WO2023190074A1 - Melt-blown nonwoven fabric and hygienic material - Google Patents

Melt-blown nonwoven fabric and hygienic material Download PDF

Info

Publication number
WO2023190074A1
WO2023190074A1 PCT/JP2023/011624 JP2023011624W WO2023190074A1 WO 2023190074 A1 WO2023190074 A1 WO 2023190074A1 JP 2023011624 W JP2023011624 W JP 2023011624W WO 2023190074 A1 WO2023190074 A1 WO 2023190074A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
melt
molecular weight
thermoplastic polyurethane
average molecular
Prior art date
Application number
PCT/JP2023/011624
Other languages
French (fr)
Japanese (ja)
Inventor
翔 飯濱
秀超 北山
尚貴 山岸
稔 久田
暁雄 松原
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023190074A1 publication Critical patent/WO2023190074A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present disclosure relates to meltblown nonwoven fabrics and sanitary materials.
  • nonwoven fabrics have been widely used for various purposes due to their excellent breathability and flexibility. Therefore, nonwoven fabrics are required to have various properties depending on their uses, and improvements in these properties are also required.
  • Patent Document 1 discloses a polyurethane fiber nonwoven fabric (hereinafter also simply referred to as "nonwoven fabric").
  • the nonwoven fabric disclosed in Patent Document 1 is made of ultrafine polyurethane fibers with an average fiber diameter of 10 ⁇ m or less, and 15 to 80% of the fibers are fused into bundles.
  • the nonwoven fabric disclosed in Patent Document 1 has an equilibrium dyeing amount of 60 mg/g or more.
  • Patent Document 2 discloses a filter.
  • the filter disclosed in Patent Document 2 is made of a fibrous nonwoven fabric whose main component is a thermoplastic elastomer resin.
  • the fibrous nonwoven fabric satisfies the following (1) to (4).
  • (1) indicates that the average fiber diameter of the fibers constituting the fibrous nonwoven fabric is 10 ⁇ m or less.
  • (2) indicates that 15 to 80% of the fibers are composed of two or more fibers fused together in a bundle.
  • (3) indicates that the material has an elongation at break of 100% or more and a 50% elongation recovery rate of 60% or more.
  • (4) indicates that the air permeability when stretched by 50% in at least one direction is less than twice the air permeability when not stretched.
  • Patent Document 3 discloses fibers (hereinafter also simply referred to as "fibers") based on thermoplastic polyurethane.
  • the fiber disclosed in Patent Document 3 contains an inorganic additive.
  • at least 70% of the particles of the inorganic additive have a maximum particle diameter that is smaller than 75% of the fiber diameter of the thermoplastic polyurethane.
  • Patent Document 1 Japanese Patent Application Publication No. 2003-064567
  • Patent Document 2 Japanese Patent Application Publication No. 2004-057882
  • Patent Document 3 Japanese Patent Publication No. 2010-509512
  • nonwoven fabrics can be used for disposable diapers, absorbent materials such as sanitary products, sanitary materials such as sanitary masks, medical materials such as bandages, clothing materials, packaging materials, and the like.
  • absorbent materials such as sanitary products
  • sanitary materials such as sanitary masks
  • medical materials such as bandages, clothing materials, packaging materials, and the like.
  • nonwoven fabrics are often required to have excellent elongation at break and water pressure resistance.
  • a problem to be solved by an embodiment of the present disclosure is to provide a melt-blown nonwoven fabric with excellent elongation at break and water pressure resistance, and a sanitary material containing the melt-blown nonwoven fabric.
  • Means for solving the above problems include the following embodiments.
  • ⁇ 1> Heat having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn), which is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), of 2.4 or less.
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight distribution
  • ⁇ Meltblown nonwoven fabric larger than g. ⁇ 3> The meltblown nonwoven fabric according to ⁇ 1> or ⁇ 2>, having an average fiber diameter of 5.5 ⁇ m or less.
  • ⁇ 4> The meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 3>, wherein the thermoplastic polyurethane elastomer satisfies the following formula I.
  • a represents the sum of the heat of fusion obtained from endothermic peaks in the range of 90°C to 140°C measured by a differential scanning calorimeter
  • b represents 140°C measured by a differential scanning calorimeter.
  • Mn number average molecular weight
  • ⁇ 6> The meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 5>, which has an elongation at break in the MD direction of 250% or more.
  • ⁇ 7> The melt-blown nonwoven fabric according to any one of ⁇ 1> to ⁇ 6>, which has a water pressure resistance to basis weight (g/m 2 ) of 6.0 mmH 2 O ⁇ m 2 /g or more.
  • ⁇ 8> The meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 7>, which has a recovery stress in the MD direction with respect to basis weight (g/m 2 ) of 0.035 N ⁇ m 2 /50 mm ⁇ g or more.
  • a sanitary material comprising the meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 8>.
  • a water-resistant sheet comprising the meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 8>.
  • a medical sheet comprising the meltblown nonwoven fabric according to any one of ⁇ 1> to ⁇ 8>.
  • An embodiment of the present disclosure can provide a meltblown nonwoven fabric with excellent elongation at break and water pressure resistance, and a sanitary material containing the meltblown nonwoven fabric.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a meltblown nonwoven fabric manufacturing apparatus 10. As shown in FIG.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the amount of each component contained in the composition refers to the total amount of the multiple substances present in the composition. means.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. .
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
  • the meltblown nonwoven fabric of the present disclosure includes the meltblown nonwoven fabric of the first aspect and the meltblown nonwoven fabric of the second aspect.
  • the melt-blown nonwoven fabric of the first aspect and the melt-blown nonwoven fabric of the second aspect will be described below.
  • the melt-blown nonwoven fabric of the first aspect has a number average molecular weight (Mn) of 100,000 or more, and a molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (hereinafter, It contains a thermoplastic polyurethane elastomer having a molecular weight distribution (Mw/Mn) of 2.4 or less, and has an average fiber diameter of less than 6.5 ⁇ m.
  • the melt-blown nonwoven fabric of the first aspect has the above configuration, it has excellent elongation at break and water pressure resistance.
  • the thermoplastic polyurethane elastomer in the present disclosure has a relatively large number average molecular weight (Mn). This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
  • the thermoplastic polyurethane elastomer in the present disclosure has a molecular weight distribution (Mw/Mn) of 2.4 or less. This makes the molecular weight in the fiber uniform. This reduces the number of weak portions of molecular chain entanglement that serve as starting points for rupture. As a result, the breaking strength of the fibers and the water pressure resistance of the meltblown nonwoven fabric are improved.
  • the average fiber diameter of the melt-blown nonwoven fabric is less than 6.5 ⁇ m, the fiber amount of the melt-blown fibers and, as a result, the self-fusion point increases, and the entanglement becomes strong.
  • the combination of the strong intertwining of the fibers and the high breaking strength of the fibers described above produces a synergistic effect in that the entangled fibers can be stretched well without breaking.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer refer to the number average molecular weight (Mn) and weight average molecular weight (Mw) in a state included in the meltblown nonwoven fabric.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer in a state included in the melt blown nonwoven fabric can vary depending on the conditions when forming the melt blown nonwoven fabric. For example, in Patent Document 1 mentioned above, the molecular weight of the elastomer is considered to be low because the molding temperature is high and the air permeability and elongation at break are extremely low. There is a possibility that high fusion has occurred due to high temperature molding.
  • the meltblown nonwoven fabric of the first aspect has an average fiber diameter of less than 6.5 ⁇ m. As a result, the fiber content of the meltblown fibers and, as a result, the self-fusion point increases, and the entanglement becomes stronger.
  • the melt-blown nonwoven fabric of the first aspect preferably has an average fiber diameter of 6.4 ⁇ m or less, more preferably 5.5 ⁇ m or less. When the average fiber diameter is 5.5 ⁇ m or less, the fiber amount and self-fusion point of the above-mentioned meltblown fibers further increase, and the entanglement becomes stronger. In addition, thin uneven parts of the nonwoven fabric, which can be the starting point for breakage and water leakage, are reduced. This further improves the elongation at break and the water pressure resistance.
  • the melt-blown nonwoven fabric of the first aspect preferably has an average fiber diameter of 2.5 ⁇ m or more, more preferably 3.0 ⁇ m or more.
  • the melt-blown nonwoven fabric of the first aspect may have an average fiber diameter of 2.5 ⁇ m or more and less than 6.5 ⁇ m.
  • the average fiber diameter is measured by the following method.
  • a photograph of the melt-blown nonwoven fabric is taken at a magnification of 1000 times using an electron microscope (eg, Hitachi S-3500N). Measure the diameter of the fiber from the photograph obtained. The imaging and measurement are repeated until the total number of fibers exceeds 100, and the arithmetic mean value of the obtained fiber diameters is defined as the average fiber diameter ( ⁇ m).
  • the melt-blown nonwoven fabric of the first embodiment includes a thermoplastic polyurethane elastomer.
  • the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 100,000 or more. This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
  • the thermoplastic polyurethane elastomer preferably has a number average molecular weight (Mn) of 101,500 or more, more preferably 102,500 or more, and even more preferably 103,500 or more. When the number average molecular weight (Mn) is 101,500 or more, the entanglement of molecular chains further increases, and the breaking strength of the fibers and, by extension, the breaking elongation and water pressure resistance of the nonwoven fabric are further improved.
  • the weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer is preferably 180,000 or more, and preferably 190,000 or more.
  • the molecular weight distribution (Mw/Mn) of the thermoplastic polyurethane elastomer is 2.4 or less, preferably 2.3 or less, and more preferably 2.2 or less.
  • the upper limit of the molecular weight distribution (Mw/Mn) is not particularly limited, but may be, for example, 1.0 or more. In other words, the molecular weight distribution (Mw/Mn) is preferably 1.0 to 2.4, more preferably 1.0 to 2.3, and even more preferably 1.0 to 2.2. preferable.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn) are measured by the following methods.
  • the produced melt-blown nonwoven fabric is heated and melted at 80° C. in the following eluent to produce a measurement sample.
  • GPC gel permeation chromatography
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw/Mn molecular weight distribution
  • the thermoplastic polyurethane elastomer preferably has a solidification start temperature of 65°C or higher, more preferably 75°C or higher, and even more preferably 85°C or higher.
  • solidification start temperature is 65°C or higher, molding defects such as fusion of fibers, thread breakage, and resin lumps can be suppressed when obtaining a meltblown nonwoven fabric, and meltblown molded during hot embossing can be suppressed. It is possible to prevent the nonwoven fabric from wrapping around the embossing roller.
  • the thermoplastic solidification start temperature is 65° C. or higher, stickiness of the resulting melt-blown nonwoven fabric can be suppressed. Therefore, melt-blown nonwoven fabrics can be suitably used as materials that come into contact with the skin, such as clothing, sanitary materials, and sports materials.
  • the thermoplastic polyurethane elastomer preferably has a solidification start temperature of 195°C or lower. By setting the solidification start temperature to 195° C. or lower, moldability can be improved.
  • the solidification onset temperature is measured using a differential scanning calorimeter (DSC). Specifically, the temperature of the thermoplastic polyurethane elastomer is raised to 230°C at a rate of 10°C/min, held at 230°C for 5 minutes, and then lowered at a rate of 10°C/min. The starting temperature of the exothermic peak resulting from the solidification of the thermoplastic polyurethane elastomer that occurs at this time is the solidification start temperature.
  • DSC differential scanning calorimeter
  • Methods for adjusting the solidification initiation temperature of thermoplastic polyurethane elastomers to 65°C or higher include methods of appropriately selecting the chemical structures of polyol compounds, isocyanate compounds, chain extenders, etc. used as raw materials for thermoplastic polyurethane elastomers; Examples include a method of adjusting the amount of hard segments in the plastic polyurethane elastomer.
  • Hard segment amount is the total content of isocyanate compounds and chain extenders used in the production of thermoplastic polyurethane elastomers, divided by the total amount of polyol compounds, isocyanate compounds, and chain extenders, and multiplied by 100. Mass percentage (mass %) value is meant. The amount of hard segments is preferably 20% by mass to 60% by mass, more preferably 22% by mass to 50% by mass, and even more preferably 25% by mass to 48% by mass.
  • the thermoplastic polyurethane elastomer preferably has a polar solvent insoluble particle number of preferably 3 million particles (3 million particles/g) or less, more preferably 2.5 million particles per 1 g of the thermoplastic polyurethane elastomer. /g or less, more preferably 2 million pieces/g or less.
  • the "polar solvent insoluble matter in the thermoplastic polyurethane elastomer” mainly refers to lumps such as fish eyes and gel that are generated during the production of the thermoplastic polyurethane elastomer.
  • Components that cause the generation of polar solvent insoluble matter include components derived from hard segment aggregates of thermoplastic polyurethane elastomers, components in which hard segments and/or soft segments are crosslinked by allophanate bonds, burette bonds, etc. Examples include raw materials constituting the plastic polyurethane elastomer, components generated by chemical reactions between raw materials, and the like.
  • the number of particles insoluble in a polar solvent was measured by measuring the insoluble content when a thermoplastic polyurethane elastomer was dissolved in a dimethylacetamide solvent using a particle size distribution measuring device using a pore electrical resistance method equipped with a 100 ⁇ m aperture. It is a value. By installing a 100 ⁇ m aperture, it is possible to measure the number of particles of 2 ⁇ m to 60 ⁇ m in terms of uncrosslinked polystyrene.
  • thermoplastic polyurethane elastomer with a small content insoluble in polar solvents can be obtained by carrying out a polymerization reaction of a polyol compound, an isocyanate compound, and a chain extender, followed by filtration.
  • the moisture value of the thermoplastic polyurethane elastomer is preferably 350 ppm or less, and 300 ppm or less. It is more preferable that it be present, and even more preferably that it is 150 ppm or less.
  • thermoplastic polyurethane elastomer preferably satisfies the following formula I, more preferably satisfies the following formula II, and even more preferably satisfies the following formula III.
  • a represents the sum of the heat of fusion obtained from endothermic peaks in the range of 90°C to 140°C measured by differential scanning calorimeter. (Represents the total amount of heat of fusion obtained from endothermic peaks in the range of more than 140 degrees Celsius and less than 220 degrees Celsius measured by
  • thermoplastic polyurethane elastomer (heat of fusion ratio)
  • a/(a+b) means the heat of fusion ratio (unit: %) of the hard domain of the thermoplastic polyurethane elastomer.
  • the heat of fusion ratio of the hard domain of the thermoplastic polyurethane elastomer is 80% or less, the strength and stretchability of the fiber and meltblown nonwoven fabric are improved.
  • the lower limit of the heat of fusion ratio of the hard domain of the thermoplastic polyurethane elastomer is preferably about 0.1%.
  • the thermoplastic polyurethane elastomer preferably has a melt viscosity (hereinafter also simply referred to as "melt viscosity”) of 100 Pa.s to 3000 Pa.s, and preferably 200 Pa.s to 3000 Pa.s at a temperature of 200° C. and a shear rate of 100 sec -1 It is more preferably 2000 Pa ⁇ s, and even more preferably 900 Pa ⁇ s to 1600 Pa ⁇ s.
  • the melt viscosity is measured with a capillograph (manufactured by Toyo Seiki Co., Ltd., with a nozzle length of 30 mm and a diameter of 1 mm).
  • thermoplastic polyurethane elastomer having such characteristics can be obtained, for example, by the manufacturing method described in JP-A No. 2004-244791.
  • the thermoplastic polyurethane elastomer may contain a biomass raw material. Details of the thermoplastic polyurethane elastomer containing biomass-derived raw materials (biomass-derived thermoplastic polyurethane elastomer) will be described later.
  • the melt-blown nonwoven fabric preferably contains 50% by mass or more of a thermoplastic polyurethane elastomer, more preferably 70% by mass or more, even more preferably 90% by mass or more, and particularly preferably 99% by mass or more.
  • the basis weight of the melt-blown nonwoven fabric may be determined as appropriate depending on the application.
  • the basis weight of the meltblown nonwoven fabric is preferably 1 g/m 2 to 100 g/m 2 , more preferably 4 g/m 2 to 65 g/m 2 .
  • the basis weight of meltblown nonwoven fabric is measured by the following method. Six test pieces of 200 mm (machine direction: MD direction) x 50 mm (lateral direction: CD direction) are taken from the melt-blown nonwoven fabric. The sampling locations are any three locations in both the MD and CD directions (six locations in total). Next, the mass (g) of each sampled test piece is measured using an electronic balance (for example, an electronic balance manufactured by Kensei Kogyo Co., Ltd.). Find the average mass of each test piece. The obtained average value is converted into mass (g) per 1 m 2 , and the value rounded to the second decimal place is defined as the basis weight [g/m 2 ] of each sample.
  • an electronic balance for example, an electronic balance manufactured by Kensei Kogyo Co., Ltd.
  • the thickness of the melt-blown nonwoven fabric may be determined as appropriate depending on the application.
  • the thickness of the meltblown nonwoven fabric may be 0.01 mm to 1.00 mm.
  • MD (Machine Direction) direction means the flow direction of the fibers.
  • the MD (Machine Direction) direction is also the conveyance direction when manufacturing the meltblown nonwoven fabric.
  • CD (Cross Direction) direction means a direction perpendicular to the MD direction (that is, the flow direction of the fibers).
  • the melt-blown nonwoven fabric of the first aspect preferably has an elongation at break in the MD direction of 250% or more, more preferably 270% or more, even more preferably 300% or more, and even more preferably 340% or more. It is particularly preferable.
  • the elongation at break in the MD direction of the melt-blown nonwoven fabric of the first aspect is preferably 700% or less, more preferably 650% or less, and even more preferably 600% or less. It is also preferable that the melt-blown nonwoven fabric of the first aspect has a breaking elongation in the MD direction of 250% or more and 600% or less.
  • melt-blown non-woven fabric will resist deformation in the stretching direction in applications where it is necessary to follow the deformation of the human body (for example, disposable diapers, bandages, etc.). It can be tracked well without breaking.
  • the melt-blown nonwoven fabric of the first aspect preferably has a breaking elongation in the CD direction of 250% or more, more preferably 350% or more, even more preferably 400% or more, and even more preferably 430% or more. This is particularly preferred.
  • the elongation at break in the CD direction of the melt-blown nonwoven fabric of the first aspect is preferably 700% or less, more preferably 650% or less, and even more preferably 600% or less. It is also preferable that the melt-blown nonwoven fabric of the first aspect has a breaking elongation in the CD direction of 250% or more and 600% or less.
  • the elongation at break is measured by the following method. Five test pieces of 200 mm (measurement direction) x 50 mm (measurement direction) are taken from the melt-blown nonwoven fabric. The sampling locations are five arbitrary locations. Next, each sampled test piece was stretched in the MD direction of the test piece using a universal tensile tester (for example, model IM-201 manufactured by Intesco) under conditions of a chuck distance of 100 mm and a tensile speed of 100 mm/min. The stretching ratio at which the piece breaks is defined as the elongation at break [%] in the MD direction.
  • a universal tensile tester for example, model IM-201 manufactured by Intesco
  • the stretching ratio is measured in the same manner as the method for measuring the elongation at break [%] in the MD direction, except that the tensile direction of the test piece is changed from the MD direction of the test piece to the CD direction of the test piece.
  • the measured value of the stretching ratio is defined as the elongation at break in the CD direction [%].
  • the melt-blown nonwoven fabric of the first aspect preferably has a water pressure resistance (hereinafter also simply referred to as "water pressure resistance") with respect to basis weight (g/m 2 ) of 6.0 mmH 2 O ⁇ m 2 /g or more, and 9.0 mmH It is more preferably 2 O ⁇ m 2 /g or more, and even more preferably 12.0 mmH 2 O ⁇ m 2 /g or more.
  • the melt-blown nonwoven fabric of the first aspect preferably has a water pressure resistance of 30.0 mmH 2 O ⁇ m 2 /g or less, more preferably 20.0 mmH 2 O ⁇ m 2 /g or less, and 15.0 mmH 2 More preferably, it is not more than O ⁇ m 2 /g.
  • the melt-blown nonwoven fabric of the first aspect has a water pressure resistance of 6.0 mmH 2 O ⁇ m 2 /g or more and 30.0 mmH 2 O ⁇ m 2 /g or less.
  • the water pressure resistance is 6.0 mmH 2 O ⁇ m 2 /g or more
  • melt-blown nonwoven fabrics are suitable for applications that require liquid leakage resistance (e.g., disposable diapers, sanitary products, etc.). ) can be prevented from leaking.
  • the water pressure resistance is a value obtained by dividing the water pressure resistance of the melt-blown nonwoven fabric measured according to method A (low water pressure method) specified in JISL1096 by the basis weight.
  • the unit of water pressure resistance of the melt-blown nonwoven fabric is (mmH 2 O)/(g/m 2 ), that is, mmH 2 O ⁇ m 2 /g.
  • the melt-blown nonwoven fabric of the first aspect has a recovery stress in the MD direction (hereinafter also simply referred to as "recovery stress in the MD direction”) with respect to basis weight (g/m 2 ) of 0.035 N ⁇ m 2 /50 mm ⁇ g or more. is preferable, and more preferably 0.036 N ⁇ m 2 /50 mm ⁇ g or more.
  • the melt-blown nonwoven fabric of the first aspect preferably has a recovery stress in the MD direction of 0.060 N ⁇ m 2 /50 mm ⁇ g or less, more preferably 0.050 N ⁇ m 2 /50 mm ⁇ g or less, and 0.050 N ⁇ m 2 /50 mm ⁇ g or less.
  • the melt blown nonwoven fabric of the first aspect has a recovery stress in the MD direction of 0.035 N ⁇ m 2 /50 mm ⁇ g or more and 0.060 N ⁇ m 2 /50 mm ⁇ g or less. If the recovery stress in the MD direction is 0.035 N m 2 /50 mm g or more, the melt blown nonwoven fabric will shrink in applications that need to follow the deformation of the human body (for example, disposable diapers, bandages, etc.). It can follow the deformation in the direction well without remaining stretched.
  • the recovery stress in the MD direction is measured by the following method.
  • Five test pieces of 200 mm (MD) x 50 mm (CD) are taken from the melt-blown nonwoven fabric.
  • the sampling locations are five arbitrary locations.
  • each sampled test piece was stretched in the MD direction using a universal tensile tester (for example, IM-201 model manufactured by Intesco) under conditions of a chuck distance of 100 mm, a tensile speed of 100 mm/min, and a stretching ratio of 100%. Afterwards, it is restored to its original length at the same speed.
  • a universal tensile tester for example, IM-201 model manufactured by Intesco
  • This operation is carried out for two cycles, and the value obtained by dividing the stress when the stretching ratio in the MD direction becomes 50% at the time of recovery in the second cycle by the basis weight is calculated as the MD for the basis weight (g/m 2 ). Let it be the recovery stress in the direction.
  • the unit of the recovery stress in the MD direction with respect to the basis weight (g/m 2 ) is (N/50mm)/(g/m 2 ), that is, N ⁇ m 2 /50mm ⁇ g.
  • the average fiber diameter of the meltblown nonwoven fabric is preferably 3.0 ⁇ m to 3.7 ⁇ m.
  • the thermoplastic polyurethane elastomer preferably has a number average molecular weight (Mn) of 101,500 to 104,000.
  • Mn number average molecular weight
  • the meltblown nonwoven fabric has an average fiber diameter of 3.0 ⁇ m to 3.7 ⁇ m.
  • the average fiber diameter of the meltblown nonwoven fabric is 3.0 ⁇ m to 3.7 ⁇ m, and the basis weight of the meltblown nonwoven fabric is 4 g/m 2 to 30 g/m 2 .
  • the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 101,500 to 104,000, and the melt blown nonwoven fabric has a basis weight of 4 g/m 2 to 30 g/m 2 .
  • the number average molecular weight (Mn) of the thermoplastic polyurethane elastomer is 101,500 to 104,000
  • the average fiber diameter of the meltblown nonwoven fabric is 3.0 ⁇ m to 3.7 ⁇ m
  • the basis weight of the meltblown nonwoven fabric is It is preferably 4 g/m 2 to 30 g/m 2 .
  • melt-blown nonwoven fabric of the first aspect includes, for example, disposable diapers, absorbent articles such as sanitary products, sanitary articles such as sanitary masks, medical articles such as bandages, clothing materials, packaging materials, waterproof sheets, medical sheets, etc. can be mentioned.
  • the sanitary material of the present disclosure includes the meltblown nonwoven fabric of the present disclosure.
  • the melt-blown nonwoven fabric of the first aspect can be suitably used for top sheets, back sheets, waistbands (e.g. extension tapes, side flaps, etc.), fastening tapes, three-dimensional gathers, and leg cuffs in expandable disposable diapers or pants-type disposable diapers. I can do it.
  • the melt-blown nonwoven fabric of the first aspect can be suitably used for parts such as side panels of pants-type disposable diapers. By using the melt-blown nonwoven fabric of the first aspect in these parts, it becomes possible to follow the movements of the wearer and fit the wearer's body, and a comfortable state is maintained even while being worn.
  • the melt-blown nonwoven fabric of the first aspect is also suitably used for a disposable mask, etc., which is composed of a mouth-periphery covering part and ear hook parts extending from both sides of the covering part.
  • the melt-blown nonwoven fabric of the first aspect is suitably used as a base material for movable joints such as arms, elbows, and shoulders in disposable surgical gowns, rescue gowns, and the like.
  • the water-resistant sheet of the present disclosure preferably includes the melt-blown nonwoven fabric of the present disclosure.
  • the water-resistant sheet of the present disclosure may have any known configuration except that it includes the melt-blown nonwoven fabric of the present disclosure.
  • the water-resistant sheet of the present disclosure may be made of the melt-blown non-woven fabric of the present disclosure, or may include a layer made of the melt-blown non-woven fabric of the present disclosure (hereinafter also referred to as "melt-blown non-woven fabric layer") and known fibers (for example, cellulose fibers). etc.) (hereinafter also referred to as a "fibrous layer").
  • the fibrous layer is laminated on one main surface of the meltblown nonwoven fabric layer.
  • the water-resistant sheet of the present disclosure can be used for absorbent materials such as disposable diapers and sanitary products, sanitary materials such as sanitary masks and cosmetic materials, medical materials such as bandages, household materials such as clothing materials and packaging materials, and industrial materials such as filters. It can be used for purposes such as In particular, it has excellent flexibility, breathability, stretchability, and barrier properties, so it is suitably used for sanitary materials such as paper diapers, sanitary napkins, base fabrics for poultice materials, and bed covers. Examples of medical materials and clothing materials include gowns, caps, drapes, masks, gauze, bandages, and various protective clothing.
  • it has good post-processing properties such as heat sealing, so it can be used to wrap oxygen absorbers, body warmers, hot air bags, masks, various powders, semi-solids, gels, and liquid substances, CD (compact disc) bags, and food products. It can be applied to all kinds of household materials such as packaging materials, clothing covers, and agricultural sheets. For the same reason, it can also be suitably used as an industrial material such as automobile interior materials, various backing materials, and building materials. Furthermore, since it is composed of fine fibers, it can be widely applied as a material for liquid filters and air filters.
  • the medical sheet of the present disclosure includes the melt-blown nonwoven fabric of the present disclosure.
  • the medical sheet of the present disclosure may have any known configuration except that it includes the melt-blown nonwoven fabric of the present disclosure.
  • the medical sheet of the present disclosure may be made of a meltblown nonwoven fabric, or may include a meltblown nonwoven fabric layer and a fiber layer.
  • the fibrous layer is laminated on one main surface of the meltblown nonwoven fabric layer.
  • the medical sheet of the present disclosure is suitably used for materials such as gowns, caps, drapes, masks, gauze, bandages, and various protective clothing, plaster base fabrics, poultice materials, wound dressings, wound tapes, and the like.
  • raw materials that are stable against electron beams and gamma rays that are irradiated during sterilization and sterilization they can be suitably used for sterilized medical sheets.
  • Biomass-derived thermoplastic polyurethane elastomers can also be obtained by polymerizing propylene obtained by dehydrating isopropanol produced by fermentation from biomass raw materials mainly made of inedible plants such as sorghum.
  • biomass degree indicates the content rate of carbon derived from biomass, and is calculated by measuring radioactive carbon (C14). Since carbon dioxide in the atmosphere contains C14 at a certain rate (approximately 105.5 pMC), the C14 content in plants (e.g. corn) that grow by taking in atmospheric carbon dioxide is also approximately 105.5 pMC. It is known that the degree of It is also known that fossil fuels contain almost no C14. Therefore, by measuring the proportion of C14 contained in all carbon atoms in the raw material, the content rate of biomass-derived carbon in the raw material can be calculated.
  • C14 radioactive carbon
  • the content rate Pbio (%) of biomass-derived carbon in the raw material can be calculated using the following formula (1).
  • Pbio (%) PC14/105.5 ⁇ 100...Formula (1)
  • biomass-derived carbon is theoretically 100%, so the biomass degree of the biomass-derived thermoplastic polyurethane elastomer is 100%.
  • biomass-derived raw materials hardly contain C14, the content of biomass-derived carbon in polyurethane produced only from fossil fuel-derived raw materials is 0%, and the biomass content of fossil fuel-derived polyurethane is 0%. becomes 0%.
  • the biomass content of the biomass-derived polyurethane thermoplastic elastomer used as a raw material for the spunbond nonwoven fabric of the present disclosure is preferably 1% or more.
  • thermoplastic polyurethane elastomers are manufactured using polymer glycols such as polyether polyols, polyester polyols, and polycarbonate polyols; short chain glycols (chain extenders) such as aliphatic glycols, aromatic glycols, and alicyclic glycols as raw materials. and isocyanate compounds such as aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates.
  • the isocyanates preferably used include aliphatic isocyanates such as 1,5-pentamethylene diisocyanate-based polyisocyanate (trade name: Stabio (registered trademark)) manufactured by Mitsui Chemicals, Inc., aromatic isocyanates, etc. Can be mentioned.
  • the thermoplastic polyurethane elastomer used as the raw material for the spunbond nonwoven fabric of the present disclosure may contain a so-called recycled polymer obtained by recycling.
  • Recycled polymer includes a polymer obtained by recycling waste polymer products, and can be produced, for example, by the method described in DE102019127827 (A1).
  • the recycled polymer may include a marker that allows it to be identified as having been obtained through recycling.
  • the melt-blown nonwoven fabric of the second aspect has a number average molecular weight (Mn) of 100,000 or more, and a molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (hereinafter, It contains a thermoplastic polyurethane elastomer with a recovery stress in the MD direction (hereinafter simply referred to as “recovery in the MD direction”) with respect to basis weight (g/m 2 ) of 2.4 or less (also simply referred to as "molecular weight distribution (Mw/Mn)"). (also referred to as "stress”) is greater than 0.034N ⁇ m 2 /50mm ⁇ g.
  • the melt-blown nonwoven fabric of the second aspect has excellent elongation at break and water pressure resistance.
  • the thermoplastic polyurethane elastomer in the present disclosure has a relatively large number average molecular weight (Mn). This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
  • the thermoplastic polyurethane elastomer in the present disclosure has a molecular weight distribution (Mw/Mn) of 2.4 or less. This makes the molecular weight in the fiber uniform. This reduces the number of weak portions of molecular chain entanglement that serve as starting points for rupture. As a result, the breaking strength of the fibers and the water pressure resistance of the nonwoven fabric are improved.
  • the fact that the recovery stress in the MD direction is greater than 0.034 N ⁇ m 2 /50 mm ⁇ g indicates that the structure of the hard segment and soft segment of the thermoplastic polyurethane elastomer is sufficiently formed. This can suppress plastic deformation of the fibers. As a result, even when high water pressure is applied, the fibers can maintain their shape, the opening of the fibers is suppressed, and the water pressure resistance is improved.
  • the hard segments of the thermoplastic polyurethane elastomer are sufficiently formed, the entanglement of the polyurethane molecules in the fibers is easily maintained, and the fibers can be elastically deformed to a high elongation without breaking.
  • the combination of the high elongation of the fibers and the high breaking strength of the fibers described above provides a synergistic effect in that the entangled fibers can be stretched well without breaking.
  • each item described in the section of the first aspect can also be applied to the second aspect.
  • the details of the preferred range, definition, measuring method, etc. of the average fiber diameter in the second aspect are the same as the details of the preferred range, definition, measuring method, etc. of the average fiber diameter in the first aspect.
  • melt viscosity Details of the number average molecular weight (Mn) of the thermoplastic polyurethane elastomer in the first embodiment, Weight average molecular weight (Mw), molecular weight distribution (Mw/Mn), solidification start temperature, hard segment amount, number of particles insoluble in polar solvent, moisture value, formula I, formula II, formula III, heat of fusion ratio, melt viscosity,
  • Mw Weight average molecular weight
  • Mw/Mn molecular weight distribution
  • solidification start temperature Details of the number average molecular weight (Mw), molecular weight distribution (Mw/Mn), solidification start temperature, hard segment amount, number of particles insoluble in polar solvent, moisture value, formula I, formula II, formula III, heat of fusion ratio, melt viscosity,
  • the details are the same as the preferred range of content, definition, measurement method, etc.
  • the details of the preferred ranges, preferred embodiments, definitions, measurement methods, etc. of the melt-blown nonwoven fabric in the second aspect include the
  • the method for producing a melt-blown nonwoven fabric of the present disclosure includes a step (hereinafter, “ (also referred to as “fiberization process”).
  • a melt of the resin composition is discharged from a spinneret together with a heated gas, and the discharged melt of the resin composition (hereinafter also referred to as “discharged product”) is stretched by the heated gas.
  • the method for producing a meltblown nonwoven fabric of the present disclosure is a method for producing a meltblown nonwoven fabric by a meltblown method using a resin composition.
  • a method for producing a melt-blown nonwoven fabric using a thermoplastic polyurethane elastomer by a melt-blown method is described in, for example, JP-A-2003-64567 (Patent Document 1), JP-A-2004-57882, and the like.
  • the "melt blown method” is a process in which a molten resin composition is discharged from a spinneret in the form of fibers, and heated gas is applied to the discharged material from both sides of the fiber-shaped discharged material, and heated gas is applied to the moving discharged material.
  • This is a method of reducing the diameter of the ejected material by making it accompany the ejected material.
  • a resin composition as a raw material is melted using an extruder or the like.
  • the molten resin composition is introduced into a spinneret connected to the tip of the extruder, and is discharged in the form of fibers from the spinning nozzle of the spinneret.
  • a heated gas ejected from a gas nozzle of a spinneret is applied to the fibrous material, and the heated gas stretches the fibrous material, thereby making the fibrous material thinner.
  • the resin composition only needs to contain the thermoplastic polyurethane elastomer according to the present disclosure, and may be the thermoplastic polyurethane elastomer itself according to the present disclosure, or the thermoplastic polyurethane elastomer according to the present disclosure and other resins. and at least one of an additive.
  • the temperature (Ta) of the heating gas may be appropriately selected depending on the type of thermoplastic polyurethane elastomer.
  • the temperature (Ta) of the heating gas may be, for example, 210°C to 240°C.
  • the temperature (Tp) of the melt of the resin composition may be appropriately selected depending on the type of thermoplastic polyurethane elastomer.
  • the temperature (Tp) of the melt of the resin composition may be, for example, 200°C to 230°C.
  • the temperature (Tp) of the melt of the resin composition can be measured as the set temperature of the spinneret (die).
  • the temperature (Ta) of the heated gas can be measured as the temperature of the heated gas immediately after being discharged from the spinneret (die). Specifically, the temperature of the heated gas (Ta) can be measured as the temperature of the heated gas at the opening of the gas nozzle of the spinneret (die).
  • the temperature (Ta) of the heated gas can be adjusted, for example, while measuring the temperature (Ta) of the heated gas at the opening of the gas nozzle of the spinneret (die), until the temperature (Ta) of the heated gas at the opening of the gas nozzle is set to a predetermined value.
  • the temperature of the heated gas at the opening of the gas nozzle (Ta) may be adjusted under predetermined conditions (e.g., die temperature, heated gas flow rate).
  • Data showing the relationship between the temperature and the supply temperature of the heated gas is prepared in advance, and based on that data, the temperature of the heated gas (Ta) at the opening of the gas nozzle is set to a predetermined temperature. This may also be done by adjusting the supply temperature of the heating gas.
  • the discharge amount of the melt of the resin composition per spinning nozzle of the spinneret may be, for example, 0.05 g/min to 0.20 g/min.
  • the flow rate of the heating gas may be between 300 Nm 3 /hr/m and 500 Nm 3 /hr/m.
  • the type of heating gas is not particularly limited, and examples include gases that are inert to the melted resin composition (eg, air, carbon dioxide gas, nitrogen gas, etc.). Among these, air is preferred from the viewpoint of economy.
  • the method for producing a meltblown nonwoven fabric of the present disclosure may further include a step of collecting the fibrous extrudate in the form of a web after performing the above-described fiberizing step.
  • the obtained discharged material is collected in the form of a web on a collector, for example.
  • the ejected material is collected by suctioning air from the side of the collector opposite to the surface that collects the ejected material (hereinafter also referred to as the "back side"). May be promoted.
  • collectors include perforated belts, perforated drums, and the like. Note that collection of fibrous materials may be promoted by sucking air from the back side of the collector. The ejected material may be collected on a desired base material provided in advance on the collector. Examples of pre-provided substrates include other nonwoven fabrics (eg, meltblown nonwoven fabrics, spunbond nonwoven fabrics, needle punched and spunlaced nonwoven fabrics, etc.), woven fabrics, knitted fabrics, paper, and the like.
  • nonwoven fabrics eg, meltblown nonwoven fabrics, spunbond nonwoven fabrics, needle punched and spunlaced nonwoven fabrics, etc.
  • meltblown nonwoven fabric manufacturing apparatus used in the meltblown nonwoven fabric manufacturing method of the present disclosure will be described with reference to FIG. 1.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a meltblown nonwoven fabric manufacturing apparatus 10.
  • a meltblown nonwoven fabric manufacturing apparatus 10 includes an extruder 20, a die (spinneret) 30, and a collection mechanism 40.
  • the extruder 20 has a hopper 21 and a compression section 22.
  • the extruder 20 melts the solid material of the resin composition introduced into the hopper 21 in the compression section 22 .
  • the extruder 20 may be a single-screw extruder or a multi-screw extruder such as a twin-screw extruder.
  • a die (spinneret) 30 is connected to the tip of the extruder 20 and arranged.
  • the die 30 has a plurality of spinning nozzles 31 and two gas nozzles 32.
  • the plurality of spinning nozzles 31 are usually arranged in a row.
  • the spinning nozzle 31 discharges the melted resin composition melted by the compression section 22 in the form of fibers from the nozzle opening.
  • the diameter of the spinning nozzle can be, for example, between 0.08 mm and 0.60 mm.
  • the temperature (Tp) of the melt of the resin composition can be adjusted by the set temperature of the die 30.
  • the distance between the small holes in the spinning nozzle of the spinneret may be 0.5 mm to 3.0 mm.
  • the two gas nozzles (air nozzles) 32 are arranged near the nozzle opening of the spinning nozzle 31 (specifically, on both sides of the row of the plurality of spinning nozzles 31).
  • the gas nozzle 32 injects heated gas (heated compressed gas) near the opening of the spinning nozzle 31 . As shown in FIG. 1, the gas nozzle 32 injects heated gas to the discharged material immediately after being discharged from the opening of the spinning nozzle 31.
  • the heating gas supplied to the gas nozzle 32 is supplied from the gas heating device 50.
  • the temperature (Ta) of the heating gas can be adjusted by a heating temperature adjustment means (not shown) attached to the gas heating device 50.
  • the collection mechanism 40 includes a perforated belt (collector) 41, a roller 42 that supports and transports the belt, and an air suction unit 43 arranged on the back side of the collection surface of the perforated belt 41.
  • the air suction section 43 is connected to a blower 44.
  • the collection mechanism 40 collects the fibrous discharge material onto a moving porous belt 41 .
  • the molten resin composition melted in the extruder 20 is introduced into the spinning nozzle 31 of the die (spinneret) 30 and discharged from the opening of the spinning nozzle 31. Heated gas is injected from the gas nozzle 32 toward the vicinity of the opening of the spinning nozzle 31 .
  • the fibrous material discharged from the spinning nozzle 31 is stretched and thinned by the heated gas.
  • the temperature (Ta) of the heating gas is adjusted appropriately. Thereby, the discharged material is appropriately rapidly cooled and stretched.
  • the flow rate of the heating gas is adjusted to satisfy the above range. Thereby, even if the discharged material is rapidly cooled, it can be sufficiently stretched. Then, the discharged material is collected on the porous belt 41 to obtain a meltblown nonwoven fabric.
  • the above-described melt-blown nonwoven fabric of the present disclosure and the melt-blown nonwoven fabric produced by the above-described manufacturing method may be electrically charged.
  • the charging method is not particularly limited as long as the melt-blown non-woven fabric can be made into an electret; for example, a corona charging method, a method of applying water or an aqueous solution of a water-soluble organic solvent to the melt-blown non-woven fabric and then drying it to make it an electret (for example, methods described in Japanese Patent Publication No. Hei 9-501604, Japanese Patent Application Laid-open No. 2002-115177, etc.) can be mentioned.
  • the electric field strength is preferably 15 kV/cm or more, more preferably 20 kV/cm or more.
  • the permissible range of elongation at break in the MD direction is 300% or more.
  • the permissible range of elongation at break in the CD direction is 300% or more.
  • Mn number average molecular weight
  • thermoplastic polyurethane elastomer [TPU (1)].
  • the obtained TPU (1) had Shore A hardness: 82, melting point (Tm) (high melting point side): 162.2°C, heat of fusion: 11.4 mJ/mg, melt viscosity: 1100 Pa ⁇ s, solidification start temperature 155 °C, heat of fusion of hard domain: 0.58.
  • Example 1 A meltblown nonwoven fabric was produced as follows. TPU (1) was melted using a single screw extruder. The molten TPU (1) was supplied to the die, and from the die with a set temperature of 220°C (temperature of the molten TPU (1)), the amount of discharge per spinning nozzle was 0.067 g/min. It was discharged together with heated air (temperature Ta: 230°C, flow rate: 5.4 Nm 3 /cm/hour) blown from both sides. The diameter of the spinning nozzle of the die was 0.38 mm. Then, the fibrous extrudate was collected on a collector so that the basis weight became the value shown in Table 1, to obtain a meltblown nonwoven fabric. Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 2 The procedure was the same as in Example 1, except that the flow rate of the heated air was changed from 5.4 Nm 3 /cm / hour to 6.8 Nm 3 /cm / hour, and the basis weight was changed to the value listed in Table 1.
  • a meltblown nonwoven fabric was obtained.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 3 The discharge amount per spinning nozzle was changed from 0.067 g/min to 0.106 g/min, the flow rate of heated air was changed from 5.4 Nm 3 /cm/hour to 6.8 Nm 3 /cm/hour, A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 4 The discharge amount per spinning nozzle was changed from 0.067 g/min to 0.142 g/min, the flow rate of heated air was changed from 5.4 Nm 3 /cm/hour to 6.8 Nm 3 /cm/hour, A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 5 A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 6 A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 7 The set temperature of the die was changed from 220°C to 215°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.047g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour.
  • a meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 4.1 Nm 3 /cm/hour to 4.1 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 8 The set temperature of the die was changed from 220°C to 215°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.047g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour.
  • a meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 4.1 Nm 3 /cm/hour to 4.1 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 1.
  • Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 1 A meltblown nonwoven fabric was obtained in the same manner as in Example 4, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 2.
  • Table 2 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • Example 3 The set temperature of the die was changed from 220°C to 230°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.106g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour.
  • a meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 6.7 Nm 3 /cm/hour to 6.7 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 2.
  • Table 2 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
  • melt-blown nonwoven fabrics of Examples 1 to 8 have a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn) of 2.4 or less.
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • the melt-blown nonwoven fabrics of Examples 1 to 8 contain a thermoplastic polyurethane elastomer having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn) of 2.4 or less, and have a basis weight ( g/m 2 ) is greater than 0.034 N ⁇ m 2 /50 mm ⁇ g.
  • the elongation at break in the MD direction and the elongation at break in the CD direction are each 300% or more, and the water pressure resistance is 4.0 (mmH 2 O)/(g/m 2 ).
  • the elongation at break and water pressure resistance of Examples 1 to 8 were excellent.
  • the melt-blown nonwoven fabric of Comparative Example 1 had an average fiber diameter not less than 6.5 ⁇ m and a recovery stress in the MD direction relative to the basis weight (g/m 2 ) of not more than 0.034 N ⁇ m 2 /50 mm ⁇ g.
  • the water pressure resistance of the meltblown nonwoven fabric of Comparative Example 1 was less than 4.0 (mmH 2 O)/(g/m 2 ), which was inferior to Examples 1 to 8.
  • the melt-blown nonwoven fabrics of Comparative Examples 2 and 3 did not use a thermoplastic polyurethane elastomer having a number average molecular weight (Mn) of 100,000 or more. Therefore, each of the MD breaking elongation and CD breaking elongation of Comparative Examples 2 and 3 was less than 300%, which was inferior to Examples 1 to 8.
  • the meltblown nonwoven fabric broke at the stage of stretching at a stretching ratio of 100%. Therefore, the recovery stress of Comparative Example 2 could not be measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

The melt-blown nonwoven fabric according to the present disclosure comprises a thermoplastic polyurethane-based elastomer having a number average molecular weight (Mn) of 100,000 or more and a molecular distribution (Mw/Mn), which is a ratio of the weight average molecular weight (Mw) to a number average molecular weight (Mn), of 2.4 or less and has an average fiber diameter of less than 6.5 μm.

Description

メルトブローン不織布及び衛生材料Meltblown nonwovens and sanitary materials
 本開示は、メルトブローン不織布及び衛生材料に関する。 The present disclosure relates to meltblown nonwoven fabrics and sanitary materials.
 近年、不織布は通気性及び柔軟性に優れることから各種用途に幅広く用いられている。そのため、不織布には、その用途に応じた各種の特性が求められるとともに、その特性の向上が要求されている。 In recent years, nonwoven fabrics have been widely used for various purposes due to their excellent breathability and flexibility. Therefore, nonwoven fabrics are required to have various properties depending on their uses, and improvements in these properties are also required.
 例えば、特許文献1は、ポリウレタン繊維不織布状物(以下、単に「不織布」とも称する)を開示している。特許文献1に開示の不織布は、平均繊維径10μm以下のポリウレタン極細繊維からなり、繊維本数の15~80%が束状に融着した繊維からなる。特許文献1に開示の不織布では、平衡染着量が60mg/g以上である。 For example, Patent Document 1 discloses a polyurethane fiber nonwoven fabric (hereinafter also simply referred to as "nonwoven fabric"). The nonwoven fabric disclosed in Patent Document 1 is made of ultrafine polyurethane fibers with an average fiber diameter of 10 μm or less, and 15 to 80% of the fibers are fused into bundles. The nonwoven fabric disclosed in Patent Document 1 has an equilibrium dyeing amount of 60 mg/g or more.
 特許文献2は、フィルターを開示している。特許文献2に開示のフィルターは、熱可塑性エラストマー樹脂を主成分する繊維不織布からなる。特許文献2に開示のフィルターでは、該繊維不織布が下記(1)~(4)を満たす。(1)は、該繊維不織布を構成する繊維の平均繊維径が10μm以下であることを示す。(2)は、繊維本数の15~80%が2本以上の束状に融着した繊維からなることを示す。(3)は、100%以上の破断伸度を有すると共に、50%伸張回復率が60%以上であることを示す。(4)は、少なくとも1方向に50%伸張した時の通気度が未伸張時の通気度の2倍以下であることを示す。 Patent Document 2 discloses a filter. The filter disclosed in Patent Document 2 is made of a fibrous nonwoven fabric whose main component is a thermoplastic elastomer resin. In the filter disclosed in Patent Document 2, the fibrous nonwoven fabric satisfies the following (1) to (4). (1) indicates that the average fiber diameter of the fibers constituting the fibrous nonwoven fabric is 10 μm or less. (2) indicates that 15 to 80% of the fibers are composed of two or more fibers fused together in a bundle. (3) indicates that the material has an elongation at break of 100% or more and a 50% elongation recovery rate of 60% or more. (4) indicates that the air permeability when stretched by 50% in at least one direction is less than twice the air permeability when not stretched.
 特許文献3は、熱可塑性ポリウレタンに基づく繊維(以下、単に「繊維」とも称する)を開示している。特許文献3に開示の繊維は、無機添加剤を含む。特許文献3に開示の繊維では、該無機添加剤の粒子の少なくとも70%が、熱可塑性ポリウレタンの繊維径の75%よりも小さな最大粒子直径を有する。 Patent Document 3 discloses fibers (hereinafter also simply referred to as "fibers") based on thermoplastic polyurethane. The fiber disclosed in Patent Document 3 contains an inorganic additive. In the fibers disclosed in US Pat. No. 5,302,303, at least 70% of the particles of the inorganic additive have a maximum particle diameter that is smaller than 75% of the fiber diameter of the thermoplastic polyurethane.
  特許文献1:特開2003-064567号公報
  特許文献2:特開2004-057882号公報
  特許文献3:特表2010-509512号公報
Patent Document 1: Japanese Patent Application Publication No. 2003-064567 Patent Document 2: Japanese Patent Application Publication No. 2004-057882 Patent Document 3: Japanese Patent Publication No. 2010-509512
 上述の通り、不織布に関して幅広い用途が検討されている。
 例えば、不織布は、使い捨ておむつ、生理用品などの吸収性材料、衛生マスクなどの衛生材料、包帯などの医療材料、衣料素材、包装材等の用途に用いることが考えられる。
 上記の様々な用途において、不織布は、破断伸度及び耐水圧に優れることを求められる場合が多い。
As mentioned above, a wide range of applications are being considered for nonwoven fabrics.
For example, nonwoven fabrics can be used for disposable diapers, absorbent materials such as sanitary products, sanitary materials such as sanitary masks, medical materials such as bandages, clothing materials, packaging materials, and the like.
In the various uses mentioned above, nonwoven fabrics are often required to have excellent elongation at break and water pressure resistance.
 本開示の一実施態様が解決しようとする課題は、破断伸度及び耐水圧に優れるメルトブローン不織布、及びメルトブローン不織布を含む衛生材料を提供することである。 A problem to be solved by an embodiment of the present disclosure is to provide a melt-blown nonwoven fabric with excellent elongation at break and water pressure resistance, and a sanitary material containing the melt-blown nonwoven fabric.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
 <1> 数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、平均繊維径が6.5μm未満であるメルトブローン不織布。
 <2> 数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、目付(g/m)に対するMD方向の回復応力が0.034N・m/50mm
・gより大きいメルトブローン不織布。
 <3> 平均繊維径が5.5μm以下である<1>又は<2>に記載のメルトブローン不織布。
 <4> 前記熱可塑性ポリウレタン系エラストマーが、下記の式Iを満たす<1>~<3>のいずれか1つに記載のメルトブローン不織布。
  a/(a+b)≦0.8  (I)
(式I中、aは、示差走査熱量計により測定される90℃~140℃の範囲にある吸熱ピークから得られる融解熱量の総和を表し、bは、示差走査熱量計により測定される140℃超220℃以下の範囲にある吸熱ピークから得られる融解熱量の総和を表す。)
 <5> 前記熱可塑性ポリウレタン系エラストマーは、数平均分子量(Mn)が101,500以上である<1>~<4>のいずれか1つに記載のメルトブローン不織布。
 <6> MD方向の破断伸度が、250%以上である<1>~<5>のいずれか1つに記載のメルトブローン不織布。
 <7> 目付(g/m)に対する耐水圧が6.0mmHO・m/g以上である<1>~<6>のいずれか1つに記載のメルトブローン不織布。
 <8> 目付(g/m)に対するMD方向の回復応力が0.035N・m/50mm・g以上である<1>~<7>のいずれか1つに記載のメルトブローン不織布。
 <9> <1>~<8>のいずれか1つに記載のメルトブローン不織布を含む衛生材料。
 <10> <1>~<8>のいずれか1つに記載のメルトブローン不織布を含む耐水シート。
 <11> <1>~<8>のいずれか1つに記載のメルトブローン不織布を含む医療用シート。
Means for solving the above problems include the following embodiments.
<1> Heat having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn), which is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), of 2.4 or less. A meltblown nonwoven fabric containing a plastic polyurethane elastomer and having an average fiber diameter of less than 6.5 μm.
<2> Heat having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn), which is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), of 2.4 or less. Contains a plastic polyurethane elastomer, and has a recovery stress of 0.034N・m 2 /50mm in the MD direction relative to the basis weight (g/m 2 ).
・Meltblown nonwoven fabric larger than g.
<3> The meltblown nonwoven fabric according to <1> or <2>, having an average fiber diameter of 5.5 μm or less.
<4> The meltblown nonwoven fabric according to any one of <1> to <3>, wherein the thermoplastic polyurethane elastomer satisfies the following formula I.
a/(a+b)≦0.8 (I)
(In Formula I, a represents the sum of the heat of fusion obtained from endothermic peaks in the range of 90°C to 140°C measured by a differential scanning calorimeter, and b represents 140°C measured by a differential scanning calorimeter. (Represents the total amount of heat of fusion obtained from endothermic peaks in the range of 220℃ or less.)
<5> The meltblown nonwoven fabric according to any one of <1> to <4>, wherein the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 101,500 or more.
<6> The meltblown nonwoven fabric according to any one of <1> to <5>, which has an elongation at break in the MD direction of 250% or more.
<7> The melt-blown nonwoven fabric according to any one of <1> to <6>, which has a water pressure resistance to basis weight (g/m 2 ) of 6.0 mmH 2 O·m 2 /g or more.
<8> The meltblown nonwoven fabric according to any one of <1> to <7>, which has a recovery stress in the MD direction with respect to basis weight (g/m 2 ) of 0.035 N·m 2 /50 mm·g or more.
<9> A sanitary material comprising the meltblown nonwoven fabric according to any one of <1> to <8>.
<10> A water-resistant sheet comprising the meltblown nonwoven fabric according to any one of <1> to <8>.
<11> A medical sheet comprising the meltblown nonwoven fabric according to any one of <1> to <8>.
 本開示の一実施態様は、破断伸度及び耐水圧に優れるメルトブローン不織布、及びメルトブローン不織布を含む衛生材料を提供することができる。 An embodiment of the present disclosure can provide a meltblown nonwoven fabric with excellent elongation at break and water pressure resistance, and a sanitary material containing the meltblown nonwoven fabric.
図1は、メルトブローン不織布の製造装置10の構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of a meltblown nonwoven fabric manufacturing apparatus 10. As shown in FIG.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、組成物に含まれる各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
In the present disclosure, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In the present disclosure, if there are multiple substances corresponding to each component in the composition, unless otherwise specified, the amount of each component contained in the composition refers to the total amount of the multiple substances present in the composition. means.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . In the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, if there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
≪メルトブローン不織布≫
 本開示のメルトブローン不織布は、第1態様のメルトブローン不織布及び第2態様のメルトブローン不織布を含む。
 第1態様のメルトブローン不織布及び第2態様のメルトブローン不織布について、以下に説明する。
≪Meltblown nonwoven fabric≫
The meltblown nonwoven fabric of the present disclosure includes the meltblown nonwoven fabric of the first aspect and the meltblown nonwoven fabric of the second aspect.
The melt-blown nonwoven fabric of the first aspect and the melt-blown nonwoven fabric of the second aspect will be described below.
[第1態様]
 第1態様のメルトブローン不織布は、数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)(以下、単に「分子量分布(Mw/Mn)」と称する。)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、平均繊維径が6.5μm未満である。
[First aspect]
The melt-blown nonwoven fabric of the first aspect has a number average molecular weight (Mn) of 100,000 or more, and a molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (hereinafter, It contains a thermoplastic polyurethane elastomer having a molecular weight distribution (Mw/Mn) of 2.4 or less, and has an average fiber diameter of less than 6.5 μm.
 第1態様のメルトブローン不織布は、上記の構成を有するので、破断伸度及び耐水圧に優れる。
 本開示における熱可塑性ポリウレタン系エラストマーは、数平均分子量(Mn)が比較的大きい。これによって、繊維の破断強度を高めることができ、容易に破断することを防ぐことができる。破断強度が高いことは耐水圧の向上にも寄与する。
 本開示における熱可塑性ポリウレタン系エラストマーは、分子量分布(Mw/Mn)が2.4以下である。これによって、繊維中の分子量が均一となる。これにより、破断の起点となる分子鎖絡み合いの弱い部分が少なくなる。その結果、繊維の破断強度及びメルトブローン不織布の耐水圧は、向上する。
 メルトブローン不織布の平均繊維径が6.5μm未満であることで、メルトブローン繊維の繊維量、ひいては自己融着点が増加し、絡み合いが強固となる。そして、繊維の絡み合いが強固であること、及び、上述の繊維の破断強度が高いことの組み合わせにより、絡み合った繊維を破断することなく良好に伸ばすことができるという相乗的な効果を奏する。
Since the melt-blown nonwoven fabric of the first aspect has the above configuration, it has excellent elongation at break and water pressure resistance.
The thermoplastic polyurethane elastomer in the present disclosure has a relatively large number average molecular weight (Mn). This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
The thermoplastic polyurethane elastomer in the present disclosure has a molecular weight distribution (Mw/Mn) of 2.4 or less. This makes the molecular weight in the fiber uniform. This reduces the number of weak portions of molecular chain entanglement that serve as starting points for rupture. As a result, the breaking strength of the fibers and the water pressure resistance of the meltblown nonwoven fabric are improved.
When the average fiber diameter of the melt-blown nonwoven fabric is less than 6.5 μm, the fiber amount of the melt-blown fibers and, as a result, the self-fusion point increases, and the entanglement becomes strong. The combination of the strong intertwining of the fibers and the high breaking strength of the fibers described above produces a synergistic effect in that the entangled fibers can be stretched well without breaking.
 熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)及び重量平均分子量(Mw)は、メルトブローン不織布に含まれる状態での数平均分子量(Mn)及び重量平均分子量(Mw)を意味する。
 メルトブローン不織布に含まれる状態での熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)及び重量平均分子量(Mw)は、メルトブローン不織布を成形する際の条件によって変動し得る。
 例えば、上述の特許文献1は、成形温度が高いこと、通気度及び破断伸度が著しく低いこと等からエラストマーの分子量が低いと考えられる。高温成形による高融着が発生している可能性がある。
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer refer to the number average molecular weight (Mn) and weight average molecular weight (Mw) in a state included in the meltblown nonwoven fabric.
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer in a state included in the melt blown nonwoven fabric can vary depending on the conditions when forming the melt blown nonwoven fabric.
For example, in Patent Document 1 mentioned above, the molecular weight of the elastomer is considered to be low because the molding temperature is high and the air permeability and elongation at break are extremely low. There is a possibility that high fusion has occurred due to high temperature molding.
 第1態様のメルトブローン不織布は、平均繊維径が6.5μm未満である。
 これによって、メルトブローン繊維の繊維量、ひいては自己融着点が増加し、絡み合いが強固となる。
 第1態様のメルトブローン不織布は、平均繊維径が6.4μm以下であることが好ましく、5.5μm以下であることがより好ましい。平均繊維径が5.5μm以下であると、上記のメルトブローン繊維の繊維量、自己融着点がさらに増加し、絡み合いがより強固となる。加えて、破断や漏水の起点となる不織布の薄いムラ部分が少なくなる。これにより、破断伸度および耐水圧は、さらに向上する。
 第1態様のメルトブローン不織布は、平均繊維径が2.5μm以上であることが好ましく、3.0μm以上であることがより好ましい。
 第1態様のメルトブローン不織布は、平均繊維径が2.5μm以上6.5μm未満であってもよい。
The meltblown nonwoven fabric of the first aspect has an average fiber diameter of less than 6.5 μm.
As a result, the fiber content of the meltblown fibers and, as a result, the self-fusion point increases, and the entanglement becomes stronger.
The melt-blown nonwoven fabric of the first aspect preferably has an average fiber diameter of 6.4 μm or less, more preferably 5.5 μm or less. When the average fiber diameter is 5.5 μm or less, the fiber amount and self-fusion point of the above-mentioned meltblown fibers further increase, and the entanglement becomes stronger. In addition, thin uneven parts of the nonwoven fabric, which can be the starting point for breakage and water leakage, are reduced. This further improves the elongation at break and the water pressure resistance.
The melt-blown nonwoven fabric of the first aspect preferably has an average fiber diameter of 2.5 μm or more, more preferably 3.0 μm or more.
The melt-blown nonwoven fabric of the first aspect may have an average fiber diameter of 2.5 μm or more and less than 6.5 μm.
 平均繊維径は以下の方法により測定する。
 電子顕微鏡(例えば日立製作所製S-3500N)を用いて、倍率1000倍のメルトブローン不織布の写真を撮影する。得られた写真から繊維の直径を測定する。撮像と測定を繊維の本数の合計が100本を超えるまで繰り返し、得られた繊維の直径の算術平均値を平均繊維径(μm)とする。
The average fiber diameter is measured by the following method.
A photograph of the melt-blown nonwoven fabric is taken at a magnification of 1000 times using an electron microscope (eg, Hitachi S-3500N). Measure the diameter of the fiber from the photograph obtained. The imaging and measurement are repeated until the total number of fibers exceeds 100, and the arithmetic mean value of the obtained fiber diameters is defined as the average fiber diameter (μm).
<熱可塑性ポリウレタン系エラストマー>
 第1態様のメルトブローン不織布は、熱可塑性ポリウレタン系エラストマーを含む。
<Thermoplastic polyurethane elastomer>
The melt-blown nonwoven fabric of the first embodiment includes a thermoplastic polyurethane elastomer.
(数平均分子量(Mn))
 熱可塑性ポリウレタン系エラストマーは数平均分子量(Mn)が100,000以上である。
 これによって、繊維の破断強度を高めることができ、容易に破断することを防ぐことができる。破断強度が高いことは耐水圧の向上にも寄与する。
 熱可塑性ポリウレタン系エラストマーは数平均分子量(Mn)が101,500以上であることが好ましく、102,500以上であることがより好ましく、103,500以上であることがさらに好ましい。数平均分子量(Mn)が101,500以上であると、分子鎖の絡み合いがさらに増加し、繊維の破断強度、ひいては不織布の破断伸度・耐水圧は、さらに向上する。
(Number average molecular weight (Mn))
The thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 100,000 or more.
This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
The thermoplastic polyurethane elastomer preferably has a number average molecular weight (Mn) of 101,500 or more, more preferably 102,500 or more, and even more preferably 103,500 or more. When the number average molecular weight (Mn) is 101,500 or more, the entanglement of molecular chains further increases, and the breaking strength of the fibers and, by extension, the breaking elongation and water pressure resistance of the nonwoven fabric are further improved.
(重量平均分子量(Mw))
 熱可塑性ポリウレタン系エラストマーの重量平均分子量(Mw)は、紡糸性の観点から、180,000以上であることが好ましく、190,000以上であることが好ましい。
(Weight average molecular weight (Mw))
From the viewpoint of spinnability, the weight average molecular weight (Mw) of the thermoplastic polyurethane elastomer is preferably 180,000 or more, and preferably 190,000 or more.
(分子量分布)
 熱可塑性ポリウレタン系エラストマーの分子量分布(Mw/Mn)は、2.4以下であり、2.3以下であることが好ましく、2.2以下であることがより好ましい。分子量分布(Mw/Mn)の上限値は、特に制限されないが、例えば、1.0以上であってもよい。
 つまり、分子量分布(Mw/Mn)は、1.0~2.4であることが好ましく、1.0~2.3であることがより好ましく、1.0~2.2であることがさらに好ましい。
(molecular weight distribution)
The molecular weight distribution (Mw/Mn) of the thermoplastic polyurethane elastomer is 2.4 or less, preferably 2.3 or less, and more preferably 2.2 or less. The upper limit of the molecular weight distribution (Mw/Mn) is not particularly limited, but may be, for example, 1.0 or more.
In other words, the molecular weight distribution (Mw/Mn) is preferably 1.0 to 2.4, more preferably 1.0 to 2.3, and even more preferably 1.0 to 2.2. preferable.
 数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)は、以下の方法により測定する。
 作製したメルトブローン不織布を、下記溶離液中で、80℃で加熱溶解して測定用サンプルを作製する。ゲルパーミエーションクロマトグラフィー(GPC)を用いて、下記の条件で、単分散ポリスチレン基準により数平均分子量(Mn)及び重量平均分子量(Mw)を得る。得られる数平均分子量(Mn)に対する得られる重量平均分子量(Mw)の比を分子量分布(Mw/Mn)とした。
GPC測定条件;
カラム:Shodex GPC KD-806M(8.0mmID×300mmL)×2
カラム温度:40℃
溶離液:0.01mol/L―LiBr in ジメチルホルムアミド
流量:0.7mL/分
検出波長:UV 264nm
注入量:100μL
測定装置:515ポンプ、717plus自動注入装置、2487UV検出計(日本ウォーターズ株式会社製)
The number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn) are measured by the following methods.
The produced melt-blown nonwoven fabric is heated and melted at 80° C. in the following eluent to produce a measurement sample. Using gel permeation chromatography (GPC), the number average molecular weight (Mn) and weight average molecular weight (Mw) are obtained based on monodisperse polystyrene under the following conditions. The ratio of the obtained weight average molecular weight (Mw) to the obtained number average molecular weight (Mn) was defined as the molecular weight distribution (Mw/Mn).
GPC measurement conditions;
Column: Shodex GPC KD-806M (8.0mm ID x 300mmL) x 2
Column temperature: 40℃
Eluent: 0.01 mol/L-LiBr in dimethylformamide Flow rate: 0.7 mL/min Detection wavelength: UV 264 nm
Injection volume: 100μL
Measuring equipment: 515 pump, 717plus automatic injection device, 2487UV detector (manufactured by Nippon Waters Co., Ltd.)
(凝固開始温度)
 熱可塑性ポリウレタン系エラストマーは、凝固開始温度が好ましくは65℃以上であり、より好ましくは75℃以上であり、さらに好ましくは85℃以上である。
 凝固開始温度が65℃以上であると、メルトブローン不織布を得る際に繊維同士の融着、糸切れ、樹脂塊などの成形不良を抑制することができるとともに、熱エンボス加工の際に成形されたメルトブローン不織布がエンボスローラーに巻きつくことを防止できる。
 加えて、熱可塑凝固開始温度が65℃以上であると、得られるメルトブローン不織布のベタツキを抑制できる。そのため、メルトブローン不織布は、衣料、衛生材料、スポーツ材料等の肌と接触する材料として好適に用いることができる。
(solidification start temperature)
The thermoplastic polyurethane elastomer preferably has a solidification start temperature of 65°C or higher, more preferably 75°C or higher, and even more preferably 85°C or higher.
When the solidification start temperature is 65°C or higher, molding defects such as fusion of fibers, thread breakage, and resin lumps can be suppressed when obtaining a meltblown nonwoven fabric, and meltblown molded during hot embossing can be suppressed. It is possible to prevent the nonwoven fabric from wrapping around the embossing roller.
In addition, when the thermoplastic solidification start temperature is 65° C. or higher, stickiness of the resulting melt-blown nonwoven fabric can be suppressed. Therefore, melt-blown nonwoven fabrics can be suitably used as materials that come into contact with the skin, such as clothing, sanitary materials, and sports materials.
 熱可塑性ポリウレタン系エラストマーは、凝固開始温度が好ましくは195℃以下である。
 凝固開始温度が195℃以下であることにより、成形加工性を向上させることができる。
The thermoplastic polyurethane elastomer preferably has a solidification start temperature of 195°C or lower.
By setting the solidification start temperature to 195° C. or lower, moldability can be improved.
 凝固開始温度は、示差走査熱量計(DSC)を用いて測定される。
 詳しくは、熱可塑性ポリウレタン系エラストマーを10℃/分で230℃まで昇温し、230℃で5分間保持した後、10℃/分で降温させる。この際に生じる熱可塑性ポリウレタン系エラストマーの凝固に由来する発熱ピークの開始温度が、凝固開始温度である。
The solidification onset temperature is measured using a differential scanning calorimeter (DSC).
Specifically, the temperature of the thermoplastic polyurethane elastomer is raised to 230°C at a rate of 10°C/min, held at 230°C for 5 minutes, and then lowered at a rate of 10°C/min. The starting temperature of the exothermic peak resulting from the solidification of the thermoplastic polyurethane elastomer that occurs at this time is the solidification start temperature.
 熱可塑性ポリウレタン系エラストマーの凝固開始温度を65℃以上に調整する方法としては、熱可塑性ポリウレタン系エラストマーの原料として使用するポリオール化合物、イソシアネート化合物、鎖延長剤等の化学構造を適宜選択する方法、熱可塑性ポリウレタン系エラストマー中のハードセグメント量を調整する方法等が挙げられる。 Methods for adjusting the solidification initiation temperature of thermoplastic polyurethane elastomers to 65°C or higher include methods of appropriately selecting the chemical structures of polyol compounds, isocyanate compounds, chain extenders, etc. used as raw materials for thermoplastic polyurethane elastomers; Examples include a method of adjusting the amount of hard segments in the plastic polyurethane elastomer.
 「ハードセグメント量」とは、熱可塑性ポリウレタン系エラストマーの製造に使用するイソシアネート化合物と鎖延長剤との合計含有量を、ポリオール化合物、イソシアネート化合物及び鎖延長剤の総量で除算して100を掛けた質量パーセント(質量%)値を意味する。
 ハードセグメント量は、好ましくは20質量%~60質量%であり、より好ましくは22質量%~50質量%であり、更に好ましくは25質量%~48質量%である。
"Hard segment amount" is the total content of isocyanate compounds and chain extenders used in the production of thermoplastic polyurethane elastomers, divided by the total amount of polyol compounds, isocyanate compounds, and chain extenders, and multiplied by 100. Mass percentage (mass %) value is meant.
The amount of hard segments is preferably 20% by mass to 60% by mass, more preferably 22% by mass to 50% by mass, and even more preferably 25% by mass to 48% by mass.
(極性溶媒不溶分の粒子数)
 熱可塑性ポリウレタン系エラストマーは、好ましくは極性溶媒不溶分の粒子数が、熱可塑性ポリウレタン系エラストマー1gに対して、好ましくは300万個(300万個/g)以下であり、より好ましくは250万個/g以下であり、さらに好ましくは200万個/g以下である。
 「熱可塑性ポリウレタン系エラストマー中の極性溶媒不溶分」とは、主に、熱可塑性ポリウレタン系エラストマーの製造中に発生するフィッシュアイやゲルなどの塊状物である。
 極性溶媒不溶分が発生する原因となる成分としては、熱可塑性ポリウレタン系エラストマーのハードセグメント凝集物に由来する成分、ハードセグメント及び/又はソフトセグメントがアロファネート結合、ビュレット結合等により架橋された成分、熱可塑性ポリウ
レタン系エラストマーを構成する原料、原料間の化学反応により生じる成分等が挙げられる。
(Number of particles insoluble in polar solvent)
The thermoplastic polyurethane elastomer preferably has a polar solvent insoluble particle number of preferably 3 million particles (3 million particles/g) or less, more preferably 2.5 million particles per 1 g of the thermoplastic polyurethane elastomer. /g or less, more preferably 2 million pieces/g or less.
The "polar solvent insoluble matter in the thermoplastic polyurethane elastomer" mainly refers to lumps such as fish eyes and gel that are generated during the production of the thermoplastic polyurethane elastomer.
Components that cause the generation of polar solvent insoluble matter include components derived from hard segment aggregates of thermoplastic polyurethane elastomers, components in which hard segments and/or soft segments are crosslinked by allophanate bonds, burette bonds, etc. Examples include raw materials constituting the plastic polyurethane elastomer, components generated by chemical reactions between raw materials, and the like.
 極性溶媒不溶分の粒子数は、熱可塑性ポリウレタン系エラストマーをジメチルアセトアミド溶媒に溶解させた際の不溶分を、細孔電気抵抗法を利用した粒度分布測定装置に100μmのアパーチャーを装着して測定した値である。
 100μmのアパーチャーを装着することで、未架橋ポリスチレン換算で2μm~60μmの粒子の数を測定することができる。
The number of particles insoluble in a polar solvent was measured by measuring the insoluble content when a thermoplastic polyurethane elastomer was dissolved in a dimethylacetamide solvent using a particle size distribution measuring device using a pore electrical resistance method equipped with a 100 μm aperture. It is a value.
By installing a 100 μm aperture, it is possible to measure the number of particles of 2 μm to 60 μm in terms of uncrosslinked polystyrene.
 極性溶媒不溶分の粒子数を300万個/g以下にすることにより、熱可塑性ポリウレタン系エラストマーの凝固開始温度範囲内において、繊維径の分布の増大、紡糸時の糸切れ等の問題の発生をより抑えることができる。極性溶媒不溶分の少ない熱可塑性ポリウレタン系エラストマーは、ポリオール化合物、イソシアネート化合物及び鎖延長剤の重合反応を行なった後、ろ過することにより得ることができる。 By reducing the number of particles insoluble in polar solvents to 3 million particles/g or less, problems such as increased fiber diameter distribution and yarn breakage during spinning can be prevented within the solidification start temperature range of thermoplastic polyurethane elastomers. It can be suppressed further. A thermoplastic polyurethane elastomer with a small content insoluble in polar solvents can be obtained by carrying out a polymerization reaction of a polyol compound, an isocyanate compound, and a chain extender, followed by filtration.
 大型メルトブローン成形機械でのメルトブローン不織布の成形におけるストランド中への気泡の混入及び糸切れの発生を抑制する観点からは、熱可塑性ポリウレタン系エラストマーの水分値は350ppm以下であることが好ましく、300ppm以下であることがより好ましく、150ppm以下であることが更に好ましい。 From the viewpoint of suppressing the inclusion of air bubbles in the strand and the occurrence of yarn breakage during the molding of melt blown nonwoven fabric with a large melt blown molding machine, the moisture value of the thermoplastic polyurethane elastomer is preferably 350 ppm or less, and 300 ppm or less. It is more preferable that it be present, and even more preferably that it is 150 ppm or less.
 熱可塑性ポリウレタン系エラストマーは、メルトブローン不織布の伸縮性を向上させる観点から、下記の式Iを満たすことが好ましく、下記の式IIを満たすことがより好ましく、下記の式IIIを満たすことがさらに好ましい。 From the viewpoint of improving the elasticity of the melt-blown nonwoven fabric, the thermoplastic polyurethane elastomer preferably satisfies the following formula I, more preferably satisfies the following formula II, and even more preferably satisfies the following formula III.
a/(a+b)≦0.8(I)
a/(a+b)≦0.7(II)
a/(a+b)≦0.6(III)
a/(a+b)≦0.8(I)
a/(a+b)≦0.7(II)
a/(a+b)≦0.6(III)
(式I、式II及び式III中、aは、示差走査熱量計により測定される90℃~140℃の範囲にある吸熱ピークから得られる融解熱量の総和を表す。bは、示差走査熱量計により測定される140℃超220℃以下の範囲にある吸熱ピークから得られる融解熱量の総和を表す。) (In Formula I, Formula II, and Formula III, a represents the sum of the heat of fusion obtained from endothermic peaks in the range of 90°C to 140°C measured by differential scanning calorimeter. (Represents the total amount of heat of fusion obtained from endothermic peaks in the range of more than 140 degrees Celsius and less than 220 degrees Celsius measured by
(融解熱量比)
 上記「a/(a+b)」は熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比(単位:%)を意味する。
 熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比が、80%以下であることで、繊維及びメルトブローン不織布において、強度及び伸縮性が向上する。第1態様のメルトブローン不織布は、熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比の下限値が0.1%程度であることが好ましい。
(heat of fusion ratio)
The above "a/(a+b)" means the heat of fusion ratio (unit: %) of the hard domain of the thermoplastic polyurethane elastomer.
When the heat of fusion ratio of the hard domain of the thermoplastic polyurethane elastomer is 80% or less, the strength and stretchability of the fiber and meltblown nonwoven fabric are improved. In the melt-blown nonwoven fabric of the first aspect, the lower limit of the heat of fusion ratio of the hard domain of the thermoplastic polyurethane elastomer is preferably about 0.1%.
 熱可塑性ポリウレタン系エラストマーは、温度200℃、せん断速度100sec-1の条件における溶融粘度(以下、単に「溶融粘度」とも称する)が100Pa・s~3000Pa・sであることが好ましく、200Pa・s~2000Pa・sであることがより好ましく、900Pa・s~1600Pa・sであることがさらに好ましい。
 溶融粘度は、キャピログラフ(東洋精機(株)製、ノズル長30mm、直径1mmのものを使用)で測定する。
 このような特性を有する熱可塑性ポリウレタン系エラストマーは、例えば、特開2004-244791号公報に記載された製造方法により得ることができる。
 なお、熱可塑性ポリウレタン系エラストマーはバイオマス原料を含んでもよい。バイオマス由来の原料を含む熱可塑性ポリウレタン系エラストマー(バイオマス由来の熱可塑性ポリウレタン系エラストマー)の詳細については、後述する。
The thermoplastic polyurethane elastomer preferably has a melt viscosity (hereinafter also simply referred to as "melt viscosity") of 100 Pa.s to 3000 Pa.s, and preferably 200 Pa.s to 3000 Pa.s at a temperature of 200° C. and a shear rate of 100 sec -1 It is more preferably 2000 Pa·s, and even more preferably 900 Pa·s to 1600 Pa·s.
The melt viscosity is measured with a capillograph (manufactured by Toyo Seiki Co., Ltd., with a nozzle length of 30 mm and a diameter of 1 mm).
A thermoplastic polyurethane elastomer having such characteristics can be obtained, for example, by the manufacturing method described in JP-A No. 2004-244791.
Note that the thermoplastic polyurethane elastomer may contain a biomass raw material. Details of the thermoplastic polyurethane elastomer containing biomass-derived raw materials (biomass-derived thermoplastic polyurethane elastomer) will be described later.
 メルトブローン不織布は、熱可塑性ポリウレタン系エラストマーを50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、99質量%以上含むことが特に好ましい。 The melt-blown nonwoven fabric preferably contains 50% by mass or more of a thermoplastic polyurethane elastomer, more preferably 70% by mass or more, even more preferably 90% by mass or more, and particularly preferably 99% by mass or more.
 メルトブローン不織布の目付は、用途により適宜決めればよい。例えば、メルトブローン不織布の目付は、1g/m~100g/mであることが好ましく、4g/m~65g/mであることがより好ましい。 The basis weight of the melt-blown nonwoven fabric may be determined as appropriate depending on the application. For example, the basis weight of the meltblown nonwoven fabric is preferably 1 g/m 2 to 100 g/m 2 , more preferably 4 g/m 2 to 65 g/m 2 .
 メルトブローン不織布の目付は、以下の方法により測定する。
 メルトブローン不織布から200mm(流れ方向:MD方向)×50mm(横方向:CD方向)の試験片を6点採取する。なお、採取場所はMD方向、CD方向ともに任意の3箇所とする(計6箇所)。次いで、採取した各試験片について、上皿電子天秤(例えば研精工業株式会社製の上皿電子天秤)を用いて、それぞれの質量(g)を測定する。各試験片の質量の平均値を求める。求めた平均値を1m当たりの質量(g)に換算し、小数点第2位を四捨五入した値を、各サンプルの目付〔g/m2〕とする。
The basis weight of meltblown nonwoven fabric is measured by the following method.
Six test pieces of 200 mm (machine direction: MD direction) x 50 mm (lateral direction: CD direction) are taken from the melt-blown nonwoven fabric. The sampling locations are any three locations in both the MD and CD directions (six locations in total). Next, the mass (g) of each sampled test piece is measured using an electronic balance (for example, an electronic balance manufactured by Kensei Kogyo Co., Ltd.). Find the average mass of each test piece. The obtained average value is converted into mass (g) per 1 m 2 , and the value rounded to the second decimal place is defined as the basis weight [g/m 2 ] of each sample.
 メルトブローン不織布の厚みは、用途により適宜決めればよい。
 例えばメルトブローン不織布の厚みは、0.01mm~1.00mmであってもよい。
The thickness of the melt-blown nonwoven fabric may be determined as appropriate depending on the application.
For example, the thickness of the meltblown nonwoven fabric may be 0.01 mm to 1.00 mm.
 「MD(Machine Direction)方向」とは、繊維の流れ方向を意味する。MD(Machine Direction)方向は、メルトブローン不織布を製造する際の搬送方向でもある。
 「CD(Cross Direction)方向」とは、MD方向(つまり繊維の流れ方向)と直交する方向を意味する。
"MD (Machine Direction) direction" means the flow direction of the fibers. The MD (Machine Direction) direction is also the conveyance direction when manufacturing the meltblown nonwoven fabric.
"CD (Cross Direction) direction" means a direction perpendicular to the MD direction (that is, the flow direction of the fibers).
(破断伸度)
 第1態様のメルトブローン不織布は、MD方向の破断伸度が、250%以上であることが好ましく、270%以上であることがより好ましく、300%以上であることがさらに好ましく、340%以上であることが特に好ましい。
 第1態様のメルトブローン不織布は、MD方向の破断伸度が、700%以下であることが好ましく、650%以下であることがより好ましく、600%以下であることがさらに好ましい。
 第1態様のメルトブローン不織布は、MD方向の破断伸度が、250%以上600%以下であることも好ましい。
 MD方向の破断伸度が、250%以上であると、人体の変形に追従する必要のある用途(例えば、使い捨ておむつ、包帯など等)において、メルトブローン不織布は、メルトブローン不織布が伸びる方向の変形に対して破断することなく良好に追従できる。
(Elongation at break)
The melt-blown nonwoven fabric of the first aspect preferably has an elongation at break in the MD direction of 250% or more, more preferably 270% or more, even more preferably 300% or more, and even more preferably 340% or more. It is particularly preferable.
The elongation at break in the MD direction of the melt-blown nonwoven fabric of the first aspect is preferably 700% or less, more preferably 650% or less, and even more preferably 600% or less.
It is also preferable that the melt-blown nonwoven fabric of the first aspect has a breaking elongation in the MD direction of 250% or more and 600% or less.
If the elongation at break in the MD direction is 250% or more, the melt-blown non-woven fabric will resist deformation in the stretching direction in applications where it is necessary to follow the deformation of the human body (for example, disposable diapers, bandages, etc.). It can be tracked well without breaking.
 第1態様のメルトブローン不織布は、CD方向の破断伸度が、250%以上であることが好ましく、350%以上であることがより好ましく、400%以上であることがさらに好ましく、430%以上であることが特に好ましい。
 第1態様のメルトブローン不織布は、CD方向の破断伸度が、700%以下であることが好ましく、650%以下であることがより好ましく、600%以下であることがさらに好ましい。
 第1態様のメルトブローン不織布は、CD方向の破断伸度が、250%以上600%以下であることも好ましい。
The melt-blown nonwoven fabric of the first aspect preferably has a breaking elongation in the CD direction of 250% or more, more preferably 350% or more, even more preferably 400% or more, and even more preferably 430% or more. This is particularly preferred.
The elongation at break in the CD direction of the melt-blown nonwoven fabric of the first aspect is preferably 700% or less, more preferably 650% or less, and even more preferably 600% or less.
It is also preferable that the melt-blown nonwoven fabric of the first aspect has a breaking elongation in the CD direction of 250% or more and 600% or less.
 破断伸度は、以下の方法により測定する。
 メルトブローン不織布から200mm(測定方向)×50mm(測定直交方向)の試験片を5点採取する。なお、採取場所は任意の5箇所とする。次いで、採取した各試験片を、万能引張試験機(例えばインテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/minの条件で試験片のMD方向に延伸し、試験片が破断した際の延伸倍率をMD方向の破断伸度〔%〕とする。試験片の引張方向を試験片のMD方向から試験片のCD方向に変更した他は、MD方向の破断伸度〔%〕の測定方法と同様にして延伸倍率を測定する。延伸倍率の測定値をCD方向の破断伸度〔%〕とする。
The elongation at break is measured by the following method.
Five test pieces of 200 mm (measurement direction) x 50 mm (measurement direction) are taken from the melt-blown nonwoven fabric. The sampling locations are five arbitrary locations. Next, each sampled test piece was stretched in the MD direction of the test piece using a universal tensile tester (for example, model IM-201 manufactured by Intesco) under conditions of a chuck distance of 100 mm and a tensile speed of 100 mm/min. The stretching ratio at which the piece breaks is defined as the elongation at break [%] in the MD direction. The stretching ratio is measured in the same manner as the method for measuring the elongation at break [%] in the MD direction, except that the tensile direction of the test piece is changed from the MD direction of the test piece to the CD direction of the test piece. The measured value of the stretching ratio is defined as the elongation at break in the CD direction [%].
(耐水圧)
 第1態様のメルトブローン不織布は、目付(g/m)に対する耐水圧(以下、単に「耐水圧」とも称する)が6.0mmHO・m/g以上であることが好ましく、9.0mmHO・m/g以上であることがより好ましく、12.0mmHO・m/g以上であることがさらに好ましい。
 第1態様のメルトブローン不織布は、耐水圧が30.0mmHO・m/g以下であることが好ましく、20.0mmHO・m/g以下であることがより好ましく、15.0mmHO・m/g以下であることがさらに好ましい。
 第1態様のメルトブローン不織布は、耐水圧が6.0mmHO・m/g以上30.0mmHO・m/g以下であることも好ましい。
 耐水圧が6.0mmHO・m/g以上であると、液体防漏性が求められる用途(例えば、使い捨ておむつ、生理用品など)において、メルトブローン不織布は、液体(例えば、尿、血液など)が漏れ出ることを防止することができる。
(water pressure resistance)
The melt-blown nonwoven fabric of the first aspect preferably has a water pressure resistance (hereinafter also simply referred to as "water pressure resistance") with respect to basis weight (g/m 2 ) of 6.0 mmH 2 O·m 2 /g or more, and 9.0 mmH It is more preferably 2 O·m 2 /g or more, and even more preferably 12.0 mmH 2 O·m 2 /g or more.
The melt-blown nonwoven fabric of the first aspect preferably has a water pressure resistance of 30.0 mmH 2 O·m 2 /g or less, more preferably 20.0 mmH 2 O·m 2 /g or less, and 15.0 mmH 2 More preferably, it is not more than O·m 2 /g.
It is also preferable that the melt-blown nonwoven fabric of the first aspect has a water pressure resistance of 6.0 mmH 2 O·m 2 /g or more and 30.0 mmH 2 O·m 2 /g or less.
When the water pressure resistance is 6.0 mmH 2 O・m 2 /g or more, melt-blown nonwoven fabrics are suitable for applications that require liquid leakage resistance (e.g., disposable diapers, sanitary products, etc.). ) can be prevented from leaking.
 耐水圧は、JISL1096に規定されているA法(低水圧法)に準拠して測定したメルトブローン不織布の耐水圧を、目付で除して得られる値である。メルトブローン不織布の耐水圧の単位は、(mmHO)/(g/m)、つまりmmHO・m/gである。 The water pressure resistance is a value obtained by dividing the water pressure resistance of the melt-blown nonwoven fabric measured according to method A (low water pressure method) specified in JISL1096 by the basis weight. The unit of water pressure resistance of the melt-blown nonwoven fabric is (mmH 2 O)/(g/m 2 ), that is, mmH 2 O·m 2 /g.
(回復応力)
 第1態様のメルトブローン不織布は、目付(g/m)に対するMD方向の回復応力(以下、単に「MD方向の回復応力」とも称する)が0.035N・m/50mm・g以上であることが好ましく、0.036N・m/50mm・g以上であることがより好ましい。
 第1態様のメルトブローン不織布は、MD方向の回復応力が0.060N・m/50mm・g以下であることが好ましく、0.050N・m/50mm・g以下であることがより好ましく、0.040N・m/50mm・g以下であることがさらに好ましい。
 第1態様のメルトブローン不織布は、MD方向の回復応力が0.035N・m/50mm・g以上0.060N・m/50mm・g以下であることも好ましい。
 MD方向の回復応力が0.035N・m/50mm・g以上であると、人体の変形に追従する必要のある用途(例えば、使い捨ておむつ、包帯など)において、メルトブローン不織布は、メルトブローン不織布が縮む方向の変形に対して伸びたままになることなく、良好に追従できる。
(Recovery stress)
The melt-blown nonwoven fabric of the first aspect has a recovery stress in the MD direction (hereinafter also simply referred to as "recovery stress in the MD direction") with respect to basis weight (g/m 2 ) of 0.035 N·m 2 /50 mm·g or more. is preferable, and more preferably 0.036 N·m 2 /50 mm·g or more.
The melt-blown nonwoven fabric of the first aspect preferably has a recovery stress in the MD direction of 0.060 N·m 2 /50 mm·g or less, more preferably 0.050 N·m 2 /50 mm·g or less, and 0.050 N·m 2 /50 mm·g or less. More preferably, it is .040 N·m 2 /50 mm·g or less.
It is also preferable that the melt blown nonwoven fabric of the first aspect has a recovery stress in the MD direction of 0.035 N·m 2 /50 mm·g or more and 0.060 N·m 2 /50 mm·g or less.
If the recovery stress in the MD direction is 0.035 N m 2 /50 mm g or more, the melt blown nonwoven fabric will shrink in applications that need to follow the deformation of the human body (for example, disposable diapers, bandages, etc.). It can follow the deformation in the direction well without remaining stretched.
 MD方向の回復応力は、以下の方法により測定する。
 メルトブローン不織布から200mm(MD)×50mm(CD)の試験片を5点採取する。なお、採取場所は任意の5箇所とする。次いで、採取した各試験片を、万能引張試験機(例えばインテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/min、延伸倍率100%の条件でMD方向に延伸した後、同じ速度で原長まで回復させる。この操作を2サイクル実施して、2サイクル目の回復時にMD方向の延伸倍率が50%となった際の応力を、目付で除して得られる値を、目付(g/m)に対するMD方向の回復応力とする。
 目付(g/m)に対するMD方向の回復応力の単位は(N/50mm)/(g/m)、つまりN・m/50mm・gである。
The recovery stress in the MD direction is measured by the following method.
Five test pieces of 200 mm (MD) x 50 mm (CD) are taken from the melt-blown nonwoven fabric. The sampling locations are five arbitrary locations. Next, each sampled test piece was stretched in the MD direction using a universal tensile tester (for example, IM-201 model manufactured by Intesco) under conditions of a chuck distance of 100 mm, a tensile speed of 100 mm/min, and a stretching ratio of 100%. Afterwards, it is restored to its original length at the same speed. This operation is carried out for two cycles, and the value obtained by dividing the stress when the stretching ratio in the MD direction becomes 50% at the time of recovery in the second cycle by the basis weight is calculated as the MD for the basis weight (g/m 2 ). Let it be the recovery stress in the direction.
The unit of the recovery stress in the MD direction with respect to the basis weight (g/m 2 ) is (N/50mm)/(g/m 2 ), that is, N·m 2 /50mm·g.
(より好ましい構成)
 第1態様では、メルトブローン不織布の平均繊維径が、3.0μm~3.7μmであることが好ましい。第1態様では、熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)が、101,500~104,000であることが好ましい。第1態様では、熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)が101,500~104,000であり、かつメルトブローン不織布の平均繊維径が3.0μm~3.7μmであることが好ましい。これにより、メルトブローン不織布の破断伸度及び耐水圧の総合性能は、優れる。
(More preferred configuration)
In the first aspect, the average fiber diameter of the meltblown nonwoven fabric is preferably 3.0 μm to 3.7 μm. In the first embodiment, the thermoplastic polyurethane elastomer preferably has a number average molecular weight (Mn) of 101,500 to 104,000. In the first embodiment, it is preferable that the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 101,500 to 104,000, and the meltblown nonwoven fabric has an average fiber diameter of 3.0 μm to 3.7 μm. As a result, the melt-blown nonwoven fabric has excellent overall performance in terms of elongation at break and water pressure resistance.
 第1態様では、メルトブローン不織布の平均繊維径が3.0μm~3.7μmであり、かつメルトブローン不織布の目付が4g/m~30g/mであることが好ましい。第1態様では、熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)が101,500~104,000であり、かつメルトブローン不織布の目付が4g/m~30g/mであることが好ましい。第1態様では、熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)が101,500~104,000であり、メルトブローン不織布の平均繊維径が3.0μm~3.7μmであり、メルトブローン不織布の目付が4g/m~30g/mであることが好ましい。これにより、メルトブローン不織布の破断伸度及び耐水圧の総合性能は、より優れる。 In the first aspect, it is preferable that the average fiber diameter of the meltblown nonwoven fabric is 3.0 μm to 3.7 μm, and the basis weight of the meltblown nonwoven fabric is 4 g/m 2 to 30 g/m 2 . In the first aspect, it is preferable that the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 101,500 to 104,000, and the melt blown nonwoven fabric has a basis weight of 4 g/m 2 to 30 g/m 2 . In the first aspect, the number average molecular weight (Mn) of the thermoplastic polyurethane elastomer is 101,500 to 104,000, the average fiber diameter of the meltblown nonwoven fabric is 3.0 μm to 3.7 μm, and the basis weight of the meltblown nonwoven fabric is It is preferably 4 g/m 2 to 30 g/m 2 . As a result, the overall performance of the melt-blown nonwoven fabric in elongation at break and water pressure resistance is more excellent.
 第1態様のメルトブローン不織布の用途としては、例えば、使い捨ておむつ、生理用品等の吸収性物品、衛生マスク等の衛生物品、包帯等の医療物品、衣料素材、包装材、耐水シート、医療用シートなどが挙げられる。 Applications of the melt-blown nonwoven fabric of the first aspect include, for example, disposable diapers, absorbent articles such as sanitary products, sanitary articles such as sanitary masks, medical articles such as bandages, clothing materials, packaging materials, waterproof sheets, medical sheets, etc. can be mentioned.
≪衛生材料≫
 本開示の衛生材料は、本開示のメルトブローン不織布を含むことが好ましい。
 第1態様のメルトブローン不織布は、展開型使い捨ておむつ又はパンツ型使い捨ておむつにおいて、トップシート、バックシート、ウェストバンド(例えば、延長テープ、サイドフラップ等)、ファスニングテープ、立体ギャザー、レッグカフに好適に用いることができる。第1態様のメルトブローン不織布は、パンツ型使い捨ておむつのサイドパネル等の部位に好適に用いることができる。
 これら部位に第1態様のメルトブローン不織布を使用することで、装着者の動きに追随し装着者の身体にフィットすることが可能となり、着用中においても快適な状態が維持される。
≪Hygiene materials≫
Preferably, the sanitary material of the present disclosure includes the meltblown nonwoven fabric of the present disclosure.
The melt-blown nonwoven fabric of the first aspect can be suitably used for top sheets, back sheets, waistbands (e.g. extension tapes, side flaps, etc.), fastening tapes, three-dimensional gathers, and leg cuffs in expandable disposable diapers or pants-type disposable diapers. I can do it. The melt-blown nonwoven fabric of the first aspect can be suitably used for parts such as side panels of pants-type disposable diapers.
By using the melt-blown nonwoven fabric of the first aspect in these parts, it becomes possible to follow the movements of the wearer and fit the wearer's body, and a comfortable state is maintained even while being worn.
 第1態様のメルトブローン不織布は、口許周辺被覆部と、上記被覆部の両側から延びる耳掛け部と、から構成される使い捨てマスク等にも好適に用いられる。
 第1態様のメルトブローン不織布は、使い捨て手術着、レスキューガウンなどにおける、腕、肘、肩などの可動間接部に用いられる基材として好適に用いられる。
The melt-blown nonwoven fabric of the first aspect is also suitably used for a disposable mask, etc., which is composed of a mouth-periphery covering part and ear hook parts extending from both sides of the covering part.
The melt-blown nonwoven fabric of the first aspect is suitably used as a base material for movable joints such as arms, elbows, and shoulders in disposable surgical gowns, rescue gowns, and the like.
≪耐水シート≫
 本開示の耐水シートは、本開示のメルトブローン不織布を含むことが好ましい。本開示の耐水シートは、本開示のメルトブローン不織布を含むことの他は、公知の構成であればよい。例えば、本開示の耐水シートは、本開示のメルトブローン不織布からなってもよいし、本開示のメルトブローン不織布からなる層(以下、「メルトブローン不織布層」ともいう)と、公知の繊維(例えば、セルロース繊維等)からなる層(以下、「繊維層」ともいう)と、を有してもよい。繊維層は、メルトブローン不織布層の一方の主面上に積層されている。本開示の耐水シートは、使い捨ておむつ、生理用品などの吸収性材料、衛生マスク、化粧用素材などの衛生材料、包帯などの医療材料、衣料素材、包材などの生活資材、フィルタなどの工業資材等の用途に用いることができる。特に柔軟性、通気性、伸縮性、及びバリア性に優れるので、衛生材料の例としては、紙おむつ、生理用ナプキン、湿布材等の基布、ベッドカバーなどの素材に好適に用いられる。医療材料および衣料素材の例としては、ガウン、キャップ、ドレープ、マスク、ガーゼ、包帯、各種防護服などの素材として特に好適に使用できる。さらにヒートシールなどの後加工性が良好であるため、脱酸素剤、カイロ、温シップ、マスク、各種粉体、半固体、ゲル状、液状の物質を包む用途、CD(コンパクトディスク)袋、食品包装材、衣服カバー、農業用シートなどの生活資材全般に応用可能である。同様の理由で、自動車内装材や各種バッキング材、建材などの工業資材としても好適に使用できる。また、細繊維で構成されることから、液体フィルター、エアフィルター資材としても広く適用可能である。
≪Waterproof sheet≫
The water-resistant sheet of the present disclosure preferably includes the melt-blown nonwoven fabric of the present disclosure. The water-resistant sheet of the present disclosure may have any known configuration except that it includes the melt-blown nonwoven fabric of the present disclosure. For example, the water-resistant sheet of the present disclosure may be made of the melt-blown non-woven fabric of the present disclosure, or may include a layer made of the melt-blown non-woven fabric of the present disclosure (hereinafter also referred to as "melt-blown non-woven fabric layer") and known fibers (for example, cellulose fibers). etc.) (hereinafter also referred to as a "fibrous layer"). The fibrous layer is laminated on one main surface of the meltblown nonwoven fabric layer. The water-resistant sheet of the present disclosure can be used for absorbent materials such as disposable diapers and sanitary products, sanitary materials such as sanitary masks and cosmetic materials, medical materials such as bandages, household materials such as clothing materials and packaging materials, and industrial materials such as filters. It can be used for purposes such as In particular, it has excellent flexibility, breathability, stretchability, and barrier properties, so it is suitably used for sanitary materials such as paper diapers, sanitary napkins, base fabrics for poultice materials, and bed covers. Examples of medical materials and clothing materials include gowns, caps, drapes, masks, gauze, bandages, and various protective clothing. In addition, it has good post-processing properties such as heat sealing, so it can be used to wrap oxygen absorbers, body warmers, hot air bags, masks, various powders, semi-solids, gels, and liquid substances, CD (compact disc) bags, and food products. It can be applied to all kinds of household materials such as packaging materials, clothing covers, and agricultural sheets. For the same reason, it can also be suitably used as an industrial material such as automobile interior materials, various backing materials, and building materials. Furthermore, since it is composed of fine fibers, it can be widely applied as a material for liquid filters and air filters.
≪医療用シート≫
 本開示の医療用シートは、本開示のメルトブローン不織布を含むことが好ましい。本開示の医療用シートは、本開示のメルトブローン不織布を含むことの他は、公知の構成であればよい。例えば、本開示の医療用シートは、メルトブローン不織布からなってもよいし、メルトブローン不織布層と、繊維層と、を有してもよい。繊維層は、メルトブローン不織布層の一方の主面上に積層されている。本開示の医療用シートは、ガウン、キャップ、ドレープ、マスク、ガーゼ、包帯、各種防護服などの素材、プラスター基布、パップ材、外傷被覆材、傷テープ等に好適に用いられる。さらに滅菌時や殺菌時に照射される電子線やガンマ線に安定な原料を使用することで、滅菌医療用シートに好適に用いられる。
≪Medical sheet≫
Preferably, the medical sheet of the present disclosure includes the melt-blown nonwoven fabric of the present disclosure. The medical sheet of the present disclosure may have any known configuration except that it includes the melt-blown nonwoven fabric of the present disclosure. For example, the medical sheet of the present disclosure may be made of a meltblown nonwoven fabric, or may include a meltblown nonwoven fabric layer and a fiber layer. The fibrous layer is laminated on one main surface of the meltblown nonwoven fabric layer. The medical sheet of the present disclosure is suitably used for materials such as gowns, caps, drapes, masks, gauze, bandages, and various protective clothing, plaster base fabrics, poultice materials, wound dressings, wound tapes, and the like. Furthermore, by using raw materials that are stable against electron beams and gamma rays that are irradiated during sterilization and sterilization, they can be suitably used for sterilized medical sheets.
(バイオマス由来の熱可塑性ポリウレタン系エラストマー)
 バイオマス由来の熱可塑性ポリウレタン系エラストマーは、ソルゴー等の非可食植物を主体とするバイオマス原料から、発酵によって製造したイソプロパノールを脱水して得られるプロピレンを重合することによっても得られる。
(Thermoplastic polyurethane elastomer derived from biomass)
Biomass-derived thermoplastic polyurethane elastomers can also be obtained by polymerizing propylene obtained by dehydrating isopropanol produced by fermentation from biomass raw materials mainly made of inedible plants such as sorghum.
 本開示において、「バイオマス度」は、バイオマス由来の炭素の含有率を示し、放射性炭素(C14)を測定することにより算出する。大気中の二酸化炭素には、C14が一定割合(約105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物(例えばトウモロコシ)中のC14含有量も約105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、原料中の全炭素原子中に含まれるC14の割合を測定することにより、原料中のバイオマス由来の炭素の含有率を算出することができる。 In the present disclosure, "biomass degree" indicates the content rate of carbon derived from biomass, and is calculated by measuring radioactive carbon (C14). Since carbon dioxide in the atmosphere contains C14 at a certain rate (approximately 105.5 pMC), the C14 content in plants (e.g. corn) that grow by taking in atmospheric carbon dioxide is also approximately 105.5 pMC. It is known that the degree of It is also known that fossil fuels contain almost no C14. Therefore, by measuring the proportion of C14 contained in all carbon atoms in the raw material, the content rate of biomass-derived carbon in the raw material can be calculated.
 例えば、原料中のC14の含有量をPC14とした場合、原料中のバイオマス由来の炭素の含有率Pbio(%)は、次の式(1)により算出することができる。
 Pbio(%)=PC14/105.5×100・・・式(1)
For example, when the content of C14 in the raw material is PC14, the content rate Pbio (%) of biomass-derived carbon in the raw material can be calculated using the following formula (1).
Pbio (%) = PC14/105.5×100...Formula (1)
 すなわち、ポリウレタンの原料が全てバイオマス由来であれば、理論上は、バイオマス由来の炭素の含有率は100%となるので、バイオマス由来の熱可塑性ポリウレタン系エラストマーのバイオマス度は100%となる。また、化石燃料由来の原料にはC14が殆ど含まれていないので、化石燃料由来原料のみで製造されたポリウレタン中の、バイオマス由来の炭素の含有率は0%となり、化石燃料由来ポリウレタンのバイオマス度は0%となる。 That is, if all the raw materials for polyurethane are derived from biomass, the content of biomass-derived carbon is theoretically 100%, so the biomass degree of the biomass-derived thermoplastic polyurethane elastomer is 100%. In addition, since fossil fuel-derived raw materials hardly contain C14, the content of biomass-derived carbon in polyurethane produced only from fossil fuel-derived raw materials is 0%, and the biomass content of fossil fuel-derived polyurethane is 0%. becomes 0%.
 本開示のスパンボンド不織布の原料として用いられるバイオマス由来のポリウレタン系熱可塑性エラストマーのバイオマス度は、1%以上であることが好ましい。 The biomass content of the biomass-derived polyurethane thermoplastic elastomer used as a raw material for the spunbond nonwoven fabric of the present disclosure is preferably 1% or more.
 一般に、熱可塑性ポリウレタン系エラストマーは、原料として、ポリエーテルポリオール、ポリエステルポリオール、およびポリカーボネートポリオールなどのポリマーグリコール;脂肪族グリコール、芳香族グリコール、および脂環式グリコールなどの短鎖グリコール(鎖延長剤);および芳香族ジイソシアネート、脂肪族ジイソシアネート、および脂環式ジイソシアネートなどのイソシアネート化合物などを含む。本開示において、好適に使用されるイソシアネートとしては、三井化学株式会社製の1,5-ペンタメチレンジイソシアネート系ポリイソシアネート(商品名:スタビオ(登録商標))などの脂肪族イソシアネート、芳香族イソシアネートなど が挙げられる。 In general, thermoplastic polyurethane elastomers are manufactured using polymer glycols such as polyether polyols, polyester polyols, and polycarbonate polyols; short chain glycols (chain extenders) such as aliphatic glycols, aromatic glycols, and alicyclic glycols as raw materials. and isocyanate compounds such as aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates. In the present disclosure, the isocyanates preferably used include aliphatic isocyanates such as 1,5-pentamethylene diisocyanate-based polyisocyanate (trade name: Stabio (registered trademark)) manufactured by Mitsui Chemicals, Inc., aromatic isocyanates, etc. Can be mentioned.
 本開示のスパンボンド不織布の原料がリサイクルポリマーを含む場合、本開示のスパンボンド不織布の原料として用いられる熱可塑性ポリウレタン系エラストマーは、リサイクルによって得られた、いわゆるリサイクルポリマーを含んでいてもよい。 When the raw material for the spunbond nonwoven fabric of the present disclosure includes a recycled polymer, the thermoplastic polyurethane elastomer used as the raw material for the spunbond nonwoven fabric of the present disclosure may contain a so-called recycled polymer obtained by recycling.
 「リサイクルポリマー」とは、廃ポリマー製品のリサイクルにより得られたポリマーを含むものであり、例えば、DE102019127827(A1)に記載の方法で製造することができる。リサイクルポリマーは、リサイクルにより得られたことが識別できるようなマーカーを含んでいてもよい。 "Recycled polymer" includes a polymer obtained by recycling waste polymer products, and can be produced, for example, by the method described in DE102019127827 (A1). The recycled polymer may include a marker that allows it to be identified as having been obtained through recycling.
[第2態様]
 第2態様のメルトブローン不織布は、数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)(以下、単に「分子量分布(Mw/Mn)」とも称する)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、目付(g/m)に対するMD方向の回復応力(以下、単に「MD方向の回復応力」とも称する)が0.034N・m/50mm・gより大きい。
[Second aspect]
The melt-blown nonwoven fabric of the second aspect has a number average molecular weight (Mn) of 100,000 or more, and a molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (hereinafter, It contains a thermoplastic polyurethane elastomer with a recovery stress in the MD direction (hereinafter simply referred to as "recovery in the MD direction") with respect to basis weight (g/m 2 ) of 2.4 or less (also simply referred to as "molecular weight distribution (Mw/Mn)"). (also referred to as "stress") is greater than 0.034N·m 2 /50mm·g.
 第2態様のメルトブローン不織布は、破断伸度及び耐水圧に優れる。
 本開示における熱可塑性ポリウレタン系エラストマーは、数平均分子量(Mn)が比較的大きい。これによって、繊維の破断強度を高めることができ、容易に破断することを防ぐことができる。破断強度が高いことは耐水圧の向上にも寄与する。
 本開示における熱可塑性ポリウレタン系エラストマーは、分子量分布(Mw/Mn)が2.4以下である。これによって、繊維中の分子量が均一となる。これにより、破断の起点となる分子鎖絡み合いの弱い部分が少なくなる。その結果、繊維の破断強度及び不織布の耐水圧は、向上する。
 MD方向の回復応力が0.034N・m/50mm・gより大きいことは、熱可塑性ポリウレタン系エラストマーのハードセグメント及びソフトセグメントの構造が十分に形成されていることを示す。これによって、繊維が塑性変形することを抑制することができる。その結果、高い水圧が付加された場合でも繊維が形状を維持することができ、繊維の目開きが抑制され、耐水圧が向上する。
 熱可塑性ポリウレタン系エラストマーのハードセグメントが十分に形成されることで、繊維中のポリウレタン分子の絡み合いが維持されやすくなり、繊維が破断することなく高い伸度まで弾性変形できる。そして、繊維の伸度が高いこと、及び、上述の繊維の破断強度が高いことの組み合わせにより、絡み合った繊維を破断することなく良好に伸ばすことができるという相乗的な効果を奏する。
The melt-blown nonwoven fabric of the second aspect has excellent elongation at break and water pressure resistance.
The thermoplastic polyurethane elastomer in the present disclosure has a relatively large number average molecular weight (Mn). This can increase the breaking strength of the fibers and prevent them from breaking easily. High breaking strength also contributes to improved water pressure resistance.
The thermoplastic polyurethane elastomer in the present disclosure has a molecular weight distribution (Mw/Mn) of 2.4 or less. This makes the molecular weight in the fiber uniform. This reduces the number of weak portions of molecular chain entanglement that serve as starting points for rupture. As a result, the breaking strength of the fibers and the water pressure resistance of the nonwoven fabric are improved.
The fact that the recovery stress in the MD direction is greater than 0.034 N·m 2 /50 mm·g indicates that the structure of the hard segment and soft segment of the thermoplastic polyurethane elastomer is sufficiently formed. This can suppress plastic deformation of the fibers. As a result, even when high water pressure is applied, the fibers can maintain their shape, the opening of the fibers is suppressed, and the water pressure resistance is improved.
When the hard segments of the thermoplastic polyurethane elastomer are sufficiently formed, the entanglement of the polyurethane molecules in the fibers is easily maintained, and the fibers can be elastically deformed to a high elongation without breaking. The combination of the high elongation of the fibers and the high breaking strength of the fibers described above provides a synergistic effect in that the entangled fibers can be stretched well without breaking.
 第1態様の項に記載の各項目の説明は、第2態様においても適用できる。
 例えば、第2態様における平均繊維径の好ましい範囲、定義、測定方法等の詳細は、第1態様における平均繊維径の好ましい範囲、定義、測定方法等の詳細と同様である。
 第2態様における熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、凝固開始温度、ハードセグメント量、極性溶媒不溶分の粒子数、水分値、式I、式II、式III、融解熱量比、溶融粘度、含有量等の好ましい範囲、定義、測定方法等の詳細は、第1態様における熱可塑性ポリウレタン系エラストマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、凝固開始温度、ハードセグメント量、極性溶媒不溶分の粒子数、水分値、式I、式II、式III、融解熱量比、溶融粘度、含有量等の好ましい範囲、定義、測定方法等の詳細と同様である。
 第2態様におけるメルトブローン不織布の目付、厚み、破断伸度、耐水圧、回復応力、用途等の好ましい範囲、好ましい態様、定義、測定方法等の詳細は、第1態様におけるメルトブローン不織布の目付、厚み、破断伸度、耐水圧、回復応力、用途等の好ましい範囲、好ましい態様、定義、測定方法等の詳細と同様である。
The explanation of each item described in the section of the first aspect can also be applied to the second aspect.
For example, the details of the preferred range, definition, measuring method, etc. of the average fiber diameter in the second aspect are the same as the details of the preferred range, definition, measuring method, etc. of the average fiber diameter in the first aspect.
Number average molecular weight (Mn), weight average molecular weight (Mw), molecular weight distribution (Mw/Mn), coagulation start temperature, hard segment amount, number of particles insoluble in polar solvent, moisture value of the thermoplastic polyurethane elastomer in the second embodiment , Formula I, Formula II, Formula III, heat of fusion ratio, melt viscosity, preferred ranges such as content, definitions, measurement methods, etc. Details of the number average molecular weight (Mn) of the thermoplastic polyurethane elastomer in the first embodiment, Weight average molecular weight (Mw), molecular weight distribution (Mw/Mn), solidification start temperature, hard segment amount, number of particles insoluble in polar solvent, moisture value, formula I, formula II, formula III, heat of fusion ratio, melt viscosity, The details are the same as the preferred range of content, definition, measurement method, etc.
The details of the preferred ranges, preferred embodiments, definitions, measurement methods, etc. of the melt-blown nonwoven fabric in the second aspect include the basis weight, thickness, elongation at break, water pressure resistance, recovery stress, application, etc. Details such as elongation at break, water pressure resistance, recovery stress, preferred ranges of uses, preferred embodiments, definitions, measuring methods, etc. are the same.
≪メルトブローン不織布の製造方法≫
 本開示のメルトブローン不織布の製造方法は、メルトブローン法により、本開示における熱可塑性ポリウレタン系エラストマーを含有する樹脂組成物(以下、単に「樹脂組成物」とも称する)を繊維状物する工程(以下、「繊維化工程」とも称する)を含む。繊維化工程では、樹脂組成物の溶融物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより、吐出された樹脂組成物の溶融物(以下、「吐出物」とも称する)を延伸する。
≪Production method of melt-blown nonwoven fabric≫
The method for producing a melt-blown nonwoven fabric of the present disclosure includes a step (hereinafter, " (also referred to as "fiberization process"). In the fiberization step, a melt of the resin composition is discharged from a spinneret together with a heated gas, and the discharged melt of the resin composition (hereinafter also referred to as "discharged product") is stretched by the heated gas.
 本開示のメルトブローン不織布の製造方法は、樹脂組成物を用いてメルトブローン法によってメルトブローン不織布を製造するための方法である。熱可塑性ポリウレタン系エラストマーを用いたメルトブローン法によるメルトブローン不織布の製造方法としては、例えば、特開2003-64567号(特許文献1)、特開2004-57882号等に記載されている。 The method for producing a meltblown nonwoven fabric of the present disclosure is a method for producing a meltblown nonwoven fabric by a meltblown method using a resin composition. A method for producing a melt-blown nonwoven fabric using a thermoplastic polyurethane elastomer by a melt-blown method is described in, for example, JP-A-2003-64567 (Patent Document 1), JP-A-2004-57882, and the like.
 「メルトブローン法」とは、樹脂組成物の溶融物を、紡糸口金から繊維状に吐出させる際に、繊維状の吐出物の両側から加熱ガスを吐出物に当てるとともに、移動する吐出物に加熱ガスを随伴させることで、吐出物の径を小さくする方法である。
 具体的には、例えば、原料として、樹脂組成物を、押出機などを用いて溶融する。樹脂組成物の溶融物は、押出機の先端に接続された紡糸口金に導入され、紡糸口金の紡糸ノズルから、繊維状に吐出される。繊維状に吐出された吐出物に、紡糸口金のガスノズルから噴出される加熱ガスが当てられて、上記加熱ガスにより吐出物が延伸されることにより、繊維状の吐出物が細化される。
The "melt blown method" is a process in which a molten resin composition is discharged from a spinneret in the form of fibers, and heated gas is applied to the discharged material from both sides of the fiber-shaped discharged material, and heated gas is applied to the moving discharged material. This is a method of reducing the diameter of the ejected material by making it accompany the ejected material.
Specifically, for example, a resin composition as a raw material is melted using an extruder or the like. The molten resin composition is introduced into a spinneret connected to the tip of the extruder, and is discharged in the form of fibers from the spinning nozzle of the spinneret. A heated gas ejected from a gas nozzle of a spinneret is applied to the fibrous material, and the heated gas stretches the fibrous material, thereby making the fibrous material thinner.
 樹脂組成物は、本開示における熱可塑性ポリウレタン系エラストマーを含有していればよく、本開示における熱可塑性ポリウレタン系エラストマー自体であってもよいし、本開示における熱可塑性ポリウレタン系エラストマーと、その他の樹脂及び添加剤の少なくとも一方とを含有していてもよい。
 加熱ガスの温度(Ta)は、熱可塑性ポリウレタン系エラストマーの種類に応じて、適宜選択すればよい。加熱ガスの温度(Ta)は、例えば210℃~240℃であってもよい。
 樹脂組成物の溶融物の温度(Tp)は、熱可塑性ポリウレタン系エラストマーの種類に応じて、適宜選択すればよい。樹脂組成物の溶融物の温度(Tp)は、例えば200℃~230℃であってもよい。
The resin composition only needs to contain the thermoplastic polyurethane elastomer according to the present disclosure, and may be the thermoplastic polyurethane elastomer itself according to the present disclosure, or the thermoplastic polyurethane elastomer according to the present disclosure and other resins. and at least one of an additive.
The temperature (Ta) of the heating gas may be appropriately selected depending on the type of thermoplastic polyurethane elastomer. The temperature (Ta) of the heating gas may be, for example, 210°C to 240°C.
The temperature (Tp) of the melt of the resin composition may be appropriately selected depending on the type of thermoplastic polyurethane elastomer. The temperature (Tp) of the melt of the resin composition may be, for example, 200°C to 230°C.
 樹脂組成物の溶融物の温度(Tp)は、紡糸口金(ダイ)の設定温度として測定することができる。 The temperature (Tp) of the melt of the resin composition can be measured as the set temperature of the spinneret (die).
 加熱ガスの温度(Ta)は、紡糸口金(ダイ)から吐出された直後の加熱ガスの温度として測定することができる。具体的には、加熱ガスの温度(Ta)は、紡糸口金(ダイ)のガスノズルの開口部における加熱ガスの温度として測定することができる。
 加熱ガスの温度(Ta)の調整は、例えば紡糸口金(ダイ)のガスノズルの開口部の加熱ガスの温度(Ta)を測定しながら、上記ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよいし;所定の条件(例えばダイ温度、加熱ガス流量)下で、ガスノズルの開口部の加熱ガスの温度(Ta)と加熱ガスの供給温度との関係を示すデータ(検量線)を予め準備しておき、そのデータに基づいて、ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよい。
The temperature (Ta) of the heated gas can be measured as the temperature of the heated gas immediately after being discharged from the spinneret (die). Specifically, the temperature of the heated gas (Ta) can be measured as the temperature of the heated gas at the opening of the gas nozzle of the spinneret (die).
The temperature (Ta) of the heated gas can be adjusted, for example, while measuring the temperature (Ta) of the heated gas at the opening of the gas nozzle of the spinneret (die), until the temperature (Ta) of the heated gas at the opening of the gas nozzle is set to a predetermined value. The temperature of the heated gas at the opening of the gas nozzle (Ta) may be adjusted under predetermined conditions (e.g., die temperature, heated gas flow rate). Data (calibration curve) showing the relationship between the temperature and the supply temperature of the heated gas is prepared in advance, and based on that data, the temperature of the heated gas (Ta) at the opening of the gas nozzle is set to a predetermined temperature. This may also be done by adjusting the supply temperature of the heating gas.
 紡糸口金の紡糸ノズル1つ当たりの樹脂組成物の溶融物の吐出量は、例えば0.05g/分~0.20g/分であってもよい。
 加熱ガスの流量は、300Nm/時/m~500Nm/時/mであってもよい。
 加熱ガスの種類は、特に限定されず、樹脂組成物の溶融物に不活性なガス(例えば、空気(エア)、炭酸ガス、窒素ガスなど)が挙げられる。これらの中でも、経済性の観点から空気(エア)が好ましい。
The discharge amount of the melt of the resin composition per spinning nozzle of the spinneret may be, for example, 0.05 g/min to 0.20 g/min.
The flow rate of the heating gas may be between 300 Nm 3 /hr/m and 500 Nm 3 /hr/m.
The type of heating gas is not particularly limited, and examples include gases that are inert to the melted resin composition (eg, air, carbon dioxide gas, nitrogen gas, etc.). Among these, air is preferred from the viewpoint of economy.
 本開示のメルトブローン不織布の製造方法は、上述の繊維化工程の実施の後に、繊維状の吐出物をウェブ状に捕集する工程をさらに含んでいてもよい。この捕集する工程では、例えば、コレクター上に、得られた吐出物をウェブ状に捕集する。コレクター上に捕集する際には、コレクターの吐出物を捕集する面とは反対側の面側(以下、「裏側」とも称する)から、エアを吸引するなどして吐出物の捕集を促進してもよい。 The method for producing a meltblown nonwoven fabric of the present disclosure may further include a step of collecting the fibrous extrudate in the form of a web after performing the above-described fiberizing step. In this collection step, the obtained discharged material is collected in the form of a web on a collector, for example. When collecting the ejected material on the collector, the ejected material is collected by suctioning air from the side of the collector opposite to the surface that collects the ejected material (hereinafter also referred to as the "back side"). May be promoted.
 コレクターの具体例としては、多孔ベルト、多孔ドラム等が挙げられる。なお、コレクターの裏面側からエアを吸引するなどして、繊維状物の捕集を促進してもよい。
 コレクター上に予め設けた所望の基材上に、吐出物を捕集してもよい。予め設けておく基材の例には、他の不織布(例えば、メルトブローン不織布、スパンボンド不織布、ニードルパンチング及びスパンレース不織布等)、織物、編物、紙などが挙げられる。
Specific examples of collectors include perforated belts, perforated drums, and the like. Note that collection of fibrous materials may be promoted by sucking air from the back side of the collector.
The ejected material may be collected on a desired base material provided in advance on the collector. Examples of pre-provided substrates include other nonwoven fabrics (eg, meltblown nonwoven fabrics, spunbond nonwoven fabrics, needle punched and spunlaced nonwoven fabrics, etc.), woven fabrics, knitted fabrics, paper, and the like.
 本開示のメルトブローン不織布の製造方法に用いられるメルトブローン不織布の製造装置について、図1を参照しながら説明する。 A meltblown nonwoven fabric manufacturing apparatus used in the meltblown nonwoven fabric manufacturing method of the present disclosure will be described with reference to FIG. 1.
 図1は、メルトブローン不織布の製造装置10の構成の一例を示す模式図である。
 図1に示されるように、メルトブローン不織布の製造装置10は、押出機20と、ダイ(紡糸口金)30と、捕集機構40とを有する。
FIG. 1 is a schematic diagram showing an example of the configuration of a meltblown nonwoven fabric manufacturing apparatus 10. As shown in FIG.
As shown in FIG. 1, a meltblown nonwoven fabric manufacturing apparatus 10 includes an extruder 20, a die (spinneret) 30, and a collection mechanism 40.
 押出機20は、ホッパー21と、圧縮部22とを有する。押出機20は、ホッパー21に投入された樹脂組成物の固形物を、圧縮部22で溶融させる。押出機20は、単軸押出機であってもよいし、二軸押出機等の多軸押出機であってもよい。 The extruder 20 has a hopper 21 and a compression section 22. The extruder 20 melts the solid material of the resin composition introduced into the hopper 21 in the compression section 22 . The extruder 20 may be a single-screw extruder or a multi-screw extruder such as a twin-screw extruder.
 ダイ(紡糸口金)30は、押出機20の先端に繋がって配置されている。ダイ30は、複数の紡糸ノズル31と、2つのガスノズル32とを有する。
 複数の紡糸ノズル31は、通常、列状に配置されている。紡糸ノズル31は、圧縮部22によって溶融された樹脂組成物の溶融物をノズル開口から繊維状に吐出させる。
 紡糸ノズルの直径は、例えば0.08mm~0.60mmでありうる。樹脂組成物の溶融物の温度(Tp)は、ダイ30の設定温度によって調整することができる。
A die (spinneret) 30 is connected to the tip of the extruder 20 and arranged. The die 30 has a plurality of spinning nozzles 31 and two gas nozzles 32.
The plurality of spinning nozzles 31 are usually arranged in a row. The spinning nozzle 31 discharges the melted resin composition melted by the compression section 22 in the form of fibers from the nozzle opening.
The diameter of the spinning nozzle can be, for example, between 0.08 mm and 0.60 mm. The temperature (Tp) of the melt of the resin composition can be adjusted by the set temperature of the die 30.
 紡糸口金の紡糸ノズルにおける小孔間距離は、0.5mm~3.0mmであってもよい。2つのガスノズル(エアノズル)32は、紡糸ノズル31のノズル開口部の近傍に(具体的には、複数の紡糸ノズル31の列を挟んだ両側に)配置されている。ガスノズル32は、紡糸ノズル31の開口部付近に加熱ガス(加熱圧縮ガス)を噴射する。図1に示されるように、ガスノズル32は、紡糸ノズル31の開口部から吐出された直後の吐出物に、加熱ガスを噴射する。 The distance between the small holes in the spinning nozzle of the spinneret may be 0.5 mm to 3.0 mm. The two gas nozzles (air nozzles) 32 are arranged near the nozzle opening of the spinning nozzle 31 (specifically, on both sides of the row of the plurality of spinning nozzles 31). The gas nozzle 32 injects heated gas (heated compressed gas) near the opening of the spinning nozzle 31 . As shown in FIG. 1, the gas nozzle 32 injects heated gas to the discharged material immediately after being discharged from the opening of the spinning nozzle 31.
 ガスノズル32に供給される加熱ガスは、ガス加熱装置50から供給される。加熱ガスの温度(Ta)は、ガス加熱装置50に付属の加熱温度調整手段(不図示)によって調整することができる。 The heating gas supplied to the gas nozzle 32 is supplied from the gas heating device 50. The temperature (Ta) of the heating gas can be adjusted by a heating temperature adjustment means (not shown) attached to the gas heating device 50.
 捕集機構40は、多孔ベルト(コレクター)41と、それを支持するとともに搬送させるローラ42と、多孔ベルト41の捕集面の裏側に配置されたエア吸引部43とを有する。エア吸引部43は、ブロワー44と連結されている。捕集機構40は、繊維状の吐出物を、移動する多孔ベルト41上に捕集する。
 このような構成によれば、押出機20で溶融した樹脂組成物の溶融物は、ダイ(紡糸口金)30の紡糸ノズル31に導入され、紡糸ノズル31の開口部から吐出される。ガスノズル32からは、加熱ガスが紡糸ノズル31の開口部付近に向かって噴射される。紡糸ノズル31から吐出された繊維状の吐出物は、加熱ガスにより延伸及び細化される。
The collection mechanism 40 includes a perforated belt (collector) 41, a roller 42 that supports and transports the belt, and an air suction unit 43 arranged on the back side of the collection surface of the perforated belt 41. The air suction section 43 is connected to a blower 44. The collection mechanism 40 collects the fibrous discharge material onto a moving porous belt 41 .
According to such a configuration, the molten resin composition melted in the extruder 20 is introduced into the spinning nozzle 31 of the die (spinneret) 30 and discharged from the opening of the spinning nozzle 31. Heated gas is injected from the gas nozzle 32 toward the vicinity of the opening of the spinning nozzle 31 . The fibrous material discharged from the spinning nozzle 31 is stretched and thinned by the heated gas.
 加熱ガスの温度(Ta)は、適宜調整されている。それにより、吐出物は適度に急冷されて延伸される。加熱ガスの流量は、上述の範囲を満たすように調整されている。これにより、吐出物が急冷されていても、十分に延伸させることができる。そして、吐出物は、多孔ベルト41上に捕集されて、メルトブローン不織布が得られる。
 上述の本開示のメルトブローン不織布、及び上述の製造方法により製造されたメルトブローン不織布は、帯電加工されていてもよい。
The temperature (Ta) of the heating gas is adjusted appropriately. Thereby, the discharged material is appropriately rapidly cooled and stretched. The flow rate of the heating gas is adjusted to satisfy the above range. Thereby, even if the discharged material is rapidly cooled, it can be sufficiently stretched. Then, the discharged material is collected on the porous belt 41 to obtain a meltblown nonwoven fabric.
The above-described melt-blown nonwoven fabric of the present disclosure and the melt-blown nonwoven fabric produced by the above-described manufacturing method may be electrically charged.
 帯電加工の方法としては、メルトブローン不織布をエレクトレット化させることができれば特に限定されず、例えば、コロナ荷電法、メルトブローン不織布に水又は水溶性有機溶剤水溶液を付与した後に乾燥させることによりエレクトレット化する方法(例えば、特表平9-501604号公報、特開2002-115177号公報等に記載されている方法)が挙げられる。コロナ荷電法では、電界強度は、15kV/cm以上が好ましく、20kV/cm以上がより好ましい。 The charging method is not particularly limited as long as the melt-blown non-woven fabric can be made into an electret; for example, a corona charging method, a method of applying water or an aqueous solution of a water-soluble organic solvent to the melt-blown non-woven fabric and then drying it to make it an electret ( For example, methods described in Japanese Patent Publication No. Hei 9-501604, Japanese Patent Application Laid-open No. 2002-115177, etc.) can be mentioned. In the corona charging method, the electric field strength is preferably 15 kV/cm or more, more preferably 20 kV/cm or more.
 以下、本開示に係る実施形態を、実施例を参照して詳細に説明する。なお本開示の発明は、これらの実施例の記載に何ら限定されるものではない。
 以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。
 実施例及び比較例における物性値等は、以下の方法により測定及び評価した。
Hereinafter, embodiments according to the present disclosure will be described in detail with reference to Examples. Note that the invention of the present disclosure is not limited to the description of these Examples.
The materials, amounts used, proportions, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present disclosure.
Physical property values, etc. in Examples and Comparative Examples were measured and evaluated by the following methods.
(1)目付〔g/m
 上述の方法により測定した。
(2)平均繊維径(μm)
 上述の方法により測定した。
(3)数平均分子量(Mn)〔-〕
 上述の方法により測定した。
(4)重量平均分子量(Mw)〔-〕
 上述の方法により測定した。
(5)分子量分布(Mw/Mn)〔-〕
 上述の方法により測定した。
(6)MD方向及びCD方向の破断伸度〔%〕
 上述の方法により測定した。MD方向の破断伸度の許容可能な範囲は、300%以上である。CD方向の破断伸度の許容可能な範囲は、300%以上である。
(7)目付(g/m)に対するMD方向の回復応力〔(N/50mm)/(g/m)〕
 上述の方法により測定した。
(8)目付(g/m)に対する耐水圧〔(mmHO)/(g/m)〕
 上述の方法により測定した。目付(g/m)に対する耐水圧の許容可能な範囲は、4.0(mmHO)/(g/m)以上である。
(1) Fabric weight [g/m 2 ]
Measured by the method described above.
(2) Average fiber diameter (μm)
Measured by the method described above.
(3) Number average molecular weight (Mn) [-]
Measured by the method described above.
(4) Weight average molecular weight (Mw) [-]
Measured by the method described above.
(5) Molecular weight distribution (Mw/Mn) [-]
Measured by the method described above.
(6) Breaking elongation in MD direction and CD direction [%]
Measured by the method described above. The permissible range of elongation at break in the MD direction is 300% or more. The permissible range of elongation at break in the CD direction is 300% or more.
(7) Recovery stress in MD direction for basis weight (g/m 2 ) [(N/50mm)/(g/m 2 )]
Measured by the method described above.
(8) Water pressure resistance against area weight (g/m 2 ) [(mmH 2 O)/(g/m 2 )]
Measured by the method described above. The permissible range of water pressure resistance relative to the basis weight (g/m 2 ) is 4.0 (mmH 2 O)/(g/m 2 ) or more.
<熱可塑性ポリウレタン系エラストマーの製造>
 数平均分子量(Mn)が1932のポリエステルポリオール:71.7質量部、1,4-ブタンジオール(以下、「BD」とも称する。):4.8質量部、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](以下、「酸化防止剤-1」とも称する。):0.3質量部、ポリカルボジイミド:0.3質量部を混合し、4,4’-ジフェニルメタンジイソシアネート(以下、「MDI」とも称する。):22.9質量部を加えて、十分に高速攪拌混合した。その後、160℃で1時間反応させた。
 この反応物を粉砕した後、上記粉砕物:100質量部に対して、エチレンビスステアリン酸アミド:0.8質量部、トリエチレングリコール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](以下、「酸化防止剤‐2」とも称する。):0.5質量部、エチレンビスオレイン酸アミド(以下、「EOA」とも称する
。):0.8質量部を混合した。その後、押出機(設定温度:210℃)で溶融混練して造粒し、熱可塑性ポリウレタン系エラストマー〔TPU(1)〕を得た。
 得られたTPU(1)は、ショアA硬度:82、融点(Tm)(高融点側):162.2℃、融解熱量:11.4mJ/mg、溶融粘度:1100Pa・s、凝固開始温度155℃、ハードドメインの融解熱量:0.58であった。
<Manufacture of thermoplastic polyurethane elastomer>
Polyester polyol with a number average molecular weight (Mn) of 1932: 71.7 parts by mass, 1,4-butanediol (hereinafter also referred to as "BD"): 4.8 parts by mass, pentaerythritol tetrakis [3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate] (hereinafter also referred to as "antioxidant-1"): 0.3 parts by mass, polycarbodiimide: 0.3 parts by mass, 4. 22.9 parts by mass of 4'-diphenylmethane diisocyanate (hereinafter also referred to as "MDI") was added and mixed with sufficient high speed stirring. Thereafter, the mixture was reacted at 160° C. for 1 hour.
After pulverizing this reaction product, 0.8 parts by mass of ethylene bisstearamide and triethylene glycol-bis-[3-(3,5-di-t-butyl) were added to 100 parts by mass of the pulverized product. -4-hydroxyphenyl) propionate] (hereinafter also referred to as "antioxidant-2"): 0.5 parts by mass, ethylene bisoleic acid amide (hereinafter also referred to as "EOA"): 0.8 parts by mass were mixed. Thereafter, the mixture was melt-kneaded and granulated using an extruder (set temperature: 210°C) to obtain a thermoplastic polyurethane elastomer [TPU (1)].
The obtained TPU (1) had Shore A hardness: 82, melting point (Tm) (high melting point side): 162.2°C, heat of fusion: 11.4 mJ/mg, melt viscosity: 1100 Pa・s, solidification start temperature 155 °C, heat of fusion of hard domain: 0.58.
[実施例1]
 以下のようにしてメルトブローン不織布を作製した。
 単軸押出機を用いてTPU(1)を溶解した。溶融したTPU(1)をダイに供給し、設定温度:220℃のダイ(溶融したTPU(1)の温度)から、紡糸ノズル1つあたりの吐出量:0.067g/分で、紡糸ノズルの両側から吹き出す加熱エア(温度Ta:230℃、流量:5.4Nm/cm/時)とともに吐出した。ダイの紡糸ノズルの直径は、0.38mmであった。そして、繊維状の吐出物を、目付が表1に記載の値となるようにコレクター上に捕集し、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 1]
A meltblown nonwoven fabric was produced as follows.
TPU (1) was melted using a single screw extruder. The molten TPU (1) was supplied to the die, and from the die with a set temperature of 220°C (temperature of the molten TPU (1)), the amount of discharge per spinning nozzle was 0.067 g/min. It was discharged together with heated air (temperature Ta: 230°C, flow rate: 5.4 Nm 3 /cm/hour) blown from both sides. The diameter of the spinning nozzle of the die was 0.38 mm. Then, the fibrous extrudate was collected on a collector so that the basis weight became the value shown in Table 1, to obtain a meltblown nonwoven fabric.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例2]
 加熱エアの流量を5.4Nm/cm/時から6.8Nm/cm/時へと変更し、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 2]
The procedure was the same as in Example 1, except that the flow rate of the heated air was changed from 5.4 Nm 3 /cm / hour to 6.8 Nm 3 /cm / hour, and the basis weight was changed to the value listed in Table 1. A meltblown nonwoven fabric was obtained.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例3]
 紡糸ノズル1つあたりの吐出量を0.067g/分から0.106g/分へ変更し、加熱エアの流量を5.4Nm/cm/時から6.8Nm/cm/時へと変更し、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
  上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 3]
The discharge amount per spinning nozzle was changed from 0.067 g/min to 0.106 g/min, the flow rate of heated air was changed from 5.4 Nm 3 /cm/hour to 6.8 Nm 3 /cm/hour, A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例4]
 紡糸ノズル1つあたりの吐出量を0.067g/分から0.142g/分へ変更し、加熱エアの流量を5.4Nm/cm/時から6.8Nm/cm/時へと変更し、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 4]
The discharge amount per spinning nozzle was changed from 0.067 g/min to 0.142 g/min, the flow rate of heated air was changed from 5.4 Nm 3 /cm/hour to 6.8 Nm 3 /cm/hour, A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例5]
 コレクターの移動速度を変更して、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 5]
A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例6]
 コレクターの移動速度を変更して、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 6]
A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例7]
 ダイの設定温度を220℃から215℃へ変更し、紡糸ノズル1つあたりの吐出量を0.067g/分から0.047g/分へ変更し、加熱エアの流量を5.4Nm/cm/時から4.1Nm/cm/時へと変更し、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 7]
The set temperature of the die was changed from 220°C to 215°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.047g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour. A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 4.1 Nm 3 /cm/hour to 4.1 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[実施例8]
 ダイの設定温度を220℃から215℃へ変更し、紡糸ノズル1つあたりの吐出量を0.067g/分から0.047g/分へ変更し、加熱エアの流量を5.4Nm/cm/時から4.1Nm/cm/時へと変更し、目付が表1に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表1に示す。
[Example 8]
The set temperature of the die was changed from 220°C to 215°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.047g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour. A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 4.1 Nm 3 /cm/hour to 4.1 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 1.
Table 1 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
 実施例1~実施例8では、熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比「a/(a+b)」は、0.399であった。 In Examples 1 to 8, the heat of fusion ratio "a/(a+b)" of the hard domain of the thermoplastic polyurethane elastomer was 0.399.
[比較例1]
 コレクターの移動速度を変更して、目付が表2に記載の値となるように変更した以外は、実施例4と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表2に示す。
[Comparative example 1]
A meltblown nonwoven fabric was obtained in the same manner as in Example 4, except that the moving speed of the collector was changed so that the basis weight was changed to the value shown in Table 2.
Table 2 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[比較例2]
 ダイの設定温度を220℃から230℃へ変更し、加熱エアの流量を5.4Nm/cm/時から6.7Nm/cm/時へと変更し、目付が表2に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表2に示す。
[Comparative example 2]
The set temperature of the die was changed from 220°C to 230°C, the flow rate of heated air was changed from 5.4Nm 3 /cm/hour to 6.7Nm 3 /cm/hour, and the basis weight was changed to the value listed in Table 2. A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except for the following changes.
Table 2 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
[比較例3]
 ダイの設定温度を220℃から230℃へ変更し、紡糸ノズル1つあたりの吐出量を0.067g/分から0.106g/分へ変更し、加熱エアの流量を5.4Nm/cm/時から6.7Nm/cm/時へと変更し、目付が表2に記載の値となるように変更した以外は、実施例1と同様にして、メルトブローン不織布を得た。
 上記メルトブローン不織布の平均繊維径、メルトブローン不織布に含まれるTPU(1)の分子量、MD方向及びCD方向の破断伸度、並びに耐水圧を、表2に示す。
[Comparative example 3]
The set temperature of the die was changed from 220°C to 230°C, the discharge amount per spinning nozzle was changed from 0.067g/min to 0.106g/min, and the flow rate of heated air was changed to 5.4Nm 3 /cm/hour. A meltblown nonwoven fabric was obtained in the same manner as in Example 1, except that the weight was changed from 6.7 Nm 3 /cm/hour to 6.7 Nm 3 /cm/hour, and the basis weight was changed to the value shown in Table 2.
Table 2 shows the average fiber diameter of the melt-blown nonwoven fabric, the molecular weight of TPU (1) contained in the melt-blown nonwoven fabric, the elongation at break in the MD and CD directions, and the water pressure resistance.
 表1及び表2に示すとおり、実施例1~実施例8のメルトブローン不織布は、数平均分子量(Mn)が100,000以上であり、分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、平均繊維径が6.5μm未満であるメルトブローン不織布を用いた。
 実施例1~実施例8のメルトブローン不織布は、数平均分子量(Mn)が100,000以上であり、分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、目付(g/m)に対するMD方向の回復応力が0.034N・m/50mm・gより大きい。
 そのため、実施例1~実施例8では、MD方向の破断伸度及びCD方向の破断伸度の各々は300%以上であり、かつ耐水圧は4.0(mmHO)/(g/m)未満であった。つまり、実施例1~実施例8の破断伸度及び耐水圧は優れていた。
 一方、比較例1のメルトブローン不織布は、平均繊維径が6.5μm未満でなく、目付(g/m)に対するMD方向の回復応力が0.034N・m/50mm・gより大きくなかった。そのため、比較例1のメルトブローン不織布の耐水圧は、4.0(mmHO)/(g/m)未満であり、実施例1~実施例8よりも劣っていた。
 比較例2及び比較例3のメルトブローン不織布は、数平均分子量(Mn)が100,000以上である熱可塑性ポリウレタン系エラストマーを用いていなかった。そのため、比較例2及び比較例3のMD破断伸度及びCD破断伸度の各々は、300%未満であり、実施例1~実施例8よりも劣っていた。
 なお、比較例2では、延伸倍率100%の条件で延伸した段階でメルトブローン不織布が破断した。そのため、比較例2の回復応力を測定できなかった。
As shown in Tables 1 and 2, the melt-blown nonwoven fabrics of Examples 1 to 8 have a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn) of 2.4 or less. A meltblown nonwoven fabric containing a plastic polyurethane elastomer and having an average fiber diameter of less than 6.5 μm was used.
The melt-blown nonwoven fabrics of Examples 1 to 8 contain a thermoplastic polyurethane elastomer having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn) of 2.4 or less, and have a basis weight ( g/m 2 ) is greater than 0.034 N·m 2 /50 mm·g.
Therefore, in Examples 1 to 8, the elongation at break in the MD direction and the elongation at break in the CD direction are each 300% or more, and the water pressure resistance is 4.0 (mmH 2 O)/(g/m 2 ). In other words, the elongation at break and water pressure resistance of Examples 1 to 8 were excellent.
On the other hand, the melt-blown nonwoven fabric of Comparative Example 1 had an average fiber diameter not less than 6.5 μm and a recovery stress in the MD direction relative to the basis weight (g/m 2 ) of not more than 0.034 N·m 2 /50 mm·g. Therefore, the water pressure resistance of the meltblown nonwoven fabric of Comparative Example 1 was less than 4.0 (mmH 2 O)/(g/m 2 ), which was inferior to Examples 1 to 8.
The melt-blown nonwoven fabrics of Comparative Examples 2 and 3 did not use a thermoplastic polyurethane elastomer having a number average molecular weight (Mn) of 100,000 or more. Therefore, each of the MD breaking elongation and CD breaking elongation of Comparative Examples 2 and 3 was less than 300%, which was inferior to Examples 1 to 8.
In Comparative Example 2, the meltblown nonwoven fabric broke at the stage of stretching at a stretching ratio of 100%. Therefore, the recovery stress of Comparative Example 2 could not be measured.
 2022年3月29日に出願された日本国特許出願2022-053743の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-053743 filed on March 29, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (11)

  1.  数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、平均繊維径が6.5μm未満であるメルトブローン不織布。 A thermoplastic polyurethane system having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn), which is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), of 2.4 or less. A meltblown nonwoven fabric containing an elastomer and having an average fiber diameter of less than 6.5 μm.
  2.  数平均分子量(Mn)が100,000以上であり、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が2.4以下である熱可塑性ポリウレタン系エラストマーを含み、目付(g/m)に対するMD方向の回復応力が0.034N・m/50mm・gより大きいメルトブローン不織布。 A thermoplastic polyurethane system having a number average molecular weight (Mn) of 100,000 or more and a molecular weight distribution (Mw/Mn), which is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), of 2.4 or less. A melt-blown nonwoven fabric containing an elastomer and having a recovery stress in the MD direction relative to the basis weight (g/m 2 ) of more than 0.034 N·m 2 /50 mm·g.
  3.  平均繊維径が5.5μm以下である請求項1又は請求項2に記載のメルトブローン不織布。 The meltblown nonwoven fabric according to claim 1 or 2, wherein the average fiber diameter is 5.5 μm or less.
  4.  前記熱可塑性ポリウレタン系エラストマーが、下記の式Iを満たす請求項1~請求項3のいずれか1項に記載のメルトブローン不織布。
      a/(a+b)≦0.8  (I)
    (式I中、aは、示差走査熱量計により測定される90℃~140℃の範囲にある吸熱ピークから得られる融解熱量の総和を表し、bは、示差走査熱量計により測定される140℃超220℃以下の範囲にある吸熱ピークから得られる融解熱量の総和を表す。)
    The meltblown nonwoven fabric according to any one of claims 1 to 3, wherein the thermoplastic polyurethane elastomer satisfies the following formula I.
    a/(a+b)≦0.8 (I)
    (In Formula I, a represents the sum of the heat of fusion obtained from endothermic peaks in the range of 90°C to 140°C measured by a differential scanning calorimeter, and b represents 140°C measured by a differential scanning calorimeter. (Represents the total amount of heat of fusion obtained from endothermic peaks in the range of 220℃ or less.)
  5.  前記熱可塑性ポリウレタン系エラストマーは、数平均分子量(Mn)が101,500以上である請求項1~請求項4のいずれか1項に記載のメルトブローン不織布。 The meltblown nonwoven fabric according to any one of claims 1 to 4, wherein the thermoplastic polyurethane elastomer has a number average molecular weight (Mn) of 101,500 or more.
  6.  MD方向の破断伸度が、250%以上である請求項1~請求項5のいずれか1項に記載のメルトブローン不織布。 The meltblown nonwoven fabric according to any one of claims 1 to 5, which has an elongation at break in the MD direction of 250% or more.
  7.  目付(g/m)に対する耐水圧が6.0mmHO・m/g以上である請求項1~請求項6のいずれか1項に記載のメルトブローン不織布。 The meltblown nonwoven fabric according to any one of claims 1 to 6, which has a water pressure resistance relative to basis weight (g/m 2 ) of 6.0 mmH 2 O·m 2 /g or more.
  8.  目付(g/m)に対するMD方向の回復応力が0.035N・m/50mm・g以上である請求項1~請求項7のいずれか1項に記載のメルトブローン不織布。 The meltblown nonwoven fabric according to any one of claims 1 to 7, which has a recovery stress in the MD direction with respect to basis weight (g/m 2 ) of 0.035 N·m 2 /50 mm·g or more.
  9.  請求項1~請求項8のいずれか1項に記載のメルトブローン不織布を含む衛生材料。 A sanitary material comprising the meltblown nonwoven fabric according to any one of claims 1 to 8.
  10.  請求項1~請求項8のいずれか1項に記載のメルトブローン不織布を含む耐水シート。 A water-resistant sheet comprising the melt-blown nonwoven fabric according to any one of claims 1 to 8.
  11.  請求項1~請求項8のいずれか1項に記載のメルトブローン不織布を含む医療用シート。 A medical sheet comprising the meltblown nonwoven fabric according to any one of claims 1 to 8.
PCT/JP2023/011624 2022-03-29 2023-03-23 Melt-blown nonwoven fabric and hygienic material WO2023190074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053743 2022-03-29
JP2022053743 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190074A1 true WO2023190074A1 (en) 2023-10-05

Family

ID=88202131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011624 WO2023190074A1 (en) 2022-03-29 2023-03-23 Melt-blown nonwoven fabric and hygienic material

Country Status (2)

Country Link
JP (1) JP2023147247A (en)
WO (1) WO2023190074A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117552183A (en) * 2023-10-31 2024-02-13 黄河三角洲京博化工研究院有限公司 Elastic non-woven fabric and manufacturing process and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411061A (en) * 1990-04-27 1992-01-16 Asahi Chem Ind Co Ltd Stretchable nonwoven fabric and production thereof
WO1993001222A1 (en) * 1991-07-03 1993-01-21 Kanebo, Ltd. Thermoplastic polyurethane elastomer, method and device for manufacture thereof, and elastic fiber made therefrom
JPH06158497A (en) * 1992-11-18 1994-06-07 Kuraray Co Ltd Production of polyurethane melt blown fiber nonwoven fabric
JPH0881826A (en) * 1994-09-09 1996-03-26 Kuraray Co Ltd Polyurethane elastic fiber-wound product and method for producing the same
JP2000248454A (en) * 1999-02-24 2000-09-12 Kanebo Ltd Polyurethane elastic fiber nonwoven fabric and its production and synthetic leather using the same
JP2013518190A (en) * 2010-01-25 2013-05-20 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド High strength elastic nonwoven fabric
JP2014198926A (en) * 2013-03-30 2014-10-23 Kbセーレン株式会社 Melt-blown polyurethane nonwoven fabric and method for producing the same
WO2016143833A1 (en) * 2015-03-09 2016-09-15 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article and hygienic mask
JP2017056565A (en) * 2015-09-14 2017-03-23 日立化成株式会社 Complex and production method thereof
WO2020218092A1 (en) * 2019-04-26 2020-10-29 クラレクラフレックス株式会社 Fiber layered body and production method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411061A (en) * 1990-04-27 1992-01-16 Asahi Chem Ind Co Ltd Stretchable nonwoven fabric and production thereof
WO1993001222A1 (en) * 1991-07-03 1993-01-21 Kanebo, Ltd. Thermoplastic polyurethane elastomer, method and device for manufacture thereof, and elastic fiber made therefrom
JPH06158497A (en) * 1992-11-18 1994-06-07 Kuraray Co Ltd Production of polyurethane melt blown fiber nonwoven fabric
JPH0881826A (en) * 1994-09-09 1996-03-26 Kuraray Co Ltd Polyurethane elastic fiber-wound product and method for producing the same
JP2000248454A (en) * 1999-02-24 2000-09-12 Kanebo Ltd Polyurethane elastic fiber nonwoven fabric and its production and synthetic leather using the same
JP2013518190A (en) * 2010-01-25 2013-05-20 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド High strength elastic nonwoven fabric
JP2014198926A (en) * 2013-03-30 2014-10-23 Kbセーレン株式会社 Melt-blown polyurethane nonwoven fabric and method for producing the same
WO2016143833A1 (en) * 2015-03-09 2016-09-15 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article and hygienic mask
JP2017056565A (en) * 2015-09-14 2017-03-23 日立化成株式会社 Complex and production method thereof
WO2020218092A1 (en) * 2019-04-26 2020-10-29 クラレクラフレックス株式会社 Fiber layered body and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117552183A (en) * 2023-10-31 2024-02-13 黄河三角洲京博化工研究院有限公司 Elastic non-woven fabric and manufacturing process and application thereof

Also Published As

Publication number Publication date
JP2023147247A (en) 2023-10-12

Similar Documents

Publication Publication Date Title
EP2292822B1 (en) Filament-mixed spun-bonded nonwoven fabric and use thereof
EP2022879B1 (en) Non-woven fabric laminate and method for production thereof
KR100687391B1 (en) Stretch nonwoven fabric and method for production thereof
KR100354360B1 (en) Method for preparing spraying biodegradable fibrils using the flow of gaseous substances, non-woven fabrics containing biodegradable fibrils and articles comprising bi-woven fabrics
US8129298B2 (en) Nonwoven laminates and process for producing the same
EP2116367B1 (en) Layered nonwoven fabric
CN1071341C (en) Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate
JP6500083B2 (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, textile product, absorbent article and sanitary mask
EP2463428A1 (en) Mixed fiber spunbond non-woven fabric and method for production and application of the same
JP2004244791A (en) Mixed fiber, and stretch nonwoven fabric comprising the mixed fiber and method for manufacture thereof
NZ282128A (en) Biodegradable fibrils; preparation and use
WO2023190074A1 (en) Melt-blown nonwoven fabric and hygienic material
JP4332626B2 (en) Stretchable nonwoven fabric and method for producing the same
JP2008213284A (en) Nonwoven fabric laminate
JP7108044B2 (en) Nonwoven laminates, elastic nonwoven laminates, textile products, absorbent articles and sanitary masks
TWI777722B (en) Polyurethane elastic fiber and its winding body, corrugated parts, and sanitary material
JP7034258B2 (en) Non-woven laminates, stretchable non-woven laminates, textile products, absorbent articles and sanitary masks
WO2021200477A1 (en) Laminate sheet, sanitary material, medical material, and method for manufacturing laminate sheet
WO2023190073A1 (en) Spun-bond non-woven fabric, hygienic material, and method for producing spun-bond non-woven fabric
KR101833495B1 (en) Polyolefin spunbond nonwoven and manufacturing method thereof
TWI835198B (en) Thermoplastic polyurethane elastic fiber and its yarn body, wrinkles and sanitary materials containing the thermoplastic polyurethane elastic fiber, and manufacturing method of the polyurethane elastic fiber
JPH0376856A (en) Production of nonwoven fabric of extremely thin yarn of polyurethane
JPS6297901A (en) Absorbable article
JPH02242959A (en) Bandage of unwoven fabric and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780084

Country of ref document: EP

Kind code of ref document: A1