WO2023189762A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2023189762A1
WO2023189762A1 PCT/JP2023/010712 JP2023010712W WO2023189762A1 WO 2023189762 A1 WO2023189762 A1 WO 2023189762A1 JP 2023010712 W JP2023010712 W JP 2023010712W WO 2023189762 A1 WO2023189762 A1 WO 2023189762A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
secondary battery
active material
coating layer
Prior art date
Application number
PCT/JP2023/010712
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 河野
亜未 大沼
武夫 浅沼
淳史 黄木
真純 福田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023189762A1 publication Critical patent/WO2023189762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present technology relates to secondary batteries.
  • secondary batteries are being developed as a power source that is small and lightweight and provides high energy density.
  • This secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte, and various studies have been made regarding the configuration of the secondary battery.
  • a protective layer containing an insulating inorganic compound is provided on the surface of the positive electrode, and the surface resistance of the positive electrode is 0.5 ⁇ to 40 ⁇ (see, for example, Patent Document 1).
  • a secondary battery that can provide excellent battery characteristics is desired.
  • a secondary battery includes a positive electrode including a positive electrode active material layer, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte.
  • the positive electrode active material layer includes a positive electrode active material and a first binder.
  • the separator includes a porous layer and a coating layer disposed between the porous layer and the positive electrode active material layer, and the coating layer includes a plurality of insulating particles and a second binder. A portion of the covering layer is not adjacent to the porous layer and is adjacent to the positive electrode active material layer.
  • a separator including a porous layer and a coating layer is disposed between a positive electrode and a negative electrode, and the positive active material layer of the positive electrode is connected to the positive active material and the first
  • a coating layer disposed between the porous layer and the positive electrode active material layer includes a plurality of insulating particles and a second binder, and a part of the coating layer includes a binder. Since it is not adjacent to the porous layer and is adjacent to the positive electrode active material layer, excellent battery characteristics can be obtained.
  • FIG. 1 is a perspective view showing the configuration of a secondary battery in an embodiment of the present technology.
  • FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1.
  • FIG. 3 is a plan view showing the configuration of the positive electrode shown in FIG. 2.
  • FIG. 3 is a plan view showing the configuration of the negative electrode shown in FIG. 2.
  • FIG. 2 is a cross-sectional view showing the configuration of a battery element after a heating test of a secondary battery.
  • FIG. 2 is a perspective view for explaining a method for manufacturing a secondary battery.
  • FIG. 2 is a block diagram showing the configuration of an application example of a secondary battery.
  • Secondary battery 1-1 Overall composition 1-2. Physical properties 1-3. Operation 1-4. Manufacturing method 1-5. Action and effect 2. Modification example 3. Applications of secondary batteries
  • the secondary battery described here is a secondary battery whose battery capacity is obtained by utilizing the intercalation and desorption of electrode reactants, and includes a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the charging capacity of the negative electrode is larger than the discharging capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • a secondary battery whose battery capacity is obtained by utilizing intercalation and desorption of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and released in an ionic state.
  • FIG. 1 shows a perspective configuration of a secondary battery
  • FIG. 2 shows a cross-sectional configuration of a battery element 20 shown in FIG. 3 shows the planar structure of the positive electrode 21 shown in FIG. 2
  • FIG. 4 shows the planar structure of the negative electrode 22 shown in FIG.
  • FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other.
  • this secondary battery includes an exterior film 10, a battery element 20, a plurality of positive electrode terminals 31, a plurality of negative electrode terminals 32, a positive electrode lead 41, and a negative electrode lead 42. , sealing films 51 and 52.
  • the secondary battery described here uses the exterior film 10 as an exterior member for accommodating the battery element 20, the plurality of positive electrode terminals 31, and the plurality of negative electrode terminals 32, so it is of the so-called laminate film type. This is a secondary battery.
  • the exterior film 10 is a flexible or pliable film-like exterior member, and as shown in FIG. are doing. Thereby, the exterior film 10 accommodates a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution, which will be described later.
  • the exterior film 10 is a single film-like member, and is folded in the folding direction F.
  • This exterior film 10 is provided with a recessed portion 10U (so-called deep drawn portion) for accommodating the battery element 20.
  • the exterior film 10 is a three-layer laminate film in which a fusing layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the exterior film 10 is folded, they face each other. The outer peripheral edges of the fusion layers are fused to each other.
  • the adhesive layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metal material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the structure (number of layers) of the exterior film 10 is not particularly limited and may be one or two layers, or four or more layers.
  • the battery element 20 is a power generating element that includes a positive electrode 21, a negative electrode 22, a separator 23, and an electrolyte (not shown), and is housed inside the exterior film 10. has been done.
  • the battery element 20 is a so-called laminated electrode body. That is, the positive electrode 21 and the negative electrode 22 are alternately stacked with the separator 23 in between.
  • the numbers of positive electrodes 21, negative electrodes 22, and separators 23 are not particularly limited and can be set arbitrarily.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B. In FIG. 3, the positive electrode active material layer 21B is shaded.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided.
  • the positive electrode current collector 21A includes a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
  • the positive electrode active material layer 21B contains a positive electrode active material and a positive electrode binder. However, the positive electrode active material layer 21B may further contain one or more types of other materials such as a positive electrode conductive agent.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22.
  • the method for forming the positive electrode active material layer 21B is not particularly limited, and specifically, a coating method or the like is used.
  • the positive electrode active material contains one or more materials capable of intercalating and deintercalating lithium.
  • the positive electrode active material contains a lithium-containing compound.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table.
  • the type of lithium-containing compound is not particularly limited, but specifically includes oxides, phosphoric acid compounds, silicic acid compounds, and boric acid compounds.
  • oxides include LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.3 3 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 , Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 )O 2 and LiMn 2 O 4 .
  • phosphoric acid compounds include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder is a first binder that binds the positive electrode active materials and the like to each other.
  • the laminate 20Z is hot-pressed in a state where the positive electrode 21 (positive electrode active material layer 21B) is adjacent to the separator 23 (positive electrode side coating layer 23B described later).
  • the laminate 20Z is being pressed while being heated. Thereby, the positive electrode active material layer 21B is in close contact with the positive electrode side coating layer 23B.
  • This positive electrode binder contains one or more of materials such as synthetic rubber and polymer compounds.
  • synthetic rubber include fluorine rubber and ethylene propylene diene.
  • polymer compound include polyvinylidene fluoride, polyimide, and carboxymethyl cellulose.
  • the positive electrode binder contains the same material as the constituent material of the separator binder described below. This is because the constituent materials of the positive electrode binder and the separator binder are common to each other, so that the positive electrode binder easily adheres to the separator binder.
  • the positive electrode binder preferably contains one or both of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. This is because when the constituent materials of the positive electrode binder and the constituent materials of the separator binder are common to each other, the positive electrode binder is likely to adhere sufficiently to the separator binder.
  • the positive electrode binder is likely to be thermally fused to the separator binder, especially during heating of the secondary battery (after a heating test of the secondary battery described below).
  • the homopolymer of vinylidene fluoride is so-called polyvinylidene fluoride.
  • a copolymer of vinylidene fluoride is a compound in which vinylidene fluoride and other monomers are copolymerized with each other. Specific examples of other monomers include monomers such as hexafluoropropylene. Any one type or two or more types.
  • the copolymerization amount (% by weight) of other monomers can be set arbitrarily.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, metal materials, and conductive polymer compounds.
  • conductive materials such as carbon materials, metal materials, and conductive polymer compounds.
  • Specific examples of carbon materials include graphite, carbon black, acetylene black, and Ketjen black.
  • the positive electrode current collector 21A since a part of the positive electrode current collector 21A protrudes, the positive electrode current collector 21A has a portion (hereinafter referred to as (referred to as "the protrusion of the positive electrode current collector 21A"). Since the positive electrode active material layer 21B is not provided on the protruding portion of the positive electrode current collector 21A, the protruding portion of the positive electrode current collector 21A functions as the positive electrode terminal 31. Note that details of the positive electrode terminal 31 will be described later.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B. In FIG. 4, the negative electrode active material layer 22B is shaded.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided.
  • This negative electrode current collector 22A includes a conductive material such as a metal material, and a specific example of the conductive material is copper.
  • the negative electrode active material layer 22B contains a negative electrode active material. However, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the negative electrode active material layer 22B is provided on both sides of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21.
  • the method for forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a gas phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), etc. There are two or more types.
  • the negative electrode active material contains one or more materials capable of intercalating and deintercalating lithium.
  • the negative electrode active material contains one or both of a carbon material and a metal-based material. This is because high energy density can be obtained.
  • carbon materials include easily graphitizable carbon, non-graphitizable carbon, and graphite (natural graphite and artificial graphite).
  • a metal-based material is a material containing as a constituent element one or more of metal elements and metalloid elements that can form an alloy with lithium.
  • Specific examples of the metal elements and metalloid elements are: , silicon and tin.
  • This metallic material may be a single substance, an alloy, a compound, a mixture of two or more types thereof, or a material containing phases of two or more types thereof.
  • Specific examples of metal-based materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
  • negative electrode binder Details regarding the negative electrode binder are the same as those regarding the positive electrode binder, except that the specific example of the synthetic rubber may further be styrene-butadiene rubber. Details regarding the negative electrode conductive agent are the same as those regarding the positive electrode conductive agent.
  • the protrusion of the negative electrode current collector 22A since a part of the negative electrode current collector 22A protrudes, the part of the negative electrode current collector 22A that protrudes outward from the negative electrode active material layer 22B (hereinafter referred to as (referred to as "the protrusion of the negative electrode current collector 22A"). Since the negative electrode active material layer 22B is not provided on the protruding portion of the negative electrode current collector 22A, the protruding portion of the negative electrode current collector 22A functions as the negative electrode terminal 32. Note that details of the negative electrode terminal 32 will be described later.
  • the separator 23 is disposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass through while preventing contact (short circuit) between the positive electrode 21 and negative electrode 22.
  • the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separators 23 in between, so the battery element 20 includes a plurality of separators 23.
  • the separator 23 includes a porous layer 23A, a positive electrode side coating layer 23B, and a negative electrode side coating layer 23C.
  • the porous layer 23A has a plurality of pores to allow lithium ions to pass through, and has a pair of surfaces on which the positive electrode side coating layer 23B and the negative electrode side coating layer 23C are provided.
  • This porous layer 23A contains an insulating material such as a polymer compound, and a specific example of the insulating material is polyethylene.
  • the positive electrode side coating layer 23B is disposed between the porous layer 23A and the positive electrode 21 (positive electrode active material layer 21B), and is adjacent to the positive electrode active material layer 21B.
  • This positive electrode side coating layer 23B includes a plurality of insulating particles and a separator binder, and the separator binder is a second binder that binds the plurality of insulating particles and the like to each other.
  • the plurality of insulating particles function to promote heat dissipation during heat generation and heating of the secondary battery. This improves the heat resistance of the secondary battery, thereby improving safety.
  • Each of the plurality of insulating particles contains one or more types of insulating materials such as inorganic materials, and specific examples of the insulating materials include metal hydroxides, metal oxides, and metal nitrides, etc. This is because sufficient heat dissipation properties can be obtained in the positive electrode side coating layer 23B. More specifically, metal hydroxides include magnesium hydroxide and aluminum hydroxide. Metal oxides include magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, and zirconium oxide. Metal nitrides include aluminum nitride.
  • the separator binder is a material that holds a plurality of insulating particles, and contains one or more types of polymer compounds. Details regarding the polymer compound are the same as those regarding the polymer compound contained in the positive electrode binder.
  • the separator binder preferably contains the same material as the constituent material of the positive electrode binder, and more specifically, a vinylidene fluoride homopolymer (polyvinylidene fluoride). and a copolymer of vinylidene fluoride, or both thereof. This is because the separator binder easily adheres sufficiently to the positive electrode binder.
  • the separator binder is likely to be thermally fused to the positive electrode binder, particularly during heating of the secondary battery (after a heating test of the secondary battery described below).
  • the negative electrode side coating layer 23C is disposed between the porous layer 23A and the negative electrode 22 (negative electrode active material layer 22B), and is adjacent to the negative electrode active material layer 22B.
  • This negative electrode side coating layer 23C contains a separator binder, and the details regarding the separator binder are as described above. Note that the negative electrode side coating layer 23C may include a plurality of insulating particles or may not include the plurality of insulating particles.
  • electrolyte is a liquid electrolyte. This electrolytic solution is impregnated into each of the positive electrode 21, negative electrode 22, and separator 23, and contains a solvent and an electrolyte salt.
  • the solvent contains one or more types of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • This nonaqueous solvent includes esters and ethers, and more specifically includes carbonate ester compounds, carboxylic ester compounds, and lactone compounds. This is because the dissociability of the electrolyte salt and the mobility of ions are improved.
  • the carbonate ester compounds are cyclic carbonate esters and chain carbonate esters.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate
  • specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester.
  • chain carboxylic acid esters include ethyl acetate, ethyl propionate, propyl propionate, and ethyl trimethylacetate.
  • Lactone compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • the ethers may include 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, and 1,4-dioxane.
  • the electrolyte salt contains one or more light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and lithium bis(fluorosulfonyl)imide (LiN).
  • LiN(CF 3 SO 2 ) 2 lithium bis(trifluoromethanesulfonyl)imide
  • LiC(CF 3 SO 2 ) 3 lithium tris(trifluoromethanesulfonyl)methide
  • bis(oxalato)boro include lithium oxide (LiB(C 2 O 4 ) 2 ), lithium monofluorophosphate (Li 2 PFO 3 ), and lithium difluorophosphate (LiPF 2 O 2 ). This is because high battery capacity can be obtained.
  • the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg relative to the solvent. This is because high ionic conductivity can be obtained.
  • the electrolytic solution may further contain any one type or two or more types of additives.
  • the types of additives are not particularly limited, but specifically include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonic esters, phosphoric esters, acid anhydrides, nitrile compounds, and isocyanate compounds.
  • unsaturated cyclic carbonate esters include vinylene carbonate, vinylethylene carbonate, and methyleneethylene carbonate.
  • fluorinated cyclic carbonate esters include monofluoroethylene carbonate and difluoroethylene carbonate.
  • sulfonic acid esters include propane sultone and propene sultone.
  • phosphoric acid esters include trimethyl phosphate and triethyl phosphate.
  • acid anhydrides include succinic anhydride, 1,2-ethanedisulfonic anhydride, and 2-sulfobenzoic anhydride.
  • nitrile compounds include succinonitrile.
  • a specific example of the isocyanate compound is hexamethylene diisocyanate.
  • the positive electrode terminal 31 is electrically connected to the positive electrode 21, and more specifically, to the positive electrode current collector 21A.
  • the constituent material of the positive electrode terminal 31 is not particularly limited, but specifically, it is the same as the constituent material of the positive electrode current collector 21A.
  • the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separator 23 in between, so the battery element 20 includes a plurality of positive electrodes 21.
  • the positive electrode terminal 31 is connected to each of the plurality of positive electrodes 21, so that the secondary battery includes the plurality of positive electrode terminals 31.
  • the plurality of positive electrode terminals 31 are joined to each other, so as shown in FIG. 1, they form one lead-shaped joint portion 31Z.
  • the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A. This is because the connection resistance between the positive electrode current collector 21A and the positive electrode terminal 31 is reduced, so that the electrical resistance of the entire secondary battery is reduced.
  • the negative electrode terminal 32 is electrically connected to the negative electrode 22, and more specifically, to the negative electrode current collector 22A.
  • This negative electrode terminal 32 is arranged at a position that does not overlap with the positive electrode terminal 31 in a state where the positive electrode 21 and the negative electrode 22 are alternately stacked with the separator 23 in between.
  • the constituent material of the negative electrode terminal 32 is not particularly limited, but specifically, it is the same as the constituent material of the negative electrode current collector 22A.
  • the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separator 23 in between, so the battery element 20 includes a plurality of negative electrodes 22.
  • the negative electrode terminal 32 is connected to each of the plurality of negative electrodes 22, so that the secondary battery includes the plurality of negative electrode terminals 32.
  • the plurality of negative electrode terminals 32 are joined to each other, so as shown in FIG. 1, they form one lead-shaped joint 32Z.
  • the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A. This is because the connection resistance between the negative electrode current collector 22A and the negative electrode terminal 32 is reduced, so that the electrical resistance of the entire secondary battery is reduced.
  • the positive electrode lead 41 is connected to a joint portion 31Z, which is a plurality of positive electrode terminals 31 joined to each other, and is led out from the exterior film 10.
  • the constituent material of the positive electrode lead 41 is not particularly limited, but specifically, it is the same as the constituent material of the positive electrode current collector 21A.
  • the shape of the positive electrode lead 41 is not particularly limited, specifically, it is either a thin plate shape or a mesh shape.
  • the negative electrode lead 42 is connected to a joint portion 32Z, which is a plurality of negative electrode terminals 32 joined to each other, and is led out from the exterior film 10.
  • the constituent material of the negative electrode lead 42 is not particularly limited, but specifically, it is the same as the constituent material of the negative electrode current collector 22A. Note that the direction in which the negative electrode lead 42 is led out is the same direction as the direction in which the positive electrode lead 41 is led out. Further, the details regarding the shape of the negative electrode lead 42 are the same as the details regarding the shape of the positive electrode lead 41.
  • Each of the sealing films 51 and 52 is a sealing member that prevents outside air from entering the exterior film 10.
  • the sealing film 51 is inserted between the exterior film 10 and the positive electrode lead 41, and the sealing film 52 is inserted between the exterior film 10 and the negative electrode lead 42.
  • one or both of the sealing films 51 and 52 may be omitted.
  • This sealing film 51 contains a polymer compound such as polyolefin that has adhesiveness to the positive electrode lead 41, and a specific example of the polymer compound is polypropylene.
  • the configuration of the sealing film 52 is similar to that of the sealing film 51 except that it has adhesiveness to the negative electrode lead 42. That is, the sealing film 52 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 42.
  • FIG. 5 shows a cross-sectional configuration of the battery element 20 after the secondary battery heating test, and corresponds to FIG. 2.
  • the porous layer 23A undergoes thermal contraction in the in-plane direction of the XY plane. More specifically, in a state where the secondary battery is charged under the following charging conditions, after the secondary battery is heated at 130° C. for 60 minutes (heating test), the porous layer 23A is As in, heat shrinks. As a result, a part of the positive electrode side coating layer 23B is peeled off from the porous layer 23A and is in close contact with the positive electrode active material layer 21B. That is, a part of the positive electrode side coating layer 23B is not adjacent to the porous layer 23A and is adjacent to the positive electrode active material layer 21B.
  • a part of the negative electrode side coating layer 23C is peeled off from the negative electrode active material layer 22B due to thermal contraction of the porous layer 23A, so a part of the negative electrode side coating layer 23C is removed from the negative electrode active material layer 22B.
  • a case is shown in which the material layer 22B is not adjacent to the material layer 22B.
  • heating temperature is not limited to 130°C, but may be 130°C ⁇ 2°C.
  • heating time is not limited to 60 minutes, but may be 60 minutes ⁇ 10 minutes.
  • a portion of the positive electrode side coating layer 23B that has peeled off from the porous layer 23A is in close contact with the positive electrode active material layer 21B because the discharge reaction between the positive electrode 21 and the negative electrode 22 is progressing. This is because the short circuit caused by the contact between the positive electrode 21 and the negative electrode 22 is suppressed from occurring while ensuring this.
  • the discharge reaction tends to proceed stably, so the discharge characteristics are improved. In this case, the discharge reaction proceeds stably even if the discharge current increases.
  • the positive electrode side coating layer 23B (separator binder) is thermally fused to the positive electrode active material layer 21B (positive electrode binder). Therefore, the positive electrode side coating layer 23B tightly adheres to the positive electrode active material layer 21B. In this case, as shown in FIG. 5, even if the separator 23 shrinks due to heat generation and heating of the secondary battery, a part of the positive electrode side coating layer 23B does not peel off from the positive electrode active material layer 21B. remains on the surface of the positive electrode active material layer 21B. As a result, the state in which the insulating positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22 is easily maintained without being affected by the thermal contraction of the separator 23, thereby suppressing the occurrence of short circuits. be done.
  • the basis weight is a parameter representing the amount of the positive electrode side coating layer 23B formed, and the basis weight is not particularly limited.
  • the basis weight of the positive electrode side coating layer 23B is preferably 3 g/m 2 to 7 g/m 2 . This is because the amount of the positive electrode side coating layer 23B formed is optimized. Thereby, even if the positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22, the progress of the discharge reaction is less likely to be inhibited.
  • the positive electrode side coating layer 23B is thermally fused to the positive electrode active material layer 21B during heating of the secondary battery, a part of the positive electrode side coating layer 23B tends to remain on the surface of the positive electrode active material layer 21B. Become. Therefore, it becomes easier to ensure the progress of the discharge reaction and to suppress the occurrence of short circuits.
  • the weight (g) of the separator 23 is measured.
  • the porous layer 23A is recovered.
  • the type of solvent is not particularly limited, but specifically, it is an organic solvent such as N-methyl-2-pyrrolidone that can dissolve the separator binder.
  • the weights (g) of the positive electrode side coating layer 23B and the negative electrode side coating layer 23C are calculated.
  • the basis weight (g /cm 2 ). Note that since the area of the positive electrode side coating layer 23B and the area of the negative electrode side coating layer 23C are almost the same, the area used to calculate the basis weight may be the area of the positive electrode side coating layer 23B, or the area of the negative electrode side coating layer 23B. The area of the side covering layer 23C may also be used.
  • This basis weight is calculated based on the calculation formula expressed by the following formula (4). That is, the basis weight is a parameter representing the amount of the positive electrode side coating layer 23B and the negative electrode side coating layer 23C formed per unit area. However, the value of the basis weight shall be the value obtained by rounding off the value to the first decimal place.
  • Area weight sum of the weight of the positive electrode side coating layer 23B and the weight of the negative electrode side coating layer 23C/area of the positive electrode side coating layer 23B or area of the negative electrode side coating layer 23C... (4)
  • a heating test is performed on the secondary battery according to the above-described procedure, and then the battery element 20 is recovered by disassembling the secondary battery after the heating test.
  • the cross section of the battery element 20 is exposed by cutting the battery element 20 using a cutting tool in the direction in which the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separators 23 in between (Z-axis direction).
  • the cross section cross section along the XZ plane of the battery element 20 using an electron microscope, the observation results (cross-sectional configuration) shown in FIG. 5 are obtained.
  • Cross Section Polisher (registered trademark) manufactured by JEOL Ltd. or the like can be used.
  • the electron microscope it is possible to use one or more types of electron microscopes such as a scanning electron microscope (SEM) and a transmission electron microscope. Note that the observation magnification is not particularly limited, but specifically, it is 20,000 times.
  • the state of the positive electrode side coating layer 23B is confirmed based on an electron micrograph. As a result, if a part of the positive electrode side coating layer 23B is still adjacent to the positive electrode active material layer 21B even though the porous layer 23A has thermally shrunk, the positive electrode side coating layer 23B is Although the entirety of the positive electrode side coating layer 23B was in close contact with the porous layer 23A, after the heating test, it was found that part of the positive electrode side coating layer 23B that had peeled off from the porous layer 23A was in close contact with the positive electrode active material layer 21B. Become.
  • FIG. 6 shows a perspective configuration corresponding to FIG. 1 in order to explain a method for manufacturing a secondary battery.
  • a laminate 20Z used for manufacturing the battery element 20 is shown. Note that details of the laminate 20Z will be described later.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are each manufactured according to the procedure described below, and after preparing the electrolyte, the positive electrode 21, negative electrode 22, and separator 23 are prepared. A secondary battery is assembled using the electrolyte and the secondary battery is stabilized.
  • a paste-like positive electrode mixture slurry is prepared by adding a mixture of a positive electrode active material, a positive electrode binder, and a positive electrode conductive agent (positive electrode mixture) to a solvent.
  • This solvent may be an aqueous solvent or an organic solvent.
  • a positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (excluding the positive electrode terminal 31) on which the positive electrode terminal 31 is integrated, thereby forming the positive electrode active material layer 21B.
  • the positive electrode active material layer 21B is compression molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated multiple times. Thereby, the positive electrode active material layers 21B are formed on both sides of the positive electrode current collector 21A, so that the positive electrode 21 is manufactured.
  • the negative electrode 22 is formed by the same procedure as the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductive agent are mixed together into a solvent. Subsequently, a negative electrode active material layer 22B is formed by applying a negative electrode mixture slurry to both surfaces (excluding the negative electrode terminal 32) of the negative electrode current collector 22A in which the negative electrode terminal 32 is integrated. Finally, the negative electrode active material layer 22B is compression molded. Thereby, the negative electrode active material layers 22B are formed on both sides of the negative electrode current collector 22A, so that the negative electrode 22 is manufactured.
  • a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductive agent are mixed together into a solvent.
  • a negative electrode active material layer 22B is formed by
  • a paste-like slurry is prepared by adding a mixture of a plurality of insulating particles and a separator binder to a solvent. Details regarding the solvent are as described above. Subsequently, by applying slurry to one surface of the porous layer 23A, a positive electrode side coating layer 23B containing a plurality of insulating particles is formed.
  • a paste-like slurry is prepared by adding a separator binder to a solvent, and then the slurry is applied to one surface of the porous layer 23A on which the positive electrode side coating layer 23B is not formed.
  • a negative electrode side coating layer 23C containing no insulating particles is formed.
  • the positive electrode side coating layer 23B is formed on one side of the porous layer 23A, and the negative electrode side coating layer 23C is formed on the opposite side of the porous layer 23A, so that the separator 23 is produced.
  • the positive electrode 21 and the negative electrode 22 are alternately laminated with the separator 23 in between, thereby producing a laminate 20Z as shown in FIG.
  • This laminate 20Z has the same configuration as the battery element 20, except that the positive electrode 21, the negative electrode 22, and the separator 23 are not impregnated with an electrolytic solution.
  • a joint portion 31Z is formed by joining the plurality of positive electrode terminals 31 to each other using a joining method such as a welding method, and then the positive electrode lead 41 is connected to the joint portion 31Z. Further, after a joint portion 32Z is formed by joining the plurality of negative electrode terminals 32 to each other using a joining method such as a welding method, the negative electrode lead 42 is connected to the joint portion 32Z.
  • the exterior films 10 (fusion layer/metal layer/surface protection layer) are folded to face each other. Subsequently, the outer peripheral edges of two sides of the fusion layers facing each other are adhered to each other using an adhesive method such as a heat fusion method, thereby forming the laminate 20Z inside the bag-shaped exterior film 10. to store. In this case, each of the positive electrode lead 41 and the negative electrode lead 42 is led out from the exterior film 10.
  • a sealing film 51 is inserted between the exterior film 10 and the positive electrode lead 41, and a sealing film 52 is inserted between the exterior film 10 and the negative electrode lead 42.
  • the exterior film 10 containing the laminate 20Z is hot-pressed.
  • the exterior film 10 is heated in the direction in which the positive electrode 21 and the negative electrode 22 are alternately laminated with the separator 23 in between (Z-axis direction), and then the exterior film 10 is moved up and down. Press from As a result, the porous layer 23A is brought into close contact with the positive electrode 21 via the positive electrode side covering layer 23B, and the porous layer 23A is brought into close contact with the negative electrode 22 through the negative electrode side covering layer 23C.
  • the stacked body 20Z is impregnated with the electrolytic solution, so that the battery element 20, which is a stacked electrode body, is manufactured. Therefore, since the battery element 20 is sealed inside the bag-shaped exterior film 10, a secondary battery is assembled.
  • the separator 23 including the porous layer 23A and the positive electrode side coating layer 23B is arranged between the positive electrode 21 and the negative electrode 22.
  • the positive electrode active material layer 21B of the positive electrode 21 contains a positive electrode active material and a positive electrode binder
  • the positive electrode side coating layer 23B disposed between the porous layer 23A and the positive electrode active material layer 21B has a plurality of insulating layers. containing particles and a separator binder.
  • a part of the positive electrode side coating layer 23B is not adjacent to the porous layer 23A and is adjacent to the positive electrode active material layer 21B.
  • the positive electrode side coating layer 23B is thermally fused to the positive electrode active material layer 21B.
  • the separator 23 thermally shrinks during heat generation and heating of the secondary battery, a portion of the positive electrode side coating layer 23B remains on the surface of the positive electrode active material layer 21B. Therefore, the state in which the insulating positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22 is easily maintained, so that the occurrence of short circuits is suppressed.
  • each of the positive electrode binder and the separator binder contains one or both of vinylidene fluoride homopolymer and vinylidene fluoride copolymer, when the secondary battery is heated, Since the positive electrode active material layer 21B (positive electrode binder) and the positive electrode side coating layer 23B (separator binder) are easily thermally fused to each other, higher effects can be obtained.
  • each of the plurality of insulating particles contains one or more types of metal hydroxide, metal oxide, and metal nitride, sufficient heat dissipation properties can be achieved in the positive electrode side coating layer 23B. Therefore, higher effects can be obtained.
  • the positive electrodes 21 and negative electrodes 22 are alternately stacked with the separator 23 in between, the occurrence of short circuits can be effectively suppressed even if the positive electrodes 21 are stacked with the separator 23 in between, resulting in a higher effect. can be obtained.
  • a positive electrode terminal 31 is connected to each of the plurality of positive electrodes 21
  • a negative electrode terminal 32 is connected to each of the plurality of negative electrodes 22
  • a plurality of positive electrode terminals 31 are joined to each other, and a plurality of positive electrode terminals 31 are connected to each of the plurality of negative electrodes 22. If the negative electrode terminals 32 of the two are connected to each other, the battery capacity is guaranteed and the occurrence of short circuits is effectively suppressed, so that even higher effects can be obtained.
  • the battery element 20 is housed inside the exterior film 10, the positive electrode lead 41 joined to the joint 31Z is led out from the exterior film 10, and the negative electrode lead 42 joined to the joint 32Z is connected to the exterior film. 10, even if a plurality of positive electrode terminals 31 and a plurality of negative electrode terminals 32 are used, the sealing performance of the exterior film 10 is improved, and a significantly high effect can be obtained.
  • the thickness of the joint portion 31Z which is a joined body of a plurality of positive electrode terminals 31, increases. gaps are likely to occur. This makes it difficult to seal the exterior film 10 using the sealing film 51, and thus the sealability of the exterior film 10 is reduced.
  • the thickness of the positive electrode lead 41 becomes smaller compared to the thickness of the joint part 31Z, which is a joined body of the plurality of positive electrode terminals 31. , a gap is less likely to occur between the exterior film 10 and the positive electrode lead 41. This makes it easier to seal the exterior film 10 using the sealing film 51, so that the sealability of the exterior film 10 is improved.
  • the secondary battery is a lithium ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing intercalation and desorption of lithium, so higher effects can be obtained.
  • the separator 23 includes both a positive electrode side coating layer 23B and a negative electrode side coating layer 23C.
  • the separator 23 may include only the positive electrode side coating layer 23B without including the negative electrode side coating layer 23C. Also in this case, the adhesion of the separator 23 to the positive electrode 21 is increased using the positive electrode side coating layer 23B, so that the same effect can be obtained.
  • the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A. However, since the positive electrode terminal 31 is physically separated from the positive electrode current collector 21A, it may be separate from the positive electrode current collector 21A. In this case, the positive electrode terminal 31 may be connected to the positive electrode current collector 21A using a joining method such as a welding method.
  • the positive electrode terminal 31 is electrically connected to the positive electrode 21, the same effect can be obtained.
  • the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A.
  • the protrusion of the negative electrode current collector 22A also serves as the negative electrode terminal 32, so the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A.
  • the negative electrode terminal 32 since the negative electrode terminal 32 is physically separated from the negative electrode current collector 22A, it may be separate from the negative electrode current collector 22A. In this case, the negative electrode terminal 32 may be connected to the negative electrode current collector 22A using a joining method such as a welding method.
  • the negative electrode terminal 32 is electrically connected to the negative electrode 22, the same effect can be obtained.
  • the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A.
  • a battery element 20 which is a laminated electrode body is used.
  • the battery element 20 which is a wound electrode body may also be used.
  • the positive electrode 21 has a band-like structure
  • the positive electrode lead 41 is connected to the positive electrode current collector 21A
  • the negative electrode 22 has a band-like structure
  • the negative electrode current collector 22A A negative electrode lead 42 is connected to.
  • the number of positive electrode leads 41 may be one or two or more
  • the number of negative electrode leads 42 may be one or two or more.
  • the secondary battery can be charged and discharged using the battery element 20, so similar effects can be obtained.
  • a secondary battery used as a power source may be a main power source or an auxiliary power source in applications such as electronic equipment and electric vehicles.
  • the main power source is a power source that is used preferentially, regardless of the presence or absence of other power sources.
  • the auxiliary power source may be a power source used in place of the main power source, or may be a power source that can be switched from the main power source.
  • the secondary battery uses of the secondary battery.
  • Electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, headphone stereos, portable radios, and portable information terminals.
  • Backup power supplies and storage devices such as memory cards.
  • Power tools such as power drills and power saws. This is a battery pack installed in electronic devices.
  • Medical electronic devices such as pacemakers and hearing aids.
  • Electric vehicles such as electric vehicles (including hybrid vehicles).
  • a power storage system such as a household or industrial battery system that stores power in case of an emergency. In these applications, one secondary battery or a plurality of secondary batteries may be used.
  • the battery pack may use single cells or assembled batteries.
  • An electric vehicle is a vehicle that runs using a secondary battery as a driving power source, and may be a hybrid vehicle that also includes a driving source other than the secondary battery.
  • household electrical appliances and the like can be used by using the electric power stored in a secondary battery, which is a power storage source.
  • FIG. 7 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (so-called soft pack) using one secondary battery, and is installed in electronic devices such as smartphones.
  • this battery pack includes a power source 71 and a circuit board 72.
  • This circuit board 72 is connected to a power source 71 and includes a positive terminal 73, a negative terminal 74, and a temperature detection terminal 75.
  • the power source 71 includes one secondary battery.
  • the positive electrode lead is connected to the positive electrode terminal 73
  • the negative electrode lead is connected to the negative electrode terminal 74.
  • This power source 71 can be connected to an external power source via the positive terminal 73 and the negative terminal 74, and therefore can be charged and discharged using the external power source.
  • the circuit board 72 includes a control section 76 , a switch 77 , a PTC element 78 , and a temperature detection section 79 .
  • the PTC element 78 may be omitted.
  • the control unit 76 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 76 detects and controls the usage status of the power source 71 as necessary.
  • CPU central processing unit
  • memory etc.
  • the control unit 76 prevents the charging current from flowing in the current path of the power source 71 by cutting off the switch 77. Make it.
  • the overcharge detection voltage is not particularly limited, specifically, it is 4.20V ⁇ 0.05V
  • the overdischarge detection voltage is not particularly limited, but specifically, it is 2.40V ⁇ 0.1V. It is.
  • the switch 77 includes a charging control switch, a discharging control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 71 is connected to an external device according to an instruction from the control unit 76.
  • This switch 77 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, and the charging/discharging current is detected based on the ON resistance of the switch 77.
  • MOSFET field effect transistor
  • the temperature detection section 79 includes a temperature detection element such as a thermistor.
  • the temperature detection section 79 measures the temperature of the power supply 71 using the temperature detection terminal 75 and outputs the temperature measurement result to the control section 76 .
  • the measurement result of the temperature measured by the temperature detection unit 79 is used when the control unit 76 performs charge/discharge control during abnormal heat generation and when the control unit 76 performs correction processing when calculating the remaining capacity.
  • the element structure of the battery element is a stacked type.
  • the element structure of the battery element is not particularly limited, other element structures such as a ninety-nine fold type may be used.
  • a ninety-nine fold type a positive electrode and a negative electrode are folded in a zigzag pattern while facing each other with a separator in between.
  • the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals, such as sodium and potassium, or alkaline earth metals, such as beryllium, magnesium, and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a secondary battery comprising: a positive electrode which includes a positive electrode active material layer; a negative electrode; a separator which is arranged between the positive electrode and the negative electrode; and an electrolytic solution. The positive electrode active material layer includes a positive electrode active material and a first binder. The separator includes a porous layer and a coating layer arranged between this porous layer and the positive electrode active material layer and this coating layer includes a plurality of insulating particles and a second binder. A part of the coating layer is not adjacent to the porous layer and is adjacent to the positive electrode active material layer.

Description

二次電池secondary battery
 本技術は、二次電池に関する。 The present technology relates to secondary batteries.
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源として二次電池の開発が進められている。この二次電池は、正極、負極、セパレータおよび電解液を備えており、その二次電池の構成に関しては、様々な検討がなされている。 As a variety of electronic devices such as mobile phones have become widespread, secondary batteries are being developed as a power source that is small and lightweight and provides high energy density. This secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte, and various studies have been made regarding the configuration of the secondary battery.
 具体的には、絶縁性の無機化合物を含む保護層が正極の表面に設けられており、その正極の表面抵抗が0.5Ω~40Ωである(例えば、特許文献1参照。)。 Specifically, a protective layer containing an insulating inorganic compound is provided on the surface of the positive electrode, and the surface resistance of the positive electrode is 0.5Ω to 40Ω (see, for example, Patent Document 1).
特開2019-160556号公報JP 2019-160556 Publication
 二次電池の構成に関する様々な検討がなされているが、その二次電池の電池特性は未だ十分でないため、改善の余地がある。 Although various studies have been made regarding the configuration of secondary batteries, the battery characteristics of the secondary batteries are still insufficient, so there is room for improvement.
 優れた電池特性を得ることが可能である二次電池が望まれている。 A secondary battery that can provide excellent battery characteristics is desired.
 本技術の一実施形態の二次電池は、正極活物質層を含む正極と、負極と、その正極と負極との間に配置されたセパレータと、電解液とを備えたものである。正極活物質層は、正極活物質および第1結着剤を含む。セパレータは、多孔質層と、その多孔質層と正極活物質層との間に配置された被覆層とを含み、その被覆層は、複数の絶縁性粒子および第2結着剤を含む。被覆層の一部は、多孔質層に隣接されていないと共に正極活物質層に隣接されている。 A secondary battery according to an embodiment of the present technology includes a positive electrode including a positive electrode active material layer, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte. The positive electrode active material layer includes a positive electrode active material and a first binder. The separator includes a porous layer and a coating layer disposed between the porous layer and the positive electrode active material layer, and the coating layer includes a plurality of insulating particles and a second binder. A portion of the covering layer is not adjacent to the porous layer and is adjacent to the positive electrode active material layer.
 本技術の一実施形態の二次電池によれば、多孔質層および被覆層を含むセパレータが正極と負極との間に配置されており、その正極の正極活物質層が正極活物質および第1結着剤を含んでおり、その多孔質層と正極活物質層との間に配置された被覆層が複数の絶縁性粒子および第2結着剤を含んでおり、その被覆層の一部が多孔質層に隣接されていないと共に正極活物質層に隣接されているので、優れた電池特性を得ることができる。 According to a secondary battery according to an embodiment of the present technology, a separator including a porous layer and a coating layer is disposed between a positive electrode and a negative electrode, and the positive active material layer of the positive electrode is connected to the positive active material and the first A coating layer disposed between the porous layer and the positive electrode active material layer includes a plurality of insulating particles and a second binder, and a part of the coating layer includes a binder. Since it is not adjacent to the porous layer and is adjacent to the positive electrode active material layer, excellent battery characteristics can be obtained.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 Note that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
本技術の一実施形態における二次電池の構成を表す斜視図である。FIG. 1 is a perspective view showing the configuration of a secondary battery in an embodiment of the present technology. 図1に示した電池素子の構成を表す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1. FIG. 図2に示した正極の構成を表す平面図である。3 is a plan view showing the configuration of the positive electrode shown in FIG. 2. FIG. 図2に示した負極の構成を表す平面図である。3 is a plan view showing the configuration of the negative electrode shown in FIG. 2. FIG. 二次電池の加熱試験後における電池素子の構成を表す断面図である。FIG. 2 is a cross-sectional view showing the configuration of a battery element after a heating test of a secondary battery. 二次電池の製造方法を説明するための斜視図である。FIG. 2 is a perspective view for explaining a method for manufacturing a secondary battery. 二次電池の適用例の構成を表すブロック図である。FIG. 2 is a block diagram showing the configuration of an application example of a secondary battery.
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.全体の構成
  1-2.物性
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.変形例
 3.二次電池の用途
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary battery 1-1. Overall composition 1-2. Physical properties 1-3. Operation 1-4. Manufacturing method 1-5. Action and effect 2. Modification example 3. Applications of secondary batteries
<1.二次電池>
 まず、本技術の一実施形態における二次電池に関して説明する。
<1. Secondary battery>
First, a secondary battery in an embodiment of the present technology will be described.
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極、負極、セパレータおよび電解液を備えている。 The secondary battery described here is a secondary battery whose battery capacity is obtained by utilizing the intercalation and desorption of electrode reactants, and includes a positive electrode, a negative electrode, a separator, and an electrolyte.
 この二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。 In this secondary battery, the charging capacity of the negative electrode is larger than the discharging capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。 In the following, a case where the electrode reactant is lithium will be exemplified. A secondary battery whose battery capacity is obtained by utilizing intercalation and desorption of lithium is a so-called lithium ion secondary battery. In this lithium ion secondary battery, lithium is intercalated and released in an ionic state.
<1-1.全体の構成>
 図1は、二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。図3は、図2に示した正極21の平面構成を表していると共に、図4は、図2に示した負極22の平面構成を表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示している。
<1-1. Overall configuration>
FIG. 1 shows a perspective configuration of a secondary battery, and FIG. 2 shows a cross-sectional configuration of a battery element 20 shown in FIG. 3 shows the planar structure of the positive electrode 21 shown in FIG. 2, and FIG. 4 shows the planar structure of the negative electrode 22 shown in FIG. However, FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other.
 この二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、複数の正極端子31と、複数の負極端子32と、正極リード41と、負極リード42と、封止フィルム51,52とを備えている。 As shown in FIGS. 1 and 2, this secondary battery includes an exterior film 10, a battery element 20, a plurality of positive electrode terminals 31, a plurality of negative electrode terminals 32, a positive electrode lead 41, and a negative electrode lead 42. , sealing films 51 and 52.
 ここで説明する二次電池は、上記したように、電池素子20、複数の正極端子31および複数の負極端子32を収納するための外装部材として外装フィルム10を用いているため、いわゆるラミネートフィルム型の二次電池である。 As mentioned above, the secondary battery described here uses the exterior film 10 as an exterior member for accommodating the battery element 20, the plurality of positive electrode terminals 31, and the plurality of negative electrode terminals 32, so it is of the so-called laminate film type. This is a secondary battery.
[外装フィルム]
 外装フィルム10は、可撓性または柔軟性を有するフィルム状の外装部材であり、図1に示したように、電池素子20が内部に収納された状態において封止された袋状の構造を有している。これにより、外装フィルム10は、後述する正極21、負極22、セパレータ23および電解液を収納している。
[Exterior film]
The exterior film 10 is a flexible or pliable film-like exterior member, and as shown in FIG. are doing. Thereby, the exterior film 10 accommodates a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution, which will be described later.
 ここでは、外装フィルム10は、1枚のフィルム状の部材であり、折り畳み方向Fに折り畳まれている。この外装フィルム10には、電池素子20を収容するための窪み部10U(いわゆる深絞り部)が設けられている。 Here, the exterior film 10 is a single film-like member, and is folded in the folding direction F. This exterior film 10 is provided with a recessed portion 10U (so-called deep drawn portion) for accommodating the battery element 20.
 具体的には、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム10が折り畳まれた状態において、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。 Specifically, the exterior film 10 is a three-layer laminate film in which a fusing layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the exterior film 10 is folded, they face each other. The outer peripheral edges of the fusion layers are fused to each other. The adhesive layer contains a polymer compound such as polypropylene. The metal layer contains a metal material such as aluminum. The surface protective layer contains a polymer compound such as nylon.
 ただし、外装フィルム10の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。 However, the structure (number of layers) of the exterior film 10 is not particularly limited and may be one or two layers, or four or more layers.
[電池素子]
 電池素子20は、図1~図4に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子であり、外装フィルム10の内部に収納されている。
[Battery element]
As shown in FIGS. 1 to 4, the battery element 20 is a power generating element that includes a positive electrode 21, a negative electrode 22, a separator 23, and an electrolyte (not shown), and is housed inside the exterior film 10. has been done.
 ここでは、電池素子20は、いわゆる積層電極体である。すなわち、正極21および負極22は、セパレータ23を介して交互に積層されている。正極21、負極22およびセパレータ23のそれぞれの数は、特に限定されないため、任意に設定可能である。 Here, the battery element 20 is a so-called laminated electrode body. That is, the positive electrode 21 and the negative electrode 22 are alternately stacked with the separator 23 in between. The numbers of positive electrodes 21, negative electrodes 22, and separators 23 are not particularly limited and can be set arbitrarily.
(正極)
 正極21は、図2および図3に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。図3では、正極活物質層21Bに網掛けを施している。
(positive electrode)
As shown in FIGS. 2 and 3, the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B. In FIG. 3, the positive electrode active material layer 21B is shaded.
 正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。 The positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided. The positive electrode current collector 21A includes a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
 正極活物質層21Bは、正極活物質および正極結着剤を含んでいる。ただし、正極活物質層21Bは、さらに、正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 21B contains a positive electrode active material and a positive electrode binder. However, the positive electrode active material layer 21B may further contain one or more types of other materials such as a positive electrode conductive agent.
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられている。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などである。 Here, the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A. However, the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22. The method for forming the positive electrode active material layer 21B is not particularly limited, and specifically, a coating method or the like is used.
 正極活物質は、リチウムを吸蔵放出可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ここでは、正極活物質は、リチウム含有化合物を含んでいる。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。 The positive electrode active material contains one or more materials capable of intercalating and deintercalating lithium. Here, the positive electrode active material contains a lithium-containing compound. This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements. The type of other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table. The type of lithium-containing compound is not particularly limited, but specifically includes oxides, phosphoric acid compounds, silicic acid compounds, and boric acid compounds.
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of oxides include LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.3 3 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 , Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 )O 2 and LiMn 2 O 4 . Specific examples of phosphoric acid compounds include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 .
 正極結着剤は、正極活物質などを互いに結着させる第1結着剤である。後述する二次電池の組み立て工程では、正極21(正極活物質層21B)がセパレータ23(後述する正極側被覆層23B)に隣接されている状態において積層体20Zが熱プレスされているため、その積層体20Zが加熱されながら押圧されている。これにより、正極活物質層21Bは、正極側被覆層23Bに密着している。 The positive electrode binder is a first binder that binds the positive electrode active materials and the like to each other. In the secondary battery assembly process described below, the laminate 20Z is hot-pressed in a state where the positive electrode 21 (positive electrode active material layer 21B) is adjacent to the separator 23 (positive electrode side coating layer 23B described later). The laminate 20Z is being pressed while being heated. Thereby, the positive electrode active material layer 21B is in close contact with the positive electrode side coating layer 23B.
 この正極結着剤は、合成ゴムおよび高分子化合物などの材料のうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物の具体例は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。 This positive electrode binder contains one or more of materials such as synthetic rubber and polymer compounds. Specific examples of synthetic rubber include fluorine rubber and ethylene propylene diene. Specific examples of the polymer compound include polyvinylidene fluoride, polyimide, and carboxymethyl cellulose.
 中でも、正極結着剤は、後述するセパレータ結着剤の構成材料と同様の材料を含んでいることが好ましい。正極結着剤の構成材料とセパレータ結着剤の構成材料とが互いに共通するため、その正極結着剤がセパレータ結着剤に密着しやすくなるからである。 Among these, it is preferable that the positive electrode binder contains the same material as the constituent material of the separator binder described below. This is because the constituent materials of the positive electrode binder and the separator binder are common to each other, so that the positive electrode binder easily adheres to the separator binder.
 具体的には、正極結着剤は、フッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの一方または双方を含んでいることが好ましい。正極結着剤の構成材料とセパレータ結着剤の構成材料とが互いに共通している場合において、その正極結着剤がセパレータ結着剤に十分に密着しやすくなるからである。 Specifically, the positive electrode binder preferably contains one or both of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. This is because when the constituent materials of the positive electrode binder and the constituent materials of the separator binder are common to each other, the positive electrode binder is likely to adhere sufficiently to the separator binder.
 この場合には、特に、二次電池の加熱時(後述する二次電池の加熱試験後)において、正極結着剤がセパレータ結着剤に熱融着しやすくなる。 In this case, the positive electrode binder is likely to be thermally fused to the separator binder, especially during heating of the secondary battery (after a heating test of the secondary battery described below).
 フッ化ビニリデンの単独重合体は、いわゆるポリフッ化ビニリデンである。フッ化ビニリデンの共重合体は、そのフッ化ビニリデンと他の単量体とが互いに共重合された化合物であり、その他の単量体の具体例は、ヘキサフルオロプロピレンなどの単量体のうちのいずれか1種類または2種類以上である。他の単量体の共重合量(重量%)は、任意に設定可能である。 The homopolymer of vinylidene fluoride is so-called polyvinylidene fluoride. A copolymer of vinylidene fluoride is a compound in which vinylidene fluoride and other monomers are copolymerized with each other. Specific examples of other monomers include monomers such as hexafluoropropylene. Any one type or two or more types. The copolymerization amount (% by weight) of other monomers can be set arbitrarily.
 正極導電剤は、炭素材料、金属材料および導電性高分子化合物などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。炭素材料の具体例は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。 The positive electrode conductive agent contains one or more of conductive materials such as carbon materials, metal materials, and conductive polymer compounds. Specific examples of carbon materials include graphite, carbon black, acetylene black, and Ketjen black.
 ここでは、図3に示したように、正極集電体21Aの一部が突出しているため、その正極集電体21Aは、正極活物質層21Bよりも外側に向かって突出した部分(以下、「正極集電体21Aの突出部」と呼称する。)を含んでいる。この正極集電体21Aの突出部には、正極活物質層21Bが設けられていないため、その正極集電体21Aの突出部は、正極端子31として機能している。なお、正極端子31の詳細に関しては、後述する。 Here, as shown in FIG. 3, since a part of the positive electrode current collector 21A protrudes, the positive electrode current collector 21A has a portion (hereinafter referred to as (referred to as "the protrusion of the positive electrode current collector 21A"). Since the positive electrode active material layer 21B is not provided on the protruding portion of the positive electrode current collector 21A, the protruding portion of the positive electrode current collector 21A functions as the positive electrode terminal 31. Note that details of the positive electrode terminal 31 will be described later.
(負極)
 負極22は、図2および図4に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。図4では、負極活物質層22Bに網掛けを施している。
(Negative electrode)
As shown in FIGS. 2 and 4, the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B. In FIG. 4, the negative electrode active material layer 22B is shaded.
 負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、銅などである。 The negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided. This negative electrode current collector 22A includes a conductive material such as a metal material, and a specific example of the conductive material is copper.
 負極活物質層22Bは、負極活物質を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The negative electrode active material layer 22B contains a negative electrode active material. However, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられている。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。 Here, the negative electrode active material layer 22B is provided on both sides of the negative electrode current collector 22A. However, the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21. The method for forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a gas phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), etc. There are two or more types.
 負極活物質は、リチウムを吸蔵放出可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ここでは、負極活物質は、炭素材料および金属系材料のうちの一方または双方を含んでいる。高いエネルギー密度が得られるからである。炭素材料の具体例は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズなどである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。 The negative electrode active material contains one or more materials capable of intercalating and deintercalating lithium. Here, the negative electrode active material contains one or both of a carbon material and a metal-based material. This is because high energy density can be obtained. Specific examples of carbon materials include easily graphitizable carbon, non-graphitizable carbon, and graphite (natural graphite and artificial graphite). A metal-based material is a material containing as a constituent element one or more of metal elements and metalloid elements that can form an alloy with lithium. Specific examples of the metal elements and metalloid elements are: , silicon and tin. This metallic material may be a single substance, an alloy, a compound, a mixture of two or more types thereof, or a material containing phases of two or more types thereof. Specific examples of metal-based materials include TiSi 2 and SiO x (0<x≦2, or 0.2<x<1.4).
 負極結着剤に関する詳細は、合成ゴムの具体例がさらにスチレンブタジエン系ゴムでもよいことを除いて、正極結着剤に関する詳細と同様である。負極導電剤に関する詳細は、正極導電剤に関する詳細と同様である。 Details regarding the negative electrode binder are the same as those regarding the positive electrode binder, except that the specific example of the synthetic rubber may further be styrene-butadiene rubber. Details regarding the negative electrode conductive agent are the same as those regarding the positive electrode conductive agent.
 ここでは、図4に示したように、負極集電体22Aの一部が突出しているため、その負極集電体22Aは、負極活物質層22Bよりも外側に向かって突出した部分(以下、「負極集電体22Aの突出部」と呼称する。)を含んでいる。この負極集電体22Aの突出部には、負極活物質層22Bが設けられていないため、その負極集電体22Aの突出部は、負極端子32として機能している。なお、負極端子32の詳細に関しては、後述する。 Here, as shown in FIG. 4, since a part of the negative electrode current collector 22A protrudes, the part of the negative electrode current collector 22A that protrudes outward from the negative electrode active material layer 22B (hereinafter referred to as (referred to as "the protrusion of the negative electrode current collector 22A"). Since the negative electrode active material layer 22B is not provided on the protruding portion of the negative electrode current collector 22A, the protruding portion of the negative electrode current collector 22A functions as the negative electrode terminal 32. Note that details of the negative electrode terminal 32 will be described later.
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に配置されており、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。
(Separator)
As shown in FIG. 2, the separator 23 is disposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass through while preventing contact (short circuit) between the positive electrode 21 and negative electrode 22.
 この電池素子20では、上記したように、正極21および負極22がセパレータ23を介して交互に積層されているため、その電池素子20は、複数のセパレータ23を含んでいる。 In this battery element 20, as described above, the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separators 23 in between, so the battery element 20 includes a plurality of separators 23.
 ここでは、セパレータ23は、多孔質層23Aと、正極側被覆層23Bと、負極側被覆層23Cとを含んでいる。 Here, the separator 23 includes a porous layer 23A, a positive electrode side coating layer 23B, and a negative electrode side coating layer 23C.
 多孔質層23Aは、リチウムイオンを通過させるために複数の細孔を有しており、正極側被覆層23Bおよび負極側被覆層23Cが設けられる一対の面を有している。この多孔質層23Aは、高分子化合物などの絶縁性材料を含んでおり、その絶縁性材料の具体例は、ポリエチレンなどである。 The porous layer 23A has a plurality of pores to allow lithium ions to pass through, and has a pair of surfaces on which the positive electrode side coating layer 23B and the negative electrode side coating layer 23C are provided. This porous layer 23A contains an insulating material such as a polymer compound, and a specific example of the insulating material is polyethylene.
 正極側被覆層23Bは、多孔質層23Aと正極21(正極活物質層21B)との間に配置されており、その正極活物質層21Bに隣接されている。この正極側被覆層23Bは、複数の絶縁性粒子およびセパレータ結着剤を含んでおり、そのセパレータ結着剤は、複数の絶縁性粒子などを互いに結着させる第2結着剤である。 The positive electrode side coating layer 23B is disposed between the porous layer 23A and the positive electrode 21 (positive electrode active material layer 21B), and is adjacent to the positive electrode active material layer 21B. This positive electrode side coating layer 23B includes a plurality of insulating particles and a separator binder, and the separator binder is a second binder that binds the plurality of insulating particles and the like to each other.
 複数の絶縁性粒子は、二次電池の発熱時および加熱時において放熱を促進させる機能を果たす。これにより、二次電池の耐熱性が向上するため、安全性が向上する。 The plurality of insulating particles function to promote heat dissipation during heat generation and heating of the secondary battery. This improves the heat resistance of the secondary battery, thereby improving safety.
 複数の絶縁性粒子のそれぞれは、無機材料などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでおり、その絶縁性材料の具体例は、金属水酸化物、金属酸化物および金属窒化物などである。正極側被覆層23Bにおいて十分な放熱性が得られるからである。より具体的には、金属水酸化物は、水酸化マグネシウムおよび水酸化アルミニウムなどである。金属酸化物は、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ケイ素および酸化ジルコニウムなどである。金属窒化物は、窒化アルミニウムなどである。 Each of the plurality of insulating particles contains one or more types of insulating materials such as inorganic materials, and specific examples of the insulating materials include metal hydroxides, metal oxides, and metal nitrides, etc. This is because sufficient heat dissipation properties can be obtained in the positive electrode side coating layer 23B. More specifically, metal hydroxides include magnesium hydroxide and aluminum hydroxide. Metal oxides include magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, and zirconium oxide. Metal nitrides include aluminum nitride.
 セパレータ結着剤は、複数の絶縁性粒子を保持する材料であり、高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。高分子化合物に関する詳細は、正極結着剤に含まれる高分子化合物に関する詳細と同様である。 The separator binder is a material that holds a plurality of insulating particles, and contains one or more types of polymer compounds. Details regarding the polymer compound are the same as those regarding the polymer compound contained in the positive electrode binder.
 中でも、セパレータ結着剤は、上記したように、正極結着剤の構成材料と同様の材料を含んでいることが好ましく、より具体的には、フッ化ビニリデンの単独重合体(ポリフッ化ビニリデン)およびフッ化ビニリデンの共重合体のうちの一方または双方を含んでいることが好ましい。セパレータ結着剤が正極結着剤に十分に密着しやすくなるからである。 Among these, as described above, the separator binder preferably contains the same material as the constituent material of the positive electrode binder, and more specifically, a vinylidene fluoride homopolymer (polyvinylidene fluoride). and a copolymer of vinylidene fluoride, or both thereof. This is because the separator binder easily adheres sufficiently to the positive electrode binder.
 この場合には、特に、二次電池の加熱時(後述する二次電池の加熱試験後)において、セパレータ結着剤が正極結着剤に熱融着しやすくなる。 In this case, the separator binder is likely to be thermally fused to the positive electrode binder, particularly during heating of the secondary battery (after a heating test of the secondary battery described below).
 負極側被覆層23Cは、多孔質層23Aと負極22(負極活物質層22B)との間に配置されており、その負極活物質層22Bに隣接されている。この負極側被覆層23Cは、セパレータ結着剤を含んでおり、そのセパレータ結着剤に関する詳細は、上記した通りである。なお、負極側被覆層23Cは、複数の絶縁性粒子を含んでいてもよいし、その複数の絶縁性粒子を含んでいなくてもよい。 The negative electrode side coating layer 23C is disposed between the porous layer 23A and the negative electrode 22 (negative electrode active material layer 22B), and is adjacent to the negative electrode active material layer 22B. This negative electrode side coating layer 23C contains a separator binder, and the details regarding the separator binder are as described above. Note that the negative electrode side coating layer 23C may include a plurality of insulating particles or may not include the plurality of insulating particles.
(電解液)
 電解液は、液状の電解質である。この電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
(electrolyte)
The electrolyte is a liquid electrolyte. This electrolytic solution is impregnated into each of the positive electrode 21, negative electrode 22, and separator 23, and contains a solvent and an electrolyte salt.
 ここでは、溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。この非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。電解質塩の解離性およびイオンの移動度が向上するからである。 Here, the solvent contains one or more types of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution. This nonaqueous solvent includes esters and ethers, and more specifically includes carbonate ester compounds, carboxylic ester compounds, and lactone compounds. This is because the dissociability of the electrolyte salt and the mobility of ions are improved.
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。 The carbonate ester compounds are cyclic carbonate esters and chain carbonate esters. Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate, and specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
 カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸エチル、プロピオン酸エチル、プロピオン酸プロピルおよびトリメチル酢酸エチルなどである。 The carboxylic acid ester compound is a chain carboxylic acid ester. Specific examples of chain carboxylic acid esters include ethyl acetate, ethyl propionate, propyl propionate, and ethyl trimethylacetate.
 ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。 Lactone compounds include lactones. Specific examples of lactones include γ-butyrolactone and γ-valerolactone.
 なお、エーテル類は、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどでもよい。 Note that the ethers may include 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, and 1,4-dioxane.
 電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiB(C)、モノフルオロリン酸リチウム(LiPFO)およびジフルオロリン酸リチウム(LiPF)などである。高い電池容量が得られるからである。 The electrolyte salt contains one or more light metal salts such as lithium salts. Specific examples of lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and lithium bis(fluorosulfonyl)imide (LiN). (FSO 2 ) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 ), lithium tris(trifluoromethanesulfonyl)methide (LiC(CF 3 SO 2 ) 3 ), bis(oxalato)boro These include lithium oxide (LiB(C 2 O 4 ) 2 ), lithium monofluorophosphate (Li 2 PFO 3 ), and lithium difluorophosphate (LiPF 2 O 2 ). This is because high battery capacity can be obtained.
 電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg relative to the solvent. This is because high ionic conductivity can be obtained.
 なお、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。添加剤の種類は、特に限定されないが、具体的には、不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。 Note that the electrolytic solution may further contain any one type or two or more types of additives. The types of additives are not particularly limited, but specifically include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonic esters, phosphoric esters, acid anhydrides, nitrile compounds, and isocyanate compounds.
 不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。フッ素化環状炭酸エステルの具体例は、モノフルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルの具体例は、プロパンスルトンおよびプロペンスルトンなどである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。酸無水物の具体例は、コハク酸無水物、1,2-エタンジスルホン酸無水物および2-スルホ安息香酸無水物などである。ニトリル化合物の具体例は、スクシノニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。 Specific examples of unsaturated cyclic carbonate esters include vinylene carbonate, vinylethylene carbonate, and methyleneethylene carbonate. Specific examples of fluorinated cyclic carbonate esters include monofluoroethylene carbonate and difluoroethylene carbonate. Specific examples of sulfonic acid esters include propane sultone and propene sultone. Specific examples of phosphoric acid esters include trimethyl phosphate and triethyl phosphate. Specific examples of acid anhydrides include succinic anhydride, 1,2-ethanedisulfonic anhydride, and 2-sulfobenzoic anhydride. Specific examples of nitrile compounds include succinonitrile. A specific example of the isocyanate compound is hexamethylene diisocyanate.
[複数の正極端子および複数の負極端子]
 正極端子31は、図3に示したように、正極21に電気的に接続されており、より具体的には、正極集電体21Aに電気的に接続されている。正極端子31の構成材料は、特に限定されないが、具体的には、正極集電体21Aの構成材料と同様である。
[Multiple positive terminals and multiple negative terminals]
As shown in FIG. 3, the positive electrode terminal 31 is electrically connected to the positive electrode 21, and more specifically, to the positive electrode current collector 21A. The constituent material of the positive electrode terminal 31 is not particularly limited, but specifically, it is the same as the constituent material of the positive electrode current collector 21A.
 電池素子20では、上記したように、正極21および負極22がセパレータ23を介して交互に積層されているため、その電池素子20は、複数の正極21を含んでいる。これにより、正極端子31は、複数の正極21のそれぞれに接続されているため、二次電池は、複数の正極端子31を備えている。複数の正極端子31は、後述するように、互いに接合されているため、図1に示したように、1本のリード状の接合部31Zを形成している。 In the battery element 20, as described above, the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separator 23 in between, so the battery element 20 includes a plurality of positive electrodes 21. As a result, the positive electrode terminal 31 is connected to each of the plurality of positive electrodes 21, so that the secondary battery includes the plurality of positive electrode terminals 31. As described later, the plurality of positive electrode terminals 31 are joined to each other, so as shown in FIG. 1, they form one lead-shaped joint portion 31Z.
 ここでは、上記したように、正極集電体21Aの突出部が正極端子31として機能しているため、その正極端子31は、正極集電体21Aと物理的に一体化されている。正極集電体21Aと正極端子31との接続抵抗が低下するため、二次電池全体の電気抵抗が低下するからである。 Here, as described above, since the protrusion of the positive electrode current collector 21A functions as the positive electrode terminal 31, the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A. This is because the connection resistance between the positive electrode current collector 21A and the positive electrode terminal 31 is reduced, so that the electrical resistance of the entire secondary battery is reduced.
 負極端子32は、図4に示したように、負極22に電気的に接続されており、より具体的には、負極集電体22Aに電気的に接続されている。この負極端子32は、正極21および負極22がセパレータ23を介して交互に積層されている状態において、正極端子31と重ならない位置に配置されている。負極端子32の構成材料は、特に限定されないが、具体的には、負極集電体22Aの構成材料と同様である。 As shown in FIG. 4, the negative electrode terminal 32 is electrically connected to the negative electrode 22, and more specifically, to the negative electrode current collector 22A. This negative electrode terminal 32 is arranged at a position that does not overlap with the positive electrode terminal 31 in a state where the positive electrode 21 and the negative electrode 22 are alternately stacked with the separator 23 in between. The constituent material of the negative electrode terminal 32 is not particularly limited, but specifically, it is the same as the constituent material of the negative electrode current collector 22A.
 電池素子20では、上記したように、正極21および負極22がセパレータ23を介して交互に積層されているため、その電池素子20は、複数の負極22を含んでいる。これにより、負極端子32は、複数の負極22のそれぞれに接続されているため、二次電池は、複数の負極端子32を備えている。複数の負極端子32は、後述するように、互いに接合されているため、図1に示したように、1本のリード状の接合部32Zを形成している。 As described above, in the battery element 20, the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separator 23 in between, so the battery element 20 includes a plurality of negative electrodes 22. Thereby, the negative electrode terminal 32 is connected to each of the plurality of negative electrodes 22, so that the secondary battery includes the plurality of negative electrode terminals 32. As described later, the plurality of negative electrode terminals 32 are joined to each other, so as shown in FIG. 1, they form one lead-shaped joint 32Z.
 ここでは、上記したように、負極集電体22Aの突出部が負極端子32として機能しているため、その負極端子32は、負極集電体22Aと物理的に一体化されている。負極集電体22Aと負極端子32との接続抵抗が低下するため、二次電池全体の電気抵抗が低下するからである。 Here, as described above, since the protrusion of the negative electrode current collector 22A functions as the negative electrode terminal 32, the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A. This is because the connection resistance between the negative electrode current collector 22A and the negative electrode terminal 32 is reduced, so that the electrical resistance of the entire secondary battery is reduced.
[正極リードおよび負極リード]
 正極リード41は、図1に示したように、互いに接合されている複数の正極端子31である接合部31Zに接続されており、外装フィルム10から導出されている。正極リード41の構成材料は、特に限定されないが、具体的には、正極集電体21Aの構成材料と同様である。正極リード41の形状は、特に限定されないが、具体的には、薄板状および網目状などのうちのいずれかである。
[Positive lead and negative lead]
As shown in FIG. 1, the positive electrode lead 41 is connected to a joint portion 31Z, which is a plurality of positive electrode terminals 31 joined to each other, and is led out from the exterior film 10. The constituent material of the positive electrode lead 41 is not particularly limited, but specifically, it is the same as the constituent material of the positive electrode current collector 21A. Although the shape of the positive electrode lead 41 is not particularly limited, specifically, it is either a thin plate shape or a mesh shape.
 負極リード42は、図1に示したように、互いに接合されている複数の負極端子32である接合部32Zに接続されており、外装フィルム10から導出されている。負極リード42の構成材料は、特に限定されないが、具体的には、負極集電体22Aの構成材料と同様である。なお、負極リード42の導出方向は、正極リード41の導出方向と同様の方向である。また、負極リード42の形状に関する詳細は、正極リード41の形状に関する詳細と同様である。 As shown in FIG. 1, the negative electrode lead 42 is connected to a joint portion 32Z, which is a plurality of negative electrode terminals 32 joined to each other, and is led out from the exterior film 10. The constituent material of the negative electrode lead 42 is not particularly limited, but specifically, it is the same as the constituent material of the negative electrode current collector 22A. Note that the direction in which the negative electrode lead 42 is led out is the same direction as the direction in which the positive electrode lead 41 is led out. Further, the details regarding the shape of the negative electrode lead 42 are the same as the details regarding the shape of the positive electrode lead 41.
[封止フィルム]
 封止フィルム51,52のそれぞれは、外装フィルム10の内部に外気などが侵入することを防止する封止部材である。封止フィルム51は、外装フィルム10と正極リード41との間に挿入されていると共に、封止フィルム52は、外装フィルム10と負極リード42との間に挿入されている。ただし、封止フィルム51,52のうちの一方または双方は、省略されてもよい。
[Sealing film]
Each of the sealing films 51 and 52 is a sealing member that prevents outside air from entering the exterior film 10. The sealing film 51 is inserted between the exterior film 10 and the positive electrode lead 41, and the sealing film 52 is inserted between the exterior film 10 and the negative electrode lead 42. However, one or both of the sealing films 51 and 52 may be omitted.
 この封止フィルム51は、正極リード41に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、その高分子化合物の具体例は、ポリプロピレンなどである。 This sealing film 51 contains a polymer compound such as polyolefin that has adhesiveness to the positive electrode lead 41, and a specific example of the polymer compound is polypropylene.
 封止フィルム52の構成は、負極リード42に対して密着性を有することを除いて、封止フィルム51の構成と同様である。すなわち、封止フィルム52は、負極リード42に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。 The configuration of the sealing film 52 is similar to that of the sealing film 51 except that it has adhesiveness to the negative electrode lead 42. That is, the sealing film 52 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 42.
<1-2.物性>
 図5は、二次電池の加熱試験後における電池素子20の断面構成を表しており、図2に対応している。
<1-2. Physical properties>
FIG. 5 shows a cross-sectional configuration of the battery element 20 after the secondary battery heating test, and corresponds to FIG. 2.
 この二次電池では、電池特性を改善するために物性が適正化されている。 In this secondary battery, the physical properties have been optimized to improve battery characteristics.
[物性条件]
 加熱試験後の二次電池(電池素子20)では、図5に示したように、多孔質層23AがXY面の面内方向において熱収縮する。より具体的には、下記の充電条件で二次電池が充電された状態において、130℃および60分間の条件で二次電池が加熱された後(加熱試験)、多孔質層23Aは、上記したように、熱収縮する。これにより、正極側被覆層23Bの一部は、多孔質層23Aから剥離していると共に、正極活物質層21Bに密着している。すなわち、正極側被覆層23Bの一部は、多孔質層23Aに隣接されていないと共に、正極活物質層21Bに隣接されている。ただし、図5では、多孔質層23Aの熱収縮に起因して負極側被覆層23Cの一部が負極活物質層22Bから剥離しているため、その負極側被覆層23Cの一部が負極活物質層22Bに隣接されていない場合を示している。
[Physical property conditions]
In the secondary battery (battery element 20) after the heating test, as shown in FIG. 5, the porous layer 23A undergoes thermal contraction in the in-plane direction of the XY plane. More specifically, in a state where the secondary battery is charged under the following charging conditions, after the secondary battery is heated at 130° C. for 60 minutes (heating test), the porous layer 23A is As in, heat shrinks. As a result, a part of the positive electrode side coating layer 23B is peeled off from the porous layer 23A and is in close contact with the positive electrode active material layer 21B. That is, a part of the positive electrode side coating layer 23B is not adjacent to the porous layer 23A and is adjacent to the positive electrode active material layer 21B. However, in FIG. 5, a part of the negative electrode side coating layer 23C is peeled off from the negative electrode active material layer 22B due to thermal contraction of the porous layer 23A, so a part of the negative electrode side coating layer 23C is removed from the negative electrode active material layer 22B. A case is shown in which the material layer 22B is not adjacent to the material layer 22B.
 充電条件:25℃の環境中において、0.2Cの電流で電圧が4.25Vに到達するまで定電流充電したのち、4.25Vの電圧で総充電時間が6時間に到達するまで定電圧充電する。ただし、0.2Cは、電池容量(定格容量)を5時間で放電しきる電流値である。 Charging conditions: In a 25°C environment, constant current charging with a current of 0.2C until the voltage reaches 4.25V, then constant voltage charging with a voltage of 4.25V until the total charging time reaches 6 hours. do. However, 0.2C is a current value that completely discharges the battery capacity (rated capacity) in 5 hours.
 なお、加熱温度は、130℃に限られず、130℃±2℃でもよい。また、加熱時間は、60分間に限られず、60分間±10分間でもよい。 Note that the heating temperature is not limited to 130°C, but may be 130°C±2°C. Further, the heating time is not limited to 60 minutes, but may be 60 minutes±10 minutes.
 加熱試験後の電池素子20において多孔質層23Aから剥離した正極側被覆層23Bの一部が正極活物質層21Bに密着しているのは、正極21と負極22との間における放電反応の進行が担保されながら、その正極21と負極22との接触に起因する短絡の発生が抑制されるからである。 In the battery element 20 after the heating test, a portion of the positive electrode side coating layer 23B that has peeled off from the porous layer 23A is in close contact with the positive electrode active material layer 21B because the discharge reaction between the positive electrode 21 and the negative electrode 22 is progressing. This is because the short circuit caused by the contact between the positive electrode 21 and the negative electrode 22 is suppressed from occurring while ensuring this.
 詳細には、充電状態の二次電池が加熱される前(加熱試験前)の状態では、放電反応が安定に進行しやすくなるため、放電特性が向上する。この場合には、特に、放電電流が増加しても、放電反応が安定に進行する。 Specifically, in the state before the charged secondary battery is heated (before the heating test), the discharge reaction tends to proceed stably, so the discharge characteristics are improved. In this case, the discharge reaction proceeds stably even if the discharge current increases.
 しかも、充電状態の二次電池が加熱された後(加熱試験後)の状態では、正極側被覆層23B(セパレータ結着剤)が正極活物質層21B(正極結着剤)に熱融着されるため、その正極側被覆層23Bが正極活物質層21Bに強固に密着する。この場合には、図5に示したように、二次電池の発熱時および加熱時においてセパレータ23が熱収縮しても、正極側被覆層23Bの一部が正極活物質層21Bから剥離せずに正極活物質層21Bの表面に残存する。これにより、セパレータ23の熱収縮の影響を受けずに、正極21と負極22との間に絶縁性の正極側被覆層23Bが介在している状態は維持されやすくなるため、短絡の発生が抑制される。 Moreover, after the charged secondary battery is heated (after the heating test), the positive electrode side coating layer 23B (separator binder) is thermally fused to the positive electrode active material layer 21B (positive electrode binder). Therefore, the positive electrode side coating layer 23B tightly adheres to the positive electrode active material layer 21B. In this case, as shown in FIG. 5, even if the separator 23 shrinks due to heat generation and heating of the secondary battery, a part of the positive electrode side coating layer 23B does not peel off from the positive electrode active material layer 21B. remains on the surface of the positive electrode active material layer 21B. As a result, the state in which the insulating positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22 is easily maintained without being affected by the thermal contraction of the separator 23, thereby suppressing the occurrence of short circuits. be done.
[目付量]
 目付量は、正極側被覆層23Bの形成量を表すパラメータであり、その目付量は、特に限定されない。中でも、正極側被覆層23Bの目付量は、3g/m~7g/mであることが好ましい。正極側被覆層23Bの形成量が適正化されるからである。これにより、正極21と負極22との間に正極側被覆層23Bが介在していても、放電反応の進行が阻害されにくくなる。しかも、二次電池の加熱時において正極側被覆層23Bが正極活物質層21Bに熱融着された際に、その正極側被覆層23Bの一部が正極活物質層21Bの表面に残存しやすくなる。よって、放電反応の進行の担保と短絡の発生の抑制とが両立されやすくなる。
[Basic weight]
The basis weight is a parameter representing the amount of the positive electrode side coating layer 23B formed, and the basis weight is not particularly limited. Among these, the basis weight of the positive electrode side coating layer 23B is preferably 3 g/m 2 to 7 g/m 2 . This is because the amount of the positive electrode side coating layer 23B formed is optimized. Thereby, even if the positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22, the progress of the discharge reaction is less likely to be inhibited. Moreover, when the positive electrode side coating layer 23B is thermally fused to the positive electrode active material layer 21B during heating of the secondary battery, a part of the positive electrode side coating layer 23B tends to remain on the surface of the positive electrode active material layer 21B. Become. Therefore, it becomes easier to ensure the progress of the discharge reaction and to suppress the occurrence of short circuits.
[算出手順]
 目付量の算出手順は、以下で説明する通りである。以下では、正極21が2つの正極活物質層21Bを含んでいると共に、セパレータ23が正極側被覆層23Bおよび負極側被覆層23Cを含んでいる場合に関して説明している。
[Calculation procedure]
The procedure for calculating the basis weight is as explained below. In the following, a case will be described in which the positive electrode 21 includes two positive electrode active material layers 21B, and the separator 23 includes a positive electrode side coating layer 23B and a negative electrode side coating layer 23C.
 最初に、常温環境中(温度=25℃)において)二次電池を解体することにより、セパレータ23を回収する。 First, the separator 23 is recovered by disassembling the secondary battery in a normal temperature environment (temperature = 25° C.).
 続いて、セパレータ23の重量(g)を測定する。続いて、溶解除去用の溶媒を用いて多孔質層23Aから正極側被覆層23Bおよび負極側被覆層23Cを溶解除去することにより、その多孔質層23Aを回収したのち、その多孔質層23Aの重量(g)を測定する。溶媒の種類は、特に限定されないが、具体的には、セパレータ結着剤を溶解可能であるN-メチル-2-ピロリドンなどの有機溶剤である。続いて、セパレータ23の重量から多孔質層23Aの重量を差し引くことにより、正極側被覆層23Bおよび負極側被覆層23Cの重量(g)を算出する。 Next, the weight (g) of the separator 23 is measured. Next, by dissolving and removing the positive electrode side coating layer 23B and the negative electrode side coating layer 23C from the porous layer 23A using a solvent for dissolving and removing, the porous layer 23A is recovered. Measure the weight (g). The type of solvent is not particularly limited, but specifically, it is an organic solvent such as N-methyl-2-pyrrolidone that can dissolve the separator binder. Subsequently, by subtracting the weight of the porous layer 23A from the weight of the separator 23, the weights (g) of the positive electrode side coating layer 23B and the negative electrode side coating layer 23C are calculated.
 最後に、正極側被覆層23Bおよび負極側被覆層23Cのそれぞれの重量(g)と、その正極側被覆層23Bまたは負極側被覆層23Cの面積(cm)とに基づいて、目付量(g/cm)を算出する。なお、正極側被覆層23Bの面積と負極側被覆層23Cの面積とは、互いにほぼ同じになるため、目付量を算出するために用いる面積は、正極側被覆層23Bの面積でもよいし、負極側被覆層23Cの面積でもよい。 Finally , the basis weight (g /cm 2 ). Note that since the area of the positive electrode side coating layer 23B and the area of the negative electrode side coating layer 23C are almost the same, the area used to calculate the basis weight may be the area of the positive electrode side coating layer 23B, or the area of the negative electrode side coating layer 23B. The area of the side covering layer 23C may also be used.
 この目付量は、下記の式(4)で表される計算式に基づいて算出される。すなわち、目付量は、単位面積当たりにおける正極側被覆層23Bおよび負極側被覆層23Cの形成量を表すパラメータである。ただし、目付量の値は、小数点第一位の値が四捨五入された値とする。 This basis weight is calculated based on the calculation formula expressed by the following formula (4). That is, the basis weight is a parameter representing the amount of the positive electrode side coating layer 23B and the negative electrode side coating layer 23C formed per unit area. However, the value of the basis weight shall be the value obtained by rounding off the value to the first decimal place.
 目付量=正極側被覆層23Bの重量と負極側被覆層23Cの重量との和/正極側被覆層23Bの面積または負極側被覆層23Cの面積 ・・・(4) Area weight = sum of the weight of the positive electrode side coating layer 23B and the weight of the negative electrode side coating layer 23C/area of the positive electrode side coating layer 23B or area of the negative electrode side coating layer 23C... (4)
[確認手順]
 加熱試験後における電池素子20の状態の確認手順、すなわち加熱試験後において多孔質層23Aから剥離した正極側被覆層23Bの一部が正極活物質層21Bに密着しているか否かを確認する手順は、以下で説明する通りである。
[Confirmation procedure]
A procedure for checking the state of the battery element 20 after the heating test, that is, a procedure for checking whether a part of the positive electrode side coating layer 23B peeled off from the porous layer 23A after the heating test is in close contact with the positive electrode active material layer 21B. is as explained below.
 最初に、上記した手順により、二次電池の加熱試験を行ったのち、加熱試験後の二次電池を解体することにより、電池素子20を回収する。 First, a heating test is performed on the secondary battery according to the above-described procedure, and then the battery element 20 is recovered by disassembling the secondary battery after the heating test.
 続いて、正極21および負極22がセパレータ23を介して交互に積層されている方向(Z軸方向)において、切断器具を用いて電池素子20を切断することにより、その電池素子20の断面を露出させる。続いて、電子顕微鏡を用いて電池素子20の断面(XZ面に沿った断面)を観察することにより、図5に示した観察結果(断面構成)を得る。 Next, the cross section of the battery element 20 is exposed by cutting the battery element 20 using a cutting tool in the direction in which the positive electrodes 21 and the negative electrodes 22 are alternately stacked with the separators 23 in between (Z-axis direction). let Subsequently, by observing the cross section (cross section along the XZ plane) of the battery element 20 using an electron microscope, the observation results (cross-sectional configuration) shown in FIG. 5 are obtained.
 切断器具としては、日本電子株式会社製のクロスセクションポリッシャ(登録商標)などを用いることが可能である。 As the cutting tool, Cross Section Polisher (registered trademark) manufactured by JEOL Ltd. or the like can be used.
 電子顕微鏡としては、走査型電子顕微鏡(SEM)および透過型電子顕微鏡などの電子顕微鏡のうちのいずれか1種類または2種類以上を用いることが可能である。なお、観察倍率は、特に限定されないが、具体的には、20000倍とする。 As the electron microscope, it is possible to use one or more types of electron microscopes such as a scanning electron microscope (SEM) and a transmission electron microscope. Note that the observation magnification is not particularly limited, but specifically, it is 20,000 times.
 最後に、図5に示したように、電子顕微鏡写真に基づいて、正極側被覆層23Bの状態を確認する。これにより、多孔質層23Aが熱収縮しているにも関わらず、正極側被覆層23Bの一部が依然として正極活物質層21Bに隣接している場合には、加熱試験前では正極側被覆層23Bの全体が多孔質層23Aに密着していたにも関わらず、加熱試験後では多孔質層23Aから剥離した正極側被覆層23Bの一部が正極活物質層21Bに密着していることになる。 Finally, as shown in FIG. 5, the state of the positive electrode side coating layer 23B is confirmed based on an electron micrograph. As a result, if a part of the positive electrode side coating layer 23B is still adjacent to the positive electrode active material layer 21B even though the porous layer 23A has thermally shrunk, the positive electrode side coating layer 23B is Although the entirety of the positive electrode side coating layer 23B was in close contact with the porous layer 23A, after the heating test, it was found that part of the positive electrode side coating layer 23B that had peeled off from the porous layer 23A was in close contact with the positive electrode active material layer 21B. Become.
<1-3.動作>
 二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。一方、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-3. Operation>
When charging the secondary battery, in the battery element 20, lithium is released from the positive electrode 21, and at the same time, the lithium is inserted into the negative electrode 22 via the electrolyte. On the other hand, when the secondary battery is discharged, lithium is released from the negative electrode 22 in the battery element 20, and the lithium is inserted into the positive electrode 21 via the electrolyte. During charging and discharging, lithium is intercalated and released in an ionic state.
<1-4.製造方法>
 図6は、二次電池の製造方法を説明するために、図1に対応する斜視構成を示してる。ただし、図6では、電池素子20の代わりに、その電池素子20を作製するために用いられる積層体20Zを示している。なお、積層体20Zの詳細に関しては、後述する。
<1-4. Manufacturing method>
FIG. 6 shows a perspective configuration corresponding to FIG. 1 in order to explain a method for manufacturing a secondary battery. However, in FIG. 6, instead of the battery element 20, a laminate 20Z used for manufacturing the battery element 20 is shown. Note that details of the laminate 20Z will be described later.
 二次電池を製造する場合には、以下で説明する一例の手順により、正極21、負極22およびセパレータ23のそれぞれを作製すると共に、電解液を調製したのち、その正極21、負極22、セパレータ23および電解液を用いて二次電池を組み立てると共に、その二次電池の安定化処理を行う。 When manufacturing a secondary battery, the positive electrode 21, the negative electrode 22, and the separator 23 are each manufactured according to the procedure described below, and after preparing the electrolyte, the positive electrode 21, negative electrode 22, and separator 23 are prepared. A secondary battery is assembled using the electrolyte and the secondary battery is stabilized.
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極端子31が一体化されている正極集電体21Aの両面(正極端子31を除く。)に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成形する。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成形を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[Preparation of positive electrode]
First, a paste-like positive electrode mixture slurry is prepared by adding a mixture of a positive electrode active material, a positive electrode binder, and a positive electrode conductive agent (positive electrode mixture) to a solvent. This solvent may be an aqueous solvent or an organic solvent. Subsequently, a positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (excluding the positive electrode terminal 31) on which the positive electrode terminal 31 is integrated, thereby forming the positive electrode active material layer 21B. Finally, the positive electrode active material layer 21B is compression molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated multiple times. Thereby, the positive electrode active material layers 21B are formed on both sides of the positive electrode current collector 21A, so that the positive electrode 21 is manufactured.
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極22を形成する。具体的には、最初に、負極活物質、負極結着剤および負極導電剤が互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極端子32が一体化されている負極集電体22Aの両面(負極端子32を除く。)に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。最後に、負極活物質層22Bを圧縮成形する。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[Preparation of negative electrode]
The negative electrode 22 is formed by the same procedure as the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductive agent are mixed together into a solvent. Subsequently, a negative electrode active material layer 22B is formed by applying a negative electrode mixture slurry to both surfaces (excluding the negative electrode terminal 32) of the negative electrode current collector 22A in which the negative electrode terminal 32 is integrated. Finally, the negative electrode active material layer 22B is compression molded. Thereby, the negative electrode active material layers 22B are formed on both sides of the negative electrode current collector 22A, so that the negative electrode 22 is manufactured.
[セパレータの作製]
 最初に、複数の絶縁性粒子と、セパレータ結着剤とが互いに混合された混合物を溶媒に投入することにより、ペースト状のスラリーを調製する。溶媒に関する詳細は、上記した通りである。続いて、多孔質層23Aの一面にスラリーを塗布することにより、複数の絶縁性粒子を含んでいる正極側被覆層23Bを形成する。
[Preparation of separator]
First, a paste-like slurry is prepared by adding a mixture of a plurality of insulating particles and a separator binder to a solvent. Details regarding the solvent are as described above. Subsequently, by applying slurry to one surface of the porous layer 23A, a positive electrode side coating layer 23B containing a plurality of insulating particles is formed.
 最後に、溶媒にセパレータ結着剤を投入することにより、ペースト状のスラリーを調製したのち、正極側被覆層23Bが形成されていない多孔質層23Aの一面にスラリーを塗布することにより、複数の絶縁性粒子を含んでいない負極側被覆層23Cを形成する。 Finally, a paste-like slurry is prepared by adding a separator binder to a solvent, and then the slurry is applied to one surface of the porous layer 23A on which the positive electrode side coating layer 23B is not formed. A negative electrode side coating layer 23C containing no insulating particles is formed.
 これにより、多孔質層23Aの片面に正極側被覆層23Bが形成されると共に、その多孔質層23Aの反対側面に負極側被覆層23Cが形成されるため、セパレータ23が作製される。 As a result, the positive electrode side coating layer 23B is formed on one side of the porous layer 23A, and the negative electrode side coating layer 23C is formed on the opposite side of the porous layer 23A, so that the separator 23 is produced.
[電解液の調製]
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[Preparation of electrolyte]
Add electrolyte salt to the solvent. As a result, the electrolyte salt is dispersed or dissolved in the solvent, so that an electrolytic solution is prepared.
[二次電池の組み立て]
 最初に、セパレータ23を介して正極21および負極22を交互に積層させることにより、図5に示したように、積層体20Zを作製する。この積層体20Zは、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。
[Assembling the secondary battery]
First, the positive electrode 21 and the negative electrode 22 are alternately laminated with the separator 23 in between, thereby producing a laminate 20Z as shown in FIG. This laminate 20Z has the same configuration as the battery element 20, except that the positive electrode 21, the negative electrode 22, and the separator 23 are not impregnated with an electrolytic solution.
 続いて、溶接法などの接合法を用いて、複数の正極端子31を互いに接合させることにより、接合部31Zを形成したのち、その接合部31Zに正極リード41を接続させる。また、溶接法などの接合法を用いて、複数の負極端子32を互いに接合させることにより、接合部32Zを形成したのち、その接合部32Zに負極リード42を接続させる。 Subsequently, a joint portion 31Z is formed by joining the plurality of positive electrode terminals 31 to each other using a joining method such as a welding method, and then the positive electrode lead 41 is connected to the joint portion 31Z. Further, after a joint portion 32Z is formed by joining the plurality of negative electrode terminals 32 to each other using a joining method such as a welding method, the negative electrode lead 42 is connected to the joint portion 32Z.
 続いて、窪み部10Uの内部に積層体20Zを収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させる。続いて、熱融着法などの接着法を用いて、互いに対向する融着層のうちの2辺の外周縁部同士を互いに接着させることにより、袋状の外装フィルム10の内部に積層体20Zを収納する。この場合には、正極リード41および負極リード42のそれぞれを外装フィルム10から導出させる。 Subsequently, after accommodating the laminate 20Z inside the recess 10U, the exterior films 10 (fusion layer/metal layer/surface protection layer) are folded to face each other. Subsequently, the outer peripheral edges of two sides of the fusion layers facing each other are adhered to each other using an adhesive method such as a heat fusion method, thereby forming the laminate 20Z inside the bag-shaped exterior film 10. to store. In this case, each of the positive electrode lead 41 and the negative electrode lead 42 is led out from the exterior film 10.
 続いて、袋状の外装フィルム10の内部に電解液を注入したのち、熱融着法などの接着法を用いて、互いに対向する融着層のうちの残りの1辺の外周縁部同士を互いに接着させる。この場合には、外装フィルム10と正極リード41との間に封止フィルム51を挿入すると共に、外装フィルム10と負極リード42との間に封止フィルム52を挿入する。 Next, after injecting an electrolytic solution into the inside of the bag-shaped exterior film 10, the outer peripheral edges of the remaining one side of the facing adhesive layers are bonded together using an adhesive method such as a heat fusion method. Glue them together. In this case, a sealing film 51 is inserted between the exterior film 10 and the positive electrode lead 41, and a sealing film 52 is inserted between the exterior film 10 and the negative electrode lead 42.
 最後に、図示しない一対のプレス板を備えたプレス機を用いて、積層体20Zが収納されている外装フィルム10を熱プレスする。この場合には、一対のプレス板の間に外装フィルム10を配置したのち、正極21および負極22がセパレータ23を介して交互に積層されている方向(Z軸方向)において外装フィルム10を加熱しながら上下から押圧する。これにより、正極側被覆層23Bを介して多孔質層23Aが正極21に密着すると共に、負極側被覆層23Cを介して多孔質層23Aが負極22に密着する。 Finally, using a press machine equipped with a pair of press plates (not shown), the exterior film 10 containing the laminate 20Z is hot-pressed. In this case, after arranging the exterior film 10 between a pair of press plates, the exterior film 10 is heated in the direction in which the positive electrode 21 and the negative electrode 22 are alternately laminated with the separator 23 in between (Z-axis direction), and then the exterior film 10 is moved up and down. Press from As a result, the porous layer 23A is brought into close contact with the positive electrode 21 via the positive electrode side covering layer 23B, and the porous layer 23A is brought into close contact with the negative electrode 22 through the negative electrode side covering layer 23C.
 これにより、積層体20Zに電解液が含浸されるため、積層電極体である電池素子20が作製される。よって、袋状の外装フィルム10の内部に電池素子20が封入されるため、二次電池が組み立てられる。 As a result, the stacked body 20Z is impregnated with the electrolytic solution, so that the battery element 20, which is a stacked electrode body, is manufactured. Therefore, since the battery element 20 is sealed inside the bag-shaped exterior film 10, a secondary battery is assembled.
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、二次電池が完成する。
[Stabilization of secondary batteries]
Charge and discharge the assembled secondary battery. Conditions such as environmental temperature, number of charging/discharging times (number of cycles), and charging/discharging conditions can be set arbitrarily. As a result, a film is formed on each surface of the positive electrode 21 and the negative electrode 22, so that the state of the secondary battery is electrochemically stabilized. Thus, the secondary battery is completed.
<1-5.作用および効果>
 この二次電池によれば、多孔質層23Aおよび正極側被覆層23Bを含むセパレータ23が正極21と負極22との間に配置されている。また、正極21の正極活物質層21Bが正極活物質および正極結着剤を含んでおり、多孔質層23Aと正極活物質層21Bとの間に配置された正極側被覆層23Bが複数の絶縁性粒子およびセパレータ結着剤を含んでいる。さらに、正極側被覆層23Bの一部が多孔質層23Aに隣接されていないと共に正極活物質層21Bに隣接されている。
<1-5. Action and effect>
According to this secondary battery, the separator 23 including the porous layer 23A and the positive electrode side coating layer 23B is arranged between the positive electrode 21 and the negative electrode 22. Further, the positive electrode active material layer 21B of the positive electrode 21 contains a positive electrode active material and a positive electrode binder, and the positive electrode side coating layer 23B disposed between the porous layer 23A and the positive electrode active material layer 21B has a plurality of insulating layers. containing particles and a separator binder. Further, a part of the positive electrode side coating layer 23B is not adjacent to the porous layer 23A and is adjacent to the positive electrode active material layer 21B.
 この場合には、上記したように、充電状態の二次電池が加熱される前の状態では、放電反応が安定に進行しやすくなるため、放電特性が向上する。 In this case, as described above, before the charged secondary battery is heated, the discharge reaction tends to proceed stably, so the discharge characteristics are improved.
 しかも、充電状態の二次電池が加熱された後の状態では、正極側被覆層23Bが正極活物質層21Bに熱融着される。これにより、二次電池の発熱時および加熱時においてセパレータ23が熱収縮しても、正極側被覆層23Bの一部が正極活物質層21Bの表面に残存する。よって、正極21と負極22との間に絶縁性の正極側被覆層23Bが介在する状態は維持されやすくなるため、短絡の発生が抑制される。 Moreover, in a state after the charged secondary battery is heated, the positive electrode side coating layer 23B is thermally fused to the positive electrode active material layer 21B. As a result, even if the separator 23 thermally shrinks during heat generation and heating of the secondary battery, a portion of the positive electrode side coating layer 23B remains on the surface of the positive electrode active material layer 21B. Therefore, the state in which the insulating positive electrode side coating layer 23B is interposed between the positive electrode 21 and the negative electrode 22 is easily maintained, so that the occurrence of short circuits is suppressed.
 これらのことから、放電特性が担保されながら短絡の発生が抑制されるため、優れた電池特性を得ることができる。 For these reasons, since the occurrence of short circuits is suppressed while ensuring discharge characteristics, excellent battery characteristics can be obtained.
 特に、正極結着剤およびセパレータ結着剤のそれぞれがフッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの一方または双方を含んでいれば、二次電池が加熱された際に、正極活物質層21B(正極結着剤)と正極側被覆層23B(セパレータ結着剤)とが互いに熱融着されやすくなるため、より高い効果を得ることができる。 In particular, if each of the positive electrode binder and the separator binder contains one or both of vinylidene fluoride homopolymer and vinylidene fluoride copolymer, when the secondary battery is heated, Since the positive electrode active material layer 21B (positive electrode binder) and the positive electrode side coating layer 23B (separator binder) are easily thermally fused to each other, higher effects can be obtained.
 また、複数の絶縁性粒子のそれぞれが金属水酸化物、金属酸化物および金属窒化物のうちのいずれか1種類または2種類以上を含んでいれば、正極側被覆層23Bにおいて十分な放熱性が得られるため、より高い効果を得ることができる。 Further, if each of the plurality of insulating particles contains one or more types of metal hydroxide, metal oxide, and metal nitride, sufficient heat dissipation properties can be achieved in the positive electrode side coating layer 23B. Therefore, higher effects can be obtained.
 また、正極21および負極22がセパレータ23を介して交互に積層されていれば、その正極21がセパレータ23を介して積層されていても短絡の発生が効果的に抑制されるため、より高い効果を得ることができる。 Furthermore, if the positive electrodes 21 and negative electrodes 22 are alternately stacked with the separator 23 in between, the occurrence of short circuits can be effectively suppressed even if the positive electrodes 21 are stacked with the separator 23 in between, resulting in a higher effect. can be obtained.
 この場合には、複数の正極21のそれぞれに正極端子31が接続されており、複数の負極22のそれぞれに負極端子32が接続されており、複数の正極端子31が互いに接合されており、複数の負極端子32が互いに接合されていれば、電池容量が担保されながら短絡の発生が効果的に抑制されるため、さらに高い効果を得ることができる。 In this case, a positive electrode terminal 31 is connected to each of the plurality of positive electrodes 21, a negative electrode terminal 32 is connected to each of the plurality of negative electrodes 22, a plurality of positive electrode terminals 31 are joined to each other, and a plurality of positive electrode terminals 31 are connected to each of the plurality of negative electrodes 22. If the negative electrode terminals 32 of the two are connected to each other, the battery capacity is guaranteed and the occurrence of short circuits is effectively suppressed, so that even higher effects can be obtained.
 しかも、外装フィルム10の内部に電池素子20が収納されており、接合部31Zに接合された正極リード41が外装フィルム10から導出されており、接合部32Zに接合された負極リード42が外装フィルム10から導出されていれば、複数の正極端子31および複数の負極端子32を用いても外装フィルム10の封止性が向上するため、著しく高い効果を得ることができる。 Moreover, the battery element 20 is housed inside the exterior film 10, the positive electrode lead 41 joined to the joint 31Z is led out from the exterior film 10, and the negative electrode lead 42 joined to the joint 32Z is connected to the exterior film. 10, even if a plurality of positive electrode terminals 31 and a plurality of negative electrode terminals 32 are used, the sealing performance of the exterior film 10 is improved, and a significantly high effect can be obtained.
 詳細には、外装フィルム10から接合部31Zを導出させる場合には、複数の正極端子31の接合体である接合部31Zの厚さが大きくなるため、その外装フィルム10と接合部31Zとの間に隙間が発生しやすくなる。これにより、封止フィルム51を用いて外装フィルム10を封止しにくくなるため、その外装フィルム10の封止性が低下する。 Specifically, when the joint portion 31Z is led out from the exterior film 10, the thickness of the joint portion 31Z, which is a joined body of a plurality of positive electrode terminals 31, increases. gaps are likely to occur. This makes it difficult to seal the exterior film 10 using the sealing film 51, and thus the sealability of the exterior film 10 is reduced.
 これに対して、外装フィルム10から正極リード41を導出させる場合には、複数の正極端子31の接合体である接合部31Zの厚さと比較して、その正極リード41の厚さが小さくなるため、その外装フィルム10と正極リード41との間に隙間が発生しにくくなる。これにより、封止フィルム51を用いて外装フィルム10を封止しやすくなるため、その外装フィルム10の封止性が向上する。 On the other hand, when the positive electrode lead 41 is led out from the exterior film 10, the thickness of the positive electrode lead 41 becomes smaller compared to the thickness of the joint part 31Z, which is a joined body of the plurality of positive electrode terminals 31. , a gap is less likely to occur between the exterior film 10 and the positive electrode lead 41. This makes it easier to seal the exterior film 10 using the sealing film 51, so that the sealability of the exterior film 10 is improved.
 なお、ここで説明した外装フィルム10から正極リード41を導出させることに基づく利点は、外装フィルム10から負極リード42を導出させることに基づいても同様に得られる。すなわち、外装フィルム10から接合部32Zではなく負極リード42を導出させることにより、封止フィルム52を用いて外装フィルム10を封止しやすくなるため、その外装フィルム10の封止性が向上する。 Note that the advantages described here based on leading out the positive electrode lead 41 from the exterior film 10 can be similarly obtained based on leading out the negative electrode lead 42 from the exterior film 10. That is, by leading out the negative electrode lead 42 instead of the joint portion 32Z from the exterior film 10, it becomes easier to seal the exterior film 10 using the sealing film 52, so that the sealability of the exterior film 10 is improved.
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。 Furthermore, if the secondary battery is a lithium ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing intercalation and desorption of lithium, so higher effects can be obtained.
<2.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。
<2. Modified example>
The configuration of the secondary battery described above can be modified as appropriate, as described below.
[変形例1]
 図2では、セパレータ23が正極側被覆層23Bおよび負極側被覆層23Cの双方を含んでいる。しかしながら、セパレータ23は、負極側被覆層23Cを含んでおらずに、正極側被覆層23Bだけを含んでいてもよい。この場合においても、正極側被覆層23Bを利用して正極21に対するセパレータ23の密着力が増大するため、同様の効果を得ることができる。
[Modification 1]
In FIG. 2, the separator 23 includes both a positive electrode side coating layer 23B and a negative electrode side coating layer 23C. However, the separator 23 may include only the positive electrode side coating layer 23B without including the negative electrode side coating layer 23C. Also in this case, the adhesion of the separator 23 to the positive electrode 21 is increased using the positive electrode side coating layer 23B, so that the same effect can be obtained.
[変形例2]
 図3では、正極集電体21Aの突出部が正極端子31を兼ねているため、その正極端子31が正極集電体21Aと物理的に一体化されている。しかしながら、正極端子31は、正極集電体21Aから物理的に分離されているため、その正極集電体21Aとは別体化されていてもよい。この場合には、溶接法などの接合法を用いて、正極端子31が正極集電体21Aに接続されていてもよい。
[Modification 2]
In FIG. 3, since the protrusion of the positive electrode current collector 21A also serves as the positive electrode terminal 31, the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A. However, since the positive electrode terminal 31 is physically separated from the positive electrode current collector 21A, it may be separate from the positive electrode current collector 21A. In this case, the positive electrode terminal 31 may be connected to the positive electrode current collector 21A using a joining method such as a welding method.
 この場合においても、正極端子31が正極21に電気的に接続されるため、同様の効果を得ることができる。ただし、接続抵抗の低下に応じて二次電池全体の電気抵抗を低下させるためには、正極端子31は正極集電体21Aと物理的に一体化されていることが好ましい。 Also in this case, since the positive electrode terminal 31 is electrically connected to the positive electrode 21, the same effect can be obtained. However, in order to reduce the electrical resistance of the entire secondary battery in accordance with the reduction in connection resistance, it is preferable that the positive electrode terminal 31 is physically integrated with the positive electrode current collector 21A.
 同様に、図4では、負極集電体22Aの突出部が負極端子32を兼ねているため、その負極端子32が負極集電体22Aと物理的に一体化されている。しかしながら、負極端子32は、負極集電体22Aから物理的に分離されているため、その負極集電体22Aとは別体化されていてもよい。この場合には、溶接法などの接合法を用いて、負極端子32が負極集電体22Aに接続されていてもよい。 Similarly, in FIG. 4, the protrusion of the negative electrode current collector 22A also serves as the negative electrode terminal 32, so the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A. However, since the negative electrode terminal 32 is physically separated from the negative electrode current collector 22A, it may be separate from the negative electrode current collector 22A. In this case, the negative electrode terminal 32 may be connected to the negative electrode current collector 22A using a joining method such as a welding method.
 この場合においても、負極端子32が負極22に電気的に接続されるため、同様の効果を得ることができる。ただし、接続抵抗の低下に応じて二次電池全体の電気抵抗を低下させるためには、負極端子32は負極集電体22Aと物理的に一体化されていることが好ましい。 Also in this case, since the negative electrode terminal 32 is electrically connected to the negative electrode 22, the same effect can be obtained. However, in order to reduce the electrical resistance of the entire secondary battery in accordance with the reduction in connection resistance, it is preferable that the negative electrode terminal 32 is physically integrated with the negative electrode current collector 22A.
[変形例3]
 図1では、積層電極体である電池素子20を用いている。しかしながら、ここでは具体的に図示しないが、巻回電極体である電池素子20を用いてもよい。この場合には、正極21が帯状の構造を有しており、正極集電体21Aに正極リード41が接続されていると共に、負極22が帯状の構造を有しており、負極集電体22Aに負極リード42が接続されている。ただし、正極リード41の本数は、1本でもよいし、2本以上でもよいと共に、負極リード42の本数は、1本でもよいし、2本以上でもよい。これにより、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されている。
[Modification 3]
In FIG. 1, a battery element 20 which is a laminated electrode body is used. However, although not specifically illustrated here, the battery element 20 which is a wound electrode body may also be used. In this case, the positive electrode 21 has a band-like structure, and the positive electrode lead 41 is connected to the positive electrode current collector 21A, and the negative electrode 22 has a band-like structure, and the negative electrode current collector 22A A negative electrode lead 42 is connected to. However, the number of positive electrode leads 41 may be one or two or more, and the number of negative electrode leads 42 may be one or two or more. Thereby, the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 in between.
 この場合においても、電池素子20を利用して二次電池が充放電可能であるため、同様の効果を得ることができる。 Even in this case, the secondary battery can be charged and discharged using the battery element 20, so similar effects can be obtained.
<3.二次電池の用途>
 二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの用途において、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源でもよいし、主電源から切り替えられる電源でもよい。
<3. Applications of secondary batteries>
The use (application example) of the secondary battery is not particularly limited. A secondary battery used as a power source may be a main power source or an auxiliary power source in applications such as electronic equipment and electric vehicles. The main power source is a power source that is used preferentially, regardless of the presence or absence of other power sources. The auxiliary power source may be a power source used in place of the main power source, or may be a power source that can be switched from the main power source.
 二次電池の用途の具体例は、以下で説明する通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。 Specific examples of uses of the secondary battery are as described below. Electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, headphone stereos, portable radios, and portable information terminals. Backup power supplies and storage devices such as memory cards. Power tools such as power drills and power saws. This is a battery pack installed in electronic devices. Medical electronic devices such as pacemakers and hearing aids. Electric vehicles such as electric vehicles (including hybrid vehicles). A power storage system such as a household or industrial battery system that stores power in case of an emergency. In these applications, one secondary battery or a plurality of secondary batteries may be used.
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、駆動用電源として二次電池を用いて走行する車両であり、その二次電池以外の他の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。 The battery pack may use single cells or assembled batteries. An electric vehicle is a vehicle that runs using a secondary battery as a driving power source, and may be a hybrid vehicle that also includes a driving source other than the secondary battery. In a household power storage system, household electrical appliances and the like can be used by using the electric power stored in a secondary battery, which is a power storage source.
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。 Here, an example of the application of the secondary battery will be specifically described. The configuration of the application example described below is just an example and can be modified as appropriate.
 図7は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。 FIG. 7 shows the block configuration of the battery pack. The battery pack described here is a battery pack (so-called soft pack) using one secondary battery, and is installed in electronic devices such as smartphones.
 この電池パックは、図7に示したように、電源71と、回路基板72とを備えている。この回路基板72は、電源71に接続されていると共に、正極端子73、負極端子74および温度検出端子75を含んでいる。 As shown in FIG. 7, this battery pack includes a power source 71 and a circuit board 72. This circuit board 72 is connected to a power source 71 and includes a positive terminal 73, a negative terminal 74, and a temperature detection terminal 75.
 電源71は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子73に接続されていると共に、負極リードが負極端子74に接続されている。この電源71は、正極端子73および負極端子74を介して外部の電源と接続可能であるため、その外部の電源を利用して充放電可能である。回路基板72は、制御部76と、スイッチ77と、PTC素子78と、温度検出部79とを含んでいる。ただし、PTC素子78は、省略されてもよい。 The power source 71 includes one secondary battery. In this secondary battery, the positive electrode lead is connected to the positive electrode terminal 73, and the negative electrode lead is connected to the negative electrode terminal 74. This power source 71 can be connected to an external power source via the positive terminal 73 and the negative terminal 74, and therefore can be charged and discharged using the external power source. The circuit board 72 includes a control section 76 , a switch 77 , a PTC element 78 , and a temperature detection section 79 . However, the PTC element 78 may be omitted.
 制御部76は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部76は、必要に応じて電源71の使用状態の検出および制御を行う。 The control unit 76 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 76 detects and controls the usage status of the power source 71 as necessary.
 なお、制御部76は、電源71(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ77を切断することにより、電源71の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.20V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.40V±0.1Vである。 Note that when the voltage of the power source 71 (secondary battery) reaches the overcharge detection voltage or overdischarge detection voltage, the control unit 76 prevents the charging current from flowing in the current path of the power source 71 by cutting off the switch 77. Make it. Although the overcharge detection voltage is not particularly limited, specifically, it is 4.20V±0.05V, and the overdischarge detection voltage is not particularly limited, but specifically, it is 2.40V±0.1V. It is.
 スイッチ77は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部76の指示に応じて電源71と外部機器との接続の有無を切り換える。このスイッチ77は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ77のON抵抗に基づいて検出される。 The switch 77 includes a charging control switch, a discharging control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 71 is connected to an external device according to an instruction from the control unit 76. This switch 77 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, and the charging/discharging current is detected based on the ON resistance of the switch 77.
 温度検出部79は、サーミスタなどの温度検出素子を含んでいる。この温度検出部79は、温度検出端子75を用いて電源71の温度を測定すると共に、その温度の測定結果を制御部76に出力する。温度検出部79により測定された温度の測定結果は、異常発熱時において制御部76が充放電制御を行う場合および残容量の算出時において制御部76が補正処理を行う場合などに用いられる。 The temperature detection section 79 includes a temperature detection element such as a thermistor. The temperature detection section 79 measures the temperature of the power supply 71 using the temperature detection terminal 75 and outputs the temperature measurement result to the control section 76 . The measurement result of the temperature measured by the temperature detection unit 79 is used when the control unit 76 performs charge/discharge control during abnormal heat generation and when the control unit 76 performs correction processing when calculating the remaining capacity.
 以上、一実施形態を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態において説明された構成に限定されないため、種々に変形可能である。 Although the present technology has been described above with reference to one embodiment, the configuration of the present technology is not limited to the configuration described in the one embodiment and can be modified in various ways.
 具体的には、電池素子の素子構造が積層型である場合に関して説明した。しかしながら、電池素子の素子構造は、特に限定されないため、九十九折り型などの他の素子構造でもよい。九十九折り型では、正極および負極がセパレータを介して互いに対向しながらジグザグに折り畳まれている。 Specifically, the case where the element structure of the battery element is a stacked type has been described. However, since the element structure of the battery element is not particularly limited, other element structures such as a ninety-nine fold type may be used. In the ninety-nine fold type, a positive electrode and a negative electrode are folded in a zigzag pattern while facing each other with a separator in between.
 また、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。 Furthermore, although the case where the electrode reactant is lithium has been described, the electrode reactant is not particularly limited. Specifically, the electrode reactants may be other alkali metals, such as sodium and potassium, or alkaline earth metals, such as beryllium, magnesium, and calcium, as described above. In addition, the electrode reactant may be other light metals such as aluminum.
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。 The effects described in this specification are merely examples, so the effects of the present technology are not limited to the effects described in this specification. Therefore, other effects may be obtained with the present technology.

Claims (7)

  1.  正極活物質層を含む正極と、
     負極と、
     前記正極と前記負極との間に配置されたセパレータと、
     電解液と
     を備え、
     前記正極活物質層は、正極活物質および第1結着剤を含み、
     前記セパレータは、
     多孔質層と、
     前記多孔質層と前記正極活物質層との間に配置された被覆層と
     を含み、
     前記被覆層は、複数の絶縁性粒子および第2結着剤を含み、
     前記被覆層の一部は、前記多孔質層に隣接されていないと共に、前記正極活物質層に隣接されている、
     二次電池。
    a positive electrode including a positive electrode active material layer;
    a negative electrode;
    a separator disposed between the positive electrode and the negative electrode;
    Equipped with an electrolyte and
    The positive electrode active material layer includes a positive electrode active material and a first binder,
    The separator is
    a porous layer;
    a coating layer disposed between the porous layer and the positive electrode active material layer,
    The coating layer includes a plurality of insulating particles and a second binder,
    A part of the coating layer is not adjacent to the porous layer and is adjacent to the positive electrode active material layer,
    Secondary battery.
  2.  前記第1結着剤および前記第2結着剤のそれぞれは、フッ化ビニリデンの単独重合体およびフッ化ビニリデンの共重合体のうちの少なくとも一方を含む、
     請求項1に記載の二次電池。
    Each of the first binder and the second binder includes at least one of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer.
    The secondary battery according to claim 1.
  3.  前記複数の絶縁性粒子のそれぞれは、金属水酸化物、金属酸化物および金属窒化物のうちの少なくとも1種を含む、
     請求項1または請求項2に記載の二次電池。
    Each of the plurality of insulating particles includes at least one of a metal hydroxide, a metal oxide, and a metal nitride.
    The secondary battery according to claim 1 or 2.
  4.  前記正極および前記負極は、前記セパレータを介して交互に積層されている、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
    The positive electrode and the negative electrode are alternately stacked with the separator interposed therebetween.
    The secondary battery according to any one of claims 1 to 3.
  5.  複数の前記正極、複数の前記負極および複数の前記セパレータを備え、
     さらに、
     複数の前記正極のそれぞれに接続された正極端子と、
     複数の前記負極のそれぞれに接続された負極端子と
     を備え、
     複数の前記正極端子は、互いに接合されており、
     複数の前記負極端子は、互いに接合されている、
     請求項4に記載の二次電池。
    comprising a plurality of the positive electrodes, a plurality of the negative electrodes, and a plurality of the separators,
    moreover,
    a positive electrode terminal connected to each of the plurality of positive electrodes;
    and a negative electrode terminal connected to each of the plurality of negative electrodes,
    The plurality of positive electrode terminals are joined to each other,
    the plurality of negative electrode terminals are joined to each other,
    The secondary battery according to claim 4.
  6.  さらに、
     複数の前記正極、複数の前記負極、複数の前記セパレータ、前記電解液、複数の前記正極端子および複数の前記負極端子を収納するフィルム状の外装部材と、
     互いに接合されている複数の前記正極端子に接続された正極リードと、
     互いに接合されている複数の前記負極端子に接続された負極リードと
     を備え、
     前記正極リードは、前記外装部材から導出されており、
     前記負極リードは、前記外装部材から導出されている、
     請求項5に記載の二次電池。
    moreover,
    a film-like exterior member that houses a plurality of the positive electrodes, a plurality of the negative electrodes, a plurality of the separators, the electrolytic solution, a plurality of the positive electrode terminals, and a plurality of the negative electrode terminals;
    a positive electrode lead connected to the plurality of positive electrode terminals that are joined to each other;
    and a negative electrode lead connected to the plurality of negative electrode terminals that are joined to each other,
    The positive electrode lead is led out from the exterior member,
    The negative electrode lead is led out from the exterior member.
    The secondary battery according to claim 5.
  7.  リチウムイオン二次電池である、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to any one of claims 1 to 6.
PCT/JP2023/010712 2022-03-30 2023-03-17 Secondary battery WO2023189762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056759 2022-03-30
JP2022056759 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189762A1 true WO2023189762A1 (en) 2023-10-05

Family

ID=88201070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010712 WO2023189762A1 (en) 2022-03-30 2023-03-17 Secondary battery

Country Status (1)

Country Link
WO (1) WO2023189762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235508A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2006351386A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp Battery and its manufacturing method
JP2013163806A (en) * 2012-01-11 2013-08-22 Toray Ind Inc Porous film and separator for power storage device
JP2013218925A (en) * 2012-04-10 2013-10-24 Tdk Corp Separator and nonaqueous secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235508A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2006351386A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp Battery and its manufacturing method
JP2013163806A (en) * 2012-01-11 2013-08-22 Toray Ind Inc Porous film and separator for power storage device
JP2013218925A (en) * 2012-04-10 2013-10-24 Tdk Corp Separator and nonaqueous secondary battery using the same

Similar Documents

Publication Publication Date Title
WO2023063008A1 (en) Secondary battery
JP7384291B2 (en) secondary battery
WO2023189762A1 (en) Secondary battery
WO2023189725A1 (en) Secondary battery
WO2023189708A1 (en) Secondary battery
JP7351409B2 (en) secondary battery
WO2023189709A1 (en) Secondary battery electrolyte and secondary battery
WO2023176290A1 (en) Negative electrode for secondary battery and secondary battery
WO2022163139A1 (en) Secondary battery
JP7380898B2 (en) secondary battery
WO2024057641A1 (en) Negative electrode for secondary battery, and secondary battery
JP7392733B2 (en) Positive electrode for secondary batteries and secondary batteries
US20230411592A1 (en) Negative electrode for secondary battery, and secondary battery
JP7435727B2 (en) Electrolyte for secondary batteries and secondary batteries
JP7302731B2 (en) secondary battery
WO2023017685A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023243554A1 (en) Secondary battery electrode and secondary battery
WO2022196238A1 (en) Electrolyte solution for secondary battery, and secondary battery
WO2022209058A1 (en) Secondary battery
WO2023162428A1 (en) Secondary battery
WO2022255018A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023162432A1 (en) Secondary battery
WO2021079842A1 (en) Secondary battery
WO2021192402A1 (en) Secondary battery
WO2023120688A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779778

Country of ref document: EP

Kind code of ref document: A1