WO2023190219A1 - Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object each containing organic metal complex - Google Patents

Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object each containing organic metal complex Download PDF

Info

Publication number
WO2023190219A1
WO2023190219A1 PCT/JP2023/011951 JP2023011951W WO2023190219A1 WO 2023190219 A1 WO2023190219 A1 WO 2023190219A1 JP 2023011951 W JP2023011951 W JP 2023011951W WO 2023190219 A1 WO2023190219 A1 WO 2023190219A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
organometallic complex
organic light
layer
Prior art date
Application number
PCT/JP2023/011951
Other languages
French (fr)
Japanese (ja)
Inventor
紅音 上妻
明 坪山
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023029569A external-priority patent/JP2023152758A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023190219A1 publication Critical patent/WO2023190219A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an organometallic complex, an organic light-emitting element containing the organometallic complex in a light-emitting layer, and further to equipment and devices equipped with the organic light-emitting element.
  • An organic light emitting device is an electronic device that has a first electrode, a second electrode, and an organic compound layer disposed between these electrodes. By injecting electrons and holes into the organic compound layer from these pair of electrodes, excitons of the luminescent organic compound in the organic compound layer are generated, and when the excitons return to the ground state, the organic light emitting device emits light.
  • Organic light emitting devices are also called organic electroluminescent devices or organic EL devices.
  • luminescent organic compounds As luminescent organic compounds, phosphorescent materials that emit light from a triplet excited state exhibit high luminous efficiency in electrical exciton generation within organic light emitting devices, and 2-phenylpyridine is one of them. Ir(ppy) 3 , which emits green light and has as a ligand, is known.
  • vacuum evaporation is used as a vapor deposition method
  • spin coating, printing, and inkjet methods are used as wet methods to form a thin organic compound layer provided between a pair of electrodes.
  • the currently mainstream method is the vapor deposition method.
  • organometallic complexes that exhibit ideal performance in both color purity, which shows an emission spectrum with a small half-width, and thermophysical properties, such as sublimation at a temperature suitable for vapor deposition. It is known that a complex having a dibenzofuran structure exhibits an emission spectrum with a small half-width.
  • Patent Document 1 describes that the sublimation temperature can be lowered by using an organometallic complex A represented by the following formula as an organometallic complex having a lower sublimation temperature than an organometallic complex composed only of a ligand having a dibenzofuran structure. It is possible to reduce this amount and use it in devices.
  • organometallic complex A represented by the following formula as an organometallic complex having a lower sublimation temperature than an organometallic complex composed only of a ligand having a dibenzofuran structure. It is possible to reduce this amount and use it in devices.
  • the present inventors synthesized an organometallic complex B composed only of a ligand L1-1 having a dibenzofuran structure represented by the following formula, and the organometallic complex A disclosed in Patent Document 1, The half width was compared. As a result, the half-value width of organometallic complex A was larger than that of organometallic complex B, and the color purity decreased. Thus, organometallic complex A, which has a lower sublimation temperature than organometallic complex B, has lower color purity than organometallic complex B, and it is difficult to achieve both high color purity and low sublimation temperature.
  • the present invention has been made in view of the above problems, and its purpose is to provide a luminescent organometallic complex that has a low sublimation temperature, is easy to apply to devices, and has high color purity.
  • the present invention provides a device that uses an organometallic complex and has excellent light-emitting characteristics.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a luminescent organometallic complex whose emission spectrum has a narrow half-width and a low sublimation temperature.
  • the first aspect of the present invention is an iridium complex represented by the following general formula [1], in which the energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3 ; It is an organometallic complex characterized in that the energy level of the HOMO of (L1) 3 is shallower than the energy level of the HOMO of Ir(L2) 3 .
  • Ir(L1) m (L2) n [1]
  • L1 and L2 are different bidentate ligands, m and n are 1 or 2, and m+n is 3.
  • a second aspect of the present invention is an organic light emitting device having a first electrode, a second electrode, and an organic compound layer disposed between the first electrode and the second electrode, wherein the organic compound layer is , characterized by having the first organometallic complex of the present invention.
  • a third aspect of the present invention includes a plurality of pixels, and at least one of the plurality of pixels includes the second organic light-emitting element of the present invention and a transistor connected to the organic light-emitting element. This is a distinctive display device.
  • a fourth aspect of the present invention includes an optical section having a plurality of lenses, an image sensor that receives light that has passed through the optical section, and a display section that displays an image captured by the image sensor, and the display section that displays the image.
  • Part is an imaging device characterized by having the second organic light emitting element of the present invention.
  • a fifth aspect of the present invention includes a display section having the second organic light emitting element of the present invention, a casing in which the display section is provided, and a communication section provided in the casing and communicating with the outside.
  • This is an electronic device characterized by having the following features.
  • a sixth aspect of the present invention is a lighting device comprising a light source having the organic light emitting element according to the second aspect of the present invention, and a light diffusion section or an optical filter that transmits light emitted from the light source.
  • a seventh aspect of the present invention is a moving body characterized by having a lamp having the organic light emitting element according to the second aspect of the present invention, and a body provided with the lamp.
  • an organic metal complex having a narrow half-value width of an emission spectrum and a low sublimation temperature is provided, and by having such an organic metal complex in an organic compound layer, an organic light emitting device with excellent light emission characteristics, and further , it is possible to provide equipment and devices equipped with the organic light emitting element.
  • FIG. 2 is an electron distribution diagram of LUMO of conventional organometallic complex A.
  • FIG. 2 is a HOMO electron distribution diagram of a conventional organometallic complex A.
  • FIG. 2 is a LUMO electron distribution diagram of the organometallic complex (1) of the present invention.
  • FIG. 2 is a HOMO electron distribution diagram of the organometallic complex (1) of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an embodiment in which the organic light emitting device of the present invention is used as a pixel.
  • 1 is a schematic cross-sectional view of an example of a configuration in which a transistor is connected to an organic light emitting device of the present invention.
  • 1 is a schematic diagram of an embodiment of a display device of the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of an imaging device of the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of a mobile device of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of the display device of the present invention.
  • FIG. 1 is a schematic diagram illustrating an example of a foldable display device.
  • FIG. 1 is a schematic diagram of an embodiment of a lighting device of the present invention.
  • 1 is a schematic diagram showing an automobile which is an embodiment of a moving object of the present invention.
  • 1 is a schematic diagram of an example of a wearable device including a display device of the present invention.
  • FIG. 3 is a schematic diagram of another example of a wearable device including a display device of the present invention.
  • the energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3
  • the energy level of the HOMO of Ir(L1) 3 is the energy level of the HOMO of Ir(L2) 3 . shallower than
  • L1 is preferably a ligand represented by the following general formula [2].
  • L2 is a ligand represented by the following general formula [3].
  • the organometallic complex of the present invention preferably has L1 represented by formula [2] and L2 represented by formula [3].
  • X 1 to X 10 are carbon atoms or nitrogen atoms.
  • X 11 to X 17 are carbon atoms or nitrogen atoms, and one or more of X 15 to X 17 is a nitrogen atom.
  • R 1 to R 5 are each independently a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, Alkenyl groups, cycloalkenyl groups, heteroalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, carboxylic acid residues, ester groups, nitrile groups, isonitrile groups, sulfanyl groups, sulfonic acid residues, phosphino groups, and these selected from the group consisting of a combination of R 1 to R 3 may further be boronyl groups.
  • mutually adjacent substituents may be bonded to each other to form a ring structure.
  • organometallic complex of the present invention Specific examples of the organometallic complex of the present invention are listed below.
  • FIG. 1 is an electron distribution diagram of LUMO
  • FIG. 2 is an electron distribution diagram of HOMO.
  • Gaussian09*Revision C. which is electronic structure calculation software. 01 was used to perform structural optimization calculations of the ground state. At that time, Density Functional Theory was adopted as the quantum chemical calculation method, and B3PW91 was used as the functional.
  • the basis functions are Gaussian 09, Revision C. In 01, LANL2DZ was used. Gaussian 09, Revision C. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
  • the present inventor believes that the wide distribution of the electrons in the orbits involved in light emission between the two ligands is the reason why the half-width of the emission spectrum of organometallic complex A becomes large. I thought about it. Furthermore, it was considered that the electron distribution was influenced by the relationship between the LUMO and HOMO energy levels of the two ligands L1-1 and L2-1 constituting the organometallic complex A. Therefore, for Ir(L1-1) 3 in which all three ligands are L1-1 and Ir(L2-1) 3 in which all three ligands are L2-1, we calculated the LUMO and HOMO using density functional theory (B3PW91/LANL2DZ). The energy level of was calculated.
  • organometallic complex A was synthesized, and the half width of the emission spectrum was measured and the values are shown in Table 1 below. Note that the HOMO energy level is also called the “HOMO level” or “HOMO”, and the LUMO energy level is also called the “LUMO level” or “LUMO”.
  • the half-width of the emission spectrum of the homoleptic complex in which all the ligands are L1-1 is 34 nm, while the half-width of organometallic complex A is 52 nm, indicating that the color purity has deteriorated. .
  • Ir(L2-1) 3 has a deeper LUMO level and a lower HOMO level. Regarding the position, Ir(L2-1) 3 is shallower.
  • an organometallic complex (1) represented by the following formula was designed. Regarding the ligands L1-2 and L2-2 that constitute this, the LUMO and HOMO energy levels of Ir(L1-2) 3 and Ir(L2-2) 3 were calculated using density functional theory (B3PW91/LANL2DZ). Calculated. Furthermore, the organometallic complex (1) which is Ir(L1-2)(L2-2) 2 was synthesized, and the measured half-width of the emission spectrum is shown in Table 2, and the electron distribution diagram of LUMO is shown in Figure 3. Figure 4 shows the electron distribution diagram of HOMO.
  • the electron distribution diagram of LUMO and HOMO of organometallic complex (1) also shows that electrons are distributed biased towards the ligand L1-2. Furthermore, the half width was also significantly narrower than that of the organometallic complex (A).
  • the LUMO level of Ir(L1) 3 is The HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3 .
  • the chemical structure that satisfies this condition is preferably an organic metal having either a structure in which L1 is represented by the general formula [2] or a structure in which L2 is represented by the general formula [3], more preferably both. It is a complex.
  • X 1 to X 10 are carbon atoms, since the sublimation temperature of the organometallic complex is low. Furthermore, R 1 other than a hydrogen atom is substituted at the 4-position of the pyridine ring, which is preferable in that the roll-off phenomenon is reduced.
  • X 15 is a nitrogen atom
  • X 11 to X 14 and X 16 to Either one is preferable in that the sublimation temperature of the organometallic complex is low.
  • organometallic complexes exemplified above (1), (17), (27), (29), and (36) are more preferred.
  • T5 of Ir(L1) 3 and Ir(L2) 3 is greater than or equal to T5 of the organometallic complex represented by the above formula [1].
  • the organic light emitting device includes at least a pair of electrodes, a first electrode and a second electrode, and an organic compound layer disposed between these electrodes.
  • the organic compound layer may be a single layer or a laminate consisting of multiple layers as long as it has a light emitting layer.
  • the pair of electrodes may be an anode and a cathode.
  • the organic compound layer when the organic compound layer is a laminate consisting of multiple layers, the organic compound layer includes, in addition to the light-emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole/exciton blocking layer, an electron transport layer, and an electron injection layer. It may have layers or the like. Further, the light emitting layer may be a single layer or a laminate consisting of a plurality of layers.
  • the hole transport layer and the electron transport layer are also referred to as charge transport layers.
  • the organic compound layers contains the organometallic complex according to the present embodiment.
  • the organometallic complex according to the present embodiment may be added to any of the above-mentioned hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole/exciton blocking layer, electron transport layer, electron injection layer, etc.
  • it is contained in the light-emitting layer.
  • the transport layers between the first electrode and the light emitting layer can be collectively referred to as a first charge transport layer.
  • the transport layers between the second electrode and the light emitting layer can be collectively referred to as a second charge transport layer. That is, it can be said that the light-emitting layer is in contact with the first charge transport layer and the second charge transport layer.
  • the light emitting layer when the organometallic complex according to this embodiment is included in the light emitting layer, the light emitting layer may be a layer consisting only of the organometallic complex according to this embodiment, or may be a layer consisting only of the organometallic complex according to this embodiment. It may contain a first organic compound different from the organometallic complex. Furthermore, the layer may include the organometallic complex and a second organic compound different from the first organic compound. The first organic compound may have a lowest excited triplet energy that is higher than the lowest excited triplet energy of the organometallic complex according to this embodiment.
  • the second organic compound may have a lowest excited triplet energy that is greater than or equal to the lowest excited triplet energy of the organometallic complex according to this embodiment and less than or equal to the lowest excited triplet energy of the first organic compound.
  • the first organic compound may be a host of the light-emitting layer.
  • the second organic compound may be an assist material.
  • the organometallic complex according to this embodiment may be a guest or a dopant.
  • the host is a compound having the largest mass ratio among the compounds constituting the light emitting layer.
  • the guest or dopant is a compound whose mass ratio is smaller than that of the host among the compounds constituting the light emitting layer, and is a compound responsible for main light emission.
  • the assist material is a compound that has a smaller mass ratio than the host among the compounds constituting the light emitting layer and assists the guest in emitting light. Note that the assist material is also called a second host.
  • the concentration of the guest is preferably 0.01% by mass or more and 20% by mass or less based on the entire light emitting layer, and 0.1% by mass or less. It is more preferable that the amount is 10.0% by mass or more and 10.0% by mass or less.
  • the entire light-emitting layer refers to the total mass of compounds constituting the light-emitting layer.
  • the lowest excited triplet energy of the first charge transport layer is preferably higher than the lowest excited triplet energy of the first organic compound.
  • the lowest excited triplet energy of the second charge transport layer is preferably higher than the lowest excited triplet energy of the first organic compound.
  • the lowest excited triplet energy of the charge transport layer can be estimated by the lowest excited triplet energy of the constituent material of the layer. When the charge transport layer is composed of a plurality of materials, it may be the lowest excited triplet energy of a compound having a large mass ratio.
  • This light-emitting layer may be a single layer or a multi-layer, and by including a light-emitting material having another luminescent color, it is possible to mix the luminescent color with the luminescent color of this embodiment.
  • Multilayer means a state in which a plurality of light emitting layers are stacked.
  • the emission color of the organic light emitting element is not limited to the same hue as the emission color of the single layer. More specifically, it may be white or an intermediate color. In the case of white color, the white color may be obtained by emitting red, blue, and green light from each light emitting layer, or may be obtained by combining complementary emitting colors.
  • the organometallic complex according to this embodiment can also be used as a constituent material of an organic compound layer other than the light emitting layer that constitutes the organic light emitting device according to this embodiment. Specifically, it may be used as a constituent material of an electron transport layer, an electron injection layer, a hole transport layer, a hole injection layer, a hole blocking layer, etc.
  • organic light-emitting device When manufacturing the organic light-emitting device according to this embodiment, conventionally known low-molecular and high-molecular hole-injecting compounds or hole-transporting compounds, host compounds, light-emitting compounds, and electron-injecting compounds may be used as necessary.
  • a compound or an electron transporting compound can be used together. Examples of these compounds are listed below.
  • a material with high hole mobility is preferable so that holes can be easily injected from the anode and the injected holes can be transported to the light emitting layer. Further, in order to reduce deterioration of film quality such as crystallization in an organic light emitting device, a material having a high glass transition temperature is preferable.
  • Examples of low-molecular and high-molecular materials having hole injection and transport properties include triarylamine derivatives, arylcarbazole derivatives, phenylenediamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, and Examples include conductive polymers such as arylamine derivatives, polyvinylcarbazole derivatives, polythiophene derivatives, PEDOT-PSS, and copolymers or mixtures thereof. Furthermore, the hole injection and transport material described above is also suitably used for an electron blocking layer.
  • other light-emitting materials can also be added as the light-emitting materials mainly related to the light-emitting function.
  • Other luminescent materials include fused ring compounds (e.g. fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.), quinacridone derivatives, coumarin derivatives, stilbene derivatives, tris(8-quinolinolate) aluminum organoaluminum complexes such as tris(2-phenylpyridinato)iridium, iridium complexes such as platinum complexes, rhenium complexes, copper complexes, europium complexes, ruthenium complexes, and poly(phenylenevinylene) derivatives, poly(fluorene) derivatives, Examples include polymer derivatives such as poly(phenylene) derivatives.
  • Examples of the light-emitting layer host or light-emission assisting material contained in the light-emitting layer include aromatic hydrocarbon compounds or their derivatives, as well as organic aluminum such as carbazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, triazine derivatives, and tris(8-quinolinolate) aluminum.
  • Examples include polymers such as complexes, organic beryllium complexes, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and polyvinylcarbazole derivatives, and copolymers or mixtures thereof.
  • the electron-transporting material can be arbitrarily selected from those capable of transporting electrons injected from the cathode to the light-emitting layer, and is selected in consideration of the balance with the hole mobility of the hole-transporting material.
  • materials having electron transport properties include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organoaluminum complexes, fused ring compounds (e.g. fluorene derivatives, naphthalene derivatives, chrysene derivatives, anthracene derivatives, etc.).
  • the above-mentioned electron-transporting materials are also suitably used for hole-blocking layers.
  • the electron-injecting material can be arbitrarily selected from materials that can easily inject electrons from the cathode, and is selected in consideration of the balance with the hole-injecting property.
  • the organic compound also includes an n-type dopant and a reducing dopant. Examples include compounds containing alkali metals such as lithium fluoride, lithium complexes such as lithium quinolinol, benzimidazolidene derivatives, imidazolidene derivatives, fulvalene derivatives, and acridine derivatives.
  • the organic light emitting device is provided by forming a first electrode, an organic compound layer, and a second electrode on an insulating layer provided on a substrate.
  • a protective layer, a color filter, etc. may be provided on the second electrode.
  • a flattening layer may be provided between the color filter and the protective layer.
  • the flattening layer can be made of acrylic resin or the like.
  • Either the first electrode or the second electrode may be an anode, and the other may be a cathode.
  • the substrate examples include quartz, glass, silicon wafer, resin, metal, and the like. Furthermore, switching elements such as transistors and wiring may be provided on the substrate, and an insulating layer may be provided thereon.
  • the insulating layer may be made of any material as long as it can form a contact hole to ensure conduction between the anode and the wiring, and can ensure insulation from unconnected wiring.
  • resin such as polyimide, silicon oxide, silicon nitride, etc. can be used.
  • a pair of electrodes can be used as the electrodes.
  • the pair of electrodes may be an anode and a cathode.
  • the electrode with the higher potential is the anode, and the other is the cathode.
  • the electrode that supplies holes to the light emitting layer is the anode, and the electrode that supplies electrons is the cathode.
  • the material for the anode has a work function as large as possible.
  • metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, mixtures containing these metals, alloys of combinations of these metals, tin oxide, zinc oxide, indium oxide, and indium oxide.
  • Metal oxides such as tin (ITO) and indium zinc oxide can be used.
  • Conductive polymers such as polyaniline, polypyrrole, and polythiophene can also be used.
  • the anode may be composed of a single layer or a plurality of layers.
  • chromium, aluminum, silver, titanium, tungsten, molybdenum, an alloy thereof, or a stacked layer thereof can be used.
  • transparent conductive layers of oxides such as indium tin oxide (ITO) and indium zinc oxide can be used, but are not limited thereto.
  • Photolithography technology can be used to form the electrodes.
  • the material for the cathode should preferably have a small work function.
  • alkali metals such as lithium
  • alkaline earth metals such as calcium
  • single metals such as aluminum, titanium, manganese, silver, lead, and chromium
  • an alloy that is a combination of these metals can also be used.
  • magnesium-silver, aluminum-lithium, aluminum-magnesium, silver-copper, zinc-silver, etc. can be used.
  • Metal oxides such as indium tin oxide (ITO) can also be used. These electrode materials may be used alone or in combination of two or more.
  • the cathode may have a single layer structure or a multilayer structure.
  • the ratio of the alloy does not matter as long as the aggregation of silver can be suppressed.
  • the ratio may be 1:1.
  • the cathode may be a top emission element using an oxide conductive layer such as indium tin oxide (ITO), or may be a bottom emission element using a reflective electrode such as aluminum (Al), and is not particularly limited. .
  • the method for forming the cathode is not particularly limited, but it is more preferable to use a direct current or an alternating current sputtering method because the coverage of the film is good and the resistance can be easily lowered.
  • a protective layer may be provided on the second electrode.
  • a passivation film made of silicon nitride or the like may be provided on the second electrode to reduce the infiltration of water or the like into the organic compound layer.
  • the second electrode may be transferred to another chamber without breaking the vacuum, and a silicon nitride film having a thickness of 2 ⁇ m may be formed using a CVD method to form a protective layer.
  • a protective layer may be provided using an atomic deposition method (ALD method) after film formation using a CVD method.
  • a color filter may be provided on the protective layer.
  • a color filter that takes into account the size of the organic light emitting element may be provided on another substrate and bonded to the substrate on which the organic light emitting element is provided, or a color filter may be formed using photolithography technology on the protective layer shown above. , the color filter may be patterned.
  • the color filter may be made of polymer.
  • a flattening layer may be provided between the color filter and the protective layer.
  • the planarization layer may be composed of an organic compound, and may be a low molecule or a polymer, but preferably a polymer.
  • the planarization layer may be provided above and below the color filter, and its constituent materials may be the same or different. Specific examples include polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, urea resin, and the like.
  • a counter substrate may be provided on the planarization layer.
  • the counter substrate is called a counter substrate because it is provided at a position corresponding to the above-described substrate.
  • the constituent material of the counter substrate may be the same as that of the above-described substrate.
  • the counter substrate may be the second substrate when the above-mentioned substrate is the first substrate.
  • organic compound layers (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) constituting the organic light emitting device according to this embodiment are formed by the method shown below. It is formed.
  • the method for forming the organic compound layer constituting the organic light emitting device according to this embodiment is not particularly limited, but a dry process or a wet process can be used.
  • dry processes such as vacuum evaporation, ionization evaporation, sputtering, and plasma can be used.
  • wet processes include dissolving in a suitable solvent and applying known coating methods (for example, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dipping). coating method, spray coating method, screen printing method, flexo printing method, offset printing method, inkjet printing method, capillary coating method, nozzle coating method, etc.) can be used.
  • vacuum evaporation, ionization evaporation, inkjet printing, nozzle coating, and the like are suitable for manufacturing large-area organic light-emitting devices.
  • each layer in the organic light emitting device is usually preferably 1 nm to 10 ⁇ m.
  • the thickness of the light emitting layer of the organic compound layer is preferably 10 nm to 100 nm in order to obtain effective light emitting characteristics.
  • the organic light emitting device may be used as a light emitting device by connecting a pixel circuit to the organic light emitting device.
  • a pixel circuit may be of an active matrix type in which light emission is controlled independently of the first organic light emitting element and the second organic light emitting element. Active matrix type circuits may be voltage programming or current programming.
  • the drive circuit has a pixel circuit for each pixel.
  • the pixel circuit includes an organic light-emitting element, a transistor that controls the luminance of the organic light-emitting element, a transistor that controls the timing of light emission, a capacitor that maintains the gate voltage of the transistor that controls the luminance, and a capacitor that is connected to GND without going through the organic light-emitting element. It may also include a transistor for connection.
  • the light emitting device has a display area and a peripheral area arranged around the display area.
  • the display area has a pixel circuit
  • the peripheral area has a display control circuit.
  • the mobility of the transistors forming the pixel circuit may be lower than the mobility of the transistors forming the display control circuit.
  • the slope of the current-voltage characteristics of the transistors forming the pixel circuit may be smaller than the slope of the current-voltage characteristics of the transistors forming the display control circuit.
  • the slope of the current-voltage characteristic can be measured by the so-called Vg-Ig characteristic.
  • the transistors constituting the pixel circuit are transistors connected to an organic light emitting element, such as a first organic light emitting element.
  • a light emitting device including an organic light emitting element may have a plurality of pixels. Each pixel has subpixels that emit different colors. For example, each subpixel may have an RGB emission color.
  • a region of a pixel also called a pixel aperture, emits light.
  • the pixel aperture may be less than or equal to 15 ⁇ m, and may be greater than or equal to 5 ⁇ m. More specifically, it may be 11 ⁇ m, 9.5 ⁇ m, 7.4 ⁇ m, 6.4 ⁇ m, etc. Further, the distance between subpixels may be 10 ⁇ m or less, and specifically, it may be 8 ⁇ m, 7.4 ⁇ m, or 6.4 ⁇ m.
  • Pixels can take a known arrangement form in a plan view. For example, it may be a stripe arrangement, a delta arrangement, a pentile arrangement, or a Bayer arrangement.
  • the shape of the subpixel in a plan view may take any known shape. For example, a rectangle, a square such as a diamond, a hexagon, etc. Of course, it is not an exact figure, but if it has a shape close to a rectangle, it is included in the rectangle.
  • the shape of the subpixel and the pixel arrangement can be used in combination.
  • the organic light emitting device according to this embodiment can be used as a component of a display device or a lighting device.
  • Other uses include exposure light sources for electrophotographic image forming apparatuses, backlights for liquid crystal display devices, and light emitting devices having a white light source with a color filter.
  • the display device has an image input section that inputs image information from an area CCD, linear CCD, memory card, etc., has an information processing section that processes the input information, and displays the input image on the display section.
  • An image information processing device may also be used.
  • the display section of the imaging device or the inkjet printer may have a touch panel function.
  • the driving method for this touch panel function is not particularly limited, and may be an infrared method, a capacitance method, a resistive film method, or an electromagnetic induction method.
  • the display device may be used as a display section of a multi-function printer.
  • FIG. 5A is a schematic cross-sectional view of an example embodiment in which the organic light emitting device 8 according to this embodiment is used as a pixel.
  • the pixel has sub-pixels 10.
  • the subpixels are divided into 10R, 10G, and 10B depending on their light emission.
  • the emitted light color may be distinguished by the wavelength emitted from the light-emitting layer, or the light emitted from the sub-pixel may be selectively transmitted or color-converted using a color filter or the like.
  • Each subpixel includes a reflective electrode 2 as a first electrode on an interlayer insulating layer 1, an insulating layer 3 covering an end of the reflective electrode 2, an organic compound layer 4 covering the reflective electrode 2 and the insulating layer 3, and a transparent electrode. 5, a protective layer 6, and a color filter 7.
  • the interlayer insulating layer 1 may have a transistor or a capacitive element arranged thereunder or inside it.
  • the transistor and the reflective electrode 2 may be electrically connected via a contact hole (not shown) or the like.
  • the insulating layer 3 is also called a bank or a pixel isolation film. It covers the end of the reflective electrode 2 and is arranged to surround the reflective electrode 2. A portion of the reflective electrode 2 where the insulating layer 3 is not provided contacts the organic compound layer 4 and becomes a light emitting region.
  • the organic compound layer 4 has a light-emitting layer and, if necessary, a hole injection layer, a hole transport layer, an electron transport layer, and the like.
  • the transparent electrode 5 may be a semi-transparent electrode.
  • the protective layer 6 reduces the penetration of moisture into the organic compound layer 4 .
  • the protective layer 6 is illustrated as having a single layer, it may have multiple layers. Each layer may include an inorganic compound layer and an organic compound layer.
  • the color filter 7 is divided into 7R, 7G, and 7B depending on its color.
  • the color filter 7 may be formed on a planarization film (not shown). Further, a resin protective layer (not shown) may be provided on the color filter 7. Further, the color filter 7 may be formed on the protective layer 6. Alternatively, it may be provided on a counter substrate such as a glass substrate and then bonded together.
  • FIG. 5B is a schematic cross-sectional view of an example of a configuration in which a transistor is connected to the organic light-emitting element according to this embodiment.
  • a transistor is one of active elements (switching elements).
  • the transistor may be a thin film transistor (TFT).
  • a substrate 11 made of glass, silicon, etc. and an insulating layer 12 are provided on top of the substrate 11.
  • a transistor 18 is arranged on the insulating layer 12, and a gate electrode 13, a gate insulating film 14, and a semiconductor layer 15 of the transistor 18 are arranged.
  • the transistor 18 also includes a semiconductor layer 15, a drain electrode 16, and a source electrode 17.
  • An insulating film 19 is provided above the transistor 18 .
  • An anode 21 and a source electrode 17 forming an organic light emitting element 26 are connected through a contact hole 20 provided in an insulating film 19 .
  • the method of electrical connection between the electrodes (anode 21, cathode 23) included in the organic light emitting element 26 and the electrodes (source electrode 17, drain electrode 16) included in the transistor 18 is limited to the mode shown in FIG. 5B. It's not a thing. That is, it is sufficient that either the anode 21 or the cathode 23 is electrically connected to either the source electrode 17 or the drain electrode 16 of the transistor 18.
  • the organic compound layer 22 is illustrated as one layer in FIG. 5B, the organic compound layer 22 may be a plurality of layers.
  • a first protective layer 24 and a second protective layer 25 are provided on the cathode 23 to reduce deterioration of the organic light emitting element 26.
  • the transistor 18 is used as a switching element, other switching elements may be used instead.
  • the transistor 18 is not limited to a transistor using a single crystal silicon wafer, but may be a thin film transistor having an active layer on an insulating surface of a substrate. Examples of the active layer include non-single-crystal silicon such as single-crystal silicon, amorphous silicon, and microcrystalline silicon, and non-single-crystal oxide semiconductors such as indium zinc oxide and indium gallium zinc oxide.
  • the transistor 18 in FIG. 5B may be formed within a substrate such as a Si substrate.
  • a substrate such as a Si substrate.
  • formed in a substrate means that the transistor is fabricated by processing the substrate itself, such as a Si substrate.
  • having a transistor within the substrate can also be considered to mean that the substrate and the transistor are integrally formed.
  • the luminance of the organic light-emitting device is controlled by a transistor, which is an example of a switching element, and by providing the organic light-emitting devices in multiple planes, images can be displayed with the luminance of each device.
  • the switching element according to this embodiment is not limited to a thin film transistor, but may be a transistor formed of low-temperature polysilicon, or an active matrix driver formed on a substrate such as a Si substrate. On the substrate can also be referred to as inside the substrate. Whether a transistor is provided within the substrate or a thin film transistor is used is selected depending on the size of the display section. For example, if the size is about 0.5 inch, it is preferable to provide the organic light emitting element on the Si substrate.
  • FIG. 6 is a schematic diagram showing the configuration of the display device according to this embodiment.
  • the display device 1000 includes a touch panel 1003, a display panel 1005, a frame 1006, a circuit board 1007, and a battery 1008 between an upper cover 1001 and a lower cover 1009.
  • Flexible printed circuits (FPC) 1002 and 1004 are connected to the touch panel 1003 and the display panel 1005.
  • a transistor is printed on the circuit board 1007.
  • the battery 1008 may not be provided unless the display device is a portable device, or may be provided at a different location even if the display device is a portable device.
  • the display device may include color filters having red, green, and blue.
  • the red, green, and blue colors may be arranged in a delta arrangement, a stripe arrangement, or a mosaic arrangement.
  • the display device may be used as a display section of a mobile terminal. In that case, it may have both a display function and an operation function.
  • mobile terminals include mobile phones such as smartphones, tablets, head-mounted displays, and the like.
  • the display device may be used as a display section of an imaging device that has an optical section that has a plurality of lenses and an image sensor that receives light that has passed through the optical section.
  • the imaging device may include a display unit that displays information acquired by the imaging device.
  • the display section may be a display section exposed to the outside of the imaging device, or a display section disposed within the viewfinder.
  • the imaging device may be a digital camera or a digital video camera.
  • the imaging device can also be called a photoelectric conversion device.
  • FIG. 7A is a schematic diagram showing an example of an imaging device according to this embodiment.
  • the imaging device 1100 includes a viewfinder 1101, a rear display 1102, an operation section 1103, and a housing 1104.
  • the viewfinder 1101 has a display device according to this embodiment.
  • the display device may display not only the image to be captured, but also environmental information, imaging instructions, and the like.
  • the environmental information may include the intensity of external light, the direction of external light, the moving speed of the subject, the possibility that the subject will be blocked by a shielding object, and the like.
  • the optimal timing for imaging is only a short time, it is better to display information as early as possible. Therefore, it is preferable to use a display device using the organic light emitting device of this embodiment. This is because organic light emitting devices have a fast response speed. Display devices using organic light-emitting elements can be used more favorably than these devices and liquid crystal display devices, which require high display speed.
  • the imaging device 1100 has an optical section (not shown).
  • the optical section has a plurality of lenses and forms an image on an image sensor housed in the housing 1104.
  • the focus of the plural lenses can be adjusted by adjusting their relative positions. This operation can also be performed automatically.
  • FIG. 7B is a schematic diagram showing an example of an electronic device according to this embodiment.
  • Electronic device 1200 includes a display section 1201, an operation section 1202, and a housing 1203.
  • the housing 1203 may include a circuit, a printed circuit board including the circuit, a battery, and a communication unit.
  • the operation unit 1202 may be a button or a touch panel type reaction unit.
  • the operation unit may be a biometric recognition unit that recognizes a fingerprint and performs unlocking and the like.
  • An electronic device having a communication section can also be called a communication device.
  • the electronic device may further have a camera function by including a lens and an image sensor. An image captured by the camera function is displayed on the display section. Examples of electronic devices include smartphones, notebook computers, and the like.
  • FIG. 8A and 8B are schematic diagrams showing other examples of the display device according to this embodiment.
  • FIG. 8A shows a display device such as a television monitor or a PC monitor.
  • the display device 1300 has a frame 1301 and a display portion 1302.
  • the display portion 1302 uses the light emitting device according to this embodiment.
  • the display device in FIG. 8A has a frame 1301 and a base 1303 that supports a display portion 1302.
  • the base 1303 is not limited to the form shown in FIG. 8A.
  • the lower side of the picture frame 1301 may also serve as a base.
  • the frame 1301 and the display portion 1302 may be curved.
  • the radius of curvature may be greater than or equal to 5000 mm and less than or equal to 6000 mm.
  • FIG. 8B is a schematic diagram showing another example of the display device according to this embodiment.
  • the display device 1310 in FIG. 8B is configured to be foldable, and is a so-called foldable display device.
  • the display device 1310 includes a first display section 1311, a second display section 1312, a housing 1313, and a bending point 1314.
  • the first display section 1311 and the second display section 1312 have display devices according to this embodiment.
  • the first display section 1311 and the second display section 1312 may be one seamless display device.
  • the first display section 1311 and the second display section 1312 can be separated at a bending point.
  • the first display section 1311 and the second display section 1312 may each display different images, or the first display section 1311 and the second display section 1312 may display one image.
  • FIG. 9A is a schematic diagram showing an example of the lighting device according to the present embodiment.
  • the lighting device 1400 may include a housing 1401, a light source 1402, a circuit board 1403, an optical filter 1404, and a light diffusing section 1405.
  • the light source includes the organic light emitting device according to this embodiment.
  • the optical filter 1404 may be a filter that improves the color rendering properties of the light source.
  • the light diffusing unit 1405 can effectively diffuse the light from a light source, such as when lighting up, and can deliver the light to a wide range.
  • the optical filter 1404 and the light diffusing section 1405 may be provided on the light emission side of the illumination. If necessary, a cover may be provided on the outermost side.
  • the lighting device 1400 is, for example, a device that illuminates a room.
  • the lighting device 1400 may emit white, neutral white, or any other color from blue to red. It may have a dimming circuit for dimming them.
  • the lighting device 1400 may include the organic light emitting device of the present invention and a power supply circuit connected thereto.
  • the power supply circuit is a circuit that converts alternating current voltage to direct current voltage. Further, white has a color temperature of 4200K, and neutral white has a color temperature of 5000K.
  • the lighting device 1400 may have a color filter.
  • the lighting device may include a heat radiating section.
  • the heat radiation part radiates heat within the device to the outside of the device, and may be made of metal with high specific heat, liquid silicone, or the like.
  • FIG. 9B is a schematic diagram of an automobile that is an example of a moving object according to the present embodiment.
  • the automobile has a tail lamp, which is an example of a lamp.
  • the automobile 1500 may have a tail lamp 1501, and the tail lamp may be turned on when a brake operation or the like is performed.
  • the tail lamp 1501 includes an organic light emitting element according to this embodiment.
  • the tail lamp may include a protection member that protects the organic light emitting element.
  • the protective member may be made of any material as long as it has a certain degree of strength and is transparent, but it is preferably made of polycarbonate or the like. Furandicarboxylic acid derivatives, acrylonitrile derivatives, etc. may be mixed with polycarbonate.
  • the automobile 1500 may have a vehicle body 1503 and a window 1502 attached to it.
  • the window may be a transparent display as long as it is not a window for checking the front and rear of the vehicle.
  • the transparent display includes an organic light emitting device according to this embodiment. In this case, constituent materials such as electrodes included in the organic light emitting element are made of transparent members.
  • the moving object according to this embodiment may be a ship, an aircraft, a drone, etc.
  • the moving body may include a body and a lamp provided on the body.
  • the light may emit light to indicate the position of the aircraft.
  • the lamp includes the organic light emitting device according to this embodiment.
  • the display device can be applied to systems that can be worn as wearable devices, such as smart glasses, HMDs, and smart contacts.
  • An imaging display device used in such an application example includes an imaging device capable of photoelectrically converting visible light and a display device capable of emitting visible light.
  • FIG. 10A illustrates eyeglasses 1600 (smart glasses) according to one application example.
  • An imaging device 1602 such as a CMOS sensor or a SPAD is provided on the front side of the lens 1601 of the glasses 1600. Further, the display device of each embodiment described above is provided on the back side of the lens 1601.
  • Glasses 1600 further include a control device 1603.
  • the control device 1603 functions as a power source that supplies power to the imaging device 1602 and the display device according to each embodiment. Further, the control device 1603 controls the operations of the imaging device 1602 and the display device.
  • An optical system for condensing light onto an imaging device 1602 is formed in the lens 1601.
  • FIG. 10B illustrates glasses 1610 (smart glasses) according to another application example.
  • the glasses 1610 include a control device 1612, and the control device 1612 is equipped with an imaging device corresponding to the imaging device 1602 and a display device.
  • the lens 1611 is formed with an optical system for projecting light emitted from the imaging device in the control device 1612 and the display device, and an image is projected onto the lens 1611.
  • the control device 1612 functions as a power source that supplies power to the imaging device and the display device, and controls the operation of the imaging device and the display device.
  • the control device 1612 may include a line-of-sight detection unit that detects the wearer's line of sight. Infrared rays may be used to detect line of sight.
  • the infrared light emitting unit emits infrared light to the eyeballs of the user who is gazing at the displayed image.
  • a captured image of the eyeball is obtained by detecting the reflected light of the emitted infrared light from the eyeball by an imaging section having a light receiving element.
  • the user's line of sight with respect to the displayed image is detected from the captured image of the eyeball obtained by infrared light imaging.
  • Any known method can be applied to line of sight detection using a captured image of the eyeball.
  • a line of sight detection method based on a Purkinje image by reflection of irradiated light on the cornea can be used.
  • line of sight detection processing is performed based on the pupillary corneal reflex method.
  • the user's line of sight is detected by calculating a line of sight vector representing the direction (rotation angle) of the eyeball based on the pupil image and Purkinje image included in the captured image of the eyeball. Ru.
  • a display device may include an imaging device having a light receiving element, and may control a display image of the display device based on user's line-of-sight information from the imaging device.
  • a first viewing area that the user gazes at and a second viewing area other than the first viewing area are determined based on the line-of-sight information.
  • the first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device and may be received.
  • the display resolution of the first viewing area may be controlled to be higher than the display resolution of the second viewing area. That is, the resolution of the second viewing area may be lower than that of the first viewing area.
  • the display area has a first display area and a second display area different from the first display area, and based on line-of-sight information, priority is determined from the first display area and the second display area. is determined to be a high area.
  • the first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device and may be received.
  • the resolution of areas with high priority may be controlled to be higher than the resolution of areas other than the areas with high priority. In other words, the resolution of an area with a relatively low priority may be lowered.
  • AI may be used to determine the first viewing area and the area with high priority.
  • AI is a model configured to estimate the angle of line of sight and the distance to the object in front of the line of sight from the image of the eyeball, using the image of the eyeball and the direction in which the eyeball was actually looking in the image as training data.
  • the AI program may be included in a display device, an imaging device, or an external device. If the external device has it, it is transmitted to the display device via communication.
  • display control When display control is performed based on visual detection, it can be preferably applied to smart glasses that further include an imaging device that captures images of the outside. Smart glasses can display captured external information in real time.
  • X 1 to X 10 are carbon atoms or nitrogen atoms.
  • R 1 to R 3 are each independently a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, Alkenyl group, cycloalkenyl group, heteroalkenyl group, alkynyl group, aryl group, heteroaryl group, acyl group, carboxylic acid residue, ester group, nitrile group, isonitrile group, sulfanyl group, sulfonic acid residue, phosphino group, boronyl and combinations thereof. Furthermore, R 1 and R 2 may be bonded to each other to form a ring structure.
  • X 11 to X 17 are carbon atoms or nitrogen atoms, and any one or more of X 15 to X 17 is a nitrogen atom.
  • R 4 and R 5 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, From alkenyl groups, cycloalkenyl groups, heteroalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, carboxylic acid residues, ester groups, nitrile groups, isonitrile groups, sulfanyl groups, sulfonic acid residues, and combinations thereof. Adjacent substituents may be bonded to each other to form a ring structure.
  • An organic light emitting device comprising a first electrode, a second electrode, and an organic compound layer disposed between the first electrode and the second electrode, 10.
  • the organic compound layer is a light emitting layer and further includes a first organic compound different from the organometallic complex, 11.
  • the light-emitting layer further includes a second organic compound different from the organometallic complex and the first organic compound, and the lowest excited triplet energy of the second organic compound is equal to the lowest excited triplet energy of the organometallic complex.
  • the organic compound layer includes a first charge transport layer disposed between the first electrode and the light emitting layer, and a second charge transport layer disposed between the second electrode and the light emitting layer. and further has 13.
  • the lowest excited triplet energy of the first charge transport layer is greater than the lowest excited triplet energy of the first organic compound, and the lowest excited triplet energy of the second charge transport layer is higher than the lowest excited triplet energy of the first organic compound.
  • a display comprising a plurality of pixels, at least one of the plurality of pixels including the organic light-emitting element according to any one of Structures 10 to 14, and a transistor connected to the organic light-emitting element.
  • Device comprising a plurality of pixels, at least one of the plurality of pixels including the organic light-emitting element according to any one of Structures 10 to 14, and a transistor connected to the organic light-emitting element.
  • a display unit including the organic light emitting element according to any one of configurations 10 to 14, a casing in which the display unit is provided, and a communication unit provided in the casing and communicating with the outside.
  • An electronic device featuring:
  • An illumination device comprising: a light source having the organic light emitting element according to any one of configurations 10 to 14; and a light diffusion section or an optical filter that transmits light emitted from the light source.
  • a mobile object comprising: a lamp having the organic light emitting element according to any one of Structures 10 to 14; and a body provided with the lamp.
  • Organometallic complex (1) was synthesized from ligand L1 and intermediate (2) according to the following reaction formula.
  • Organometallic complexes (13), (14), (16), organometallic complexes (17), (27), (29), (36), (37) were prepared in the same manner as the above organometallic complex (1). , (47), (63), and (70) were synthesized. Moreover, comparative compounds (1) to (10) are shown below.
  • Tables 3 and 4 show the 5% weight loss temperature (T5) in the thermogravimetric analysis (TG) curve of each organometallic complex.
  • Table 3 shows the energy levels of the LUMO and HOMO of Ir(L1) 3 , which is composed only of the ligand L1, and Ir(L2) 3 , which is composed only of the ligand L2, in each organometallic complex. , shown in Table 4.
  • the column “L1” indicates the energy level of Ir(L1) 3
  • the column “L2" indicates the energy level of Ir(L2) 3 .
  • the LUMO level of Ir(L1) 3 is deeper than the LUMO level of Ir(L2) 3
  • the HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3.
  • Those that satisfy the relationship conditions are marked as “ ⁇ ”, and those that are not satisfied are marked as “ ⁇ ”.
  • Tables 3 and 4 show the maximum emission wavelength and half-value width when the emission spectrum was measured in toluene.
  • organometallic complexes (1) and (13) are composed of two types of ligands, rather than comparative compound (1), which is composed of the same ligand.
  • (14), (16), (17), (27), (29), (36), (37), (47), (63), (70) and comparative compounds (2), (3 ), (4), (6), (7), (8), (9), and (10) have a lower 5% weight loss temperature (T5) in the thermogravimetric analysis (TG) curve.
  • the LUMO level of Ir(L1) 3 is deeper than the LUMO level of Ir(L2) 3
  • the HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3.
  • Organometallic complexes (1), (13), (14), (16), (17), (27), (29), (36), (37), (47) that satisfy the conditions of the present invention: ), (63), and (70) show narrower half-widths than the comparative compounds in which the ligand L1 or the ligand L2 has a similar structure but do not satisfy the conditions of the present invention.
  • the organometallic complex (1) exhibits a narrower half-value width than the comparative compounds (2), (3), and (6) having the same structure of the ligand L1. It can be seen that the organometallic complex (13) exhibits a narrower half-width than the comparative compounds (2), (3), (4), and (6) in which the structure of the ligand L1 is similar. It can be seen that the organometallic complexes (14) and (16) exhibit narrower half-widths than the comparative compound (6) in which the structures of the ligands L1 and L2 are similar.
  • the organometallic complex (17) exhibits a narrower half-value width than the comparative compounds (2), (3), and (6) having the same structure of the ligand L1. It can be seen that the organometallic complex (27) exhibits a narrower half-width than the comparative compounds (3), (4), and (6) in which the structure of the ligand L2 is similar. It can be seen that the organometallic complex (29) exhibits a narrower half-width than the comparative compounds (2), (3), and (6) in which the structure of the ligand L1 is the same.
  • the organometallic complex (36) exhibits a narrower half-width than the comparative compounds (3), (4), and (6) in which the structure of the ligand L2 is similar. It can be seen that the organometallic complex (37) exhibits a narrower half-width than the comparative compound (7) having the same structure of the ligand L1. It can be seen that the organometallic complex (47) exhibits a narrower half-width than the comparative compound (8) having the same structure of the ligand L1. It can be seen that the organometallic complex (63) exhibits a narrower half-width than the comparative compound (9) having the same structure of the ligand L1.
  • the organometallic complex (70) exhibits a narrower half-width than the comparative compounds (5), (7), (8), and (10) in which the structure of the ligand L2 is the same or similar.
  • the compound has a narrower half-width than the comparative compounds (2), (3), and (4).
  • organometallic complexes (1), (17), (27), (29), (36), and (47) exhibit narrow half-widths.
  • the organometallic complex according to the present invention achieves both a low sublimation temperature and high color purity.
  • an organic light emitting device having a structure of anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/cathode in this order on a substrate was fabricated as follows.
  • a transparent conductive support substrate in which an ITO film was formed as an anode to a thickness of 100 nm by sputtering on a glass substrate was used.
  • an organic compound layer and an electrode layer shown below were continuously formed by vacuum evaporation using resistance heating in a vacuum chamber of 1 ⁇ 10 ⁇ 5 Pa. At this time, the facing electrodes were manufactured so that the area was 3 mm 2 .
  • Hole injection layer HT16 (10nm)
  • Hole transport layer HT1 (40nm)
  • Luminous layer Host: EM32 Guest: Organometallic complex (4% by mass in the light emitting layer)
  • Electron transport layer ET20 (30nm)
  • cathode LiF (15nm) Al (200nm)
  • the EL spectrum of the obtained organic light-emitting device was measured using the ITO electrode as the anode and the Al electrode as the cathode, and the maximum absorption wavelength and half-value width were calculated. The measurement results are shown in Table 5 below.

Abstract

Provided is an organic metal complex that is an iridium complex having ligands L1, L2 which are mutually different bidentate ligands. The LUMO energy level of Ir(L1)3 constituted by only the ligand L1 is deeper than the LUMO energy level of Ir(L2)3 constituted by only the ligand L2, and the HOMO energy level of Ir(L1)3 is shallower than the HOMO energy level of Ir(L2)3.

Description

有機金属錯体、それを有する有機発光素子、表示装置、撮像装置、電子機器、照明装置、移動体Organometallic complexes, organic light-emitting devices containing the same, display devices, imaging devices, electronic devices, lighting devices, mobile objects
 本発明は、有機金属錯体、及び該有機金属錯体を発光層に含む有機発光素子、更には、該有機発光素子を備えた機器、装置に関する。 The present invention relates to an organometallic complex, an organic light-emitting element containing the organometallic complex in a light-emitting layer, and further to equipment and devices equipped with the organic light-emitting element.
 有機発光素子は、第一電極と第二電極とこれら電極間に配置される有機化合物層とを有する電子素子である。これら一対の電極から電子及び正孔を有機化合物層へと注入することにより、有機化合物層中の発光性有機化合物の励起子を生成し、該励起子が基底状態に戻る際に、有機発光素子は光を放出する。有機発光素子は、有機エレクトロルミネッセンス素子、或いは有機EL素子とも呼ばれる。 An organic light emitting device is an electronic device that has a first electrode, a second electrode, and an organic compound layer disposed between these electrodes. By injecting electrons and holes into the organic compound layer from these pair of electrodes, excitons of the luminescent organic compound in the organic compound layer are generated, and when the excitons return to the ground state, the organic light emitting device emits light. Organic light emitting devices are also called organic electroluminescent devices or organic EL devices.
 発光性有機化合物としては、有機発光素子内での電気的な励起子生成において、三重項励起状態から発光するりん光発光材料が高い発光効率を発揮し、その一つとして、2-フェニルピリジンを配位子として有する緑色発光のIr(ppy)が知られている。 As luminescent organic compounds, phosphorescent materials that emit light from a triplet excited state exhibit high luminous efficiency in electrical exciton generation within organic light emitting devices, and 2-phenylpyridine is one of them. Ir(ppy) 3 , which emits green light and has as a ligand, is known.
 近年は、4K8Kテレビの普及に伴いより広色域の表現を必要とされるようになっているが、前記Ir(ppy)は発光スペクトルの半値幅が広く、色純度が低いため、広色域領域の表現は困難である。そのため、発光スペクトルの半値幅が狭い発光性有機化合物の開発が進められている。 In recent years, with the spread of 4K and 8K televisions, it has become necessary to express a wider color gamut, but Ir(ppy) 3 has a wide half-width emission spectrum and low color purity, so it is not possible to express a wide color gamut. It is difficult to express the area. Therefore, development of luminescent organic compounds whose emission spectrum has a narrow half-value width is underway.
 また、有機発光素子の製造において、一対の電極間に設けられる薄膜の有機化合物層を形成する方法としては、蒸着法として真空蒸着、湿式法としてスピンコーティング法、印刷法、インクジェット法等が行われている。中でも現在主流の方法は蒸着法である。材料を蒸着するためには、有機化合物の分解や、パターニングマスクの変形などが起こらない適切な温度で行われることが望ましい。そのため、適切な温度で昇華できる有機化合物の開発が進められている。 In addition, in the production of organic light emitting devices, vacuum evaporation is used as a vapor deposition method, and spin coating, printing, and inkjet methods are used as wet methods to form a thin organic compound layer provided between a pair of electrodes. ing. Among them, the currently mainstream method is the vapor deposition method. In order to deposit the material, it is desirable to perform the deposition at an appropriate temperature that does not cause decomposition of the organic compound or deformation of the patterning mask. Therefore, efforts are being made to develop organic compounds that can sublimate at appropriate temperatures.
 発光性材料においては、半値幅が小さい発光スペクトルを示す色純度と、蒸着法に適した温度で昇華される熱物性の両方において理想的な性能を示す有機金属錯体の開発が求められている。そして、ジベンゾフラン構造を有する錯体が、半値幅が小さい発光スペクトルを示すことが知られている。 For luminescent materials, there is a need to develop organometallic complexes that exhibit ideal performance in both color purity, which shows an emission spectrum with a small half-width, and thermophysical properties, such as sublimation at a temperature suitable for vapor deposition. It is known that a complex having a dibenzofuran structure exhibits an emission spectrum with a small half-width.
 特許文献1には、ジベンゾフラン構造を有する配位子のみで構成される有機金属錯体よりも昇華温度が低い有機金属錯体として、下記式で表される有機金属錯体Aを用いることで、昇華温度を低減させてデバイスへの利用を実現している。 Patent Document 1 describes that the sublimation temperature can be lowered by using an organometallic complex A represented by the following formula as an organometallic complex having a lower sublimation temperature than an organometallic complex composed only of a ligand having a dibenzofuran structure. It is possible to reduce this amount and use it in devices.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
特開2013-28604号明細書JP 2013-28604 specification
 本発明者等は、下記式で表されるジベンゾフラン構造を有する配位子L1-1のみで構成される有機金属錯体Bと、特許文献1に開示された上記有機金属錯体Aとを合成し、半値幅を比較した。その結果、有機金属錯体Aの半値幅は有機金属錯体Bの半値幅よりも大きく、色純度が低下した。このように、有機金属錯体Bよりも昇華温度が低い有機金属錯体Aは、有機金属錯体Bよりも色純度が低く、高い色純度と低い昇華温度とを両立することは困難である。 The present inventors synthesized an organometallic complex B composed only of a ligand L1-1 having a dibenzofuran structure represented by the following formula, and the organometallic complex A disclosed in Patent Document 1, The half width was compared. As a result, the half-value width of organometallic complex A was larger than that of organometallic complex B, and the color purity decreased. Thus, organometallic complex A, which has a lower sublimation temperature than organometallic complex B, has lower color purity than organometallic complex B, and it is difficult to achieve both high color purity and low sublimation temperature.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明は上記の課題に鑑みてなされたものであり、その目的は、昇華温度が低く、デバイスへの適用が容易であると同時に、色純度が高い発光性の有機金属錯体を提供し、係る有機金属錯体を用いて発光特性に優れたデバイスを提供するものである。 The present invention has been made in view of the above problems, and its purpose is to provide a luminescent organometallic complex that has a low sublimation temperature, is easy to apply to devices, and has high color purity. The present invention provides a device that uses an organometallic complex and has excellent light-emitting characteristics.
 本発明は、上記の課題に鑑みてなされたものであり、発光スペクトルの半値幅が狭く、かつ昇華温度が低い発光性有機金属錯体を提供することにある。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a luminescent organometallic complex whose emission spectrum has a narrow half-width and a low sublimation temperature.
 本発明の第一は、下記一般式[1]で表されるイリジウム錯体であり、Ir(L1)のLUMOのエネルギー準位はIr(L2)のLUMOのエネルギー準位よりも深く、Ir(L1)のHOMOのエネルギー準位はIr(L2)のHOMOのエネルギー準位よりも浅いことを特徴とする有機金属錯体である。
 Ir(L1)(L2) [1]
The first aspect of the present invention is an iridium complex represented by the following general formula [1], in which the energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3 ; It is an organometallic complex characterized in that the energy level of the HOMO of (L1) 3 is shallower than the energy level of the HOMO of Ir(L2) 3 .
Ir(L1) m (L2) n [1]
 上記式[1]において、L1及びL2は互いに異なる二座配位子であり、m及びnは1又は2であり、m+nは3である。 In the above formula [1], L1 and L2 are different bidentate ligands, m and n are 1 or 2, and m+n is 3.
 本発明の第二は、第一電極と第二電極と前記第一電極と前記第二電極との間に配置されている有機化合物層とを有する有機発光素子であって、前記有機化合物層は、上記本発明の第一の有機金属錯体を有することを特徴とする。 A second aspect of the present invention is an organic light emitting device having a first electrode, a second electrode, and an organic compound layer disposed between the first electrode and the second electrode, wherein the organic compound layer is , characterized by having the first organometallic complex of the present invention.
 本発明の第三は、複数の画素を有し、前記複数の画素の少なくとも一つが、上記本発明の第二の有機発光素子と、前記有機発光素子に接続されたトランジスタと、を有することを特徴とする表示装置である。 A third aspect of the present invention includes a plurality of pixels, and at least one of the plurality of pixels includes the second organic light-emitting element of the present invention and a transistor connected to the organic light-emitting element. This is a distinctive display device.
 本発明の第四は、複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、前記撮像素子が撮像した画像を表示する表示部と、を有し、前記表示部は上記本発明の第二の有機発光素子を有することを特徴とする撮像装置である。 A fourth aspect of the present invention includes an optical section having a plurality of lenses, an image sensor that receives light that has passed through the optical section, and a display section that displays an image captured by the image sensor, and the display section that displays the image. Part is an imaging device characterized by having the second organic light emitting element of the present invention.
 本発明の第五は、上記本発明の第二の有機発光素子を有する表示部と、前記表示部が設けられた筐体と、前記筐体に設けられ、外部と通信する通信部と、を有することを特徴とする電子機器である。 A fifth aspect of the present invention includes a display section having the second organic light emitting element of the present invention, a casing in which the display section is provided, and a communication section provided in the casing and communicating with the outside. This is an electronic device characterized by having the following features.
 本発明の第六は、上記本発明の第二の有機発光素子を有する光源と、前記光源が発する光を透過する光拡散部又は光学フィルタと、を有することを特徴とする照明装置である。 A sixth aspect of the present invention is a lighting device comprising a light source having the organic light emitting element according to the second aspect of the present invention, and a light diffusion section or an optical filter that transmits light emitted from the light source.
 本発明の第七は、上記本発明の第二の有機発光素子を有する灯具と、前記灯具が設けられた機体と、を有することを特徴とする移動体である。 A seventh aspect of the present invention is a moving body characterized by having a lamp having the organic light emitting element according to the second aspect of the present invention, and a body provided with the lamp.
 本発明によれば、発光スペクトルの半値幅が狭く、且つ昇華温度が低い有機金属錯体が提供され、係る有機金属錯体を有機化合物層に有することで、発光特性に優れた有機発光素子、更には、該有機発光素子を備えた機器、装置を提供することができる。 According to the present invention, an organic metal complex having a narrow half-value width of an emission spectrum and a low sublimation temperature is provided, and by having such an organic metal complex in an organic compound layer, an organic light emitting device with excellent light emission characteristics, and further , it is possible to provide equipment and devices equipped with the organic light emitting element.
従来の有機金属錯体AのLUMOの電子分布図である。FIG. 2 is an electron distribution diagram of LUMO of conventional organometallic complex A. 従来の有機金属錯体AのHOMOの電子分布図である。FIG. 2 is a HOMO electron distribution diagram of a conventional organometallic complex A. 本発明の有機金属錯体(1)のLUMOの電子分布図である。FIG. 2 is a LUMO electron distribution diagram of the organometallic complex (1) of the present invention. 本発明の有機金属錯体(1)のHOMOの電子分布図である。FIG. 2 is a HOMO electron distribution diagram of the organometallic complex (1) of the present invention. 本発明の有機発光素子を画素とする一実施形態の断面模式図である。FIG. 1 is a schematic cross-sectional view of an embodiment in which the organic light emitting device of the present invention is used as a pixel. 本発明の有機発光素子にトランジスタを接続した構成の一例の断面模式図である。1 is a schematic cross-sectional view of an example of a configuration in which a transistor is connected to an organic light emitting device of the present invention. 本発明の表示装置の一実施形態の模式図である。1 is a schematic diagram of an embodiment of a display device of the present invention. 本発明の撮像装置の一実施形態の模式図である。1 is a schematic diagram of an embodiment of an imaging device of the present invention. 本発明の携帯機器の一実施形態の模式図である。FIG. 1 is a schematic diagram of an embodiment of a mobile device of the present invention. 本発明の表示装置の他の実施形態の模式図である。FIG. 3 is a schematic diagram of another embodiment of the display device of the present invention. 折り曲げ可能な表示装置の一例を表す模式図である。FIG. 1 is a schematic diagram illustrating an example of a foldable display device. 本発明の照明装置の一実施形態の模式図である。FIG. 1 is a schematic diagram of an embodiment of a lighting device of the present invention. 本発明の移動体の一実施形態である自動車を示す模式図である。1 is a schematic diagram showing an automobile which is an embodiment of a moving object of the present invention. 本発明の表示装置を備えたウェアラブルデバイスの一例の模式図である。1 is a schematic diagram of an example of a wearable device including a display device of the present invention. 本発明の表示装置を備えたウェアラブルデバイスの他の例の模式図である。FIG. 3 is a schematic diagram of another example of a wearable device including a display device of the present invention.
 以下、本発明の実施形態について説明する。本発明は以下の説明に限定されず、本発明の主旨及びその範囲から逸脱しない限り、その形態及び詳細を様々に変更しうることは当業者に容易に理解される。即ち、本発明は以下の説明により限定して解釈されることはない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following description, and those skilled in the art will readily understand that the form and details thereof can be changed in various ways without departing from the spirit and scope of the present invention. That is, the present invention should not be construed as being limited by the following description.
 〔有機金属錯体〕
 本発明者等は、検討の結果、高い昇華温度を有する配位子を一部に含んでいても、低い温度で昇華することができ、色純度が高い配位子と同じ半値幅の発光スペクトルを示す下記一般式[1]で表される有機金属錯体を見出した。
 Ir(L1)m(L2)n
[Organometallic complex]
As a result of study, the present inventors found that even if some ligands have a high sublimation temperature, they can be sublimed at a low temperature, and the emission spectrum has the same half-width as a ligand with high color purity. An organometallic complex represented by the following general formula [1] has been found.
Ir(L1)m(L2)n
 上記式[1]において、L1及びL2は互いに異なる任意の二座配位子であり、m及びn1又は2であり、m+2=3である。 In the above formula [1], L1 and L2 are arbitrary bidentate ligands different from each other, and are m and n1 or 2, and m+2=3.
 Ir(L1)のLUMOのエネルギー準位はIr(L2)のLUMOのエネルギー準位よりも深く、Ir(L1)のHOMOのエネルギー準位はIr(L2)のHOMOのエネルギー準位よりも浅い。 The energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3 , and the energy level of the HOMO of Ir(L1) 3 is the energy level of the HOMO of Ir(L2) 3 . shallower than
 上記式[1]において、L1は下記一般式[2]で表される配位子であることが好ましい。また、L2は下記一般式[3]で表される配位子であることが好ましい。本発明の有機金属錯体は、式[2]で表されるL1と、式[3]で表されるL2とを有していることが好ましい。 In the above formula [1], L1 is preferably a ligand represented by the following general formula [2]. Moreover, it is preferable that L2 is a ligand represented by the following general formula [3]. The organometallic complex of the present invention preferably has L1 represented by formula [2] and L2 represented by formula [3].
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式[2]において、X乃至X10は炭素原子又は窒素原子である。 In the above formula [2], X 1 to X 10 are carbon atoms or nitrogen atoms.
 また、上記式[3]において、X11乃至X17は炭素原子又は窒素原子であり、X15乃至X17のうち一つ以上が窒素原子である。 Further, in the above formula [3], X 11 to X 17 are carbon atoms or nitrogen atoms, and one or more of X 15 to X 17 is a nitrogen atom.
 R乃至Rは、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ヘテロアルキル基、アリールアルキル基、アルコキシ基、アリールオキシ基、アミノ基、シリル基、アルケニル基、シクロアルケニル基、ヘテロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、カルボン酸残基、エステル基、ニトリル基、イソニトリル基、スルファニル基、スルホン酸残基、ホスフィノ基及びこれらの組み合わせからなる群から選択される。R乃至Rは、さらにボロニル基であっても良い。また、RとR、RとRにおいては、それぞれ互いに隣接する置換基同士が結合して環構造を形成しても良い。 R 1 to R 5 are each independently a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, Alkenyl groups, cycloalkenyl groups, heteroalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, carboxylic acid residues, ester groups, nitrile groups, isonitrile groups, sulfanyl groups, sulfonic acid residues, phosphino groups, and these selected from the group consisting of a combination of R 1 to R 3 may further be boronyl groups. Moreover, in R 1 and R 2 and R 4 and R 5 , mutually adjacent substituents may be bonded to each other to form a ring structure.
 Yは酸素原子、硫黄原子、CR、CR=CR、NR、BR、SiR、C=O、C=NR、C=CR、S=O、SO、CR-CR、PR、P(=O)Rからなる群から選択される二価の架橋基であり、R、Rはそれぞれ独立して、直鎖アルキル基、分岐アルキル基、及びアリール基からなる群から選択される。 Y is an oxygen atom, a sulfur atom, CR 6 R 7 , CR 6 =CR 7 , NR 6 , BR 6 , SiR 6 R 7 , C=O, C=NR 6 , C=CR 6 R 6 , S=O, is a divalent bridging group selected from the group consisting of SO 2 , CR 6 R 7 -CR 6 R 7 , PR 6 , and P(=O)R 6 , and R 6 and R 7 are each independently a straight selected from the group consisting of chain alkyl groups, branched alkyl groups, and aryl groups.
 以下に、本発明の有機金属錯体の具体例を挙げる。 Specific examples of the organometallic complex of the present invention are listed below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 次に、本発明の有機金属錯体における、発光スペクトル幅の特性について説明する。 Next, the characteristics of the emission spectrum width in the organometallic complex of the present invention will be explained.
 図1、図2に、密度汎関数法(B3PW91/LANL2DZ)により算出された有機金属錯体AのLUMO(最低空軌道)とHOMO(最高被占軌道)の電子分布図を示す。図1がLUMOの電子分布図、図2がHOMOの電子分布図である。 Figures 1 and 2 show electron distribution maps of LUMO (lowest unoccupied orbital) and HOMO (highest occupied orbital) of organometallic complex A calculated by density functional theory (B3PW91/LANL2DZ). FIG. 1 is an electron distribution diagram of LUMO, and FIG. 2 is an electron distribution diagram of HOMO.
 尚、図1、図2に示した立体構造は、電子状態計算ソフトウェアであるGaussian09*Revision C.01を用いて基底状態の構造最適化計算を行なったものである。その際、量子化学計算法として、密度汎関数法(Density Functional Theory)を採用し、汎関数にはB3PW91を用いた。基底関数はGaussian 09,Revision C.01ではLANL2DZを用いた。
Gaussian 09,Revision C.01,
 M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,
 M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,
 G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,
 A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,
 M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,
 Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,
 J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,
 K.N.Kudin,V.N.Staroverov,T.Keith,R.Kobayashi,J.Normand,
 K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,
 M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,
 V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,
 O.Yazyev,A.J.Austin,RCammi,C.Pomelli,J.W.Ochterski,
 R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,
 P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,
 O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,
 and D.J.Fox,Gaussian,Inc.,WallingfordCT,2010.
The three-dimensional structures shown in FIGS. 1 and 2 were created using Gaussian09*Revision C., which is electronic structure calculation software. 01 was used to perform structural optimization calculations of the ground state. At that time, Density Functional Theory was adopted as the quantum chemical calculation method, and B3PW91 was used as the functional. The basis functions are Gaussian 09, Revision C. In 01, LANL2DZ was used.
Gaussian 09, Revision C. 01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. ,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, RCami, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc. , Wallingford CT, 2010.
 図1、図2の通り、発光に関わる軌道の電子が2つの配位子に広がって分布していることが有機金属錯体Aの発光スペクトルの半値幅が大きくなった原因であると本発明者等は考えた。更に、その電子分布は有機金属錯体Aを構成する二つの配位子L1-1とL2-1について、LUMOとHOMOのエネルギー準位の関係が影響していると考えた。そこで、三つの配位子が全てL1-1であるIr(L1-1)と、L2-1であるIr(L2-1)について、密度汎関数法(B3PW91/LANL2DZ)によりLUMOとHOMOのエネルギー準位を算出した。更に有機金属錯体Aを合成し、発光スペクトルの半値幅を測定した値を下記表1に示す。尚、HOMOのエネルギー準位を「HOMO準位」或いは「HOMO」、LUMOのエネルギー準位を「LUMO準位」或いは「LUMO」とも呼ぶ。 As shown in Figures 1 and 2, the present inventor believes that the wide distribution of the electrons in the orbits involved in light emission between the two ligands is the reason why the half-width of the emission spectrum of organometallic complex A becomes large. I thought about it. Furthermore, it was considered that the electron distribution was influenced by the relationship between the LUMO and HOMO energy levels of the two ligands L1-1 and L2-1 constituting the organometallic complex A. Therefore, for Ir(L1-1) 3 in which all three ligands are L1-1 and Ir(L2-1) 3 in which all three ligands are L2-1, we calculated the LUMO and HOMO using density functional theory (B3PW91/LANL2DZ). The energy level of was calculated. Furthermore, organometallic complex A was synthesized, and the half width of the emission spectrum was measured and the values are shown in Table 1 below. Note that the HOMO energy level is also called the "HOMO level" or "HOMO", and the LUMO energy level is also called the "LUMO level" or "LUMO".
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 配位子が全てL1-1であるホモレプティック錯体の発光スペクトルの半値幅が34nmであるのに対し、有機金属錯体Aの半値幅は52nmであり、色純度が悪化していることがわかる。更に、有機金属錯体Aを構成する配位子L1-1とL2-1のLUMOとHOMOのエネルギー準位を比較すると、LUMO準位に関してはIr(L2-1)の方が深く、HOMO準位に関してはIr(L2-1)の方が浅い。本発明者等は、有機金属錯体AのLUMOとHOMOの電子分布が2つの配位子に広がっている原因が、このようなエネルギー準位の大小関係にあると考えた。 The half-width of the emission spectrum of the homoleptic complex in which all the ligands are L1-1 is 34 nm, while the half-width of organometallic complex A is 52 nm, indicating that the color purity has deteriorated. . Furthermore, when comparing the LUMO and HOMO energy levels of the ligands L1-1 and L2-1 constituting organometallic complex A, Ir(L2-1) 3 has a deeper LUMO level and a lower HOMO level. Regarding the position, Ir(L2-1) 3 is shallower. The present inventors considered that the reason why the electron distribution of LUMO and HOMO of organometallic complex A is spread over two ligands is due to such a magnitude relationship of energy levels.
 そこで、下記式で表される有機金属錯体(1)を設計した。これを構成する配位子L1-2とL2-2について、密度汎関数法(B3PW91/LANL2DZ)によりIr(L1-2)とIr(L2-2)のLUMOとHOMOのエネルギー準位を算出した。更に、Ir(L1-2)(L2-2)である有機金属錯体(1)を合成し、発光スペクトルの半値幅を測定した値を表2に、LUMOの電子分布図を図3に、HOMOの電子分布図を図4に示す。 Therefore, an organometallic complex (1) represented by the following formula was designed. Regarding the ligands L1-2 and L2-2 that constitute this, the LUMO and HOMO energy levels of Ir(L1-2) 3 and Ir(L2-2) 3 were calculated using density functional theory (B3PW91/LANL2DZ). Calculated. Furthermore, the organometallic complex (1) which is Ir(L1-2)(L2-2) 2 was synthesized, and the measured half-width of the emission spectrum is shown in Table 2, and the electron distribution diagram of LUMO is shown in Figure 3. Figure 4 shows the electron distribution diagram of HOMO.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 LUMOとHOMOのエネルギー準位の関係を見ると、LUMO準位に関してはIr(L1-2)の方が深く、HOMO準位に関してはIr(L1-2)の方が浅い。その結果、有機金属錯体(1)のLUMOとHOMOの電子分布図においても配位子L1-2に電子が偏って分布していることがわかる。更に、半値幅も有機金属錯体(A)に比べて大幅に狭くなった。このように、色純度が良い配位子に電子分布を偏らせるような有機金属錯体の設計には一般式[1]の構造において「Ir(L1)のLUMO準位がIr(L2)のLUMO準位よりも深く、Ir(L1)のHOMO準位がIr(L2)のHOMO準位よりも浅い。」という条件が必要である。そして、その条件を満たす化学構造としては、好ましくは、L1が一般式[2]で示される構造、L2が一般式[3]で示される構造、のいずれか、より好ましくは両方を有する有機金属錯体である。 Looking at the relationship between the energy levels of LUMO and HOMO, Ir(L1-2) 3 has a deeper LUMO level, and Ir(L1-2) 3 has a shallower HOMO level. As a result, it can be seen that the electron distribution diagram of LUMO and HOMO of organometallic complex (1) also shows that electrons are distributed biased towards the ligand L1-2. Furthermore, the half width was also significantly narrower than that of the organometallic complex (A). In this way, in the structure of general formula [1], "the LUMO level of Ir(L1) 3 is The HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3 . The chemical structure that satisfies this condition is preferably an organic metal having either a structure in which L1 is represented by the general formula [2] or a structure in which L2 is represented by the general formula [3], more preferably both. It is a complex.
 更に、一般式[2]において、X乃至X10は炭素原子であることが、有機金属錯体の昇華温度が低い点において好ましい。更に、ピリジン環4位に水素原子以外のRが置換されていることにより、ロールオフ現象が低減する点において好ましい。 Further, in the general formula [2], it is preferable that X 1 to X 10 are carbon atoms, since the sublimation temperature of the organometallic complex is low. Furthermore, R 1 other than a hydrogen atom is substituted at the 4-position of the pyridine ring, which is preferable in that the roll-off phenomenon is reduced.
 また、一般式[3]において、X15が窒素原子であり、X11乃至X14及びX16乃至X17は炭素原子であること、更に、Rが水素原子、アルキル基、シクロアルキル基のいずれかであることが、有機金属錯体の昇華温度が低い点において好ましい。前記に例示した有機金属錯体のうち、(1)、(17)、(27)、(29)、(36)がより好ましい。 Further, in the general formula [3 ] , X 15 is a nitrogen atom, X 11 to X 14 and X 16 to Either one is preferable in that the sublimation temperature of the organometallic complex is low. Among the organometallic complexes exemplified above, (1), (17), (27), (29), and (36) are more preferred.
 尚、有機金属錯体の昇華温度は、熱重量分析(TG)曲線における5%重量減少温度(T5)によって評価される。Ir(L1)及びIr(L2)のT5が、上記式[1]で表される有機金属錯体のT5以上であることが好ましい。 Note that the sublimation temperature of the organometallic complex is evaluated by the 5% weight loss temperature (T5) in the thermogravimetric analysis (TG) curve. It is preferable that T5 of Ir(L1) 3 and Ir(L2) 3 is greater than or equal to T5 of the organometallic complex represented by the above formula [1].
 〔有機化合物層〕
 次に、本発明の一実施形態に係る有機発光素子が有する有機化合物層について説明する。本実施形態に係る有機発光素子は、一対の電極である第一電極と第二電極と、これら電極間に配置される有機化合物層と、を少なくとも有する。本実施形態に係る有機発光素子において、有機化合物層は発光層を有していれば単層であってもよいし複数層からなる積層体であってもよい。一対の電極は陽極と陰極であってよい。
[Organic compound layer]
Next, an organic compound layer included in an organic light emitting device according to an embodiment of the present invention will be described. The organic light emitting device according to this embodiment includes at least a pair of electrodes, a first electrode and a second electrode, and an organic compound layer disposed between these electrodes. In the organic light emitting device according to this embodiment, the organic compound layer may be a single layer or a laminate consisting of multiple layers as long as it has a light emitting layer. The pair of electrodes may be an anode and a cathode.
 ここで有機化合物層が複数層からなる積層体である場合、有機化合物層は発光層の他に、ホール注入層、ホール輸送層、電子ブロッキング層、ホール・エキシトンブロッキング層、電子輸送層、電子注入層等を有してもよい。また発光層は、単層であってもよいし、複数の層からなる積層体であってもよい。ホール輸送層、電子輸送層は、電荷輸送層とも称される。 Here, when the organic compound layer is a laminate consisting of multiple layers, the organic compound layer includes, in addition to the light-emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole/exciton blocking layer, an electron transport layer, and an electron injection layer. It may have layers or the like. Further, the light emitting layer may be a single layer or a laminate consisting of a plurality of layers. The hole transport layer and the electron transport layer are also referred to as charge transport layers.
 本実施形態に係る有機発光素子において、上記有機化合物層の少なくとも一層に本実施形態に係る有機金属錯体が含有されている。具体的には、本実施形態に係る有機金属錯体は、上述したホール注入層、ホール輸送層、電子ブロッキング層、発光層、ホール・エキシトンブロッキング層、電子輸送層、電子注入層等のいずれかに含有されており、好ましくは、発光層に含有される。第一電極と発光層との間の輸送層をまとめて、第一の電荷輸送層ということができる。第二電極と発光層との間の輸送層をまとめて、第二の電荷輸送層ということができる。即ち、発光層は、第一の電荷輸送層と接し、第二の電荷輸送層と接しているということができる。 In the organic light emitting device according to the present embodiment, at least one of the organic compound layers contains the organometallic complex according to the present embodiment. Specifically, the organometallic complex according to the present embodiment may be added to any of the above-mentioned hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole/exciton blocking layer, electron transport layer, electron injection layer, etc. Preferably, it is contained in the light-emitting layer. The transport layers between the first electrode and the light emitting layer can be collectively referred to as a first charge transport layer. The transport layers between the second electrode and the light emitting layer can be collectively referred to as a second charge transport layer. That is, it can be said that the light-emitting layer is in contact with the first charge transport layer and the second charge transport layer.
 本実施形態に係る有機発光素子において、本実施形態に係る有機金属錯体が発光層に含まれる場合、発光層は、本実施形態に係る有機金属錯体のみからなる層であってもよいし、該有機金属錯体とは異なる第一の有機化合物を有していても良い。更に、該有機金属錯体及び該第一の有機化合物とは異なる第二の有機化合物を有する層であってもよい。第一の有機化合物は、本実施形態に係る有機金属錯体の最低励起三重項エネルギーよりも大きい最低励起三重項エネルギーを有していてもよい。第二の有機化合物は、その最低励起三重項エネルギーが、本実施形態に係る有機金属錯体の最低励起三重項エネルギー以上、第一の有機化合物の最低励起三重項エネルギー以下であってもよい。ここで、発光層が第一の有機化合物と第二の有機化合物とを有する層である場合、第一の有機化合物は、発光層のホストであってよい。また第二の有機化合物は、アシスト材料であってもよい。本実施形態に係る有機金属錯体は、ゲスト又はドーパントであってもよい。 In the organic light emitting device according to this embodiment, when the organometallic complex according to this embodiment is included in the light emitting layer, the light emitting layer may be a layer consisting only of the organometallic complex according to this embodiment, or may be a layer consisting only of the organometallic complex according to this embodiment. It may contain a first organic compound different from the organometallic complex. Furthermore, the layer may include the organometallic complex and a second organic compound different from the first organic compound. The first organic compound may have a lowest excited triplet energy that is higher than the lowest excited triplet energy of the organometallic complex according to this embodiment. The second organic compound may have a lowest excited triplet energy that is greater than or equal to the lowest excited triplet energy of the organometallic complex according to this embodiment and less than or equal to the lowest excited triplet energy of the first organic compound. Here, when the light-emitting layer is a layer having a first organic compound and a second organic compound, the first organic compound may be a host of the light-emitting layer. Further, the second organic compound may be an assist material. The organometallic complex according to this embodiment may be a guest or a dopant.
 ここでホストとは、発光層を構成する化合物の中で質量比が最も大きい化合物である。また、ゲスト又はドーパントとは、発光層を構成する化合物の中で質量比がホストよりも小さい化合物であって、主たる発光を担う化合物である。またアシスト材料とは、発光層を構成する化合物の中で質量比がホストよりも小さく、ゲストの発光を補助する化合物である。尚、アシスト材料は、第2のホストとも呼ばれている。 Here, the host is a compound having the largest mass ratio among the compounds constituting the light emitting layer. Moreover, the guest or dopant is a compound whose mass ratio is smaller than that of the host among the compounds constituting the light emitting layer, and is a compound responsible for main light emission. The assist material is a compound that has a smaller mass ratio than the host among the compounds constituting the light emitting layer and assists the guest in emitting light. Note that the assist material is also called a second host.
 ここで、本実施形態に係る有機金属錯体を発光層のゲストとして用いる場合、ゲストの濃度は、発光層全体に対して0.01質量%以上20質量%以下であることが好ましく、0.1質量%以上10.0質量%以下であることがより好ましい。発光層全体とは、発光層を構成する化合物の合計の質量を表す。 Here, when the organometallic complex according to the present embodiment is used as a guest in the light emitting layer, the concentration of the guest is preferably 0.01% by mass or more and 20% by mass or less based on the entire light emitting layer, and 0.1% by mass or less. It is more preferable that the amount is 10.0% by mass or more and 10.0% by mass or less. The entire light-emitting layer refers to the total mass of compounds constituting the light-emitting layer.
 また、第一の電荷輸送層の最低励起三重項エネルギーは、第一の有機化合物の最低励起三重項エネルギーよりも大きいことが好ましい。また、第二の電荷輸送層の最低励起三重項エネルギーは第一の有機化合物の最低励起三重項エネルギーよりも大きいことが好ましい。電荷輸送層の最低励起三重項エネルギーは、その層の構成材料の最低励起三重項エネルギーで見積もることができる。電荷輸送層が複数の材料で構成される場合には、質量比が大きい化合物の最低励起三重項エネルギーであってよい。 Furthermore, the lowest excited triplet energy of the first charge transport layer is preferably higher than the lowest excited triplet energy of the first organic compound. Further, the lowest excited triplet energy of the second charge transport layer is preferably higher than the lowest excited triplet energy of the first organic compound. The lowest excited triplet energy of the charge transport layer can be estimated by the lowest excited triplet energy of the constituent material of the layer. When the charge transport layer is composed of a plurality of materials, it may be the lowest excited triplet energy of a compound having a large mass ratio.
 本発明者等は種々の検討を行い、本実施形態に係る有機金属錯体を発光層のゲストとして用いると、高効率で高輝度な光出力を呈するとともに、ロールオフ性が良好であることを見出した。この発光層は単層でも複層でも良いし、他の発光色を有する発光材料を含むことで本実施形態の発光色と混色させることも可能である。複層とは複数の発光層が積層している状態を意味する。この場合、有機発光素子の発光色は単層の発光色と同じ色相に限られない。より具体的には白色でもよいし、中間色でもよい。白色の場合、各発光層で赤色、青色、緑色を発光することで白色とする場合もあるし、補色関係にある発光色の組み合わせによる白色とする場合もある。 The present inventors conducted various studies and found that when the organometallic complex according to the present embodiment is used as a guest in the light emitting layer, it exhibits high efficiency and high brightness light output and has good roll-off property. Ta. This light-emitting layer may be a single layer or a multi-layer, and by including a light-emitting material having another luminescent color, it is possible to mix the luminescent color with the luminescent color of this embodiment. Multilayer means a state in which a plurality of light emitting layers are stacked. In this case, the emission color of the organic light emitting element is not limited to the same hue as the emission color of the single layer. More specifically, it may be white or an intermediate color. In the case of white color, the white color may be obtained by emitting red, blue, and green light from each light emitting layer, or may be obtained by combining complementary emitting colors.
 本実施形態に係る有機金属錯体は、本実施形態に係る有機発光素子を構成する発光層以外の有機化合物層の構成材料としても使用することができる。具体的には、電子輸送層、電子注入層、ホール輸送層、ホール注入層、ホールブロッキング層等の構成材料として用いてもよい。 The organometallic complex according to this embodiment can also be used as a constituent material of an organic compound layer other than the light emitting layer that constitutes the organic light emitting device according to this embodiment. Specifically, it may be used as a constituent material of an electron transport layer, an electron injection layer, a hole transport layer, a hole injection layer, a hole blocking layer, etc.
 本実施形態に係る有機発光素子を製造する場合、必要に応じて従来公知の低分子系及び高分子系のホール注入性化合物或いはホール輸送性化合物、ホストとなる化合物、発光性化合物、電子注入性化合物或いは電子輸送性化合物等を一緒に使用することができる。以下にこれらの化合物例を挙げる。 When manufacturing the organic light-emitting device according to this embodiment, conventionally known low-molecular and high-molecular hole-injecting compounds or hole-transporting compounds, host compounds, light-emitting compounds, and electron-injecting compounds may be used as necessary. A compound or an electron transporting compound can be used together. Examples of these compounds are listed below.
 ホール注入輸送性材料としては、陽極からのホールの注入を容易にして、且つ注入されたホールを発光層へ輸送できるようにホール移動度が高い材料が好ましい。また有機発光素子中において結晶化等の膜質の劣化を低減するために、ガラス転移点温度が高い材料が好ましい。ホール注入輸送性能を有する低分子及び高分子系材料としては、トリアリールアミン誘導体、アリールカルバゾール誘導体、フェニレンジアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、ポリアリールアミン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体、PEDOT-PSSなどの導電性高分子やそれらの共重合体或いは混合物などが挙げられる。更に上記のホール注入輸送性材料は、電子ブロッキング層にも好適に使用される。 As the hole injection and transport material, a material with high hole mobility is preferable so that holes can be easily injected from the anode and the injected holes can be transported to the light emitting layer. Further, in order to reduce deterioration of film quality such as crystallization in an organic light emitting device, a material having a high glass transition temperature is preferable. Examples of low-molecular and high-molecular materials having hole injection and transport properties include triarylamine derivatives, arylcarbazole derivatives, phenylenediamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, and Examples include conductive polymers such as arylamine derivatives, polyvinylcarbazole derivatives, polythiophene derivatives, PEDOT-PSS, and copolymers or mixtures thereof. Furthermore, the hole injection and transport material described above is also suitably used for an electron blocking layer.
 以下に、ホール注入輸送性材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。 Specific examples of compounds used as the hole injection transport material are shown below, but the invention is of course not limited to these.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 主に発光機能に関わる発光材料としては、本実施形態の有機金属錯体の他に、他の発光材料を加えることもできる。他の発光材料としては、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、アントラセン誘導体、ルブレン等)、キナクリドン誘導体、クマリン誘導体、スチルベン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、トリス(2-フェニルピリジナート)イリジウム等のイリジウム錯体、白金錯体、レニウム錯体、銅錯体、ユーロピウム錯体、ルテニウム錯体、及びポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体が挙げられる。 In addition to the organometallic complex of this embodiment, other light-emitting materials can also be added as the light-emitting materials mainly related to the light-emitting function. Other luminescent materials include fused ring compounds (e.g. fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.), quinacridone derivatives, coumarin derivatives, stilbene derivatives, tris(8-quinolinolate) aluminum organoaluminum complexes such as tris(2-phenylpyridinato)iridium, iridium complexes such as platinum complexes, rhenium complexes, copper complexes, europium complexes, ruthenium complexes, and poly(phenylenevinylene) derivatives, poly(fluorene) derivatives, Examples include polymer derivatives such as poly(phenylene) derivatives.
 以下に、発光材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。 Specific examples of compounds used as luminescent materials are shown below, but of course the compounds are not limited to these.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 発光層に含まれる発光層ホスト或いは発光アシスト材料としては、芳香族炭化水素化合物もしくはその誘導体の他、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、トリアジン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、有機ベリリウム錯体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体などの高分子やそれらの共重合体或いは混合物などが挙げられる。 Examples of the light-emitting layer host or light-emission assisting material contained in the light-emitting layer include aromatic hydrocarbon compounds or their derivatives, as well as organic aluminum such as carbazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, triazine derivatives, and tris(8-quinolinolate) aluminum. Examples include polymers such as complexes, organic beryllium complexes, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and polyvinylcarbazole derivatives, and copolymers or mixtures thereof.
 以下に、発光層に含まれる発光層ホスト或いは発光アシスト材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。 Specific examples of compounds used as the light-emitting layer host or light-emission assist material contained in the light-emitting layer are shown below, but of course the compounds are not limited to these.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 電子輸送性材料としては、陰極から注入された電子を発光層へ輸送することができるものから任意に選ぶことができ、ホール輸送性材料のホール移動度とのバランス等を考慮して選択される。電子輸送性能を有する材料としては、オキサジアゾール誘導体、オキサゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、有機アルミニウム錯体、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、クリセン誘導体、アントラセン誘導体等)が挙げられる。更に上記の電子輸送性材料は、ホールブロッキング層にも好適に使用される。 The electron-transporting material can be arbitrarily selected from those capable of transporting electrons injected from the cathode to the light-emitting layer, and is selected in consideration of the balance with the hole mobility of the hole-transporting material. . Examples of materials having electron transport properties include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organoaluminum complexes, fused ring compounds (e.g. fluorene derivatives, naphthalene derivatives, chrysene derivatives, anthracene derivatives, etc.). Furthermore, the above-mentioned electron-transporting materials are also suitably used for hole-blocking layers.
 以下に、電子輸送性材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。 Specific examples of compounds used as electron transporting materials are shown below, but of course the compounds are not limited to these.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 電子注入性材料としては、陰極からの電子注入が容易に可能なものから任意に選ぶことができ、正孔注入性とのバランス等を考慮して選択される。有機化合物としてn型ドーパント及び還元性ドーパントも含まれる。例えば、フッ化リチウム等のアルカリ金属を含む化合物、リチウムキノリノール等のリチウム錯体、ベンゾイミダゾリデン誘導体、イミダゾリデン誘導体、フルバレン誘導体、アクリジン誘導体が挙げられる。 The electron-injecting material can be arbitrarily selected from materials that can easily inject electrons from the cathode, and is selected in consideration of the balance with the hole-injecting property. The organic compound also includes an n-type dopant and a reducing dopant. Examples include compounds containing alkali metals such as lithium fluoride, lithium complexes such as lithium quinolinol, benzimidazolidene derivatives, imidazolidene derivatives, fulvalene derivatives, and acridine derivatives.
 〔有機発光素子〕
 本実施形態に係る有機発光素子は、基板の上に設けられた絶縁層上に、第一電極、有機化合物層、第二電極を形成して設けられる。第二電極の上には、保護層、カラーフィルタ等を設けてもよい。カラーフィルタを設ける場合は、保護層との間に平坦化層を設けてもよい。平坦化層はアクリル樹脂等で構成することができる。第一電極、第二電極はいずれかが陽極で、他方が陰極であってもよい。以下、有機発光素子の構成部材について説明する。
[Organic light emitting device]
The organic light emitting device according to this embodiment is provided by forming a first electrode, an organic compound layer, and a second electrode on an insulating layer provided on a substrate. A protective layer, a color filter, etc. may be provided on the second electrode. When a color filter is provided, a flattening layer may be provided between the color filter and the protective layer. The flattening layer can be made of acrylic resin or the like. Either the first electrode or the second electrode may be an anode, and the other may be a cathode. The constituent members of the organic light emitting device will be explained below.
 〈基板〉
 基板は、石英、ガラス、シリコンウエハ、樹脂、金属等が挙げられる。また、基板上には、トランジスタなどのスイッチング素子や配線を備え、その上に絶縁層を備えてもよい。絶縁層としては、陽極と配線の導通を確保するために、コンタクトホールを形成可能で、かつ接続しない配線との絶縁を確保できれば、材料は問わない。例えば、ポリイミド等の樹脂、酸化シリコン、窒化シリコンなどを用いることができる。
<substrate>
Examples of the substrate include quartz, glass, silicon wafer, resin, metal, and the like. Furthermore, switching elements such as transistors and wiring may be provided on the substrate, and an insulating layer may be provided thereon. The insulating layer may be made of any material as long as it can form a contact hole to ensure conduction between the anode and the wiring, and can ensure insulation from unconnected wiring. For example, resin such as polyimide, silicon oxide, silicon nitride, etc. can be used.
 〈電極〉
 電極は、一対の電極を用いることができる。一対の電極は、陽極と陰極であってもよい。有機発光素子が発光する方向に電界を印加する場合に、電位が高い電極が陽極であり、他方が陰極である。また、発光層にホールを供給する電極が陽極であり、電子を供給する電極が陰極であるということもできる。
<electrode>
A pair of electrodes can be used as the electrodes. The pair of electrodes may be an anode and a cathode. When an electric field is applied in the direction in which the organic light-emitting element emits light, the electrode with the higher potential is the anode, and the other is the cathode. It can also be said that the electrode that supplies holes to the light emitting layer is the anode, and the electrode that supplies electrons is the cathode.
 陽極の構成材料としては仕事関数がなるべく大きいものが良い。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン、等の金属単体やこれらを含む混合物、或いはこれらを組み合わせた合金、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化インジウム亜鉛等の金属酸化物が使用できる。またポリアニリン、ポリピロール、ポリチオフェン等の導電性ポリマーも使用できる。 It is preferable that the material for the anode has a work function as large as possible. For example, metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, mixtures containing these metals, alloys of combinations of these metals, tin oxide, zinc oxide, indium oxide, and indium oxide. Metal oxides such as tin (ITO) and indium zinc oxide can be used. Conductive polymers such as polyaniline, polypyrrole, and polythiophene can also be used.
 これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また、陽極は一層で構成されていてもよく、複数の層で構成されていてもよい。 One type of these electrode materials may be used alone, or two or more types may be used in combination. Further, the anode may be composed of a single layer or a plurality of layers.
 反射電極として用いる場合には、例えばクロム、アルミニウム、銀、チタン、タングステン、モリブデン、又はこれらの合金、積層したものなどを用いることができる。また、透明電極として用いる場合には、酸化インジウムスズ(ITO)、酸化インジウム亜鉛などの酸化物透明導電層などを用いることができるが、これらに限定されるものではない。電極の形成には、フォトリソグラフィ技術を用いることができる。 When used as a reflective electrode, for example, chromium, aluminum, silver, titanium, tungsten, molybdenum, an alloy thereof, or a stacked layer thereof can be used. When used as a transparent electrode, transparent conductive layers of oxides such as indium tin oxide (ITO) and indium zinc oxide can be used, but are not limited thereto. Photolithography technology can be used to form the electrodes.
 一方、陰極の構成材料としては仕事関数の小さなものがよい。例えばリチウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、チタニウム、マンガン、銀、鉛、クロム等の金属単体又はこれらを含む混合物が挙げられる。或いはこれら金属単体を組み合わせた合金も使用することができる。例えばマグネシウム-銀、アルミニウム-リチウム、アルミニウム-マグネシウム、銀-銅、亜鉛-銀等が使用できる。酸化インジウムスズ(ITO)等の金属酸化物の利用も可能である。これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また陰極は一層構成でもよく、多層構成でもよい。中でも銀を用いることが好ましく、銀の凝集を抑制するため、銀合金とすることが更に好ましい。銀の凝集が抑制できれば、合金の比率は問わない。例えば、1:1であってもよい。 On the other hand, the material for the cathode should preferably have a small work function. Examples include alkali metals such as lithium, alkaline earth metals such as calcium, single metals such as aluminum, titanium, manganese, silver, lead, and chromium, or mixtures containing these metals. Alternatively, an alloy that is a combination of these metals can also be used. For example, magnesium-silver, aluminum-lithium, aluminum-magnesium, silver-copper, zinc-silver, etc. can be used. Metal oxides such as indium tin oxide (ITO) can also be used. These electrode materials may be used alone or in combination of two or more. Further, the cathode may have a single layer structure or a multilayer structure. Among these, it is preferable to use silver, and in order to suppress agglomeration of silver, it is more preferable to use a silver alloy. The ratio of the alloy does not matter as long as the aggregation of silver can be suppressed. For example, the ratio may be 1:1.
 陰極は、酸化インジウムスズ(ITO)などの酸化物導電層を使用してトップエミッション素子としてもよいし、アルミニウム(Al)などの反射電極を使用してボトムエミッション素子としてもよいし、特に限定されない。陰極の形成方法としては、特に限定されないが、直流及び交流スパッタリング法などを用いると、膜のカバレッジがよく、抵抗を下げやすいためより好ましい。 The cathode may be a top emission element using an oxide conductive layer such as indium tin oxide (ITO), or may be a bottom emission element using a reflective electrode such as aluminum (Al), and is not particularly limited. . The method for forming the cathode is not particularly limited, but it is more preferable to use a direct current or an alternating current sputtering method because the coverage of the film is good and the resistance can be easily lowered.
 〈保護層〉
 第二電極の上に、保護層を設けてもよい。例えば、第二電極上に吸湿剤を設けたガラスを接着することで、有機化合物層に対する水等の浸入を低減し、表示不良の発生を低減することができる。また、別の実施形態としては、第二電極上に窒化ケイ素等のパッシベーション膜を設け、有機化合物層に対する水等の浸入を低減してもよい。例えば、第二電極を形成後に真空を破らずに別のチャンバーに搬送し、CVD法で厚さ2μmの窒化ケイ素膜を形成することで、保護層としてもよい。CVD法の成膜の後で原子堆積法(ALD法)を用いた保護層を設けてもよい。
<Protective layer>
A protective layer may be provided on the second electrode. For example, by adhering glass provided with a moisture absorbent onto the second electrode, it is possible to reduce the intrusion of water and the like into the organic compound layer, thereby reducing the occurrence of display defects. In another embodiment, a passivation film made of silicon nitride or the like may be provided on the second electrode to reduce the infiltration of water or the like into the organic compound layer. For example, after forming the second electrode, the second electrode may be transferred to another chamber without breaking the vacuum, and a silicon nitride film having a thickness of 2 μm may be formed using a CVD method to form a protective layer. A protective layer may be provided using an atomic deposition method (ALD method) after film formation using a CVD method.
 〈カラーフィルタ〉
 保護層の上にカラーフィルタを設けてもよい。例えば、有機発光素子のサイズを考慮したカラーフィルタを別の基板上に設け、それと有機発光素子を設けた基板と貼り合わせてもよいし、上記で示した保護層上にフォトリソグラフィ技術を用いて、カラーフィルタをパターニングしてもよい。カラーフィルタは、高分子で構成されてよい。
<Color filter>
A color filter may be provided on the protective layer. For example, a color filter that takes into account the size of the organic light emitting element may be provided on another substrate and bonded to the substrate on which the organic light emitting element is provided, or a color filter may be formed using photolithography technology on the protective layer shown above. , the color filter may be patterned. The color filter may be made of polymer.
 〈平坦化層〉
 カラーフィルタと保護層との間に平坦化層を有してもよい。平坦化層は有機化合物で構成されてよく、低分子であっても、高分子であってもよいが、高分子であることが好ましい。平坦化層は、カラーフィルタの上下に設けられてもよく、その構成材料は同じであっても異なってもよい。具体的には、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、尿素樹脂等が挙げられる。
<Planarization layer>
A flattening layer may be provided between the color filter and the protective layer. The planarization layer may be composed of an organic compound, and may be a low molecule or a polymer, but preferably a polymer. The planarization layer may be provided above and below the color filter, and its constituent materials may be the same or different. Specific examples include polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, urea resin, and the like.
 〈対向基板〉
 平坦化層の上には、対向基板を有してよい。対向基板は、前述の基板と対応する位置に設けられるため、対向基板と呼ばれる。対向基板の構成材料は、前述の基板と同じであってよい。対向基板は、前述の基板を第一基板とした場合、第二基板であってよい。
<Counter board>
A counter substrate may be provided on the planarization layer. The counter substrate is called a counter substrate because it is provided at a position corresponding to the above-described substrate. The constituent material of the counter substrate may be the same as that of the above-described substrate. The counter substrate may be the second substrate when the above-mentioned substrate is the first substrate.
 〈有機化合物層の形成〉
 本実施形態に係る有機発光素子を構成する有機化合物層(ホール注入層、ホール輸送層、電子阻止層、発光層、ホール阻止層、電子輸送層、電子注入層等)は、以下に示す方法により形成される。
<Formation of organic compound layer>
The organic compound layers (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) constituting the organic light emitting device according to this embodiment are formed by the method shown below. It is formed.
 本実施形態に係る有機発光素子を構成する有機化合物層の形成方法としては特に限定されるものではないが、ドライプロセスやウェットプロセスが使用可能である。ドライプロセスの例としては真空蒸着法、イオン化蒸着法、スパッタリング、プラズマ等のドライプロセスを用いることができる。ウェットプロセスの例としては適当な溶媒に溶解させて公知の塗布法(例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等)を用いることができる。中でも、真空蒸着法、イオン化蒸着法、インクジェットプリント法、ノズルコート法等は大面積の有機発光素子を製造する上で好適である。 The method for forming the organic compound layer constituting the organic light emitting device according to this embodiment is not particularly limited, but a dry process or a wet process can be used. As an example of the dry process, dry processes such as vacuum evaporation, ionization evaporation, sputtering, and plasma can be used. Examples of wet processes include dissolving in a suitable solvent and applying known coating methods (for example, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dipping). coating method, spray coating method, screen printing method, flexo printing method, offset printing method, inkjet printing method, capillary coating method, nozzle coating method, etc.) can be used. Among these, vacuum evaporation, ionization evaporation, inkjet printing, nozzle coating, and the like are suitable for manufacturing large-area organic light-emitting devices.
 有機発光素子中の各層の厚さは、通常、1nm乃至10μmであることが好ましい。特に有機化合物層の発光層の膜厚は有効な発光特性を得るために10nm乃至100nmが好ましい。 The thickness of each layer in the organic light emitting device is usually preferably 1 nm to 10 μm. In particular, the thickness of the light emitting layer of the organic compound layer is preferably 10 nm to 100 nm in order to obtain effective light emitting characteristics.
 〔画素回路〕
 本実施形態に係る有機発光素子は、該有機発光素子に画素回路を接続して発光装置としてもよい。係る画素回路は、第一の有機発光素子、第二の有機発光素子をそれぞれ独立に発光制御するアクティブマトリックス型であってもよい。アクティブマトリックス型の回路は電圧プログラミングであっても、電流プログラミングであってもよい。駆動回路は、画素毎に画素回路を有する。画素回路は、有機発光素子、該有機発光素子の発光輝度を制御するトランジスタ、発光タイミングを制御するトランジスタ、発光輝度を制御するトランジスタのゲート電圧を保持する容量、有機発光素子を介さずにGNDに接続するためのトランジスタを有してもよい。
[Pixel circuit]
The organic light emitting device according to this embodiment may be used as a light emitting device by connecting a pixel circuit to the organic light emitting device. Such a pixel circuit may be of an active matrix type in which light emission is controlled independently of the first organic light emitting element and the second organic light emitting element. Active matrix type circuits may be voltage programming or current programming. The drive circuit has a pixel circuit for each pixel. The pixel circuit includes an organic light-emitting element, a transistor that controls the luminance of the organic light-emitting element, a transistor that controls the timing of light emission, a capacitor that maintains the gate voltage of the transistor that controls the luminance, and a capacitor that is connected to GND without going through the organic light-emitting element. It may also include a transistor for connection.
 発光装置は、表示領域と、該表示領域の周囲に配されている周辺領域とを有する。表示領域には画素回路を有し、周辺領域には表示制御回路を有する。画素回路を構成するトランジスタの移動度は、表示制御回路を構成するトランジスタの移動度よりも小さくてもよい。 The light emitting device has a display area and a peripheral area arranged around the display area. The display area has a pixel circuit, and the peripheral area has a display control circuit. The mobility of the transistors forming the pixel circuit may be lower than the mobility of the transistors forming the display control circuit.
 画素回路を構成するトランジスタの電流電圧特性の傾きは、表示制御回路を構成するトランジスタの電流電圧特性の傾きよりも小さくてもよい。電流電圧特性の傾きは、いわゆるVg-Ig特性により測定できる。 The slope of the current-voltage characteristics of the transistors forming the pixel circuit may be smaller than the slope of the current-voltage characteristics of the transistors forming the display control circuit. The slope of the current-voltage characteristic can be measured by the so-called Vg-Ig characteristic.
 画素回路を構成するトランジスタは、第一の有機発光素子など、有機発光素子に接続されているトランジスタである。 The transistors constituting the pixel circuit are transistors connected to an organic light emitting element, such as a first organic light emitting element.
 〔画素〕
 本実施形態に係る有機発光素子を備えた発光装置は、複数の画素を有していてよい。画素は互いに他と異なる色を発光する副画素を有する。副画素は、例えば、それぞれRGBの発光色を有してよい。
[Pixel]
A light emitting device including an organic light emitting element according to this embodiment may have a plurality of pixels. Each pixel has subpixels that emit different colors. For example, each subpixel may have an RGB emission color.
 画素は、画素開口とも呼ばれる領域が、発光する。画素開口は15μm以下であってよく、5μm以上であってよい。より具体的には、11μm、9.5μm、7.4μm、6.4μm等であってよい。また、副画素間は、10μm以下であってよく、具体的には、8μm、7.4μm、6.4μmであってよい。 A region of a pixel, also called a pixel aperture, emits light. The pixel aperture may be less than or equal to 15 μm, and may be greater than or equal to 5 μm. More specifically, it may be 11 μm, 9.5 μm, 7.4 μm, 6.4 μm, etc. Further, the distance between subpixels may be 10 μm or less, and specifically, it may be 8 μm, 7.4 μm, or 6.4 μm.
 画素は、平面図において、公知の配置形態をとりうる。例えは、ストライプ配置、デルタ配置、ペンタイル配置、ベイヤー配置であってもよい。副画素の平面図における形状は、公知のいずれの形状をとってもよい。例えば、長方形、ひし形等の四角形、六角形、等である。もちろん、正確な図形ではなく、長方形に近い形をしていれば、長方形に含まれる。副画素の形状と、画素配列と、を組み合わせて用いることができる。 Pixels can take a known arrangement form in a plan view. For example, it may be a stripe arrangement, a delta arrangement, a pentile arrangement, or a Bayer arrangement. The shape of the subpixel in a plan view may take any known shape. For example, a rectangle, a square such as a diamond, a hexagon, etc. Of course, it is not an exact figure, but if it has a shape close to a rectangle, it is included in the rectangle. The shape of the subpixel and the pixel arrangement can be used in combination.
 〔有機発光素子の応用〕
 本実施形態に係る有機発光素子は、表示装置や照明装置の構成部材として用いることができる。他にも、電子写真方式の画像形成装置の露光光源や液晶表示装置のバックライト、白色光源にカラーフィルタを有する発光装置等の用途がある。
[Applications of organic light emitting devices]
The organic light emitting device according to this embodiment can be used as a component of a display device or a lighting device. Other uses include exposure light sources for electrophotographic image forming apparatuses, backlights for liquid crystal display devices, and light emitting devices having a white light source with a color filter.
 表示装置は、エリアCCD、リニアCCD、メモリーカード等からの画像情報を入力する画像入力部を有し、入力された情報を処理する情報処理部を有し、入力された画像を表示部に表示する画像情報処理装置でもよい。 The display device has an image input section that inputs image information from an area CCD, linear CCD, memory card, etc., has an information processing section that processes the input information, and displays the input image on the display section. An image information processing device may also be used.
 また、撮像装置やインクジェットプリンタが有する表示部は、タッチパネル機能を有していてもよい。このタッチパネル機能の駆動方式は、赤外線方式でも、静電容量方式でも、抵抗膜方式であっても、電磁誘導方式であってもよく、特に限定されない。また表示装置はマルチファンクションプリンタの表示部に用いられてもよい。 Furthermore, the display section of the imaging device or the inkjet printer may have a touch panel function. The driving method for this touch panel function is not particularly limited, and may be an infrared method, a capacitance method, a resistive film method, or an electromagnetic induction method. Further, the display device may be used as a display section of a multi-function printer.
 次に、図面を参照しながら本実施形態に係る表示装置について説明する。 Next, a display device according to this embodiment will be described with reference to the drawings.
 図5Aは、本実施形態に係る有機発光素子8を画素とする実施形態の一例の断面模式図である。画素は、副画素10を有している。副画素はその発光により、10R、10G、10Bに分けられている。発光色は、発光層から発光される波長で区別されても、副画素から出射する光がカラーフィルタ等により、選択的透過又は色変換が行われてもよい。それぞれの副画素は、層間絶縁層1の上に第一電極である反射電極2、反射電極2の端を覆う絶縁層3、反射電極2と絶縁層3とを覆う有機化合物層4、透明電極5、保護層6、カラーフィルタ7を有している。 FIG. 5A is a schematic cross-sectional view of an example embodiment in which the organic light emitting device 8 according to this embodiment is used as a pixel. The pixel has sub-pixels 10. The subpixels are divided into 10R, 10G, and 10B depending on their light emission. The emitted light color may be distinguished by the wavelength emitted from the light-emitting layer, or the light emitted from the sub-pixel may be selectively transmitted or color-converted using a color filter or the like. Each subpixel includes a reflective electrode 2 as a first electrode on an interlayer insulating layer 1, an insulating layer 3 covering an end of the reflective electrode 2, an organic compound layer 4 covering the reflective electrode 2 and the insulating layer 3, and a transparent electrode. 5, a protective layer 6, and a color filter 7.
 層間絶縁層1は、その下層又は内部にトランジスタ、容量素子を配されていてもよい。トランジスタと反射電極2は不図示のコンタクトホール等を介して電気的に接続されていてもよい。絶縁層3は、バンク、画素分離膜とも呼ばれる。反射電極2の端を覆っており、該反射電極2を囲って配されている。反射電極2の、絶縁層3の配されていない部分が、有機化合物層4と接し、発光領域となる。有機化合物層4は、発光層と、必要に応じて適宜、正孔注入層、正孔輸送層、電子輸送層等を有する。透明電極5は、半透過電極であってもよい。保護層6は、有機化合物層4に水分が浸透することを低減する。保護層6は、一層のように図示されているが、複数層であってもよい。層ごとに無機化合物層、有機化合物層があってもよい。カラーフィルタ7は、その色により7R、7G、7Bに分けられる。カラーフィルタ7は、不図示の平坦化膜上に形成されていてもよい。また、カラーフィルタ7上に不図示の樹脂保護層を有してもよい。また、カラーフィルタ7は、保護層6上に形成されていてもよい。又はガラス基板等の対向基板上に設けられた後に、貼り合わせられていてもよい。 The interlayer insulating layer 1 may have a transistor or a capacitive element arranged thereunder or inside it. The transistor and the reflective electrode 2 may be electrically connected via a contact hole (not shown) or the like. The insulating layer 3 is also called a bank or a pixel isolation film. It covers the end of the reflective electrode 2 and is arranged to surround the reflective electrode 2. A portion of the reflective electrode 2 where the insulating layer 3 is not provided contacts the organic compound layer 4 and becomes a light emitting region. The organic compound layer 4 has a light-emitting layer and, if necessary, a hole injection layer, a hole transport layer, an electron transport layer, and the like. The transparent electrode 5 may be a semi-transparent electrode. The protective layer 6 reduces the penetration of moisture into the organic compound layer 4 . Although the protective layer 6 is illustrated as having a single layer, it may have multiple layers. Each layer may include an inorganic compound layer and an organic compound layer. The color filter 7 is divided into 7R, 7G, and 7B depending on its color. The color filter 7 may be formed on a planarization film (not shown). Further, a resin protective layer (not shown) may be provided on the color filter 7. Further, the color filter 7 may be formed on the protective layer 6. Alternatively, it may be provided on a counter substrate such as a glass substrate and then bonded together.
 図5Bは、本実施形態に係る有機発光素子にトランジスタを接続した構成の一例の断面模式図である。トランジスタは、能動素子(スイッチング素子)の一つである。トランジスタは薄膜トランジスタ(TFT)であってもよい。 FIG. 5B is a schematic cross-sectional view of an example of a configuration in which a transistor is connected to the organic light-emitting element according to this embodiment. A transistor is one of active elements (switching elements). The transistor may be a thin film transistor (TFT).
 図5Bでは、ガラス、シリコン等の基板11とその上部に絶縁層12が設けられている。絶縁層12の上には、トランジスタ18が配されており、トランジスタ18のゲート電極13、ゲート絶縁膜14、半導体層15が配置されている。トランジスタ18は、他にも半導体層15とドレイン電極16とソース電極17とで構成されている。トランジスタ18の上部には絶縁膜19が設けられている。絶縁膜19に設けられたコンタクトホール20を介して有機発光素子26を構成する陽極21とソース電極17とが接続されている。 In FIG. 5B, a substrate 11 made of glass, silicon, etc. and an insulating layer 12 are provided on top of the substrate 11. A transistor 18 is arranged on the insulating layer 12, and a gate electrode 13, a gate insulating film 14, and a semiconductor layer 15 of the transistor 18 are arranged. The transistor 18 also includes a semiconductor layer 15, a drain electrode 16, and a source electrode 17. An insulating film 19 is provided above the transistor 18 . An anode 21 and a source electrode 17 forming an organic light emitting element 26 are connected through a contact hole 20 provided in an insulating film 19 .
 尚、有機発光素子26に含まれる電極(陽極21、陰極23)とトランジスタ18に含まれる電極(ソース電極17、ドレイン電極16)との電気接続の方式は、図5Bに示される態様に限られるものではない。つまり陽極21又は陰極23のうちいずれか一方とトランジスタ18のソース電極17又はドレイン電極16のいずれか一方とが電気接続されていればよい。 Note that the method of electrical connection between the electrodes (anode 21, cathode 23) included in the organic light emitting element 26 and the electrodes (source electrode 17, drain electrode 16) included in the transistor 18 is limited to the mode shown in FIG. 5B. It's not a thing. That is, it is sufficient that either the anode 21 or the cathode 23 is electrically connected to either the source electrode 17 or the drain electrode 16 of the transistor 18.
 図5Bでは有機化合物層22を1つの層の如く図示をしているが、有機化合物層22は、複数層であってもよい。陰極23の上には有機発光素子26の劣化を低減するための第一の保護層24や第二の保護層25が設けられている。また、スイッチング素子としてトランジスタ18を使用しているが、これに代えて他のスイッチング素子を用いてもよい。さらに、トランジスタ18は、単結晶シリコンウエハを用いたトランジスタに限らず、基板の絶縁性表面上に活性層を有する薄膜トランジスタでもよい。活性層として、単結晶シリコン、アモルファスシリコン、微結晶シリコンなどの非単結晶シリコン、インジウム亜鉛酸化物、インジウムガリウム亜鉛酸化物等の非単結晶酸化物半導体が挙げられる。 Although the organic compound layer 22 is illustrated as one layer in FIG. 5B, the organic compound layer 22 may be a plurality of layers. A first protective layer 24 and a second protective layer 25 are provided on the cathode 23 to reduce deterioration of the organic light emitting element 26. Further, although the transistor 18 is used as a switching element, other switching elements may be used instead. Further, the transistor 18 is not limited to a transistor using a single crystal silicon wafer, but may be a thin film transistor having an active layer on an insulating surface of a substrate. Examples of the active layer include non-single-crystal silicon such as single-crystal silicon, amorphous silicon, and microcrystalline silicon, and non-single-crystal oxide semiconductors such as indium zinc oxide and indium gallium zinc oxide.
 図5Bのトランジスタ18は、Si基板等の基板内に形成されていてもよい。ここで基板内に形成されるとは、Si基板等の基板自体を加工してトランジスタを作製することを意味する。つまり、基板内にトランジスタを有することは、基板とトランジスタとが一体に形成されていると見ることもできる。 The transistor 18 in FIG. 5B may be formed within a substrate such as a Si substrate. Here, "formed in a substrate" means that the transistor is fabricated by processing the substrate itself, such as a Si substrate. In other words, having a transistor within the substrate can also be considered to mean that the substrate and the transistor are integrally formed.
 本実施形態に係る有機発光素子はスイッチング素子の一例であるトランジスタにより発光輝度が制御され、有機発光素子を複数面内に設けることでそれぞれの発光輝度により画像を表示することができる。尚、本実施形態に係るスイッチング素子は、薄膜トランジスタに限られず、低温ポリシリコンで形成されているトランジスタ、Si基板等の基板上に形成されたアクティブマトリクスドライバーであってもよい。基板上とは、その基板内ということもできる。基板内にトランジスタを設けるか、薄膜トランジスタを用いるかは、表示部の大きさによって選択され、例えば0.5インチ程度の大きさであれば、Si基板上に有機発光素子を設けることが好ましい。 The luminance of the organic light-emitting device according to this embodiment is controlled by a transistor, which is an example of a switching element, and by providing the organic light-emitting devices in multiple planes, images can be displayed with the luminance of each device. Note that the switching element according to this embodiment is not limited to a thin film transistor, but may be a transistor formed of low-temperature polysilicon, or an active matrix driver formed on a substrate such as a Si substrate. On the substrate can also be referred to as inside the substrate. Whether a transistor is provided within the substrate or a thin film transistor is used is selected depending on the size of the display section. For example, if the size is about 0.5 inch, it is preferable to provide the organic light emitting element on the Si substrate.
 図6は、本実施形態に係る表示装置の構成を表す模式図である。表示装置1000は、上部カバー1001と下部カバー1009との間に、タッチパネル1003、表示パネル1005、フレーム1006、回路基板1007、バッテリー1008を有している。タッチパネル1003及び表示パネル1005には、フレキシブルプリント回路(FPC)1002、1004が接続されている。回路基板1007には、トランジスタがプリントされている。バッテリー1008は、表示装置が携帯機器でなければ、設けなくてもよいし、携帯機器であっても、別の位置に設けてもよい。 FIG. 6 is a schematic diagram showing the configuration of the display device according to this embodiment. The display device 1000 includes a touch panel 1003, a display panel 1005, a frame 1006, a circuit board 1007, and a battery 1008 between an upper cover 1001 and a lower cover 1009. Flexible printed circuits (FPC) 1002 and 1004 are connected to the touch panel 1003 and the display panel 1005. A transistor is printed on the circuit board 1007. The battery 1008 may not be provided unless the display device is a portable device, or may be provided at a different location even if the display device is a portable device.
 本実施形態に係る表示装置は、赤色、緑色、青色を有するカラーフィルタを有してもよい。カラーフィルタは、当該赤色、緑色、青色がデルタ配列で配置されてもよいし、ストライプ配列に配置されてもよいし、或いはモザイク配列で配置されてもよい。 The display device according to this embodiment may include color filters having red, green, and blue. In the color filter, the red, green, and blue colors may be arranged in a delta arrangement, a stripe arrangement, or a mosaic arrangement.
 本実施形態に係る表示装置は、携帯端末の表示部に用いられてもよい。その際には、表示機能と操作機能との双方を有してもよい。携帯端末としては、スマートフォン等の携帯電話、タブレット、ヘッドマウントディスプレイ等が挙げられる。 The display device according to this embodiment may be used as a display section of a mobile terminal. In that case, it may have both a display function and an operation function. Examples of mobile terminals include mobile phones such as smartphones, tablets, head-mounted displays, and the like.
 本実施形態に係る表示装置は、複数のレンズを有する光学部と、当該光学部を通過した光を受光する撮像素子とを有する撮像装置の表示部に用いられてもよい。撮像装置は、撮像素子が取得した情報を表示する表示部を有してもよい。また、表示部は、撮像装置の外部に露出した表示部であっても、ファインダ内に配置された表示部であってもよい。撮像装置は、デジタルカメラ、デジタルビデオカメラであってもよい。撮像装置は、光電変換装置と呼ぶこともできる。 The display device according to this embodiment may be used as a display section of an imaging device that has an optical section that has a plurality of lenses and an image sensor that receives light that has passed through the optical section. The imaging device may include a display unit that displays information acquired by the imaging device. Furthermore, the display section may be a display section exposed to the outside of the imaging device, or a display section disposed within the viewfinder. The imaging device may be a digital camera or a digital video camera. The imaging device can also be called a photoelectric conversion device.
 図7Aは、本実施形態に係る撮像装置の一例を表す模式図である。撮像装置1100は、ビューファインダ1101、背面ディスプレイ1102、操作部1103、筐体1104を有している。ビューファインダ1101は、本実施形態に係る表示装置を有している。その場合、表示装置は、撮像する画像のみならず、環境情報、撮像指示等を表示してもよい。環境情報には、外光の強度、外光の向き、被写体の動く速度、被写体が遮蔽物に遮蔽される可能性等であってもよい。 FIG. 7A is a schematic diagram showing an example of an imaging device according to this embodiment. The imaging device 1100 includes a viewfinder 1101, a rear display 1102, an operation section 1103, and a housing 1104. The viewfinder 1101 has a display device according to this embodiment. In that case, the display device may display not only the image to be captured, but also environmental information, imaging instructions, and the like. The environmental information may include the intensity of external light, the direction of external light, the moving speed of the subject, the possibility that the subject will be blocked by a shielding object, and the like.
 撮像に好適なタイミングはわずかな時間なので、少しでも早く情報を表示した方がよい。従って、本実施形態の有機発光素子を用いた表示装置を用いるのが好ましい。有機発光素子は応答速度が速いからである。有機発光素子を用いた表示装置は、表示速度が求められる、これらの装置、液晶表示装置よりも好適に用いることができる。 Since the optimal timing for imaging is only a short time, it is better to display information as early as possible. Therefore, it is preferable to use a display device using the organic light emitting device of this embodiment. This is because organic light emitting devices have a fast response speed. Display devices using organic light-emitting elements can be used more favorably than these devices and liquid crystal display devices, which require high display speed.
 撮像装置1100は、不図示の光学部を有する。光学部は複数のレンズを有し、筐体1104内に収容されている撮像素子に結像する。複数のレンズは、その相対位置を調整することで、焦点を調整することができる。この操作を自動で行うこともできる。 The imaging device 1100 has an optical section (not shown). The optical section has a plurality of lenses and forms an image on an image sensor housed in the housing 1104. The focus of the plural lenses can be adjusted by adjusting their relative positions. This operation can also be performed automatically.
 図7Bは、本実施形態に係る電子機器の一例を表す模式図である。電子機器1200は、表示部1201と、操作部1202と、筐体1203を有する。筐体1203には、回路、当該回路を有するプリント基板、バッテリー、通信部、を有してもよい。操作部1202は、ボタンであってもよいし、タッチパネル方式の反応部であってもよい。操作部は、指紋を認識してロックの解除等を行う、生体認識部であってもよい。通信部を有する電子機器は通信機器ということもできる。電子機器は、レンズと、撮像素子とを備えることでカメラ機能を更に有してもよい。カメラ機能により撮像された画像が表示部に映される。電子機器としては、スマートフォン、ノートパソコン等が挙げられる。 FIG. 7B is a schematic diagram showing an example of an electronic device according to this embodiment. Electronic device 1200 includes a display section 1201, an operation section 1202, and a housing 1203. The housing 1203 may include a circuit, a printed circuit board including the circuit, a battery, and a communication unit. The operation unit 1202 may be a button or a touch panel type reaction unit. The operation unit may be a biometric recognition unit that recognizes a fingerprint and performs unlocking and the like. An electronic device having a communication section can also be called a communication device. The electronic device may further have a camera function by including a lens and an image sensor. An image captured by the camera function is displayed on the display section. Examples of electronic devices include smartphones, notebook computers, and the like.
 図8A、図8Bは、本実施形態に係る表示装置の他の例を表す模式図である。図8Aは、テレビモニタやPCモニタ等の表示装置である。表示装置1300は、額縁1301を有し表示部1302を有する。表示部1302には、本実施形態に係る発光装置が用いられる。図8Aの表示装置は、額縁1301と、表示部1302を支える土台1303を有している。土台1303は、図8Aの形態に限られない。また、額縁1301の下辺が土台を兼ねてもよい。さらに、額縁1301及び表示部1302は、曲がっていてもよい。その曲率半径は、5000mm以上6000mm以下であってよい。 8A and 8B are schematic diagrams showing other examples of the display device according to this embodiment. FIG. 8A shows a display device such as a television monitor or a PC monitor. The display device 1300 has a frame 1301 and a display portion 1302. The display portion 1302 uses the light emitting device according to this embodiment. The display device in FIG. 8A has a frame 1301 and a base 1303 that supports a display portion 1302. The base 1303 is not limited to the form shown in FIG. 8A. Further, the lower side of the picture frame 1301 may also serve as a base. Further, the frame 1301 and the display portion 1302 may be curved. The radius of curvature may be greater than or equal to 5000 mm and less than or equal to 6000 mm.
 図8Bは本実施形態に係る表示装置の他の例を表す模式図である。図8Bの表示装置1310は、折り曲げ可能に構成されており、いわゆるフォルダブルな表示装置である。表示装置1310は、第一表示部1311、第二表示部1312、筐体1313、屈曲点1314を有する。第一表示部1311と第二表示部1312とは、本実施形態に係る表示装置を有する。第一表示部1311と第二表示部1312とは、つなぎ目のない1枚の表示装置であってもよい。第一表示部1311と第二表示部1312とは、屈曲点で分けることができる。第一表示部1311、第二表示部1312は、それぞれ異なる画像を表示してもよいし、第一表示部1311と第二表示部1312とで一つの画像を表示してもよい。 FIG. 8B is a schematic diagram showing another example of the display device according to this embodiment. The display device 1310 in FIG. 8B is configured to be foldable, and is a so-called foldable display device. The display device 1310 includes a first display section 1311, a second display section 1312, a housing 1313, and a bending point 1314. The first display section 1311 and the second display section 1312 have display devices according to this embodiment. The first display section 1311 and the second display section 1312 may be one seamless display device. The first display section 1311 and the second display section 1312 can be separated at a bending point. The first display section 1311 and the second display section 1312 may each display different images, or the first display section 1311 and the second display section 1312 may display one image.
 図9Aは、本実施形態に係る照明装置の一例を表す模式図である。照明装置1400は、筐体1401と、光源1402と、回路基板1403と、光学フィルタ1404と、光拡散部1405と、を有してもよい。光源は、本実施形態に係る有機発光素子を有する。光学フィルタ1404は光源の演色性を向上させるフィルタであってもよい。光拡散部1405は、ライトアップ等、光源の光を効果的に拡散し、広い範囲に光を届けることができる。光学フィルタ1404、光拡散部1405は、照明の光出射側に設けられていてもよい。必要に応じて、最外部にカバーを設けてもよい。 FIG. 9A is a schematic diagram showing an example of the lighting device according to the present embodiment. The lighting device 1400 may include a housing 1401, a light source 1402, a circuit board 1403, an optical filter 1404, and a light diffusing section 1405. The light source includes the organic light emitting device according to this embodiment. The optical filter 1404 may be a filter that improves the color rendering properties of the light source. The light diffusing unit 1405 can effectively diffuse the light from a light source, such as when lighting up, and can deliver the light to a wide range. The optical filter 1404 and the light diffusing section 1405 may be provided on the light emission side of the illumination. If necessary, a cover may be provided on the outermost side.
 照明装置1400は例えば室内を照明する装置である。照明装置1400は白色、昼白色、その他青から赤のいずれの色を発光するものであってもよい。それらを調光する調光回路を有してもよい。照明装置1400は本発明の有機発光素子とそれに接続される電源回路を有してもよい。電源回路は、交流電圧を直流電圧に変換する回路である。また、白とは色温度が4200Kで昼白色とは色温度が5000Kである。照明装置1400はカラーフィルタを有してもよい。 The lighting device 1400 is, for example, a device that illuminates a room. The lighting device 1400 may emit white, neutral white, or any other color from blue to red. It may have a dimming circuit for dimming them. The lighting device 1400 may include the organic light emitting device of the present invention and a power supply circuit connected thereto. The power supply circuit is a circuit that converts alternating current voltage to direct current voltage. Further, white has a color temperature of 4200K, and neutral white has a color temperature of 5000K. The lighting device 1400 may have a color filter.
 また、本実施形態に係る照明装置は、放熱部を有していてもよい。放熱部は装置内の熱を装置外へ放出するものであり、比熱の高い金属、液体シリコーン等が挙げられる。 Furthermore, the lighting device according to this embodiment may include a heat radiating section. The heat radiation part radiates heat within the device to the outside of the device, and may be made of metal with high specific heat, liquid silicone, or the like.
 図9Bは、本実施形態に係る移動体の一例である自動車の模式図である。当該自動車は灯具の一例であるテールランプを有する。自動車1500は、テールランプ1501を有し、ブレーキ操作等を行った際に、テールランプを点灯する形態であってよい。テールランプ1501は、本実施形態に係る有機発光素子を有している。テールランプは、有機発光素子を保護する保護部材を有してもよい。保護部材はある程度高い強度を有し、透明であれば材料は問わないが、ポリカーボネート等で構成されることが好ましい。ポリカーボネートにフランジカルボン酸誘導体、アクリロニトリル誘導体等を混ぜてよい。 FIG. 9B is a schematic diagram of an automobile that is an example of a moving object according to the present embodiment. The automobile has a tail lamp, which is an example of a lamp. The automobile 1500 may have a tail lamp 1501, and the tail lamp may be turned on when a brake operation or the like is performed. The tail lamp 1501 includes an organic light emitting element according to this embodiment. The tail lamp may include a protection member that protects the organic light emitting element. The protective member may be made of any material as long as it has a certain degree of strength and is transparent, but it is preferably made of polycarbonate or the like. Furandicarboxylic acid derivatives, acrylonitrile derivatives, etc. may be mixed with polycarbonate.
 自動車1500は、車体1503、それに取り付けられている窓1502を有してもよい。窓は、自動車の前後を確認するための窓でなければ、透明なディスプレイであってもよい。当該透明なディスプレイは、本実施形態に係る有機発光素子を有している。この場合、有機発光素子が有する電極等の構成材料は透明な部材で構成される。 The automobile 1500 may have a vehicle body 1503 and a window 1502 attached to it. The window may be a transparent display as long as it is not a window for checking the front and rear of the vehicle. The transparent display includes an organic light emitting device according to this embodiment. In this case, constituent materials such as electrodes included in the organic light emitting element are made of transparent members.
 本実施形態に係る移動体は、船舶、航空機、ドローン等であってもよい。移動体は、機体と当該機体に設けられた灯具を有してもよい。灯具は、機体の位置を知らせるための発光をしてもよい。灯具は本実施形態に係る有機発光素子を有する。 The moving object according to this embodiment may be a ship, an aircraft, a drone, etc. The moving body may include a body and a lamp provided on the body. The light may emit light to indicate the position of the aircraft. The lamp includes the organic light emitting device according to this embodiment.
 図10A、図10Bを参照して、上述の各実施形態の表示装置の適用例について説明する。表示装置は、例えばスマートグラス、HMD、スマートコンタクトのようなウェアラブルデバイスとして装着可能なシステムに適用できる。このような適用例に使用される撮像表示装置は、可視光を光電変換可能な撮像装置と、可視光を発光可能な表示装置とを有する。 Application examples of the display devices of each of the above embodiments will be described with reference to FIGS. 10A and 10B. The display device can be applied to systems that can be worn as wearable devices, such as smart glasses, HMDs, and smart contacts. An imaging display device used in such an application example includes an imaging device capable of photoelectrically converting visible light and a display device capable of emitting visible light.
 図10Aは、1つの適用例に係る眼鏡1600(スマートグラス)を説明する。眼鏡1600のレンズ1601の表面側に、CMOSセンサやSPADのような撮像装置1602が設けられている。また、レンズ1601の裏面側には、上述した各実施形態の表示装置が設けられている。眼鏡1600は、制御装置1603を更に備える。制御装置1603は、撮像装置1602と各実施形態に係る表示装置に電力を供給する電源として機能する。また、制御装置1603は、撮像装置1602と表示装置の動作を制御する。レンズ1601には、撮像装置1602に光を集光するための光学系が形成されている。 FIG. 10A illustrates eyeglasses 1600 (smart glasses) according to one application example. An imaging device 1602 such as a CMOS sensor or a SPAD is provided on the front side of the lens 1601 of the glasses 1600. Further, the display device of each embodiment described above is provided on the back side of the lens 1601. Glasses 1600 further include a control device 1603. The control device 1603 functions as a power source that supplies power to the imaging device 1602 and the display device according to each embodiment. Further, the control device 1603 controls the operations of the imaging device 1602 and the display device. An optical system for condensing light onto an imaging device 1602 is formed in the lens 1601.
 図10Bは、他の適用例に係る眼鏡1610(スマートグラス)を説明する。眼鏡1610は、制御装置1612を有しており、制御装置1612に、撮像装置1602に相当する撮像装置と、表示装置が搭載される。レンズ1611には、制御装置1612内の撮像装置と、表示装置からの発光を投影するための光学系が形成されており、レンズ1611には画像が投影される。制御装置1612は、撮像装置及び表示装置に電力を供給する電源として機能するとともに、撮像装置及び表示装置の動作を制御する。制御装置1612は、装着者の視線を検知する視線検知部を有してもよい。視線の検知は赤外線を用いてよい。赤外発光部は、表示画像を注視しているユーザーの眼球に対して、赤外光を発する。発せられた赤外光の眼球からの反射光を、受光素子を有する撮像部が検出することで眼球の撮像画像が得られる。平面視における赤外発光部から表示部への光を低減する低減手段を有することで、画像品位の低下を低減する。 FIG. 10B illustrates glasses 1610 (smart glasses) according to another application example. The glasses 1610 include a control device 1612, and the control device 1612 is equipped with an imaging device corresponding to the imaging device 1602 and a display device. The lens 1611 is formed with an optical system for projecting light emitted from the imaging device in the control device 1612 and the display device, and an image is projected onto the lens 1611. The control device 1612 functions as a power source that supplies power to the imaging device and the display device, and controls the operation of the imaging device and the display device. The control device 1612 may include a line-of-sight detection unit that detects the wearer's line of sight. Infrared rays may be used to detect line of sight. The infrared light emitting unit emits infrared light to the eyeballs of the user who is gazing at the displayed image. A captured image of the eyeball is obtained by detecting the reflected light of the emitted infrared light from the eyeball by an imaging section having a light receiving element. By having a reduction means for reducing light emitted from the infrared light emitting section to the display section in plan view, deterioration in image quality is reduced.
 赤外光の撮像により得られた眼球の撮像画像から表示画像に対するユーザーの視線を検出する。眼球の撮像画像を用いた視線検出には任意の公知の手法が適用できる。一例として、角膜での照射光の反射によるプルキニエ像に基づく視線検出方法を用いることができる。 The user's line of sight with respect to the displayed image is detected from the captured image of the eyeball obtained by infrared light imaging. Any known method can be applied to line of sight detection using a captured image of the eyeball. As an example, a line of sight detection method based on a Purkinje image by reflection of irradiated light on the cornea can be used.
 より具体的には、瞳孔角膜反射法に基づく視線検出処理が行われる。瞳孔角膜反射法を用いて、眼球の撮像画像に含まれる瞳孔の像とプルキニエ像とに基づいて、眼球の向き(回転角度)を表す視線ベクトルが算出されることにより、ユーザーの視線が検出される。 More specifically, line of sight detection processing is performed based on the pupillary corneal reflex method. Using the pupillary corneal reflex method, the user's line of sight is detected by calculating a line of sight vector representing the direction (rotation angle) of the eyeball based on the pupil image and Purkinje image included in the captured image of the eyeball. Ru.
 本発明の一実施形態に係る表示装置は、受光素子を有する撮像装置を有し、撮像装置からのユーザーの視線情報に基づいて表示装置の表示画像を制御してもよい。 A display device according to an embodiment of the present invention may include an imaging device having a light receiving element, and may control a display image of the display device based on user's line-of-sight information from the imaging device.
 具体的には、表示装置は、視線情報に基づいて、ユーザーが注視する第一の視界領域と、第一の視界領域以外の第二の視界領域とが決定される。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。表示装置の表示領域において、第一の視界領域の表示解像度を第二の視界領域の表示解像度よりも高く制御してよい。つまり、第二の視界領域の解像度を第一の視界領域よりも低くしてよい。 Specifically, in the display device, a first viewing area that the user gazes at and a second viewing area other than the first viewing area are determined based on the line-of-sight information. The first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device and may be received. In the display area of the display device, the display resolution of the first viewing area may be controlled to be higher than the display resolution of the second viewing area. That is, the resolution of the second viewing area may be lower than that of the first viewing area.
 また、表示領域は、第一の表示領域、第一の表示領域とは異なる第二の表示領域とを有し、視線情報に基づいて、第一の表示領域及び第二の表示領域から優先度が高い領域を決定される。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。優先度の高い領域の解像度を、優先度が高い領域以外の領域の解像度よりも高く制御してもよい。つまり優先度が相対的に低い領域の解像度を低くしてもよい。 In addition, the display area has a first display area and a second display area different from the first display area, and based on line-of-sight information, priority is determined from the first display area and the second display area. is determined to be a high area. The first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device and may be received. The resolution of areas with high priority may be controlled to be higher than the resolution of areas other than the areas with high priority. In other words, the resolution of an area with a relatively low priority may be lowered.
 尚、第一の視界領域や優先度が高い領域の決定には、AIを用いてもよい。AIは、眼球の画像と当該画像の眼球が実際に視ていた方向とを教師データとして、眼球の画像から視線の角度、視線の先の目的物までの距離を推定するよう構成されたモデルであってもよい。AIプログラムは、表示装置が有しても、撮像装置が有しても、外部装置が有してもよい。外部装置が有する場合は、通信を介して、表示装置に伝えられる。 Note that AI may be used to determine the first viewing area and the area with high priority. AI is a model configured to estimate the angle of line of sight and the distance to the object in front of the line of sight from the image of the eyeball, using the image of the eyeball and the direction in which the eyeball was actually looking in the image as training data. There may be. The AI program may be included in a display device, an imaging device, or an external device. If the external device has it, it is transmitted to the display device via communication.
 視認検知に基づいて表示制御する場合、外部を撮像する撮像装置を更に有するスマートグラスに好ましく適用できる。スマートグラスは、撮像した外部情報をリアルタイムで表示することができる。 When display control is performed based on visual detection, it can be preferably applied to smart glasses that further include an imaging device that captures images of the outside. Smart glasses can display captured external information in real time.
 以上説明した通り、本実施形態に係る有機発光素子を用いた装置を用いることにより、良好な画質で、長時間表示にも安定な表示が可能になる。また、本実施形態に係る有機発光素子を用いた装置を用いることにより、高効率で高輝度な光出力による屋外での良好な視認性と省電力表示の両立が可能になる。 As explained above, by using the device using the organic light emitting element according to this embodiment, stable display with good image quality can be achieved even for long periods of time. Further, by using a device using the organic light emitting element according to this embodiment, it is possible to achieve both good outdoor visibility and power-saving display due to high efficiency and high brightness light output.
 〔含まれる構成〕
 本実施形態の開示は、以下の構成を含む。
[Included configurations]
The disclosure of this embodiment includes the following configurations.
 (構成1)
 下記一般式[1]で表されるイリジウム錯体であって、Ir(L1)のLUMOのエネルギー準位はIr(L2)のLUMOのエネルギー準位よりも深く、Ir(L1)のHOMOのエネルギー準位はIr(L2)のHOMOのエネルギー準位よりも浅いことを特徴とする有機金属錯体。
 Ir(L1)(L2) [1]
(Configuration 1)
An iridium complex represented by the following general formula [1], the energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3 , and the HOMO of Ir(L1) 3 An organometallic complex characterized in that its energy level is shallower than the HOMO energy level of Ir(L2) 3 .
Ir(L1) m (L2) n [1]
 上記式[1]において、L1及びL2は互いに異なる二座配位子であり、m及びnは1又は2であり、m+n=3である。 In the above formula [1], L1 and L2 are different bidentate ligands, m and n are 1 or 2, and m+n=3.
 (構成2)
 熱重量分析(TG)曲線においてIr(L1)又はIr(L2)の5%重量減少温度(T5)が、前記一般式[1]で表されるイリジウム錯体のT5以上であることを特徴とする構成1に記載の有機金属錯体。
(Configuration 2)
The 5% weight loss temperature (T5) of Ir(L1) 3 or Ir(L2) 3 in the thermogravimetric analysis (TG) curve is equal to or higher than T5 of the iridium complex represented by the general formula [1]. The organometallic complex according to configuration 1.
 (構成3)
 前記L1が下記一般式[2]で表されることを特徴とする構成1又は2に記載の有機金属錯体。
(Configuration 3)
The organometallic complex according to Structure 1 or 2, wherein L1 is represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式[2]において、X乃至X10は炭素原子又は窒素原子である。 In the above formula [2], X 1 to X 10 are carbon atoms or nitrogen atoms.
 R乃至Rは、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ヘテロアルキル基、アリールアルキル基、アルコキシ基、アリールオキシ基、アミノ基、シリル基、アルケニル基、シクロアルケニル基、ヘテロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、カルボン酸残基、エステル基、ニトリル基、イソニトリル基、スルファニル基、スルホン酸残基、ホスフィノ基、ボロニル基及びこれらの組み合わせからなる群から選択される。また、RとRとが互いに結合して環構造を形成してもよい。 R 1 to R 3 are each independently a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, Alkenyl group, cycloalkenyl group, heteroalkenyl group, alkynyl group, aryl group, heteroaryl group, acyl group, carboxylic acid residue, ester group, nitrile group, isonitrile group, sulfanyl group, sulfonic acid residue, phosphino group, boronyl and combinations thereof. Furthermore, R 1 and R 2 may be bonded to each other to form a ring structure.
 Yは酸素原子、硫黄原子、CR、CR=CR、NR、BR、SiR、C=O、C=NR、C=CR、S=O、SO、CR-CR、PR及びP(=O)Rからなる群から選択される二価の架橋基であり、R、R7はそれぞれ独立して、直鎖アルキル基、分岐アルキル基、及びアリール基からなる群から選択される。 Y is an oxygen atom, a sulfur atom, CR 6 R 7 , CR 6 =CR 7 , NR 6 , BR 6 , SiR 6 R 7 , C=O, C=NR 6 , C=CR 6 R 6 , S=O, is a divalent crosslinking group selected from the group consisting of SO 2 , CR 6 R 7 -CR 6 R 7 , PR 6 and P(=O)R 6 , and R 6 and R7 are each independently a linear selected from the group consisting of alkyl groups, branched alkyl groups, and aryl groups.
 (構成4)
 前記式[2]において、X乃至X10は炭素原子であることを特徴とする構成3に記載の有機金属錯体。
(Configuration 4)
The organometallic complex according to configuration 3, wherein in the formula [2], X 1 to X 10 are carbon atoms.
 (構成5)
 前記式[2]において、ピリジン環4位に、水素原子以外のRが置換されていることを特徴とする構成4に記載の有機金属錯体。
(Configuration 5)
The organometallic complex according to configuration 4, wherein in the formula [2], R 1 other than a hydrogen atom is substituted at the 4-position of the pyridine ring.
 (構成6)
 前記L2が下記一般式[3]で表されることを特徴とする構成1乃至5のいずれかに記載の有機金属錯体。
(Configuration 6)
6. The organometallic complex according to any one of Structures 1 to 5, wherein L2 is represented by the following general formula [3].
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式[3]において、X11乃至X17は炭素原子又は窒素原子であり、X15乃至X17のうちいずれか一つ以上が窒素原子である。 In the above formula [3], X 11 to X 17 are carbon atoms or nitrogen atoms, and any one or more of X 15 to X 17 is a nitrogen atom.
 R、Rは、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ヘテロアルキル基、アリールアルキル基、アルコキシ基、アリールオキシ基、アミノ基、シリル基、アルケニル基、シクロアルケニル基、ヘテロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、カルボン酸残基、エステル基、ニトリル基、イソニトリル基、スルファニル基、スルホン酸残基及びこれらの組み合わせからなる群から選択され、隣接する置換基同士が結合して環構造を形成してもよい。 R 4 and R 5 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, From alkenyl groups, cycloalkenyl groups, heteroalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, carboxylic acid residues, ester groups, nitrile groups, isonitrile groups, sulfanyl groups, sulfonic acid residues, and combinations thereof. Adjacent substituents may be bonded to each other to form a ring structure.
 (構成7)
 前記式[3]において、X15が窒素原子であり、X11乃至X14及びX16乃至X17は炭素原子であることを特徴とする構成6に記載の有機金属錯体。
(Configuration 7)
The organometallic complex according to configuration 6, wherein in the formula [3], X 15 is a nitrogen atom, and X 11 to X 14 and X 16 to X 17 are carbon atoms.
 (構成8)
 前記式[3]において、Rが水素原子、アルキル基、シクロアルキル基のいずれかであることを特徴とする、構成6又は7に記載の有機金属錯体。
(Configuration 8)
The organometallic complex according to configuration 6 or 7, wherein in the formula [3], R 5 is a hydrogen atom, an alkyl group, or a cycloalkyl group.
 (構成9)
 前記有機金属錯体が、下記式[4]乃至[8]で示されるいずれかであることを特徴とする構成8に記載の有機金属錯体。
(Configuration 9)
The organometallic complex according to configuration 8, wherein the organometallic complex is one of the following formulas [4] to [8].
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 (構成10)
 第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されている有機化合物層とを有する有機発光素子であって、
 前記有機化合物層は、構成1乃至9のいずれかに記載の有機金属錯体を有することを特徴とする有機発光素子。
(Configuration 10)
An organic light emitting device comprising a first electrode, a second electrode, and an organic compound layer disposed between the first electrode and the second electrode,
10. An organic light-emitting device, wherein the organic compound layer includes the organometallic complex according to any one of Structures 1 to 9.
 (構成11)
 前記有機化合物層は発光層であり、前記有機金属錯体とは異なる第一の有機化合物を更に有し、
 前記第一の有機化合物は、前記有機金属錯体よりも最低励起三重項エネルギーが大きい化合物であることを特徴とする構成10に記載の有機発光素子。
(Configuration 11)
The organic compound layer is a light emitting layer and further includes a first organic compound different from the organometallic complex,
11. The organic light emitting device according to configuration 10, wherein the first organic compound is a compound having a lowest excited triplet energy higher than that of the organometallic complex.
 (構成12)
 前記発光層が、前記有機金属錯体及び前記第一の有機化合物とは異なる第二の有機化合物を更に有し、前記第二の有機化合物の最低励起三重項エネルギーは、前記有機金属錯体の最低励起三重項エネルギー以上、前記第一の有機化合物の最低励起三重項エネルギー以下であることを特徴とする構成11に記載の有機発光素子。
(Configuration 12)
The light-emitting layer further includes a second organic compound different from the organometallic complex and the first organic compound, and the lowest excited triplet energy of the second organic compound is equal to the lowest excited triplet energy of the organometallic complex. 12. The organic light-emitting device according to configuration 11, wherein the organic light-emitting device has a triplet energy or more and a lowest excited triplet energy of the first organic compound or less.
 (構成13)
 前記有機化合物層は、前記第一電極と前記発光層との間に配される第一の電荷輸送層と、前記第二電極と前記発光層との間に配される第二の電荷輸送層と、を更に有し、
 前記第一電極は前記第一の電荷輸送層と接し、前記第二電極は前記第二の電荷輸送層と接することを特徴とする構成11又は12に記載の有機発光素子。
(Configuration 13)
The organic compound layer includes a first charge transport layer disposed between the first electrode and the light emitting layer, and a second charge transport layer disposed between the second electrode and the light emitting layer. and further has
13. The organic light emitting device according to configuration 11 or 12, wherein the first electrode is in contact with the first charge transport layer, and the second electrode is in contact with the second charge transport layer.
 (構成14)
 前記第一の電荷輸送層の最低励起三重項エネルギーは、前記第一の有機化合物の最低励起三重項エネルギーよりも大きく、且つ、前記第二の電荷輸送層の最低励起三重項エネルギーは、前記第一の有機化合物の最低励起三重項エネルギーよりも大きいことを特徴とする構成13に記載の有機発光素子。
(Configuration 14)
The lowest excited triplet energy of the first charge transport layer is greater than the lowest excited triplet energy of the first organic compound, and the lowest excited triplet energy of the second charge transport layer is higher than the lowest excited triplet energy of the first organic compound. 14. The organic light-emitting device according to configuration 13, wherein the organic light-emitting device has a higher triplet energy than the lowest excited triplet energy of one organic compound.
 (構成15)
 複数の画素を有し、前記複数の画素の少なくとも一つが、構成10乃至14のいずれかに記載の有機発光素子と、前記有機発光素子に接続されたトランジスタと、を有することを特徴とする表示装置。
(Configuration 15)
A display comprising a plurality of pixels, at least one of the plurality of pixels including the organic light-emitting element according to any one of Structures 10 to 14, and a transistor connected to the organic light-emitting element. Device.
 (構成16)
 複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、前記撮像素子が撮像した画像を表示する表示部と、を有し、
 前記表示部は構成10乃至14のいずれか一項に記載の有機発光素子を有することを特徴とする撮像装置。
(Configuration 16)
It has an optical section having a plurality of lenses, an image sensor that receives light that has passed through the optical section, and a display section that displays an image captured by the image sensor,
An imaging device characterized in that the display section includes the organic light emitting device according to any one of Structures 10 to 14.
 (構成17)
 構成10乃至14のいずれか一項に記載の有機発光素子を有する表示部と、前記表示部が設けられた筐体と、前記筐体に設けられ、外部と通信する通信部と、を有することを特徴とする電子機器。
(Configuration 17)
A display unit including the organic light emitting element according to any one of configurations 10 to 14, a casing in which the display unit is provided, and a communication unit provided in the casing and communicating with the outside. An electronic device featuring:
 (構成18)
 構成10乃至14のいずれか一項に記載の有機発光素子を有する光源と、前記光源が発する光を透過する光拡散部又は光学フィルタと、を有することを特徴とする照明装置。
(Configuration 18)
An illumination device comprising: a light source having the organic light emitting element according to any one of configurations 10 to 14; and a light diffusion section or an optical filter that transmits light emitted from the light source.
 (構成19)
 構成10乃至14のいずれか一項に記載の有機発光素子を有する灯具と、前記灯具が設けられた機体と、を有することを特徴とする移動体。
(Configuration 19)
A mobile object comprising: a lamp having the organic light emitting element according to any one of Structures 10 to 14; and a body provided with the lamp.
 以下、実施例を説明する。但し本発明は、これら実施例に限定されるものではない。 Examples will be described below. However, the present invention is not limited to these Examples.
 〔有機金属錯体の合成〕
 〈配位子L1の合成〉
 以下の反応式により、配位子L1を合成した。手順を以下に示す。
[Synthesis of organometallic complexes]
<Synthesis of ligand L1>
Ligand L1 was synthesized using the following reaction formula. The steps are shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 窒素雰囲気において、100mlナスフラスコにジベンゾフラン-4-ボロン酸を2.12g(10.5mmol)、4-(tert-ブチル)-2-クロロピリジンを1.70g(10.0mmol)、テトラキストリフェニルホスフィンパラジウムを0.12g(0.1mmol)、トルエンを30ml、エタノールを15ml、2M炭酸ナトリウム水溶液を15ml加えた後、室温から90℃に昇温して4時間攪拌した。トルエンと水を加えて有機層を抽出し、得られた有機層に硫酸マグネシウムを加えた後ろ過した。ろ液を濃縮し、シリカゲルカラムクロマトグラフィー(移動相:クロロホルム)により精製した。溶媒を留去し、イソプロピルアルコール(IPA)水溶液で晶析して、化合物3.00gを得た。得られた化合物が有機金属錯体(1)の配位子L1であることをNMRで確認した。 In a nitrogen atmosphere, 2.12 g (10.5 mmol) of dibenzofuran-4-boronic acid, 1.70 g (10.0 mmol) of 4-(tert-butyl)-2-chloropyridine, and tetrakistriphenylphosphine were placed in a 100 ml eggplant flask. After adding 0.12 g (0.1 mmol) of palladium, 30 ml of toluene, 15 ml of ethanol, and 15 ml of 2M aqueous sodium carbonate solution, the temperature was raised from room temperature to 90° C. and stirred for 4 hours. Toluene and water were added to extract the organic layer, magnesium sulfate was added to the obtained organic layer, and the mixture was filtered. The filtrate was concentrated and purified by silica gel column chromatography (mobile phase: chloroform). The solvent was distilled off, and the residue was crystallized from an aqueous isopropyl alcohol (IPA) solution to obtain 3.00 g of the compound. It was confirmed by NMR that the obtained compound was the ligand L1 of organometallic complex (1).
 〈中間体(1)の合成〉
 以下の反応式により、配位子L2より中間体(1)を合成した。手順を以下に示す。
<Synthesis of intermediate (1)>
Intermediate (1) was synthesized from ligand L2 according to the following reaction formula. The steps are shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 窒素雰囲気において、配位子L2として1-フェニルピラゾールを3.20g(22.0mmol)、塩化イリジウム三水和物を3.50g(10mmol)、2-エトキシエタノールを30ml、純水を10ml、200mlナスフラスコに加えた。この溶液を室温から120℃に昇温し、20時間攪拌した。水を加え、析出した固体をろ過した。ろ過した固体をメタノール、ヘキサンで洗浄して中間体(1)を5.00g得た。 In a nitrogen atmosphere, 3.20 g (22.0 mmol) of 1-phenylpyrazole as the ligand L2, 3.50 g (10 mmol) of iridium chloride trihydrate, 30 ml of 2-ethoxyethanol, and 10 ml and 200 ml of pure water. Added to eggplant flask. This solution was heated from room temperature to 120°C and stirred for 20 hours. Water was added and the precipitated solid was filtered. The filtered solid was washed with methanol and hexane to obtain 5.00 g of intermediate (1).
 <中間体(2)の合成>
 以下の反応式により、中間体(1)より中間体(2)を合成した。手順を以下に示す
<Synthesis of intermediate (2)>
Intermediate (2) was synthesized from intermediate (1) according to the following reaction formula. The steps are shown below
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 丸底フラスコに、中間体(1)1.00g(1.00mmol)を20mlのジクロロメタンに溶解した。別のフラスコに、銀(I)トリフレート0.500g(2.00mmol)を40mlのMeOHに溶解した。これを、室温にて連続撹拌下で二量体溶液にゆっくりと添加した。反応混合物を暗所で一晩撹拌し、次いで、密に充填したセライト(登録商標)ベッドを通して濾過し、塩化銀沈殿物を除去した。溶媒を減圧下で除去して、1.40g(100%)の黄緑色の固体を得て、これを更なる精製を行わずに用いた。 In a round bottom flask, 1.00 g (1.00 mmol) of intermediate (1) was dissolved in 20 ml of dichloromethane. In a separate flask, 0.500 g (2.00 mmol) of silver (I) triflate was dissolved in 40 ml of MeOH. This was added slowly to the dimer solution under continuous stirring at room temperature. The reaction mixture was stirred in the dark overnight and then filtered through a closely packed bed of Celite® to remove the silver chloride precipitate. The solvent was removed under reduced pressure to yield 1.40 g (100%) of a yellow-green solid, which was used without further purification.
 〈有機金属錯体の合成〉
 以下の反応式により、配位子L1及び中間体(2)より有機金属錯体(1)を合成した。
<Synthesis of organometallic complexes>
Organometallic complex (1) was synthesized from ligand L1 and intermediate (2) according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 フラスコに、中間体(2)1.40g(1.00mmol)及び0.300g(1.00mmol)の配位子L1、25mlのエタノール及び25mlのメタノールを添加した。反応混合物を36時間還流し、黄色沈殿物を得た。反応混合物を室温に冷却し、エタノールで希釈し、セライト(登録商標)を添加し、混合物を10分間撹拌した。得られた混合物を、フリット上の小シリカゲルプラグで濾過し、エタノール(3乃至4回)とヘキサン(3乃至4回)で洗浄した。濾液を捨てた。次いで、セライト(登録商標)/シリカプラグをジクロロメタンで洗浄し、生成物を溶解した。ジクロロメタンの半分量を減圧下で除し、ヘキサンを添加して生成物を沈殿させ、これを濾過しヘキサンで洗浄した。粗生成物を、容積比が7/3のジクロロメタン/ヘキサンを用いるシリカゲルクロマトグラフィーに付し、次いで昇華させて0.230g(34質量%)の生成物を黄色固体として得た。係る生成物が有機金属錯体(1)であることをNMRで確認した。 1.40 g (1.00 mmol) of intermediate (2) and 0.300 g (1.00 mmol) of ligand L1, 25 ml of ethanol, and 25 ml of methanol were added to the flask. The reaction mixture was refluxed for 36 hours, yielding a yellow precipitate. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added, and the mixture was stirred for 10 minutes. The resulting mixture was filtered through a small plug of silica gel on a frit and washed with ethanol (3-4 times) and hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half of the dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel using 7/3 dichloromethane/hexane by volume, followed by sublimation to yield 0.230 g (34% by weight) of product as a yellow solid. It was confirmed by NMR that the product was the organometallic complex (1).
 [H NMR(400MHz,CDCl3)]δ:9.04(d,J=4.8Hz,1H),8.04(d,J=4.8Hz,2H),7.83(d,J=7.5Hz,2H),7.77(d,J=7.5Hz,2H),7.55-7.50(m,2H),7.45(d,J=7.5Hz,2H),7.37-7.20(m,6H),7.00-6.80(m,4H),1.45(s,9H) [ 1 H NMR (400 MHz, CDCl3)] δ: 9.04 (d, J = 4.8 Hz, 1H), 8.04 (d, J = 4.8 Hz, 2H), 7.83 (d, J = 7.5Hz, 2H), 7.77 (d, J = 7.5Hz, 2H), 7.55-7.50 (m, 2H), 7.45 (d, J = 7.5Hz, 2H), 7.37-7.20 (m, 6H), 7.00-6.80 (m, 4H), 1.45 (s, 9H)
 上記有機金属錯体(1)と同様の方法で、有機金属錯体(13)、(14)、(16)、有機金属錯体(17)、(27)、(29)、(36)、(37)、(47)、(63)、(70)を合成した。また、比較化合物(1)乃至(10)を以下に示す。 Organometallic complexes (13), (14), (16), organometallic complexes (17), (27), (29), (36), (37) were prepared in the same manner as the above organometallic complex (1). , (47), (63), and (70) were synthesized. Moreover, comparative compounds (1) to (10) are shown below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 各有機金属錯体の熱重量分析(TG)曲線における5%重量減少温度(T5)を表3、表4に示す。また、各有機金属錯体が、配位子L1のみで構成されたIr(L1)、配位子L2のみで構成されたIr(L2)のそれぞれのLUMOとHOMOのエネルギー準位を表3、表4に示す。表3、表4中、「L1」の欄がIr(L1)のエネルギー準位を、「L2」の欄がIr(L2)のエネルギー準位を示す。 Tables 3 and 4 show the 5% weight loss temperature (T5) in the thermogravimetric analysis (TG) curve of each organometallic complex. In addition, Table 3 shows the energy levels of the LUMO and HOMO of Ir(L1) 3 , which is composed only of the ligand L1, and Ir(L2) 3 , which is composed only of the ligand L2, in each organometallic complex. , shown in Table 4. In Tables 3 and 4, the column "L1" indicates the energy level of Ir(L1) 3 and the column "L2" indicates the energy level of Ir(L2) 3 .
 更に、「Ir(L1)のLUMO準位がIr(L2)のLUMO準位よりも深く、Ir(L1)のHOMO準位がIr(L2)のHOMO準位よりも浅い。」という関係性の条件を満たすものを「〇」、満たされないものを「×」とした。また、トルエン中で発光スペクトルを測定した時の最大発光波長、半値幅を表3、表4に示す。 Furthermore, "the LUMO level of Ir(L1) 3 is deeper than the LUMO level of Ir(L2) 3 , and the HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3. " Those that satisfy the relationship conditions are marked as “〇”, and those that are not satisfied are marked as “×”. Further, Tables 3 and 4 show the maximum emission wavelength and half-value width when the emission spectrum was measured in toluene.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表3、表4の有機金属錯体のデータから、同じ配位子で構成されている比較化合物(1)よりも2種類の配位子で構成されている有機金属錯体(1)、(13)、(14)、(16)、(17)、(27)、(29)、(36)、(37)、(47)、(63)、(70)及び、比較化合物(2)、(3)、(4)、(6)、(7)、(8)、(9)、(10)の方が熱重量分析(TG)曲線における5%重量減少温度(T5)が低いことがわかる。 From the data on organometallic complexes in Tables 3 and 4, it is clear that organometallic complexes (1) and (13) are composed of two types of ligands, rather than comparative compound (1), which is composed of the same ligand. , (14), (16), (17), (27), (29), (36), (37), (47), (63), (70) and comparative compounds (2), (3 ), (4), (6), (7), (8), (9), and (10) have a lower 5% weight loss temperature (T5) in the thermogravimetric analysis (TG) curve.
 更に、「Ir(L1)のLUMO準位はIr(L2)のLUMO準位よりも深く、Ir(L1)のHOMO準位はIr(L2)のHOMO準位よりも浅い。」という本発明の条件を満たしている有機金属錯体(1)、(13)、(14)、(16)、(17)、(27)、(29)、(36)、(37)、(47)、(63)、(70)は、配位子L1又は配位子L2が類似の構造を持つ一方で本発明の条件を満たさない比較化合物よりも狭い半値幅を示していることがわかる。例えば、有機金属錯体(1)は配位子L1の構造が同じである比較化合物(2)、(3)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(13)は配位子L1の構造が類似している比較化合物(2)、(3)、(4)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(14)、(16)は、配位子L1と配位子L2の構造が類似している比較化合物(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(17)は配位子L1の構造が同じである比較化合物(2)、(3)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(27)は配位子L2の構造が類似している比較化合物(3)、(4)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(29)は配位子L1の構造が同じである比較化合物(2)、(3)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(36)は配位子L2の構造が類似している比較化合物(3)、(4)、(6)よりも狭い半値幅を示していることがわかる。有機金属錯体(37)は、配位子L1の構造が同じである比較化合物(7)よりも狭い半値幅を示していることがわかる。有機金属錯体(47)は、配位子L1の構造が同じである比較化合物(8)よりも狭い半値幅を示していることがわかる。有機金属錯体(63)は、配位子L1の構造が同じである比較化合物(9)よりも狭い半値幅を示していることがわかる。有機金属錯体(70)は、配位子L2の構造が同じ又は類似している比較化合物(5)、(7)、(8)、(10)よりも狭い半値幅を示していることがわかる。は、比較化合物(2)、(3)、(4)よりも狭い半値幅を示していることがわかる。特に、有機金属錯体(1)、(17)、(27)、(29)、(36)、(47)は狭い半値幅を示していることがわかる。 Furthermore, "The LUMO level of Ir(L1) 3 is deeper than the LUMO level of Ir(L2) 3 , and the HOMO level of Ir(L1) 3 is shallower than the HOMO level of Ir(L2) 3. " Organometallic complexes (1), (13), (14), (16), (17), (27), (29), (36), (37), (47) that satisfy the conditions of the present invention: ), (63), and (70) show narrower half-widths than the comparative compounds in which the ligand L1 or the ligand L2 has a similar structure but do not satisfy the conditions of the present invention. For example, it can be seen that the organometallic complex (1) exhibits a narrower half-value width than the comparative compounds (2), (3), and (6) having the same structure of the ligand L1. It can be seen that the organometallic complex (13) exhibits a narrower half-width than the comparative compounds (2), (3), (4), and (6) in which the structure of the ligand L1 is similar. It can be seen that the organometallic complexes (14) and (16) exhibit narrower half-widths than the comparative compound (6) in which the structures of the ligands L1 and L2 are similar. It can be seen that the organometallic complex (17) exhibits a narrower half-value width than the comparative compounds (2), (3), and (6) having the same structure of the ligand L1. It can be seen that the organometallic complex (27) exhibits a narrower half-width than the comparative compounds (3), (4), and (6) in which the structure of the ligand L2 is similar. It can be seen that the organometallic complex (29) exhibits a narrower half-width than the comparative compounds (2), (3), and (6) in which the structure of the ligand L1 is the same. It can be seen that the organometallic complex (36) exhibits a narrower half-width than the comparative compounds (3), (4), and (6) in which the structure of the ligand L2 is similar. It can be seen that the organometallic complex (37) exhibits a narrower half-width than the comparative compound (7) having the same structure of the ligand L1. It can be seen that the organometallic complex (47) exhibits a narrower half-width than the comparative compound (8) having the same structure of the ligand L1. It can be seen that the organometallic complex (63) exhibits a narrower half-width than the comparative compound (9) having the same structure of the ligand L1. It can be seen that the organometallic complex (70) exhibits a narrower half-width than the comparative compounds (5), (7), (8), and (10) in which the structure of the ligand L2 is the same or similar. . It can be seen that the compound has a narrower half-width than the comparative compounds (2), (3), and (4). In particular, it can be seen that organometallic complexes (1), (17), (27), (29), (36), and (47) exhibit narrow half-widths.
 以上のデータから、本発明に係る有機金属錯体は低い昇華温度と高い色純度の両立を実現していることがわかる。 From the above data, it can be seen that the organometallic complex according to the present invention achieves both a low sublimation temperature and high color purity.
 〔実施例(1)乃至(8)及び比較例(1)乃至(4)〕
 上記で合成した有機金属錯体、及び比較化合物について、3×10-3Paにて昇華精製を行った。各有機金属錯体の純度をHPLCで測定した結果、以下の通りであった。
 有機金属錯体(1):99.6質量%
 有機金属錯体(13):99.3質量%
 有機金属錯体(14):99.2質量%
 有機金属錯体(16):99.5質量%
 有機金属錯体(17):99.6質量%
 有機金属錯体(27):99.4質量%
 有機金属錯体(29):99.3質量%
 有機金属錯体(36):99.1質量%
 比較化合物(1):99.8質量%
 比較化合物(2):99.4質量%
 比較化合物(3):99.2質量%
 比較化合物(4):99.6質量%
[Examples (1) to (8) and Comparative Examples (1) to (4)]
The organometallic complex synthesized above and the comparative compound were purified by sublimation at 3×10 −3 Pa. The purity of each organometallic complex was measured by HPLC, and the results were as follows.
Organometallic complex (1): 99.6% by mass
Organometallic complex (13): 99.3% by mass
Organometallic complex (14): 99.2% by mass
Organometallic complex (16): 99.5% by mass
Organometallic complex (17): 99.6% by mass
Organometallic complex (27): 99.4% by mass
Organometallic complex (29): 99.3% by mass
Organometallic complex (36): 99.1% by mass
Comparative compound (1): 99.8% by mass
Comparative compound (2): 99.4% by mass
Comparative compound (3): 99.2% by mass
Comparative compound (4): 99.6% by mass
 上記有機金属錯体の昇華物を用いて、基板上に順次陽極/ホール注入層/ホール輸送層/発光層/電子輸送層/陰極の構成の有機発光素子を、以下のように作製した。 Using the above sublimated organometallic complex, an organic light emitting device having a structure of anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/cathode in this order on a substrate was fabricated as follows.
 ガラス基板上に、陽極としてITOをスパッタ法にて膜厚100nmで成膜したものを透明導電性支持基板(ITO基板)として使用した。このITO基板上に、以下に示す有機化合物層及び電極層(括弧内は厚さ)を、1×10-5Paの真空チャンバー内で抵抗加熱による真空蒸着によって連続的に成膜した。この時対向する電極面積は3mmになるように作製した。
 ホール注入層:HT16(10nm)
 ホール輸送層:HT1(40nm)
 発光層:
  ホスト:EM32
  ゲスト:有機金属錯体(発光層中に4質量%)
 電子輸送層:ET20(30nm)
 陰極:
  LiF(15nm)
  Al(200nm)
A transparent conductive support substrate (ITO substrate) in which an ITO film was formed as an anode to a thickness of 100 nm by sputtering on a glass substrate was used. On this ITO substrate, an organic compound layer and an electrode layer (thickness in parentheses) shown below were continuously formed by vacuum evaporation using resistance heating in a vacuum chamber of 1×10 −5 Pa. At this time, the facing electrodes were manufactured so that the area was 3 mm 2 .
Hole injection layer: HT16 (10nm)
Hole transport layer: HT1 (40nm)
Luminous layer:
Host: EM32
Guest: Organometallic complex (4% by mass in the light emitting layer)
Electron transport layer: ET20 (30nm)
cathode:
LiF (15nm)
Al (200nm)
 次に、有機発光素子が水分の吸着によって劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせアクリル樹脂系接着材で封止した。 Next, to prevent the organic light emitting device from deteriorating due to moisture adsorption, it was covered with a protective glass plate in a dry air atmosphere and sealed with an acrylic resin adhesive.
 得られた有機発光素子について、ITO電極を陽極、Al電極を陰極にしてELスペクトルを測定し、最大吸収波長と半値幅を算出した。測定結果は下記表5に示す。 The EL spectrum of the obtained organic light-emitting device was measured using the ITO electrode as the anode and the Al electrode as the cathode, and the maximum absorption wavelength and half-value width were calculated. The measurement results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表5より、実施例1乃至8の有機発光素子は、深い緑色の発光を示し、比較例1乃至4の有機発光素子よりも半値幅が狭いことがわかる。 From Table 5, it can be seen that the organic light emitting devices of Examples 1 to 8 emit deep green light and have narrower half-widths than the organic light emitting devices of Comparative Examples 1 to 4.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to set forth the scope of the invention.
 本願は、2022年3月30日提出の日本国特許出願特願2022-056127及び2023年2月28日提出の日本国特許出願特願2023-029569を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-056127 filed on March 30, 2022 and Japanese Patent Application No. 2023-029569 filed on February 28, 2023. The entire contents thereof are hereby incorporated by reference.
 4,22 有機化合物層
 8,26 有機発光素子
 100 表示装置
 1104,1203 筐体
 1201,1302,1311,1312 表示部
 1404 光学フィルタ
 1045 光拡散部
 1601 レンズ
4, 22 Organic compound layer 8, 26 Organic light emitting element 100 Display device 1104, 1203 Housing 1201, 1302, 1311, 1312 Display section 1404 Optical filter 1045 Light diffusion section 1601 Lens

Claims (19)

  1.  下記一般式[1]で表されるイリジウム錯体であって、Ir(L1)のLUMOのエネルギー準位はIr(L2)のLUMOのエネルギー準位よりも深く、Ir(L1)のHOMOのエネルギー準位はIr(L2)のHOMOのエネルギー準位よりも浅いことを特徴とする有機金属錯体。
     Ir(L1)m(L2)n [1]
     上記式[1]において、L1及びL2は互いに異なる二座配位子であり、m及びnは1又は2であり、m+n=3である。
    An iridium complex represented by the following general formula [1], the energy level of the LUMO of Ir(L1) 3 is deeper than the energy level of the LUMO of Ir(L2) 3 , and the HOMO of Ir(L1) 3 An organometallic complex characterized in that its energy level is shallower than the HOMO energy level of Ir(L2) 3 .
    Ir(L1)m(L2)n [1]
    In the above formula [1], L1 and L2 are different bidentate ligands, m and n are 1 or 2, and m+n=3.
  2.  熱重量分析(TG)曲線においてIr(L1)又はIr(L2)の5%重量減少温度(T5)が、前記一般式[1]で表されるイリジウム錯体のT5以上であることを特徴とする請求項1に記載の有機金属錯体。 The 5% weight loss temperature (T5) of Ir(L1) 3 or Ir(L2) 3 in the thermogravimetric analysis (TG) curve is equal to or higher than T5 of the iridium complex represented by the general formula [1]. The organometallic complex according to claim 1.
  3.  前記L1が下記一般式[2]で表されることを特徴とする請求項1に記載の有機金属錯体。
    Figure JPOXMLDOC01-appb-C000001

     上記式[2]において、X乃至X10は炭素原子又は窒素原子である。
     R乃至Rは、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ヘテロアルキル基、アリールアルキル基、アルコキシ基、アリールオキシ基、アミノ基、シリル基、アルケニル基、シクロアルケニル基、ヘテロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、カルボン酸残基、エステル基、ニトリル基、イソニトリル基、スルファニル基、スルホン酸残基、ホスフィノ基、ボロニル基及びこれらの組み合わせからなる群から選択される。また、RとRとが互いに結合して環構造を形成してもよい。
     Yは酸素原子、硫黄原子、CR、CR=CR、NR、BR、SiR、C=O、C=NR、C=CR、S=O、SO、CR-CR、PR及びP(=O)Rからなる群から選択される二価の架橋基であり、R、Rはそれぞれ独立して、直鎖アルキル基、分岐アルキル基、及びアリール基からなる群から選択される。
    The organometallic complex according to claim 1, wherein the L1 is represented by the following general formula [2].
    Figure JPOXMLDOC01-appb-C000001

    In the above formula [2], X 1 to X 10 are carbon atoms or nitrogen atoms.
    R 1 to R 3 are each independently a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, Alkenyl group, cycloalkenyl group, heteroalkenyl group, alkynyl group, aryl group, heteroaryl group, acyl group, carboxylic acid residue, ester group, nitrile group, isonitrile group, sulfanyl group, sulfonic acid residue, phosphino group, boronyl and combinations thereof. Furthermore, R 1 and R 2 may be bonded to each other to form a ring structure.
    Y is an oxygen atom, a sulfur atom, CR 6 R 7 , CR 6 =CR 7 , NR 6 , BR 6 , SiR 6 R 7 , C=O, C=NR 6 , C=CR 6 R 6 , S=O, is a divalent bridging group selected from the group consisting of SO 2 , CR 6 R 7 -CR 6 R 7 , PR 6 and P(=O)R 6 , and R 6 and R 7 are each independently a straight selected from the group consisting of chain alkyl groups, branched alkyl groups, and aryl groups.
  4.  前記式[2]において、X乃至X10は炭素原子であることを特徴とする請求項3に記載の有機金属錯体。 The organometallic complex according to claim 3, wherein in the formula [2], X 1 to X 10 are carbon atoms.
  5.  前記式[2]において、ピリジン環4位に、水素原子以外のRが置換されていることを特徴とする請求項4に記載の有機金属錯体。 The organometallic complex according to claim 4, wherein in the formula [2], R 1 other than a hydrogen atom is substituted at the 4-position of the pyridine ring.
  6.  前記L2が下記一般式[3]で表されることを特徴とする請求項1に記載の有機金属錯体。
    Figure JPOXMLDOC01-appb-C000002

     上記式[3]において、X11乃至X17は炭素原子又は窒素原子であり、X15乃至X17のうちいずれか一つ以上が窒素原子である。
     R、Rは、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ヘテロアルキル基、アリールアルキル基、アルコキシ基、アリールオキシ基、アミノ基、シリル基、アルケニル基、シクロアルケニル基、ヘテロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、カルボン酸残基、エステル基、ニトリル基、イソニトリル基、スルファニル基、スルホン酸残基及びこれらの組み合わせからなる群から選択され、隣接する置換基同士が結合して環構造を形成してもよい。
    The organometallic complex according to claim 1, wherein the L2 is represented by the following general formula [3].
    Figure JPOXMLDOC01-appb-C000002

    In the above formula [3], X 11 to X 17 are carbon atoms or nitrogen atoms, and any one or more of X 15 to X 17 is a nitrogen atom.
    R 4 and R 5 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, a cycloalkyl group, a heteroalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, From alkenyl groups, cycloalkenyl groups, heteroalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, carboxylic acid residues, ester groups, nitrile groups, isonitrile groups, sulfanyl groups, sulfonic acid residues, and combinations thereof. Adjacent substituents may be bonded to each other to form a ring structure.
  7.  前記式[3]において、X15が窒素原子であり、X11乃至X14及びX16乃至X17は炭素原子であることを特徴とする請求項6に記載の有機金属錯体。 The organometallic complex according to claim 6, wherein in the formula [3], X 15 is a nitrogen atom, and X 11 to X 14 and X 16 to X 17 are carbon atoms.
  8.  前記式[3]において、Rが水素原子、アルキル基、シクロアルキル基のいずれかであることを特徴とする、請求項6に記載の有機金属錯体。 The organometallic complex according to claim 6, wherein in the formula [3], R5 is a hydrogen atom, an alkyl group, or a cycloalkyl group.
  9.  前記有機金属錯体が、下記式[4]乃至[8]で示されるいずれかであることを特徴とする請求項8に記載の有機金属錯体。
    Figure JPOXMLDOC01-appb-C000003
    The organometallic complex according to claim 8, wherein the organometallic complex is one of the following formulas [4] to [8].
    Figure JPOXMLDOC01-appb-C000003
  10.  第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されている有機化合物層とを有する有機発光素子であって、
     前記有機化合物層は、請求項1乃至9のいずれか一項に記載の有機金属錯体を有することを特徴とする有機発光素子。
    An organic light emitting device comprising a first electrode, a second electrode, and an organic compound layer disposed between the first electrode and the second electrode,
    An organic light emitting device, wherein the organic compound layer contains the organometallic complex according to any one of claims 1 to 9.
  11.  前記有機化合物層は発光層であり、前記有機金属錯体とは異なる第一の有機化合物を更に有し、
     前記第一の有機化合物は、前記有機金属錯体よりも最低励起三重項エネルギーが大きい化合物であることを特徴とする請求項10に記載の有機発光素子。
    The organic compound layer is a light emitting layer and further includes a first organic compound different from the organometallic complex,
    11. The organic light emitting device according to claim 10, wherein the first organic compound is a compound having a lowest excited triplet energy higher than that of the organometallic complex.
  12.  前記発光層が、前記有機金属錯体及び前記第一の有機化合物とは異なる第二の有機化合物を更に有し、前記第二の有機化合物の最低励起三重項エネルギーは、前記有機金属錯体の最低励起三重項エネルギー以上、前記第一の有機化合物の最低励起三重項エネルギー以下であることを特徴とする請求項11に記載の有機発光素子。 The light-emitting layer further includes a second organic compound different from the organometallic complex and the first organic compound, and the lowest excited triplet energy of the second organic compound is equal to the lowest excited triplet energy of the organometallic complex. The organic light emitting device according to claim 11, wherein the organic light emitting device has a triplet energy or more and a lowest excitation triplet energy of the first organic compound or less.
  13.  前記有機化合物層は、前記第一電極と前記発光層との間に配される第一の電荷輸送層と、前記第二電極と前記発光層との間に配される第二の電荷輸送層と、を更に有し、
     前記第一電極は前記第一の電荷輸送層と接し、前記第二電極は前記第二の電荷輸送層と接することを特徴とする請求項11に記載の有機発光素子。
    The organic compound layer includes a first charge transport layer disposed between the first electrode and the light emitting layer, and a second charge transport layer disposed between the second electrode and the light emitting layer. and further has
    The organic light emitting device according to claim 11, wherein the first electrode is in contact with the first charge transport layer, and the second electrode is in contact with the second charge transport layer.
  14.  前記第一の電荷輸送層の最低励起三重項エネルギーは、前記第一の有機化合物の最低励起三重項エネルギーよりも大きく、且つ、前記第二の電荷輸送層の最低励起三重項エネルギーは、前記第一の有機化合物の最低励起三重項エネルギーよりも大きいことを特徴とする請求項13に記載の有機発光素子。 The lowest excited triplet energy of the first charge transport layer is greater than the lowest excited triplet energy of the first organic compound, and the lowest excited triplet energy of the second charge transport layer is higher than the lowest excited triplet energy of the first organic compound. 14. The organic light emitting device according to claim 13, wherein the organic light emitting device has a higher triplet energy than the lowest excited triplet energy of one organic compound.
  15.  複数の画素を有し、前記複数の画素の少なくとも一つが、請求項10に記載の有機発光素子と、前記有機発光素子に接続されたトランジスタと、を有することを特徴とする表示装置。 A display device comprising a plurality of pixels, at least one of the plurality of pixels comprising the organic light emitting element according to claim 10 and a transistor connected to the organic light emitting element.
  16.  複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、前記撮像素子が撮像した画像を表示する表示部と、を有し、
     前記表示部は請求項10に記載の有機発光素子を有することを特徴とする撮像装置。
    It has an optical section having a plurality of lenses, an image sensor that receives light that has passed through the optical section, and a display section that displays an image captured by the image sensor,
    An imaging device, wherein the display section includes the organic light emitting device according to claim 10.
  17.  請求項10に記載の有機発光素子を有する表示部と、前記表示部が設けられた筐体と、前記筐体に設けられ、外部と通信する通信部と、を有することを特徴とする電子機器。 An electronic device comprising: a display section having the organic light emitting element according to claim 10; a casing in which the display section is provided; and a communication section provided in the casing and communicating with the outside. .
  18.  請求項10に記載の有機発光素子を有する光源と、前記光源が発する光を透過する光拡散部又は光学フィルタと、を有することを特徴とする照明装置。 A lighting device comprising: a light source having the organic light emitting element according to claim 10; and a light diffusion section or optical filter that transmits light emitted from the light source.
  19.  請求項10に記載の有機発光素子を有する灯具と、前記灯具が設けられた機体と、を有することを特徴とする移動体。 A mobile object comprising: a lamp having the organic light emitting element according to claim 10; and a body provided with the lamp.
PCT/JP2023/011951 2022-03-30 2023-03-24 Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object each containing organic metal complex WO2023190219A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-056127 2022-03-30
JP2022056127 2022-03-30
JP2023-029569 2023-02-28
JP2023029569A JP2023152758A (en) 2022-03-30 2023-02-28 Organometallic complex, organic light-emitting element including the same, display device, imaging device, electronic appliance, lighting device, mobile body

Publications (1)

Publication Number Publication Date
WO2023190219A1 true WO2023190219A1 (en) 2023-10-05

Family

ID=88201537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011951 WO2023190219A1 (en) 2022-03-30 2023-03-24 Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object each containing organic metal complex

Country Status (1)

Country Link
WO (1) WO2023190219A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053912A (en) * 2003-08-07 2005-03-03 Samsung Sdi Co Ltd Iridium compound and organic electroluminescent element given by adopting the same
JP2011068634A (en) * 2009-08-31 2011-04-07 Fujifilm Corp Method for producing metal complex compound, and organic electroluminescent device
JP2013028604A (en) * 2011-07-28 2013-02-07 Universal Display Corp Heteroleptic iridium complex as dopant
US20160233424A1 (en) * 2014-11-14 2016-08-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2019221484A1 (en) * 2018-05-14 2019-11-21 주식회사 엘지화학 Organometallic compound and organic light emitting diode comprising same
CN110938097A (en) * 2019-10-18 2020-03-31 浙江华显光电科技有限公司 Green phosphorescent compound and organic electroluminescent device using the same
US20200235318A1 (en) * 2019-01-21 2020-07-23 Luminescence Technology Corporation Iridium complex and organic electroluminescence device using the same
US20210155647A1 (en) * 2019-11-25 2021-05-27 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including organometallic compound, and diagnostic composition including organometallic compound
JP2021178798A (en) * 2020-05-15 2021-11-18 キヤノン株式会社 Composition containing iridium complex, organic light-emitting element therewith, display device, imaging device, electronic instrument, lighting device, and movable body
JP2022001565A (en) * 2020-06-20 2022-01-06 北京夏禾科技有限公司 Phosphorescent organic metal complex and use thereof
CN114106053A (en) * 2021-11-26 2022-03-01 北京燕化集联光电技术有限公司 Organic phosphorescent light-emitting material and application thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053912A (en) * 2003-08-07 2005-03-03 Samsung Sdi Co Ltd Iridium compound and organic electroluminescent element given by adopting the same
JP2011068634A (en) * 2009-08-31 2011-04-07 Fujifilm Corp Method for producing metal complex compound, and organic electroluminescent device
JP2013028604A (en) * 2011-07-28 2013-02-07 Universal Display Corp Heteroleptic iridium complex as dopant
US20160233424A1 (en) * 2014-11-14 2016-08-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2019221484A1 (en) * 2018-05-14 2019-11-21 주식회사 엘지화학 Organometallic compound and organic light emitting diode comprising same
US20200235318A1 (en) * 2019-01-21 2020-07-23 Luminescence Technology Corporation Iridium complex and organic electroluminescence device using the same
CN110938097A (en) * 2019-10-18 2020-03-31 浙江华显光电科技有限公司 Green phosphorescent compound and organic electroluminescent device using the same
US20210155647A1 (en) * 2019-11-25 2021-05-27 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including organometallic compound, and diagnostic composition including organometallic compound
JP2021178798A (en) * 2020-05-15 2021-11-18 キヤノン株式会社 Composition containing iridium complex, organic light-emitting element therewith, display device, imaging device, electronic instrument, lighting device, and movable body
JP2022001565A (en) * 2020-06-20 2022-01-06 北京夏禾科技有限公司 Phosphorescent organic metal complex and use thereof
CN114106053A (en) * 2021-11-26 2022-03-01 北京燕化集联光电技术有限公司 Organic phosphorescent light-emitting material and application thereof

Similar Documents

Publication Publication Date Title
KR20210141330A (en) Iridium complex-containing composition, organic light emitting device having the same, display apparatus, imaging apparatus, electronic equipment, lighting apparatus, and moving body
KR20210125915A (en) Iridium complex-containing composition, organic light emitting device having the same, display apparatus, imaging apparatus, electronic equipment, lighting apparatus, and moving body
US20230227486A1 (en) Organic compound and organic light-emitting element
WO2023190219A1 (en) Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object each containing organic metal complex
JP2023152758A (en) Organometallic complex, organic light-emitting element including the same, display device, imaging device, electronic appliance, lighting device, mobile body
WO2023214496A1 (en) Metal complex and organic light-emitting element
WO2023282138A1 (en) Organic metal complex, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device and mobile object each containing same
WO2024034343A1 (en) Organic light emitting element
WO2022259859A1 (en) Phenoxazines, and organic light-emitting element, display device, imaging device, electronic equipment, lighting device, and mobile object having same
WO2023100615A1 (en) Iridium complex, organic light-emitting device, display device, imaging device, electronic equipment, lighting device and moving body
WO2023238781A1 (en) Light-emitting composition, organic light-emitting element, display apparatus, image-capturing apparatus, electronic equipment, lighting apparatus, mobile body, and method for producing organic light-emitting element
WO2023095543A1 (en) Organic compound and organic light-emitting element
WO2023120218A1 (en) Organic light emitting element
WO2024043210A1 (en) Organic light-emitting element, and display device, imaging device, lighting device, and moving object having said organic light-emitting element
US20240023427A1 (en) Organic compound and organic light-emitting device
WO2023127495A1 (en) Organic compound and organic light-emitting element
WO2023112832A1 (en) Organic compound and organic light-emitting element
EP4242217A1 (en) Composition containing iridium complex, organic light-emitting element, display device, imaging device, electronic device, lighting device, and moving object
WO2023171231A1 (en) Organic compound and organic light-emitting device
WO2024004517A1 (en) Organic light emitting element and display device using same
JP2023128838A (en) Organic light-emitting element
US20220306666A1 (en) Organic metal complex, organic light-emitting device including the same, display apparatus, imaging apparatus, electronic apparatus, illumination apparatus, and moving object
JP2023179367A (en) Luminescent composition, organic light emitting element, display device, imaging device, electronic device, lighting device, moving body, and method for manufacturing organic light emitting element
JP2024031850A (en) Organic light-emitting devices and display devices, imaging devices, lighting devices, and moving objects that include them
JP2024046920A (en) Organic light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780229

Country of ref document: EP

Kind code of ref document: A1