WO2023189877A1 - Material for 3d printing - Google Patents

Material for 3d printing Download PDF

Info

Publication number
WO2023189877A1
WO2023189877A1 PCT/JP2023/011078 JP2023011078W WO2023189877A1 WO 2023189877 A1 WO2023189877 A1 WO 2023189877A1 JP 2023011078 W JP2023011078 W JP 2023011078W WO 2023189877 A1 WO2023189877 A1 WO 2023189877A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional modeling
resin
flame retardant
powder
poly
Prior art date
Application number
PCT/JP2023/011078
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 山末
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023189877A1 publication Critical patent/WO2023189877A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a three-dimensional modeling material, and specifically relates to a three-dimensional modeling material containing a non-halogen flame retardant.
  • the present invention relates to filaments for material extrusion processes and powders for powder bed fusion processes.
  • the present invention also relates to a modeling method and a modeled article using these three-dimensional modeling materials.
  • 3D printers Today, three-dimensional printers (hereinafter sometimes referred to as "3D printers”) with various additive manufacturing methods (e.g., binder injection method, material extrusion method, liquid bath photopolymerization method, powder bed fusion method, etc.) are on the market. ing.
  • 3D printer system for example, a system manufactured by Stratasys, Inc. in the United States
  • MEX material extrusion method
  • MEX material extrusion method
  • MEX material extrusion method
  • a raw material made of thermoplastic resin is inserted as a filament into an extrusion head, and while it is heated and melted, it is continuously extruded from a nozzle part provided in the extrusion head onto an XY plane base in a chamber, and the extruded resin is It is becoming widely used because it is a simple system in which it is deposited and fused onto an already deposited resin laminate and solidified as it cools.
  • material extrusion a three-dimensional object resembling a CAD model is constructed by repeating the extrusion process, with the nozzle position relative to the substrate rising in the Z-axis direction perpendicular to the XY plane. .
  • a 3D printer system using a powder bed fusion method (hereinafter sometimes referred to as "PBF"), for example, a system manufactured by 3D Systems in the United States, uses a thin layer ( A powder bed) is heated and melted to a temperature near the melting point of the resin powder using a heating means such as a high-power CO 2 laser, and a three-dimensional object is constructed in layers based on a computer-aided design (CAD) model. It is used to At this time, the laser used as a heating means scans the cross section in the XY direction on the surface of the powder bed to selectively melt the powder material.
  • PPF powder bed fusion method
  • a three-dimensional model can be obtained by laminating one layer at a time and repeating this process to form a laminate.
  • This system has attracted attention in recent years because it does not require the use of molds, can use a variety of resin powders as raw materials as long as they have a certain degree of heat resistance, and the resulting molded products are highly reliable. It is a technology that
  • Thermoplastic resins used in 3D printers include acrylonitrile-butadiene-styrene (ABS) resins, polypropylene resins (PP), and polylactic acid (PLA), which have good moldability and fluidity as filament materials for 3D printers. Relatively good resins are commonly used.
  • ABS acrylonitrile-butadiene-styrene
  • PP polypropylene resins
  • PLA polylactic acid
  • polyamide resins such as nylon 12 and nylon 11 are widely used as materials for thermoplastic resin powder, but in recent years, polyamide resins such as nylon 12 and nylon 11 have become less absorbent of moisture and have higher heat resistance.
  • Polybutylene terephthalate resin is also used as an aromatic polyester resin from which shaped articles can be obtained.
  • 3D printers have been widely used for prototyping molded products, but in recent years, 3D printers are also being considered for application to functional parts used in actual applications. Assuming practical use, for example, when used as a member for home appliances, building materials, aircraft, automobile materials, etc., it is preferable that the shaped article has high heat resistance and flame retardancy.
  • a material with an oxygen index of 27 or more is melt-kneaded with a polyamide resin, and then pulverized to form a flame-retardant powder. A method for obtaining the is disclosed.
  • Patent Document 2 water containing an emulsifier is added to a flame retardant-containing polymer solution in which a flame retardant, a thermoplastic resin, and an organic solvent are mixed under stirring to form an oil-in-water (O/W) emulsion.
  • O/W oil-in-water
  • thermoplastic resin is limited to polyamide 12, and in Patent Document 2, since fine particles are precipitated from an oil-in-water (O/W) emulsion, the particle size is small, and the material for 3D printers is When used in large quantities, it takes time and effort to manufacture.
  • O/W oil-in-water
  • thermoplastic resin materials other than polyamide 12 In order for 3D printers to be widely applied to functional parts that are used in practical applications, it is desirable that flame retardancy can be imparted to thermoplastic resin materials other than polyamide 12, and that the manufacturing method of the material is simple. It is preferable that
  • a non-halogen compound such as a phosphorus compound.
  • a method of blending a halogen compound, particularly a bromine compound has been commonly used.
  • halogen compounds can generate harmful gases such as dioxins when burned, which not only poses safety problems during waste incineration and thermal recycling, but also causes fires. There is also the possibility that the generation of harmful gases during this time may affect the human body.
  • the present invention solves the above problems, and is a three-dimensional modeling material containing a resin composition containing a thermoplastic resin and a non-halogenated flame retardant.
  • An object of the present invention is to provide a material for 3D printing that maintains thermal properties such as oxidation temperature and has excellent formability on a 3D printer and color of a modeled product.
  • a three-dimensional modeling material containing a resin composition, the resin composition containing a thermoplastic resin (A) and a non-halogen flame retardant (B); ) has a flow start temperature of 100°C or more and 400°C or less.
  • the non-halogen flame retardant (B) is an organic phosphorus-containing compound.
  • the non-halogen flame retardant (B) is a phosphorus spiro compound or a phosphate ester compound.
  • a three-dimensional modeling material containing a resin composition, the resin composition containing a thermoplastic resin (A) and a non-halogen flame retardant (B); ) is a compound represented by the following general formula (1), a three-dimensional modeling material.
  • R 1 and R 2 are each a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. Also, R 1 and R 2 are mutually They may be the same or different.
  • the non-halogen flame retardant (B) is contained in a ratio of 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A).
  • the three-dimensional modeling material according to any one of the above.
  • thermoplastic resin (A) may be polyacetal, polyacrylate, polyacrylic acid, polyamide, polyamideimide, polyacid anhydride, polyarylate, polyarylene ether, polyarylene sulfide, polybenzoxazole, polyester, or polyester.
  • Etheretherketone polyetherimide, polyetherketoneketone, polyetherketone, polyethersulfone, polyimide, polymethacrylate, polyolefin, polyphthalide, polysilazane, polysiloxane, polystyrene, polysulfide, polysulfonamide, polysulfonate, polythioester, polytriazine , polyurea, polyurethane, polyvinyl alcohol, polyvinyl ester, polyvinyl ether, polyvinyl halide, polyvinyl ketone, polyvinylidene fluoride polyvinyl aromatic, polysulfone, polyarylene sulfone, polyaryletherketone, polylactic acid, polyglycolic acid, poly-3- Hydroxybutyrate, polyhydroxyalkanoate, starch, cellulose ester, poly(phenylene ether), poly(methyl methacrylate), styrene-acrylonitrile, poly(ethylene oxide), epic
  • [7] A three-dimensional modeling powder obtained using the three-dimensional modeling material according to any one of [1] to [6] above.
  • a method for producing a molded body comprising a step of three-dimensionally shaping the molded body using the three-dimensional modeling material according to any one of [1] to [6] above.
  • a three-dimensional printing material that contains a specific non-halogen flame retardant, has excellent flame retardancy, and is also excellent in printability in a 3D printer, and a three-dimensional printed object made from the material. I can do it.
  • the three-dimensional modeling material containing the resin composition of the present invention can be produced by adjusting the flow start temperature of the non-halogen flame retardant contained in the resin composition within a specific range. Because the fluid properties are maintained when heated, a uniform molten state is obtained when extruding the filament or when irradiating the powder layer with a heating medium such as a laser during modeling using a 3D printer, and the desired 3D modeling can be achieved. It can be inferred that the product can be manufactured with high precision.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and is not intended to limit the present invention to the following content.
  • the present invention can be implemented with various modifications within the scope of its gist.
  • the three-dimensional modeling material of the present invention contains a resin composition.
  • the resin composition will be explained in detail below.
  • the resin composition used in the three-dimensional modeling material of the present invention contains a thermoplastic resin (A) and a non-halogen flame retardant (B), and the flow start temperature of the non-halogen flame retardant (B) is The temperature is 100°C or higher and 400°C or lower. Further, resins other than the thermoplastic resin (A), additives, reinforcing materials, etc. can be included to the extent that the effects of the present invention are not impaired.
  • the resin composition used in the three-dimensional modeling material of the present invention contains a thermoplastic resin (A) and a non-halogen flame retardant (B), but the flow start temperature of the non-halogen flame retardant (B) is 400°C or less.
  • the present resin composition can maintain thermoplasticity equivalent to that of the thermoplastic resin (A). Since this resin composition can maintain thermoplasticity equivalent to that of the thermoplastic resin (A), unlike general thermoplastic molding methods such as extrusion molding and injection molding, this resin composition can be processed using heat or light. In 3D modeling, in which a molded product is produced by directly applying the resin to the material and laminating it layer by layer based on 3D-CAD or 3D-CG data, the inherent thermal properties of the thermoplastic resin (A) are significantly impaired. It is possible to impart flame retardancy to the molded product while maintaining formability.
  • thermoplastic resin (A) used in the present invention may be any material that exhibits thermoplasticity when exposed to heat or light from a 3D printer, and can be appropriately selected depending on the function to be imparted to the molded object to be modeled.
  • thermoplastic resin (A) may be used in combination of two or more types as appropriate.
  • additives such as fillers such as carbon black, carbon fibers, glass fibers, talc, mica, nanoclay, and magnesium, antioxidants, lubricants, and colorants may be appropriately mixed into the thermoplastic resin (A). .
  • the thermoplastic resin (A) In order to obtain a molded product with high heat resistance and flame retardancy using a 3D printer, the thermoplastic resin (A) must have a melting point or glass transition temperature of 50°C or higher when measured according to JIS K7121. From the viewpoint of excellent workability and heat resistance, those having a melting point or glass transition temperature of 100° C. or higher when measured according to JIS K7121 are more preferable.
  • polyester resins polyesters
  • polyolefins polyolefins
  • polyamide resins polyamide resins
  • polyarylene ether polyarylene sulfide
  • polyether sulfone polysulfone
  • polyether ketone polyether ether ketone
  • polyurethane polycarbonate (hereinafter sometimes referred to as "polycarbonate resin”)
  • polyamideimide polyimide
  • polyetherimide polyacetal, and copolymers thereof.
  • polyester resin used in the present invention is not particularly limited as long as it has an ester bond in its main chain.
  • examples of the polyester resin include dicarboxylic acids such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene succinate, and polybutylene succinate.
  • Polyester resins derived from residues and diol residues, polyester resins polymerized with monomers having carboxylic acid residues and alcohol residues in one molecule such as polylactic acid, poly- ⁇ -caprolactam, etc. Copolymers and the like can be mentioned.
  • One type of these polyester resins may be used alone, or two or more types of polyester resins may be used.
  • the polyester resin used in the present invention is preferably an aromatic polyester resin from the viewpoint of thermal properties and mechanical properties, and the aromatic polyester resin is formed by condensation polymerization of an aromatic dicarboxylic acid component and a diol component. Any resin may be used, and among them, one in which one or both of the aromatic dicarboxylic acid component and the diol component is composed of a single compound is preferred.
  • polyethylene terephthalate resin, polypropylene terephthalate resin, and polybutylene terephthalate resin are preferred, polyethylene terephthalate resin and polybutylene terephthalate resin are more preferred, and polybutylene terephthalate resin (hereinafter referred to as polybutylene terephthalate) is particularly preferred.
  • polybutylene terephthalate resin include the "Novaduran (registered trademark)" series manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • the polyolefin resin used in the present invention is a polymer obtained by polymerizing monomers having an olefin skeleton. Olefins are monomers with hydrocarbon double bonds.
  • the polyolefin resin is not particularly limited, and homopolymers, block copolymers, random copolymers, etc.
  • One type of these may be used alone, or two or more types having different copolymer compositions, physical properties, etc. may be used as a mixture.
  • propylene-based polymers are preferred as the polyolefin-based resin from the viewpoint of obtaining molded products with excellent heat resistance.
  • propylene in order to suppress deformation such as crystallization shrinkage during cooling and warping of the molded object during molding, propylene, ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, etc. More preferred are propylene-based copolymers copolymerized with ⁇ -olefins such as.
  • the propylene copolymers mentioned above include “Novatec PP”, “Wintech”, “Nucon”, and “Wellnex” manufactured by Nippon Polypropylene Co., Ltd., “Vistamax” manufactured by ExxonMobil, and “Vistamax” manufactured by Dow Chemical Company.
  • An example is the trademark name “Versify”, and the product can be appropriately selected from these product groups and used alone or in combination.
  • polycarbonate resin used in the present invention an aromatic polycarbonate resin is preferably used, but an aliphatic polycarbonate resin may also be used. Further, it may be either a homopolymer or a copolymer with other copolymerizable monomers. Further, the structure may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
  • the polycarbonate resin used in the present invention may be produced by any known method such as the phosgene method, the transesterification method, or the pyridine method.
  • the weight average molecular weight of the polycarbonate resin used in the present invention is usually in the range of 10,000 to 100,000, preferably 20,000 to 40,000, particularly preferably 22,000 to 28,000. Can be used.
  • the polycarbonate resins can be used alone or in combination of two or more. If the weight average molecular weight is within the above range, impact resistance is ensured and extrusion moldability is also good, which is preferable. Note that the weight average molecular weight here was measured using GPC (HLC-8120GPC manufactured by Tosoh Corporation) and calculated in terms of polystyrene.
  • polycarbonate resin used in the present invention Commercial products can be used as the polycarbonate resin used in the present invention, and specific examples of aromatic polycarbonate resins include “SD POLYCA” manufactured by Sumika Polycarbonate Co., Ltd., and Mitsubishi Engineering Plastics. Examples include “Iupilon” and “NOVAREX” manufactured by Sustainability Co., Ltd., and “Panlite” manufactured by Teijin Ltd. Further, as a specific example of the aliphatic polycarbonate resin, there may be mentioned the product name "DURABIO” manufactured by Mitsubishi Chemical Corporation.
  • the polyamide resin used in the present invention may be either a crystalline polyamide resin or an amorphous polyamide resin. It can be polymerized by a known method, and commercially available products can be used.
  • the polymerization method the following methods [1] to [6] can be exemplified. Moreover, either a batch type or a continuous type can be selected as appropriate. [1] A method in which an aqueous solution or aqueous suspension of a dicarboxylic acid/diamine salt or a mixture thereof is heated and polymerized while maintaining the molten state (thermal melt polymerization method).
  • [2] A method of increasing the degree of polymerization of polyamide obtained by hot melt polymerization while maintaining the solid state at a temperature below the melting point (hot melt polymerization/solid phase polymerization).
  • [3] A method of heating an aqueous solution or suspension of dicarboxylic acid/diamine salt or a mixture thereof and melting the precipitated prepolymer again in an extruder such as a kneader to increase the degree of polymerization (prepolymer/extrusion polymerization method).
  • [4] A method of heating an aqueous solution or aqueous suspension of a dicarboxylic acid/diamine salt or a mixture thereof, and increasing the degree of polymerization while maintaining the precipitated prepolymer in a solid state at a temperature below the melting point of the polyamide ( Prepolymer/solid phase polymerization method).
  • Prepolymer/solid phase polymerization method A method in which dicarboxylic acid, diamine salt, or a mixture thereof is polymerized in one step while maintaining it in a solid state (one-step solid phase polymerization method).
  • [6] A method of polymerizing using a dicarboxylic acid halide equivalent to a dicarboxylic acid and a diamine (solution method).
  • polyamide resin is not particularly limited, specific examples include the following. Namely, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polyundecamethylene adipamide (polyamide 116), polybis(4-aminocyclohexyl)methandodecamide (polyamide PACM12), polybis(3-methyl-4aminocyclohexyl)methandodecamide (polyamidedimethylPACM12), Nonamethylene terephthalamide (Polyamide 9T), polydecamethylene terephthalamide (Polyamide 10T), polyundecamethylene terephthalamide (Polyamide 11T), polyundecamethylene hexahydroterephthalamide (Polyamide 11T (H)), polyundecamide (Polyamide 9T),
  • the amorphous polyamide resin is preferably a polycondensate containing 30 to 70 mol%, more preferably 40 to 60 mol% of isophthalic acid as a dicarboxylic acid component.
  • polycondensates include the following. That is, polycondensates of isophthalic acid/ ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms/metaxylylene diamine, polycondensates of isophthalic acid/terephthalic acid/hexamethylene diamine, and isophthalic acid/terephthalic acid.
  • benzene ring of the terephthalic acid component and/or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom.
  • two or more of these amorphous polyamide resins can also be used in combination.
  • a mixture of a polycondensate of (3-methyl-4-aminocyclohexyl)methane and a polycondensate of terephthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine is used. .
  • the relative viscosity of the polyamide resin used in the present invention is not particularly limited, but the relative viscosity measured using 96% by mass concentrated sulfuric acid as a solvent at a temperature of 25°C and a concentration of 1 g/dl is as follows: It is preferably in the range of 1.5 to 5.0. If it is within this range, it is preferable because it provides an excellent balance of take-up properties after melt-kneading, mechanical strength, moldability, etc. For these reasons, the relative viscosity is more preferably in the range of 2.0 to 4.0.
  • polyamide resins for use in the present invention, and specific examples of crystalline polyamide resins include “DAIAMID” and “VESTOSINT” manufactured by Daicel-Evonik Ltd. )” can be exemplified. Specific examples of the amorphous polyamide resin include “TROGAMID” manufactured by Daicel-Evonik Co., Ltd. and “Selar” manufactured by DuPont.
  • the flame retardant in the present invention refers to a substance that is added to flammable materials such as plastics, rubber, fibers, and wood to make them difficult to burn or to make it difficult for flames to spread.
  • the non-halogen flame retardant (B) used in the present invention is required to have a flow start temperature of 100°C or more and 400°C or less.
  • the flow start temperature is below 100°C
  • the non-halogen flame retardant (B) tends to exhibit thermoplasticity when irradiated with heat or light during three-dimensional modeling, and the modeling material melts during stages such as powder dispersion.
  • it may cause defects in the shape of the object (resin molded object) due to the phenomenon of sticking (blocking) and difficulty in cooling and solidifying after printing. more likely to occur.
  • the non-halogen flame retardant (B) will not exhibit thermoplasticity when irradiated with heat or light during three-dimensional modeling, so it will not be possible to create it using a 3D printer.
  • the flow start temperature of the non-halogen flame retardant (B) is 100° C. or higher, more preferably 120° C. or higher, from the viewpoint of heat resistance of the molded product to which flame retardancy is desired.
  • the temperature is preferably 350°C or less, more preferably 300°C or less so that sufficient thermoplasticity can be expressed by irradiation with heat or light during three-dimensional modeling.
  • the above-mentioned flow start temperature is determined using Koka-type Flow Tester CFT-500 (manufactured by Shimadzu Corporation) under the conditions described in the Examples described later.
  • non-halogen flame retardant (B) used in the present invention various known ones can be used, including phosphorus-based organic flame retardants (organic phosphorus-containing compounds), nitrogen-based organic flame retardants (melamine cyanurate, triazine compounds, guanidine compounds), silicon-based organic flame retardants (silicon polymers), and the like. These non-halogen flame retardants may be used in combination of two or more types as appropriate. Furthermore, the non-halogen flame retardant (B) may contain additives such as flame retardant-improving resins such as phenol resins, epoxy resins, or styrene resins, anti-dripping agents such as polytetrafluoroethylene (PTFE) particles, and fillers. The agents can be mixed as appropriate. Moreover, as the non-halogen flame retardant (B), an inorganic flame retardant may be used as long as the flow start temperature is 400° C. or lower.
  • phosphorus-based organic flame retardants organic phosphorus-containing compounds
  • phosphorus-based flame retardants are preferred, and organic phosphorus-based flame retardants and inorganic phosphorus-based flame retardants (red phosphorus-based flame retardants, such as red phosphorus, stable Chemical red phosphorus, etc.). Further, phosphorus-based organic flame retardants (organic phosphorus-containing compounds) are preferable because they have excellent radical trapping effects and oxidation reaction suppressing effects. Examples of organic phosphorus-containing compounds include, but are not limited to, phosphates, polyphosphates, phosphazene compounds, phosphaphenanthrene compounds, phosphinate metal salts, phosphonic acid polymers, ammonium polyphosphates, melamine polyphosphates, and phosphoric acid.
  • Examples include ester amides, phosphate ester compounds, condensed phosphate ester compounds, phosphate compounds, condensed phosphate compounds, phosphoric acid amide compounds, condensed phosphoric acid amide compounds, phosphorus spiro compounds, and the like.
  • phosphorus-based flame retardants include nitrogen-containing phosphates such as ammonium phosphate, melamine phosphate, guanylurea phosphate, melamine pyrophosphate, and piperazine pyrophosphate; nitrogen-containing condensed phosphoric acids such as ammonium polyphosphate and melamine polyphosphate.
  • nitrogen-containing phosphates such as ammonium phosphate, melamine phosphate, guanylurea phosphate, melamine pyrophosphate, and piperazine pyrophosphate
  • nitrogen-containing condensed phosphoric acids such as ammonium polyphosphate and melamine polyphosphate.
  • examples include salts; phosphorus/nitrogen-containing compounds such as inorganic or organic phosphorus compounds such as phosphoric acid amide and condensed phosphoric acid amide; mixtures of phosphorus compounds and nitrogen compounds; or combinations thereof.
  • Such flame retardants are called intumescent flame retardants, and are compounds that contain a phosphorus component that promotes carbonization and a nitrogen component that promotes fire extinguishing and foaming, or compounds that contain a phosphorus component and a nitrogen component that promotes fire extinguishing and foaming. It is a flame retardant mixture obtained by mixing a compound containing a nitrogen component.
  • phosphoric acid ester compounds from the viewpoint of flame retardancy and thermal properties, it is preferable to use phosphorus spiro compounds, intumescent flame retardants, and phosphonic acid polymers. It is further preferable to use compounds, and it is particularly preferable to use phosphorus-based spiro compounds.
  • the phosphorus-based spiro compound is not particularly limited as long as it is a spiro compound having a phosphorus atom.
  • a spiro compound is a compound having a structure in which two cyclic skeletons share one carbon
  • a spiro compound having a phosphorus atom is a compound in which at least one of the elements constituting the two cyclic skeletons is a phosphorus atom.
  • each cyclic skeleton has a phosphorus atom.
  • aryl spirodiphosphinate condensed with a polyhydric alcohol is preferred.
  • aryl spiro diphosphinate is a pentaerythritol diphosphinate compound.
  • 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-dibenzyl-3,9-dioxide, 2,4,8,10-tetraoxa-3 9-diphosphaspiro[5.5]undecane, 3,9-di ⁇ -methylbenzyl-3,9-dioxide, 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-di(2-phenylethyl)-3,9-dioxide, 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]undecane,3,9-bis(diphenylmethyl) Examples include -3,9-dioxide. Two or more types of these compounds may be contained.
  • aryl spirodiphosphinates represented by the following general formula (1) are preferred.
  • R 1 and R 2 are each a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. Further, R 1 and R 2 may be the same or different.
  • the aryl spirodiphosphinate has an aromatic ring such as a phenyl group, a naphthyl group, or an anthryl group, the thermal properties of the aryl spirodiphosphinate are increased, and the aryl spirodiphosphinate has a preferred flow initiation temperature of the present invention.
  • the phosphonic acid polymer is a polymer compound having a phosphorus atom in its main chain, and includes, for example, a copolymer of bisphenol A-diphenyl methylphosphonate.
  • Examples of commercially available phosphorus-based spiro compounds include, but are not limited to, Fireguard FCX-210 manufactured by Teijin Ltd.
  • Commercially available phosphonic acid polymers include, but are not limited to, Nofia HM1100 manufactured by FRX.
  • the amount of non-halogen flame retardant (B) to be used may be determined by selecting an amount that satisfies the sufficient flame retardancy and physical properties required for the situation in which it is used, and specifically, 100 parts by mass of thermoplastic resin (A).
  • it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, and particularly preferably 15 parts by mass or more.
  • the amount is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less.
  • the resin composition according to the present invention may contain a flame retardant aid.
  • the flame retardant aid is not particularly limited as long as it improves flame retardancy when combined with the above flame retardant. Examples include fluorine-based flame retardant aids, phosphate ester-based flame retardant aids, nitrogen-based flame retardant aids, and the like. Among these, fluorine-based flame retardant aids are preferred, fluoroolefin resins are preferred, and tetrafluoroethylene resins are exemplified.
  • the fluorine-based flame retardant aid may be in any form, such as a powder, a dispersion, or a powder obtained by coating a fluororesin with another resin.
  • the content of the flame retardant aid is preferably in the range of 0.001 to 1 part by mass, more preferably in the range of 0.01 to 0.5 part by mass, per 100 parts by mass of the flame retardant. .
  • the resin composition of the present invention may appropriately contain commonly used additives within a range that does not significantly impede the effects of the present invention.
  • the additives include inorganic particles such as silica, alumina, and kaolin, acrylic resin particles, etc., which are added for the purpose of improving and adjusting the formability, stability of the three-dimensional model, and various physical properties of the three-dimensional model.
  • Organic particles such as melamine resin particles, pigments such as titanium oxide and carbon black, weathering stabilizers, heat resistant stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents , antioxidants, light stabilizers, ultraviolet absorbers, neutralizing agents, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • the content of the additive in the resin composition of the present invention is not particularly specified, but from the viewpoint of stability of the three-dimensional modeling material to be modeled and its three-dimensional model, the content of the additive in the resin composition of the present invention is 100 parts by mass in total of the three-dimensional modeling material.
  • the amount is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, even more preferably 0.08 parts by mass or more, and 0.1 parts by mass or more. It is particularly preferable.
  • the upper limit of the content of the additive is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, More preferably, it is 25 parts by mass or less.
  • the resin composition of the present invention may appropriately contain, in addition to the above-mentioned components, a reinforcing material that is generally blended within a range that does not significantly impede the effects of the present invention.
  • a reinforcing material include inorganic fillers and inorganic fibers.
  • inorganic fillers include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloon, glass flakes, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. It will be done.
  • Specific examples of inorganic fibers include glass cut fibers, glass milled fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, cellulose nanofibers, and the like.
  • the content when containing the reinforcing material is not particularly specified, but from the viewpoint of the strength of the three-dimensional object to be modeled, it should be 1% by mass or more based on the total 100% by mass of the three-dimensional modeling material. It is preferably 5% by mass or more, more preferably 10% by mass or more. Moreover, from the viewpoint of suppressing a decrease in interlayer adhesion of the three-dimensional structure to be modeled, the content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the resin composition used in the present invention can be produced by adding and mixing the thermoplastic resin (A), the non-halogen flame retardant (B), and the other components mentioned above.
  • the method for producing the resin composition is not particularly limited as long as it contains each component.
  • the resin composition of the present invention can be produced by melt-kneading using a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or the like.
  • non-halogen flame retardants B
  • inorganic particles organic particles
  • reinforcing materials should be combined with thermoplastic resin (A), additives, etc. It may be mixed with powder produced by the method described below to form a powder mixture without kneading.
  • the three-dimensional modeling material of the present invention is a material used for modeling a three-dimensional object (resin molded object) using a 3D printer.
  • the three-dimensional modeling material may be made of the above-mentioned resin composition for three-dimensional printing alone, or may have a single layer structure consisting of a single resin layer made of the above-mentioned resin composition for three-dimensional printing.
  • the three-dimensional modeling material of the present invention may have a multilayer structure including at least a resin layer made of the above-mentioned resin composition for three-dimensional modeling.
  • the shape of the three-dimensional modeling material may be any shape that can be applied to 3D printers of various methods such as material extrusion method (MEX), powder bed fusion method (PBF), and multi-jet fusion method.
  • MX material extrusion method
  • PPF powder bed fusion method
  • multi-jet fusion method Specific shapes of the three-dimensional modeling material include powder, pellets, granules, filaments, and the like.
  • the three-dimensional modeling powder of the present invention is a modeling material used in powder bed fusion bonding (PBF).
  • PPF powder bed fusion bonding
  • Powdering means for producing the powder for three-dimensional modeling of the present invention include melt granulation, in which the resin composition of the present invention is melted near the melting point and cut into fibers, and the resin composition of the present invention is cut into fibers. There is pulverization, in which the material is cut or destroyed by applying impact or shear to it. In order to improve the powder applicability in powder bed fusion bonding modeling, it is preferable not to contain fine powder of around 10 ⁇ m and to have a constant particle size and particle size distribution, so that powder with such a suitable shape can be obtained. Therefore, it is preferable to select a suitable powder format.
  • a stamp mill for example, a stamp mill, a ring mill, a stone mill, a mortar, a roller mill, a jet mill, a high-speed rotation mill, a hammer mill, a pin mill, a container-driven mill, a disc mill, a medium stirring mill, etc.
  • a stamp mill for example, a stamp mill, a ring mill, a stone mill, a mortar, a roller mill, a jet mill, a high-speed rotation mill, a hammer mill, a pin mill, a container-driven mill, a disc mill, a medium stirring mill, etc.
  • a stamp mill for example, a stamp mill, a ring mill, a stone mill, a mortar, a roller mill, a jet mill, a high-speed rotation mill, a hammer mill, a pin mill, a container-driven mill, a disc mill, a medium stirring mill, etc.
  • liquid nitrogen is used to cool the inside of the powder system to lower the resin temperature during crushing, resulting in brittle fracture rather than ductile fracture.
  • a method to create This is called cryogenic grinding or freeze grinding.
  • cryogenic grinding or freeze grinding.
  • a high-speed rotary mill for pulverization which can obtain powder with a particle size distribution and shape suitable for powder bed fusion bonding modeling, fluidity and powder applicability during modeling are improved. Therefore, it is preferable.
  • liquid nitrogen in order to suppress changes in the physical properties and color of the resin material due to pulverization, it is preferable to use liquid nitrogen to produce powder by brittle fracture of the resin material.
  • the classification method include wind classification, sieve classification, and the like.
  • the above-mentioned inorganic particles and reinforcing material of the obtained powder may be added and mixed as necessary.
  • D50 which accounts for 50% of the volume ratio of the particle size distribution of the powder measured by laser diffraction, is used as a material for resin molding by powder bed fusion bonding (PBF).
  • the thickness is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, and especially Preferably it is 50 ⁇ m or more, most preferably 55 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 75 ⁇ m or less, particularly preferably 70 ⁇ m or less.
  • the above D50 is determined by weighing 5 g of powder and measuring the particle size distribution (volume basis) of the powder using a particle size distribution measuring device (Horiba, Ltd., LA-960).
  • the frequency distribution of the powder is 50% of the detected particle size distribution.
  • the particle size located at is determined as D50.
  • the filament for three-dimensional modeling of the present invention can be used as either a modeling material or a support material, which are broadly classified as raw materials used in material extrusion (MEX), but it is preferable to use it as a modeling material.
  • MEX material extrusion
  • the material that becomes the main body of the modeled object is the modeling material
  • the material that supports the stacked building materials until they harden into a desired shape is the support material.
  • the filament for three-dimensional modeling of the present invention is produced by melt-kneading a thermoplastic resin (A) and a non-halogen flame retardant (B).
  • the kneading method is not particularly limited, but known methods such as melt kneading devices such as a single screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader can be used.
  • melt kneading devices such as a single screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader can be used.
  • the method for producing the filament for three-dimensional modeling of the present invention is not particularly limited, but a thermoplastic resin (A), a non-halogen flame retardant (B), etc. are molded by a known molding method such as extrusion molding. It can be obtained by a method etc.
  • the conditions are adjusted as appropriate depending on the flow characteristics and molding processability of the thermoplastic resin (A) and non-halogenated flame retardant (B) used.
  • the temperature is usually 200°C or more and 400°C or less, preferably 220°C or more and 350°C or less.
  • the diameter of the filament for three-dimensional modeling of the present invention depends on the specifications of the system used for molding a resin molded body by material extrusion method (MEX), but is usually 1.0 mm or more, preferably 1.5 mm or more, and more preferably is 1.6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, particularly preferably 3.0 mm or less. Furthermore, it is preferable from the viewpoint of stability of raw material supply that the accuracy of the diameter is within ⁇ 5% for any measurement point on the filament.
  • the filament for three-dimensional modeling of the present invention preferably has a standard deviation of diameter of 0.07 mm or less, particularly 0.06 mm or less.
  • the filament for three-dimensional modeling of the present invention has a roundness of 0.93 or more, particularly 0.95 or more.
  • the upper limit of roundness is 1.0. In this way, if the standard deviation of the diameter is small and the filament for 3D printing has high roundness, uneven discharge during printing will be suppressed, and resin molded objects with excellent appearance and surface properties can be stably produced.
  • the resin composition described above it is possible to relatively easily produce a filament for three-dimensional modeling that satisfies such standard deviation and circularity.
  • the molded article of the present invention is made of the above-mentioned three-dimensional modeling material.
  • As a method for manufacturing the molded body it is preferable to mold the molded body using a 3D printer. The detailed manufacturing method will be described below.
  • a resin molded body is obtained by molding with a 3D printer using the three-dimensional modeling material of the present invention.
  • molding methods using a 3D printer include material extrusion (MEX), powder bed fusion bonding (PBF), material jetting, and liquid bath photopolymerization.
  • MEX material extrusion
  • PPF powder bed fusion bonding
  • a molded article is manufactured by melting a thermoplastic resin.
  • a filament-shaped resin composition melted or softened at high temperature is extruded from a nozzle and arranged in a flat shape, and a molded article is created by forming each layer divided in the height direction. This is the way to obtain.
  • powder bed fusion bonding involves irradiating particles of a resin composition spread on a stage with a laser or electron beam to sinter or fuse the particles to form a layer in the height direction. .
  • the next layer is formed by spreading particles of the resin composition in contact with the formed layer and irradiating it with a laser or an electron beam.
  • Flow starting temperature Regarding the flame retardant (B), the flow start temperature was measured by the following method. Using a sophisticated flow tester manufactured by Shimadzu Corporation, product name "Flow Tester CFT-500C", 1.0 g of the measurement sample was heated at a constant rate of 3°C/min through the nozzle (inner diameter 1 mm, length 2 mm) and a load of 40 kg/cm 2 , the temperature at which the sample to be measured starts to flow from the nozzle was measured, and this was determined as the flow start temperature.
  • melting point Tm or glass transition temperature Tg The melting point (Tm) or glass transition temperature (Tg) of the flame retardant (B) was measured by the following method. Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd. under the trade name "Pyris1 DSC", approximately 10 mg of a powder sample was heated from room temperature to the crystal melting temperature (melting point Tm) +20 at a heating rate of 10°C/min in accordance with JIS K7121. From the thermogram measured when the temperature was raised to °C, held at that temperature for 1 minute, then lowered to 30°C at a cooling rate of 10°C/min, and then raised again to 280°C at a heating rate of 10°C/min.
  • the crystal melting temperature (melting point Tm) (°C) (reheating process) or glass transition temperature (Tg) was determined.
  • Tm melting point
  • Tg glass transition temperature
  • thermoplastic resin (A) and non-halogenated flame retardant (B) etc. were compounded, the color of the pellets of the resulting resin composition was visually observed and the color was evaluated based on the following criteria. . Evaluation criteria A: Same whiteness as thermoplastic resin (A) alone B: More yellowish than thermoplastic resin (A) alone
  • particle size distribution 5 g of the powder material was weighed, and the particle size distribution of the powder was measured on a volume basis using a particle size distribution measuring device (manufactured by Horiba, Ltd.) using a laser diffraction method.
  • the particle size D50 located at 50% of the frequency distribution of the powder was determined, and the particle size distribution was evaluated based on the following criteria.
  • Formability Using a powder bed fusion bonding (PBF) printer Lisa Pro (Sinterit), the printing area (Print bed) is heated to a temperature above the cooling crystallization temperature of the powder sample and below the crystal melting temperature, and the material supply section (Feed bed) was set at a temperature equal to or higher than the cooling crystallization temperature of the powder sample, and a 1BA type tensile test piece conforming to JIS K7161 was molded under the conditions of a lamination pitch of 0.125 mm, and the presence or absence of molding defects was determined by external observation. Formability was evaluated based on the following criteria. A: Possible to print, mechanical properties can be evaluated using the obtained sample B: Possible to print, but very brittle C: Printing defects such as defects are observed, or printing is not possible
  • the printing area (Print bed) is heated to a temperature above the cooling crystallization temperature of the powder sample and below the crystal melting temperature, and the material supply section (Feed bed) was set to a temperature equal to or higher than the cooling crystallization temperature of the powder sample, and a test piece with a thickness of 5.0 mm, a width of 13.0 mm, and a length of 125 mm was formed under the conditions of a lamination pitch of 0.125 mm.
  • the obtained test piece was vertically attached to a clamp, and indirect flame was applied twice for 10 seconds using a 20 mm flame to measure the combustion time.
  • Flame retardancy was evaluated based on the following criteria.
  • Fireguard FCX-210 manufactured by Teijin
  • B-1 as a non-halogen flame retardant was added to 100 parts by mass of polybutylene terephthalate (A-1) (Tm: 195°C, ⁇ Hc: 34.6 J/g). 15 parts by mass was added to form a compound. Further, the compound product was pulverized by freeze pulverization using liquid nitrogen and high speed rotary pulverization. In addition, the obtained powder was 100 parts by mass, and 0.3 parts by mass of alumina particles (Alu CRK, manufactured by AEROSIL, average particle size 20 nm) was added as a flow aid, and carbon powder was added as an electromagnetic wave absorber.
  • A-1 polybutylene terephthalate
  • A-1 polybutylene terephthalate
  • 15 parts by mass was added to form a compound. Further, the compound product was pulverized by freeze pulverization using liquid nitrogen and high speed rotary pulverization. In addition, the obtained powder was 100 parts by mass
  • Example 2 When compounding polybutylene terephthalate (A-1) and Fireguard FCX-210 (B-1), 0.2 mass of IT-1105-D (manufactured by ITAFlon) (C-1) was used as an anti-dripping agent. A powder was prepared in the same manner as in Example 1, except that 100% of the powder was further added, and various evaluations were performed.
  • Example 3 Polybutylene terephthalate (A-1) (Tm: 195°C, ⁇ Hc: 34.6 J/g) was pulverized by freeze pulverization using liquid nitrogen and high speed rotation pulverization, and based on 100 parts by mass of the obtained powder, A dry blended powder was prepared by adding 15 parts by mass of Fireguard FCX-210 (B-1) as a non-halogen flame retardant. The composition of the obtained powder was the same as in Example 1, and the same results were obtained in terms of the color and shapeability of the powder. Table 1 shows the results of various evaluations.
  • Example 4 Powders were prepared in the same manner as in Example 1, except that Nofia HM1100 (manufactured by FRXpolymers) (B-2) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1), and various We conducted an evaluation.
  • Fireguard FCX-210 (B) was added as a non-halogen flame retardant to 100 parts by mass of polypropylene powder (A-2) (Tm: 135°C, ⁇ Hc: 64.6 J/g), which is a powder material for LisaPro 3D printer manufactured by Sinterit. -1)
  • a dry blended powder was prepared by adding 15 parts by mass, and various evaluations were performed.
  • Example 1 Powder was prepared in the same manner as in Example 1, except that 7 parts by mass of Exolit AP422 (manufactured by Clariant) (B-3) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). It was manufactured and various evaluations were performed.
  • Comparative example 2 Powder was prepared in the same manner as in Example 1, except that 10 parts by mass of Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). It was manufactured and various evaluations were performed.
  • Example 3 A powder was produced in the same manner as in Example 3, except that Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). , and conducted various evaluations.
  • Example 5 A powder was produced in the same manner as in Example 5, except that Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). , and conducted various evaluations.
  • thermoplastic resin can be maintained while the moldability and color of the molded product can be excellent in 3D printers.
  • the three-dimensional printing material of the present invention it is possible to provide a three-dimensional printing material that maintains the thermal properties of a thermoplastic resin and has excellent printability in a 3D printer and color tone of a printed product, and can be used for prototype production. It can also be used for practical purposes such as electric/electronic parts, home appliances, building materials, aircraft, and automobile materials.
  • automotive materials include various control units, various sensors, ignition coils, cases for vehicle components such as ECU boxes, connector boxes, and vehicle electrical components.
  • electrical and electronic components include connectors, switches, relays, coils, actuators, sensors, transformer bobbins, terminal blocks, covers, sockets, and plugs.

Abstract

Provided is a material for 3D printing, the material containing a resin composition, wherein the resin composition comprises a thermoplastic resin (A) and a non-halogenated flame retardant (B), and the non-halogenated flame retardant (B) has a flow initiation temperature of 100-400°C.

Description

3次元造形用材料3D modeling materials
 本発明は3次元造形用材料に関し、詳しくは非ハロゲン系難燃剤を含む3次元造形用材料に関する。特に、本発明は材料押出法用フィラメントと粉末床溶融結合法用粉末に関する。本発明はまた、これらの3次元造形用材料を用いる造形法と造形品に関する。 The present invention relates to a three-dimensional modeling material, and specifically relates to a three-dimensional modeling material containing a non-halogen flame retardant. In particular, the present invention relates to filaments for material extrusion processes and powders for powder bed fusion processes. The present invention also relates to a modeling method and a modeled article using these three-dimensional modeling materials.
 今日、種々の付加製造方式(例えば結合剤噴射法、材料押出法、液槽光重合法、粉末床溶融結合法等)の3次元プリンタ(以下「3Dプリンタ」と称することがある)が販売されている。
 これらの中で、材料押出法(Material Extrusion、以下「MEX」と称することがある。)による3Dプリンタシステム(例えば米国のストラタシス・インコーポレイテッド社製のシステム)は、流動性を有する原料を押出ヘッドに備えたノズル部位から押し出してコンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。このシステムは、熱可塑性樹脂からなる原料をフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、これが冷却するにつれ一体固化する、という簡単なシステムであるため、広く用いられるようになってきている。材料押出法(MEX)では、通常、基盤に対するノズル位置がX-Y平面に垂直方向なZ軸方向に上昇しつつ前記押出工程が繰り返されることによりCADモデルに類似した3次元物体が構築される。
Today, three-dimensional printers (hereinafter sometimes referred to as "3D printers") with various additive manufacturing methods (e.g., binder injection method, material extrusion method, liquid bath photopolymerization method, powder bed fusion method, etc.) are on the market. ing.
Among these, a 3D printer system (for example, a system manufactured by Stratasys, Inc. in the United States) using a material extrusion method (hereinafter sometimes referred to as "MEX") uses fluid raw materials through an extrusion head. It is used to construct three-dimensional objects in layers based on a computer-aided design (CAD) model by extruding them from a nozzle section provided in the computer. In this system, a raw material made of thermoplastic resin is inserted as a filament into an extrusion head, and while it is heated and melted, it is continuously extruded from a nozzle part provided in the extrusion head onto an XY plane base in a chamber, and the extruded resin is It is becoming widely used because it is a simple system in which it is deposited and fused onto an already deposited resin laminate and solidified as it cools. In material extrusion (MEX), a three-dimensional object resembling a CAD model is constructed by repeating the extrusion process, with the nozzle position relative to the substrate rising in the Z-axis direction perpendicular to the XY plane. .
 また、粉末床溶融結合法(Powder Bed Fusion、以下「PBF」と称することがある。)式による3Dプリンタシステムは、例えば米国の3D Systems社製のシステムでは、樹脂などの粉末材料の薄層(粉末床)を、高出力COレーザー等の加熱手段を使用して該樹脂粉末の融点近傍の温度に加熱、溶融させ、コンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。このとき、加熱手段として使用されるレーザーは、粉体床の表面で断面をX-Y方向にスキャンして、粉末材料を選択的に溶融させる。3D CADデータから、一度に1レイヤーを積層し、それを繰り返して積層体を形成することにより3次元造形品を得ることができる。このシステムは、金型を使用する必要がなく、ある程度耐熱性を有するものであれば多様な樹脂粉末を原料として使用することができ、得られる造形品の信頼性も高いことから、近年注目されている技術である。 In addition, a 3D printer system using a powder bed fusion method (hereinafter sometimes referred to as "PBF"), for example, a system manufactured by 3D Systems in the United States, uses a thin layer ( A powder bed) is heated and melted to a temperature near the melting point of the resin powder using a heating means such as a high-power CO 2 laser, and a three-dimensional object is constructed in layers based on a computer-aided design (CAD) model. It is used to At this time, the laser used as a heating means scans the cross section in the XY direction on the surface of the powder bed to selectively melt the powder material. From 3D CAD data, a three-dimensional model can be obtained by laminating one layer at a time and repeating this process to form a laminate. This system has attracted attention in recent years because it does not require the use of molds, can use a variety of resin powders as raw materials as long as they have a certain degree of heat resistance, and the resulting molded products are highly reliable. It is a technology that
 3Dプリンタに用いられる熱可塑性樹脂は、3Dプリンタ用フィラメント材料としては、アクリロニトリル-ブタジエン-スチレン(ABS)系樹脂、ポリプロピレン系樹脂(PP)、ポリ乳酸(PLA)等の成形加工性や流動性が比較的良好な樹脂が一般的に使用されている。
 また、熱可塑性樹脂粉末の材料種としては、ナイロン12やナイロン11などのポリアミド系樹脂が広く用いられているが、近年では、ナイロン12やナイロン11よりも水分を吸収しにくく、耐熱性の高い造形品を得ることができる芳香族ポリエステル系樹脂としてポリブチレンテレフタレート系樹脂も用いられている。
Thermoplastic resins used in 3D printers include acrylonitrile-butadiene-styrene (ABS) resins, polypropylene resins (PP), and polylactic acid (PLA), which have good moldability and fluidity as filament materials for 3D printers. Relatively good resins are commonly used.
In addition, polyamide resins such as nylon 12 and nylon 11 are widely used as materials for thermoplastic resin powder, but in recent years, polyamide resins such as nylon 12 and nylon 11 have become less absorbent of moisture and have higher heat resistance. Polybutylene terephthalate resin is also used as an aromatic polyester resin from which shaped articles can be obtained.
 3Dプリンタは、成形品の試作用途向けに広く使用されてきたが、近年、実用途に使用される機能性部品に適用されることも検討されている。実用途を想定した場合、例えば、家電製品や建築材料、航空機、自動車材料などの部材として用いる場合には、造形品が高耐熱かつ難燃性を有するものが好ましい。3Dプリンタ用熱可塑性樹脂材料に難燃性を付与する検討として、例えば特許文献1では酸素指数が27以上である材料を、ポリアミド樹脂と溶融混練し、それを粉砕して難燃性の粉体を得る方法が開示されている。
 また、特許文献2では、難燃剤、熱可塑性樹脂および有機溶媒を混合した難燃剤含有ポリマー溶液を、乳化剤を含有した水を撹拌下で添加して水中油滴(O/W)型エマルションとなった乳化液から難燃性ポリマー微粒子を析出させる方法が開示されている。
3D printers have been widely used for prototyping molded products, but in recent years, 3D printers are also being considered for application to functional parts used in actual applications. Assuming practical use, for example, when used as a member for home appliances, building materials, aircraft, automobile materials, etc., it is preferable that the shaped article has high heat resistance and flame retardancy. As a study on imparting flame retardancy to thermoplastic resin materials for 3D printers, for example, in Patent Document 1, a material with an oxygen index of 27 or more is melt-kneaded with a polyamide resin, and then pulverized to form a flame-retardant powder. A method for obtaining the is disclosed.
Furthermore, in Patent Document 2, water containing an emulsifier is added to a flame retardant-containing polymer solution in which a flame retardant, a thermoplastic resin, and an organic solvent are mixed under stirring to form an oil-in-water (O/W) emulsion. A method for precipitating flame-retardant polymer fine particles from an emulsion is disclosed.
WO2017/158688WO2017/158688 特開2020-7529号公報JP 2020-7529 Publication
 上記特許文献1では、熱可塑性樹脂がポリアミド12に限定されており、特許文献2では、水中油滴(O/W)型エマルションから微粒子を析出させるため、その粒径が小さく、3Dプリンタ用材料として多量に使用する場合は、製造にも時間と手間がかかる。 In Patent Document 1, the thermoplastic resin is limited to polyamide 12, and in Patent Document 2, since fine particles are precipitated from an oil-in-water (O/W) emulsion, the particle size is small, and the material for 3D printers is When used in large quantities, it takes time and effort to manufacture.
 3Dプリンタが、実用途にも使用される機能性部品に広く適用されるためには、ポリアミド12以外の熱可塑性樹脂材料にも難燃性を付与できることが好ましく、また、材料の製造方法が簡易であることが好ましい。 In order for 3D printers to be widely applied to functional parts that are used in practical applications, it is desirable that flame retardancy can be imparted to thermoplastic resin materials other than polyamide 12, and that the manufacturing method of the material is simple. It is preferable that
 さらには、難燃剤としては、リン系化合物などの非ハロゲン系化合物を使用することが好ましい。従来は、ハロゲン系化合物、特に臭素系化合物を配合する手法が一般的に用いられてきた。しかし、ハロゲン系化合物は、燃焼時にダイオキシン類などの有害ガスが発生する要因となることが指摘されており、廃棄物焼却処理やサーマルリサイクルの際の安全性に問題があるだけでなく、火災発生時における有害ガスの発生が人体に影響を及ぼす可能性もある。 Furthermore, as the flame retardant, it is preferable to use a non-halogen compound such as a phosphorus compound. Conventionally, a method of blending a halogen compound, particularly a bromine compound, has been commonly used. However, it has been pointed out that halogen compounds can generate harmful gases such as dioxins when burned, which not only poses safety problems during waste incineration and thermal recycling, but also causes fires. There is also the possibility that the generation of harmful gases during this time may affect the human body.
 本発明は上記課題を解決するものであって、熱可塑性樹脂と非ハロゲン系難燃剤を含む樹脂組成物を含有する3次元造形用材料であって、熱可塑性樹脂の融点やガラス転移温度、結晶化温度などの熱特性を保持しつつ、3Dプリンタにおける造形性や造形品の色味に優れる3次元造形用材料を提供することを課題とする。 The present invention solves the above problems, and is a three-dimensional modeling material containing a resin composition containing a thermoplastic resin and a non-halogenated flame retardant. An object of the present invention is to provide a material for 3D printing that maintains thermal properties such as oxidation temperature and has excellent formability on a 3D printer and color of a modeled product.
 本発明者は上記課題を解決すべく鋭意検討を重ねた結果、特定の要件を備えた非ハロゲン系難燃剤を用いることにより、これらの課題を解決できることを見出し、本発明を開発するに至った。 As a result of intensive studies aimed at solving the above problems, the present inventor discovered that these problems could be solved by using a non-halogen flame retardant that meets specific requirements, and thus developed the present invention. .
 すなわち、本発明の要旨は以下のとおりである。
[1]樹脂組成物を含有する3次元造形用材料であって、前記樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含み、前記非ハロゲン系難燃剤(B)の流動開始温度が100℃以上、400℃以下であることを特徴とする3次元造形用材料。
[2]前記非ハロゲン系難燃剤(B)が有機リン含有化合物であることを特徴とする、上記[1]に記載の3次元造形用材料。
[3]前記非ハロゲン系難燃剤(B)が、リン系スピロ化合物またはリン酸エステル系化合物であることを特徴とする、上記[1]または[2]に記載の3次元造形用材料。
[4]樹脂組成物を含有する3次元造形用材料であって、前記樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含み、前記非ハロゲン系難燃剤(B)が、下記一般式(1)で示される化合物である3次元造形用材料。
Figure JPOXMLDOC01-appb-C000002
That is, the gist of the present invention is as follows.
[1] A three-dimensional modeling material containing a resin composition, the resin composition containing a thermoplastic resin (A) and a non-halogen flame retardant (B); ) has a flow start temperature of 100°C or more and 400°C or less.
[2] The three-dimensional modeling material according to [1] above, wherein the non-halogen flame retardant (B) is an organic phosphorus-containing compound.
[3] The three-dimensional modeling material according to [1] or [2] above, wherein the non-halogen flame retardant (B) is a phosphorus spiro compound or a phosphate ester compound.
[4] A three-dimensional modeling material containing a resin composition, the resin composition containing a thermoplastic resin (A) and a non-halogen flame retardant (B); ) is a compound represented by the following general formula (1), a three-dimensional modeling material.
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R、Rは、それぞれ、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。また、R、Rは互いに同一であっても異なっていてもよい。)
[5]前記熱可塑性樹脂(A)100質量部に対して非ハロゲン系難燃剤(B)を1質量部以上50質量部以下の割合で含むことを特徴とする、上記[1]~[4]のいずれかに記載の3次元造形用材料。
[6]前記熱可塑性樹脂(A)が、ポリアセタール、ポリアクリレート、ポリアクリル酸、ポリアミド、ポリアミドイミド、ポリ酸無水物、ポリアリーレート、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリベンゾオキサゾール、ポリエステル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリメタクリレート、ポリオレフィン、ポリフタリド、ポリシラザン、ポリシロキサン、ポリスチレン、ポリスルフィド、ポリスルホンアミド、ポリスルホネート、ポリチオエステル、ポリトリアジン、ポリウレア、ポリウレタン、ポリビニルアルコール、ポリビニルエステル、ポリビニルエーテル、ポリビニルハライド、ポリビニルケトン、フッ化ポリビニリデンポリビニル芳香族、ポリスルホン、ポリアリーレンスルフォン、ポリアリールエーテルケトン、ポリ乳酸、ポリグリコール酸、ポリ-3-ヒドロキシブチレート、ポリヒドロキシアルカノエート、デンプン、セルロースエステル、ポリ(フェニレンエーテル)、ポリ(メチルメタクリレート)、スチレン-アクリロニトリル、ポリ(エチレンオキシド)、エピクロロヒドリンポリマー、ポリカーボネートホモポリマー、コポリカーボネート、ポリ(エステルカーボネート)、ポリ(エステル-シロキサン-カーボネート)、ポリ(カーボネート-シロキサン)、ビニル系重合体、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリ塩化ビニル、変性ポリフェニレンエーテル、及び、オレフィン系、スチレン系、ポリエステル系の熱可塑性エラストマーからなる群から選ばれるいずれか1つ、または、2つ以上の混合物である上記[1]~[6]のいずれかに記載の3次元造形用材料。
[7]上記[1]~[6]のいずれかに記載の3次元造形用材料を用いて得られる3次元造形用粉末。
[8]粒度分布としてD50が20μm以上100μm以下である、上記[7]に記載の3次元造形用粉末。
[9]上記[1]~[6]のいずれかに記載の3次元造形用材料を用いて得られる成形体。
[10]上記[7]または[8]に記載の3次元造形用粉末を用いて得られる成形体。
[11]上記[1]~[6]のいずれかに記載の3次元造形用材料を用いて、成形体を3次元に造形する工程を含む、成形体の製造方法。
[12]上記[1]~[6]のいずれかに記載の3次元造形用材料、又は、上記[7]または[8]に記載の3次元造形用粉末を用いて、粉末床溶融結合法(PBF)により成形体を3次元に造形する工程を含む、成形体の製造方法。
(In formula (1), R 1 and R 2 are each a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. Also, R 1 and R 2 are mutually They may be the same or different.)
[5] The above-mentioned [1] to [4] characterized in that the non-halogen flame retardant (B) is contained in a ratio of 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). ] The three-dimensional modeling material according to any one of the above.
[6] The thermoplastic resin (A) may be polyacetal, polyacrylate, polyacrylic acid, polyamide, polyamideimide, polyacid anhydride, polyarylate, polyarylene ether, polyarylene sulfide, polybenzoxazole, polyester, or polyester. Etheretherketone, polyetherimide, polyetherketoneketone, polyetherketone, polyethersulfone, polyimide, polymethacrylate, polyolefin, polyphthalide, polysilazane, polysiloxane, polystyrene, polysulfide, polysulfonamide, polysulfonate, polythioester, polytriazine , polyurea, polyurethane, polyvinyl alcohol, polyvinyl ester, polyvinyl ether, polyvinyl halide, polyvinyl ketone, polyvinylidene fluoride polyvinyl aromatic, polysulfone, polyarylene sulfone, polyaryletherketone, polylactic acid, polyglycolic acid, poly-3- Hydroxybutyrate, polyhydroxyalkanoate, starch, cellulose ester, poly(phenylene ether), poly(methyl methacrylate), styrene-acrylonitrile, poly(ethylene oxide), epichlorohydrin polymer, polycarbonate homopolymer, copolycarbonate, poly( ester carbonate), poly(ester-siloxane-carbonate), poly(carbonate-siloxane), vinyl polymer, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin) ), polyvinyl chloride, modified polyphenylene ether, and any one or a mixture of two or more selected from the group consisting of olefin-based, styrene-based, and polyester-based thermoplastic elastomers [1] to [ 6], the three-dimensional modeling material according to any one of item 6].
[7] A three-dimensional modeling powder obtained using the three-dimensional modeling material according to any one of [1] to [6] above.
[8] The powder for three-dimensional modeling according to the above [7], which has a particle size distribution D50 of 20 μm or more and 100 μm or less.
[9] A molded article obtained using the three-dimensional modeling material according to any one of [1] to [6] above.
[10] A molded object obtained using the three-dimensional modeling powder described in [7] or [8] above.
[11] A method for producing a molded body, comprising a step of three-dimensionally shaping the molded body using the three-dimensional modeling material according to any one of [1] to [6] above.
[12] A powder bed fusion bonding method using the three-dimensional modeling material according to any one of [1] to [6] above, or the three-dimensional modeling powder according to [7] or [8] above. A method for producing a molded body, including a step of three-dimensionally shaping the molded body using (PBF).
 本発明によれば、特定の非ハロゲン系難燃剤を含み、難燃性に優れ、かつ、3Dプリンタにおける造形性にも優れる3次元造形用材料、および、それからなる3次元造形物を提供することができる。 According to the present invention, there is provided a three-dimensional printing material that contains a specific non-halogen flame retardant, has excellent flame retardancy, and is also excellent in printability in a 3D printer, and a three-dimensional printed object made from the material. I can do it.
(本発明が効果を奏する理由)
 本発明が効果を奏する理由は、未だ明らかでないが、以下のような理由と推察できる。すなわち、本発明の樹脂組成物を含有する3次元造形用材料は、樹脂組成物に含まれる非ハロゲン系難燃剤の、流動開始温度の値を特定の範囲内に調整することにより、樹脂組成物の加熱時における流動特性が保持されるため、3Dプリンタによる造形時において、フィラメントを押し出す際や、粉末層にレーザー等の加熱媒体を照射する際に均一な溶融状態を得、目的の3次元造形品を精度よく製造することができるものと推察できる。
(Reason why the present invention is effective)
The reason why the present invention is effective is not yet clear, but it can be assumed to be due to the following reasons. That is, the three-dimensional modeling material containing the resin composition of the present invention can be produced by adjusting the flow start temperature of the non-halogen flame retardant contained in the resin composition within a specific range. Because the fluid properties are maintained when heated, a uniform molten state is obtained when extruding the filament or when irradiating the powder layer with a heating medium such as a laser during modeling using a 3D printer, and the desired 3D modeling can be achieved. It can be inferred that the product can be manufactured with high precision.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. The present embodiment below is an illustration for explaining the present invention, and is not intended to limit the present invention to the following content. The present invention can be implemented with various modifications within the scope of its gist.
[3次元造形用材料]
 本発明の3次元造形用材料は、樹脂組成物を含有する。以下、樹脂組成物について詳述する。
[3D modeling materials]
The three-dimensional modeling material of the present invention contains a resin composition. The resin composition will be explained in detail below.
<樹脂組成物>
 本発明の3次元造形用材料に用いる樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含むものであり、前記非ハロゲン系難燃剤(B)の流動開始温度が100℃以上、400℃以下であることを特徴とするものである。また、本発明の効果を損なわない程度で、熱可塑性樹脂(A)以外の他の樹脂や添加剤、補強材などを含むことができる。
 本発明の3次元造形用材料に用いる樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含むが、非ハロゲン系難燃剤(B)の流動開始温度が400℃以下であるため、本樹脂組成物が熱可塑性樹脂(A)と同等の熱可塑性を保持できると考えられる。そして、本樹脂組成物が熱可塑性樹脂(A)と同等の熱可塑性を保持できることにより、本樹脂組成物は、押出成形や射出成形など一般的な熱可塑性の成形加工方法と異なり、熱や光を材料に直接あて、3D-CADや3D-CGのデータを元に一層ずつ積層して成形品を製作していく3次元造形において、熱可塑性樹脂(A)が本来有する熱特性を大きく損なうことなく、造形性を保持しつつ、成形品に難燃性を付与することができる。
<Resin composition>
The resin composition used in the three-dimensional modeling material of the present invention contains a thermoplastic resin (A) and a non-halogen flame retardant (B), and the flow start temperature of the non-halogen flame retardant (B) is The temperature is 100°C or higher and 400°C or lower. Further, resins other than the thermoplastic resin (A), additives, reinforcing materials, etc. can be included to the extent that the effects of the present invention are not impaired.
The resin composition used in the three-dimensional modeling material of the present invention contains a thermoplastic resin (A) and a non-halogen flame retardant (B), but the flow start temperature of the non-halogen flame retardant (B) is 400°C or less. Therefore, it is considered that the present resin composition can maintain thermoplasticity equivalent to that of the thermoplastic resin (A). Since this resin composition can maintain thermoplasticity equivalent to that of the thermoplastic resin (A), unlike general thermoplastic molding methods such as extrusion molding and injection molding, this resin composition can be processed using heat or light. In 3D modeling, in which a molded product is produced by directly applying the resin to the material and laminating it layer by layer based on 3D-CAD or 3D-CG data, the inherent thermal properties of the thermoplastic resin (A) are significantly impaired. It is possible to impart flame retardancy to the molded product while maintaining formability.
<熱可塑性樹脂(A)>
 本発明で使用する熱可塑性樹脂(A)は、3Dプリンタ装置の熱や光によって熱可塑性を示す材質であればよく、造形する成形体に付与する機能に応じて適宜選択することができる。例えば、ポリアセタール、ポリアクリレート、ポリアクリル酸、ポリアミド、ポリアミドイミド、ポリ酸無水物、ポリアリーレート、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリベンゾオキサゾール、ポリエステル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリメタクリレート、ポリオレフィン、ポリフタリド、ポリシラザン、ポリシロキサン、ポリスチレン、ポリスルフィド、ポリスルホンアミド、ポリスルホネート、ポリチオエステル、ポリトリアジン、ポリウレア、ポリウレタン、ポリビニルアルコール、ポリビニルエステル、ポリビニルエーテル、ポリビニルハライド、ポリビニルケトン、フッ化ポリビニリデンポリビニル芳香族、ポリスルホン、ポリアリーレンスルフォン、ポリアリールエーテルケトン、ポリ乳酸、ポリグリコール酸、ポリ-3-ヒドロキシブチレート、ポリヒドロキシアルカノエート、デンプン、セルロースエステル、ポリ(フェニレンエーテル)、ポリ(メチルメタクリレート)、スチレン-アクリロニトリル、ポリ(エチレンオキシド)、エピクロロヒドリンポリマー、ポリカーボネートホモポリマー、コポリカーボネート、ポリ(エステルカーボネート)、ポリ(エステル-シロキサン-カーボネート)、ポリ(カーボネート-シロキサン)、ビニル系重合体、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリ塩化ビニル、変性ポリフェニレンエーテル、オレフィン系、スチレン系、ポリエステル系の熱可塑性エラストマーが挙げられる。
 これらの樹脂は、適宜、二種以上を混合して用いてもよい。さらに、熱可塑性樹脂(A)には、カーボンブラック、炭素繊維、ガラス繊維、タルク、マイカ、ナノクレイ、マグネシウムなどのフィラー、酸化防止剤、滑剤、着色剤などの添加剤を適宜混合することができる。
<Thermoplastic resin (A)>
The thermoplastic resin (A) used in the present invention may be any material that exhibits thermoplasticity when exposed to heat or light from a 3D printer, and can be appropriately selected depending on the function to be imparted to the molded object to be modeled. For example, polyacetal, polyacrylate, polyacrylic acid, polyamide, polyamideimide, polyacid anhydride, polyarylate, polyarylene ether, polyarylene sulfide, polybenzoxazole, polyester, polyetheretherketone, polyetherimide, polyether Ketone ketone, polyether ketone, polyether sulfone, polyimide, polymethacrylate, polyolefin, polyphthalide, polysilazane, polysiloxane, polystyrene, polysulfide, polysulfonamide, polysulfonate, polythioester, polytriazine, polyurea, polyurethane, polyvinyl alcohol, polyvinyl ester , polyvinyl ether, polyvinyl halide, polyvinyl ketone, polyvinylidene fluoride polyvinyl aromatic, polysulfone, polyarylene sulfone, polyaryletherketone, polylactic acid, polyglycolic acid, poly-3-hydroxybutyrate, polyhydroxyalkanoate, starch , cellulose ester, poly(phenylene ether), poly(methyl methacrylate), styrene-acrylonitrile, poly(ethylene oxide), epichlorohydrin polymer, polycarbonate homopolymer, copolycarbonate, poly(ester carbonate), poly(ester-siloxane) carbonate), poly(carbonate-siloxane), vinyl polymer, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polyvinyl chloride, modified polyphenylene ether, Examples include olefin-based, styrene-based, and polyester-based thermoplastic elastomers.
These resins may be used in combination of two or more types as appropriate. Furthermore, additives such as fillers such as carbon black, carbon fibers, glass fibers, talc, mica, nanoclay, and magnesium, antioxidants, lubricants, and colorants may be appropriately mixed into the thermoplastic resin (A). .
 熱可塑性樹脂(A)は、3Dプリンタにて高耐熱かつ難燃性を有する成形品を得るためには、JIS K7121に準じて測定した際の融点またはガラス転移温度が50℃以上のものを用途に応じて選択することができ、加工性や耐熱性に優れる点から、JIS K7121に準じて測定した際の融点またはガラス転移温度が100℃以上のものがさらに好ましい。具体的には、ビニル系重合体、ポリエステル(以下「ポリエステル系樹脂」と記載することがある。)、ポリオレフィン(以下「ポリオレフィン系樹脂」と記載することがある。)、ポリアミド(以下「ポリアミド系樹脂」と記載することがある。)、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリウレタン、ポリカーボネート(以下「ポリカーボネート系樹脂」と記載することがある。)、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリアセタールおよびこれらの共重合体などが挙げられる。 In order to obtain a molded product with high heat resistance and flame retardancy using a 3D printer, the thermoplastic resin (A) must have a melting point or glass transition temperature of 50°C or higher when measured according to JIS K7121. From the viewpoint of excellent workability and heat resistance, those having a melting point or glass transition temperature of 100° C. or higher when measured according to JIS K7121 are more preferable. Specifically, vinyl polymers, polyesters (hereinafter sometimes referred to as "polyester resins"), polyolefins (hereinafter sometimes referred to as "polyolefin resins"), polyamides (hereinafter referred to as "polyamide resins"), ), polyarylene ether, polyarylene sulfide, polyether sulfone, polysulfone, polyether ketone, polyether ether ketone, polyurethane, polycarbonate (hereinafter sometimes referred to as "polycarbonate resin") ), polyamideimide, polyimide, polyetherimide, polyacetal, and copolymers thereof.
<ポリエステル系樹脂>
 本発明に用いるポリエステル系樹脂は、主鎖にエステル結合を有する樹脂であれば、特にその種類を限定するものではない。前記ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ-1,4-シクロへキシレンジメチレンテレフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート等のジカルボン酸残基とジオール残基とから誘導されるポリエステル系樹脂、ポリ乳酸、ポリ-ε-カプロラクタム等のカルボン酸残基とアルコール残基とを1分子中に持つモノマーを重合したポリエステル樹脂、およびこれらの共重合体等を挙げることができる。これらのポリエステル系樹脂は、1種を単独で使用してもよく、または2種以上のポリエステル系樹脂を使用していてもよい。
<Polyester resin>
The type of polyester resin used in the present invention is not particularly limited as long as it has an ester bond in its main chain. Examples of the polyester resin include dicarboxylic acids such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene succinate, and polybutylene succinate. Polyester resins derived from residues and diol residues, polyester resins polymerized with monomers having carboxylic acid residues and alcohol residues in one molecule such as polylactic acid, poly-ε-caprolactam, etc. Copolymers and the like can be mentioned. One type of these polyester resins may be used alone, or two or more types of polyester resins may be used.
 本発明に用いるポリエステル系樹脂は、熱特性及び機械物性の観点から芳香族ポリエステル系樹脂であることが好ましく、芳香族ポリエステル系樹脂としては、芳香族ジカルボン酸成分とジオール成分との縮合重合からなる樹脂であればよく、中でも、芳香族ジカルボン酸成分およびジオール成分のうち片方の成分もしくは両方の成分が単一の化合物からなるものが好ましい。芳香族ポリエステル系樹脂の中でも、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂が好ましく、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂がさらに好ましく、ポリブチレンテレフタレート樹脂(以下、ポリブチレンテレフタレート)が特に好ましい。
 上記ポリブチレンテレフタレート系樹脂としては、三菱エンジニアリングプラスチックス社製の商品名「ノバデュラン(登録商標)」シリーズ等が商業的に入手できるものとして挙げられる。
The polyester resin used in the present invention is preferably an aromatic polyester resin from the viewpoint of thermal properties and mechanical properties, and the aromatic polyester resin is formed by condensation polymerization of an aromatic dicarboxylic acid component and a diol component. Any resin may be used, and among them, one in which one or both of the aromatic dicarboxylic acid component and the diol component is composed of a single compound is preferred. Among the aromatic polyester resins, polyethylene terephthalate resin, polypropylene terephthalate resin, and polybutylene terephthalate resin are preferred, polyethylene terephthalate resin and polybutylene terephthalate resin are more preferred, and polybutylene terephthalate resin (hereinafter referred to as polybutylene terephthalate) is particularly preferred.
Commercially available examples of the polybutylene terephthalate resin include the "Novaduran (registered trademark)" series manufactured by Mitsubishi Engineering Plastics Co., Ltd.
<ポリオレフィン系樹脂>
 本発明に用いるポリオレフィン系樹脂とは、オレフィン骨格を有するモノマーの重合により得られる重合体である。オレフィンは炭化水素の2重結合を有するモノマーである。
 前記ポリオレフィン系樹脂としては、特に制限はなく、単独重合体、ブロック共重合体、ランダム共重合体などが好適に使用でき、ポリプロピレン;プロピレンと、エチレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンなどのα-オレフィンとを共重合したプロピレン系共重合体;低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンなどのポリエチレン;エチレンと、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンなどのα-オレフィンとを共重合したエチレン系共重合体;ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)などが挙げられる。これらは、1種類を単独で用いてもよく、共重合成分組成や物性等の異なるものの2種類以上を混合して用いてもよい。
<Polyolefin resin>
The polyolefin resin used in the present invention is a polymer obtained by polymerizing monomers having an olefin skeleton. Olefins are monomers with hydrocarbon double bonds.
The polyolefin resin is not particularly limited, and homopolymers, block copolymers, random copolymers, etc. can be suitably used; polypropylene; propylene, ethylene, 1-butene, 1-hexene, 4-methyl; Propylene copolymer copolymerized with α-olefin such as -1-pentene; polyethylene such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene; ethylene, 1-butene, 1 -Ethylene copolymers copolymerized with α-olefins such as hexene and 4-methyl-1-pentene; examples include poly(1-butene) and poly(4-methyl-1-pentene). One type of these may be used alone, or two or more types having different copolymer compositions, physical properties, etc. may be used as a mixture.
 中でも、耐熱性に優れた成形品が得られる観点からは、ポリオレフィン系樹脂としてプロピレン系重合体が好ましい。また、冷却時における結晶化収縮や造形時における成形体の反りなどの変形を抑制できるよう、造形性の観点から、プロピレンと、エチレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンなどのα-オレフィンとを共重合したプロピレン系共重合体がさらに好ましい。
 上記プロピレン系共重合体としては、日本ポリプロピレン社製の商品名「ノバテックPP」、「ウィンテック」、「ニューコン」、「ウェルネクス」、エクソンモービル社製商標名「ビスタマックス」、ダウケミカル社製商標名「バーシファイ」などが例示でき、これらの商品群より適宜選択して、単独もしくは組み組み合わせて、使用することができる。
Among these, propylene-based polymers are preferred as the polyolefin-based resin from the viewpoint of obtaining molded products with excellent heat resistance. In addition, from the viewpoint of formability, in order to suppress deformation such as crystallization shrinkage during cooling and warping of the molded object during molding, propylene, ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, etc. More preferred are propylene-based copolymers copolymerized with α-olefins such as.
The propylene copolymers mentioned above include "Novatec PP", "Wintech", "Nucon", and "Wellnex" manufactured by Nippon Polypropylene Co., Ltd., "Vistamax" manufactured by ExxonMobil, and "Vistamax" manufactured by Dow Chemical Company. An example is the trademark name "Versify", and the product can be appropriately selected from these product groups and used alone or in combination.
<ポリカーボネート系樹脂>
 本発明に用いるポリカーボネート系樹脂は、芳香族ポリカーボネート系樹脂を好ましく用いることができるが、脂肪族ポリカーボネート系樹脂でもよい。また、単独重合体でも他の共重合可能なモノマーとの共重合体のいずれであってもよい。さらに構造は分岐構造であっても、直鎖構造であってもよいし、分岐構造と直鎖構造の混合物であってもよい。本発明に用いるポリカーボネート系樹脂の製造方法はホスゲン法やエステル交換法、ピリジン法など公知のいずれの方法を用いてもかまわない。
<Polycarbonate resin>
As the polycarbonate resin used in the present invention, an aromatic polycarbonate resin is preferably used, but an aliphatic polycarbonate resin may also be used. Further, it may be either a homopolymer or a copolymer with other copolymerizable monomers. Further, the structure may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure. The polycarbonate resin used in the present invention may be produced by any known method such as the phosgene method, the transesterification method, or the pyridine method.
 本発明に用いるポリカーボネート系樹脂の重量平均分子量は、通常、10,000~100,000、好ましくは、20,000~40,000、特に好ましくは、22,000~28,000の範囲のものを用いることができる。ポリカーボネート系樹脂は1種のみを単独で又は2種以上を組み合わせて用いることができる。ここで重量平均分子量が上記範囲にあれば、耐衝撃性が確保され、押出成形性も良好であるため好ましい。
 なお、ここで重量平均分子量は、GPC(東ソー株式会社製 HLC-8120GPC)を用いて測定し、ポリスチレン換算で算出した。
The weight average molecular weight of the polycarbonate resin used in the present invention is usually in the range of 10,000 to 100,000, preferably 20,000 to 40,000, particularly preferably 22,000 to 28,000. Can be used. The polycarbonate resins can be used alone or in combination of two or more. If the weight average molecular weight is within the above range, impact resistance is ensured and extrusion moldability is also good, which is preferable.
Note that the weight average molecular weight here was measured using GPC (HLC-8120GPC manufactured by Tosoh Corporation) and calculated in terms of polystyrene.
 本発明に用いるポリカーボネート系樹脂は市販品を用いることも可能であり、芳香族ポリカーボネート系樹脂の具体例としては住化ポリカーボネート(株)製の商品名「SDポリカ(SD POLYCA)」、三菱エンジニアリングプラスチックス(株)製の商品名「ユーピロン(Iupilon)」、「ノバレックス(NOVAREX)」、帝人(株)製の商品名「パンライト(Panlite)」などが例示できる。また、脂肪族ポリカーボネート系樹脂の具体例としては三菱ケミカル(株)製の商品名「デュラビオ(DURABIO)」などが例示できる。 Commercial products can be used as the polycarbonate resin used in the present invention, and specific examples of aromatic polycarbonate resins include "SD POLYCA" manufactured by Sumika Polycarbonate Co., Ltd., and Mitsubishi Engineering Plastics. Examples include "Iupilon" and "NOVAREX" manufactured by Sustainability Co., Ltd., and "Panlite" manufactured by Teijin Ltd. Further, as a specific example of the aliphatic polycarbonate resin, there may be mentioned the product name "DURABIO" manufactured by Mitsubishi Chemical Corporation.
<ポリアミド系樹脂>
 本発明に用いるポリアミド系樹脂は、結晶性ポリアミド系樹脂でも非晶性ポリアミド系樹脂のいずれであってもよい。公知の方法で重合可能であり、また、市販品を用いることができる。
 ここで、重合方法としては、以下の〔1〕~〔6〕の方法が例示できる。また、バッチ式でも連続式でも適宜選択することができる。
〔1〕ジカルボン酸・ジアミン塩又はその混合物の水溶液若しくは水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法)。
〔2〕熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(熱溶融重合・固相重合法)。
〔3〕ジカルボン酸・ジアミン塩又はその混合物の水溶液若しくは水の懸濁液を加熱し、析出したプレポリマーを更にニーダーなどの押出機で再び溶融して重合度を上昇させる方法(プレポリマー・押出重合法)。
〔4〕ジカルボン酸・ジアミン塩又は、その混合物の水溶液若しくは水の懸濁液を加熱し、析出したプレポリマーを更にポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(プレポリマー・固相重合法)。
〔5〕ジカルボン酸・ジアミン塩又はその混合物を固体状態に維持したまま、一段で重合させる方法(一段固相重合法)。
〔6〕ジカルボン酸と等価なジカルボン酸ハライドとジアミンとを用いて重合させる方法(溶液法)。
<Polyamide resin>
The polyamide resin used in the present invention may be either a crystalline polyamide resin or an amorphous polyamide resin. It can be polymerized by a known method, and commercially available products can be used.
Here, as the polymerization method, the following methods [1] to [6] can be exemplified. Moreover, either a batch type or a continuous type can be selected as appropriate.
[1] A method in which an aqueous solution or aqueous suspension of a dicarboxylic acid/diamine salt or a mixture thereof is heated and polymerized while maintaining the molten state (thermal melt polymerization method).
[2] A method of increasing the degree of polymerization of polyamide obtained by hot melt polymerization while maintaining the solid state at a temperature below the melting point (hot melt polymerization/solid phase polymerization).
[3] A method of heating an aqueous solution or suspension of dicarboxylic acid/diamine salt or a mixture thereof and melting the precipitated prepolymer again in an extruder such as a kneader to increase the degree of polymerization (prepolymer/extrusion polymerization method).
[4] A method of heating an aqueous solution or aqueous suspension of a dicarboxylic acid/diamine salt or a mixture thereof, and increasing the degree of polymerization while maintaining the precipitated prepolymer in a solid state at a temperature below the melting point of the polyamide ( Prepolymer/solid phase polymerization method).
[5] A method in which dicarboxylic acid, diamine salt, or a mixture thereof is polymerized in one step while maintaining it in a solid state (one-step solid phase polymerization method).
[6] A method of polymerizing using a dicarboxylic acid halide equivalent to a dicarboxylic acid and a diamine (solution method).
 結晶性ポリアミド系樹脂としては、特に限定されるものではないが、具体例としては、以下のようなものが挙げられる。すなわち、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカメチレンアジパミド(ポリアミド116)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(3-メチル-4アミノシクロヘキシル)メタンドデカミド(ポリアミドジメチルPACM12)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ポリアミド11T(H))、ポリウンデカミド(ポリアミド11)、ポリドデカミド(ポリアミド12)、ポリトリメチルヘキサメチレンテレフタルアミド(ポリアミドTMDT)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ポリアミド6T/6I)、ポリメタキシリレンアジパミド(ポリアミドMXD6)及びこれらの共重合物等が挙げられる。該結晶性ポリアミド系樹脂は、1種あるいは2種以上を混合して用いることができる。 Although the crystalline polyamide resin is not particularly limited, specific examples include the following. Namely, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polyundecamethylene adipamide (polyamide 116), polybis(4-aminocyclohexyl)methandodecamide (polyamide PACM12), polybis(3-methyl-4aminocyclohexyl)methandodecamide (polyamidedimethylPACM12), Nonamethylene terephthalamide (Polyamide 9T), polydecamethylene terephthalamide (Polyamide 10T), polyundecamethylene terephthalamide (Polyamide 11T), polyundecamethylene hexahydroterephthalamide (Polyamide 11T (H)), polyundecamide (Polyamide 11) ), polydodecamide (polyamide 12), polytrimethylhexamethylene terephthalamide (polyamide TMDT), polyhexamethylene isophthalamide (polyamide 6I), polyhexamethylene terephthal/isophthalamide (polyamide 6T/6I), polymethaxylylene adipamide ( Examples include polyamide MXD6) and copolymers thereof. These crystalline polyamide resins can be used alone or in combination of two or more.
 非晶性ポリアミド系樹脂としては、ジカルボン酸成分として、イソフタル酸を30~70モル%、より好ましくは40~60モル%含む重縮合体であることが好ましい。 The amorphous polyamide resin is preferably a polycondensate containing 30 to 70 mol%, more preferably 40 to 60 mol% of isophthalic acid as a dicarboxylic acid component.
 このような重縮合体として、以下のようなものが挙げられる。すなわち、イソフタル酸/炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/メタキシリレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体等が挙げられる。また、これらの重縮合体を構成するテレフタル酸成分及び/又はイソフタル酸成分のベンゼン環が、アルキル基やハロゲン原子で置換されたものも含まれる。さらに、これらの非晶性ポリアミド系樹脂は2種以上併用することもできる。 Examples of such polycondensates include the following. That is, polycondensates of isophthalic acid/α,ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms/metaxylylene diamine, polycondensates of isophthalic acid/terephthalic acid/hexamethylene diamine, and isophthalic acid/terephthalic acid. Polycondensate of /hexamethylenediamine/bis(3-methyl-4-aminocyclohexyl)methane, polycondensate of terephthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine , isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ω-laurolactam polycondensate, isophthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine polycondensate of isophthalic acid/terephthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine, isophthalic acid/bis(3-methyl-4-aminocyclohexyl) ) Polycondensates of methane/ω-laurolactam and the like. Also included are those in which the benzene ring of the terephthalic acid component and/or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom. Furthermore, two or more of these amorphous polyamide resins can also be used in combination.
 好ましくは、イソフタル酸/炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/メタキシリレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、又はイソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体とテレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体との混合物が用いられる。 Preferably, a polycondensate of isophthalic acid/α,ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms/methaxylylene diamine, isophthalic acid/terephthalic acid/hexamethylene diamine/bis(3-methyl-4- (aminocyclohexyl)methane polycondensate, terephthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine polycondensate, or isophthalic acid/terephthalic acid/hexamethylenediamine/bis A mixture of a polycondensate of (3-methyl-4-aminocyclohexyl)methane and a polycondensate of terephthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine is used. .
 本発明に用いるポリアミド系樹脂の相対粘度は、特に限定されるものではないが、溶媒として96質量%濃硫酸を用いて温度が25℃で濃度が1g/dlの条件で測定した相対粘度が、1.5~5.0の範囲であることが好ましい。該範囲であれば、溶融混練後の引き取り性や機械強度および成形加工性などのバランスに優れるため好ましい。これらのことから該相対粘度は、2.0~4.0の範囲がより好ましい。 The relative viscosity of the polyamide resin used in the present invention is not particularly limited, but the relative viscosity measured using 96% by mass concentrated sulfuric acid as a solvent at a temperature of 25°C and a concentration of 1 g/dl is as follows: It is preferably in the range of 1.5 to 5.0. If it is within this range, it is preferable because it provides an excellent balance of take-up properties after melt-kneading, mechanical strength, moldability, etc. For these reasons, the relative viscosity is more preferably in the range of 2.0 to 4.0.
 本発明に用いるポリアミド系樹脂は市販品を用いることも可能であり、結晶性ポリアミド系樹脂の具体例としてはダイセル・エボニック(株)製の商品名「ダイアミド(DAIAMID)」や「ベストジント(VESTOSINT)」などが例示できる。
 また、非晶性ポリアミド系樹脂の具体例としてはダイセル・エボニック(株)製の商品名「トロガミド(TROGAMID)」やデュポン社製の商品名「シーラー(Selar)」などが例示できる。
It is also possible to use commercially available polyamide resins for use in the present invention, and specific examples of crystalline polyamide resins include "DAIAMID" and "VESTOSINT" manufactured by Daicel-Evonik Ltd. )” can be exemplified.
Specific examples of the amorphous polyamide resin include "TROGAMID" manufactured by Daicel-Evonik Co., Ltd. and "Selar" manufactured by DuPont.
<非ハロゲン系難燃剤(B)>
 本発明における難燃剤とは、プラスチック・ゴム・繊維・木材などの可燃性の材料に添加することでそれらを燃えにくくし、あるいは炎を広がりにくくする物質のことを指す。
<Non-halogen flame retardant (B)>
The flame retardant in the present invention refers to a substance that is added to flammable materials such as plastics, rubber, fibers, and wood to make them difficult to burn or to make it difficult for flames to spread.
 本発明で使用する非ハロゲン系難燃剤(B)は、流動開始温度が100℃以上400℃以下であることを要件とする。流動開始温度が100℃を下回ると、非ハロゲン系難燃剤(B)は、3次元造形の際に熱や光の照射で熱可塑性を示しやすくなり、粉末散布時などの段階において造形材料が融着する現象(ブロッキング)や、造形後の冷却固化が進みにくくなることによる造形物の形状の乱れが生じ、3Dプリンタを使用して造形物(樹脂成形体)を造形する際に、造形不良が生じやすくなる。また、流動開始温度が400℃を超えると、非ハロゲン系難燃剤(B)は、3次元造形の際に熱や光の照射では熱可塑性を示さないことになり、3Dプリンタを使用して造形物(樹脂成形体)を造形する際に、材料同士(特に、粉末同士)が十分に接着せずに、造形物における層間接着性が低くなる。
 非ハロゲン系難燃剤(B)の流動開始温度は、難燃性を付与したい成形品の耐熱性の観点から、100℃以上であり、120℃以上がより好ましい。また、3次元造形の際に熱や光の照射で十分な熱可塑性を発現できるように、3Dプリンタによる造形性の観点から、350℃以下が好ましく、300℃以下がより好ましい。
 なお、上記流動開始温度は、高化式フローテスターCFT-500((株)島津製作所製)を用いて、後述する実施例に記載の条件にて求められる。
The non-halogen flame retardant (B) used in the present invention is required to have a flow start temperature of 100°C or more and 400°C or less. When the flow start temperature is below 100°C, the non-halogen flame retardant (B) tends to exhibit thermoplasticity when irradiated with heat or light during three-dimensional modeling, and the modeling material melts during stages such as powder dispersion. When printing a modeled object (resin molded object) using a 3D printer, it may cause defects in the shape of the object (resin molded object) due to the phenomenon of sticking (blocking) and difficulty in cooling and solidifying after printing. more likely to occur. In addition, if the flow start temperature exceeds 400°C, the non-halogen flame retardant (B) will not exhibit thermoplasticity when irradiated with heat or light during three-dimensional modeling, so it will not be possible to create it using a 3D printer. When shaping an object (resin molded body), materials (particularly powders) do not adhere sufficiently to each other, resulting in low interlayer adhesion in the shaped article.
The flow start temperature of the non-halogen flame retardant (B) is 100° C. or higher, more preferably 120° C. or higher, from the viewpoint of heat resistance of the molded product to which flame retardancy is desired. Further, from the viewpoint of formability with a 3D printer, the temperature is preferably 350°C or less, more preferably 300°C or less so that sufficient thermoplasticity can be expressed by irradiation with heat or light during three-dimensional modeling.
The above-mentioned flow start temperature is determined using Koka-type Flow Tester CFT-500 (manufactured by Shimadzu Corporation) under the conditions described in the Examples described later.
 本発明において用いられる非ハロゲン系難燃剤(B)としては、公知の各種のものを使用することができ、リン系有機難燃剤(有機リン含有化合物)、窒素系有機難燃剤(メラミンシアヌレート、トリアジン化合物、グアニジン化合物)、シリコン系有機難燃剤(シリコンポリマー)等が挙げられる。これらの非ハロゲン系難燃剤は、適宜、二種以上を混合して用いてもよい。さらに、非ハロゲン系難燃剤(B)には、フェノール樹脂やエポキシ樹脂またはスチレン系樹脂などの難燃性改良樹脂や、ポリテトラフルオロエチレン(PTFE)粒子等の滴下防止剤や充填剤などの添加剤を適宜混合することができる。
 また、非ハロゲン系難燃剤(B)として、流動開始温度が400℃以下であれば、無機の難燃剤であってもよい。
As the non-halogen flame retardant (B) used in the present invention, various known ones can be used, including phosphorus-based organic flame retardants (organic phosphorus-containing compounds), nitrogen-based organic flame retardants (melamine cyanurate, triazine compounds, guanidine compounds), silicon-based organic flame retardants (silicon polymers), and the like. These non-halogen flame retardants may be used in combination of two or more types as appropriate. Furthermore, the non-halogen flame retardant (B) may contain additives such as flame retardant-improving resins such as phenol resins, epoxy resins, or styrene resins, anti-dripping agents such as polytetrafluoroethylene (PTFE) particles, and fillers. The agents can be mixed as appropriate.
Moreover, as the non-halogen flame retardant (B), an inorganic flame retardant may be used as long as the flow start temperature is 400° C. or lower.
 このなかでも、リン系難燃剤が好ましく、有機リン系難燃剤、無機リン系難燃剤(赤リン系難燃剤、例えば、赤リン、赤リン表面を熱硬化樹脂及び/又は無機化合物で被覆した安定化赤リンなど)などが挙げられる。さらには、リン系有機難燃剤(有機リン含有化合物)が、ラジカルトラップ効果、酸化反応抑制効果に優れ、好ましい。有機リン含有化合物の例としては、特に制限されないが、例えばリン酸塩、ポリリン酸塩、ホスファゼン化合物、フォスファフェナントレン化合物、ホスフィン酸金属塩、ホスホン酸ポリマー、ポリリン酸アンモニウム、ポリリン酸メラミン、リン酸エステルアミド、リン酸エステル系化合物、縮合リン酸エステル化合物、リン酸塩化合物、縮合リン酸塩化合物、リン酸アミド化合物、縮合リン酸アミド化合物、リン系スピロ化合物等が挙げられる。 Among these, phosphorus-based flame retardants are preferred, and organic phosphorus-based flame retardants and inorganic phosphorus-based flame retardants (red phosphorus-based flame retardants, such as red phosphorus, stable Chemical red phosphorus, etc.). Further, phosphorus-based organic flame retardants (organic phosphorus-containing compounds) are preferable because they have excellent radical trapping effects and oxidation reaction suppressing effects. Examples of organic phosphorus-containing compounds include, but are not limited to, phosphates, polyphosphates, phosphazene compounds, phosphaphenanthrene compounds, phosphinate metal salts, phosphonic acid polymers, ammonium polyphosphates, melamine polyphosphates, and phosphoric acid. Examples include ester amides, phosphate ester compounds, condensed phosphate ester compounds, phosphate compounds, condensed phosphate compounds, phosphoric acid amide compounds, condensed phosphoric acid amide compounds, phosphorus spiro compounds, and the like.
 その他のリン系難燃剤として、リン酸アンモニウム、リン酸メラミン、リン酸グアニル尿素、ピロリン酸メラミン、ピロリン酸ピペラジン等の窒素含有リン酸塩;ポリリン酸アンモニウム、ポリリン酸メラミン等の窒素含有縮合リン酸塩;リン酸アミド、縮合リン酸アミド等の無機リン系又は有機リン系化合物等のリン・窒素含有化合物;及び、リン化合物と窒素化合物の混合物;又はこれらを組み合わせたものが挙げられる。 Other phosphorus-based flame retardants include nitrogen-containing phosphates such as ammonium phosphate, melamine phosphate, guanylurea phosphate, melamine pyrophosphate, and piperazine pyrophosphate; nitrogen-containing condensed phosphoric acids such as ammonium polyphosphate and melamine polyphosphate. Examples include salts; phosphorus/nitrogen-containing compounds such as inorganic or organic phosphorus compounds such as phosphoric acid amide and condensed phosphoric acid amide; mixtures of phosphorus compounds and nitrogen compounds; or combinations thereof.
 このような難燃剤はイントメッセント系難燃剤と呼ばれ、炭化を促進するリン成分と、消火・発泡を促進する窒素成分を同一化合物中に含有する化合物、又は、リン成分を含有する化合物及び窒素成分を含有する化合物を混合して得られる難燃剤混合物である。 Such flame retardants are called intumescent flame retardants, and are compounds that contain a phosphorus component that promotes carbonization and a nitrogen component that promotes fire extinguishing and foaming, or compounds that contain a phosphorus component and a nitrogen component that promotes fire extinguishing and foaming. It is a flame retardant mixture obtained by mixing a compound containing a nitrogen component.
 本発明においては、難燃性や熱特性の観点より、リン酸エステル系化合物、リン系スピロ化合物、イントメッセント系難燃剤、ホスホン酸ポリマーを使用することが好ましく、ホスホン酸ポリマーまたはリン系スピロ化合物を使用することがさらに好ましく、リン系スピロ化合物を使用することが特に好ましい。 In the present invention, from the viewpoint of flame retardancy and thermal properties, it is preferable to use phosphoric acid ester compounds, phosphorus spiro compounds, intumescent flame retardants, and phosphonic acid polymers. It is further preferable to use compounds, and it is particularly preferable to use phosphorus-based spiro compounds.
 リン系スピロ化合物としては、リン原子を有するスピロ化合物であれば特に限定されない。なお、スピロ化合物とは、二つの環状骨格が一つの炭素を共有した構造を有する化合物であり、リン原子を有するスピロ化合物とは、上記二つの環状骨格を構成する元素の少なくとも一つがリン原子である化合物であり、各環状骨格がリン原子を有することが好ましい。中でも、多価アルコールと縮合したアリールスピロジホスフィネートであることが好ましい。 The phosphorus-based spiro compound is not particularly limited as long as it is a spiro compound having a phosphorus atom. A spiro compound is a compound having a structure in which two cyclic skeletons share one carbon, and a spiro compound having a phosphorus atom is a compound in which at least one of the elements constituting the two cyclic skeletons is a phosphorus atom. Preferably, each cyclic skeleton has a phosphorus atom. Among these, aryl spirodiphosphinate condensed with a polyhydric alcohol is preferred.
 アリールスピロジホスフィネートとして、ペンタエリスリトールジホスフィネート化合物が例示できる。具体的には2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン,3,9-ジベンジル-3,9-ジオキサイド、2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン,3,9-ジα-メチルベンジル-3,9-ジオキサイド、2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン,3,9-ジ(2-フェニルエチル)-3,9-ジオキサイド、2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン,3,9-ビス(ジフェニルメチル)-3,9-ジオキサイドなどが挙げられる。これらの化合物が2種以上含有していてもよい。 An example of the aryl spiro diphosphinate is a pentaerythritol diphosphinate compound. Specifically, 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-dibenzyl-3,9-dioxide, 2,4,8,10-tetraoxa-3 , 9-diphosphaspiro[5.5]undecane, 3,9-diα-methylbenzyl-3,9-dioxide, 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-di(2-phenylethyl)-3,9-dioxide, 2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]undecane,3,9-bis(diphenylmethyl) Examples include -3,9-dioxide. Two or more types of these compounds may be contained.
 アリールスピロジホスフィネートの中でも、下記一般式(1)で表されるアリールスピロジホスフィネートが好ましい。 Among the aryl spirodiphosphinates, aryl spirodiphosphinates represented by the following general formula (1) are preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式中、R、Rはそれぞれ、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。また、R、Rは互いに同一であっても異なっていてもよい。アリールスピロジホスフィネートがフェニル基、ナフチル基またはアントリル基などの芳香環を有することで、アリールスピロジホスフィネートの熱特性が上がり、本発明の好ましい流動開始温度を有する。 In the above formula, R 1 and R 2 are each a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. Further, R 1 and R 2 may be the same or different. When the aryl spirodiphosphinate has an aromatic ring such as a phenyl group, a naphthyl group, or an anthryl group, the thermal properties of the aryl spirodiphosphinate are increased, and the aryl spirodiphosphinate has a preferred flow initiation temperature of the present invention.
 ホスホン酸ポリマーは、リン原子を主鎖に持つ高分子化合物であり、例えば、ビスフェノールA-メチルホスホン酸ジフェニルのコポリマーが挙げられる。 The phosphonic acid polymer is a polymer compound having a phosphorus atom in its main chain, and includes, for example, a copolymer of bisphenol A-diphenyl methylphosphonate.
 リン系スピロ化合物の市販品としては、例えば帝人(株)製のファイヤガード FCX-210などが挙げられるが、これらに限定されるものではない。また、ホスホン酸ポリマーの市販品としては、例えばFRX社製のNofia HM1100などが挙げられるが、これらに限定されるものではない。 Examples of commercially available phosphorus-based spiro compounds include, but are not limited to, Fireguard FCX-210 manufactured by Teijin Ltd. Commercially available phosphonic acid polymers include, but are not limited to, Nofia HM1100 manufactured by FRX.
 非ハロゲン系難燃剤(B)の使用量は、使用する場面に要求される十分な難燃性と、物性を満たす量を選定すればよく、具体的には熱可塑性樹脂(A)100質量部に対して、難燃性付与の観点より、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましく、15質量部以上が特に好ましい。また、造形性の観点から、50質量部以下が好ましく、45質量部以下がより好ましく、40質量部以下がさらに好ましい。 The amount of non-halogen flame retardant (B) to be used may be determined by selecting an amount that satisfies the sufficient flame retardancy and physical properties required for the situation in which it is used, and specifically, 100 parts by mass of thermoplastic resin (A). On the other hand, from the viewpoint of imparting flame retardancy, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, and particularly preferably 15 parts by mass or more. Further, from the viewpoint of formability, the amount is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less.
<難燃助剤>
 本発明に係る樹脂組成物には、難燃助剤を含有していてもよい。難燃助剤としては、上記難燃剤との組み合わせによって、難燃性を向上させるものであれば特に限定されるものではない。例えば、フッ素系難燃助剤、リン酸エステル系難燃助剤、窒素系難燃助剤等が挙げられる。これらのうち、フッ素系難燃助剤が好ましく、フルオロオレフィン樹脂等が好ましく、テトラフルオロエチレン樹脂が例示できる。フッ素系難燃助剤はパウダー状でもディスパージョン状でも、フッ素樹脂を別の樹脂で被覆したパウダー状など何れの形態であってもよい。
 難燃助剤の含有量は、難燃剤100質量部に対して、0.001~1質量部の範囲であることが好ましく、0.01~0.5質量部の範囲であることがさらに好ましい。
<Flame retardant aid>
The resin composition according to the present invention may contain a flame retardant aid. The flame retardant aid is not particularly limited as long as it improves flame retardancy when combined with the above flame retardant. Examples include fluorine-based flame retardant aids, phosphate ester-based flame retardant aids, nitrogen-based flame retardant aids, and the like. Among these, fluorine-based flame retardant aids are preferred, fluoroolefin resins are preferred, and tetrafluoroethylene resins are exemplified. The fluorine-based flame retardant aid may be in any form, such as a powder, a dispersion, or a powder obtained by coating a fluororesin with another resin.
The content of the flame retardant aid is preferably in the range of 0.001 to 1 part by mass, more preferably in the range of 0.01 to 0.5 part by mass, per 100 parts by mass of the flame retardant. .
<その他の成分>
 また、本発明においては、本発明の効果を著しく阻害しない範囲内で、本発明の樹脂組成物は、一般的に配合される添加剤を適宜含むことができる。前記添加剤としては、造形性、3次元造形物の安定性および3次元造形物の諸物性を改良・調整する目的で添加される、シリカやアルミナ、カオリン等の無機粒子、アクリル系樹脂粒子やメラミン系樹脂粒子等の有機粒子、酸化チタン、カーボンブラック等の顔料、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤、及び、着色剤などの添加剤が挙げられる。
<Other ingredients>
Furthermore, in the present invention, the resin composition of the present invention may appropriately contain commonly used additives within a range that does not significantly impede the effects of the present invention. The additives include inorganic particles such as silica, alumina, and kaolin, acrylic resin particles, etc., which are added for the purpose of improving and adjusting the formability, stability of the three-dimensional model, and various physical properties of the three-dimensional model. Organic particles such as melamine resin particles, pigments such as titanium oxide and carbon black, weathering stabilizers, heat resistant stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents , antioxidants, light stabilizers, ultraviolet absorbers, neutralizing agents, antifogging agents, antiblocking agents, slip agents, and coloring agents.
 本発明の樹脂組成物中の添加剤の含有量は、特に規定されないが、造形する3次元造形用材料やその3次元造形物の安定性の観点から、3次元造形用材料の合計100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.08質量部以上であることがさらに好ましく、0.1質量部以上であることが特に好ましい。また、造形する3次元造形物の層間接着性低下を抑制する観点から、添加剤の含有量の上限値は、30質量部以下であることが好ましく、28質量部以下であることがより好ましく、25質量部以下であることがさらに好ましい。 The content of the additive in the resin composition of the present invention is not particularly specified, but from the viewpoint of stability of the three-dimensional modeling material to be modeled and its three-dimensional model, the content of the additive in the resin composition of the present invention is 100 parts by mass in total of the three-dimensional modeling material. The amount is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, even more preferably 0.08 parts by mass or more, and 0.1 parts by mass or more. It is particularly preferable. Further, from the viewpoint of suppressing a decrease in interlayer adhesion of the three-dimensional structure to be modeled, the upper limit of the content of the additive is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, More preferably, it is 25 parts by mass or less.
 さらに、本発明の樹脂組成物は、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般的に配合される補強材を適宜含むことができる。補強材の具体例としては、無機充填材や無機繊維が挙げられる。無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。 Furthermore, the resin composition of the present invention may appropriately contain, in addition to the above-mentioned components, a reinforcing material that is generally blended within a range that does not significantly impede the effects of the present invention. Specific examples of reinforcing materials include inorganic fillers and inorganic fibers. Specific examples of inorganic fillers include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloon, glass flakes, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. It will be done. Specific examples of inorganic fibers include glass cut fibers, glass milled fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, cellulose nanofibers, and the like.
 ここで、補強材を含有する際の含有量は、特に規定されないが、造形する3次元造形物の強度の観点から、3次元造形用材料の合計100質量%に対して、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、造形する3次元造形物の層間接着性低下を抑制する観点から、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。 Here, the content when containing the reinforcing material is not particularly specified, but from the viewpoint of the strength of the three-dimensional object to be modeled, it should be 1% by mass or more based on the total 100% by mass of the three-dimensional modeling material. It is preferably 5% by mass or more, more preferably 10% by mass or more. Moreover, from the viewpoint of suppressing a decrease in interlayer adhesion of the three-dimensional structure to be modeled, the content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
 本発明に用いる樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)、また上記その他の成分については、各成分の添加混合により製造することができる。樹脂組成物の製造方法は、各成分を含有するものとなれば特に限定されない。例えば、熱可塑性樹脂(A)と、必要に応じて配合される添加剤等の他の成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって本発明の樹脂組成物を製造することができる。
 なお、3次元造形用材料を粉末やペレットの形状で使用する際は、非ハロゲン系難燃剤(B)や無機粒子や有機粒子、補強材については、熱可塑性樹脂(A)と、添加剤等と混練せずに、後述の方法で製造された粉末に混合して粉末混合物として配合してもよい。
The resin composition used in the present invention can be produced by adding and mixing the thermoplastic resin (A), the non-halogen flame retardant (B), and the other components mentioned above. The method for producing the resin composition is not particularly limited as long as it contains each component. For example, after pre-mixing the thermoplastic resin (A) and other components such as additives blended as necessary using various mixers such as a tumbler or Henschel mixer, The resin composition of the present invention can be produced by melt-kneading using a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or the like.
When using 3D modeling materials in the form of powder or pellets, non-halogen flame retardants (B), inorganic particles, organic particles, reinforcing materials should be combined with thermoplastic resin (A), additives, etc. It may be mixed with powder produced by the method described below to form a powder mixture without kneading.
<3次元造形用材料>
 本発明の3次元造形用材料は、3Dプリンタによる3次元造形物(樹脂成形体)の造形に使用される材料である。3次元造形用材料は、上記3次元造形用樹脂組成物単体からなるものでもよく、すなわち、上記した3次元造形用樹脂組成物からなる樹脂層単層からなる単層構造でもよい。また、本発明の3次元造形用材料は、上記3次元造形用樹脂組成物からなる樹脂層を少なくとも含む多層構造でもよい。
<3D modeling materials>
The three-dimensional modeling material of the present invention is a material used for modeling a three-dimensional object (resin molded object) using a 3D printer. The three-dimensional modeling material may be made of the above-mentioned resin composition for three-dimensional printing alone, or may have a single layer structure consisting of a single resin layer made of the above-mentioned resin composition for three-dimensional printing. Moreover, the three-dimensional modeling material of the present invention may have a multilayer structure including at least a resin layer made of the above-mentioned resin composition for three-dimensional modeling.
 3次元造形用材料の形状は、材料押出法(MEX)、粉末床溶融結合法(PBF)、マルチジェットフュージョン方式などの各種方式の3Dプリンタに適用可能な形状であればよい。具体的な3次元造形用材料の形状は、粉体、ペレット、顆粒、フィラメントなどが挙げられる。 The shape of the three-dimensional modeling material may be any shape that can be applied to 3D printers of various methods such as material extrusion method (MEX), powder bed fusion method (PBF), and multi-jet fusion method. Specific shapes of the three-dimensional modeling material include powder, pellets, granules, filaments, and the like.
<3次元造形用粉末>
 本発明の3次元造形用粉末は、粉末床溶融結合法(PBF)に用いられる造形材料である。以下、3次元造形用粉末の製造方法、物性等について、詳細に説明する。
<3D modeling powder>
The three-dimensional modeling powder of the present invention is a modeling material used in powder bed fusion bonding (PBF). Hereinafter, the manufacturing method, physical properties, etc. of the powder for three-dimensional modeling will be explained in detail.
<3次元造形用粉末の製造方法>
 本発明の3次元造形用粉末を製造するための粉末化手段としては、融点付近で溶融させた本発明の樹脂組成物を繊維状にした後切断する溶融造粒や、本発明の樹脂組成物に衝撃やせん断を加えることにより切断または破壊する粉砕がある。粉末床溶融結合造形における粉末の塗布性向上のため、10μm前後の微粉末を含まないことや一定の粒子径および粒度分布を有することが好ましいことから、このような好適形状の粉末が得られるように、好適な粉末方式を選択することが好ましい。
<Method for manufacturing powder for three-dimensional modeling>
Powdering means for producing the powder for three-dimensional modeling of the present invention include melt granulation, in which the resin composition of the present invention is melted near the melting point and cut into fibers, and the resin composition of the present invention is cut into fibers. There is pulverization, in which the material is cut or destroyed by applying impact or shear to it. In order to improve the powder applicability in powder bed fusion bonding modeling, it is preferable not to contain fine powder of around 10 μm and to have a constant particle size and particle size distribution, so that powder with such a suitable shape can be obtained. Therefore, it is preferable to select a suitable powder format.
 粉砕手段としては、例えばスタンプミル、リングミル、石臼、乳鉢、ローラーミル、ジェットミル、高速回転ミル、ハンマーミル、ピンミル、容器駆動型ミル、ディスクミル、媒体撹拌ミル等の手段を採用することができる。 As the crushing means, for example, a stamp mill, a ring mill, a stone mill, a mortar, a roller mill, a jet mill, a high-speed rotation mill, a hammer mill, a pin mill, a container-driven mill, a disc mill, a medium stirring mill, etc. can be adopted. .
 また、粉砕時のせん断発熱による樹脂材料の延伸を防ぐことを目的に、液体窒素などを使用して粉末系内を冷却することにより粉砕時の樹脂温度を下げ、延性破壊でなく脆性破壊により粉末を作製する手法がある。これは低温粉砕または凍結粉砕などと呼ばれる。
 なかでも、粉砕には、粉末床溶融結合造形に適した粒度分布および形状を有する粉末を得ることが可能な高速回転ミルを採用することによって、流動性や造形時の粉末塗布性がより良好となるため、好ましい。あわせて、粉砕による樹脂材料の物性や色味の変化を抑制することからも、液体窒素を使用し、樹脂材料を脆性破壊によって粉末を作製することが好ましい。
In addition, in order to prevent stretching of the resin material due to shear heat generated during crushing, liquid nitrogen is used to cool the inside of the powder system to lower the resin temperature during crushing, resulting in brittle fracture rather than ductile fracture. There is a method to create . This is called cryogenic grinding or freeze grinding.
In particular, by using a high-speed rotary mill for pulverization, which can obtain powder with a particle size distribution and shape suitable for powder bed fusion bonding modeling, fluidity and powder applicability during modeling are improved. Therefore, it is preferable. In addition, in order to suppress changes in the physical properties and color of the resin material due to pulverization, it is preferable to use liquid nitrogen to produce powder by brittle fracture of the resin material.
 また、粉砕された粉末の中から延伸された粉末を除去して円形度を拡大する観点および微粉末を除去し取扱い時の粉末の舞上りを防ぐ観点から、粉砕後に分級工程を行うことが好ましい。この場合、分級方法としては、風力分級、篩分級等が挙げられる。あわせて、必要に応じて得られた粉末の前述の無機粒子や補強材を添加混合してもよい。 In addition, from the viewpoint of removing stretched powder from the pulverized powder to increase circularity, and from the viewpoint of removing fine powder and preventing powder from flying up during handling, it is preferable to perform a classification process after pulverization. . In this case, examples of the classification method include wind classification, sieve classification, and the like. In addition, the above-mentioned inorganic particles and reinforcing material of the obtained powder may be added and mixed as necessary.
<3次元造形用粉末の物性等>
 粉末床溶融結合法(PBF)の材料として使用する場合、レーザー回折法により測定される粉末の粒度分布のうち、体積比率が50%を占めるD50は、粉末床溶融結合法(PBF)による樹脂成形体の造形に使用するシステム等の仕様に依存するが、造形時において粉末を所定範囲内の厚さで塗布する観点から、好ましくは20μm以上、より好ましくは30μm以上、さらに好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは75μm以下、特に好ましくは70μm以下である。
<Physical properties of powder for 3D modeling>
When used as a material for powder bed fusion bonding (PBF), D50, which accounts for 50% of the volume ratio of the particle size distribution of the powder measured by laser diffraction, is used as a material for resin molding by powder bed fusion bonding (PBF). Although it depends on the specifications of the system used for modeling the body, from the viewpoint of applying the powder to a thickness within a predetermined range during modeling, the thickness is preferably 20 μm or more, more preferably 30 μm or more, even more preferably 40 μm or more, and especially Preferably it is 50 μm or more, most preferably 55 μm or more, preferably 100 μm or less, more preferably 80 μm or less, still more preferably 75 μm or less, particularly preferably 70 μm or less.
 上記D50は、粉末5gを計量し、粒度分布測定装置(堀場製作所社、LA-960)にて粉末の粒度分布(体積基準)の測定により、検出された粒度分布のうち粉末の度数分布50%に位置する粒径をD50として求める。 The above D50 is determined by weighing 5 g of powder and measuring the particle size distribution (volume basis) of the powder using a particle size distribution measuring device (Horiba, Ltd., LA-960).The frequency distribution of the powder is 50% of the detected particle size distribution. The particle size located at is determined as D50.
<3次元造形用フィラメント>
 本発明の3次元造形用フィラメントは、材料押出法(MEX)に用いられる原料として大別される、造形材料と支持材料のどちらに用いても構わないが、造形材料として用いることが好ましい。なお、造形物本体となるものが造形材料であり、積層された造形材料が所望の形に固まるまで支えるものが支持材料である。
<Filament for 3D modeling>
The filament for three-dimensional modeling of the present invention can be used as either a modeling material or a support material, which are broadly classified as raw materials used in material extrusion (MEX), but it is preferable to use it as a modeling material. Note that the material that becomes the main body of the modeled object is the modeling material, and the material that supports the stacked building materials until they harden into a desired shape is the support material.
<3次元造形用フィラメントの製造方法>
 本発明の3次元造形用フィラメントは、熱可塑性樹脂(A)及び非ハロゲン系難燃剤(B)を溶融混練することにより製造される。混練方法としては特に制限されるものではないが、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混練装置を用いることができる。本発明においては、各成分の分散性や混和性などの観点から同方向二軸押出機を用いることが好ましい。分散性や混和性に優れると、フィラメント径の精度や真円度を高めることができるため好ましい。
<Method for manufacturing filament for 3D modeling>
The filament for three-dimensional modeling of the present invention is produced by melt-kneading a thermoplastic resin (A) and a non-halogen flame retardant (B). The kneading method is not particularly limited, but known methods such as melt kneading devices such as a single screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader can be used. In the present invention, it is preferable to use a co-directional twin-screw extruder from the viewpoint of dispersibility and miscibility of each component. It is preferable that the dispersibility and miscibility are excellent because the accuracy and circularity of the filament diameter can be improved.
 本発明の3次元造形用フィラメントの製造方法は特に制限されるものではないが、熱可塑性樹脂(A)や非ハロゲン系難燃剤(B)等を、押出成形等の公知の成形方法により成形する方法等によって得ることができる。例えば、本発明の3次元造形用フィラメントを押出成形により得る場合、その条件は、用いる熱可塑性樹脂(A)や非ハロゲン系難燃剤(B)の流動特性や成形加工性等によって適宜調整されるが、通常200℃以上400℃以下、好ましくは220℃以上350℃以下である。 The method for producing the filament for three-dimensional modeling of the present invention is not particularly limited, but a thermoplastic resin (A), a non-halogen flame retardant (B), etc. are molded by a known molding method such as extrusion molding. It can be obtained by a method etc. For example, when the filament for three-dimensional modeling of the present invention is obtained by extrusion molding, the conditions are adjusted as appropriate depending on the flow characteristics and molding processability of the thermoplastic resin (A) and non-halogenated flame retardant (B) used. However, the temperature is usually 200°C or more and 400°C or less, preferably 220°C or more and 350°C or less.
<3次元造形用フィラメントの物性等>
 本発明の3次元造形用フィラメントの直径は、材料押出法(MEX)による樹脂成形体の成形に使用するシステムの仕様に依存するが、通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。更に径の精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元造形用フィラメントは、径の標準偏差が0.07mm以下、特に0.06mm以下であることが好ましい。
<Physical properties of filament for 3D modeling>
The diameter of the filament for three-dimensional modeling of the present invention depends on the specifications of the system used for molding a resin molded body by material extrusion method (MEX), but is usually 1.0 mm or more, preferably 1.5 mm or more, and more preferably is 1.6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, particularly preferably 3.0 mm or less. Furthermore, it is preferable from the viewpoint of stability of raw material supply that the accuracy of the diameter is within ±5% for any measurement point on the filament. In particular, the filament for three-dimensional modeling of the present invention preferably has a standard deviation of diameter of 0.07 mm or less, particularly 0.06 mm or less.
 また、本発明の3次元造形用フィラメントは、真円度が0.93以上、特に0.95以上であることが好ましい。真円度の上限は1.0である。このように、径の標準偏差が小さく、真円度が高い3次元造形用フィラメントであれば、造形時の吐出ムラが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができるが、前述の樹脂組成物を用いることで、このような標準偏差及び真円度を満たす3次元造形用フィラメントを比較的容易に製造することができる。 Further, it is preferable that the filament for three-dimensional modeling of the present invention has a roundness of 0.93 or more, particularly 0.95 or more. The upper limit of roundness is 1.0. In this way, if the standard deviation of the diameter is small and the filament for 3D printing has high roundness, uneven discharge during printing will be suppressed, and resin molded objects with excellent appearance and surface properties can be stably produced. However, by using the resin composition described above, it is possible to relatively easily produce a filament for three-dimensional modeling that satisfies such standard deviation and circularity.
[成形体]
 本発明の成形体は、上述の3次元造形用材料からなる。成形体の製造方法としては、3Dプリンタにより成形することが好ましい。詳細な製造方法について、以下に記載する。
[Molded object]
The molded article of the present invention is made of the above-mentioned three-dimensional modeling material. As a method for manufacturing the molded body, it is preferable to mold the molded body using a 3D printer. The detailed manufacturing method will be described below.
<3次元造形物の製造方法>
 本発明の3次元造形用材料からなる成形体の製造方法においては、本発明の3次元造形用材料を用い、3Dプリンタにて成形することにより樹脂成形体を得る。3Dプリンタによる成形方法としては材料押出法(MEX)、粉末床溶融結合法(PBF)、材料噴射法(Material Jetting)、液槽光重合法(Vat Photo Polymerization)などが挙げられる。なかでも、熱可塑性樹脂を溶融させて成形品を製造する材料押出法(MEX)と粉末床溶融結合法(PBF)に用いることが好ましい。
<Method for manufacturing 3D objects>
In the method for manufacturing a molded body made of the three-dimensional modeling material of the present invention, a resin molded body is obtained by molding with a 3D printer using the three-dimensional modeling material of the present invention. Examples of molding methods using a 3D printer include material extrusion (MEX), powder bed fusion bonding (PBF), material jetting, and liquid bath photopolymerization. Among these, it is preferable to use the material extrusion method (MEX) and the powder bed fusion bonding method (PBF) in which a molded article is manufactured by melting a thermoplastic resin.
 なお、材料押出法(MEX)は、高温で溶解または軟化させたフィラメント状の樹脂組成物をノズルから押し出して平面状に配置していき、高さ方向に分割した各層を形成することで成形体を得る方法である。
 また、粉末床溶融結合法(PBF)は、ステージ上に敷き詰めた樹脂組成物の粒子にレーザーや電子線を照射して、該粒子を焼結または融着させ、高さ方向に層を形成する。次いで、樹脂組成物の粒子を上記形成された層に接して敷き詰めてレーザーや電子線を照射することで、次の層を形成する。このように順次積層していくことにより、所望の形状の成形体を得る方法である。
In addition, in the material extrusion method (MEX), a filament-shaped resin composition melted or softened at high temperature is extruded from a nozzle and arranged in a flat shape, and a molded article is created by forming each layer divided in the height direction. This is the way to obtain.
In addition, powder bed fusion bonding (PBF) involves irradiating particles of a resin composition spread on a stage with a laser or electron beam to sinter or fuse the particles to form a layer in the height direction. . Next, the next layer is formed by spreading particles of the resin composition in contact with the formed layer and irradiating it with a laser or an electron beam. By sequentially laminating the layers in this manner, it is a method of obtaining a molded body of a desired shape.
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り
以下の実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
<物性測定方法>
(流動開始温度)
 難燃剤(B)について、以下の方法で流動開始温度を測定した。
 (株)島津製作所製の高化式フローテスター、商品名「フローテスターCFT-500C」を用いて、測定試料1.0gを昇温速度3℃/分の等速昇温下で、ノズル(内径1mm、長さ2mm)、荷重40kg/cmの条件で測定した際に、測定試料がノズルより流動開始する温度を測定し、これを流動開始温度として求めた。
<Physical property measurement method>
(Flow starting temperature)
Regarding the flame retardant (B), the flow start temperature was measured by the following method.
Using a sophisticated flow tester manufactured by Shimadzu Corporation, product name "Flow Tester CFT-500C", 1.0 g of the measurement sample was heated at a constant rate of 3°C/min through the nozzle (inner diameter 1 mm, length 2 mm) and a load of 40 kg/cm 2 , the temperature at which the sample to be measured starts to flow from the nozzle was measured, and this was determined as the flow start temperature.
(融点Tmまたはガラス転移温度Tg)
 難燃剤(B)について、以下の方法で融点(Tm)又はガラス転移温度(Tg)を測定した。
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、粉末試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で280℃まで昇温した時に測定されたサーモグラムから、検出される吸熱ピークをもとに、結晶融解温度(融点Tm)(℃)(再昇温過程)またはガラス転移温度(Tg)を求めた。複数の吸熱ピークが検出される場合は、ピーク面積の大きいものを選定した。なお、各値は、少数第二位を四捨五入して記載した。
(Melting point Tm or glass transition temperature Tg)
The melting point (Tm) or glass transition temperature (Tg) of the flame retardant (B) was measured by the following method.
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd. under the trade name "Pyris1 DSC", approximately 10 mg of a powder sample was heated from room temperature to the crystal melting temperature (melting point Tm) +20 at a heating rate of 10°C/min in accordance with JIS K7121. From the thermogram measured when the temperature was raised to ℃, held at that temperature for 1 minute, then lowered to 30℃ at a cooling rate of 10℃/min, and then raised again to 280℃ at a heating rate of 10℃/min. Based on the detected endothermic peak, the crystal melting temperature (melting point Tm) (°C) (reheating process) or glass transition temperature (Tg) was determined. When multiple endothermic peaks were detected, the one with the largest peak area was selected. In addition, each value was rounded to the second decimal place.
(色味)
 熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)等をコンパウンド化した際に、得られた樹脂組成物のペレットの色味を目視で観察し、以下の基準にて色味を評価した。評価基準
A:熱可塑性樹脂(A)単体と同等の白さを示す
B:熱可塑性樹脂(A)単体よりも黄みがかっている
(Color)
When the thermoplastic resin (A) and non-halogenated flame retardant (B) etc. were compounded, the color of the pellets of the resulting resin composition was visually observed and the color was evaluated based on the following criteria. . Evaluation criteria A: Same whiteness as thermoplastic resin (A) alone B: More yellowish than thermoplastic resin (A) alone
(粒度分布)
 粉末材料5gを計量し、レーザー回折法を使用する粒度分布測定装置(堀場製作所社製)を用いて、体積基準にて、粉末の粒度分布を測定した。検出された粒度分布のうち粉末の度数分布50%に位置する粒径D50を求め、以下の基準にて粒度分布を評価した。
A:D50が100μm未満
B:D50が100μm以上
(particle size distribution)
5 g of the powder material was weighed, and the particle size distribution of the powder was measured on a volume basis using a particle size distribution measuring device (manufactured by Horiba, Ltd.) using a laser diffraction method. Among the detected particle size distributions, the particle size D50 located at 50% of the frequency distribution of the powder was determined, and the particle size distribution was evaluated based on the following criteria.
A: D50 is less than 100 μm B: D50 is 100 μm or more
(造形性)
 粉末床溶融結合法(PBF)のプリンタLisa Pro(Sinterit社)を用いて、造形エリア(Print bed)を粉末試料の降温結晶化温度以上かつ結晶融解温度以下の温度、材料供給部(Feed bed)を粉末試料の降温結晶化温度以上の温度に設定し、積層ピッチ0.125mmの条件でJIS K7161に準拠した1BA形引張試験片を造形し、造形不良の有無を外観観察にて行った。以下の基準で造形性を評価した。
A:造形可能、得られたサンプルにて機械物性評価が可能
B:造形可能であるが、非常に脆い
C:欠損などの造形不良が見られる、または、造形不可
(Formability)
Using a powder bed fusion bonding (PBF) printer Lisa Pro (Sinterit), the printing area (Print bed) is heated to a temperature above the cooling crystallization temperature of the powder sample and below the crystal melting temperature, and the material supply section (Feed bed) was set at a temperature equal to or higher than the cooling crystallization temperature of the powder sample, and a 1BA type tensile test piece conforming to JIS K7161 was molded under the conditions of a lamination pitch of 0.125 mm, and the presence or absence of molding defects was determined by external observation. Formability was evaluated based on the following criteria.
A: Possible to print, mechanical properties can be evaluated using the obtained sample B: Possible to print, but very brittle C: Printing defects such as defects are observed, or printing is not possible
(難燃性)
 粉末床溶融結合法(PBF)のプリンタLisa Pro(Sinterit社)を用いて、造形エリア(Print bed)を粉末試料の降温結晶化温度以上かつ結晶融解温度以下の温度、材料供給部(Feed bed)を粉末試料の降温結晶化温度以上の温度に設定し、積層ピッチ0.125mmの条件で、厚さ5.0mm、幅13.0mm、長さ125mmの試験片を造形した。UL94垂直試験の評価基準に従い、得られた試験片をクランプに垂直に取付け、20mm炎による10秒間接炎を2回行い、燃焼時間の測定を行った。以下の基準で難燃性を評価した。
A:各回試験の燃焼時間が10秒以下であり、かつ、総燃焼時間が50秒未満である
B:各回試験の燃焼時間が20秒以下であり、かつ、総燃焼時間が50秒未満である
C:総燃焼時間が50秒以上である
(Flame retardance)
Using a powder bed fusion bonding (PBF) printer Lisa Pro (Sinterit), the printing area (Print bed) is heated to a temperature above the cooling crystallization temperature of the powder sample and below the crystal melting temperature, and the material supply section (Feed bed) was set to a temperature equal to or higher than the cooling crystallization temperature of the powder sample, and a test piece with a thickness of 5.0 mm, a width of 13.0 mm, and a length of 125 mm was formed under the conditions of a lamination pitch of 0.125 mm. In accordance with the evaluation criteria of UL94 vertical test, the obtained test piece was vertically attached to a clamp, and indirect flame was applied twice for 10 seconds using a 20 mm flame to measure the combustion time. Flame retardancy was evaluated based on the following criteria.
A: The combustion time for each test is 10 seconds or less, and the total combustion time is less than 50 seconds. B: The combustion time for each test is 20 seconds or less, and the total combustion time is less than 50 seconds. C: Total combustion time is 50 seconds or more
(総合評価)
 上記の色味、粒度分布および造形性、燃焼性の評価について、以下の基準により評価した。
 A:造形性評価が「B」以上、かつ、いずれか二つ以上が「A」
 B:造形性評価が「B」以上。ただし、いずれも「C」ではない。
 C:造形性評価が「C」
(comprehensive evaluation)
The above-mentioned color, particle size distribution, formability, and flammability were evaluated based on the following criteria.
A: Formability evaluation is “B” or higher, and any two or more are “A”
B: Formability evaluation is "B" or higher. However, none of them are "C".
C: Formability evaluation is “C”
[実施例1]
 ポリブチレンテレフタレート(A-1)(Tm:195℃、ΔHc:34.6J/g)100質量部に対して、非ハロゲン系難燃剤としてファイヤガードFCX-210(帝人社製)(B-1)15質量部を添加してコンパウンド化した。さらに該コンパウンド品を、液体窒素を使用した凍結粉砕および高速回転粉砕により粉末化した。また、得られた粉末を100質量部とし、これに対し、流動助剤としてアルミナ粒子(Alu CRK、AEROSIL社製、平均粒径20nm)を0.3質量部と、電磁波吸収剤として、カーボン粉末(ファインパウダー SGP-10、SECカーボン社製、平均粒径10μm)0.3質量部を加えたものを用いて、造形性評価を行った。使用した非ハロゲン系難燃剤および、得られた粉末の特性、色味、粒度分布および造形性などの評価結果を表-1に示す。
[Example 1]
Fireguard FCX-210 (manufactured by Teijin) (B-1) as a non-halogen flame retardant was added to 100 parts by mass of polybutylene terephthalate (A-1) (Tm: 195°C, ΔHc: 34.6 J/g). 15 parts by mass was added to form a compound. Further, the compound product was pulverized by freeze pulverization using liquid nitrogen and high speed rotary pulverization. In addition, the obtained powder was 100 parts by mass, and 0.3 parts by mass of alumina particles (Alu CRK, manufactured by AEROSIL, average particle size 20 nm) was added as a flow aid, and carbon powder was added as an electromagnetic wave absorber. (Fine Powder SGP-10, manufactured by SEC Carbon Co., Ltd., average particle size 10 μm) was used to evaluate moldability using 0.3 parts by mass. Table 1 shows the evaluation results of the non-halogen flame retardant used and the properties, color, particle size distribution, formability, etc. of the obtained powder.
[実施例2]
 ポリブチレンテレフタレート(A-1)及びファイヤガードFCX-210(B-1)をコンパウンド化する際に、アンチドリッピング剤としてIT-1105-D(ITAFlon社製)(C-1)0.2質量部をさらに添加した以外は実施例1と同様の方法で粉末を作製し、各種評価を行った。
[Example 2]
When compounding polybutylene terephthalate (A-1) and Fireguard FCX-210 (B-1), 0.2 mass of IT-1105-D (manufactured by ITAFlon) (C-1) was used as an anti-dripping agent. A powder was prepared in the same manner as in Example 1, except that 100% of the powder was further added, and various evaluations were performed.
[実施例3]
 ポリブチレンテレフタレート(A-1)(Tm:195℃、ΔHc:34.6J/g)を、液体窒素を使用した凍結粉砕および高速回転粉砕により粉末化し、得られた粉末100質量部に対して、非ハロゲン系難燃剤としてファイヤガードFCX-210(B-1)15質量部を添加してドライブレンドした粉末を作製した。得られる粉末の組成は実施例1と同等であり、粉末の色味および造形性は同様の結果が得られた。各種評価の結果を表1に示す。
[Example 3]
Polybutylene terephthalate (A-1) (Tm: 195°C, ΔHc: 34.6 J/g) was pulverized by freeze pulverization using liquid nitrogen and high speed rotation pulverization, and based on 100 parts by mass of the obtained powder, A dry blended powder was prepared by adding 15 parts by mass of Fireguard FCX-210 (B-1) as a non-halogen flame retardant. The composition of the obtained powder was the same as in Example 1, and the same results were obtained in terms of the color and shapeability of the powder. Table 1 shows the results of various evaluations.
[実施例4]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてNofiaHM1100(FRXpolymers社製)(B-2)を使用した以外は実施例1と同様の方法で粉末を作製し、各種評価を行った。
[Example 4]
Powders were prepared in the same manner as in Example 1, except that Nofia HM1100 (manufactured by FRXpolymers) (B-2) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1), and various We conducted an evaluation.
[実施例5]
 Sinterit社製LisaPro3Dプリンタ用粉末材料のポリプロピレン粉末(A-2)(Tm:135℃、ΔHc:64.6J/g)100質量部に対して、非ハロゲン系難燃剤としてファイヤガードFCX-210(B-1)15質量部を添加してドライブレンドした粉末を作製し、各種評価を行った。
[Example 5]
Fireguard FCX-210 (B) was added as a non-halogen flame retardant to 100 parts by mass of polypropylene powder (A-2) (Tm: 135°C, ΔHc: 64.6 J/g), which is a powder material for LisaPro 3D printer manufactured by Sinterit. -1) A dry blended powder was prepared by adding 15 parts by mass, and various evaluations were performed.
[比較例1]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてExolit AP422(Clariant社製)(B-3)7質量部を使用した以外は実施例1と同様の方法で粉末を作製し、各種評価を行った。
[Comparative example 1]
Powder was prepared in the same manner as in Example 1, except that 7 parts by mass of Exolit AP422 (manufactured by Clariant) (B-3) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). It was manufactured and various evaluations were performed.
[比較例2]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてExolit OP1240(Clariant社製)(B-4)10質量部を使用した以外は実施例1と同様の方法で粉末を作製し、各種評価を行った。
[Comparative example 2]
Powder was prepared in the same manner as in Example 1, except that 10 parts by mass of Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). It was manufactured and various evaluations were performed.
[比較例3]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてExolit OP1240(Clariant社製)(B-4)を使用する以外は、実施例3と同様の方法で粉末を作製し、各種評価を行った。
[Comparative example 3]
A powder was produced in the same manner as in Example 3, except that Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). , and conducted various evaluations.
[比較例4]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてPX-200(大八化学工業社製)(B-5)を使用する以外は、実施例3と同様の方法で粉末を作製し、各種評価を行った。
[Comparative example 4]
In the same manner as in Example 3, except for using PX-200 (manufactured by Daihachi Kagaku Kogyo Co., Ltd.) (B-5) as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). A powder was prepared and various evaluations were performed.
[比較例5]
 ファイヤガードFCX-210(B-1)の代わりに、非ハロゲン系難燃剤としてExolit OP1240(Clariant社製)(B-4)を使用する以外は、実施例5と同様の方法で粉末を作製し、各種評価を行った。
[Comparative example 5]
A powder was produced in the same manner as in Example 5, except that Exolit OP1240 (manufactured by Clariant) (B-4) was used as a non-halogen flame retardant instead of Fireguard FCX-210 (B-1). , and conducted various evaluations.
 以上の結果から明らかなように、非ハロゲン系難燃剤の流動開始温度が400℃以下であれば、熱可塑性樹脂の熱特性を保持しつつ、3Dプリンタにおける造形性や造形品の色味優れる3次元造形用材料を提供できた。 As is clear from the above results, if the flow start temperature of the non-halogenated flame retardant is 400°C or lower, the thermal properties of the thermoplastic resin can be maintained while the moldability and color of the molded product can be excellent in 3D printers. We were able to provide materials for dimensional modeling.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の3次元造形用材料によれば、熱可塑性樹脂の熱特性を保持しつつ、3Dプリンタにおける造形性や造形品の色味に優れる3次元造形用材料を提供することができ、試作品のみではなく、電気・電子部品や家電製品、建築材料、航空機、自動車材料などの部材としての実用途にも用いることができる。
 自動車材料としては、例えば、各種コントロールユニット、各種センサー、イグニッションコイルや、ECUボックス、コネクターボックス等の車載部品ケース・車載電装部品などが挙げられる。また、電気電子部品としては、例えば、コネクター類、スイッチ、リレー、コイル、アクチュエータ、センサー、トランスボビン、端子台、カバー、ソケット、プラグなどが挙げられる。

 
According to the three-dimensional printing material of the present invention, it is possible to provide a three-dimensional printing material that maintains the thermal properties of a thermoplastic resin and has excellent printability in a 3D printer and color tone of a printed product, and can be used for prototype production. It can also be used for practical purposes such as electric/electronic parts, home appliances, building materials, aircraft, and automobile materials.
Examples of automotive materials include various control units, various sensors, ignition coils, cases for vehicle components such as ECU boxes, connector boxes, and vehicle electrical components. Examples of electrical and electronic components include connectors, switches, relays, coils, actuators, sensors, transformer bobbins, terminal blocks, covers, sockets, and plugs.

Claims (12)

  1.  樹脂組成物を含有する3次元造形用材料であって、前記樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含み、前記非ハロゲン系難燃剤(B)の流動開始温度が100℃以上、400℃以下であることを特徴とする3次元造形用材料。 A three-dimensional modeling material containing a resin composition, wherein the resin composition includes a thermoplastic resin (A) and a non-halogen flame retardant (B), and the resin composition contains a thermoplastic resin (A) and a non-halogen flame retardant (B). A three-dimensional modeling material characterized by a starting temperature of 100°C or higher and 400°C or lower.
  2.  前記非ハロゲン系難燃剤(B)が有機リン含有化合物であることを特徴とする、請求項1に記載の3次元造形用材料。 The three-dimensional modeling material according to claim 1, wherein the non-halogen flame retardant (B) is an organic phosphorus-containing compound.
  3.  前記非ハロゲン系難燃剤(B)が、リン系スピロ化合物またはリン酸エステル系化合物であることを特徴とする、請求項1に記載の3次元造形用材料。 The three-dimensional modeling material according to claim 1, wherein the non-halogen flame retardant (B) is a phosphorus spiro compound or a phosphate ester compound.
  4.  樹脂組成物を含有する3次元造形用材料であって、前記樹脂組成物は、熱可塑性樹脂(A)と非ハロゲン系難燃剤(B)を含み、前記非ハロゲン系難燃剤(B)が、下記一般式(1)で示される化合物である3次元造形用材料。
    Figure JPOXMLDOC01-appb-C000001

     
    (式(1)中、R、Rは、それぞれ、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。また、R、Rは互いに同一であっても異なっていてもよい。)
    A three-dimensional modeling material containing a resin composition, wherein the resin composition includes a thermoplastic resin (A) and a non-halogen flame retardant (B), and the non-halogen flame retardant (B) A three-dimensional modeling material that is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001


    (In formula (1), R 1 and R 2 are each a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. Also, R 1 and R 2 are mutually They may be the same or different.)
  5.  前記熱可塑性樹脂(A)100質量部に対して非ハロゲン系難燃剤(B)を1質量部以上50質量部以下の割合で含むことを特徴とする、請求項1に記載の3次元造形用材料。 3-dimensional modeling according to claim 1, characterized in that the non-halogen flame retardant (B) is contained in a ratio of 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). material.
  6.  前記熱可塑性樹脂(A)が、ポリアセタール、ポリアクリレート、ポリアクリル酸、ポリアミド、ポリアミドイミド、ポリ酸無水物、ポリアリーレート、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリベンゾオキサゾール、ポリエステル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリメタクリレート、ポリオレフィン、ポリフタリド、ポリシラザン、ポリシロキサン、ポリスチレン、ポリスルフィド、ポリスルホンアミド、ポリスルホネート、ポリチオエステル、ポリトリアジン、ポリウレア、ポリウレタン、ポリビニルアルコール、ポリビニルエステル、ポリビニルエーテル、ポリビニルハライド、ポリビニルケトン、フッ化ポリビニリデンポリビニル芳香族、ポリスルホン、ポリアリーレンスルフォン、ポリアリールエーテルケトン、ポリ乳酸、ポリグリコール酸、ポリ-3-ヒドロキシブチレート、ポリヒドロキシアルカノエート、デンプン、セルロースエステル、ポリ(フェニレンエーテル)、ポリ(メチルメタクリレート)、スチレン-アクリロニトリル、ポリ(エチレンオキシド)、エピクロロヒドリンポリマー、ポリカーボネートホモポリマー、コポリカーボネート、ポリ(エステルカーボネート)、ポリ(エステル-シロキサン-カーボネート)、ポリ(カーボネート-シロキサン)、ビニル系重合体、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリ塩化ビニル、変性ポリフェニレンエーテル、及び、オレフィン系、スチレン系、ポリエステル系の熱可塑性エラストマーからなる群から選ばれるいずれか1つ、または、2つ以上の混合物である請求項1に記載の3次元造形用材料。 The thermoplastic resin (A) is polyacetal, polyacrylate, polyacrylic acid, polyamide, polyamideimide, polyacid anhydride, polyarylate, polyarylene ether, polyarylene sulfide, polybenzoxazole, polyester, polyether ether ketone. , polyetherimide, polyetherketoneketone, polyetherketone, polyethersulfone, polyimide, polymethacrylate, polyolefin, polyphthalide, polysilazane, polysiloxane, polystyrene, polysulfide, polysulfonamide, polysulfonate, polythioester, polytriazine, polyurea, Polyurethane, polyvinyl alcohol, polyvinyl ester, polyvinyl ether, polyvinyl halide, polyvinyl ketone, polyvinylidene fluoride polyvinyl aromatic, polysulfone, polyarylene sulfone, polyaryletherketone, polylactic acid, polyglycolic acid, poly-3-hydroxybutyrate , polyhydroxyalkanoate, starch, cellulose ester, poly(phenylene ether), poly(methyl methacrylate), styrene-acrylonitrile, poly(ethylene oxide), epichlorohydrin polymer, polycarbonate homopolymer, copolycarbonate, poly(ester carbonate) , poly(ester-siloxane-carbonate), poly(carbonate-siloxane), vinyl polymer, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), poly The three-dimensional structure according to claim 1, which is any one selected from the group consisting of vinyl chloride, modified polyphenylene ether, and olefin-based, styrene-based, and polyester-based thermoplastic elastomers, or a mixture of two or more thereof. Materials for use.
  7.  請求項1~6のいずれか1項に記載の3次元造形用材料を用いて得られる3次元造形用粉末。 A three-dimensional modeling powder obtained using the three-dimensional modeling material according to any one of claims 1 to 6.
  8.  粒度分布としてD50が20μm以上100μm以下である、請求項7に記載の3次元造形用粉末。 The powder for three-dimensional modeling according to claim 7, having a particle size distribution D50 of 20 μm or more and 100 μm or less.
  9.  請求項1~6のいずれか1項に記載の3次元造形用材料を用いて得られる成形体。 A molded object obtained using the three-dimensional modeling material according to any one of claims 1 to 6.
  10.  請求項7に記載の3次元造形用粉末を用いて得られる成形体。 A molded object obtained using the three-dimensional modeling powder according to claim 7.
  11.  請求項1~6のいずれか1項に記載の3次元造形用材料を用いて、成形体を3次元に造形する工程を含む、成形体の製造方法。 A method for producing a molded body, comprising the step of three-dimensionally modeling the molded body using the three-dimensional modeling material according to any one of claims 1 to 6.
  12.  請求項1~6のいずれか1項に記載の3次元造形用材料、又は、請求項7に記載の3次元造形用粉末を用いて、粉末床溶融結合法(PBF)により成形体を3次元に造形する工程を含む、成形体の製造方法。

     
    Using the three-dimensional modeling material according to any one of claims 1 to 6 or the three-dimensional modeling powder according to claim 7, a molded body is three-dimensionally formed by powder bed fusion bonding (PBF). A method for manufacturing a molded body, including a step of shaping it into a molded body.

PCT/JP2023/011078 2022-03-31 2023-03-22 Material for 3d printing WO2023189877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061378 2022-03-31
JP2022061378 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189877A1 true WO2023189877A1 (en) 2023-10-05

Family

ID=88201273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011078 WO2023189877A1 (en) 2022-03-31 2023-03-22 Material for 3d printing

Country Status (1)

Country Link
WO (1) WO2023189877A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110702A (en) * 2013-12-06 2015-06-18 帝人株式会社 Flame-retardant resin composition and molded product thereof
WO2020188220A1 (en) * 2019-03-18 2020-09-24 Arkema France Flame retardant polyamides and copolyamides for 3d printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110702A (en) * 2013-12-06 2015-06-18 帝人株式会社 Flame-retardant resin composition and molded product thereof
WO2020188220A1 (en) * 2019-03-18 2020-09-24 Arkema France Flame retardant polyamides and copolyamides for 3d printing

Similar Documents

Publication Publication Date Title
EP3568433B1 (en) Laser platable thermoplastic compositions with a laser activatable metal compound and shaped articles therefrom
TWI482809B (en) Flame-retardant thermoplastic resin composition and the formed article thereof
EP3341184B1 (en) Method of producing crystalline polycarbonate powders
CN108368327B (en) Polyester blends with halogen-free flame retardant
JP6716551B2 (en) Polycarbonate resin composition and polycarbonate resin prepreg
KR102329063B1 (en) Polyester compositions
KR20060066712A (en) Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
JP2010024312A (en) Flame-retardant thermoplastic polyester resin composition
TW200920777A (en) Conductive halogen free flame retardant thermoplastic composition
JP2001342357A (en) Flame-retardant resin composition
TWI417329B (en) Flame retardant polymer composition
TWI701290B (en) Thermoplastic polyester resin composition and molded products
CN115943075A (en) Additive manufacturing method for manufacturing three-dimensional object
KR102341559B1 (en) Thermoplastic molding compound
KR20180048852A (en) Flame Retardant Polycarbonate Resin Composition, Sheet and Film Using It, and Their Manufacturing Method
KR102330650B1 (en) Thermoplastic moulding compounds
US20040198878A1 (en) Flame-retardant polytrimethylene terephthalate resin composition
KR20220099110A (en) Non-halogenated flame retardant and reinforced poly(alkylene terephthalate) poly(phenylene ether) compositions, methods for their preparation and uses thereof
WO2023189877A1 (en) Material for 3d printing
CN107278219B (en) Deoxybenzoin-containing flame-retardant polymer composition
EP3615602B1 (en) Non-bromine, non-chlorine flame retardant, glass and talc filled polycarbonate with improved impact strength
JP2000344939A (en) Flame-retardant resin composition
JP2002105336A (en) Flame-retardant resin composition
TW201430048A (en) Polybutylene terephthalate resin composition
JP2000169727A (en) Fire retardant resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779891

Country of ref document: EP

Kind code of ref document: A1