WO2023190281A1 - Planar heating device - Google Patents

Planar heating device Download PDF

Info

Publication number
WO2023190281A1
WO2023190281A1 PCT/JP2023/012082 JP2023012082W WO2023190281A1 WO 2023190281 A1 WO2023190281 A1 WO 2023190281A1 JP 2023012082 W JP2023012082 W JP 2023012082W WO 2023190281 A1 WO2023190281 A1 WO 2023190281A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
planar heating
heating device
resin base
heat transfer
Prior art date
Application number
PCT/JP2023/012082
Other languages
French (fr)
Japanese (ja)
Inventor
詠未 山森
Original Assignee
坂口電熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 坂口電熱株式会社 filed Critical 坂口電熱株式会社
Publication of WO2023190281A1 publication Critical patent/WO2023190281A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs

Definitions

  • the present invention relates to a planar heating device.
  • Tape-shaped heaters are used to heat pipes, etc. Tape-shaped heaters are used by being wrapped around the outer periphery of piping, etc., and if there is a gap between the object to be heated and the heater, the heat conductivity will be reduced.
  • Patent Document 1 the applicant has proposed a tape-shaped heater having a heating element made of a heat-resistant electrically insulating thread coated with conductive powder.
  • the tape-shaped heater described in Patent Document 1 has a heat-generating element in the form of a thread, so it has excellent flexibility and can be easily wrapped closely around a rigid pipe or the like.
  • the object to be heated itself is flexible, it is difficult to install it because wrapping it too tightly will deform the object. It may deform and create gaps.
  • Patent Document 2 discloses an invention of a culture medium warming device that has a housing having a heating space and heats the culture medium by arranging a liquid feeding tube inside the housing.
  • Patent Document 2 has poor thermal efficiency because it heats the culture medium in the liquid feeding tube with warm air, and the housing is large because it is necessary to arrange the liquid feeding tube of sufficient length inside the housing. It turns into In addition, in a culture device, many parts are single-use (used only once) and are disposable in order to prevent contamination (contamination due to contamination and multiplication of bacteria during culture), but as described in Patent Document 2 This device requires a large amount of disposable tubes and is expensive.
  • An object of the present invention is to provide a planar heating device that has excellent adhesion to an object to be heated.
  • the present invention is intended to solve the above problems, and specific means are as follows.
  • the heat transfer material has a Shore E hardness of 1 or more and 50 or less. The planar heating device described in . 3. 1.
  • the base material is paper. or 2.
  • the planar heating device described in . 4. 1.
  • the heat transfer material is one or more selected from rubber, clay, gel, and solid oil. ⁇ 3.
  • Two or more of the planar heating elements are embedded in the first thermoplastic resin base, 1.
  • the first thermoplastic resin base is bendable with the first thermoplastic resin base on the outside. ⁇ 4.
  • the planar heating device according to any one of the above.
  • the planar heating device of the present invention has a heat transfer material above the heating region, and this heat transfer material can be deformed to follow the shape of the object to be heated, so that excessive pressure is applied to the object to be heated. You can get close to it without any problems.
  • the second thermoplastic resin base located on the side of the object to be heated is more flexible than the first thermoplastic resin base, so that when pressure is applied from the heat transfer material, the second thermoplastic resin base is more flexible than the first thermoplastic resin base.
  • the second thermoplastic resin base can be greatly deformed and come into close contact with the object to be heated.
  • the planar heating device of the present invention since the heat transfer material covers the entire surface of the heating region, dry heating can be prevented. Since the planar heating device of the present invention can efficiently heat an object to be heated, for example, when heating a tube for supplying a culture medium, the tube in contact with the planar heating device of the present invention can be shortened. can do.
  • FIG. 1 is a schematic diagram of a planar heating device according to a first embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded view of a planar heating device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first thermoplastic resin base included in the planar heating device according to the first embodiment of the present invention.
  • FIG. 2 is an exploded view of a first thermoplastic resin base included in the planar heating device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view from both sides of a sheet heating element included in the sheet heating device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing how the sheet heating device of the present invention is used.
  • FIG. 3 is a diagram showing how the sheet heating device of the present invention is used.
  • FIG. 2 is a schematic diagram of a planar heating device according to a second embodiment of the present invention.
  • FIG. 2 is an exploded view of a planar heating device according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a planar heating device according to a third embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a planar heating device according to a fourth embodiment of the present invention.
  • First embodiment 1 and 2 show a schematic diagram and an exploded view of a planar heating device 100, which is a first embodiment of the present invention.
  • the planar heating device 100 includes a first thermoplastic resin base 11 in which two planar heating elements 14a and 14b are embedded, a second thermoplastic resin base 12, and a heat transfer material sealed between them. 13a, b.
  • the first thermoplastic resin base 11 and the second thermoplastic resin base 12 are integrated by being fused to form a space between which the heat transfer materials 13a and 13b are sealed.
  • a heating device 100 is formed.
  • the second thermoplastic resin base 12 has a thickness of 50 ⁇ m or more and 400 ⁇ m or less. By having a thickness within this range, the second thermoplastic resin base 12 has an excellent balance between deformability (flexibility) and strength, and is easily deformed following the deformation of the heat transfer materials 13a and 13b. , and can prevent stretching and tearing.
  • the thickness of the second thermoplastic resin base 12 is preferably 80 ⁇ m or more, more preferably 100 ⁇ m or more, even more preferably 120 ⁇ m or more, even more preferably 150 ⁇ m or more, and , is preferably 350 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the thickness of the second thermoplastic resin base 12 means the thickness of the second thermoplastic resin base 12 in the region where the heat transfer materials 13a and 13b are sealed.
  • the second thermoplastic resin base 12 has recesses 121a and 121b filled with heat transfer materials 13a and 13b.
  • the depths of the recesses 121a and 121b are not particularly limited and can be adjusted depending on the size, shape, etc. of the object to be heated.
  • the recesses 121a and 121b can be formed by a known method such as vacuum forming, pressure forming, hot stamping, or the like. When forming the recesses 121a and 121b, it is preferable to form fine irregularities on their inner surfaces because the contact area with the heat transfer materials 13a and 13b becomes larger and heat conduction is improved.
  • the developed area ratio (Sdr) of the interface is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0.2 or more. Note that the developed area ratio of the interface can be calculated from a surface profile of 1000 ⁇ m ⁇ 1000 ⁇ m or more using a laser microscope or the like.
  • the first thermoplastic resin base 11 includes a first thermoplastic resin sheet 111 and a second thermoplastic resin sheet 112, and from the one farthest from the second thermoplastic resin base 12, the first thermoplastic resin Sheet 111/planar heating elements 14a, b/second thermoplastic resin sheet 112 are laminated in this order.
  • the first and second thermoplastic resin sheets 111 and 112 are integrated by being thermally fused with the planar heating elements 14a and 14b sandwiched therebetween, thereby forming the first thermoplastic resin base 11. are doing.
  • the first and second thermoplastic resin substrates 11 and 12, as well as the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112, are both made of thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and polyethylene, polypropylene, polystyrene, polyester, polycarbonate, polyamide, polyimide, acrylic resin, fluororesin, etc. can be used, and different types of thermoplastic resins that can be heat-sealed to each other can be used. A combination of resins can also be used. Among these, it is preferable to use polyethylene, which is inexpensive and can be sterilized by ⁇ -ray irradiation, or polypropylene or fluororesin, which can be sterilized by autoclaving.
  • high density polyethylene high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.
  • high density polyethylene HDPE
  • low density polyethylene LDPE
  • linear low density polyethylene LLDPE
  • fluororesin PTFE, PFA, FEP, etc.
  • PTFE PTFE, PFA, FEP, etc.
  • the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112 may have the same thickness or different thicknesses. Moreover, the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112 can also have different thicknesses for each part.
  • the first and second thermoplastic resin sheets 111, 112, especially the second thermoplastic resin sheet 112 located on the heat transfer material 13 side, are preferably thinner in terms of heat transfer properties, but if they are too thin, the strength will decrease. It becomes weaker and more likely to break.
  • the thickness of the first and second thermoplastic resin sheets 111 and 112 is preferably 100 ⁇ m or more and 400 ⁇ m or less, more preferably 120 ⁇ m or more, even more preferably 150 ⁇ m or more, and 350 ⁇ m or less. It is more preferable that it is, and it is still more preferable that it is 300 ⁇ m or less. If the thickness of the first and second thermoplastic resin sheets 111 and 112 is too thin compared to the buried planar heating elements 14a and 14b, when the first thermoplastic resin base 11 is deformed, etc. Peeling of the fusion bond or tearing of the sheet may occur at the ends of the planar heating elements 14a and 14b sandwiched therein.
  • the thickness of the first and second thermoplastic resin sheets 111, 112 is preferably 10% or more, and 15% or more of the thickness of the base materials 141a, b included in the planar heating elements 14a, b. More preferably, it is 20% or more. Further, it is preferable that the area of the second thermoplastic resin sheet 112 that contacts the heat transfer material 13 has fine irregularities because the contact area with the heat transfer materials 13a and 13b increases and thermal conductivity improves. .
  • the fine irregularities can be formed by known embossing or the like.
  • the developed area ratio (Sdr) of the interface is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0.2 or more.
  • Heat transfer material The heat transfer materials 13a, b are housed in the recesses 121a, b of the second thermoplastic resin base 12 between the first thermoplastic resin base 11 and the second thermoplastic resin base 12, It is sealed.
  • the area sandwiched between the conductive parts 143A and 143B of the resistance heating coating layers 142a and 142b is a heating area that generates heat when energized.
  • the heat transfer materials 13a and 13b are provided so as to cover the entire surface of this heating area. Thereby, since the heat transfer materials 13a and 13b are always present on the heating region, dry heating can be prevented.
  • the heat transfer materials 13a and 13b are not particularly limited as long as they are deformable materials. Further, the deformation may be either elastic deformation or plastic deformation. It is preferable that the heat transfer materials 13a and 13b have a Shore E hardness of 1 or more and 50 or less when a 10 mm thick sample is measured at 25° C. in accordance with JIS K6253-3, since these materials have excellent deformability.
  • the Shore E hardness is more preferably 3 or more, further preferably 5 or more, and preferably 40 or less, more preferably 30 or less.
  • the heat transfer materials 13a and 13b preferably have high thermal conductivity, preferably 1 W/m ⁇ K or more, and preferably 1.5 W/m ⁇ K or more. is more preferable, and even more preferably 2 W/m ⁇ K or more.
  • the thermal conductivity of the thermoplastic resin is about 0.2 to 0.4 W/m ⁇ K.
  • the thermal conductivity of the heat transfer materials 13a and 13b is preferably 40 W/m ⁇ K or less, more preferably 30 W/m ⁇ K or less, More preferably, it is 10 W/m ⁇ K or less.
  • the heat transfer materials 13a and 13b should have low specific heat in order to reduce the energy required to heat the heat transfer materials and to precisely control the temperature by shortening the time required for heat to be transferred to the heated object.
  • the specific heat is preferably 3 J/g ⁇ K or less, more preferably 2 J/g ⁇ K or less, and even more preferably 1 J/g ⁇ K or less.
  • Solid oil is an oil that is solid at 25°C, such as hydrogenated castor oil (melting point 80-90°C), carnauba wax (melting point 80-86°C), microcrystalline wax (melting point 80-85°C). , 12-hydroxystearic acid (melting point 76°C), candelilla wax (melting point 68-72°C), beeswax (melting point 63°C), petrolatum (melting point 53°C), white wax (melting point 45-55°C), lanolin (melting point 41°C), palm oil (melting point 37°C), and the like.
  • the heat transfer materials 13a and 13b are fluid materials such as liquids or powders, there is a risk that they will flow during use and reduce their adhesion to the heated object, and if the thermoplastic resin base is torn. If this happens, the heat transfer materials 13a and 13b will flow out. Furthermore, when the heat transfer materials 13a and 13b are liquids, there is a risk that air bubbles will be generated inside when heated to a high temperature, and the air bubbles will cause dry heating. Therefore, the heat transfer materials 13a and 13b are preferably solids that do not flow at the operating temperature, and specifically, preferably one or more selected from rubber, clay, gel, and solid oil.
  • the hardness changes little due to temperature changes, the thermal conductivity and specific heat values can be adjusted by incorporating fine metal particles, etc., and bubbles are less likely to occur even when heated, so rubber It is more preferable that the material is one or more selected from , and clay.
  • a planar heating device 100 which is one embodiment, includes two planar heating elements 14a and 14b.
  • FIG. 5 shows perspective views of the sheet heating elements 14a and 14b as seen from the front and back, respectively.
  • the planar heating elements 14a, b include base materials 141a, b and resistance heating coating layers 142a, b formed by coating on the base materials 141a, b, and the thickness of the base materials 141a, b is as follows. It is at least twice the thickness of the second thermoplastic resin base 12.
  • the resistance heating coating layers 142a and 142b are provided on the heat transfer material 13 side.
  • Conductive parts 143A, B are provided on two opposing sides of the resistance heating coating layers 142a, b, and lead wires 144A, B are connected to the conductive parts 143A, B, respectively.
  • the base materials 141a, b are not particularly limited as long as the coated surface is insulating and the material is capable of forming a uniform coating layer of the resistance heating coating layers 142a, b on the coated surface.
  • the material is capable of forming a uniform coating layer of the resistance heating coating layers 142a, b on the coated surface.
  • paper, resin films, ceramics, laminates thereof, etc. can be used.
  • paper is preferable because it is inexpensive and allows the formation of resistance heating coating layers 142a, b that are difficult to peel off from the base materials 141a, b by allowing a portion of the coating liquid to penetrate therein.
  • non-coated paper is more preferable because it has excellent adhesion to the resistance heating coating layers 142a, b and the thermoplastic resin sheets 111, 112.
  • the thickness of the base materials 141a and 141b is at least twice the thickness of the second thermoplastic resin base 12.
  • the first thermoplastic resin base 11 has base materials 141a and 141b embedded therein that have a thickness twice or more that of the second thermoplastic resin base 12 (100 ⁇ m or more and 400 ⁇ m or less). It is more rigid than the thermoplastic resin base 12 of .
  • the more flexible second thermoplastic resin base 12 side deforms more than the more rigid first thermoplastic resin base 11 side. Therefore, the second thermoplastic resin base 12 can be brought into close contact with the object to be heated and heated efficiently.
  • the thickness of the base materials 141a, b is preferably 2.5 times or more, more preferably 3 times or more, and preferably 4 times or more the thickness of the second thermoplastic resin base 12. More preferred. On the other hand, if the base materials 141a, b become too thick, when the first thermoplastic resin base 11 is deformed, the first and second thermoplastic resin sheets 111, 112 will be damaged at the ends of the base materials 141a, b. becomes easy to peel off. Therefore, the thickness of the base material 141 is preferably 2 mm or less, more preferably 1.5 mm or less, and even more preferably 1.2 mm or less. Further, the basis weight of the base material 141 is preferably 400 g/m 2 or more and 800 g/m 2 or less. When having a plurality of planar heating elements, the material, thickness, basis weight, etc. of each base material of each planar heating element may be the same or different; From this point of view, it is preferable that they be the same.
  • the resistance heating coating layers 142a and 142b are formed by applying a heating paint containing at least a conductive material and a binder resin onto the base materials 141a and 141b and drying it.
  • the heat-generating paint may be either water-based or organic solvent-based, but water-based paints are preferred because they are less of a burden on workers and the environment, and are superior in safety without the risk of fire or explosion.
  • the conductive material those conventionally used in the resistance heating coating layer can be used without particular restriction, such as carbon-based conductive materials such as carbon black, graphite, carbon nanotubes, fullerene, carbon fiber, etc.
  • carbon-based conductive materials such as carbon black, graphite, carbon nanotubes, fullerene, carbon fiber, etc.
  • metal conductive materials such as gold, silver, copper, and nickel
  • ceramic conductive materials such as tungsten carbide, titanium nitride, zirconium nitride, and titanium carbide can be used.
  • carbon-based conductive materials are preferred because those with small particle sizes can be obtained at low cost.
  • the conductive material is preferably contained in a proportion of 30 parts by weight or more and 70 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
  • any material that can be dissolved or dispersed in the heat-generating paint can be used without any particular restriction.
  • polyimide resin, silicone resin, polyamide resin, polyurethane resin, polyester resin, acrylic resin. , vinyl resin, epoxy resin, etc., or two or more of them can be used.
  • one or more of polyimide resins, silicone resins, and polyamide resins are preferred because they have excellent heat resistance.
  • the binder resin is preferably contained in a proportion of 15 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
  • the heat-generating paint When the heat-generating paint is a water-based paint, it preferably contains water-swellable synthetic mica.
  • Water-swellable synthetic mica absorbs water between its layers and swells.
  • Water-based paints containing swollen mica exhibit thixotropy, in which the viscosity decreases when shear stress is applied, and the viscosity increases when no stress is applied. Therefore, a water-based heat-generating paint containing water-swellable synthetic mica is easy to apply and does not drip easily after coating, making it easy to form a uniform resistance heat-generating coating layer.
  • the water-swellable synthetic mica When water-swellable synthetic mica is contained, the water-swellable synthetic mica is preferably contained in a proportion of 3 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
  • the water-swellable synthetic mica preferably has an average particle diameter (median diameter) of 2 ⁇ m or more and 20 ⁇ m or less, which is derived from the volume distribution measured by a laser diffraction scattering method.
  • average particle diameter is within the above range, dispersibility and coating properties in water-based heat-generating paints are excellent, and a uniform coating film (resistance heat-generating coating layer) is easily formed.
  • This average particle diameter is more preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the heat-generating paint may contain additives such as a dispersant, a leveling agent, an antifoaming agent, and a curing agent within a range that does not impede the effects of the present invention.
  • the solid concentration of the heat-generating paint is adjusted so that it has a viscosity suitable for the application method.
  • the solid content concentration can be, for example, about 5% by weight or more and 50% by weight or less depending on the viscosity determined by the coating method and the like.
  • the resistance heating coating layers 142a and 142b are formed by applying a heating paint onto the base materials 141a and 141b and drying it.
  • the resistance heat generating coating layers 142a and 142b may be formed from a single heat generating paint, or may be formed by separately applying a plurality of types of heat generating paints having different compositions. It may also be a single layer or a plurality of at least partially overcoated layers.
  • the composition, coating thickness, etc. of the resistance heating coating layer provided in each sheet heating element may be the same or different; It is preferable that they be the same because the heat generation characteristics of the bodies will be the same and temperature control will be easier.
  • the resistance heating coating layers 142a, b are connected to conductive parts 143A, B formed of conductive adhesive tape, and lead wires 144A, B connected to the conductive parts 143A, B. Electricity is supplied by connecting the other end of B to an external power source.
  • the resistance heating coating layers 142a and 142b are arranged in parallel, they may be arranged in series, or may be connected to separate external power sources. For example, by arranging them in parallel, the resistance value can be lowered, making it possible to use a lower voltage.Also, even if one of the planar heating elements shorts out, electricity will flow through the other planar heating elements, resulting in heating. can be continued.
  • the conductive parts 143A and 143B can also be formed of conductive paste instead of conductive adhesive tape.
  • a conductive paste it is possible to use one that satisfies the desired properties such as coatability, adhesion, and fixation among those containing conductive particles such as copper and silver.
  • the lead wires 144A and 144B known wires can be used, and for example, metal wires such as copper wire, nickel wire, copper-plated nickel stranded wire, copper-plated aramid fiber, etc. can be used without particular limitation.
  • the method for supplying electricity to the resistive heat generating coating layers 142a and 142b is not limited, and a known method may be used, and electricity may also be supplied wirelessly.
  • the lead wires 144A, B may be led to the outside of the first thermoplastic resin base 11 from different locations, or may be led from the same location. Further, when a temperature sensor such as a thermocouple is sealed in the planar heating element 14, the cord of this sensor may be led to the outside from either a different location or the same location. If a temperature sensor is installed, it is preferably installed within at least one heat transfer material 13a, b.
  • FIG. 6 shows how the silicone tube T is heated by the planar heating device of the present invention. Note that there are no limitations on what can be heated by the planar heating device of the present invention.
  • the planar heating device 101 is the same as the planar heating device 100 of the first embodiment, except that it includes the detachable member 15 (FIG. 6a).
  • the planar heating device 101 can be fixed by the detachable member 15 in a state where the two planar heating elements 14a and 14b are bent to face each other.
  • Examples of the detachable member 15 include a hook-and-loop fastener, a snap button, a magnetic sheet, a hook, a carabiner, and the like.
  • deformable heat transfer materials 13a and 13b are installed separately, and two planar heating elements are placed under the heat transfer materials 13a and 13b within a first thermoplastic resin base. are buried far apart.
  • the planar heating device 101 can efficiently heat even a thin and flexible object to be heated, such as the silicone tube T, by contacting the object over a wide area without deforming the object. can.
  • the sheet heating device 101 is provided with a heat insulating material made of knitted fabric, woven fabric, etc. on its outer circumferential surface during use.
  • a heat insulating material made of knitted fabric, woven fabric, etc. on its outer circumferential surface during use.
  • “Second embodiment” 7 and 8 show a schematic diagram and an exploded view of a planar heating device 200, which is a second embodiment.
  • the same reference numerals are given to the same members as in the planar heating device 100 which is the first embodiment.
  • the heat transfer materials 23a and 23b are made of an elastically deformable material (for example, rubber), and the second thermoplastic resin base 22 has depressions 222a and 222b in advance, and the heat transfer materials 23a, This is the same as the planar heating device 100 of the first embodiment, except that depressions 231a and 231b are formed in advance in b.
  • the second embodiment of the sheet heating device 200 has a recess formed in the surface that contacts the object to be heated, and the object to be heated can be fitted into this recess, so that the object to be heated can be heated by vibration or the like. can be prevented from shifting.
  • FIG. 9 shows a schematic diagram of a planar heating device 300 that is a third embodiment.
  • depressions 322a and 322b are formed to correspond to the silicone tube T that is the object to be heated.
  • a long object to be heated such as a silicone tube, can be heated for a longer time.
  • FIG. 10 shows a schematic diagram of a planar heating device 400, which is a fourth embodiment.
  • substantially circular depressions 422a and 422b are formed.
  • a long object to be heated such as a silicone tube T
  • the recesses 422a and 422b in a double spiral shape, the object to be heated can be heated for a long time, and the number of windings allows the object to be heated. You can also adjust the time.
  • planar heating devices of the first to fourth embodiments are merely examples of embodiments, and the planar heating device of the present invention is not limited thereto.
  • the planar heating device 200 similar to the planar heating device 200, although the second thermoplastic resin base has a recess, a plastically deformable material (for example, clay) can be used as the heat transfer material.
  • the number of planar heating elements is not limited to two, but may be one, or three or more.
  • Example 1 A water-based heat-generating paint (Carbo e-Therm, PUR70-350B.01) was coated on paper (Nippon Himoki Trading Co., Ltd., CTN4, thickness 1 mm) to a thickness of 20 ⁇ m, and air-dried to a thickness of approximately 5 ⁇ m. A coating layer was formed. After drying, two pieces were cut out to a size of 60 mm in length x 40 mm in width. The two cut out samples were placed horizontally at a distance of 3 cm, and copper tape (Teraoka Seisakusho Co., Ltd., No. 8323) was placed on both horizontal sides on the surface coated with the water-based heat-generating paint.
  • PE Polyethylene
  • PE resin sheets having a thickness of 200 ⁇ m were sandwiched from both sides except for the ends of the conductive portion, and heat-pressed at 5 kN or less for 5 minutes at 130° C. to fuse the conductive portion.
  • a 150 mm flame-retardant PE coated lead wire was connected to the end of the copper tape by soldering.
  • thermocouple part of the fluororesin-coated K-type thermocouple wire (product name, etc.) was installed, and the lead wire connection part and the thermocouple cord were sandwiched from both sides between 500 ⁇ m thick PE resin sheets and heated to 130°C. Heat pressing was performed for 5 minutes at a pressure of 5 kN or less to fuse and obtain a first thermoplastic resin base in which a planar heating element was embedded.
  • a PE resin sheet with a thickness of 200 ⁇ m was placed on top of silicone rubber in which two recesses measuring 70 mm long x 45 mm wide x 5 mm deep were lined up horizontally at 1.5 cm intervals, and heat pressed at 130°C for 3 minutes at 5 kN or less. , a second thermoplastic resin substrate having a recessed portion was obtained.
  • This recess is filled with thermally conductive clay (Tran-Q Clay, NOK Corporation) as a heat transfer material, and a thermocouple fused to the first thermoplastic resin base is embedded in one of the recesses.
  • the sheet heating element of the first thermoplastic resin base is placed on top of the first thermoplastic resin substrate, and heat pressing is performed at 130° C. for 3 minutes at 5 kN or less to fuse the thermoplastic resin substrates together to obtain a sheet heating element.
  • Ta The sheet heating element of the first thermoplastic resin base is placed on top of the first thermoplastic resin substrate, and heat pressing is performed at 130° C. for 3 minutes at 5 kN
  • Example 2 The planar heating element obtained in Example 1 was bent with the second thermoplastic resin base inside, and a silicone tube (outer diameter 3 mm, inner diameter 1 mm) was placed between the opposing heat transfer materials. Then, by applying pressure manually to deform the heat transfer material, the tube was brought into close contact with the heat transfer material. Tap water at 20° C. was flowed through the tube at a flow rate of 0.45 ml/min while heating the sheet heating element by adjusting the voltage so that the power consumption was 4.4 W. The length of the heated tube was 50 mm, and the water temperature was measured at a point 20 mm downstream of the planar heating element.
  • “Comparative Example 1” A cord heater (Sakaguchi Dentsu Co., Ltd., silicone cord heater, length 1000 mm) was used. This cord heater was wrapped around a 50 mm long portion of a silicone tube (Kokugo Co., Ltd., polyethylene capillary tube No. 9, outer diameter 3 mm, inner diameter 1 mm) so as to provide the same heating area as the planar heating element of Example 1. . A heating test was conducted in the same manner as in Example 1, and the water temperature was measured.
  • Example 1 Results In the planar heating element of Example 1, the water temperature stabilized in about 25 minutes after starting heating, and the water temperature after 30 minutes was 47.2°C. In the cord heater of Comparative Example 1, the water temperature 30 minutes after the start of heating was 41.5°C, and although the power consumption was 4.4 W, which was the same as that of Example 1, it was lower than that of Example 1. The water temperature was also low. This is presumed to be because the outside diameter of the tube is as small as 3 mm, making it difficult to wrap the cord heater around it, creating a gap between the tube and the cord heater, which prevents heat from being transferred efficiently.

Landscapes

  • Resistance Heating (AREA)

Abstract

The present invention addresses the problem of providing a planar heating device in which the area of contact between a fluid and a heat-generating portion is large. As a solution, a planar heating device is provided which comprises a first thermoplastic resin substrate, a second thermoplastic resin substrate, and a heat-transfer material that is formed between the first and second thermoplastic resin substrates by fusing. A planar heat-generating body having a resistive heat-generating coating layer is embedded in the first thermoplastic resin substrate.

Description

面状加熱装置Planar heating device
 本発明は、面状加熱装置に関する。 The present invention relates to a planar heating device.
 配管等を加熱するために、テープ状ヒータが用いられている。テープ状ヒータは、配管等の外周に巻き付けて使用するものであり、被加熱物とヒータとの間に隙間が存在すると伝熱性が低下してしまう。出願人は、特許文献1において、導電性粉末を被覆した耐熱電気絶縁糸からなる発熱エレメントを有するテープ状ヒータを提案している。特許文献1に記載のテープ状ヒータは、発熱エレメントが糸状であるため可撓性に優れ、剛直な配管等に密着して巻き付けることが容易である。しかし、テープ状ヒータは、被加熱物自体が柔軟な場合には、強く巻き付けると被加熱物が変形してしまうため取付作業が難しく、また、取り付けた後にテープ状ヒータの重みで被加熱物が変形して隙間が生じる場合がある。 Tape-shaped heaters are used to heat pipes, etc. Tape-shaped heaters are used by being wrapped around the outer periphery of piping, etc., and if there is a gap between the object to be heated and the heater, the heat conductivity will be reduced. In Patent Document 1, the applicant has proposed a tape-shaped heater having a heating element made of a heat-resistant electrically insulating thread coated with conductive powder. The tape-shaped heater described in Patent Document 1 has a heat-generating element in the form of a thread, so it has excellent flexibility and can be easily wrapped closely around a rigid pipe or the like. However, with tape-shaped heaters, if the object to be heated itself is flexible, it is difficult to install it because wrapping it too tightly will deform the object. It may deform and create gaps.
 微生物やヒト由来細胞等の培養は、特定の温度域(例えば、ヒト由来細胞では37℃近傍であり、42℃以上となると細胞が破壊される)で行う必要がある。培養には、細胞の生存のために糖、アミノ酸、栄養塩、酸素等を供給する必要があり、新しい培地を供給して古い培養液を排出する培地交換が行われている。この際、供給する培地により温度が変化しないように、供給する培地は、予め培養温度と同等に加温される。特許文献2には、加温空間を有する筐体を有し、この筐体内に送液チューブを配置することで加温する培地加温装置の発明が開示されている。特許文献2に記載の装置は、送液チューブ内の培地を温かい空気で加温するため熱効率が悪く、筐体内に十分な長さの送液チューブを配置する必要があるため、筐体が大型化してしまう。また、培養装置においては、コンタミネーション(培養時の雑菌の混入・増殖による汚染)の発生を防ぐために、多くの部材がシングルユース(1回のみ使用)であり使い捨てられるが、特許文献2に記載の装置は、使い捨てるチューブの量が多く、高コストである。 Cultivation of microorganisms, human-derived cells, etc. needs to be carried out in a specific temperature range (for example, for human-derived cells, it is around 37°C, and if the temperature exceeds 42°C, the cells will be destroyed). Culture requires supply of sugars, amino acids, nutrients, oxygen, etc. for cell survival, and medium exchange is performed to supply new medium and drain old culture solution. At this time, the supplied medium is heated in advance to the same temperature as the culture temperature so that the temperature does not change depending on the supplied medium. Patent Document 2 discloses an invention of a culture medium warming device that has a housing having a heating space and heats the culture medium by arranging a liquid feeding tube inside the housing. The device described in Patent Document 2 has poor thermal efficiency because it heats the culture medium in the liquid feeding tube with warm air, and the housing is large because it is necessary to arrange the liquid feeding tube of sufficient length inside the housing. It turns into In addition, in a culture device, many parts are single-use (used only once) and are disposable in order to prevent contamination (contamination due to contamination and multiplication of bacteria during culture), but as described in Patent Document 2 This device requires a large amount of disposable tubes and is expensive.
特開2010-003464号公報Japanese Patent Application Publication No. 2010-003464 特開2014-113109号公報Japanese Patent Application Publication No. 2014-113109
 被加熱物との密着性に優れた面状加熱装置を提供することを課題とする。 An object of the present invention is to provide a planar heating device that has excellent adhesion to an object to be heated.
 本発明は上記の課題を解消するためのものであり、具体的な手段は以下の通りである。
1.面状発熱体が埋設された第一の熱可塑性樹脂基体と、
 第二の熱可塑性樹脂基体と、
 前記第一及び第二の熱可塑性樹脂基体の間に前記面状発熱体の加熱領域の全面を覆うように封止された変形可能な伝熱材と、
を有し、
 前記面状発熱体が、基材と、該基材上に塗工された抵抗発熱塗工層を備え、
 前記第二の熱可塑性樹脂基体の厚さが、50μm以上400μm以下であり、
 前記基材の厚さが、前記第二の熱可塑性樹脂基体の厚さの2倍以上であることを特徴とする面状加熱装置。
2.前記伝熱材が、ショアE硬度1以上50以下であることを特徴とする1.に記載の面状加熱装置。
3.前記基材が、紙であることを特徴とする1.または2.に記載の面状加熱装置。
4.前記伝熱材が、ゴム、粘土、ゲル、固形油から選ばれる1以上であることを特徴とする1.~3.のいずれかに記載の面状加熱装置。
5.前記第一の熱可塑性樹脂基体に、前記面状発熱体が2枚以上埋設されており、
 前記第一の熱可塑性樹脂基体を外側として、折り曲げ可能であることを特徴とする1.~4.のいずれかに記載の面状加熱装置。
The present invention is intended to solve the above problems, and specific means are as follows.
1. a first thermoplastic resin base in which a planar heating element is embedded;
a second thermoplastic resin base;
a deformable heat transfer material sealed between the first and second thermoplastic resin bases so as to cover the entire heating area of the planar heating element;
has
The planar heating element includes a base material and a resistance heating coating layer coated on the base material,
The thickness of the second thermoplastic resin base is 50 μm or more and 400 μm or less,
A planar heating device characterized in that the thickness of the base material is twice or more the thickness of the second thermoplastic resin base material.
2. 1. The heat transfer material has a Shore E hardness of 1 or more and 50 or less. The planar heating device described in .
3. 1. The base material is paper. or 2. The planar heating device described in .
4. 1. The heat transfer material is one or more selected from rubber, clay, gel, and solid oil. ~3. The planar heating device according to any one of the above.
5. Two or more of the planar heating elements are embedded in the first thermoplastic resin base,
1. The first thermoplastic resin base is bendable with the first thermoplastic resin base on the outside. ~4. The planar heating device according to any one of the above.
 本発明の面状加熱装置は、加熱領域の上に伝熱材を有し、この伝熱材が被加熱物の形状に追従して変形可能であるため、被加熱物に過剰な圧力を加えることなく密着することができる。本発明の面状加熱装置は、被加熱物側に位置する第二の熱可塑性樹脂基体が、第一の熱可塑性樹脂基体よりも柔軟であるため、伝熱材から圧力が加わった際に第二の熱可塑性樹脂基体が大きく変形して被加熱物に密着することができる。本発明の面状加熱装置は、伝熱材が加熱領域の全面を覆っているため、空焚きを防止することができる。本発明の面状加熱装置は、効率的に被加熱物を加温することができるため、例えば、培地を供給するチューブを加温する場合、本発明の面状加熱装置と接触するチューブを短くすることができる。 The planar heating device of the present invention has a heat transfer material above the heating region, and this heat transfer material can be deformed to follow the shape of the object to be heated, so that excessive pressure is applied to the object to be heated. You can get close to it without any problems. In the sheet heating device of the present invention, the second thermoplastic resin base located on the side of the object to be heated is more flexible than the first thermoplastic resin base, so that when pressure is applied from the heat transfer material, the second thermoplastic resin base is more flexible than the first thermoplastic resin base. The second thermoplastic resin base can be greatly deformed and come into close contact with the object to be heated. In the planar heating device of the present invention, since the heat transfer material covers the entire surface of the heating region, dry heating can be prevented. Since the planar heating device of the present invention can efficiently heat an object to be heated, for example, when heating a tube for supplying a culture medium, the tube in contact with the planar heating device of the present invention can be shortened. can do.
本発明の第一の実施態様である面状加熱装置の概略図。1 is a schematic diagram of a planar heating device according to a first embodiment of the present invention. 本発明の第一の実施態様である面状加熱装置の分解図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of a planar heating device according to a first embodiment of the present invention. 本発明の第一の実施態様である面状加熱装置が備える第一の熱可塑性樹脂基体の概略図。FIG. 2 is a schematic diagram of a first thermoplastic resin base included in the planar heating device according to the first embodiment of the present invention. 本発明の第一の実施態様である面状加熱装置が備える第一の熱可塑性樹脂基体の分解図。FIG. 2 is an exploded view of a first thermoplastic resin base included in the planar heating device according to the first embodiment of the present invention. 本発明の第一の実施態様である面状加熱装置が備える面状発熱体の両面からの斜視図。FIG. 2 is a perspective view from both sides of a sheet heating element included in the sheet heating device according to the first embodiment of the present invention. 本発明の面状加熱装置の使用状態を示す図。FIG. 3 is a diagram showing how the sheet heating device of the present invention is used. 本発明の第二の実施態様である面状加熱装置の概略図。FIG. 2 is a schematic diagram of a planar heating device according to a second embodiment of the present invention. 本発明の第二の実施態様である面状加熱装置の分解図。FIG. 2 is an exploded view of a planar heating device according to a second embodiment of the present invention. 本発明の第三の実施態様である面状加熱装置の概略図。FIG. 3 is a schematic diagram of a planar heating device according to a third embodiment of the present invention. 本発明の第四の実施態様である面状加熱装置の概略図。FIG. 3 is a schematic diagram of a planar heating device according to a fourth embodiment of the present invention.
「第一実施態様」
 図1、2に本発明の第一の実施態様である面状加熱装置100の概略図と分解図を示す。
 面状加熱装置100は、2枚の面状発熱体14a、bが埋設された第一の熱可塑性樹脂基体11と、第二の熱可塑性樹脂基体12と、その間に封止された伝熱材13a、bとを有する。第一の熱可塑性樹脂基体11と第二の熱可塑性樹脂基体12は、その間に伝熱材13a、bが封止される空間を形成するように融着されることにより一体化して、面状加熱装置100を形成している。
"First embodiment"
1 and 2 show a schematic diagram and an exploded view of a planar heating device 100, which is a first embodiment of the present invention.
The planar heating device 100 includes a first thermoplastic resin base 11 in which two planar heating elements 14a and 14b are embedded, a second thermoplastic resin base 12, and a heat transfer material sealed between them. 13a, b. The first thermoplastic resin base 11 and the second thermoplastic resin base 12 are integrated by being fused to form a space between which the heat transfer materials 13a and 13b are sealed. A heating device 100 is formed.
「熱可塑性樹脂基体」
 第二の熱可塑性樹脂基体12は、その厚さが50μm以上400μm以下である。第二の熱可塑性樹脂基体12は、厚さがこの範囲内であることにより、変形性(柔軟性)と強度とのバランスに優れ、伝熱材13a、bの変形に追従して変形しやすく、かつ、伸びや破れを防止することができる。第二の熱可塑性樹脂基体12の厚さは、80μm以上であることが好ましく、100μm以上であることがより好ましく、120μm以上であることがさらに好ましく、150μm以上であることがよりさらに好ましく、また、350μm以下であることが好ましく、300μm以下であることがより好ましい。
 なお、本明細書において、第二の熱可塑性樹脂基体12の厚さとは、伝熱材13a、bが封止されている領域における第二の熱可塑性樹脂基体12の厚さを意味する。
"Thermoplastic resin base"
The second thermoplastic resin base 12 has a thickness of 50 μm or more and 400 μm or less. By having a thickness within this range, the second thermoplastic resin base 12 has an excellent balance between deformability (flexibility) and strength, and is easily deformed following the deformation of the heat transfer materials 13a and 13b. , and can prevent stretching and tearing. The thickness of the second thermoplastic resin base 12 is preferably 80 μm or more, more preferably 100 μm or more, even more preferably 120 μm or more, even more preferably 150 μm or more, and , is preferably 350 μm or less, more preferably 300 μm or less.
In addition, in this specification, the thickness of the second thermoplastic resin base 12 means the thickness of the second thermoplastic resin base 12 in the region where the heat transfer materials 13a and 13b are sealed.
 第二の熱可塑性樹脂基体12は、伝熱材13a、bが充填される凹部121a、bが形成されている。凹部121a、bの深さは特に制限されず、被加熱物の大きさ、形状等に応じて調整することができる。凹部121a、bは、真空成形、圧空成形、ホットスタンプ成形等、公知の方法により成形することができる。凹部121a、bの成形の際に、その内面に微細凹凸を形成することが、伝熱材13a、bとの接触面積が大きくなり、熱伝導が向上するため好ましい。微細凹凸としては、界面の展開面積比(Sdr)が、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.2以上であることがさらに好ましい。なお、界面の展開面積比は、レーザー顕微鏡等を用いて、1000μm×1000μm以上の表面プロファイルから算出することができる。 The second thermoplastic resin base 12 has recesses 121a and 121b filled with heat transfer materials 13a and 13b. The depths of the recesses 121a and 121b are not particularly limited and can be adjusted depending on the size, shape, etc. of the object to be heated. The recesses 121a and 121b can be formed by a known method such as vacuum forming, pressure forming, hot stamping, or the like. When forming the recesses 121a and 121b, it is preferable to form fine irregularities on their inner surfaces because the contact area with the heat transfer materials 13a and 13b becomes larger and heat conduction is improved. As for the fine irregularities, the developed area ratio (Sdr) of the interface is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0.2 or more. Note that the developed area ratio of the interface can be calculated from a surface profile of 1000 μm×1000 μm or more using a laser microscope or the like.
 図3、4に、面状加熱装置100が備える第一の熱可塑性樹脂基体11の概略図と分解図を示す。
 第一の熱可塑性樹脂基体11は、第一の熱可塑性樹脂シート111と第二の熱可塑性樹脂シート112とを備え、第二の熱可塑性樹脂基体12から遠い方から、第一の熱可塑性樹脂シート111/面状発熱体14a、b/第二の熱可塑性樹脂シート112がこの順に積層されている。第一及び第二の熱可塑性樹脂シート111、112は、その間に面状発熱体14a、bを挟持した状態で熱融着されることにより一体化して、第一の熱可塑性樹脂基体11を形成している。
3 and 4 show a schematic diagram and an exploded view of the first thermoplastic resin base 11 included in the planar heating device 100.
The first thermoplastic resin base 11 includes a first thermoplastic resin sheet 111 and a second thermoplastic resin sheet 112, and from the one farthest from the second thermoplastic resin base 12, the first thermoplastic resin Sheet 111/planar heating elements 14a, b/second thermoplastic resin sheet 112 are laminated in this order. The first and second thermoplastic resin sheets 111 and 112 are integrated by being thermally fused with the planar heating elements 14a and 14b sandwiched therebetween, thereby forming the first thermoplastic resin base 11. are doing.
 第一、第二の熱可塑性樹脂基体11、12、また、第一の熱可塑性樹脂シート111と第二の熱可塑性樹脂シート112は、いずれも熱可塑性樹脂からなる。熱可塑性樹脂としては特に制限されず、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、アクリル樹脂、フッ素樹脂等を使用することができ、また、互いに熱融着可能な異なる種類の熱可塑性樹脂を組み合わせて用いることもできる。これらの中で、安価でγ線照射による滅菌処理が可能なポリエチレン、または、オートクレーブによる滅菌処理が可能なポリプロピレン、フッ素樹脂を用いることが好ましい。ポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)等を特に制限することなく使用することができる。フッ素樹脂としては、PTFE、PFA、FEP等を特に制限することなく使用することができる。 The first and second thermoplastic resin substrates 11 and 12, as well as the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112, are both made of thermoplastic resin. The thermoplastic resin is not particularly limited, and polyethylene, polypropylene, polystyrene, polyester, polycarbonate, polyamide, polyimide, acrylic resin, fluororesin, etc. can be used, and different types of thermoplastic resins that can be heat-sealed to each other can be used. A combination of resins can also be used. Among these, it is preferable to use polyethylene, which is inexpensive and can be sterilized by γ-ray irradiation, or polypropylene or fluororesin, which can be sterilized by autoclaving. As the polyethylene, high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc. can be used without particular limitation. As the fluororesin, PTFE, PFA, FEP, etc. can be used without particular limitation.
 第一の熱可塑性樹脂基体11において、第一の熱可塑性樹脂シート111と第二の熱可塑性樹脂シート112の厚さは、同じ厚さでもよく、異なる厚さでもよい。また、第一の熱可塑性樹脂シート111と第二の熱可塑性樹脂シート112は、部分ごとに異なる厚さとすることもできる。第一、第二の熱可塑性樹脂シート111、112、特に伝熱材13側に位置する第二の熱可塑性樹脂シート112は、伝熱性の点から薄い方が好ましいが、薄くなりすぎると強度が低下して破れやすくなる。そのため、第一、第二の熱可塑性樹脂シート111、112の厚さは、100μm以上400μm以下であることが好ましく、120μm以上であることがより好ましく、150μm以上であることがさらに好ましく、350μm以下であることがより好ましく、300μm以下であることがさらに好ましい。
 第一、第二の熱可塑性樹脂シート111、112の厚さが、埋設する面状発熱体14a、bと比較して薄すぎると、第一の熱可塑性樹脂基体11が変形等した際に、その内部に挟持された面状発熱体14a、bの端部で融着の剥がれやシートの破れが生じる場合がある。そのため、第一、第二の熱可塑性樹脂シート111、112の厚さは、面状発熱体14a、bが備える基材141a、bの厚さの10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。
 また、第二の熱可塑性樹脂シート112の伝熱材13と接触する領域は、微細凹凸を有することが、伝熱材13a、bとの接触面積が大きくなり、熱伝導性が向上するため好ましい。微細凹凸は、公知のエンボス加工等により形成することができる。微細凹凸としては、界面の展開面積比(Sdr)が、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.2以上であることがさらに好ましい。
In the first thermoplastic resin base 11, the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112 may have the same thickness or different thicknesses. Moreover, the first thermoplastic resin sheet 111 and the second thermoplastic resin sheet 112 can also have different thicknesses for each part. The first and second thermoplastic resin sheets 111, 112, especially the second thermoplastic resin sheet 112 located on the heat transfer material 13 side, are preferably thinner in terms of heat transfer properties, but if they are too thin, the strength will decrease. It becomes weaker and more likely to break. Therefore, the thickness of the first and second thermoplastic resin sheets 111 and 112 is preferably 100 μm or more and 400 μm or less, more preferably 120 μm or more, even more preferably 150 μm or more, and 350 μm or less. It is more preferable that it is, and it is still more preferable that it is 300 μm or less.
If the thickness of the first and second thermoplastic resin sheets 111 and 112 is too thin compared to the buried planar heating elements 14a and 14b, when the first thermoplastic resin base 11 is deformed, etc. Peeling of the fusion bond or tearing of the sheet may occur at the ends of the planar heating elements 14a and 14b sandwiched therein. Therefore, the thickness of the first and second thermoplastic resin sheets 111, 112 is preferably 10% or more, and 15% or more of the thickness of the base materials 141a, b included in the planar heating elements 14a, b. More preferably, it is 20% or more.
Further, it is preferable that the area of the second thermoplastic resin sheet 112 that contacts the heat transfer material 13 has fine irregularities because the contact area with the heat transfer materials 13a and 13b increases and thermal conductivity improves. . The fine irregularities can be formed by known embossing or the like. As for the fine irregularities, the developed area ratio (Sdr) of the interface is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0.2 or more.
「伝熱材」
 伝熱材13a、bは、第一の熱可塑性樹脂基体11と第二の熱可塑性樹脂基体12との間に、第二の熱可塑性樹脂基体12の凹部121a、bに収容された状態で、封止されている。面状発熱体14a、bは、抵抗発熱塗工層142a、bの導電部143A、Bに挟まれた領域が、通電により発熱する加熱領域である。伝熱材13a、bは、この加熱領域の全面を覆うように設けられる。これにより、加熱領域上に常に伝熱材13a、bが存在するため、空焚きとなることを防止することができる。
"Heat transfer material"
The heat transfer materials 13a, b are housed in the recesses 121a, b of the second thermoplastic resin base 12 between the first thermoplastic resin base 11 and the second thermoplastic resin base 12, It is sealed. In the planar heating elements 14a and 14b, the area sandwiched between the conductive parts 143A and 143B of the resistance heating coating layers 142a and 142b is a heating area that generates heat when energized. The heat transfer materials 13a and 13b are provided so as to cover the entire surface of this heating area. Thereby, since the heat transfer materials 13a and 13b are always present on the heating region, dry heating can be prevented.
 伝熱材13a、bは、変形可能な材料であれば特に制限されない。また、その変形は、弾性変形、塑性変形のどちらでもよい。
 伝熱材13a、bは、25℃で厚さ10mmのサンプルをJIS K6253-3に準拠して測定した際のショアE硬度が1以上50以下であることが、変形性に優れるため好ましい。このショアE硬度は、3以上であることがより好ましく、5以上であることがさらに好ましく、また、40以下であることが好ましく、30以下であることがより好ましい。
The heat transfer materials 13a and 13b are not particularly limited as long as they are deformable materials. Further, the deformation may be either elastic deformation or plastic deformation.
It is preferable that the heat transfer materials 13a and 13b have a Shore E hardness of 1 or more and 50 or less when a 10 mm thick sample is measured at 25° C. in accordance with JIS K6253-3, since these materials have excellent deformability. The Shore E hardness is more preferably 3 or more, further preferably 5 or more, and preferably 40 or less, more preferably 30 or less.
 伝熱材13a、bは、熱伝導性の点から、熱伝導率が大きいことが好ましく、熱伝導率が1W/m・K以上であることが好ましく、1.5W/m・K以上であることがより好ましく、2W/m・K以上であることがさらに好ましい。ここで、熱可塑性樹脂の熱伝導率は、0.2~0.4W/m・K程度である。伝熱材13a、bは、第二の熱可塑性樹脂基体12を介して被加熱物に熱を伝えるものであるが、伝熱材13a、bと熱可塑性樹脂基体12の熱伝導率の値の差が大きくなると、内部に熱が籠もってしまうため、伝熱材13a、bの熱伝導率は40W/m・K以下であることが好ましく、30W/m・K以下であることがより好ましく、10W/m・K以下であることがさらに好ましい。
 伝熱材13a、bは、伝熱材の加温に要するエネルギーを少なくするとともに、被加熱物に熱が伝わるまでに要する時間を短くして温度を精密に制御する点から、比熱が小さいことが好ましく、比熱が3J/g・K以下であることが好ましく、2J/g・K以下であることがより好ましく、1J/g・K以下であることがさらに好ましい。
In terms of thermal conductivity, the heat transfer materials 13a and 13b preferably have high thermal conductivity, preferably 1 W/m·K or more, and preferably 1.5 W/m·K or more. is more preferable, and even more preferably 2 W/m·K or more. Here, the thermal conductivity of the thermoplastic resin is about 0.2 to 0.4 W/m·K. The heat transfer materials 13a, b transmit heat to the heated object via the second thermoplastic resin base 12, but the thermal conductivity values of the heat transfer materials 13a, b and the thermoplastic resin base 12 are different. If the difference becomes large, heat will be trapped inside, so the thermal conductivity of the heat transfer materials 13a and 13b is preferably 40 W/m·K or less, more preferably 30 W/m·K or less, More preferably, it is 10 W/m·K or less.
The heat transfer materials 13a and 13b should have low specific heat in order to reduce the energy required to heat the heat transfer materials and to precisely control the temperature by shortening the time required for heat to be transferred to the heated object. The specific heat is preferably 3 J/g·K or less, more preferably 2 J/g·K or less, and even more preferably 1 J/g·K or less.
 伝熱材13a、bは、例えば、ゴム、粘土、ゲル、固形油、液状油、金属微粒子等を用いることができる。固形油とは、25℃で固形状の油であり、例えば、ひまし硬化油(融点80~90℃)、カルナウバワックス(融点80~86℃)、マイクロクリスタリンワックス(融点80~85℃)、12-ヒドロキシステアリン酸(融点76℃)、キャンデリラワックス(融点68~72℃)、蜜蝋(融点63℃)、ワセリン(融点53℃)、白蝋(融点45~55℃)、ラノリン(融点41℃)、パーム油(融点37℃)等が挙げられる。
 伝熱材13a、bが、液体や粉体等の流動性を有する材質である場合、使用時に流動して被加熱物との密着性が低下するおそれがあり、仮に熱可塑性樹脂基体に破れが生じると伝熱材13a、bが流れ出てしまう。また、伝熱材13a、bが液体である場合、高温に加熱されると内部に気泡が生じるおそれがあり、気泡は空焚きの原因となる。そのため、伝熱材13a、bは、使用温度において流動しない固体であることが好ましく、具体的には、ゴム、粘土、ゲル、固形油から選ばれる1種以上であることが好ましい。さらに、温度変化による硬度の変動が小さく、内部に金属微粒子等を練り込むことにより熱伝導率と比熱の値を調整することができ、また、加温しても気泡が発生しにくいため、ゴム、粘土から選ばれる1種以上であることがより好ましい。
For example, rubber, clay, gel, solid oil, liquid oil, metal fine particles, etc. can be used for the heat transfer materials 13a, b. Solid oil is an oil that is solid at 25°C, such as hydrogenated castor oil (melting point 80-90°C), carnauba wax (melting point 80-86°C), microcrystalline wax (melting point 80-85°C). , 12-hydroxystearic acid (melting point 76°C), candelilla wax (melting point 68-72°C), beeswax (melting point 63°C), petrolatum (melting point 53°C), white wax (melting point 45-55°C), lanolin (melting point 41°C), palm oil (melting point 37°C), and the like.
If the heat transfer materials 13a and 13b are fluid materials such as liquids or powders, there is a risk that they will flow during use and reduce their adhesion to the heated object, and if the thermoplastic resin base is torn. If this happens, the heat transfer materials 13a and 13b will flow out. Furthermore, when the heat transfer materials 13a and 13b are liquids, there is a risk that air bubbles will be generated inside when heated to a high temperature, and the air bubbles will cause dry heating. Therefore, the heat transfer materials 13a and 13b are preferably solids that do not flow at the operating temperature, and specifically, preferably one or more selected from rubber, clay, gel, and solid oil. Furthermore, the hardness changes little due to temperature changes, the thermal conductivity and specific heat values can be adjusted by incorporating fine metal particles, etc., and bubbles are less likely to occur even when heated, so rubber It is more preferable that the material is one or more selected from , and clay.
「面状発熱体」
 一実施態様である面状加熱装置100は、2枚の面状発熱体14a、bを有する。図5に、面状発熱体14a、bの表、裏のそれぞれから見た斜視図を示す。
 面状発熱体14a、bは、基材141a、bと基材141a、b上に塗工により形成された抵抗発熱塗工層142a、bとを備え、基材141a、bの厚さが、第二の熱可塑性樹脂基体12の厚さの2倍以上である。抵抗発熱塗工層142a、bは、伝熱材13側となるように設けられている。
 抵抗発熱塗工層142a、bの対向する二辺には、導電部143A、Bが設けられ、導電部143A、Bにはそれぞれリード線144A、Bが接続される。
"Surface heating element"
A planar heating device 100, which is one embodiment, includes two planar heating elements 14a and 14b. FIG. 5 shows perspective views of the sheet heating elements 14a and 14b as seen from the front and back, respectively.
The planar heating elements 14a, b include base materials 141a, b and resistance heating coating layers 142a, b formed by coating on the base materials 141a, b, and the thickness of the base materials 141a, b is as follows. It is at least twice the thickness of the second thermoplastic resin base 12. The resistance heating coating layers 142a and 142b are provided on the heat transfer material 13 side.
Conductive parts 143A, B are provided on two opposing sides of the resistance heating coating layers 142a, b, and lead wires 144A, B are connected to the conductive parts 143A, B, respectively.
・基材
 基材141a、bは、塗工面が絶縁性であり、塗工面上に抵抗発熱塗工層142a、bの均一な塗工層を形成可能である材質であれば特に制限することなく使用することができ、例えば、紙、樹脂フィルム、セラミックス、及びこれらの積層体等を用いることができる。これらの中で、安価であり、塗工液の一部が染み込むことにより、基材141a、bから剥がれにくい抵抗発熱塗工層142a、bを形成することができるため、紙が好ましい。さらに、抵抗発熱塗工層142a、b、および熱可塑性樹脂シート111、112との密着性に優れるため、非塗工紙がより好ましい。
- Base material The base materials 141a, b are not particularly limited as long as the coated surface is insulating and the material is capable of forming a uniform coating layer of the resistance heating coating layers 142a, b on the coated surface. For example, paper, resin films, ceramics, laminates thereof, etc. can be used. Among these, paper is preferable because it is inexpensive and allows the formation of resistance heating coating layers 142a, b that are difficult to peel off from the base materials 141a, b by allowing a portion of the coating liquid to penetrate therein. Furthermore, non-coated paper is more preferable because it has excellent adhesion to the resistance heating coating layers 142a, b and the thermoplastic resin sheets 111, 112.
 基材141a、bの厚さは、第二の熱可塑性樹脂基体12の厚さの2倍以上である。第一の熱可塑性樹脂基体11は、第二の熱可塑性樹脂基体12(100μm以上400μm以下)の2倍以上の厚さを有する基材141a、bがその内部に埋設しているため、第二の熱可塑性樹脂基体12よりも剛直である。これにより、伝熱材13a、bを被加熱物に押し付けながら変形させた場合、より柔軟な第二の熱可塑性樹脂基体12側がより剛直な第一の熱可塑性樹脂基体11側よりも大きく変形するため、第二の熱可塑性樹脂基体12を被加熱物に密着させて効率的に加温することができる。基材141a、bの厚さは、第二の熱可塑性樹脂基体12の厚さの2.5倍以上であることが好ましく、3倍以上であることがより好ましく、4倍以上であることがさらに好ましい。一方、基材141a、bが厚くなりすぎると、第一の熱可塑性樹脂基体11が変形等した際に、基材141a、bの端部で第一及び第二の熱可塑性樹脂シート111、112が剥がれやすくなる。そのため、基材141の厚さは、2mm以下であることが好ましく、1.5mm以下であることがより好ましく、1.2mm以下であることがさらに好ましい。また、基材141の坪量は、400g/m以上800g/m以下であることが好ましい。複数枚の面状発熱体を有する場合、各面状発熱体が備えるそれぞれの基材の材質、厚さ、坪量等は、同一であってもよく、異なっていてもよいが、製造効率の点から同一であることが好ましい。 The thickness of the base materials 141a and 141b is at least twice the thickness of the second thermoplastic resin base 12. The first thermoplastic resin base 11 has base materials 141a and 141b embedded therein that have a thickness twice or more that of the second thermoplastic resin base 12 (100 μm or more and 400 μm or less). It is more rigid than the thermoplastic resin base 12 of . As a result, when the heat transfer materials 13a and 13b are deformed while being pressed against an object to be heated, the more flexible second thermoplastic resin base 12 side deforms more than the more rigid first thermoplastic resin base 11 side. Therefore, the second thermoplastic resin base 12 can be brought into close contact with the object to be heated and heated efficiently. The thickness of the base materials 141a, b is preferably 2.5 times or more, more preferably 3 times or more, and preferably 4 times or more the thickness of the second thermoplastic resin base 12. More preferred. On the other hand, if the base materials 141a, b become too thick, when the first thermoplastic resin base 11 is deformed, the first and second thermoplastic resin sheets 111, 112 will be damaged at the ends of the base materials 141a, b. becomes easy to peel off. Therefore, the thickness of the base material 141 is preferably 2 mm or less, more preferably 1.5 mm or less, and even more preferably 1.2 mm or less. Further, the basis weight of the base material 141 is preferably 400 g/m 2 or more and 800 g/m 2 or less. When having a plurality of planar heating elements, the material, thickness, basis weight, etc. of each base material of each planar heating element may be the same or different; From this point of view, it is preferable that they be the same.
・抵抗発熱塗工層
 抵抗発熱塗工層142a、bは、少なくとも導電材、バインダー樹脂を含有する発熱塗料を基材141a、b上に塗工し、乾燥することにより形成される。発熱塗料は、水系、有機溶媒系のいずれでもよいが、水性塗料であることが、作業者及び環境への負荷が小さく、また火災や爆発の危険性がなく安全性に優れているため好ましい。
- Resistance heating coating layer The resistance heating coating layers 142a and 142b are formed by applying a heating paint containing at least a conductive material and a binder resin onto the base materials 141a and 141b and drying it. The heat-generating paint may be either water-based or organic solvent-based, but water-based paints are preferred because they are less of a burden on workers and the environment, and are superior in safety without the risk of fire or explosion.
 導電材としては、抵抗発熱塗工層に従来使用されているものを特に制限することなく使用することができ、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、炭素繊維等の炭素系導電材、金、銀、銅、ニッケル等の金属系導電材、炭化タングステン、窒化チタン、窒化ジルコニウム、炭化チタン等のセラミック系導電材等の1種または2種以上を利用することができる。これらの中で、粒径が小さいものを安価で入手可能なため、炭素系導電材が好ましい。
 導電材は、抵抗発熱塗工層の固形分100重量部に対して30重量部以上70重量部以下の割合で含有することが好ましい。
As the conductive material, those conventionally used in the resistance heating coating layer can be used without particular restriction, such as carbon-based conductive materials such as carbon black, graphite, carbon nanotubes, fullerene, carbon fiber, etc. One or more of metal conductive materials such as gold, silver, copper, and nickel, and ceramic conductive materials such as tungsten carbide, titanium nitride, zirconium nitride, and titanium carbide can be used. Among these, carbon-based conductive materials are preferred because those with small particle sizes can be obtained at low cost.
The conductive material is preferably contained in a proportion of 30 parts by weight or more and 70 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
 バインダー樹脂としては、発熱塗料中に溶解、または分散が可能なものであれば特に制限することなく使用することができ、例えば、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ビニル系樹脂、エポキシ樹脂等の1種または2種以上を使用することができる。これらの中で、耐熱性に優れるため、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂の1種以上が好ましい。
 バインダー樹脂は、抵抗発熱塗工層の固形分100重量部に対して15重量部以上50重量部以下の割合で含有することが好ましい。
As the binder resin, any material that can be dissolved or dispersed in the heat-generating paint can be used without any particular restriction.For example, polyimide resin, silicone resin, polyamide resin, polyurethane resin, polyester resin, acrylic resin. , vinyl resin, epoxy resin, etc., or two or more of them can be used. Among these, one or more of polyimide resins, silicone resins, and polyamide resins are preferred because they have excellent heat resistance.
The binder resin is preferably contained in a proportion of 15 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
 発熱塗料が水性塗料である場合、水膨潤性合成マイカを含有することが好ましい。水膨潤性合成マイカは、その層間に水を取り込み膨潤する。そして、膨潤したマイカを含む水性塗料は、せん断応力が加わると粘度が低下し、応力が加わらなくなると粘度が高くなるチキソトロピー性を示す。そのため、水膨潤性合成マイカを含む水性発熱塗料は、塗工しやすく、塗工後に液垂れしにくいため、均一な抵抗発熱塗工層を形成することが容易となる。
 水膨潤性合成マイカを含有する場合、水膨潤性合成マイカは、抵抗発熱塗工層の固形分100重量部に対して3重量部以上40重量部以下の割合で含有することが好ましい。
When the heat-generating paint is a water-based paint, it preferably contains water-swellable synthetic mica. Water-swellable synthetic mica absorbs water between its layers and swells. Water-based paints containing swollen mica exhibit thixotropy, in which the viscosity decreases when shear stress is applied, and the viscosity increases when no stress is applied. Therefore, a water-based heat-generating paint containing water-swellable synthetic mica is easy to apply and does not drip easily after coating, making it easy to form a uniform resistance heat-generating coating layer.
When water-swellable synthetic mica is contained, the water-swellable synthetic mica is preferably contained in a proportion of 3 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the solid content of the resistance heating coating layer.
 水膨潤性合成マイカは、レーザー回折散乱法により測定される体積分布から導かれる平均粒子径(メディアン径)が、2μm以上20μm以下であることが好ましい。この平均粒子径が、上記範囲内であると、水性発熱塗料への分散性、塗工性に優れ、また、均一な塗膜(抵抗発熱塗工層)が形成されやすい。この平均粒子径は、2μm以上10μm以下であることがより好ましい。 The water-swellable synthetic mica preferably has an average particle diameter (median diameter) of 2 μm or more and 20 μm or less, which is derived from the volume distribution measured by a laser diffraction scattering method. When the average particle diameter is within the above range, dispersibility and coating properties in water-based heat-generating paints are excellent, and a uniform coating film (resistance heat-generating coating layer) is easily formed. This average particle diameter is more preferably 2 μm or more and 10 μm or less.
 発熱塗料は、本発明の効果を阻害しない範囲内において、分散剤、レベリング剤、消泡剤、硬化剤等の添加剤を配合することができる。
 発熱塗料は、その塗工方法等に適した粘度となるように、固形分濃度を調整する。固形分濃度としては、その塗工方法等により求める粘度等に応じ、例えば、5重量%以上50重量%以下程度とすることができる。
The heat-generating paint may contain additives such as a dispersant, a leveling agent, an antifoaming agent, and a curing agent within a range that does not impede the effects of the present invention.
The solid concentration of the heat-generating paint is adjusted so that it has a viscosity suitable for the application method. The solid content concentration can be, for example, about 5% by weight or more and 50% by weight or less depending on the viscosity determined by the coating method and the like.
 抵抗発熱塗工層142a、bは、発熱塗料を基材141a、b上に塗工し、乾燥させることにより、形成される。抵抗発熱塗工層142a、bは、単一の発熱塗料から形成してもよく、組成の異なる複数種類の発熱塗料を塗り分けて形成してもよい。また、単層または少なくとも部分的に重ね塗りされた複数層であってもよい。複数枚の面状発熱体を有する場合、各面状発熱体が備える抵抗発熱塗工層の組成、塗工厚等は、同一であってもよく、異なっていてもよいが、各面状発熱体の発熱特性が同一となり温度制御が容易となるため、同一であることが好ましい。 The resistance heating coating layers 142a and 142b are formed by applying a heating paint onto the base materials 141a and 141b and drying it. The resistance heat generating coating layers 142a and 142b may be formed from a single heat generating paint, or may be formed by separately applying a plurality of types of heat generating paints having different compositions. It may also be a single layer or a plurality of at least partially overcoated layers. When having a plurality of sheet heating elements, the composition, coating thickness, etc. of the resistance heating coating layer provided in each sheet heating element may be the same or different; It is preferable that they be the same because the heat generation characteristics of the bodies will be the same and temperature control will be easier.
 抵抗発熱塗工層142a、bには、導電性粘着テープにより形成された導電部143A、B、及び導電部143A、Bに接続されるリード線144A、Bが接続されており、リード線144A、Bの他端が外部電源に接続されることにより通電される。抵抗発熱塗工層142a、bは、並列に配列されているが、直列に配列してもよく、また、別々の外部電源に接続してもよい。例えば、並列に配列すると、抵抗値を低くできるため、低電圧とすることができ、また、面状発熱体の一つがショートしても他の面状発熱体には電気が流れるため、加温を継続することができる。直列に配列すると、抵抗値を高くできるため、一般的に用いられている100V電源で加温することができる。
 導電部143A、Bは、導電性粘着テープに代えて導電性ペーストで形成することもできる。導電性ペーストを用いる場合、銅、銀等の導電性粒子を含むもののうち、求める塗工性、密着性、固定性等の性質を満足するものを使用することができる。
 リード線144A、Bとしては、公知のものを用いることができ、例えば、銅線、ニッケル線、銅めっきニッケル撚り線等の金属線、銅メッキアラミド繊維等を特に制限することなく利用することができるが、製造工程における熱融着時の圧力で潰れて平坦となるため、複数本の繊維の集合体であることが好ましい。なお、抵抗発熱塗工層142a、bに通電するための方法は限定されず、公知の方法を用いることができ、無線により通電することもできる。
The resistance heating coating layers 142a, b are connected to conductive parts 143A, B formed of conductive adhesive tape, and lead wires 144A, B connected to the conductive parts 143A, B. Electricity is supplied by connecting the other end of B to an external power source. Although the resistance heating coating layers 142a and 142b are arranged in parallel, they may be arranged in series, or may be connected to separate external power sources. For example, by arranging them in parallel, the resistance value can be lowered, making it possible to use a lower voltage.Also, even if one of the planar heating elements shorts out, electricity will flow through the other planar heating elements, resulting in heating. can be continued. By arranging them in series, the resistance value can be increased, so that they can be heated with a commonly used 100V power supply.
The conductive parts 143A and 143B can also be formed of conductive paste instead of conductive adhesive tape. When using a conductive paste, it is possible to use one that satisfies the desired properties such as coatability, adhesion, and fixation among those containing conductive particles such as copper and silver.
As the lead wires 144A and 144B, known wires can be used, and for example, metal wires such as copper wire, nickel wire, copper-plated nickel stranded wire, copper-plated aramid fiber, etc. can be used without particular limitation. However, it is preferable to use an aggregate of a plurality of fibers because it collapses and becomes flat due to the pressure during heat fusion in the manufacturing process. Note that the method for supplying electricity to the resistive heat generating coating layers 142a and 142b is not limited, and a known method may be used, and electricity may also be supplied wirelessly.
 リード線144A、Bを用いる場合、リード線144A、Bは、第一の熱可塑性樹脂基体11の外部へ異なる場所から導いてもよく、同一の場所から導いてもよい。また、面状発熱体14に熱電対等の温度センサーを封止する場合、このセンサーのコードも異なる場所、同一の場所のどちらから外部へ導いてもよい。温度センサーを設置する場合、少なくとも1つの伝熱材13a、b内に設置することが好ましい。 When using the lead wires 144A, B, the lead wires 144A, B may be led to the outside of the first thermoplastic resin base 11 from different locations, or may be led from the same location. Further, when a temperature sensor such as a thermocouple is sealed in the planar heating element 14, the cord of this sensor may be led to the outside from either a different location or the same location. If a temperature sensor is installed, it is preferably installed within at least one heat transfer material 13a, b.
「面状加熱装置の使用方法」
 図6に、本発明の面状加熱装置により、シリコーンチューブTを加熱する様を示す。なお、本発明の面状加熱装置により加熱されるものは、何ら限定されるものではない。
 面状加熱装置101は、着脱部材15を備える以外は、第一の実施態様である面状加熱装置100と同一である(図6a)。面状加熱装置101は、着脱部材15により、2枚の面状発熱体14a、bを対向するように折り曲げた状態で固定することができる。着脱部材15としては、面ファスナー、スナップボタン、マグネットシート、フック、カラビナ等が挙げられる。
 面状加熱装置101は、変形可能な伝熱材13a、bが離れて設置されており、この伝熱材13a、bの下に2枚の面状発熱体が第一の熱可塑性樹脂基体内に離れて埋設されている。一方の面状発熱体の上にシリコーンチューブTを配置し(図6b)、第一の熱可塑性樹脂基体を外側にして折り曲げることにより、2枚の面状発熱体14a、bを対向させることができる(図6c)。そして、この状態で、伝熱材13a、bをシリコーンチューブTの形状に応じて変形させることにより、シリコーンチューブTと面状加熱装置101との隙間を小さくして密着させることができる(図6d)。これにより、面状加熱装置101は、シリコーンチューブTのように細く柔軟な被加熱物であっても、被加熱物を変形させることなく、広い面積で接触して効率的に加温することができる。
"How to use the sheet heating device"
FIG. 6 shows how the silicone tube T is heated by the planar heating device of the present invention. Note that there are no limitations on what can be heated by the planar heating device of the present invention.
The planar heating device 101 is the same as the planar heating device 100 of the first embodiment, except that it includes the detachable member 15 (FIG. 6a). The planar heating device 101 can be fixed by the detachable member 15 in a state where the two planar heating elements 14a and 14b are bent to face each other. Examples of the detachable member 15 include a hook-and-loop fastener, a snap button, a magnetic sheet, a hook, a carabiner, and the like.
In the planar heating device 101, deformable heat transfer materials 13a and 13b are installed separately, and two planar heating elements are placed under the heat transfer materials 13a and 13b within a first thermoplastic resin base. are buried far apart. By placing the silicone tube T on top of one of the sheet heating elements (FIG. 6b) and bending it with the first thermoplastic resin base on the outside, it is possible to make the two sheet heating elements 14a and 14b face each other. Yes (Figure 6c). In this state, by deforming the heat transfer materials 13a and 13b according to the shape of the silicone tube T, it is possible to reduce the gap between the silicone tube T and the planar heating device 101 and bring them into close contact (Fig. 6d). ). As a result, the planar heating device 101 can efficiently heat even a thin and flexible object to be heated, such as the silicone tube T, by contacting the object over a wide area without deforming the object. can.
 さらに、面状加熱装置101は、外部への放熱を少なくする点から、使用時に、その外周面に編物、織物等からなる断熱材を設置することが好ましい。また、使用時には、面状加熱装置101の荷重により被加熱物が変形しないように、横置きにして使用するか、別物体に懸架等することが好ましい。
 
Further, in order to reduce heat radiation to the outside, it is preferable that the sheet heating device 101 is provided with a heat insulating material made of knitted fabric, woven fabric, etc. on its outer circumferential surface during use. In addition, during use, it is preferable to use it horizontally or to suspend it on another object so that the object to be heated is not deformed by the load of the planar heating device 101.
「第二実施態様」
 図7、8に第二の実施態様である面状加熱装置200の概略図と分解図を示す。なお、第二実施態様である面状加熱装置200において、第一実施態様である面状加熱装置100と同一の部材には同一の符号を付す。
 面状加熱装置200は、伝熱材23a、bが、弾性変形する材質(例えば、ゴム)からなり、第二の熱可塑性樹脂基体22に予め窪み222a、bが、また、伝熱材23a、bに予め窪み231a、bが形成されている以外は、第一の実施態様である面状加熱装置100と同様である。
 第二の実施態様である面状加熱装置200は、被加熱物と接触する面に窪みが形成されており、この窪み部分に被加熱物を嵌め込むことができるため、振動等により被加熱物の位置がずれることを防止することができる。
"Second embodiment"
7 and 8 show a schematic diagram and an exploded view of a planar heating device 200, which is a second embodiment. In addition, in the planar heating device 200 which is a second embodiment, the same reference numerals are given to the same members as in the planar heating device 100 which is the first embodiment.
In the planar heating device 200, the heat transfer materials 23a and 23b are made of an elastically deformable material (for example, rubber), and the second thermoplastic resin base 22 has depressions 222a and 222b in advance, and the heat transfer materials 23a, This is the same as the planar heating device 100 of the first embodiment, except that depressions 231a and 231b are formed in advance in b.
The second embodiment of the sheet heating device 200 has a recess formed in the surface that contacts the object to be heated, and the object to be heated can be fitted into this recess, so that the object to be heated can be heated by vibration or the like. can be prevented from shifting.
「第三実施態様」
 図9に、第三の実施態様である面状加熱装置300の概略図を示す。
 第三の実施態様である面状加熱装置300は、被加熱物であるシリコーンチューブTに対応する窪み322a、bが形成されている。これにより、シリコーンチューブ等の長尺状の被加熱物をより長い時間加熱することができる。
"Third embodiment"
FIG. 9 shows a schematic diagram of a planar heating device 300 that is a third embodiment.
In the third embodiment of the planar heating device 300, depressions 322a and 322b are formed to correspond to the silicone tube T that is the object to be heated. Thereby, a long object to be heated, such as a silicone tube, can be heated for a longer time.
「第四実施態様」
 図10に、第四の実施態様である面状加熱装置400の概略図を示す。
 第四の実施態様である面状加熱装置400は、略円形の窪み422a、bが形成されている。この窪み422a、bの中にシリコーンチューブT等の長尺状の被加熱物を二重渦巻状に配置することにより、被加熱物を長い時間加熱することができるとともに、その巻き回数により、加熱時間を調整することもできる。
“Fourth embodiment”
FIG. 10 shows a schematic diagram of a planar heating device 400, which is a fourth embodiment.
In the fourth embodiment of the planar heating device 400, substantially circular depressions 422a and 422b are formed. By arranging a long object to be heated, such as a silicone tube T, in the recesses 422a and 422b in a double spiral shape, the object to be heated can be heated for a long time, and the number of windings allows the object to be heated. You can also adjust the time.
「他の実施態様」
 第一~第四の実施態様である面状加熱装置は実施態様例にすぎず、本発明の面状加熱装置はこれに限定されない。
 例えば、面状加熱装置200と同様に、第二の熱可塑性樹脂基体が窪みを有しながらも、伝熱材として塑性変形する材質(例えば、粘土)を用いることができる。また、面状発熱体の枚数は2枚に限定されず、1枚であってもよく、3枚以上とすることもできる。
"Other embodiments"
The planar heating devices of the first to fourth embodiments are merely examples of embodiments, and the planar heating device of the present invention is not limited thereto.
For example, similar to the planar heating device 200, although the second thermoplastic resin base has a recess, a plastically deformable material (for example, clay) can be used as the heat transfer material. Further, the number of planar heating elements is not limited to two, but may be one, or three or more.
「実施例1」
 紙(日本紐釦貿易社、CTN4、厚さ1mm)に水性発熱塗料(Carbo e-Therm社、PUR70-350B.01)を20μm厚みとなるように塗工し、自然乾燥させ、厚さ約5μmの塗工層を形成した。乾燥後、縦60mm×横40mmのサイズに2枚切り出した。
 切り出した2枚のサンプルを横方向に3cmの間隔を空けて載置し、水性発熱塗料の塗工面上である横方向の両辺に銅テープ(寺岡製作所社、No.8323)を、2枚のサンプルを繋ぐように5mm幅で貼り付け、さらに、一方の銅テープは紙の裏面を通るように貼り付けて導電部とした。導電部の端部以外を200μm厚みのポリエチレン(以下、PE)樹脂シートを両側から挟みこんで130℃5分5kN以下で熱プレスを行い融着した。
 銅テープの端部に難燃性PE被覆リード線150mmをはんだ付けで接続した。また、フッ素樹脂被覆K型熱電対線(製品名等)の熱電対部を設置し、リード線の接続部と熱電対のコードとを、500μm厚みのPE樹脂シートで両側から挟みこんで130℃5分5kN以下で熱プレスを行い融着し、面状発熱体が埋設された第一の熱可塑性樹脂基体を得た。
"Example 1"
A water-based heat-generating paint (Carbo e-Therm, PUR70-350B.01) was coated on paper (Nippon Himoki Trading Co., Ltd., CTN4, thickness 1 mm) to a thickness of 20 μm, and air-dried to a thickness of approximately 5 μm. A coating layer was formed. After drying, two pieces were cut out to a size of 60 mm in length x 40 mm in width.
The two cut out samples were placed horizontally at a distance of 3 cm, and copper tape (Teraoka Seisakusho Co., Ltd., No. 8323) was placed on both horizontal sides on the surface coated with the water-based heat-generating paint. The samples were attached in a width of 5 mm so as to connect them, and one of the copper tapes was attached so as to pass through the back side of the paper to form a conductive part. Polyethylene (hereinafter referred to as PE) resin sheets having a thickness of 200 μm were sandwiched from both sides except for the ends of the conductive portion, and heat-pressed at 5 kN or less for 5 minutes at 130° C. to fuse the conductive portion.
A 150 mm flame-retardant PE coated lead wire was connected to the end of the copper tape by soldering. In addition, the thermocouple part of the fluororesin-coated K-type thermocouple wire (product name, etc.) was installed, and the lead wire connection part and the thermocouple cord were sandwiched from both sides between 500 μm thick PE resin sheets and heated to 130°C. Heat pressing was performed for 5 minutes at a pressure of 5 kN or less to fuse and obtain a first thermoplastic resin base in which a planar heating element was embedded.
 200μm厚みのPE樹脂シートを、縦70mm×横45mm×深さ5mmの凹部が横方向に1.5cm間隔で2個並んだシリコーンゴムの上に乗せ、130℃3分5kN以下で熱プレスを行い、凹部を有する第二の熱可塑性樹脂基体を得た。
 この凹部に、伝熱材として熱伝導性粘土(NOK社、Tran-Qクレイ)を充填し、うち一方に第一の熱可塑性樹脂基体に融着されている熱電対を埋め込み、熱伝導性粘土上に第一の熱可塑性樹脂基体の面状発熱体が位置するように重ね合わせ、130℃3分5kN以下で熱プレスを行い、熱可塑性樹脂基体同士を融着し、面状発熱体を得た。
A PE resin sheet with a thickness of 200 μm was placed on top of silicone rubber in which two recesses measuring 70 mm long x 45 mm wide x 5 mm deep were lined up horizontally at 1.5 cm intervals, and heat pressed at 130°C for 3 minutes at 5 kN or less. , a second thermoplastic resin substrate having a recessed portion was obtained.
This recess is filled with thermally conductive clay (Tran-Q Clay, NOK Corporation) as a heat transfer material, and a thermocouple fused to the first thermoplastic resin base is embedded in one of the recesses. The sheet heating element of the first thermoplastic resin base is placed on top of the first thermoplastic resin substrate, and heat pressing is performed at 130° C. for 3 minutes at 5 kN or less to fuse the thermoplastic resin substrates together to obtain a sheet heating element. Ta.
・加温試験
 実施例1で得た面状発熱体を第二の熱可塑性樹脂基体を内側にして折り曲げ、対向する伝熱材の間にシリコーン製チューブ(外径3mm、内径1mm)を載置し、さらに手で圧力を加えて伝熱材を変形させることにより、伝熱材にチューブを密着させた。
 面状発熱体に消費電力4.4Wとなるように電圧を調整して加温しながら、チューブに20℃の水道水を流量0.45ml/minで流した。加温されるチューブの長さは50mmであり、面状発熱体の下流20mmの地点で水温を測定した。
・Heating test The planar heating element obtained in Example 1 was bent with the second thermoplastic resin base inside, and a silicone tube (outer diameter 3 mm, inner diameter 1 mm) was placed between the opposing heat transfer materials. Then, by applying pressure manually to deform the heat transfer material, the tube was brought into close contact with the heat transfer material.
Tap water at 20° C. was flowed through the tube at a flow rate of 0.45 ml/min while heating the sheet heating element by adjusting the voltage so that the power consumption was 4.4 W. The length of the heated tube was 50 mm, and the water temperature was measured at a point 20 mm downstream of the planar heating element.
「比較例1」
 コードヒーター(坂口電熱社、シリコーンコードヒーター、長さ1000mm)を用いた。
 このコードヒーターを、実施例1の面状発熱体と同じ加熱領域となるように、シリコーン製チューブ(コクゴ社、ポリエチレン細管No.9、外径3mm、内径1mm)の長さ50mm部分に巻き付けた。
 実施例1と同様にして加温試験を行い、水温を測定した。
“Comparative Example 1”
A cord heater (Sakaguchi Dentsu Co., Ltd., silicone cord heater, length 1000 mm) was used.
This cord heater was wrapped around a 50 mm long portion of a silicone tube (Kokugo Co., Ltd., polyethylene capillary tube No. 9, outer diameter 3 mm, inner diameter 1 mm) so as to provide the same heating area as the planar heating element of Example 1. .
A heating test was conducted in the same manner as in Example 1, and the water temperature was measured.
・結果
 実施例1の面状発熱体は、加温開始してから25分程度で水温が安定し、30分後の水温は47.2℃であった。
 比較例1のコードヒーターは、加温開始してから30分後の水温は41.5℃であり、4.4Wと実施例1と同様の消費電力であるにも関わらず、実施例1よりも水温が低かった。これは、チューブの外径が3mmと細いため、コードヒーターを巻き付ける施工が難しく、チューブとコードヒーターとの間に隙間が生じて、熱が効率的に伝わらないためであると推測される。
-Results In the planar heating element of Example 1, the water temperature stabilized in about 25 minutes after starting heating, and the water temperature after 30 minutes was 47.2°C.
In the cord heater of Comparative Example 1, the water temperature 30 minutes after the start of heating was 41.5°C, and although the power consumption was 4.4 W, which was the same as that of Example 1, it was lower than that of Example 1. The water temperature was also low. This is presumed to be because the outside diameter of the tube is as small as 3 mm, making it difficult to wrap the cord heater around it, creating a gap between the tube and the cord heater, which prevents heat from being transferred efficiently.
面状加熱装置       100,200,300,400
第一の熱可塑性樹脂基体  11
第一の熱可塑性樹脂シート 111
第二の熱可塑性樹脂シート 112

第二の熱可塑性樹脂基体  12,22
凹部           121a、b,221a、b
窪み           222a、b、322a、b、422a、b
伝熱材          13a、b,23a、b
窪み           231a、b

面状発熱体        14a、b
基材           141a、b
抵抗発熱塗工層      142a、b
導電部          143A、B
リード線         144A、B
着脱部材         15

シリコーンチューブ    T
Planar heating device 100,200,300,400
First thermoplastic resin base 11
First thermoplastic resin sheet 111
Second thermoplastic resin sheet 112

Second thermoplastic resin base 12, 22
Recessed portions 121a, b, 221a, b
Hollows 222a, b, 322a, b, 422a, b
Heat transfer material 13a, b, 23a, b
Hollows 231a, b

Planar heating element 14a, b
Base material 141a, b
Resistance heating coating layer 142a, b
Conductive part 143A, B
Lead wire 144A, B
Detachable member 15

Silicone tube T

Claims (5)

  1.  面状発熱体が埋設された第一の熱可塑性樹脂基体と、
     第二の熱可塑性樹脂基体と、
     前記第一及び第二の熱可塑性樹脂基体の間に前記面状発熱体の加熱領域の全面を覆うように封止された変形可能な伝熱材と、
    を有し、
     前記面状発熱体が、基材と、該基材上に塗工された抵抗発熱塗工層を備え、
     前記第二の熱可塑性樹脂基体の厚さが、50μm以上400μm以下であり、
     前記基材の厚さが、前記第二の熱可塑性樹脂基体の厚さの2倍以上であることを特徴とする面状加熱装置。
    a first thermoplastic resin base in which a planar heating element is embedded;
    a second thermoplastic resin base;
    a deformable heat transfer material sealed between the first and second thermoplastic resin bases so as to cover the entire heating area of the planar heating element;
    has
    The planar heating element includes a base material and a resistance heating coating layer coated on the base material,
    The thickness of the second thermoplastic resin base is 50 μm or more and 400 μm or less,
    A planar heating device characterized in that the thickness of the base material is twice or more the thickness of the second thermoplastic resin base material.
  2.  前記伝熱材が、ショアE硬度1以上50以下であることを特徴とする請求項1に記載の面状加熱装置。 The planar heating device according to claim 1, wherein the heat transfer material has a Shore E hardness of 1 or more and 50 or less.
  3.  前記基材が、紙であることを特徴とする請求項1または2に記載の面状加熱装置。 The planar heating device according to claim 1 or 2, wherein the base material is paper.
  4.  前記伝熱材が、ゴム、粘土、ゲル、固形油から選ばれる1以上であることを特徴とする請求項1または2に記載の面状加熱装置。 The planar heating device according to claim 1 or 2, wherein the heat transfer material is one or more selected from rubber, clay, gel, and solid oil.
  5.  前記第一の熱可塑性樹脂基体に、前記面状発熱体が2枚以上埋設されており、
     前記第一の熱可塑性樹脂基体を外側として、折り曲げ可能であることを特徴とする請求項1または2に記載の面状加熱装置。
    Two or more of the planar heating elements are embedded in the first thermoplastic resin base,
    The planar heating device according to claim 1 or 2, wherein the sheet heating device is bendable with the first thermoplastic resin base on the outside.
PCT/JP2023/012082 2022-04-01 2023-03-27 Planar heating device WO2023190281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-062068 2022-04-01
JP2022062068 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023190281A1 true WO2023190281A1 (en) 2023-10-05

Family

ID=88201703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012082 WO2023190281A1 (en) 2022-04-01 2023-03-27 Planar heating device

Country Status (1)

Country Link
WO (1) WO2023190281A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714665A (en) * 1994-04-27 1995-01-17 Agency Of Ind Science & Technol Sheet-like heat generating body
JPH11159685A (en) * 1997-12-01 1999-06-15 Suzuki Shoukan:Kk Piping heater
JP2015069931A (en) * 2013-09-30 2015-04-13 ニチアス株式会社 Jacket heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714665A (en) * 1994-04-27 1995-01-17 Agency Of Ind Science & Technol Sheet-like heat generating body
JPH11159685A (en) * 1997-12-01 1999-06-15 Suzuki Shoukan:Kk Piping heater
JP2015069931A (en) * 2013-09-30 2015-04-13 ニチアス株式会社 Jacket heater

Similar Documents

Publication Publication Date Title
CN105531837B (en) Thermal conductivity adhesive sheet, its manufacturing method and the electronic device using the thermal conductivity adhesive sheet
CN102159499B (en) Carbon nanotube aggregate
CN103210539B (en) There is the battery component of heat radiation and heating function
JP2016110757A (en) Fluororesin film planar heater
CN111149423B (en) Carbon felt heating device and manufacturing method thereof
JP2010010599A (en) Heat diffusion sheet
KR20190018600A (en) Battery Heat-retaining heating element and Manufacturing method thereof using Carbon fiber
JP5661967B1 (en) Fluorine resin film sheet heater
JP5421451B2 (en) Thermal diffusion sheet
CN109511181A (en) Graphene Electric radiant Heating Film of copper conductive electrode and preparation method thereof
WO2023190281A1 (en) Planar heating device
CN109936884A (en) PFA pipe heater with flexible heating device
CN208210413U (en) A kind of thermal conductivity flexible board substrate
KR200492882Y1 (en) Flexible heater for heating device
JP5461244B2 (en) Piping heating equipment
JP4876648B2 (en) Vaporizer
US20220124877A1 (en) Sheet-like heater
JP2023028072A (en) Planar heat generating element
US20110198341A1 (en) Constant watt-density heating film
JP2023096413A (en) Planar fluid heating device
JP5587484B1 (en) Planar heater and method for manufacturing the planar heater
TWI524808B (en) Heater
US9345069B2 (en) Heat generation and exchange devices incorporating a mixture of conductive and dielectric particles
CN215379268U (en) Swift sticky tape that generates heat that uses
JP5894632B2 (en) Heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780291

Country of ref document: EP

Kind code of ref document: A1