JP2022147973A - Attitude detection device and attitude control system of flying object - Google Patents

Attitude detection device and attitude control system of flying object Download PDF

Info

Publication number
JP2022147973A
JP2022147973A JP2021049468A JP2021049468A JP2022147973A JP 2022147973 A JP2022147973 A JP 2022147973A JP 2021049468 A JP2021049468 A JP 2021049468A JP 2021049468 A JP2021049468 A JP 2021049468A JP 2022147973 A JP2022147973 A JP 2022147973A
Authority
JP
Japan
Prior art keywords
light
attitude
section
light receiving
flying object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021049468A
Other languages
Japanese (ja)
Inventor
泰造 江野
Taizo Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2021049468A priority Critical patent/JP2022147973A/en
Publication of JP2022147973A publication Critical patent/JP2022147973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide an attitude detection device and an attitude control system of a flying object for detecting a direction and an attitude of the flying object.SOLUTION: An attitude detection device provided in a flying device 2 capable of performing remote control includes a light reception part 7 and an attitude detection part. The light reception part includes a half mirror that partially transmits applied laser beams, and retroreflects the remaining part, and a light receiving element capable of receiving laser beams transmitted through the half mirror and detecting a luminous flux sectional shape of received laser beams. The laser beams have a predetermined luminous flux sectional shape. The attitude detection part is configured so as to compute a change in the luminous flux sectional shape on the basis of a light reception signal from the light receiving element, detect an incidence angle and an incidence direction of laser beams entering the light reception part on the basis of a change in the luminous flux sectional shape, and detect an attitude of the flying device on the basis of the detected incidence angle and incidence direction.SELECTED DRAWING: Figure 1

Description

本発明は飛行体の姿勢検出装置及び姿勢制御システムに関するものである。 The present invention relates to an attitude detection device and an attitude control system for an aircraft.

近年、小型無人飛行体(UAV:Unmanned Air Vehicle)の進歩に伴い、UAVに各種装置を搭載して遠隔操作により飛行させ、或はUAVを自律飛行させ、所要の作業が行われている。例えば、UAVに写真測量用カメラ、レーザスキャナ等の測定機を搭載し、写真測量、或は飛行しつつ点群データを取得し、広範囲の測定が行われている。 BACKGROUND ART In recent years, with the progress of small unmanned air vehicles (UAVs), various devices are mounted on UAVs to fly by remote control, or to fly autonomously to perform required tasks. For example, a UAV is equipped with a measuring instrument such as a photogrammetry camera and a laser scanner, and a wide range of measurement is performed by acquiring point cloud data while photogrammetry or flying.

飛行体に搭載した測量機により測定を実行する場合、飛行体の位置、更に飛行体の姿勢を正確に検出することが不可欠である。現在の飛行体の向きの検出、飛行体の姿勢を検出する方法としては、飛行体に慣性計測装置(IMU)を搭載し、IMUにより飛行体の姿勢向きを検出している。 When performing measurements with a survey instrument mounted on a flying object, it is essential to accurately detect the position of the flying object and also the attitude of the flying object. As a current method for detecting the direction and attitude of a flying object, an inertial measurement unit (IMU) is mounted on the flying object and the IMU detects the orientation of the flying object.

然し乍ら、IMUは状態変化を検出するものであり、累積誤差、回路上のドリフト等があり、飛行体の向き、飛行体の姿勢を高精度に検出するとは言えなかった。 However, since the IMU detects changes in state, there are accumulated errors, circuit drifts, etc., and it cannot be said that the direction and attitude of the flying object can be detected with high accuracy.

特開2018-44913号公報JP 2018-44913 A 特開2016-161411号公報JP 2016-161411 A

本発明は、飛行体の向き、姿勢を検出する飛行体の姿勢検出装置及び姿勢制御システムを提供するものである。 SUMMARY OF THE INVENTION The present invention provides an attitude detection device and an attitude control system for a flying object that detects the direction and attitude of the flying object.

本発明は、遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成された飛行体の姿勢検出装置に係るものである。 The present invention is an attitude detection device provided in a remotely controllable flight device, the attitude detection device having a light receiving section and an attitude detection section, the light receiving section transmitting part of the irradiated laser beam. and a light-receiving element that receives a laser beam that has passed through the half-mirror and that can detect a beam cross-sectional shape of the received laser beam, wherein the laser beam has a predetermined beam cross-sectional shape. and the attitude detection unit calculates a change in the cross-sectional shape of the beam based on the light receiving signal from the light receiving element, and detects the incident angle and direction of the laser beam incident on the light receiving unit based on the change in the cross-sectional shape of the beam. is detected, and the attitude of the flying object is detected based on the detected incident angle and incident direction.

又本発明は、前記光束断面形状は、長軸、短軸を有し、長軸又は短軸が鉛直に対して傾斜した形状であり、前記姿勢検出部は前記長軸の回転変化、光束断面の受光面上での水平方向の長さ変化、光束断面の受光面上での鉛直方向の長さ変化に基づき、前記飛行装置の3軸方向の傾斜角を演算する様構成された飛行体の姿勢検出装置に係るものである。 Further, according to the present invention, the cross-sectional shape of the beam has a long axis and a short axis, and the long axis or the short axis is tilted with respect to the vertical, and the posture detection unit detects a change in rotation of the long axis and a cross-sectional shape of the beam. on the light receiving surface of the flying object and the vertical length change on the light receiving surface of the cross section of the luminous flux to calculate the inclination angles of the three axial directions of the flight device. The present invention relates to a posture detection device.

又本発明は、前記受光部の中心部に細密受光部が設けられ、該細密受光部は微小球体レンズから構成されるレンズシートと、前記微小球体レンズそれぞれに対応した区分を有する細密受光素子とを具備し、前記微小球体レンズを透過した光線が前記区分に結像される様構成され、該区分内での結像位置に基づき前記飛行装置の傾斜角、傾斜方向を検出する様構成された飛行体の姿勢検出装置に係るものである。 Further, according to the present invention, a fine light-receiving portion is provided at the center of the light-receiving portion, and the fine light-receiving portion comprises a lens sheet composed of microspherical lenses, and a fine light-receiving element having sections corresponding to the respective microspherical lenses. wherein the light rays transmitted through the microspherical lens are imaged on the segment, and the tilt angle and direction of the flight device are detected based on the image position within the segment. The present invention relates to an attitude detection device for an aircraft.

又本発明は、前記受光素子の受光面は円錐形状である飛行体の姿勢検出装置に係るものである。 The present invention also relates to an aircraft attitude detection apparatus, wherein the light receiving surface of the light receiving element is conical.

又本発明は、前記受光部に入射したレーザ光線を互いに直交する3軸に分岐し、各軸を中心とする回転角、回転方向を検出する様構成された飛行体の姿勢検出装置に係るものである。 The present invention also relates to an apparatus for detecting the attitude of a flying object, which splits a laser beam incident on the light-receiving part into three mutually orthogonal axes, and detects a rotation angle and a rotation direction about each axis. is.

又本発明は、遠隔操縦可能な飛行装置と、上記のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成された飛行体の姿勢制御システムに係るものである。 The present invention also provides a remotely controllable flight device, any one of the attitude detection devices described above, a position measurement device capable of tracking the flight device, and a remote control device capable of wirelessly communicating with the flight device and the position measurement device. wherein the flying device is capable of wirelessly communicating with propeller units provided on a plurality of even-numbered propeller frames, and the remote control device, and is capable of controlling the driving of the propeller units. The position measuring device irradiates the light-receiving unit with a laser beam having a predetermined beam cross-section as distance measuring light, and the half mirror retroreflects part of the distance measuring light as reflected distance measuring light. and the remaining part is received by the light-receiving element as the tracking light, the position measuring device receives the retroreflected light, and measures the position of the flight device, and the control device is configured to measure the position of the flight device based on the detection result of the attitude detection unit. The present invention relates to an attitude control system for a flying object configured to drive the propeller unit and control the attitude of the flying device.

又本発明は、前記位置測定装置は、前記受光部からの再帰反射光を受光し、受光結果に基づき前記飛行装置を追尾する様構成された飛行体の姿勢制御システムに係るものである。 The present invention also relates to an attitude control system for a flying object, wherein the position measuring device receives retroreflected light from the light receiving unit and tracks the flying device based on the light receiving result.

更に又本発明は、飛行体通信部は、前記姿勢検出部の検出結果をリアルタイムで前記位置測定装置に送信し、該位置測定装置は受信した受光結果に基づき前記飛行装置の追尾を行う様構成された飛行体の姿勢制御システムに係るものである。 Further, according to the present invention, the flying object communication unit transmits the detection result of the attitude detection unit to the position measuring device in real time, and the position measuring device tracks the flying device based on the received light receiving result. The present invention relates to an attitude control system for an air vehicle that has been designed.

本発明によれば、遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成されたので、累積誤差、回路上のドリフト等はなく、安定して飛行体の向き、飛行体の姿勢を制御することができる。 According to the present invention, there is provided an attitude detection device provided in a remotely controllable flight device, the attitude detection device having a light receiving section and an attitude detection section, wherein the light receiving section is a part of the irradiated laser beam. and a light-receiving element that receives the laser beam transmitted through the half-mirror and can detect the beam cross-sectional shape of the received laser beam, wherein the laser beam is a predetermined beam the orientation detection unit calculates a change in the cross-sectional shape of the beam based on the light receiving signal from the light receiving element, and the angle of incidence of the laser beam incident on the light receiving unit based on the change in the cross-sectional shape of the beam; Since the direction of incidence is detected and the attitude of the flight device is detected based on the detected angle of incidence and the direction of incidence, there is no accumulated error, no drift in the circuit, etc., and the direction and direction of the flying object are stably detected posture can be controlled.

又本発明によれば、遠隔操縦可能な飛行装置と、上記のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成されたので、前記姿勢検出部からの安定した姿勢検出結果に基づき飛行体の向き、飛行体の姿勢を制御することができるという優れた効果を発揮する。 Further, according to the present invention, there is provided a remotely controlled flight device, any one of the attitude detection devices described above, a position measurement device capable of tracking the flight device, and a radio communication between the flight device and the position measurement device. and a remote control, wherein the flight device is capable of wireless communication with propeller units provided on a plurality of even-numbered propeller frames, and the remote control, and controls driving of the propeller units. The position measuring device irradiates the light-receiving part with a laser beam having a predetermined luminous flux cross-section as range-finding light, and the half mirror reflects a part of the range-finding light as reflected range-finding light. The light is retroreflected, and the light receiving element receives the remainder as tracking light, the position measuring device receives the retroreflected light, and measures the position of the flight device, and the control device is configured to measure the detection result of the attitude detection unit. Since the propeller unit is driven to control the attitude of the flight device based on the above, the direction and attitude of the aircraft can be controlled based on the stable attitude detection result from the attitude detection unit. exerts an excellent effect.

本発明の実施例に係る測量システムの構成図である。1 is a configuration diagram of a surveying system according to an embodiment of the present invention; FIG. UAVの制御系を示す概略ブロック図である。1 is a schematic block diagram showing a UAV control system; FIG. UAVの受光部の説明図である。It is explanatory drawing of the light-receiving part of UAV. トータルステーションの概略ブロック図である。1 is a schematic block diagram of a total station; FIG. 遠隔操縦機の概略ブロック図である。1 is a schematic block diagram of a remote control; FIG. (A)(B)は、受光される追尾光の光束断面形状とUAVの傾きとの関係を示す説明図である。(A) and (B) are explanatory diagrams showing the relationship between the beam cross-sectional shape of received tracking light and the inclination of the UAV. 本実施例の受光部の変更例の細密受光部の説明図であり、(A)は細密受光部の断面の説明図、(B)は細密受光素子の受光面の説明図である。It is explanatory drawing of the minute light-receiving part of the example of a modification of the light-receiving part of a present Example, (A) is explanatory drawing of the cross section of a minute light-receiving part, (B) is explanatory drawing of the light-receiving surface of a minute light-receiving element. (A)は前記細密受光部のレンズシートの斜視図、(B)(C)は微小球体レンズの作用説明図である。(A) is a perspective view of the lens sheet of the fine light-receiving portion, and (B) and (C) are diagrams for explaining the action of the microspherical lens. 本実施例の受光部の他の変更例を示す説明図である。It is explanatory drawing which shows the other example of a change of the light-receiving part of a present Example. 本実施例の受光部の更に他の変更例を示す説明図であり、(A)は追尾光が受光素子に入射した状態、(B)(C)(D)は受光素子の受光状態を示す説明図である。FIG. 8 is an explanatory diagram showing still another modification of the light receiving section of the present embodiment, where (A) shows the state in which the tracking light is incident on the light receiving element, and (B), (C) and (D) show the light receiving states of the light receiving element. It is an explanatory diagram.

以下、図面を参照しつつ本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、図1に於いて、本発明の実施例に係る飛行体の姿勢制御システムについて説明する。 First, referring to FIG. 1, an attitude control system for an aircraft according to an embodiment of the present invention will be described.

飛行体の姿勢制御システム1は、主に飛行装置(UAV)2、該UAV2を追尾可能な位置測定装置、例えばトータルステーション3、及び遠隔操縦機4から構成される。 An aircraft attitude control system 1 is mainly composed of a flight device (UAV) 2 , a position measuring device capable of tracking the UAV 2 , such as a total station 3 , and a remote control device 4 .

前記UAV2は、主に飛行体5と、該飛行体5の上面又は下面に設けられる測定器と、前記トータルステーション3からの追尾光を受光する受光部7と、飛行体通信部8とを有する。 The UAV 2 mainly includes an aircraft 5 , a measuring instrument provided on the upper or lower surface of the aircraft 5 , a light receiving section 7 for receiving tracking light from the total station 3 , and an aircraft communication section 8 .

前記受光部7は、追尾光の受光結果を姿勢検出部35(図2参照)に入力する。該姿勢検出部35は受光結果に基づき点群データ取得時の前記飛行体5の姿勢を検出する。 The light receiving unit 7 inputs the result of receiving the tracking light to the posture detection unit 35 (see FIG. 2). The attitude detection unit 35 detects the attitude of the flying object 5 at the point cloud data acquisition based on the light reception result.

前記飛行体通信部8は、前記トータルステーション3及び前記遠隔操縦機4との間で、制御信号の通信、データ通信等の通信を行う。 The aircraft communication unit 8 performs communication such as control signal communication and data communication between the total station 3 and the remote control unit 4 .

前記測定器は、本実施例では飛行体5の下面に設けられており、測定器としてレーザスキャナ6が用いられている。尚、測定器としては、その他写真測量用の撮像装置等が挙げられる。 The measuring device is provided on the lower surface of the flying object 5 in this embodiment, and a laser scanner 6 is used as the measuring device. In addition, as the measuring instrument, an imaging device for photogrammetry and the like can be used.

前記飛行体5には基準点が設定されている。該基準点は、例えば前記飛行体5の機械中心であり、該基準点と前記レーザスキャナ6の測定基準点との位置関係は、既知となっている。 A reference point is set on the flying object 5 . The reference point is, for example, the mechanical center of the aircraft 5, and the positional relationship between the reference point and the measurement reference point of the laser scanner 6 is known.

前記飛行体5は、放射状に延出する複数で且つ偶数のプロペラフレーム11(図示では11a~11d)を有し、該プロペラフレーム11の先端にプロペラユニット12a~12dが設けられる。該プロペラユニット12a~12dは、それぞれプロペラモータとプロペラとを含む。 The aircraft 5 has a plurality of even-numbered propeller frames 11 (11a to 11d in the drawing) radially extending, and propeller units 12a to 12d are provided at the ends of the propeller frames 11. As shown in FIG. The propeller units 12a-12d each include a propeller motor and a propeller.

前記レーザスキャナ6は、パルス発光又はバースト発光されたレーザ光線を測距光(以下、パルス測距光)として射出し、走査鏡(図示せず)を介してパルス測距光を回転照射する。該走査鏡は、水平軸心を中心に鉛直方向に1軸で回転する。従って、パルス測距光は、前記飛行体5の基準点を含む鉛直平面内で1次元に回転照射される。 The laser scanner 6 emits a pulsed or burst laser beam as distance measuring light (hereinafter referred to as pulsed distance measuring light), and rotates the pulsed distance measuring light through a scanning mirror (not shown). The scanning mirror rotates in one vertical direction about a horizontal axis. Therefore, the pulsed ranging light is irradiated in one-dimensional rotation within a vertical plane including the reference point of the flying object 5 .

測定対象物で反射されたパルス測距光は、パルス測距毎に測定され、パルス測距光の回転照射によって点群データが取得される。尚、バースト発光については、特許文献2に開示されている。 The pulsed ranging light reflected by the object to be measured is measured for each pulsed ranging, and point cloud data is acquired by rotating irradiation of the pulsed ranging light. Note that burst light emission is disclosed in Patent Document 2.

前記トータルステーション3は、既知点(既知の3次元座標を有する点)に設けられ、追尾光を前記飛行体5に照射し、該飛行体5を追尾しながら、前記飛行体5の位置(3次元座標)をリアルタイムで測定する。該飛行体5の位置がリアルタイムで測定されることで、点群データ取得時の前記飛行体5の位置(3次元座標)が測定され、点群データは前記トータルステーション3を基準とした3次元データに換算することができる。 The total station 3 is provided at a known point (a point with known three-dimensional coordinates), irradiates the flying object 5 with tracking light, and tracks the flying object 5 while tracking the position of the flying object 5 (three-dimensional coordinates) in real time. By measuring the position of the flying object 5 in real time, the position (three-dimensional coordinates) of the flying object 5 at the time of point cloud data acquisition is measured, and the point cloud data is three-dimensional data based on the total station 3. can be converted to

前記遠隔操縦機4は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機は、演算機能を有する演算装置、データ、プログラムを格納する記憶部、更に端末通信部(後述)を有している。前記遠隔操縦機4は、前記UAV2、前記トータルステーション3との間で無線通信が可能となっている。更に、前記遠隔操縦機4は、前記飛行装置2の飛行を遠隔操作し、前記レーザスキャナ6による測距作動も遠隔操作可能となっている。 The remote controller 4 is, for example, a mobile terminal such as a smart phone or a tablet, or a device in which an input device is connected to or integrated with the mobile terminal. The remote control device has an arithmetic unit having arithmetic functions, a storage unit for storing data and programs, and a terminal communication unit (described later). The remote controller 4 is capable of wireless communication with the UAV 2 and the total station 3 . Furthermore, the remote controller 4 can remotely control the flight of the flight device 2 and can also remotely control the range finding operation by the laser scanner 6 .

前記UAV2について、図2を参照して更に説明する。 The UAV 2 will be further described with reference to FIG.

前記飛行体5は、制御装置27を内蔵している。該制御装置27は、主に演算制御部28、記憶部29、飛行制御部32、プロペラユニットドライバ部33、スキャナ制御部34、前記姿勢検出部35、前記飛行体通信部8とを具備している。 The flying object 5 incorporates a control device 27 . The control device 27 mainly includes an arithmetic control section 28, a storage section 29, a flight control section 32, a propeller unit driver section 33, a scanner control section 34, the attitude detection section 35, and the aircraft communication section 8. there is

尚、本実施例では、前記スキャナ制御部34が前記制御装置27に含まれているが、別構成としてもよい。例えば、前記レーザスキャナ6内に前記スキャナ制御部34を設け、前記飛行体通信部8を介して前記飛行体5と前記レーザスキャナ6との間で制御信号の授受を行ってもよい。 Although the scanner control section 34 is included in the control device 27 in this embodiment, it may be configured separately. For example, the scanner control section 34 may be provided in the laser scanner 6 , and control signals may be exchanged between the aircraft 5 and the laser scanner 6 via the aircraft communication section 8 .

前記記憶部29には、プログラム格納部とデータ格納部とが形成される。前記プログラム格納部には、前記プロペラユニット12a~12dを駆動制御する為の飛行制御プログラム、前記レーザスキャナ6による測距作動を制御する測距プログラム、取得したデータを前記遠隔操縦機4に送信し、又該遠隔操縦機4からの飛行指令や撮像指令を受信する為の通信プログラム、前記受光部7からの受光結果に基づき飛行体5の姿勢を検出する姿勢検出プログラム、前記姿勢検出部35の姿勢検出結果に基づき飛行体5の姿勢を制御す姿勢制御プログラム等のプログラムが格納されている。 A program storage section and a data storage section are formed in the storage section 29 . The program storage unit contains a flight control program for driving and controlling the propeller units 12a to 12d, a distance measurement program for controlling the distance measurement operation by the laser scanner 6, and the acquired data for transmission to the remote controller 4. , a communication program for receiving a flight command and an imaging command from the remote controller 4, an attitude detection program for detecting the attitude of the aircraft 5 based on the light receiving result from the light receiving section 7, and the attitude detection section 35. A program such as an attitude control program for controlling the attitude of the aircraft 5 based on the attitude detection result is stored.

前記データ格納部には、前記レーザスキャナ6で取得された点群データ等のデータ類が格納される。 Data such as point cloud data acquired by the laser scanner 6 is stored in the data storage unit.

前記スキャナ制御部34は、前記レーザスキャナ6の駆動を制御する。即ち、前記スキャナ制御部34は、パルス測距光の発光間隔、前記走査鏡の回転速度等を制御し、該走査鏡を介して前記パルス測距光を回転照射する。即ち、前記スキャナ制御部34は、前記レーザスキャナ6から照射されるパルス測距光の照射点間隔、点群密度を制御する。又、反射パルス測距光の受光結果は前記走査鏡の回転角と関連づけられて前記演算制御部28に入力され、測距及び測角が実行される。 The scanner control section 34 controls driving of the laser scanner 6 . That is, the scanner control unit 34 controls the light emission interval of the pulse distance measuring light, the rotational speed of the scanning mirror, and the like, and rotates the pulse distance measuring light through the scanning mirror. That is, the scanner control section 34 controls the irradiation point interval and the point cloud density of the pulse distance measuring light emitted from the laser scanner 6 . Further, the light receiving result of the reflected pulse distance measuring light is input to the arithmetic control unit 28 in association with the rotation angle of the scanning mirror, and distance measurement and angle measurement are executed.

前記飛行体通信部8は、前記飛行体5が前記遠隔操縦機4で遠隔操作される場合に、前記遠隔操縦機4からの操縦信号、或は前記レーザスキャナ6に対するコマンドを受信し、該操縦信号を前記演算制御部28に入力する。或は、前記レーザスキャナ6で取得した測定データ、姿勢検出データ(後述)等のデータを前記遠隔操縦機4に送信する等の機能を有する。 When the flying object 5 is remotely controlled by the remote controlling device 4, the flying object communication unit 8 receives a control signal from the remote controlling device 4 or a command to the laser scanner 6, and controls the flying object. A signal is input to the arithmetic control unit 28 . Alternatively, it has a function of transmitting data such as measurement data acquired by the laser scanner 6 and attitude detection data (described later) to the remote controller 4 .

前記演算制御部28は、前記記憶部29に格納された各種プログラムに基づき、測定対象物をパルス測距光で走査(測定)する為の各種制御を実行する。又、前記演算制御部28は、前記飛行制御部32、前記スキャナ制御部34に制御信号を発し、これら制御部の統合制御を実行する。 Based on various programs stored in the storage unit 29, the arithmetic control unit 28 executes various controls for scanning (measuring) the object to be measured with the pulse distance measuring light. Further, the arithmetic control unit 28 issues control signals to the flight control unit 32 and the scanner control unit 34 to execute integrated control of these control units.

前記飛行制御部32は、前記演算制御部28からの飛行に関する制御信号に基づき前記プロペラユニットドライバ部33を介して前記プロペラユニット12a~12dを個別に制御し、前記UAV2を所要の状態で飛行させる。例えば、前記飛行制御部32は、前記プロペラユニット12a~12dを制御し、上昇/下降、前進/後退、ホバリング、ホバリングした状態で水平方向に回転させる等の飛行を実行する。 The flight control section 32 individually controls the propeller units 12a to 12d via the propeller unit driver section 33 based on control signals relating to flight from the arithmetic control section 28, and causes the UAV 2 to fly in a desired state. . For example, the flight control section 32 controls the propeller units 12a to 12d to perform flight such as ascending/descending, advancing/retreating, hovering, and rotating horizontally while hovering.

図3を参照して、前記受光部7、前記姿勢検出部35について、説明する。 The light receiving section 7 and the attitude detection section 35 will be described with reference to FIG.

該姿勢検出部35は、前記受光部7からの受光結果に基づき前記飛行体5の姿勢を検出する。 The attitude detection section 35 detects the attitude of the flying object 5 based on the light reception result from the light receiving section 7 .

前記受光部7について説明する。 The light receiving section 7 will be described.

該受光部7は、前記飛行体5の下面、或は側面に設けられ、下方からの光線(追尾光)を受光し易い位置に配置される。又、前記受光部7の受光位置と前記飛行体5の基準点との位置関係は既知となっている。 The light-receiving part 7 is provided on the lower surface or the side surface of the flying object 5, and is arranged at a position where it is easy to receive light rays (tracking light) from below. Further, the positional relationship between the light receiving position of the light receiving portion 7 and the reference point of the flying object 5 is known.

前記受光部7は、受光窓7a及び受光素子7bを含んでいる。前記受光窓7aは、照射される追尾光の一部を透過し、残りを反射するハーフミラーとなっており、前記受光素子7bは透過した光線を受光し、受光信号を発する様になっている。 The light receiving portion 7 includes a light receiving window 7a and a light receiving element 7b. The light-receiving window 7a is a half mirror that transmits part of the irradiated tracking light and reflects the rest, and the light-receiving element 7b receives the transmitted light and generates a light-receiving signal. .

又、前記受光素子7bの受光面は多数の画素の集合体で構成され、各画素から発せられる受光信号は、受光強度(受光光量)と共に各画素の受光面内の位置を特定する位置情報を含んでいる。受光素子としては、例えば、CCD或はCMOSセンサ等が用いられる。 The light-receiving surface of the light-receiving element 7b is composed of an assembly of a large number of pixels, and the light-receiving signal emitted from each pixel contains positional information for specifying the position of each pixel within the light-receiving surface together with the light-receiving intensity (light-receiving amount). contains. A CCD or CMOS sensor, for example, is used as the light receiving element.

前記姿勢検出部35には前記受光素子7bからの受光信号が入力され、前記姿勢検出部35は前記受光信号に基づき受光強度(受光光量)を検出すると共に入射光の受光中心位置(例えば、受光光量の重心位置)を検出し、更に各画素の受光信号と位置情報とを関連付けて受光形状(光束断面形状)を検出する様になっている。 A light receiving signal from the light receiving element 7b is input to the attitude detecting section 35, and the attitude detecting section 35 detects the received light intensity (the amount of received light) based on the received light signal and also detects the center position of the incident light (for example, the center position of the received light). The position of the center of gravity of the amount of light) is detected, and the shape of the received light (cross-sectional shape of the light flux) is detected by associating the light receiving signal of each pixel with the position information.

次に、図4を参照してトータルステーション3の概略を説明する。 Next, the outline of the total station 3 will be described with reference to FIG.

該トータルステーション3は、主に測定制御装置41、測距部42、追尾部43、視準光学系44、測角部45、測定通信部46、駆動部47、測定記憶部48等を具備している。 The total station 3 mainly includes a measurement control device 41, a distance measurement unit 42, a tracking unit 43, a collimation optical system 44, an angle measurement unit 45, a measurement communication unit 46, a drive unit 47, a measurement storage unit 48, and the like. there is

前記視準光学系44は、測定対象物を視準する。前記測距部42は、前記視準光学系44を介して測距光49としてのレーザ光線を射出し、更に前記視準光学系44を介して前記測定対象物からの反射光を受光し、測距を行う。即ち、前記測距部42は光波距離計としての機能を有する。 The collimating optical system 44 collimates the object to be measured. The distance measuring unit 42 emits a laser beam as distance measuring light 49 through the collimating optical system 44, and receives reflected light from the object to be measured through the collimating optical system 44, Measure the distance. That is, the distance measuring section 42 has a function as an optical distance meter.

前記測距部42は、プリズム測定及びノンプリズム測定が可能であり、プリズム測定の場合は、測定対象物を再帰反射体とし、再帰反射体からの反射光を受光して測定を行う。再帰反射体としては、プリズム、反射シート等が用いられる。又、ノンプリズム測定の場合は、測定対象物の自然面からの反射光を受光して測定を行う。 The distance measuring unit 42 is capable of prism measurement and non-prism measurement. In the case of prism measurement, the object to be measured is a retroreflector, and the measurement is performed by receiving reflected light from the retroreflector. A prism, a reflective sheet, or the like is used as the retroreflector. In the case of non-prism measurement, measurement is performed by receiving reflected light from the natural surface of the object to be measured.

プリズム測定の場合、プリズム測定を実行しつつ前記追尾部43による前記測定対象物の追尾が可能である。本実施例では、前記受光部7が再帰反射特性を有する測定対象物となっている。 In the case of prism measurement, the tracking unit 43 can track the object to be measured while executing the prism measurement. In this embodiment, the light-receiving section 7 is a measuring object having retroreflective properties.

前記追尾部43は、追尾光としてのレーザ光線を測定対象物に射出し、測定対象物からの再帰反射光を受光素子で受光し、再帰反射光の受光位置が所定範囲内となる様に、前記視準光学系44を測定対象物に追尾させる。尚、前記測距光49を追尾光として、使用することも可能であり、本実施例では、測距光49が追尾光として使用されている場合を説明する。 The tracking unit 43 emits a laser beam as tracking light to the object to be measured, receives the retroreflected light from the object to be measured by a light receiving element, and adjusts the light receiving position of the retroreflected light to be within a predetermined range. The collimation optical system 44 is caused to track the object to be measured. It should be noted that the distance measuring light 49 can be used as the tracking light, and in this embodiment, the case where the distance measuring light 49 is used as the tracking light will be described.

前記測角部45は、測距時の前記視準光学系44の視準光軸の水平角、鉛直角をそれぞれ測角する。前記測角部45の測角結果は、前記測定制御装置41に入力される。該測定制御装置41は、測角結果と測距結果とを関連付け、測定点の測定結果を3次元データとする。 The angle measuring unit 45 measures the horizontal angle and the vertical angle of the collimating optical axis of the collimating optical system 44 during distance measurement. The angle measurement result of the angle measurement unit 45 is input to the measurement control device 41 . The measurement control device 41 associates the results of angle measurement with the results of distance measurement, and converts the measurement results of the measurement points into three-dimensional data.

前記視準光学系44からは平行光束の前記測距光49が照射されるが、該測距光49の光束の断面形状は、前記飛行体5の姿勢(傾斜)対応して、前記受光部7が受光する光束の断面形状が変化する様に設定される。例えば、後述する様に楕円断面に設定される。 The collimating optical system 44 irradiates the distance measuring light 49 as a parallel beam. It is set so that the cross-sectional shape of the light beam received by 7 is changed. For example, an elliptical cross section is set as described later.

上記した様に、前記受光部7に照射された前記測距光49は、一部が透過し、前記受光素子7bに受光され、残部は前記受光窓7aにより再帰反射されて前記測距部42に受光され、測定が実行され、又前記追尾部43に受光され、追尾が実行される。 As described above, part of the distance measuring light 49 irradiated to the light receiving part 7 is transmitted and received by the light receiving element 7b, and the remaining part is retroreflected by the light receiving window 7a to reach the distance measuring part 42. is received by the tracking unit 43 and tracking is performed.

前記測定記憶部48には、測定対象物の測距を行う為の測定プログラム、測定対象物の追尾を行う為の追尾プログラム、前記飛行装置2及び前記遠隔操縦機4と通信を行う為の通信プログラム等のプログラムが格納されている。又、前記測定記憶部48には、前記測定対象物の測定結果(測距結果、測角結果)が格納される。 The measurement storage unit 48 stores a measurement program for measuring the distance of an object to be measured, a tracking program for tracking the object to be measured, and a communication program for communicating with the flying device 2 and the remote control device 4. Programs such as programs are stored. Further, the measurement storage unit 48 stores the measurement results (distance measurement results, angle measurement results) of the object to be measured.

前記測定通信部46は、測定結果(斜距離、水平角、鉛直角)をリアルタイムで前記遠隔操縦機4に送信する。 The measurement communication unit 46 transmits measurement results (slant distance, horizontal angle, vertical angle) to the remote control device 4 in real time.

前記駆動部47は、前記受光部7に前記視準光学系44を視準させる為に、或は前記受光部7を追尾させる為に、前記視準光学系44を水平方向に、或は鉛直方向に回転させる。 The driving unit 47 moves the collimating optical system 44 horizontally or vertically in order to collimate the collimating optical system 44 to the light receiving unit 7 or to track the light receiving unit 7 . rotate in the direction

前記トータルステーション3は、前記受光部7、即ち前記飛行体5を追尾しつつ測距し、測距結果と前記測角部45の検出結果に基づき、前記飛行体5の基準点の3次元座標をリアルタイムで測定する。 The total station 3 measures the distance while tracking the light-receiving unit 7 , that is, the flying object 5 , and calculates the three-dimensional coordinates of the reference point of the flying object 5 based on the distance measurement result and the detection result of the angle measuring unit 45 . Measure in real time.

図5を参照して、前記遠隔操縦機4について説明する。 The remote control device 4 will be described with reference to FIG.

前記遠隔操縦機4は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機4は、演算機能を有する端末演算処理部51、データ、プログラムを格納する端末記憶部52、端末通信部53、操作部54、表示部55を有している。 The remote controller 4 is, for example, a mobile terminal such as a smart phone or a tablet, or a device in which an input device is connected to or integrated with the mobile terminal. The remote controller 4 has a terminal arithmetic processing unit 51 having arithmetic functions, a terminal storage unit 52 for storing data and programs, a terminal communication unit 53 , an operation unit 54 and a display unit 55 .

前記遠隔操縦機4は、前記端末通信部53と前記飛行体通信部8との間で無線通信、光通信が可能となっている。前記遠隔操縦機4は、前記飛行装置2の飛行を遠隔操作し、前記レーザスキャナ6による測距作動も遠隔操作可能となっている。 The remote controller 4 is capable of wireless communication and optical communication between the terminal communication unit 53 and the flying object communication unit 8 . The remote controller 4 remotely controls the flight of the flight device 2 and can also remotely control the range finding operation by the laser scanner 6 .

前記端末演算処理部51は、前記操作部54から入力された指令に基づき制御用のコマンドを作成し、前記端末通信部53を介して前記UAV2に送信する。又、前記UAV2から送信された画像データ、測定データ等を前記端末記憶部52に格納し、或は前記表示部55に表示させる。 The terminal arithmetic processing unit 51 creates control commands based on commands input from the operation unit 54 and transmits the command to the UAV 2 via the terminal communication unit 53 . Also, the image data, measurement data, etc. transmitted from the UAV 2 are stored in the terminal storage section 52 or displayed on the display section 55 .

該端末記憶部52には、前記飛行装置2及び前記トータルステーション3との通信を行う為の通信プログラム、前記レーザスキャナ6で取得された点群データ等を表示する為の表示プログラム、タッチパネル等を介して指示を入力する為の操作プログラム、制御用のコマンドを作成する為プログラム、等のプログラムが格納される。 The terminal storage unit 52 stores a communication program for communicating with the flying device 2 and the total station 3, a display program for displaying point cloud data acquired by the laser scanner 6, and a touch panel. Programs such as an operation program for inputting an instruction by pressing the controller, a program for creating a command for control, and the like are stored.

前記端末通信部53は、前記飛行装置2の飛行体通信部8との間で、或はトータルステーション3の測定通信部46との間で通信を行う。又、前記操作部54は前記表示部55と一体に設けられたコントローラのボタン等を介して各種指示を入力し、前記飛行体5の操作を行う。 The terminal communication section 53 communicates with the flying object communication section 8 of the flight device 2 or with the measurement communication section 46 of the total station 3 . Further, the operation unit 54 inputs various instructions through buttons of a controller provided integrally with the display unit 55, and operates the flying object 5. As shown in FIG.

前記表示部55は、前記トータルステーション3で測定された測定結果、前記レーザスキャナ6で取得された点群データ、操作状況等が表示される。 The display unit 55 displays measurement results obtained by the total station 3, point cloud data obtained by the laser scanner 6, operation status, and the like.

尚、前記表示部55の全てをタッチパネルとしてもよい。該表示部55が全てタッチパネルである場合には、前記操作部54を省略してもよい。この場合、前記表示部55には前記飛行体5を操作する為の操作パネルが設けられる。 Incidentally, the entire display section 55 may be a touch panel. When the display section 55 is entirely a touch panel, the operation section 54 may be omitted. In this case, the display unit 55 is provided with an operation panel for operating the aircraft 5 .

上記測量システムによる測定作動について説明する。 A measurement operation by the above survey system will be described.

前記トータルステーション3を既知の設置点(地心座標系(グローバル座標系)で3次元座標が既知の点)に設置する。尚、測定対象物が建造物等で形状測定を行う場合等で地心座標系の3次元座標を必要としない場合は、測定対象物に対して既知化された点を設置点としてもよい。 The total station 3 is installed at a known installation point (a point with known three-dimensional coordinates in a geocentric coordinate system (global coordinate system)). If the object to be measured is a building or the like and the three-dimensional coordinates of the geocentric coordinate system are not required, the installation point may be a known point for the object to be measured.

飛行前、前記UAV2が着地した状態で、前記トータルステーション3によりUAV2(即ち受光部7)を視準し、追尾を開始した後、前記遠隔操縦機4からの遠隔操縦で前記UAV2を測定領域上方に飛行させ、更に前記遠隔操縦機4からの遠隔操作で前記レーザスキャナ6を駆動し、レーザスキャンによる点群データの取得を開始する。 Before flight, with the UAV 2 on the ground, the UAV 2 (that is, the light receiving unit 7) is collimated by the total station 3, and tracking is started. After flying, the laser scanner 6 is driven by remote control from the remote controller 4 to start acquisition of point cloud data by laser scanning.

前記レーザスキャナ6による一次元のスキャン作動と前記UAV2の飛行で2次元にレーザスキャンされ、2次元スキャンの点群データが取得される。該点群データは、前記記憶部29に一時格納され、逐次、前記飛行体通信部8を介して前記遠隔操縦機4に送信され、前記端末記憶部52に格納される。 Two-dimensional laser scanning is performed by the one-dimensional scanning operation by the laser scanner 6 and the flight of the UAV 2, and point cloud data of the two-dimensional scanning is obtained. The point cloud data is temporarily stored in the storage unit 29 , sequentially transmitted to the remote control unit 4 via the aircraft communication unit 8 , and stored in the terminal storage unit 52 .

飛行中、前記トータルステーション3が前記UAV2の追尾を実行することで、前記測距光49が前記受光部7に照射され、該受光部7(即ち、前記受光窓7a)からの反射測距光49が前記視準光学系44を介して前記測距部42に受光され、該測距部42により測距がリアルタイムで実行される。 During flight, the total station 3 tracks the UAV 2, so that the light receiving unit 7 is irradiated with the distance measuring light 49, and the light receiving unit 7 (that is, the light receiving window 7a) reflects the distance measuring light 49. is received by the distance measuring unit 42 via the collimating optical system 44, and distance measurement is performed by the distance measuring unit 42 in real time.

更に、前記測距光49の一部が追尾光として前記受光窓7aを透過し、前記受光素子7bに受光される。 Further, part of the distance measuring light 49 passes through the light receiving window 7a as tracking light and is received by the light receiving element 7b.

ここで、前記測距光49の光束断面形状について説明する。 Here, the cross-sectional shape of the luminous flux of the distance measuring light 49 will be described.

上記した様に、該測距光49の光束の断面形状は、前記飛行体5の姿勢(傾斜)対応して、前記受光部7が受光する光束の断面形状が変化する様に設定される。 As described above, the cross-sectional shape of the luminous flux of the distance measuring light 49 is set so that the cross-sectional shape of the luminous flux received by the light receiving section 7 changes in accordance with the attitude (inclination) of the flying object 5 .

前記測距光49の光束の断面形状の一例として、図1中のAで示している。Aでは前記測距光49の光束断面形状が楕円であり、楕円の長軸が鉛直(又は水平)に対して所定の角度、例えば45゜傾斜したものとなっている。或は、前記UAV2が水平姿勢で、前記測距光49を受光した場合の光束断面の形状を、長軸が鉛直(又は水平)に対して所定の角度、例えば45゜傾斜する様に設定してもよい。尚、光束の断面形状としては、長軸と短軸を有する形状であれば楕円に限定されるものではなく、例えば長方形、略長方形、或は長方形に内接する十字形等であってもよい。 An example of the cross-sectional shape of the luminous flux of the distance measuring light 49 is indicated by A in FIG. In A, the luminous flux cross-sectional shape of the distance measuring light 49 is an ellipse, and the long axis of the ellipse is inclined by a predetermined angle, for example, 45°, with respect to the vertical (or horizontal). Alternatively, when the UAV 2 is in a horizontal posture and the distance measuring light 49 is received, the shape of the beam cross section is set such that the long axis is inclined at a predetermined angle, for example, 45°, with respect to the vertical (or horizontal). may The cross-sectional shape of the luminous flux is not limited to an ellipse as long as it has a major axis and a minor axis.

図6(A)、図6(B)は、前記受光素子7bを透過した測距光(以下、追尾光)が前記受光素子7bに受光された光束断面の状態を示し、又前記UAV2に姿勢に対応して光束断面が変化していることを示している。又、図6(A)、図6(B)中、Gは光量重心を示している。 6(A) and 6(B) show the cross section of the light beam received by the light receiving element 7b of the distance measuring light (hereinafter referred to as tracking light) transmitted through the light receiving element 7b. It shows that the luminous flux cross section changes corresponding to . In addition, in FIGS. 6A and 6B, G indicates the center of gravity of the amount of light.

前記UAV2の傾斜について、3方向の回転(傾斜)が考えられる。図1を参照して、x軸を中心とする回転角をω、y軸を中心とする回転角をφ、z軸を中心とする回転角をκとする。 Regarding the inclination of the UAV 2, rotation (tilt) in three directions is conceivable. Referring to FIG. 1, let ω be the rotation angle about the x-axis, φ be the rotation angle about the y-axis, and κ be the rotation angle about the z-axis.

図1を参照して、前記UAV2がy軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の長軸の傾斜角度θに変化が現れる。又、前記UAV2がz軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の水平方向の長さHに変化が現れる。又、前記UAV2がx軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の鉛直方向の長さVに変化が現れる。 Referring to FIG. 1, when the UAV 2 rotates (tilts) about the y-axis, the shape of the beam cross section of the tracking light changes in the tilt angle θ of the major axis of the ellipse. Further, when the UAV 2 rotates (tilts) around the z-axis, the shape of the beam cross section of the tracking light changes in the length H of the ellipse in the horizontal direction. Further, when the UAV 2 rotates (tilts) around the x-axis, the shape of the beam cross section of the tracking light changes in the length V of the ellipse in the vertical direction.

図6(A)中、傾斜角度θ1、水平長さH1、鉛直長さV1とし、更に図6(B)中、傾斜角度θ2、水平長さH2、鉛直長さV2とし、図6(A)の光束断面形状と図6(B)の光束断面形状とを比較すると、V1=V2となっているのでx軸に関する傾斜(回転)はなく、θ1<θ2となっているのでθ1-θ2の角度だけy軸に関して反時計方向に回転し、又H1>H2となっているのでz軸に関してH1-H2の変位に対応する傾斜(回転)が発生したことが分る。 In FIG. 6A, the inclination angle θ1, the horizontal length H1, and the vertical length V1 are assumed, and in FIG. 6B, the inclination angle θ2, the horizontal length H2, and the vertical length V2 are assumed. 6(B), there is no tilt (rotation) about the x-axis because V1=V2, and θ1<θ2, so the angle θ1−θ2 Since it rotates counterclockwise about the y-axis by H1>H2, it can be seen that a tilt (rotation) corresponding to a displacement of H1-H2 about the z-axis has occurred.

更に、前記UAV2がx軸を中心とする傾斜ωと鉛直長さVとは相関関係があり、従って、傾斜角ωは鉛直長さVの関数であり、ω=f(V)となる。
同様に前記UAV2がy軸を中心とする傾斜φと長軸の傾斜角度θとは相関関係があり、従って、傾斜角φは傾斜角θの関数であり、φ=f(θ)となる。
同様に前記UAV2がz軸を中心とする傾斜角κと水平長さHとは相関関係があり、従って、傾斜角κは水平長さHの関数であり、κ=f(H)となる。
Furthermore, the tilt ω of the UAV 2 about the x-axis is correlated with the vertical length V, so the tilt angle ω is a function of the vertical length V, and ω=f(V).
Similarly, the tilt φ about the y-axis of the UAV 2 and the tilt angle θ of the long axis are correlated, so the tilt angle φ is a function of the tilt angle θ, and φ=f(θ).
Similarly, the tilt angle κ of the UAV 2 about the z-axis is correlated with the horizontal length H, so the tilt angle κ is a function of the horizontal length H, and κ=f(H).

従って、関数、ω=f(V)、φ=f(θ)、κ=f(H)を予め求めておけば、前記姿勢検出部35は前記受光素子7bからの受光信号に基づき、V,θ,Hを検出し、該V,θ,H及び前記ω=f(V)、φ=f(θ)、κ=f(H)に基づき前記UAV2の3方向の傾斜角を演算することができる。 Therefore, if the functions .omega.=f(V), .phi.=f(.theta.), and .kappa.=f(H) are obtained in advance, the posture detection unit 35 can detect V, θ and H are detected, and the inclination angles of the UAV 2 in three directions are calculated based on the V, θ, H and ω=f(V), φ=f(θ), and κ=f(H). can.

前記姿勢検出部35は演算結果を前記演算制御部28に入力し、該演算制御部28は演算結果に基づき前記飛行制御部32を介して前記飛行体5の姿勢を制御する。尚、x軸を中心とする回転角、y軸を中心とする回転角、z軸を中心とする回転角について、回転方向はそれぞれ右ネジの方向を+とする。 The attitude detection unit 35 inputs the calculation result to the calculation control unit 28, and the calculation control unit 28 controls the attitude of the aircraft 5 via the flight control unit 32 based on the calculation result. Regarding the rotation angle about the x-axis, the rotation angle about the y-axis, and the rotation angle about the z-axis, the direction of the right-hand screw is defined as +.

更に、前記受光部7による受光結果に基づき、追尾制御を行うことができる。 Further, tracking control can be performed based on the result of light reception by the light receiving section 7 .

前記受光素子7bで受光した追尾光の光量重心を演算し、更に、該光量重心と前記受光素子7bの基準位置(例えば、前記受光素子7bの中心)との偏差を検出する。検出結果は、前記飛行体通信部8を介して前記測定通信部46にリアルタイムで送信され、更に測定制御装置41に入力される。該測定制御装置41は前記追尾部43により前記偏差が0になる様に測距光49を前記UAV2に追尾させる。 The light amount gravity center of the tracking light received by the light receiving element 7b is calculated, and further the deviation between the light amount gravity center and the reference position of the light receiving element 7b (for example, the center of the light receiving element 7b) is detected. The detection results are transmitted in real time to the measurement communication section 46 via the flying object communication section 8 and input to the measurement control device 41 . The measurement control device 41 causes the UAV 2 to track the distance measuring light 49 by the tracking unit 43 so that the deviation becomes zero.

図7、図8を参照して前記受光部7の変更例を説明する。 A modification of the light receiving section 7 will be described with reference to FIGS. 7 and 8. FIG.

該変更例では、受光部7の中心部に細密受光部60を設ける。 In this modification, a fine light receiving section 60 is provided at the center of the light receiving section 7 .

該細密受光部60は、前記受光窓7aの中心部、レンズシート61、細密受光素子62を有し、更に前記レンズシート61は多数の微小球体レンズ63を同一平面上に密着させて配置し、シート状に構成したものである(図8(A)参照)。 The fine light receiving section 60 has a central portion of the light receiving window 7a, a lens sheet 61, and a fine light receiving element 62. Further, the lens sheet 61 has a large number of microspherical lenses 63 arranged in close contact on the same plane, It is configured in a sheet shape (see FIG. 8(A)).

前記細密受光素子62は、受光部が碁盤目状に区分され、各区分62aは前記微小球体レンズ63毎に対応して設けられている。又、前記レンズシート61と前記細密受光素子62間の距離は、前記微小球体レンズ63の焦点距離となっており、各微小球体レンズ63がそれぞれ対応する前記区分62aに結像する様に構成されている。 The fine light-receiving element 62 has a light-receiving portion divided in a grid pattern, and each division 62 a is provided corresponding to each micro-spherical lens 63 . The distance between the lens sheet 61 and the fine light receiving element 62 is the focal length of the microspherical lens 63, and each microspherical lens 63 is configured to form an image on the corresponding segment 62a. ing.

又該区分62aは各区分毎に受光信号を発すると共に、各区分内62aでの受光位置Pも受光位置情報として出力する様になっている。 Further, the section 62a outputs a light reception signal for each section, and also outputs the light reception position P in each section 62a as light reception position information.

前記測距光49が前記細密受光部60に入射した場合、前記測距光49の結像位置は、前記測距光49の入射角に対応して変化する。図8(B)は、前記測距光49がレンズシート61に対して垂直に入射し、図8(C)は前記測距光49が前記レンズシート61に対して斜めに入射した場合を示している。 When the distance measuring light 49 is incident on the fine light receiving section 60 , the imaging position of the distance measuring light 49 changes according to the incident angle of the distance measuring light 49 . 8B shows the case where the distance measuring light 49 enters the lens sheet 61 perpendicularly, and FIG. 8C shows the case where the distance measuring light 49 enters the lens sheet 61 obliquely. ing.

従って、前記測距光49が前記細密受光部60に垂直入射した時の各区分62aの受光位置Pを初期値として保存し、その後入射角の変化があった場合に、初期値に対する受光位置Pの変化を検出すれば、受光位置Pの変化に基づき入射角の変化、入射方向の変化を求めることができる。 Therefore, the light receiving position P of each section 62a when the distance measuring light 49 is perpendicularly incident on the fine light receiving section 60 is stored as an initial value, and when there is a change in the incident angle thereafter, the light receiving position P with respect to the initial value is stored. is detected, a change in the incident angle and a change in the incident direction can be obtained based on the change in the light receiving position P. FIG.

従って、追尾に於いて、大きな角度変化は、前記受光素子7bからの検出結果に基づき求め、前記測距光49の入射角が、前記受光部7に略垂直となり、各微小球体レンズ63による結像位置が対応する前記区分62a内となった状態で、前記細密受光部60からの検出結果に基づき追尾を実行すれば、高精度の追尾が可能となる。 Therefore, in tracking, a large angle change is obtained based on the detection result from the light receiving element 7b, the incident angle of the distance measuring light 49 becomes substantially perpendicular to the light receiving section 7, and the convergence by each microspherical lens 63 is obtained. If tracking is executed based on the detection result from the fine light receiving section 60 in a state where the image position is within the corresponding section 62a, highly accurate tracking becomes possible.

図9は、前記受光部7の他の変更例を示しており、該他の変更例に於いて、追尾光をx軸、y軸、z軸方向に分岐して受光し、各軸について光束断面形状の楕円の長軸の角度変化を検出する様にしてもよい。 FIG. 9 shows another modification of the light-receiving unit 7. In this modification, the tracking light is branched in the x-axis, y-axis, and z-axis directions and received. A change in the angle of the long axis of the ellipse of the cross-sectional shape may be detected.

図10は、前記受光部7の更に他の変更例を示している。該他の変更例では受光素子7bを所定の頂角を有する円錐形状とし、追尾光の光束断面を長軸が鉛直な楕円としている。尚、円錐形状の頂角としては入射角の変化が受光状態に反映される角度であればよく、例えば90°とする。 FIG. 10 shows still another modification of the light receiving section 7. As shown in FIG. In the other modified example, the light receiving element 7b has a conical shape with a predetermined apex angle, and the beam cross section of the tracking light is an ellipse with a vertical major axis. The apex angle of the conical shape may be any angle at which the change in the incident angle is reflected in the light-receiving state, for example, 90°.

図10(A)に示される様に、追尾光49aが受光素子7bの中心に垂直に入射した場合、受光素子7bでの受光形状は図10(B)に示される様に光束断面と同形の楕円形71となり、又図10(A)に示される様に、追尾光49bが受光素子7bに対して傾斜して入射した場合、受光素子7bでの受光形状は図10(C)に示される様に前記楕円形71の前記受光素子7bの中心から傾斜方向側の部分が更に延びる非対称な楕円72(卵形状の楕円)となる。又、傾斜角度は前記非対称な楕円72の長軸73を前記受光素子7bの中心で分割すると、傾斜側の分割長73aはα伸長し、反対側の分割長73bはβ短縮する、従って、分割長73aと分割長73bの比、及び円錐形状の頂角に基づき傾斜角を求めることができる。更に、傾斜方向は分割長の長短によって判別できる。 As shown in FIG. 10(A), when the tracking light 49a is vertically incident on the center of the light receiving element 7b, the shape of the light received by the light receiving element 7b is the same as the beam cross section as shown in FIG. 10(B). When the tracking light 49b is obliquely incident on the light receiving element 7b as shown in FIG. 10(A), the shape of the light received by the light receiving element 7b is shown in FIG. 10(C). Similarly, an asymmetric ellipse 72 (egg-shaped ellipse) in which the portion on the side of the inclination direction further extends from the center of the light receiving element 7b of the ellipse 71 is formed. Further, when the major axis 73 of the asymmetric ellipse 72 is divided at the center of the light receiving element 7b, the division length 73a on the oblique side is elongated by α and the division length 73b on the opposite side is shortened by β. The inclination angle can be obtained based on the ratio of the length 73a and the division length 73b and the apex angle of the cone. Furthermore, the direction of inclination can be determined by the length of the division length.

又、前記追尾光49aの短軸方向に傾斜した場合も同様にして傾斜角、傾斜方向を検出することができる。 Also, when the tracking light 49a is tilted in the minor axis direction, the tilt angle and tilt direction can be detected in the same manner.

更に、傾斜方向が長軸方向と短軸方向との間の場合は、長軸方向で得られる傾斜角、短軸方向で得られる傾斜角の合成によって求めることができる。 Furthermore, when the tilt direction is between the major axis direction and the minor axis direction, it can be obtained by synthesizing the inclination angle obtained in the major axis direction and the inclination angle obtained in the minor axis direction.

又、前記追尾光49aの光軸を中心とする回転角θについては、光束断面形状の楕円の長軸の鉛直に対する角度を求めればよい(図10(D)参照)。 As for the rotation angle θ about the optical axis of the tracking light 49a, the angle of the major axis of the ellipse of the beam cross-section with respect to the vertical can be obtained (see FIG. 10(D)).

尚、該他の変更例の場合、光束断面形状を十字形状としてもよい。この場合、分割長の伸縮、回転が明確なる。 Incidentally, in the case of the other modified example, the cross-sectional shape of the beam may be cross-shaped. In this case, expansion/contraction and rotation of the division length become clear.

尚、他の変更例の場合、追尾に関する検出はトータルステーション3の追尾部43で行い、追尾光が常に前記受光素子7bの中心に照射される様に前記測定制御装置41によって制御されることが好ましい。 In the case of another modified example, it is preferable that the tracking unit 43 of the total station 3 performs the detection related to tracking, and the measurement control device 41 controls the tracking light so that the center of the light receiving element 7b is always irradiated with the tracking light. .

その他、本実施例に於いて、前記遠隔操縦機4をデータコレクタとして使用し、取得したデータの座標変換、統合処理等のデータ処理については、別途PC等の演算処理装置で実行してもよい。 In addition, in this embodiment, the remote control device 4 may be used as a data collector, and data processing such as coordinate conversion and integration processing of acquired data may be performed by a separate arithmetic processing device such as a PC. .

1 姿勢制御システム
2 UAV
3 位置測定装置
4 遠隔操縦機
5 飛行体
6 レーザスキャナ
7 受光部
8 飛行体通信部
27 制御装置
28 演算制御部
29 記憶部
32 飛行制御部
34 スキャナ制御部
35 姿勢検出部
41 測定制御装置
43 追尾部
44 視準光学系
51 端末演算処理部
53 端末通信部
60 細密受光部
1 attitude control system 2 UAV
3 position measuring device 4 remote control unit 5 flying object 6 laser scanner 7 light receiving unit 8 flying object communication unit 27 control device 28 arithmetic control unit 29 storage unit 32 flight control unit 34 scanner control unit 35 attitude detection unit 41 measurement control device 43 tracking Unit 44 Collimation optical system 51 Terminal arithmetic processing unit 53 Terminal communication unit 60 Fine light receiving unit

Claims (8)

遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成された飛行体の姿勢検出装置。 An attitude detection device provided in a remotely controllable flight device, the attitude detection device having a light receiving section and an attitude detection section, the light receiving section transmitting part of an irradiated laser beam and transmitting the remaining portion. a retro-reflecting half mirror and a light-receiving element capable of receiving a laser beam transmitted through the half mirror and detecting a beam cross-sectional shape of the received laser beam, the laser beam having a predetermined beam cross-sectional shape; The attitude detection unit calculates a change in the cross-sectional shape of the beam based on the light receiving signal from the light receiving element, detects the incident angle and direction of the laser beam incident on the light receiving unit based on the change in the cross-sectional shape of the beam, An attitude detection device for a flying object configured to detect the attitude of the flying device based on the detected incident angle and incident direction. 前記光束断面形状は、長軸、短軸を有し、長軸又は短軸が鉛直に対して傾斜した形状であり、前記姿勢検出部は前記長軸の回転変化、光束断面の受光面上での水平方向の長さ変化、光束断面の受光面上での鉛直方向の長さ変化に基づき、前記飛行装置の3軸方向の傾斜角を演算する様構成された請求項1に記載の飛行体の姿勢検出装置。 The cross-sectional shape of the beam has a long axis and a short axis, and the long axis or the short axis is inclined with respect to the vertical. 2. The flying object according to claim 1, wherein the tilt angles of the flight device in the three axial directions are calculated based on the change in the horizontal length of the cross section of the beam and the change in the vertical length of the cross section of the beam on the light receiving surface. attitude detection device. 前記受光部の中心部に細密受光部が設けられ、該細密受光部は微小球体レンズから構成されるレンズシートと、前記微小球体レンズそれぞれに対応した区分を有する細密受光素子とを具備し、前記微小球体レンズを透過した光線が前記区分に結像される様構成され、該区分内での結像位置に基づき前記飛行装置の傾斜角、傾斜方向を検出する様構成された請求項1に記載の飛行体の姿勢検出装置。 A fine light-receiving part is provided at the center of the light-receiving part, the fine light-receiving part comprises a lens sheet composed of microspherical lenses, and a fine light-receiving element having sections corresponding to the respective microspherical lenses, 2. The apparatus according to claim 1, wherein light rays transmitted through the microspherical lens are imaged on the section, and the inclination angle and the inclination direction of the flight device are detected based on the image formation position within the section. attitude detection device for flying objects. 前記受光素子の受光面は円錐形状である請求項1又は請求項2に記載の飛行体の姿勢検出装置。 3. An apparatus for detecting the attitude of a flying object according to claim 1, wherein the light-receiving surface of said light-receiving element is conical. 前記受光部に入射したレーザ光線を互いに直交する3軸に分岐し、各軸を中心とする回転角、回転方向を検出する様構成された請求項1又は請求項2に記載の飛行体の姿勢検出装置。 3. The attitude of the flying object according to claim 1 or 2, wherein the laser beam incident on the light-receiving part is branched into three mutually orthogonal axes, and a rotation angle and a rotation direction about each axis are detected. detection device. 遠隔操縦可能な飛行装置と、請求項1~請求項5のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成された飛行体の姿勢制御システム。 a remotely controllable flight device; an attitude detection device according to any one of claims 1 to 5; a position measurement device capable of tracking the flight device; and a remote device capable of wireless communication with the flight device and the position measurement device. and a pilot, wherein the flight device is capable of wireless communication with propeller units provided in a plurality of even-numbered propeller frames, and the remote pilot, and is capable of controlling driving of the propeller units. The position measuring device irradiates the light-receiving part with a laser beam having a predetermined beam cross-section as distance measuring light, and the half mirror retroreflects part of the distance measuring light as reflected distance measuring light. The position measuring device receives the retroreflected light and measures the position of the flying device. an attitude control system for a flying object, configured to drive the propeller unit and control the attitude of the flight device based on the above. 前記位置測定装置は、前記受光部からの再帰反射光を受光し、受光結果に基づき前記飛行装置を追尾する様構成された請求項6に記載の飛行体の姿勢制御システム。 7. The attitude control system for a flying object according to claim 6, wherein the position measuring device receives the retroreflected light from the light receiving unit and tracks the flying device based on the light receiving result. 飛行体通信部は、前記姿勢検出部の検出結果をリアルタイムで前記位置測定装置に送信し、該位置測定装置は受信した受光結果に基づき前記飛行装置の追尾を行う様構成された請求項6に記載の飛行体の姿勢制御システム。 7. The flying object communication unit is configured to transmit the detection result of the attitude detection unit to the position measurement device in real time, and the position measurement device tracks the flight device based on the received light reception result. An attitude control system for the described air vehicle.
JP2021049468A 2021-03-24 2021-03-24 Attitude detection device and attitude control system of flying object Pending JP2022147973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021049468A JP2022147973A (en) 2021-03-24 2021-03-24 Attitude detection device and attitude control system of flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021049468A JP2022147973A (en) 2021-03-24 2021-03-24 Attitude detection device and attitude control system of flying object

Publications (1)

Publication Number Publication Date
JP2022147973A true JP2022147973A (en) 2022-10-06

Family

ID=83463296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021049468A Pending JP2022147973A (en) 2021-03-24 2021-03-24 Attitude detection device and attitude control system of flying object

Country Status (1)

Country Link
JP (1) JP2022147973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792482A (en) * 2024-02-23 2024-03-29 电子科技大学 Big dipper short message communication recovery method based on control of large unmanned aerial vehicle
CN117792482B (en) * 2024-02-23 2024-05-31 电子科技大学 Big dipper short message communication recovery method based on control of large unmanned aerial vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792482A (en) * 2024-02-23 2024-03-29 电子科技大学 Big dipper short message communication recovery method based on control of large unmanned aerial vehicle
CN117792482B (en) * 2024-02-23 2024-05-31 电子科技大学 Big dipper short message communication recovery method based on control of large unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
US10324183B2 (en) UAV measuring apparatus and UAV measuring system
US10983196B2 (en) Laser scanner and surveying system
KR101553998B1 (en) System and method for controlling an unmanned air vehicle
JP5882951B2 (en) Aircraft guidance system and aircraft guidance method
JP7139052B2 (en) surveying system
JP7077013B2 (en) 3D information processing unit, device equipped with 3D information processing unit, unmanned aerial vehicle, notification device, moving object control method using 3D information processing unit, and program for moving object control processing
JP6326237B2 (en) Measuring system
CA2831682C (en) Measuring system for determining 3d coordinates of an object surface
US20170131404A1 (en) Surveying System
US11460299B2 (en) Survey system
JP6302660B2 (en) Information acquisition system, unmanned air vehicle control device
JP6823482B2 (en) 3D position measurement system, 3D position measurement method, and measurement module
EP3644012B1 (en) Surveying instrument
US11630186B2 (en) Target device and measuring system
JP6577083B2 (en) Measuring system
JP2022057277A (en) Surveying system
US20220317149A1 (en) Reversing actuation type inertia detecting device and surveying instrument
JP2022147973A (en) Attitude detection device and attitude control system of flying object
JP2018138922A (en) Measuring system
JP2019219206A (en) Measurement system
JP2023048409A (en) Survey system
US11754677B2 (en) Measurement device
US20240112327A1 (en) Bar arrangement inspection system and bar arrangement inspection method
JP2022067500A (en) Survey system
JP2023081234A (en) Surveying system, and surveying system control method