, concrete is placed on the floor surface of each floor, and the poured concrete is leveled so that it is flat and horizontal.
従来では、均し処理が完了したかどうか、即ち床面が平坦且つ水平であるかどうかは、作業者が目視又はデジタルレベルによって行っていた。然し乍ら、床面の平坦度及び水平度の確認は、硬化後の確認ではコンクリート表面を修正することは困難であり不十分であった。床面が傾斜した状態や細かな凹凸が存在する状態でコンクリートが硬化する前のリアルタイム計測が必要である。
Conventionally, an operator visually or digitally checked whether the leveling process was completed, that is, whether the floor surface was flat and level. However, confirmation of the flatness and levelness of the floor surface was insufficient because it was difficult to correct the concrete surface after it had hardened. Real-time measurement is required before the concrete hardens when the floor surface is sloping or has small irregularities.
本発明は、測定対象面の平坦度及び水平度をコンクリート硬化前又は硬化後に測定可能な測量システムを提供するものである。
The present invention provides a surveying system that can measure the flatness and horizontality of a surface to be measured before or after concrete hardens.
本発明は、遠隔操縦可能であり、飛行体と測定器を有する飛行装置と、該飛行装置の飛行を制御し、該飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、所定の飛行経路に沿って前記飛行体を飛行させつつ、前記測定器で測定対象面の表面形状を測定する様構成された測量システムに係るものである。
The present invention is a surveying system that is remotely controllable and includes a flight device that has a flying object and a measuring instrument, and a remote control device that controls the flight of the flight device and is capable of wireless communication with the flight device, The flight device relates to a surveying system configured to measure the surface shape of a surface to be measured using the measuring device while flying the flying object along a predetermined flight path.
又本発明は、前記飛行体の少なくとも側面に複数の検出器が設けられ、前記飛行装置は、前記検出器の測定結果に基づき、水平方向全周に亘って障害物を検出可能に構成された測量システムに係るものである。
Further, in the present invention, a plurality of detectors are provided on at least a side surface of the flying object, and the flight device is configured to be able to detect obstacles over the entire circumference in the horizontal direction based on the measurement results of the detectors. It is related to the surveying system.
又本発明は、前記飛行装置は、前記検出器の検出結果に基づき、前記障害物を回避する様前記飛行体を飛行させる様構成された測量システムに係るものである。
The present invention also relates to a surveying system in which the flight device is configured to fly the flying object to avoid the obstacle based on the detection result of the detector.
又本発明は、前記測定器はレーザスキャナであり、測距光を射出し、反射測距光を受光して測距を行う測距部と、前記測距光の光軸上に設けられ、該測距光の光軸を2次元に偏向可能な光軸偏向部と、前記測距光の光軸の偏角を検出し、測角を行う射出方向検出部と、測定演算制御部とを具備し、該測定演算制御部は、所定のスキャンパターンで前記測距光がスキャンされる様前記光軸偏向部を駆動させる様構成された測量システムに係るものである。
Further, in the present invention, the measuring device is a laser scanner, and includes a distance measuring section that emits distance measuring light and measures distance by receiving reflected distance measuring light, and is provided on the optical axis of the distance measuring light, an optical axis deflection unit capable of two-dimensionally deflecting the optical axis of the distance measurement light; an emission direction detection unit that detects the polarization angle of the optical axis of the distance measurement light and performs angle measurement; and a measurement calculation control unit. The measurement calculation control section relates to a surveying system configured to drive the optical axis deflection section so that the distance measurement light is scanned in a predetermined scan pattern.
又本発明は、前記測定器は、鉛直に対する傾斜をリアルタイムで検出可能な傾斜検出部を有し、前記測定演算制御部は、前記測距部による測距結果と、前記射出方向検出部による測角結果に基づき3次元座標を演算し、該3次元座標を前記傾斜検出部の検出結果に基づき補正する様構成された測量システムに係るものである。
Further, in the present invention, the measuring instrument has a tilt detection section capable of detecting a tilt with respect to the vertical in real time, and the measurement calculation control section is configured to collect the distance measurement result by the distance measurement section and the measurement by the emission direction detection section. The present invention relates to a surveying system configured to calculate three-dimensional coordinates based on the angle result and correct the three-dimensional coordinates based on the detection result of the inclination detector.
又本発明は、前記測定対象面は部屋の内部に位置し、前記飛行装置は、前記検出器の検出結果に基づき、前記部屋の壁面を基準とした前記飛行体の前記部屋内の水平位置を求める様構成された測量システムに係るものである。
Further, in the present invention, the measurement target surface is located inside a room, and the flight device determines the horizontal position of the flying object in the room with respect to the wall surface of the room based on the detection result of the detector. This relates to a surveying system configured to obtain the following information.
又本発明は、前記飛行装置の位置測定が可能な位置測定装置を更に有し、該位置測定装置は既知の位置に設けられ、前記飛行体の位置を測定可能且つ追尾可能に構成された測量システムに係るものである。
Further, the present invention further includes a position measuring device capable of measuring the position of the flying device, the position measuring device being provided at a known position, and configured to be able to measure and track the position of the flying object. It is related to the system.
又本発明は、前記遠隔操縦機は、前記測定器の測定結果と、前記飛行体の位置に基づき、前記測定対象面全域の3次元マップを作成する様構成された測量システムに係るものである。
The present invention also relates to a surveying system in which the remote control aircraft is configured to create a three-dimensional map of the entire surface to be measured based on the measurement results of the measuring device and the position of the flying object. .
更に又本発明は、前記飛行経路は、前記測定器による測定範囲が所定量オーバラップする様に設定され、前記遠隔操縦機は、オーバラップ部分の測定結果に基づき前記測定対象面全域の3次元マップを作成する様構成された測量システムに係るものである。
Furthermore, in the present invention, the flight path is set so that the measurement ranges of the measuring instruments overlap by a predetermined amount, and the remote control device is configured to three-dimensionally measure the entire surface to be measured based on the measurement results of the overlapped portion. It relates to a surveying system configured to create maps.
本発明によれば、遠隔操縦可能であり、飛行体と測定器を有する飛行装置と、該飛行装置の飛行を制御し、該飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、所定の飛行経路に沿って前記飛行体を飛行させつつ、前記測定器で測定対象面の表面形状を測定する様構成されたので、該測定対象面のどの部分に凹凸や傾斜が存在しているかを容易に把握することができ、均し処理の精度を向上させることができる。
According to the present invention, there is provided a surveying system including a flight device that can be remotely controlled and has a flying object and a measuring instrument, and a remote control device that controls the flight of the flight device and can communicate wirelessly with the flight device. The flight device is configured to measure the surface shape of the surface to be measured using the measuring device while flying the flying object along a predetermined flight path, so that any part of the surface to be measured is uneven. It is possible to easily understand whether there is a slope or slope, and the accuracy of the leveling process can be improved.
以下、図面を参照しつつ本発明の実施例を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
先ず、図1に於いて、本発明の第1の実施例について説明する。
First, referring to FIG. 1, a first embodiment of the present invention will be described.
測量システム1は、飛行装置(UAV)2と、遠隔操縦機3から構成される。
The surveying system 1 is comprised of a flying device (UAV) 2 and a remote control aircraft 3.
前記飛行装置2は、主に飛行体4と、該飛行体4の下面の中心部に設けられた測定器としてのレーザスキャナ5と、前記飛行体4の下面に設けられた一対の脚部6と、前記飛行体4の側面に設けられた複数の検出器7と、前記遠隔操縦機3との間で通信を行う飛行体通信部8(後述)とを具備している。尚、図示では、前記レーザスキャナ5は説明上水平方向に向いた状態で示している。
The flight device 2 mainly includes a flying object 4, a laser scanner 5 as a measuring device provided at the center of the lower surface of the flying object 4, and a pair of legs 6 provided on the lower surface of the flying object 4. , a plurality of detectors 7 provided on the side surface of the aircraft 4 , and an aircraft communication section 8 (described later) that communicates with the remote control aircraft 3 . In addition, in the illustration, the laser scanner 5 is shown facing in the horizontal direction for the sake of explanation.
尚、前記飛行体4には基準点が設定されている。該基準点は、例えば前記飛行体4の機械中心である。又、該飛行体4が水平姿勢に維持された状態では、前記レーザスキャナ5の光学中心は、前記基準点を通る鉛直軸心上に位置し、該基準点と前記レーザスキャナ5の光学中心との位置関係(距離)は既知となっている。尚、前記基準点と前記レーザスキャナ5の光学中心を通る軸心を垂直軸心とする。即ち、前記飛行体4の傾斜に伴い、前記鉛直軸心に対して前記垂直軸心が傾斜する。
Note that a reference point is set on the flying object 4. The reference point is, for example, the mechanical center of the flying object 4. Further, when the flying object 4 is maintained in a horizontal attitude, the optical center of the laser scanner 5 is located on the vertical axis passing through the reference point, and the reference point and the optical center of the laser scanner 5 are located on the vertical axis passing through the reference point. The positional relationship (distance) is known. Note that the axis passing through the reference point and the optical center of the laser scanner 5 is defined as the vertical axis. That is, as the flying object 4 tilts, the vertical axis tilts with respect to the vertical axis.
前記レーザスキャナ5は、パルス発光又はバースト発光されたレーザ光線を測距光として射出し、光軸偏向部を介して所定の測定対象物に照射する。又、測定対象物で反射された測距光(反射測距光)が前記レーザスキャナ5で受光され、往復時間及び光速に基づき測定対象迄の距離が測定される。尚、前記測距光の前記光軸偏向部からの照射位置は、前記レーザスキャナ5の光学中心となっている。
The laser scanner 5 emits a laser beam emitted in pulses or in bursts as distance measuring light, and irradiates it onto a predetermined object to be measured via the optical axis deflection section. Further, the distance measuring light reflected by the object to be measured (reflected distance measuring light) is received by the laser scanner 5, and the distance to the object to be measured is measured based on the round trip time and the speed of light. Note that the irradiation position of the distance measuring light from the optical axis deflection section is the optical center of the laser scanner 5.
前記脚部6は、前記飛行体4が水平姿勢である時に、該飛行体4の下面から下方に延出し、屈曲されて水平方向に延出し、更に前記飛行体4の下面迄上方に屈曲されて延出する断面コ字状の部材となっている。又、前記脚部6は前記飛行体4に一対、即ち2つ設けられており、前記脚部6の水平部は平行且つ前記飛行体4が着地した際の接地部となっている。
When the flying object 4 is in a horizontal attitude, the leg section 6 extends downward from the lower surface of the flying object 4, is bent to extend in the horizontal direction, and is further bent upward to the lower surface of the flying object 4. It is a member with a U-shaped cross section extending from the top. A pair, that is, two, of the leg portions 6 are provided on the flying object 4, and the horizontal portions of the leg portions 6 are parallel and serve as a ground contact portion when the flying object 4 lands.
前記遠隔操縦機3は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機3は、演算機能を有する演算装置、データやプログラムを格納する記憶部、更に端末通信部(後述)を有している。前記遠隔操縦機3は、前記端末通信部と前記飛行体通信部8との間で前記飛行装置2との無線通信が可能となっている。更に、前記遠隔操縦機3は、前記飛行装置2の飛行、前記レーザスキャナ5の測距作動を遠隔操作可能となっている。
The remote control device 3 is, for example, a mobile terminal such as a smartphone or a tablet, or a device in which an input device is connected to or integrated with the mobile terminal. The remote control device 3 includes a calculation device having a calculation function, a storage section for storing data and programs, and a terminal communication section (described later). The remote control aircraft 3 is capable of wireless communication with the flight device 2 between the terminal communication unit and the aircraft communication unit 8. Further, the remote control device 3 is capable of remotely controlling the flight of the flight device 2 and the distance measuring operation of the laser scanner 5.
次に、図1、図2に於いて、前記飛行装置2について説明する。
Next, the flight device 2 will be explained with reference to FIGS. 1 and 2.
前記飛行体4は、放射状に延出する複数で且つ偶数のプロペラフレーム9(図示では9a~9d)を有し、該プロペラフレーム9の中心は前記飛行装置2の中心となっている。各プロペラフレーム9の先端にそれぞれプロペラユニットが設けられる。該プロペラユニットは、前記プロペラフレーム9の先端に設けられたプロペラ11(図示では11a~11d)と、該プロペラ11を回転させるプロペラモータ12(図示では12a~12d)とにより構成される。各プロペラ11及び各プロペラモータ12は、前記飛行体4に対して垂直方向及び水平方向に推力を発生する飛行駆動部を構成する。
The flying object 4 has a plurality of even numbered propeller frames 9 (9a to 9d in the figure) extending radially, and the center of the propeller frame 9 is the center of the flight device 2. A propeller unit is provided at the tip of each propeller frame 9, respectively. The propeller unit includes a propeller 11 (11a to 11d in the figure) provided at the tip of the propeller frame 9, and a propeller motor 12 (12a to 12d in the figure) that rotates the propeller 11. Each propeller 11 and each propeller motor 12 constitute a flight drive unit that generates thrust in the vertical and horizontal directions with respect to the flying object 4.
又、前記飛行体4の側面には、複数の検出器7(図2中では7a~7d)が設けられている。該検出器7は、例えばLiDar(Light Detection And Ranging)であり、所定の測定対象にレーザ光線を照射し、反射光や散乱光を検出することで、測定対象迄の距離や測定対象の形状を測定可能となっている。
Furthermore, a plurality of detectors 7 (7a to 7d in FIG. 2) are provided on the side surface of the flying object 4. The detector 7 is, for example, a LiDar (Light Detection and Ranging), which irradiates a predetermined measurement target with a laser beam and detects reflected light and scattered light, thereby determining the distance to the measurement target and the shape of the measurement target. Measurable.
又、各検出器7は、レーザ光線の水平方向の照射範囲が隣接する検出器7のレーザ光線の水平方向の照射範囲と所定量だけオーバラップする様に配置される。即ち、水平方向全周に亘って、前記検出器7による測定(障害物検知処理)が可能となっている。尚、図1中、10は前記検出器7による測定範囲を示している。
Furthermore, each detector 7 is arranged so that the horizontal irradiation range of the laser beam overlaps the horizontal irradiation range of the laser beam of an adjacent detector 7 by a predetermined amount. That is, the detector 7 can perform measurements (obstacle detection processing) over the entire circumference in the horizontal direction. Incidentally, in FIG. 1, numeral 10 indicates a measurement range by the detector 7.
更に、前記飛行体4には、飛行制御装置13及びIMU14が内蔵されている。
Further, the flight object 4 has a built-in flight control device 13 and an IMU 14.
前記飛行制御装置13は、主に演算制御部16、記憶部17、飛行制御部18、プロペラモータドライバ部19、スキャナ制御部21、撮像制御部22、姿勢検出部23、前記飛行体通信部8とを具備している。
The flight control device 13 mainly includes an arithmetic control section 16, a storage section 17, a flight control section 18, a propeller motor driver section 19, a scanner control section 21, an imaging control section 22, an attitude detection section 23, and the aircraft communication section 8. It is equipped with.
尚、本実施例では、前記スキャナ制御部21が前記飛行制御装置13に含まれているが、別構成としてもよい。例えば、前記レーザスキャナ5内に前記スキャナ制御部21を設け、前記飛行体通信部8を介して前記飛行体4を前記レーザスキャナ5との間で制御信号の授受を行ってもよい。
Note that in this embodiment, the scanner control section 21 is included in the flight control device 13, but it may be configured separately. For example, the scanner control unit 21 may be provided in the laser scanner 5 and control signals may be exchanged between the aircraft 4 and the laser scanner 5 via the aircraft communication unit 8.
前記記憶部17には、プログラム格納部とデータ格納部とが形成される。前記プログラム格納部には、前記飛行体4を所定の高さ、所定の経路で自律飛行させる為の飛行制御プログラム、前記レーザスキャナ5による測距作動を制御する為の測距プログラム、前記IMU14の検出結果に基づき前記飛行体4の姿勢を演算する姿勢検出プログラム、前記検出器7の測定を制御する為の検出プログラム、前記検出器7の測定結果に基づき障害物を検知する検知プログラム、検知した障害物を回避する回避プログラム、取得したデータを前記遠隔操縦機3に送信し、又該遠隔操縦機3からの飛行指令や測定指令を受信する為の通信プログラム等のプログラムが格納されている。
The storage section 17 is formed with a program storage section and a data storage section. The program storage unit includes a flight control program for autonomously flying the flying object 4 at a predetermined height and a predetermined route, a distance measurement program for controlling the distance measurement operation by the laser scanner 5, and a distance measurement program for controlling the distance measurement operation of the IMU 14. An attitude detection program that calculates the attitude of the flying object 4 based on the detection result; a detection program that controls the measurement of the detector 7; a detection program that detects an obstacle based on the measurement result of the detector 7; Programs such as an avoidance program for avoiding obstacles and a communication program for transmitting acquired data to the remote control device 3 and receiving flight commands and measurement commands from the remote control device 3 are stored.
前記データ格納部には、測定対象となる建造物の設計図面データ、前記検出器7の測定データ、前記姿勢検出部23で検出した方向データ、前記姿勢検出部23で検出した姿勢データが格納されると共に、更に各データを取得した時の時間等に基づき各データが関連付けられる。
The data storage unit stores design drawing data of a building to be measured, measurement data of the detector 7, direction data detected by the attitude detection unit 23, and attitude data detected by the attitude detection unit 23. At the same time, each data is further associated based on the time when each data was acquired.
前記飛行制御部18は、飛行に関する制御信号に基づき、前記プロペラモータドライバ部19を介して、前記プロペラ11が所要の状態で回転する様に前記プロペラモータ12を駆動させる。これにより、前記飛行制御部18は、前記飛行体4を所定の方向に飛行させることができる。又、前記飛行制御部18は、前記飛行体4の位置を維持した状態で(ホバリングさせた状態で)、水平方向に直交する2軸を中心に前記飛行体4を傾斜させることができると共に、前記2軸に直交する垂直軸心を中心に前記飛行体4を回転させることができる。
The flight control unit 18 drives the propeller motor 12 via the propeller motor driver unit 19 so that the propeller 11 rotates in a desired state based on a flight-related control signal. Thereby, the flight control unit 18 can cause the flying object 4 to fly in a predetermined direction. Further, the flight control unit 18 can tilt the flying object 4 about two axes orthogonal to the horizontal direction while maintaining the position of the flying object 4 (in a hovering state), and The flying object 4 can be rotated around a vertical axis perpendicular to the two axes.
前記撮像制御部22は、前記演算制御部16から発せられる制御信号に基づき、前記検出器7の測定作動を制御する。該検出器7は、例えばLiDarであり、所定の照射範囲をレーザ光線でスキャン可能であり、レーザ光線が照射された測定対象の距離データと表面形状データを取得できる様になっている。
The imaging control unit 22 controls the measurement operation of the detector 7 based on a control signal issued from the calculation control unit 16. The detector 7 is, for example, LiDar, and is capable of scanning a predetermined irradiation range with a laser beam, and is capable of acquiring distance data and surface shape data of the measurement target irradiated with the laser beam.
前記姿勢検出部23は、前記IMU14から発せられる検出信号に基づき、前記飛行体4の姿勢を検出する。該飛行体4には、予め基準方向及び基準姿勢が設定されており、前記IMU14は基準方向を基準とした回転角、即ち前記飛行体4の方向を検出できると共に、基準姿勢を基準とした傾斜角、傾斜方向を検出できる様になっている。検出された回転角及び姿勢は、前記姿勢検出部23に出力される。
The attitude detection unit 23 detects the attitude of the flying object 4 based on the detection signal emitted from the IMU 14. A reference direction and a reference attitude are set in advance for the flying object 4, and the IMU 14 can detect the rotation angle based on the reference direction, that is, the direction of the flying object 4, and also detect the tilt angle based on the reference attitude. It is possible to detect angles and inclination directions. The detected rotation angle and orientation are output to the orientation detection section 23.
前記演算制御部16は、前記記憶部17に格納された各種プログラムに基づき、前記飛行体4を飛行させると共に、測定対象を測距光でスキャン(測定)する為の各種制御を実行する。又、前記演算制御部16は、前記操縦信号や前記飛行体4の姿勢や回転角等に基づき、飛行に関する制御信号を演算し、前記飛行制御部18に出力する。
Based on various programs stored in the storage unit 17, the arithmetic control unit 16 executes various controls for causing the flying object 4 to fly and for scanning (measuring) the measurement target with the distance measuring light. Further, the calculation control section 16 calculates a control signal related to flight based on the control signal, the attitude and rotation angle of the flying object 4, and outputs the control signal to the flight control section 18.
次に、図3に於いて、前記レーザスキャナ5の詳細について説明する。
Next, details of the laser scanner 5 will be explained with reference to FIG.
該レーザスキャナ5は、測距部24、測定演算制御部25、測定記憶部26、光軸偏向部27、射出方向検出部28、傾斜検出部29を具備し、これらは筐体31内に収納され、一体化されている。
The laser scanner 5 includes a distance measurement section 24, a measurement calculation control section 25, a measurement storage section 26, an optical axis deflection section 27, an emission direction detection section 28, and an inclination detection section 29, which are housed in a housing 31. and are integrated.
基準光軸O(後述)上に、前記測距部24、前記光軸偏向部27が配設されている。前記測距部24は、前記光軸偏向部27の中心を通過する測距光軸32を有している。前記測距部24は、前記測距光軸32上にレーザ光線を測距光33として発し、前記測距光軸32上から入射する反射測距光34を受光し、該反射測距光34に基づき所定の測定対象の測距を行う。尚、前記測距部24は光波距離計として機能する。又、該測距部24で得られた測距データは前記測定記憶部26に格納される。
The distance measuring section 24 and the optical axis deflecting section 27 are arranged on a reference optical axis O (described later). The distance measuring section 24 has a distance measuring optical axis 32 passing through the center of the optical axis deflecting section 27. The distance measuring section 24 emits a laser beam as distance measuring light 33 onto the distance measuring optical axis 32, receives reflected distance measuring light 34 incident from above the distance measuring optical axis 32, and receives reflected distance measuring light 34 incident from above the distance measuring optical axis 32. Distance measurement of a predetermined measurement target is performed based on the following. Note that the distance measuring section 24 functions as a light wave distance meter. Further, distance measurement data obtained by the distance measurement section 24 is stored in the measurement storage section 26.
レーザ光線としては、連続光或はパルス光、或は断続変調測距光(バースト光)のいずれかが用いられてもよい。尚、パルス光及びバースト光を総称してパルス光と称する。
As the laser beam, either continuous light, pulsed light, or intermittent modulated ranging light (burst light) may be used. Note that pulsed light and burst light are collectively referred to as pulsed light.
前記測定演算制御部25は、前記レーザスキャナ5の作動状態に応じて、各種プログラムを展開、実行して前記測距部24の制御、前記光軸偏向部27の制御等を行い、測定を実行する。尚、前記測定演算制御部25としては、本装置に特化したCPU、或は汎用CPUが用いられる。
The measurement calculation control section 25 develops and executes various programs according to the operating state of the laser scanner 5 to control the distance measurement section 24, the optical axis deflection section 27, etc., and executes measurements. do. Note that as the measurement calculation control section 25, a CPU specialized for this apparatus or a general-purpose CPU is used.
前記測定記憶部26には、測距を実行する為の測定プログラム、前記光軸偏向部27の偏向作動を制御する為の偏向制御プログラム、測距結果と測角結果に基づき3次元座標を演算する3次元座標演算プログラム、前記傾斜検出部29の検出結果に基づき演算された3次元座標を補正する補正プログラム、各種演算を実行する為の演算プログラム等の各種プログラムが格納される。又、前記測定記憶部26には、測距データ、測角データ、3次元座標データ等の各種データが格納される。
The measurement storage unit 26 includes a measurement program for performing distance measurement, a deflection control program for controlling the deflection operation of the optical axis deflection unit 27, and a three-dimensional coordinate calculation based on the distance measurement result and the angle measurement result. Various programs are stored therein, such as a three-dimensional coordinate calculation program to perform the calculation, a correction program to correct the three-dimensional coordinates calculated based on the detection result of the inclination detection section 29, and a calculation program to perform various calculations. Further, the measurement storage section 26 stores various data such as distance measurement data, angle measurement data, and three-dimensional coordinate data.
又、前記測定記憶部26としては、例えば、磁気記憶装置としてのHDD、半導体記憶装置としての内蔵メモリ、メモリカード、USBメモリ等種々の記憶手段が用いられる。前記測定記憶部26は、前記筐体31に対して着脱可能であってもよい。或は、前記測定記憶部26は、所望の通信手段を介して外部記憶装置或は外部データ処理装置にデータを送出可能としてもよい。
Further, as the measurement storage section 26, various storage means are used, such as an HDD as a magnetic storage device, a built-in memory as a semiconductor storage device, a memory card, and a USB memory. The measurement storage section 26 may be detachable from the housing 31. Alternatively, the measurement storage unit 26 may be capable of sending data to an external storage device or an external data processing device via a desired communication means.
前記光軸偏向部27は、例えば±20°の範囲で前記測距光軸32を偏向し、該測距光軸32に沿って前記測距光33を射出する。尚、前記基準光軸Oは、前記光軸偏向部27によって偏向されない状態の前記測距光軸32と合致する様に設定される。又、前記基準光軸Oは、前記飛行体4の垂直軸心とも合致する。尚、前記光軸偏向部27については、特許文献3に開示されたものを使用することができる。
The optical axis deflection unit 27 deflects the ranging optical axis 32 within a range of ±20°, for example, and emits the ranging light 33 along the ranging optical axis 32. The reference optical axis O is set to coincide with the distance measuring optical axis 32 which is not deflected by the optical axis deflecting section 27. Further, the reference optical axis O also coincides with the vertical axis of the flying object 4. As for the optical axis deflection section 27, the one disclosed in Patent Document 3 can be used.
前記光軸偏向部27について更に説明する。該光軸偏向部27は、一対の光学プリズム35,36を具備する。該光学プリズム35,36は、それぞれ同径の円板形であり、前記測距光軸32上に該測距光軸32と直交して同心に配置され、所定間隔で平行に配置されている。前記光学プリズム35,36の個々の回転を制御することで、前記基準光軸Oを基準として0°から最大偏角迄の任意の角度に前記測距光軸32を偏向することができる。
The optical axis deflection section 27 will be further explained. The optical axis deflection section 27 includes a pair of optical prisms 35 and 36. The optical prisms 35 and 36 are disk-shaped with the same diameter, and are arranged concentrically on the ranging optical axis 32, orthogonal to the ranging optical axis 32, and arranged in parallel at predetermined intervals. . By controlling the individual rotations of the optical prisms 35 and 36, the ranging optical axis 32 can be deflected at any angle from 0° to the maximum deflection angle with respect to the reference optical axis O.
又、前記測距光33を連続して照射しつつ、前記光学プリズム35,36を連続的に駆動し、前記測距光軸32を連続的に偏向することで、前記基準光軸Oを中心に前記測距光33を所定のパターンで2次元スキャンさせることができる。即ち、前記基準光軸Oを中心とし、最大偏角迄偏向させた前記測距光軸32が描く円が前記レーザスキャナ5による測定範囲30(図1参照)となる。
Further, while continuously irradiating the distance measuring light 33, the optical prisms 35 and 36 are continuously driven, and the distance measuring optical axis 32 is continuously deflected, so that the reference optical axis O is centered. The distance measuring light 33 can be caused to perform two-dimensional scanning in a predetermined pattern. That is, a circle drawn by the ranging optical axis 32 centered on the reference optical axis O and deflected to the maximum angle of deviation becomes the measurement range 30 by the laser scanner 5 (see FIG. 1).
前記射出方向検出部28は、前記光学プリズム35,36の相対回転角、該光学プリズム35,36の一体回転角を検出し、前記測距光軸32の偏向方向(射出方向)をリアルタイムで検出する。
The exit direction detection unit 28 detects the relative rotation angle of the optical prisms 35 and 36 and the integral rotation angle of the optical prisms 35 and 36, and detects the deflection direction (exit direction) of the distance measuring optical axis 32 in real time. do.
射出方向検出結果(測角結果)は、前記測定演算制御部25に入力され、該測定演算制御部25は測距結果と射出方向検出結果とを関連付けて前記測定記憶部26に格納する。
The emission direction detection result (angle measurement result) is input to the measurement calculation control section 25, and the measurement calculation control section 25 stores the distance measurement result and the emission direction detection result in association with each other in the measurement storage section 26.
前記傾斜検出部29は、例えば特許文献2に示されるジンバル機構を用いた傾斜検出部である。前記傾斜検出部29により、鉛直に対する前記基準光軸Oの傾斜角、傾斜方向を検出することができる。検出された傾斜角、傾斜方向は、前記測定演算制御部25に入力され、前記射出方向検出部28が検出した測距結果と射出方向検出結果と関連付けられて前記測定記憶部26に格納される。
The tilt detecting section 29 is a tilt detecting section using a gimbal mechanism disclosed in Patent Document 2, for example. The tilt detection section 29 can detect the tilt angle and tilt direction of the reference optical axis O with respect to the vertical. The detected tilt angle and tilt direction are input to the measurement calculation control section 25 and stored in the measurement storage section 26 in association with the distance measurement result and the detection result of the emission direction detected by the emission direction detection section 28. .
前記測定演算制御部25は、前記測距部24による測距結果と、前記射出方向検出部28による測角結果に基づき、前記レーザスキャナ5の光学中心を基準とする3次元座標が演算できると共に、前記傾斜検出部29により検出された傾斜角、傾斜方向(姿勢)に基づき、前記3次元座標を前記基準光軸Oを鉛直とした場合の3次元座標へと補正することができる。
The measurement calculation control unit 25 can calculate three-dimensional coordinates with the optical center of the laser scanner 5 as a reference based on the distance measurement result by the distance measurement unit 24 and the angle measurement result by the emission direction detection unit 28. Based on the tilt angle and tilt direction (posture) detected by the tilt detection section 29, the three-dimensional coordinates can be corrected to three-dimensional coordinates when the reference optical axis O is vertical.
尚、上記では、前記レーザスキャナ5による測定処理が前記測定演算制御部25により実行されているが、測定処理の一部又は全てが前記スキャナ制御部21(前記飛行制御装置13)により実行される様にしてもよい。
Note that in the above description, the measurement process by the laser scanner 5 is executed by the measurement calculation control unit 25, but part or all of the measurement process is executed by the scanner control unit 21 (the flight control device 13). You can also do it like this.
図4は、前記遠隔操縦機3の概略構成、及び前記飛行装置2と前記遠隔操縦機3の関連を示す図である。
FIG. 4 is a diagram showing a schematic configuration of the remote control device 3 and the relationship between the flight device 2 and the remote control device 3.
前記遠隔操縦機3は、演算機能を有する端末演算処理部37、端末記憶部38、端末通信部39、操作部41、表示部42を有している。
The remote control device 3 includes a terminal calculation processing section 37 having a calculation function, a terminal storage section 38, a terminal communication section 39, an operation section 41, and a display section 42.
前記端末演算処理部37は、クロック信号発生部を有し、前記飛行装置2から受信した前記検出器7による測定データ、前記レーザスキャナ5による測定データ等をそれぞれクロック信号に関連付ける。又、前記端末演算処理部37は、受信した各種データを前記クロック信号に基づき時系列のデータとして処理し、前記端末記憶部38に保存する。
The terminal arithmetic processing unit 37 has a clock signal generation unit, and associates the measurement data received from the flight device 2 by the detector 7, the measurement data by the laser scanner 5, etc. with a clock signal. Further, the terminal arithmetic processing unit 37 processes the received various data as time-series data based on the clock signal, and stores the data in the terminal storage unit 38.
該端末記憶部38には、前記飛行装置2と通信を行う為の通信プログラム、操作画面や測定結果等を表示する為の表示プログラム、前記レーザスキャナ5の測定結果に基づき測定対象の平坦度や水平度等の情報を有する3次元マップを作成する為の3次元マップ作成プログラム、3次元マップに基づきコンクリート硬化後の表面形状を予測する為の表面状態予測プログラム、タッチパネル等を介して指示を入力する為の操作プログラム等のプログラムが格納される。又、前記端末記憶部38には、測定対象となる建造物の設計図面データ等のデータが予め格納されている。
The terminal storage unit 38 includes a communication program for communicating with the flight device 2, a display program for displaying an operation screen, measurement results, etc., and a program for determining the flatness of the measurement target based on the measurement results of the laser scanner 5. A 3D map creation program to create a 3D map with information such as levelness, a surface condition prediction program to predict the surface shape of concrete after hardening based on the 3D map, and instructions input via a touch panel, etc. Programs such as operation programs for doing this are stored. Further, data such as design drawing data of a building to be measured is stored in advance in the terminal storage unit 38.
前記端末通信部39は、前記飛行装置2との間で通信を行う。又、前記操作部41は前記表示部42と一体に設けられたコントローラのボタン等を介して各種指示を入力し、前記飛行体4の操作を行う。或は、前記表示部42の全てをタッチパネルとしてもよい。該表示部42が全てタッチパネルである場合には、前記操作部41を省略してもよい。この場合、前記表示部42には前記飛行体4を操作する為の操作パネルが設けられる。
The terminal communication unit 39 communicates with the flight device 2. Further, the operating section 41 operates the flying object 4 by inputting various instructions via buttons of a controller provided integrally with the display section 42 . Alternatively, all of the display section 42 may be a touch panel. If all of the display sections 42 are touch panels, the operation section 41 may be omitted. In this case, the display section 42 is provided with an operation panel for operating the flying object 4.
前記表示部42は、操作画面や前記レーザスキャナ5や前記検出器7で取得された測定結果を示す測定結果画面、作成された3次元マップを表示する3次元マップ表示画面等が表示される。
The display unit 42 displays an operation screen, a measurement result screen showing the measurement results obtained by the laser scanner 5 and the detector 7, a three-dimensional map display screen displaying the created three-dimensional map, and the like.
次に、図5を参照して、前記測量システム1を用いた床面の平坦度及び水平度(FFL(Floor Flatness and Levelness)の測定及び解析について説明する。
Next, with reference to FIG. 5, measurement and analysis of floor flatness and levelness (FFL) using the surveying system 1 will be described.
図5中、43は構造物に於ける所定の階層の部屋を示し、44は該部屋43の床面のうちコンクリートが打設された測定対象面を示し、45は柱等の障害物を示し、46は壁面を示している。又、47は前記飛行装置2が離発着する為の離発着ベースを示し、48は前記飛行体4が飛行する、又は飛行した飛行経路を示している。
In FIG. 5, 43 indicates a room at a predetermined level in the structure, 44 indicates a surface to be measured on which concrete is placed on the floor of the room 43, and 45 indicates an obstacle such as a pillar. , 46 indicates a wall surface. Further, 47 indicates a takeoff and landing base for the flight device 2 to take off and land, and 48 indicates a flight path on which the flying object 4 flies or has flown.
先ず、前記離発着ベース47に着地した前記飛行装置2を所定の測定開始位置に設置する。又、前記飛行装置2の基準方向を所定の方向に設定する。本実施例では、測定開始位置は前記部屋43の左端となっており、前記飛行体4の基準方向は例えば壁面46へと向けられる。以下に於いては、基準方向を前方と称す。
First, the flight device 2 that has landed on the takeoff and landing base 47 is installed at a predetermined measurement start position. Further, the reference direction of the flight device 2 is set to a predetermined direction. In this embodiment, the measurement start position is the left end of the room 43, and the reference direction of the flying object 4 is directed toward the wall surface 46, for example. In the following, the reference direction will be referred to as the front.
前記離発着ベース47は、例えば表面に所定の反射率を有するフィルタが設けられており、前記レーザスキャナ5で前記離発着ベース47を測定した際の前記反射測距光34の受光強度に基づき、前記離発着ベース47を識別可能に構成されている。
The takeoff and landing base 47 is provided with a filter having a predetermined reflectance on its surface, for example, and the takeoff and landing base 47 is based on the received light intensity of the reflected ranging light 34 when the takeoff and landing base 47 is measured by the laser scanner 5. The base 47 is configured to be identifiable.
前記飛行装置2が設置、基準方向が設定されると、作業者は、前記遠隔操縦機3を介して前記飛行装置2に測定開始指示を送信する。
Once the flight device 2 is installed and the reference direction is set, the operator sends a measurement start instruction to the flight device 2 via the remote control device 3.
測定開始指示が送信されると、前記飛行制御装置13は、予め設定された飛行制御プログラムに基づき、前記飛行体4を所定の高さ、例えば3~5m迄上昇させた後、前方(図5中、紙面に対して下側)に向って一定高さ且つ等速で飛行させる。又、前記飛行体4の飛行と並行して、前記測定対象面44を所定のスキャンパターンでスキャンする様、前記レーザスキャナ5による測定を開始させ、測定結果を前記遠隔操縦機3にリアルタイムで送信させる。更に、前記検出器7による障害物検知処理を開始させる。
When the measurement start instruction is transmitted, the flight control device 13 raises the flying object 4 to a predetermined height, for example, 3 to 5 m, based on a preset flight control program, and then raises the flying object 4 forward (see FIG. 5). The robot is made to fly at a constant height and speed toward the center (downward with respect to the paper) at a constant height and speed. Further, in parallel with the flight of the flying object 4, the laser scanner 5 starts measurement so as to scan the measurement target surface 44 in a predetermined scan pattern, and the measurement results are transmitted to the remote control device 3 in real time. let Furthermore, the obstacle detection process by the detector 7 is started.
尚、前記飛行体4を3~5mの高さで飛行させた場合、前記レーザスキャナ5による前記測定範囲30の直径は、3.4~5.6m程度となる。
Note that when the flying object 4 is flown at a height of 3 to 5 m, the diameter of the measurement range 30 by the laser scanner 5 is approximately 3.4 to 5.6 m.
前記飛行体4の飛行中、該飛行体4の前側に設けられた検出器7aが前方に前記壁面46を検知すると、前記飛行制御装置13は、前記飛行体4と前記壁面46とが接触しない様に所定の旋回半径で前記飛行体4を180°旋回させる。旋回後は、前記飛行制御装置13が再度前記飛行体4を前方へと飛行させる。
During the flight of the flying object 4, when the detector 7a provided on the front side of the flying object 4 detects the wall surface 46 in front, the flight control device 13 prevents the flying object 4 and the wall surface 46 from coming into contact with each other. The flying object 4 is made to turn 180 degrees at a predetermined turning radius. After the turn, the flight control device 13 causes the flying object 4 to fly forward again.
尚、前記飛行体4の旋回半径は、該飛行体4が前記壁面46に向って飛行する往路の前記測定範囲30と、前記飛行体4が前記壁面46から離れる方向に飛行する復路の前記測定範囲30とが、所定量オーバラップする様に設定される。又、前記飛行体4の旋回中も、前記レーザスキャナ5による測定、前記検出器7による障害物検知処理は続行されている。
Note that the turning radius of the flying object 4 is determined by the measurement range 30 on the outward journey when the flying object 4 flies toward the wall surface 46 and the measurement range on the returning journey when the flying object 4 flies in a direction away from the wall surface 46. The range 30 is set to overlap by a predetermined amount. Further, even while the flying object 4 is turning, the measurement by the laser scanner 5 and the obstacle detection process by the detector 7 are continued.
前記飛行制御装置13は、前記レーザスキャナ5の測定により前記離発着ベース47を検出すると、前記飛行体4を前記離発着ベース47に着陸させ、測定処理を終了する。
When the flight control device 13 detects the take-off and landing base 47 through measurement by the laser scanner 5, it lands the flying object 4 on the take-off and landing base 47, and ends the measurement process.
作業者は、測定処理の終了後、前記飛行装置2を前記離発着ベース47と共に前記飛行経路48と略直交する方向に予め設定された距離だけ移動させ、上記と同様に前記遠隔操縦機3を介して測定開始指示を送信する。この時、前記飛行装置2及び前記離発着ベース47の移動量は、移動前の復路に於ける前記測定範囲30と、移動後の往路に於ける前記測定範囲30とが所定量オーバラップする距離となっている。尚、前記飛行装置2及び前記離発着ベース47の移動距離は、前記検出器7の検出結果に基づき検出してもよく、検出結果を前記遠隔操縦機3に送信する様にしてもよい。
After the measurement process is completed, the operator moves the flight device 2 together with the takeoff and landing base 47 by a preset distance in a direction substantially orthogonal to the flight path 48, and moves the flight device 2 along with the takeoff and landing base 47 by a preset distance through the remote control device 3 in the same manner as above. and send the measurement start instruction. At this time, the amount of movement of the flight device 2 and the takeoff and landing base 47 is determined by the distance at which the measurement range 30 on the return trip before movement and the measurement range 30 on the outbound trip after movement overlap by a predetermined amount. It has become. The travel distance of the flight device 2 and the takeoff and landing base 47 may be detected based on the detection results of the detector 7, or the detection results may be transmitted to the remote control aircraft 3.
前記飛行装置2による測定処理中、前記飛行経路48上に前記障害物45が存在する場合がある。前記飛行制御装置13は、前記検出器7aにより前方に前記障害物45が検知されると、該障害物45の回避処理を実行する。回避処理に於いては、前記飛行制御装置13は、各検出器7の測定結果に基づき、前記飛行体4が前記障害物45と一定の距離を維持する様に前記飛行体4を制御する。
During the measurement process by the flight device 2, the obstacle 45 may exist on the flight path 48. When the obstacle 45 is detected in front by the detector 7a, the flight control device 13 executes an avoidance process for the obstacle 45. In the avoidance process, the flight control device 13 controls the flying object 4 based on the measurement results of each detector 7 so that the flying object 4 maintains a constant distance from the obstacle 45.
具体的には、前記飛行制御装置13は、前記検出器7aが前方に前記障害物45を検知すると、前記飛行経路48と直交し、且つ前記障害物45が存在しない方向へと前記飛行体4を飛行させる。ここで、前記障害物45が存在しない方向は、該障害物45が前記測定範囲10のどの位置に存在するかで判断することができる。
Specifically, when the detector 7a detects the obstacle 45 ahead, the flight control device 13 moves the flying object 4 in a direction perpendicular to the flight path 48 and in which the obstacle 45 does not exist. fly. Here, the direction in which the obstacle 45 does not exist can be determined based on the position in the measurement range 10 in which the obstacle 45 exists.
前記検出器7aにより前記飛行体4の前方で前記障害物45が検知されなくなると、即ち、前記障害物45と接触しない位置まで前記飛行体4が飛行されると、前記飛行制御装置13は、前記飛行体4を再度前方へと飛行させる。この時、前記障害物45は、前記飛行体4の側方に設けられた検出器7bにより検知されている。
When the obstacle 45 is no longer detected in front of the flying object 4 by the detector 7a, that is, when the flying object 4 is flown to a position where it does not come into contact with the obstacle 45, the flight control device 13: The flying object 4 is made to fly forward again. At this time, the obstacle 45 is detected by the detector 7b provided on the side of the flying object 4.
前記飛行体4の側方で前記障害物45が検知されなくなると、前記飛行制御装置13は、前記飛行経路48と直交し、且つ前記障害物45が存在していた方向へと前記飛行体4を再度飛行させる。この時、前記障害物45は、前記飛行体4の後方に設けられた検出器7cにより検知されている。
When the obstacle 45 is no longer detected on the side of the flying object 4, the flight control device 13 moves the flying object 4 in a direction perpendicular to the flight path 48 and in the direction in which the obstacle 45 was present. fly again. At this time, the obstacle 45 is detected by the detector 7c provided at the rear of the flying object 4.
前記飛行体4が元の前記飛行経路48迄復帰されると、前記飛行制御装置13は、前記飛行体4を前記壁面46に向って再度飛行させる。
When the flying object 4 returns to the original flight path 48, the flight control device 13 causes the flying object 4 to fly toward the wall surface 46 again.
尚、回避処理後の、前記飛行体4の前記飛行経路48への復帰は、前記測定範囲10内に於ける前記障害物45の位置に基づき行ってもよいし、前記検出器7の測定結果に基づき推定された前記飛行体4の位置に基づき行ってもよい。
Note that the return of the flying object 4 to the flight path 48 after the avoidance process may be performed based on the position of the obstacle 45 within the measurement range 10, or based on the measurement result of the detector 7. It may be performed based on the position of the flying object 4 estimated based on.
前記飛行装置2による前記測定対象面44の測定処理と、前記飛行装置2及び前記離発着ベース47の移動を順次繰返し、前記測定対象面44の全域に亘って測定が完了すると、前記測定対象面44の平坦度及び水平度の測定が完了する。
The measurement process of the measurement target surface 44 by the flight device 2 and the movement of the flight device 2 and the takeoff and landing base 47 are repeated sequentially, and when the measurement over the entire area of the measurement target surface 44 is completed, the measurement target surface 44 Measurement of flatness and levelness of the area has been completed.
平坦度及び水平度の測定が完了すると、前記端末演算処理部37は、前記レーザスキャナ5による測定結果と前記端末記憶部38に格納された設計図面データに基づき、前記3次元マップの作成処理を実行する。
When the flatness and horizontality measurements are completed, the terminal arithmetic processing section 37 performs the three-dimensional map creation process based on the measurement results by the laser scanner 5 and the design drawing data stored in the terminal storage section 38. Execute.
前記端末演算処理部37は、前記レーザスキャナ5の測定結果から、前記測距光33でスキャンされた各点の高さデータを抽出し、高さデータから、各測定処理毎に前記測定対象面44の表面形状データを作成する。
The terminal calculation processing unit 37 extracts height data of each point scanned by the distance measuring light 33 from the measurement results of the laser scanner 5, and calculates the measurement target surface from the height data for each measurement process. 44 surface shape data are created.
又、前記端末演算処理部37は、前記飛行装置2と前記離発着ベース47の予め設定した移動距離や前記検出器7の検出結果に基づき求められた移動距離、或はオーバラップ部分の各表面形状データの形状に基づき、各表面形状データのレジストレーションを実行する。レジストレーションの実行により、各表面形状データが統合され、前記測定対象面44全域の表面形状データである3次元マップが作成される。
Further, the terminal calculation processing unit 37 calculates a preset movement distance between the flight device 2 and the takeoff and landing base 47, a movement distance determined based on the detection result of the detector 7, or the surface shape of each overlapped portion. Registration of each surface shape data is performed based on the shape of the data. By executing the registration, each piece of surface shape data is integrated, and a three-dimensional map that is the surface shape data of the entire surface 44 to be measured is created.
作成された3次元マップは、前記表示部42に表示されると共に、前記端末記憶部38に格納される。尚、3次元マップに於いては、高さに応じて色分け表示してもよい。
The created three-dimensional map is displayed on the display section 42 and stored in the terminal storage section 38. Note that the three-dimensional map may be displayed in different colors depending on the height.
尚、3次元マップとコンクリート硬化後の3次元マップは、施工現場毎に蓄積される様になっており、それぞれの3次元マップをデータベース化することで、前記端末演算処理部37は、3次元マップに基づきコンクリート硬化後の表面形状を予測することができる。予測結果である表面形状予測画面が前記表示部42に表示され、前記測定対象面44の平坦度及び水平度の解析が完了する。
The three-dimensional map and the three-dimensional map after concrete hardening are accumulated at each construction site, and by creating a database of each three-dimensional map, the terminal calculation processing section 37 can The surface shape of concrete after hardening can be predicted based on the map. A surface shape prediction screen that is the prediction result is displayed on the display unit 42, and the analysis of the flatness and horizontality of the measurement target surface 44 is completed.
作業者は、前記測定対象面44の平坦度及び水平度の解析結果に基づき、コンクリートの均し処理、或は均し後の修正を行い、コンクリートの打設処理を完了する。
Based on the analysis results of the flatness and horizontality of the surface to be measured 44, the operator performs leveling of the concrete or corrections after leveling, and completes the concrete placing process.
上述の様に、第1の実施例では、前記飛行装置2に搭載した前記レーザスキャナ5により、コンクリートが打設された前記測定対象面44の表面を上空から前記測距光33でスキャンし、コンクリート硬化前の前記測定対象面44の表面形状の測定及び解析を行っている。
As described above, in the first embodiment, the laser scanner 5 mounted on the flight device 2 scans the surface of the measurement target surface 44 on which concrete has been placed from above with the distance measuring light 33, The surface shape of the measurement target surface 44 before concrete hardening is measured and analyzed.
従って、前記測定対象面44のどの部分に凹凸が存在するか、どの部分が傾斜しているかを容易に把握することができるので、コンクリートの均し処理の精度を向上させることができると共に、均し処理及び均し処理後の修正に要する時間を短縮することができる。
Therefore, it is possible to easily know in which part of the surface to be measured 44 there are irregularities and in which part it is sloped, so that it is possible to improve the accuracy of the concrete leveling process, and also to improve the leveling of the concrete. It is possible to shorten the time required for correction after polishing and leveling.
尚、上記では、前記測定対象面44全域での測定処理が完了した後、3次元マップを作成していたが、前記レーザスキャナ5の測定結果をリアルタイムで前記遠隔操縦機3に送信し、前記端末演算処理部37が前記レーザスキャナ5の測定結果と前記飛行体4の位置に基づきリアルタイムで3次元マップを作成してもよい。
Note that in the above, the three-dimensional map was created after the measurement process over the entire area of the measurement target surface 44 was completed, but the measurement results of the laser scanner 5 are transmitted in real time to the remote control device 3, and the The terminal arithmetic processing unit 37 may create a three-dimensional map in real time based on the measurement results of the laser scanner 5 and the position of the flying object 4.
3次元マップがリアルタイムで作成することで、前記測定対象面44の凹凸や傾斜を作業者がリアルタイムで把握することができ、作業性の向上及び作業時間の短縮を図ることができる。
By creating a three-dimensional map in real time, the operator can grasp the unevenness and inclination of the measurement target surface 44 in real time, improving work efficiency and shortening work time.
又、前記レーザスキャナ5がジンバル機構を有する前記傾斜検出部29を具備しており、リアルタイムで鉛直に対する前記基準光軸Oの傾斜を検出し、前記レーザスキャナ5による測定結果を補正できるので、前記飛行体4の傾斜を前記レーザスキャナ5の測定結果にフィードバックする必要がない。
Further, the laser scanner 5 is equipped with the inclination detection section 29 having a gimbal mechanism, and can detect the inclination of the reference optical axis O with respect to the vertical in real time and correct the measurement result by the laser scanner 5. There is no need to feed back the inclination of the flying object 4 to the measurement results of the laser scanner 5.
尚、第1の実施例では、前記検出器7としてLiDarを使用しているが、LiDarに代えてTOFカメラを使用してもよい。
Note that in the first embodiment, LiDar is used as the detector 7, but a TOF camera may be used instead of LiDar.
又、第1の実施例では、コンクリート硬化前の前記測定対象面44を測定する場合について説明したが、コンクリート硬化後の前記測定対象面44も同様に測定可能であることは言う迄もない。
Furthermore, in the first embodiment, a case has been described in which the surface to be measured 44 before the concrete hardens is measured, but it goes without saying that the surface to be measured 44 after the concrete hardens can be similarly measured.
次に、図6に於いて、本発明の第2の実施例について説明する。尚、図6中、図5中と同等のものには同符号を付し、その説明を省略する。
Next, referring to FIG. 6, a second embodiment of the present invention will be described. In FIG. 6, the same parts as those in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.
第2の実施例では、測定対象面44上を紙面に対して上下方向に往復させつつ紙面に対して左から右方向へ平行移動する様飛行体4を自律飛行させつつレーザスキャナ5による測定を実行させ、一度の飛行で測定対象面44全域を測定する様構成されている。
In the second embodiment, the laser scanner 5 performs measurements while the flying object 4 autonomously flies so as to reciprocate on the measurement target surface 44 in the vertical direction with respect to the paper and move parallel to the paper from left to right. It is configured so that the entire surface 44 to be measured can be measured in one flight.
第2の実施例に於いては、端末記憶部38に格納された設計図面データに基づき、前記飛行体4の飛行経路48を予め設定する。該飛行経路48は、往路と復路に於ける測定範囲が所定量オーバラップする様に設定される。又、障害物45の位置は設計図面データから把握することができるので、前記障害物45を避ける様に前記飛行経路48が設定される。
In the second embodiment, the flight path 48 of the aircraft 4 is set in advance based on the design drawing data stored in the terminal storage unit 38. The flight path 48 is set so that the measurement ranges on the outward and return flights overlap by a predetermined amount. Further, since the position of the obstacle 45 can be known from the design drawing data, the flight path 48 is set so as to avoid the obstacle 45.
遠隔操縦機3を介して測定開始指示が送信されることで、飛行制御装置13は、前記飛行経路48に沿って一定の高さ、一定の速度で前記飛行体4を飛行させつつ、前記レーザスキャナ5による前記測定対象面44の測定を行う。
By transmitting a measurement start instruction via the remote control device 3, the flight control device 13 causes the flying object 4 to fly along the flight path 48 at a constant height and at a constant speed while controlling the laser beam. The measurement target surface 44 is measured by the scanner 5.
前記飛行体4の飛行中、各検出器7による測定がリアルタイムで実行される。前記飛行制御装置13は、各検出器7の測定結果に基づき、壁面を基準とした前記飛行体4の前記部屋43内での水平位置を推定する(SLAM:Simultaneous Localization and Mapping)。又、前記飛行制御装置13は、推定した前記飛行体4の位置と設計図面データとの比較に基づき、部屋43内に於ける前記飛行体4の位置をリアルタイムで演算する。
While the flying object 4 is in flight, measurements by each detector 7 are performed in real time. The flight control device 13 estimates the horizontal position of the flying object 4 in the room 43 with respect to the wall surface based on the measurement results of each detector 7 (SLAM: Simultaneous Localization and Mapping). Further, the flight control device 13 calculates the position of the flying object 4 in the room 43 in real time based on a comparison between the estimated position of the flying object 4 and design drawing data.
尚、前記飛行体4の飛行中、前記飛行経路48上に設計図面データ中には存在しない前記障害物45が存在する場合がある。この場合には、第1の実施例に於ける回避処理により前記障害物45の回避が実行される。
Incidentally, during the flight of the flying object 4, the obstacle 45 that does not exist in the design drawing data may exist on the flight path 48. In this case, the obstacle 45 is avoided by the avoidance process in the first embodiment.
前記飛行経路48に沿って前記飛行体4を飛行させ、前記測定対象面44の全域に亘って測定が完了すると、該測定対象面44の平坦度及び水平度の測定が完了する。前記測定対象面44の平坦度及び水平度の解析処理については、第1の実施例と同様である。
When the flying object 4 is flown along the flight path 48 and the measurement is completed over the entire area of the measurement target surface 44, the measurement of the flatness and horizontality of the measurement target surface 44 is completed. The processing for analyzing the flatness and horizontality of the surface to be measured 44 is the same as in the first embodiment.
第2の実施例に於いては、一度の飛行により前記測定対象面44全域の測定が可能である。従って、作業者が前記飛行装置2及び離発着ベース47を1往復毎に搬送する必要がないので、作業労力が低減できると共に、作業時間を短縮することができる。
In the second embodiment, the entire area of the measurement target surface 44 can be measured in one flight. Therefore, it is not necessary for the operator to transport the flight device 2 and the take-off and landing base 47 each time the operator makes a reciprocation, so that the work effort can be reduced and the work time can be shortened.
又、第2の実施例では、各検出器7の検出結果に基づき、前記部屋43中の前記飛行体4の位置を推定可能であるので、前記飛行経路48に沿った前記飛行体4の自律飛行が可能となる。
Furthermore, in the second embodiment, the position of the flying object 4 in the room 43 can be estimated based on the detection results of each detector 7, so that the autonomous movement of the flying object 4 along the flight path 48 can be estimated. Flight becomes possible.
尚、第2の実施例では、前記飛行体4の側面にのみ前記検出器7を設けているが、前記飛行体4の上面や下面にも前記検出器7を設けることで、前記部屋43の天井や床面に対する前記飛行体4の位置(高さ)も求めることができる。この場合、前記飛行体4の高さは任意でよく、一定に維持する必要がないので、前記飛行体4の制御を容易とすることができる。
In the second embodiment, the detector 7 is provided only on the side surface of the flying object 4, but by providing the detector 7 also on the upper and lower surfaces of the flying object 4, it is possible to The position (height) of the flying object 4 relative to the ceiling or floor can also be determined. In this case, the height of the flying object 4 may be arbitrary and does not need to be maintained constant, so that the flying object 4 can be easily controlled.
次に、図7に於いて、本発明の第3の実施例について説明する。尚、図7中、図5中と同等のものには同符号を付し、その説明を省略する。
Next, referring to FIG. 7, a third embodiment of the present invention will be described. In FIG. 7, the same parts as those in FIG. 5 are given the same reference numerals, and their explanations will be omitted.
第3の実施例に於ける測量システム1は、位置測定装置51を更に具備している。該位置測定装置51は、例えばトータルステーションであり、飛行体4や前記飛行体4の機械中心に対して既知の位置(距離及び方向)に設けられたプリズム(図示せず)を測定可能且つ追尾可能に構成されている。
The surveying system 1 in the third embodiment further includes a position measuring device 51. The position measuring device 51 is, for example, a total station, and is capable of measuring and tracking the flying object 4 and a prism (not shown) provided at a known position (distance and direction) with respect to the mechanical center of the flying object 4. It is composed of
又、前記位置測定装置51は、既知の3次元座標を有する点に設けられ、前記プリズムの測定結果と該プリズムから前記機械中心迄の距離と方向に基づき、レーザスキャナ5の測定結果(レーザスキャナ5を基準とした3次元点群データ)を前記位置測定装置51の設置位置を基準とする3次元点群データへと変換することができる。
Further, the position measuring device 51 is installed at a point having known three-dimensional coordinates, and based on the measurement results of the prism and the distance and direction from the prism to the machine center, the position measurement device 51 calculates the measurement results of the laser scanner 5 (laser scanner 5). 5) can be converted into three-dimensional point group data using the installation position of the position measuring device 51 as a reference.
第3の実施例では、第2の実施例と同様の方法により飛行経路48を設定する。一方で、前記飛行体4の位置や高さは、前記位置測定装置51により追尾されつつ測定されることで、リアルタイム且つ高精度に求められる。従って、測定対象面44に対する平坦度及び水平度の測定を高精度で実行することができる。
In the third embodiment, the flight path 48 is set using a method similar to that of the second embodiment. On the other hand, the position and height of the flying object 4 are determined in real time and with high accuracy by being tracked and measured by the position measuring device 51. Therefore, the flatness and horizontality of the measurement target surface 44 can be measured with high precision.
尚、前記位置測定装置51による追尾中、障害物45により追尾が途切れる場合がある。図7中、52は前記飛行体4の追尾が途切れたロスト位置を示し、53は追尾が再会された再ロック位置を示している。
Note that during tracking by the position measuring device 51, the tracking may be interrupted due to the obstacle 45. In FIG. 7, 52 indicates a lost position where tracking of the flying object 4 is interrupted, and 53 indicates a re-locked position where tracking is resumed.
前記ロスト位置52で追尾が途切れた場合、飛行制御装置13は、第2の実施例と同様、検出器7の測定結果に基づき前記飛行体4の位置を推定しつつ、前記飛行経路48に沿って前記飛行体4を飛行させる。
When tracking is interrupted at the lost position 52, the flight control device 13 estimates the position of the flying object 4 based on the measurement results of the detector 7 and moves along the flight path 48, as in the second embodiment. The flying object 4 is made to fly.
又、該飛行体4は一定の高さを等速で飛行しているので、位置測定装置51は、前記飛行体4を再度追尾可能な前記再ロック位置53を予測し、該再ロック位置53を視準する。
Further, since the flying object 4 is flying at a constant speed at a constant height, the position measuring device 51 predicts the re-locking position 53 where the flying object 4 can be tracked again, aim.
該再ロック位置53で前記飛行体4の追尾が再開されると、前記飛行制御装置13は、前記位置測定装置51が測定した前記飛行体4の位置に基づき、該飛行体4を前記飛行経路48に沿って飛行させる。
When tracking of the flying object 4 is restarted at the re-locking position 53, the flight control device 13 moves the flying object 4 along the flight path based on the position of the flying object 4 measured by the position measuring device 51. 48.
次に、図8に於いて、本発明の第4の実施例について説明する。尚、図8中、図5中と同等のものには同符号を付し、その説明を省略する。
Next, referring to FIG. 8, a fourth embodiment of the present invention will be described. In FIG. 8, the same parts as those in FIG. 5 are given the same reference numerals, and their explanations will be omitted.
第4の実施例に於いては、レーザスキャナ5が下方ではなく、側方を測定可能に構成されている。
In the fourth embodiment, the laser scanner 5 is configured to be able to measure not from below but from the sides.
第4の実施例に於いては、測定対象面54は施工済みの建造物の壁面等であり、前記測定対象面54を前記レーザスキャナ5で測定し、前記測定対象面54の表面形状データが取得されることで、該測定対象面54の不陸や剥離、落下等の不具合を検出することができる。
In the fourth embodiment, the surface to be measured 54 is a wall surface of a constructed building, etc., the surface to be measured 54 is measured by the laser scanner 5, and the surface shape data of the surface to be measured 54 is obtained. By acquiring the measurement target surface 54, defects such as unevenness, peeling, and falling of the measurement target surface 54 can be detected.
又、赤外線カメラや分光計測器等を別途設け、前記測定対象面54の温度分布や塩分濃度等を測定できる様にしてもよい。
Additionally, an infrared camera, a spectrometer, or the like may be separately provided so that the temperature distribution, salt concentration, etc. of the measurement target surface 54 can be measured.
尚、第4の実施例に於いて、前記飛行体4の位置は、第2の実施例と同様に、検出器7の測定結果に基づき求めてもよいし、第3の実施例と同様に、位置測定装置により求めてもよい。
In the fourth embodiment, the position of the flying object 4 may be determined based on the measurement results of the detector 7 as in the second embodiment, or may be determined based on the measurement results of the detector 7 as in the third embodiment. , may be determined by a position measuring device.
1 測量システム
2 飛行装置
3 遠隔操縦機
4 飛行体
5 レーザスキャナ
10 測定範囲
13 飛行制御装置
24 測距部
27 光軸偏向部
30 測定範囲
33 測距光
34 反射測距光
44 測定対象面
48 飛行経路 1Survey system 2 Flight device 3 Remote control aircraft 4 Aircraft 5 Laser scanner 10 Measurement range 13 Flight control device 24 Distance measurement section 27 Optical axis deflection section 30 Measurement range 33 Distance measurement light 34 Reflected ranging light 44 Measurement target surface 48 Flight route
2 飛行装置
3 遠隔操縦機
4 飛行体
5 レーザスキャナ
10 測定範囲
13 飛行制御装置
24 測距部
27 光軸偏向部
30 測定範囲
33 測距光
34 反射測距光
44 測定対象面
48 飛行経路 1
Claims (9)
- 遠隔操縦可能であり、飛行体と測定器を有する飛行装置と、該飛行装置の飛行を制御し、該飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、所定の飛行経路に沿って前記飛行体を飛行させつつ、前記測定器で測定対象面の表面形状を測定する様構成された測量システム。 A surveying system comprising a flight device that can be remotely controlled and has a flying object and a measuring instrument, and a remote control aircraft that controls the flight of the flight device and can communicate wirelessly with the flight device, the flight device comprising: . A surveying system configured to measure the surface shape of a surface to be measured using the measuring device while flying the flying object along a predetermined flight path.
- 前記飛行体の少なくとも側面に複数の検出器が設けられ、前記飛行装置は、前記検出器の測定結果に基づき、水平方向全周に亘って障害物を検出可能に構成された請求項1の測量システム。 2. The surveying method according to claim 1, wherein a plurality of detectors are provided on at least a side surface of the flying object, and the flight device is configured to be able to detect obstacles over the entire circumference in the horizontal direction based on the measurement results of the detectors. system.
- 前記飛行装置は、前記検出器の検出結果に基づき、前記障害物を回避する様前記飛行体を飛行させる様構成された請求項2の測量システム。 3. The surveying system according to claim 2, wherein the flight device is configured to fly the flying object to avoid the obstacle based on the detection result of the detector.
- 前記測定器はレーザスキャナであり、測距光を射出し、反射測距光を受光して測距を行う測距部と、前記測距光の光軸上に設けられ、該測距光の光軸を2次元に偏向可能な光軸偏向部と、前記測距光の光軸の偏角を検出し、測角を行う射出方向検出部と、測定演算制御部とを具備し、該測定演算制御部は、所定のスキャンパターンで前記測距光がスキャンされる様前記光軸偏向部を駆動させる様構成された請求項2又は請求項3の測量システム。 The measuring device is a laser scanner, and includes a distance measuring section that emits distance measuring light and measures distance by receiving reflected distance measuring light; an optical axis deflection section capable of two-dimensionally deflecting the optical axis; an emission direction detection section that detects the declination angle of the optical axis of the distance measuring light and performs angle measurement; and a measurement calculation control section. 4. The surveying system according to claim 2, wherein the arithmetic control section is configured to drive the optical axis deflection section so that the distance measuring light is scanned in a predetermined scan pattern.
- 前記測定器は、鉛直に対する傾斜をリアルタイムで検出可能な傾斜検出部を有し、前記測定演算制御部は、前記測距部による測距結果と、前記射出方向検出部による測角結果に基づき3次元座標を演算し、該3次元座標を前記傾斜検出部の検出結果に基づき補正する様構成された請求項4の測量システム。 The measuring device has a tilt detection section capable of detecting a tilt with respect to the vertical in real time, and the measurement calculation control section is configured to perform three measurements based on the distance measurement result by the distance measurement section and the angle measurement result by the emission direction detection section. 5. The surveying system according to claim 4, wherein the surveying system is configured to calculate dimensional coordinates and correct the three-dimensional coordinates based on the detection result of the inclination detection section.
- 前記測定対象面は部屋の内部に位置し、前記飛行装置は、前記検出器の検出結果に基づき、前記部屋の壁面を基準とした前記飛行体の前記部屋内の水平位置を求める様構成された請求項2~請求項5のうちのいずれか1項の測量システム。 The measurement target surface is located inside a room, and the flight device is configured to determine the horizontal position of the flying object inside the room with reference to the wall surface of the room based on the detection result of the detector. The surveying system according to any one of claims 2 to 5.
- 前記飛行装置の位置測定が可能な位置測定装置を更に有し、該位置測定装置は既知の位置に設けられ、前記飛行体の位置を測定可能且つ追尾可能に構成された請求項1~請求項5のうちのいずれか1項の測量システム。 The aircraft further comprises a position measuring device capable of measuring the position of the flying device, the position measuring device being provided at a known position and configured to be able to measure and track the position of the flying object. Surveying system according to any one of item 5.
- 前記遠隔操縦機は、前記測定器の測定結果と、前記飛行体の位置に基づき、前記測定対象面全域の3次元マップを作成する様構成された請求項6又は請求項7の測量システム。 The surveying system according to claim 6 or claim 7, wherein the remote control aircraft is configured to create a three-dimensional map of the entire measurement target surface based on the measurement results of the measuring device and the position of the flying object.
- 前記飛行経路は、前記測定器による測定範囲が所定量オーバラップする様に設定され、前記遠隔操縦機は、オーバラップ部分の測定結果に基づき前記測定対象面全域の3次元マップを作成する様構成された請求項1~請求項7のうちのいずれか1項の測量システム。 The flight path is set so that measurement ranges by the measuring instruments overlap by a predetermined amount, and the remote control device is configured to create a three-dimensional map of the entire measurement target surface based on the measurement results of the overlapped portion. The surveying system according to any one of claims 1 to 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022053154A JP2023146129A (en) | 2022-03-29 | 2022-03-29 | surveying system |
JP2022-053154 | 2022-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023190301A1 true WO2023190301A1 (en) | 2023-10-05 |
Family
ID=88201681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/012127 WO2023190301A1 (en) | 2022-03-29 | 2023-03-27 | Surveying system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023146129A (en) |
WO (1) | WO2023190301A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170046420A (en) * | 2015-10-21 | 2017-05-02 | 한국항공우주연구원 | Apparatus and method of generating a indoor map by using a flight object |
WO2017073310A1 (en) * | 2015-10-27 | 2017-05-04 | 三菱電機株式会社 | Image capture system for shape measurement of structure, method of capturing image of stucture used for shape measurement of structure, onboard control device, remote control device, program, and recording medium |
JP2018044913A (en) * | 2016-09-16 | 2018-03-22 | 株式会社トプコン | Uav measuring apparatus and uav measuring system |
JP2019132672A (en) * | 2018-01-31 | 2019-08-08 | 田中 成典 | Three-dimensional model generation system |
WO2021005788A1 (en) * | 2019-07-11 | 2021-01-14 | 八洲電業株式会社 | Flying object |
-
2022
- 2022-03-29 JP JP2022053154A patent/JP2023146129A/en active Pending
-
2023
- 2023-03-27 WO PCT/JP2023/012127 patent/WO2023190301A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170046420A (en) * | 2015-10-21 | 2017-05-02 | 한국항공우주연구원 | Apparatus and method of generating a indoor map by using a flight object |
WO2017073310A1 (en) * | 2015-10-27 | 2017-05-04 | 三菱電機株式会社 | Image capture system for shape measurement of structure, method of capturing image of stucture used for shape measurement of structure, onboard control device, remote control device, program, and recording medium |
JP2018044913A (en) * | 2016-09-16 | 2018-03-22 | 株式会社トプコン | Uav measuring apparatus and uav measuring system |
JP2019132672A (en) * | 2018-01-31 | 2019-08-08 | 田中 成典 | Three-dimensional model generation system |
WO2021005788A1 (en) * | 2019-07-11 | 2021-01-14 | 八洲電業株式会社 | Flying object |
Also Published As
Publication number | Publication date |
---|---|
JP2023146129A (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7077013B2 (en) | 3D information processing unit, device equipped with 3D information processing unit, unmanned aerial vehicle, notification device, moving object control method using 3D information processing unit, and program for moving object control processing | |
KR101606447B1 (en) | Measuring system for determining 3D coordinates of an object surface | |
US10324183B2 (en) | UAV measuring apparatus and UAV measuring system | |
CN103201590B (en) | Measure and mark the device along the spatial point of the outline line of horizontal-extending | |
JP7009180B2 (en) | Surveying device | |
JP7378545B2 (en) | Target equipment and surveying method | |
BR112013026184A2 (en) | system and method for controlling an unmanned aerial vehicle | |
US10591290B2 (en) | Survey system | |
KR102626472B1 (en) | Self-propelled inspection device and inspection method for metal plates, and manufacturing method of metal plates | |
EP3514489B1 (en) | Surveying device and surveying method | |
EP3644012B1 (en) | Surveying instrument | |
US20220178492A1 (en) | Stable mobile platform for coordinate measurement | |
JP2022149716A (en) | Survey system | |
EP4067819A1 (en) | Surveying system, point cloud data acquiring method, and point cloud data acquiring program | |
WO2023190301A1 (en) | Surveying system | |
KR101283932B1 (en) | Method for measuring direction error of gimbal platform and apparatus thereof | |
CN215881648U (en) | Mobile brick laying robot system for building construction | |
JP7366735B2 (en) | Position measurement system and position measurement method | |
JP6951539B1 (en) | Self-propelled equipment, measurement methods, and programs | |
JP2022147973A (en) | Attitude detection device and attitude control system of flying object | |
JP2022074712A (en) | Vacancy information acquisition method within tunnel | |
JP2023048409A (en) | Survey system | |
WO2024214697A1 (en) | Surveying system | |
JP2022149715A (en) | Pole device and survey system | |
JP2022173672A (en) | surveying system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23780311 Country of ref document: EP Kind code of ref document: A1 |