WO2023189570A1 - Heating-type sintering machine and heating-type sintering method - Google Patents
Heating-type sintering machine and heating-type sintering method Download PDFInfo
- Publication number
- WO2023189570A1 WO2023189570A1 PCT/JP2023/009976 JP2023009976W WO2023189570A1 WO 2023189570 A1 WO2023189570 A1 WO 2023189570A1 JP 2023009976 W JP2023009976 W JP 2023009976W WO 2023189570 A1 WO2023189570 A1 WO 2023189570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- heating
- material layer
- sintering
- sintered ore
- Prior art date
Links
- 238000005245 sintering Methods 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000010438 heat treatment Methods 0.000 claims abstract description 149
- 239000002994 raw material Substances 0.000 claims description 199
- 239000007789 gas Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 238000007664 blowing Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 238000005485 electric heating Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001882 dioxygen Inorganic materials 0.000 claims description 3
- 239000002737 fuel gas Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 239000002918 waste heat Substances 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 6
- 239000001569 carbon dioxide Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 149
- 239000000571 coke Substances 0.000 description 13
- 238000002791 soaking Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009770 conventional sintering Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/36—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/38—Arrangements of devices for charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/40—Arrangements of controlling or monitoring devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/02—Ohmic resistance heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/02—Supplying steam, vapour, gases, or liquids
Definitions
- the present invention relates to a sintering machine and a sintering method used to produce sintered ore, which is the main raw material for blast furnace ironmaking.
- the sintered ore raw material which is powdered ore mixed with lime powder and coke
- the sintered ore raw material is placed on a conveyor to form a sintered bed.
- Sintered ore was manufactured by igniting the igniter on the top surface to sequentially burn the coke contained in the sintered ore raw material from the upper layer to the lower layer, and sintering the entire sintered bed (see Non-Patent Document 1).
- the layer thickness of the sintering bed is often set at around 500 mm, and for example, in Non-Patent Document 1 (Steel Handbook 5th Edition), recent sintering operation performance data states that the raw material layer thickness is 630 mm. ing.
- the present invention was made to solve such problems, and an object of the present invention is to provide a heated sintering machine and a heated sintering method that can reduce CO2 emissions in the sintering process.
- the heating type sintering machine for sintered ore includes a transport device that moves at a predetermined speed, and a transport device that is provided above the transport device and that moves at the predetermined speed.
- a raw material inputting device configured to input the sintered ore raw material from above the conveying device at a predetermined supply rate such that a raw material layer having a thickness within a predetermined range is formed;
- a sintering device including a raw material layer heating device configured to heat and sinter the entire height direction of the raw material layer, which is provided on the downstream side of the conveying device in the conveying direction. That is.
- a plurality of the sintering devices are provided at intervals of a predetermined distance or more in the transport direction.
- At least one of the sintering devices includes a temperature measuring device that measures the temperature of the raw material layer at a stage subsequent to the raw material layer heating device; Based on the measured value of the temperature measuring device, at least the output of the raw material layer heating device and the predetermined speed of the conveying device are adjusted so that sintering of the raw material layer formed by the raw material input device is completed.
- the device further includes a control device that controls one of the devices.
- the device further includes an adjustment device that can adjust the height of the surface.
- At least one of the sintering devices further includes a gas blowing device that blows hydrogen gas or oxygen gas into the raw material layer, It is preferable that the raw material layer heating device is of a gas combustion type using hydrogen as a fuel gas.
- the apparatus further comprising a waste heat recovery device including a venting device that causes air to flow through the raw material layer from below to above the conveying device.
- the raw material input device includes a pre-injection heating device that heats the sintered ore raw material before inputting it into the conveyance device, It is preferable that the raw material layer heating device is an electric heating device.
- the heating sintering method for sintered ore according to the present invention is performed at a predetermined supply rate so that a raw material layer having a thickness within a predetermined range is formed on a conveying device that moves at a predetermined speed. , comprising a sintering step including charging the sintered ore raw material from above the conveying device, and heating and sintering the entire height direction of the raw material layer using a raw material layer heating device. That is.
- the sintering step is repeated multiple times on the conveying device.
- the sintering step includes measuring the temperature of the raw material layer after the heating, and based on the measured value of the temperature.
- the method further includes controlling at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device so that sintering of the raw material layer is completed by the heating.
- the sintering step may adjust the height of the surface of the raw material layer between the charging and the heating.
- the method further includes:
- the entire height direction of the raw material layer is heated to sinter the sintered ore raw material. This makes it possible to reduce carbon dioxide (CO 2 ) emissions in the sintering process.
- FIG. 1 is an explanatory diagram of a heating type sintering machine according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of a process in which a raw material layer is sintered and soaked by the heating type sintering machine according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of a heating type sintering machine according to Modification 1 of Embodiment 1 of the present invention.
- FIG. 3 is an explanatory diagram of a heating type sintering machine according to a second modification of the first embodiment of the present invention.
- FIG. 7 is an explanatory diagram of a heating type sintering machine according to a third modification of the first embodiment of the present invention.
- FIG. 3 is an explanatory diagram of a heating type sintering machine according to Embodiment 2 of the present invention.
- the heating type sintering machine 1 for sintered ore includes a conveying device 5 that moves at a predetermined speed, a raw material input device 7, a raw material layer heating device 9, and a raw material layer.
- a conveying device 5 that moves at a predetermined speed
- a raw material input device 7 that moves at a predetermined speed
- a raw material layer heating device 9 that heats the raw material layer
- a raw material layer heating device 9 a raw material layer heating device.
- Three sintering apparatuses 3 are provided in the conveying direction. Each configuration will be explained in detail below.
- the conveying device 5 of this embodiment is composed of a plurality of pallet carts that move at a predetermined speed on rails, and its mechanical configuration is similar to that of a conventional sintered ore sintering machine.
- the conveying device 5 can move at a predetermined speed and convey the raw material layer made of the sintered ore raw material formed on the top thereof, and can also handle the high temperature generated in the process of sintering the sintered ore raw material.
- the mode is not particularly limited as long as it can withstand.
- Regarding the predetermined speed there is no particular upper or lower limit, and it may be set at a conveyance speed comparable to that of a conventional sintering machine.
- the sintered ore raw material to be transported is, for example, a mixture and granulation of iron ore, calcium oxide, and the like.
- Three sintering apparatuses 3 of this embodiment are provided in the transport direction, and are a first sintering apparatus 3a, a second sintering apparatus 3b, and a third sintering apparatus 3c from the upstream side (left side in the figure).
- the conveyance device 5 is common to the three sintering devices 3 (3a, 3b, 3c), and each sintering device 3 has a raw material input device 7, a raw material layer heating device 9, and a raw material layer heating device 9.
- Each has a control device 13 for controlling the.
- the first sintering device 3a forms the first sintered layer (a layer formed by sintering the sintered ore raw material of the raw material layer 10), and the second sintering device 3b forms the first sintering layer.
- a second sintered layer is formed on the first sintered layer formed in step 3a, and the third sintering device 3c forms a third sintered layer on the second sintered layer. form.
- Each device constituting each sintering device 3 (3a, 3b, 3c) will be described below. Note that although the devices constituting each sintering device are functionally the same and are given the same reference numerals, this does not mean that their capabilities are completely the same.
- the raw material input device 7 is provided above the conveyance device 5, and performs sintering at a predetermined supply rate so that a raw material layer 10 having a thickness within a predetermined range is formed on the conveyance device 5 moving at a predetermined speed.
- the ore raw material is introduced into the transport device 5 from above.
- the layer thickness of the raw material layer 10 formed by the sintered ore raw material charged by the raw material charging device 7 is preferably about 20 to 300 mm.
- the reason is as follows. If the layer thickness is thin, the heat dissipation to the lower layer of the heating target layer will be large, and if the layer thickness is thick, it will take time for the temperature inside the layer to reach the predetermined temperature or higher. Heat removal is not too large, heating time is not too long, and maintaining uniform heat is not difficult. More preferably, it is about 20 to 100 mm.
- the predetermined supply amount is determined based on the moving speed of the transport device 5 so that a raw material layer having a thickness within the predetermined range as described above is formed on the transport device 5. Further, although not shown, a finished sintered ore may be laid under the first raw material layer 10.
- the sintered ore raw materials inputted by the three raw material inputting devices 7 do not have to be the same, and the components and particle sizes may be set respectively by taking into account securing the exhaust gas flow path and interlayer heat transfer. good.
- the timing for charging the sintered ore raw material by the raw material charging device 7 on the downstream side is after the raw material layer 10 formed on the upstream side has been heated and soaked at a constant temperature. That is, if the next sintered ore raw material is introduced during heating and soaking, there is a risk that the lower layer will be in an unsintered state or lack strength due to heat being removed to the upper layer. Note that the raw material layer 10 on the upstream side may be in the middle of cooling after soaking.
- the sintered ore temperature is measured at two or more points for each layer in order to understand the heating and soaking state. It is preferable to provide one.
- the raw material layer heating device 9 is provided downstream of the raw material input device 7 in the conveying direction of the conveying device 5, and is configured to heat and sinter the entire raw material layer 10 in the height direction. That is, unlike conventional sintering machines, there is no need to ignite the coke contained in the sintered ore raw material and sinter it using the heat generated by the combustion of the coke, and the raw material layer 10 is heated by the heat provided by the raw material layer heating device 9.
- the structure is such that the entire structure can be sintered.
- the raw material layer heating device 9 may be any device that can heat and soak the temperature to about 1000 to 1400°C, and may include direct heating such as heating with a gas combustion burner or heating by contact with a heating element, indirect heating such as an electric heater, etc. can be given.
- direct heating such as heating with a gas combustion burner or heating by contact with a heating element
- indirect heating such as an electric heater, etc. can be given.
- a gas-fired burner and using hydrogen as a fuel no CO 2 is generated due to combustion, and the amount of CO 2 emissions can be significantly reduced.
- the heating and soaking time will vary depending on the ingredients and particle size of the raw materials to be mixed, but the temperature may be 1000 to 1400°C as described above, and the heating and soaking time may be 1 to 5 minutes. . Further, it is preferable that the raw material layer heating device 9 has an elevating function because heating efficiency can be improved and contact with the sintered ore raw material can be avoided.
- the temperature measuring device 11 measures the surface temperature of the raw material layer 10, and is a radiation thermometer in this embodiment.
- a thermographic camera may also be used that generates an image showing the surface temperature profile.
- the control device 13 controls the output of the raw material layer heating device 9 based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
- the control target of the control device 13 is the raw material layer heating device 9, but the control target of the control device 13 may be replaced with the raw material layer heating device 9 and the conveying device 5.
- the speed of the conveying device 5 may be controlled based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
- the object to be controlled is not either the raw material layer heating device 9 or the transport device 5, but both may be the object to be controlled.
- the raw material input device 7 is also controlled at the same time so that the thickness of the raw material layer 10 is within a predetermined range.
- the raw material input device 7 of the first sintering device 3a on the most upstream side supplies the sintered ore raw material to the conveying device 5 that is moving at a predetermined speed.
- the supply amount at this time is preferably such that the thickness of the raw material layer 10 is approximately 20 to 300 mm, and more preferably such that the thickness is approximately 20 to 100 mm.
- the supply amount is preset in consideration of the speed of the conveying device 5 and the heating capacity of the raw material layer heating device 9 so that the thickness of the raw material layer 10 can be sintered and soaked by the raw material layer heating device 9. Quantity.
- the raw material layer 10 is formed from the sintered ore raw material introduced into the conveyance device 5
- the raw material layer 10 is heated and soaked from the upper surface side by the raw material layer heating device 9.
- the heating/soaking time is, for example, 1 to 5 minutes.
- the sintered ore raw material is sintered and soaked by heating by the raw material layer heating device 9. It is characterized by uniform heating, and therefore it is preferable to provide a temperature measuring device 11 and a control device 13 as in this embodiment to perform more precise heating control.
- the temperature of the raw material layer 10 is measured by the temperature measuring device 11 at the subsequent stage of the raw material layer heating device 9, and the measured value is inputted to the control device 13.
- the output of the layer heating device 9 is controlled. Specifically, if the temperature of the raw material layer 10 is too high, heating energy is wasted, so the output is reduced. On the other hand, when the temperature is low, the output is increased to complete sintering and soaking.
- the control target of the control device 13 is the conveyance device 5
- the conveyance speed may be increased when the temperature of the raw material layer 10 is too high, and the conveyance speed may be decreased when the temperature is low.
- the first raw material layer 10 When passing through the first sintering device 3a, the first raw material layer 10 has been sintered and soaked and is transported to the second sintering device 3b.
- the sintered ore raw material is charged from the raw material input device 7 onto the first raw material layer 10 to form the second raw material layer 10.
- the second layer is introduced after the firing of the first layer is completed, it is possible to suppress clogging of the gas flow path and internal distortion that occur in the combustion melting zone due to the load of the sintered ore raw material.
- the second raw material layer 10 is sintered and soaked by the raw material layer heating device 9 similarly to the first sintering device 3a.
- the method of controlling the raw material layer heating device 9 by the control device 13 is the same as that of the control device 13 of the first sintering device 3a.
- FIG. 2 is a graph showing the progress of sintering and soaking of the first and second layers, with the vertical axis representing the height of the raw material layer and the horizontal axis representing the elapsed sintering time.
- sintering of the sintered ore raw material in the first layer progresses in order from the upper layer, and the sintering and soaking of the first layer are completed before reaching the second sintering device 3b.
- the sintered ore raw material is introduced onto the first layer that has been sintered and soaked to form a second layer, and sintered and soaked.
- sintering and soaking are performed by the raw material layer heating device 9 without using coke, so that carbon dioxide (CO 2 ) emissions can be reduced in the sintering process. can.
- heating is performed by the controllable raw material layer heating device 9 instead of heating by the combustion of coke, which is difficult to control, sintering and soaking can be performed more reliably.
- the sintered ore raw material is a thin layer, the temperature difference between the top and bottom of each layer is suppressed, making it easy to control the temperature of each layer, and the sintered ore temperature measured using a radiation thermometer or thermography camera is By feeding back the output of the heating device 9, heating energy can be suppressed.
- the raw material layer 10 by dividing the raw material layer 10 into a plurality of layers and making each layer thinner, it is possible to heat the raw material layer 10 to a certain temperature or higher in a short period of time and to soak it. The remaining heat can be effectively used to heat the next layer (upper layer) by heat transfer through contact.
- each sintering device 3 has one raw material layer heating device 9, but the present invention is not limited to this, and each sintering device 3 has a plurality of raw material layer heating devices. 9, and in that case, each sintering device 3 may be provided with a temperature measuring device 11 and a control device 13.
- FIG. 3 shows an example in which each sintering device 3 includes two raw material layer heating devices 9, a temperature measuring device 11, and a control device 13. Note that the number of raw material layer heating devices 9 included in each sintering device 3 does not need to be the same; for example, only the first sintering device 3a has a plurality of raw material layer heating devices 9, and the other sintering devices have one raw material layer heating device 9. It may also have one raw material layer heating device 9.
- the sintered ore raw material has a uniform layer thickness.
- the sintered ore raw material has variations in particle size and shape, and furthermore, it may be difficult to obtain a uniform thickness in the width direction due to the shape of the chute fed into the conveyor 5 and the flow after the conveyor 5.
- the elevating means is not particularly limited, and may be, for example, a jack, a hanging jig, a hanger having a plurality of installation (bolt) holes, or the like.
- the adjustment device 15 is a mechanism that can reduce the raw material layer 10 using a roller, it is possible to reduce the layer thickness and improve the product strength by reducing the porosity of the raw material layer 10, and also to increase the production volume. It is also possible to increase the strength of the sintered ore.
- rollers may be divided in the width direction, and furthermore, a plurality of rollers may be provided in the direction of movement of the sintered ore raw material.
- all the sintering devices 3 may have the adjusting device 15, or any one or more sintering devices 3 may have the adjusting device 15 as necessary.
- At least one sintering device 3 further includes a gas blowing device 17 that blows hydrogen gas or oxygen gas into the raw material layer 10, and the raw material layer heating device 9 uses hydrogen as a fuel gas. It is also possible to use a gas combustion method. By providing the gas blowing device 17, heating performance can be improved by gas combustion within the raw material layer. Note that the outlet of the gas blowing nozzle 19 may be inside the raw material layer, or may be outside the raw material layer.
- the heating type sintering machine 1 is configured by one sintering device 3. Including things.
- the feature of the heating type sintering machine 1 of the present invention is that unlike the conventional example in which coke is mixed into the sintered ore raw material and the coke is burned, the raw material layer 10 is made into a relatively thin layer and is installed above the raw material layer 10. Since the purpose is to perform sintering and soaking by the raw material layer heating device 9, even if the sintering device 3 is a single unit, it is included in the present invention as long as it has such a configuration.
- the heating type sintering machine 20 includes an exhaust heat recovery device 23 including a ventilation device 21 that flows air through the raw material layer 10 from below to above the conveying device 5. It is prepared.
- the raw material charging device 7 of this embodiment includes a pre-charging heating device 25 that heats the sintered ore raw material before charging it into the conveying device 5.
- the raw material layer heating device 9 of this embodiment is preferably an electric heating device such as an electric heater using Joule heat, rather than a burner-type heating device as exemplified in the first embodiment.
- the reason for using an electric heating device is as follows.
- the exhaust heat recovery device 23 air flows from the bottom to the top by the ventilation device 21, so heating by gas combustion such as a burner type is affected by the airflow, and the heating time and heating temperature change.
- the raw material layer heating device 9 is an electric heating device, it will not be affected by the air flow, so even if exhaust heat is recovered, the heating time and heating temperature will not change, resulting in stable sintering and uniformity. I can get a fever.
- the reason why the pre-charging heating device 25 is provided is to compensate for the fact that the heating ability of an electric heating device is sometimes inferior to that of a heating method using gas combustion.
- heating is performed at a heating temperature (for example, 900° C.) that does not cause a sintering reaction.
- a heating method for example, a device that heats the sintered ore raw material in the hopper may be used. Note that exhaust heat may be recovered on the downstream side and used for heating on the upstream side.
- carbon such as coke was not added to the raw material from the viewpoint of reducing carbon dioxide.
- it is more economical to add coke For example, adding coke to a biomass-derived carbonaceous material is excluded. isn't it.
- Heating sintering method In the first and second embodiments described above, specific device configurations of the heating type sintering machines 1 and 20 were shown, and a heating type sintering method using the heating type sintering machines 1 and 20 was explained. However, the heating sintering method according to the present invention is not based on the heating sintering machines 1 and 20 described above, but includes a heating sintering method as shown below.
- thermo sintering method for sintered ore which includes a sintering process that includes heating and sintering the entire height of the sintered ore using a raw material layer heating device. Further, a method for heating sintering sintered ore in which the sintering step is repeated multiple times on the conveying device. Furthermore, the sintering step includes measuring the temperature of the raw material layer after the heating, and based on the measured value of the temperature, the sintering of the raw material layer is completed by the heating.
- a thermal sintering method for sintered ore further comprising controlling at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device. Furthermore, the method for heating sintering of sintered ore, wherein the sintering step further includes adjusting the height of the surface of the raw material layer between the charging and heating.
- Heating type sintering machine (Embodiment 1) 3 Sintering device 3a First sintering device 3b Second sintering device 3c Third sintering device 5 Conveying device 7 Raw material input device 9 Raw material layer heating device 10 Raw material layer 11 Temperature measuring device 13 Control device 15 Adjustment device 17 Gas blowing device 19 Gas blowing nozzle 20 Heating type sintering machine (Embodiment 2) 21 Ventilation device 23 Exhaust heat recovery device 25 Pre-injection heating device
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Tunnel Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Furnace Details (AREA)
Abstract
Provided are a heating-type sintering machine and a heating-type sintering method capable of achieving a reduction in the quantity of emission of carbon dioxide (CO<sb />) during a sintering process. A heating-type sintering machine 1 according to the present invention comprises a conveyance device 5 that moves at a prescribed speed, and a sintering device 3 that includes: a feedstock introduction device 7 that is provided above the conveyance device 5 and is configured so as to introduce a sinter feedstock from above the conveyance device 5 at a prescribed supply amount formed by a feedstock layer 10, which has a thickness within a prescribed range, on the conveyance device 5 that moves at the prescribed speed; and a feedstock layer heating device 9 that is provided downstream of the feedstock introduction device 7 in the conveyance direction of the conveyance device 5 and is configured so as to heat and sinter the entirety of the feedstock layer 10 in the height direction.
Description
本発明は、高炉製銑法の主原料である焼結鉱を製造するのに用いる焼結機及び焼結方法に関する。
The present invention relates to a sintering machine and a sintering method used to produce sintered ore, which is the main raw material for blast furnace ironmaking.
従来、高炉で使用する焼結鉱を製造する際には、粉鉱石に石灰粉やコークスを混ぜた焼結鉱原料を搬送装置上に投入して焼結ベッドを形成し、この焼結ベッドの上面に点火装置で点火して上層から下層に順次焼結鉱原料に含まれるコークスを燃焼させ、焼結ベッドの全体を焼結することで焼結鉱を製造していた(非特許文献1参照)。
従来、焼結ベッドの層厚は500mm前後に設定されることが多く、例えば、非特許文献1(鉄鋼便覧第5版)には、最近の焼結操業実績データとして原料層厚630mmと記載されている。 Conventionally, when producing sintered ore for use in blast furnaces, the sintered ore raw material, which is powdered ore mixed with lime powder and coke, is placed on a conveyor to form a sintered bed. Sintered ore was manufactured by igniting the igniter on the top surface to sequentially burn the coke contained in the sintered ore raw material from the upper layer to the lower layer, and sintering the entire sintered bed (see Non-Patent Document 1). ).
Conventionally, the layer thickness of the sintering bed is often set at around 500 mm, and for example, in Non-Patent Document 1 (Steel Handbook 5th Edition), recent sintering operation performance data states that the raw material layer thickness is 630 mm. ing.
従来、焼結ベッドの層厚は500mm前後に設定されることが多く、例えば、非特許文献1(鉄鋼便覧第5版)には、最近の焼結操業実績データとして原料層厚630mmと記載されている。 Conventionally, when producing sintered ore for use in blast furnaces, the sintered ore raw material, which is powdered ore mixed with lime powder and coke, is placed on a conveyor to form a sintered bed. Sintered ore was manufactured by igniting the igniter on the top surface to sequentially burn the coke contained in the sintered ore raw material from the upper layer to the lower layer, and sintering the entire sintered bed (see Non-Patent Document 1). ).
Conventionally, the layer thickness of the sintering bed is often set at around 500 mm, and for example, in Non-Patent Document 1 (Steel Handbook 5th Edition), recent sintering operation performance data states that the raw material layer thickness is 630 mm. ing.
近年、二酸化炭素(CO2)排出量の削減に対する要求の高まりから、鉄鉱石の焼結プロセスにおいても、着火、燃焼を目的として添加していたコークスを低減することが求められている。
In recent years, due to the increasing demand for reducing carbon dioxide (CO 2 ) emissions, there has been a need to reduce coke, which has been added for the purpose of ignition and combustion, even in the iron ore sintering process.
本発明はかかる課題を解決するためになされたものであり、焼結プロセスにおいてCO2排出量の削減を実現できる加熱式焼結機、加熱式焼結方法を提供することを目的としている。
The present invention was made to solve such problems, and an object of the present invention is to provide a heated sintering machine and a heated sintering method that can reduce CO2 emissions in the sintering process.
(1)本発明に係る焼結鉱の加熱式焼結機は、所定の速さで移動する搬送装置と、前記搬送装置の上方に設けられ、前記所定の速さで移動する前記搬送装置上に所定範囲内の厚さを有する原料層が形成される所定の供給量で、焼結鉱原料を前記搬送装置の上方から投入するよう構成された原料投入装置、及び前記原料投入装置よりも前記搬送装置の搬送方向における下流側に設けられた、前記原料層の高さ方向全体を加熱して焼結させるよう構成された原料層加熱装置を含む焼結装置と、を備えていることを特徴とするものである。
(1) The heating type sintering machine for sintered ore according to the present invention includes a transport device that moves at a predetermined speed, and a transport device that is provided above the transport device and that moves at the predetermined speed. a raw material inputting device configured to input the sintered ore raw material from above the conveying device at a predetermined supply rate such that a raw material layer having a thickness within a predetermined range is formed; A sintering device including a raw material layer heating device configured to heat and sinter the entire height direction of the raw material layer, which is provided on the downstream side of the conveying device in the conveying direction. That is.
(2)また、上記(1)に記載のものにおいて、前記焼結装置が、前記搬送方向において所定以上の間隔を空けて複数設けられていることが好ましい。
(2) Furthermore, in the device described in (1) above, it is preferable that a plurality of the sintering devices are provided at intervals of a predetermined distance or more in the transport direction.
(3)また、上記(1)又は(2)に記載のものにおいて、少なくとも1つの前記焼結装置が、前記原料層加熱装置の後段で前記原料層の温度を測定する測温装置と、該測温装置の測定値に基づいて、前記原料投入装置により形成された前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御する制御装置と、を更に備えることが好ましい。
(3) Furthermore, in the device described in (1) or (2) above, at least one of the sintering devices includes a temperature measuring device that measures the temperature of the raw material layer at a stage subsequent to the raw material layer heating device; Based on the measured value of the temperature measuring device, at least the output of the raw material layer heating device and the predetermined speed of the conveying device are adjusted so that sintering of the raw material layer formed by the raw material input device is completed. Preferably, the device further includes a control device that controls one of the devices.
(4)また、上記(1)~(3)のいずれかに記載のものにおいて、少なくとも1つの前記焼結装置が、前記原料投入装置と前記原料層加熱装置との間に、前記原料層の表面の高さを調整可能な調整装置を更に備えることが好ましい。
(4) Furthermore, in the product according to any one of (1) to (3) above, at least one of the sintering devices is provided between the raw material input device and the raw material layer heating device. Preferably, the device further includes an adjustment device that can adjust the height of the surface.
(5)また、上記(1)~(4)のいずれかに記載のものにおいて、少なくとも1つの前記焼結装置が、前記原料層に水素ガスまたは酸素ガスを吹き込むガス吹込み装置を更に備え、前記原料層加熱装置が燃料ガスとして水素を用いたガス燃焼方式であることが好ましい。
(5) Furthermore, in the device according to any one of (1) to (4) above, at least one of the sintering devices further includes a gas blowing device that blows hydrogen gas or oxygen gas into the raw material layer, It is preferable that the raw material layer heating device is of a gas combustion type using hydrogen as a fuel gas.
(6)また、上記(1)~(4)のいずれかに記載のものにおいて、前記搬送装置の下方から上方に向けて前記原料層を通して空気を流す通気装置を含む廃熱回収装置を更に備え、
前記原料投入装置が、前記搬送装置に投入する前に前記焼結鉱原料を加熱する投入前加熱装置を備え、
前記原料層加熱装置が、電気加熱装置であることが好ましい。 (6) The apparatus according to any one of (1) to (4) above, further comprising a waste heat recovery device including a venting device that causes air to flow through the raw material layer from below to above the conveying device. ,
The raw material input device includes a pre-injection heating device that heats the sintered ore raw material before inputting it into the conveyance device,
It is preferable that the raw material layer heating device is an electric heating device.
前記原料投入装置が、前記搬送装置に投入する前に前記焼結鉱原料を加熱する投入前加熱装置を備え、
前記原料層加熱装置が、電気加熱装置であることが好ましい。 (6) The apparatus according to any one of (1) to (4) above, further comprising a waste heat recovery device including a venting device that causes air to flow through the raw material layer from below to above the conveying device. ,
The raw material input device includes a pre-injection heating device that heats the sintered ore raw material before inputting it into the conveyance device,
It is preferable that the raw material layer heating device is an electric heating device.
(7)また、本発明に係る焼結鉱の加熱式焼結方法は、所定の速さで移動する搬送装置上に所定範囲内の厚さを有する原料層が形成される所定の供給量で、焼結鉱原料を前記搬送装置の上方から投入すること、及び前記原料層の高さ方向全体を原料層加熱装置を用いて加熱して焼結させることを含む焼結工程を含むことを特徴とするものである。
(7) In addition, the heating sintering method for sintered ore according to the present invention is performed at a predetermined supply rate so that a raw material layer having a thickness within a predetermined range is formed on a conveying device that moves at a predetermined speed. , comprising a sintering step including charging the sintered ore raw material from above the conveying device, and heating and sintering the entire height direction of the raw material layer using a raw material layer heating device. That is.
(8)また、上記(7)に記載のものにおいて、前記焼結工程を前記搬送装置上で複数回繰り返すことが好ましい。
(8) Furthermore, in the product described in (7) above, it is preferable that the sintering step is repeated multiple times on the conveying device.
(9)また、上記(7)又は(8)に記載のものにおいて、前記焼結工程が、前記加熱することの後に前記原料層の温度を測定すること、及び前記温度の測定値に基づいて、前記加熱することにより前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御することを更に含むことが好ましい。
(9) Furthermore, in the item described in (7) or (8) above, the sintering step includes measuring the temperature of the raw material layer after the heating, and based on the measured value of the temperature. Preferably, the method further includes controlling at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device so that sintering of the raw material layer is completed by the heating.
(10)また、上記(7)~(9)に記載のものにおいて、前記焼結工程が、前記投入することと前記加熱することとの間に、前記原料層の表面の高さを調整することを更に含むことが好ましい。
(10) Furthermore, in the item described in (7) to (9) above, the sintering step may adjust the height of the surface of the raw material layer between the charging and the heating. Preferably, the method further includes:
本発明に係る加熱式焼結機及び加熱式焼結方法においては、原料層の高さ方向全体を加熱して焼結鉱原料を焼結させる。これにより、焼結プロセスにおいて二酸化炭素(CO2)排出量の削減を実現することができる。
In the heating type sintering machine and heating type sintering method according to the present invention, the entire height direction of the raw material layer is heated to sinter the sintered ore raw material. This makes it possible to reduce carbon dioxide (CO 2 ) emissions in the sintering process.
[実施の形態1]
本実施の形態に係る焼結鉱の加熱式焼結機1は、図1に示すように、所定の速さで移動する搬送装置5と、原料投入装置7、原料層加熱装置9、原料層10の温度を測定する測温装置11、及び原料層加熱装置9を制御する制御装置13を有する焼結装置3と、を備え、焼結装置3が搬送方向で3台設けられている。
以下、各構成を詳細に説明する。 [Embodiment 1]
As shown in FIG. 1, the heating type sintering machine 1 for sintered ore according to the present embodiment includes a conveying device 5 that moves at a predetermined speed, a raw material input device 7, a raw material layer heating device 9, and a raw material layer. Three sintering apparatuses 3 are provided in the conveying direction.
Each configuration will be explained in detail below.
本実施の形態に係る焼結鉱の加熱式焼結機1は、図1に示すように、所定の速さで移動する搬送装置5と、原料投入装置7、原料層加熱装置9、原料層10の温度を測定する測温装置11、及び原料層加熱装置9を制御する制御装置13を有する焼結装置3と、を備え、焼結装置3が搬送方向で3台設けられている。
以下、各構成を詳細に説明する。 [Embodiment 1]
As shown in FIG. 1, the heating type sintering machine 1 for sintered ore according to the present embodiment includes a conveying device 5 that moves at a predetermined speed, a raw material input device 7, a raw material layer heating device 9, and a raw material layer. Three sintering apparatuses 3 are provided in the conveying direction.
Each configuration will be explained in detail below.
<搬送装置>
本実施形態の搬送装置5は、レール上を所定の速さで移動する複数のパレット台車によって構成され、機械的構成は従来の焼結鉱焼結機と同様である。
もっとも、搬送装置5は、所定の速さで移動し、その上部に形成される焼結鉱原料からなる原料層を搬送することができ、且つ焼結鉱原料を焼結する過程で発生する高温に耐えられるものであれば、その態様は特に限定されない。所定の速さについては、特に上限や下限は存在せず、従来の焼結機と同程度の搬送速度で設定してもよい。但し、極端に高い又は低い速度は機械の耐久性等の観点から望ましいものではなく、例えば、1~3m/分程度に設定すればよい。
搬送される焼結鉱原料は、例えば鉄鉱石、酸化カルシウム等を混合・造粒したものである。 <Transport device>
The conveying device 5 of this embodiment is composed of a plurality of pallet carts that move at a predetermined speed on rails, and its mechanical configuration is similar to that of a conventional sintered ore sintering machine.
However, the conveying device 5 can move at a predetermined speed and convey the raw material layer made of the sintered ore raw material formed on the top thereof, and can also handle the high temperature generated in the process of sintering the sintered ore raw material. The mode is not particularly limited as long as it can withstand. Regarding the predetermined speed, there is no particular upper or lower limit, and it may be set at a conveyance speed comparable to that of a conventional sintering machine. However, extremely high or low speeds are not desirable from the viewpoint of machine durability, and may be set to, for example, about 1 to 3 m/min.
The sintered ore raw material to be transported is, for example, a mixture and granulation of iron ore, calcium oxide, and the like.
本実施形態の搬送装置5は、レール上を所定の速さで移動する複数のパレット台車によって構成され、機械的構成は従来の焼結鉱焼結機と同様である。
もっとも、搬送装置5は、所定の速さで移動し、その上部に形成される焼結鉱原料からなる原料層を搬送することができ、且つ焼結鉱原料を焼結する過程で発生する高温に耐えられるものであれば、その態様は特に限定されない。所定の速さについては、特に上限や下限は存在せず、従来の焼結機と同程度の搬送速度で設定してもよい。但し、極端に高い又は低い速度は機械の耐久性等の観点から望ましいものではなく、例えば、1~3m/分程度に設定すればよい。
搬送される焼結鉱原料は、例えば鉄鉱石、酸化カルシウム等を混合・造粒したものである。 <Transport device>
The conveying device 5 of this embodiment is composed of a plurality of pallet carts that move at a predetermined speed on rails, and its mechanical configuration is similar to that of a conventional sintered ore sintering machine.
However, the conveying device 5 can move at a predetermined speed and convey the raw material layer made of the sintered ore raw material formed on the top thereof, and can also handle the high temperature generated in the process of sintering the sintered ore raw material. The mode is not particularly limited as long as it can withstand. Regarding the predetermined speed, there is no particular upper or lower limit, and it may be set at a conveyance speed comparable to that of a conventional sintering machine. However, extremely high or low speeds are not desirable from the viewpoint of machine durability, and may be set to, for example, about 1 to 3 m/min.
The sintered ore raw material to be transported is, for example, a mixture and granulation of iron ore, calcium oxide, and the like.
<焼結装置>
本実施形態の焼結装置3は、搬送方向に3台設けられ上流側(図中左側)から第1焼結装置3a、第2焼結装置3b、第3焼結装置3cである。
搬送装置5は3台の焼結装置3(3a、3b、3c)に共通するものであり、各焼結装置3は、原料投入装置7と、原料層加熱装置9と、原料層加熱装置9を制御する制御装置13をそれぞれ有している。
第1焼結装置3aが、1層目の焼結層(原料層10の焼結鉱原料が焼結されて形成される層)を形成し、第2焼結装置3bが第1焼結装置3aで形成された一層目の焼結層の上に2層目の焼結層を形成し、さらに第3焼結装置3cが2層目の焼結層の上に3層目の焼結層を形成する。
以下、各焼結装置3(3a、3b、3c)を構成する各装置について説明する。なお、各焼結装置を構成する各装置は機能的には同一のものであり同一の符号を付してあるが、その能力等が全く同一であることを意味するものではない。 <Sintering equipment>
Three sintering apparatuses 3 of this embodiment are provided in the transport direction, and are a first sintering apparatus 3a, a second sintering apparatus 3b, and a third sintering apparatus 3c from the upstream side (left side in the figure).
The conveyance device 5 is common to the three sintering devices 3 (3a, 3b, 3c), and each sintering device 3 has a raw material input device 7, a raw material layer heating device 9, and a raw material layer heating device 9. Each has a control device 13 for controlling the.
The first sintering device 3a forms the first sintered layer (a layer formed by sintering the sintered ore raw material of the raw material layer 10), and the second sintering device 3b forms the first sintering layer. A second sintered layer is formed on the first sintered layer formed in step 3a, and the third sintering device 3c forms a third sintered layer on the second sintered layer. form.
Each device constituting each sintering device 3 (3a, 3b, 3c) will be described below. Note that although the devices constituting each sintering device are functionally the same and are given the same reference numerals, this does not mean that their capabilities are completely the same.
本実施形態の焼結装置3は、搬送方向に3台設けられ上流側(図中左側)から第1焼結装置3a、第2焼結装置3b、第3焼結装置3cである。
搬送装置5は3台の焼結装置3(3a、3b、3c)に共通するものであり、各焼結装置3は、原料投入装置7と、原料層加熱装置9と、原料層加熱装置9を制御する制御装置13をそれぞれ有している。
第1焼結装置3aが、1層目の焼結層(原料層10の焼結鉱原料が焼結されて形成される層)を形成し、第2焼結装置3bが第1焼結装置3aで形成された一層目の焼結層の上に2層目の焼結層を形成し、さらに第3焼結装置3cが2層目の焼結層の上に3層目の焼結層を形成する。
以下、各焼結装置3(3a、3b、3c)を構成する各装置について説明する。なお、各焼結装置を構成する各装置は機能的には同一のものであり同一の符号を付してあるが、その能力等が全く同一であることを意味するものではない。 <Sintering equipment>
Three sintering apparatuses 3 of this embodiment are provided in the transport direction, and are a first sintering apparatus 3a, a second sintering apparatus 3b, and a third sintering apparatus 3c from the upstream side (left side in the figure).
The conveyance device 5 is common to the three sintering devices 3 (3a, 3b, 3c), and each sintering device 3 has a raw material input device 7, a raw material layer heating device 9, and a raw material layer heating device 9. Each has a control device 13 for controlling the.
The first sintering device 3a forms the first sintered layer (a layer formed by sintering the sintered ore raw material of the raw material layer 10), and the second sintering device 3b forms the first sintering layer. A second sintered layer is formed on the first sintered layer formed in step 3a, and the third sintering device 3c forms a third sintered layer on the second sintered layer. form.
Each device constituting each sintering device 3 (3a, 3b, 3c) will be described below. Note that although the devices constituting each sintering device are functionally the same and are given the same reference numerals, this does not mean that their capabilities are completely the same.
<原料投入装置>
原料投入装置7は、搬送装置5の上方に設けられ、所定の速さで移動する搬送装置5上に所定範囲内の厚さを有する原料層10が形成される所定の供給量で、焼結鉱原料を搬送装置5の上方から投入するよう構成されている。 <Raw material input device>
The raw material input device 7 is provided above the conveyance device 5, and performs sintering at a predetermined supply rate so that a raw material layer 10 having a thickness within a predetermined range is formed on the conveyance device 5 moving at a predetermined speed. The ore raw material is introduced into the transport device 5 from above.
原料投入装置7は、搬送装置5の上方に設けられ、所定の速さで移動する搬送装置5上に所定範囲内の厚さを有する原料層10が形成される所定の供給量で、焼結鉱原料を搬送装置5の上方から投入するよう構成されている。 <Raw material input device>
The raw material input device 7 is provided above the conveyance device 5, and performs sintering at a predetermined supply rate so that a raw material layer 10 having a thickness within a predetermined range is formed on the conveyance device 5 moving at a predetermined speed. The ore raw material is introduced into the transport device 5 from above.
原料投入装置7によって投入された焼結鉱原料によって形成される原料層10の層厚は、20~300mm程度が好ましい。その理由は以下の通りである。
層厚が薄いと加熱対象層の下層への抜熱が大きくなり、層厚が厚いと層内温度が所定温度以上になるまでに時間を要することから、上記の20~300mm程度であれば、抜熱が大きくなりすぎず、かつ加熱時間が長くなりすぎず、かつ均熱保持も難しくない。更に好ましくは20~100mm程度である。
所定の供給量は搬送装置5の移動速さに基づき、上記のような所定範囲内の厚さを有する原料層が搬送装置5上に形成されるように決定される。
また、図示していないが、最初の原料層10の下層に、成品焼結鉱を床敷してもよい。 The layer thickness of the raw material layer 10 formed by the sintered ore raw material charged by the raw material charging device 7 is preferably about 20 to 300 mm. The reason is as follows.
If the layer thickness is thin, the heat dissipation to the lower layer of the heating target layer will be large, and if the layer thickness is thick, it will take time for the temperature inside the layer to reach the predetermined temperature or higher. Heat removal is not too large, heating time is not too long, and maintaining uniform heat is not difficult. More preferably, it is about 20 to 100 mm.
The predetermined supply amount is determined based on the moving speed of the transport device 5 so that a raw material layer having a thickness within the predetermined range as described above is formed on the transport device 5.
Further, although not shown, a finished sintered ore may be laid under the first raw material layer 10.
層厚が薄いと加熱対象層の下層への抜熱が大きくなり、層厚が厚いと層内温度が所定温度以上になるまでに時間を要することから、上記の20~300mm程度であれば、抜熱が大きくなりすぎず、かつ加熱時間が長くなりすぎず、かつ均熱保持も難しくない。更に好ましくは20~100mm程度である。
所定の供給量は搬送装置5の移動速さに基づき、上記のような所定範囲内の厚さを有する原料層が搬送装置5上に形成されるように決定される。
また、図示していないが、最初の原料層10の下層に、成品焼結鉱を床敷してもよい。 The layer thickness of the raw material layer 10 formed by the sintered ore raw material charged by the raw material charging device 7 is preferably about 20 to 300 mm. The reason is as follows.
If the layer thickness is thin, the heat dissipation to the lower layer of the heating target layer will be large, and if the layer thickness is thick, it will take time for the temperature inside the layer to reach the predetermined temperature or higher. Heat removal is not too large, heating time is not too long, and maintaining uniform heat is not difficult. More preferably, it is about 20 to 100 mm.
The predetermined supply amount is determined based on the moving speed of the transport device 5 so that a raw material layer having a thickness within the predetermined range as described above is formed on the transport device 5.
Further, although not shown, a finished sintered ore may be laid under the first raw material layer 10.
また、3台の原料投入装置7によって投入される焼結鉱原料は同一でなくてもよく、排ガス流路の確保や層間の伝熱を加味して成分や粒度をそれぞれ設定するようにしてもよい。
Further, the sintered ore raw materials inputted by the three raw material inputting devices 7 do not have to be the same, and the components and particle sizes may be set respectively by taking into account securing the exhaust gas flow path and interlayer heat transfer. good.
また、下流側の原料投入装置7によって焼結鉱原料を投入するタイミングは、上流側で形成された原料層10が加熱され一定温度で均熱された後とするのが好ましい。すなわち、加熱・均熱途中で次の焼結鉱原料を投入すると、投入された上層への抜熱により下層が未焼結状態や強度不足を招く恐れがあるからである。
なお、上流側の原料層10が均熱後の冷却途中であってもよい。 Further, it is preferable that the timing for charging the sintered ore raw material by the raw material charging device 7 on the downstream side is after the raw material layer 10 formed on the upstream side has been heated and soaked at a constant temperature. That is, if the next sintered ore raw material is introduced during heating and soaking, there is a risk that the lower layer will be in an unsintered state or lack strength due to heat being removed to the upper layer.
Note that the raw material layer 10 on the upstream side may be in the middle of cooling after soaking.
なお、上流側の原料層10が均熱後の冷却途中であってもよい。 Further, it is preferable that the timing for charging the sintered ore raw material by the raw material charging device 7 on the downstream side is after the raw material layer 10 formed on the upstream side has been heated and soaked at a constant temperature. That is, if the next sintered ore raw material is introduced during heating and soaking, there is a risk that the lower layer will be in an unsintered state or lack strength due to heat being removed to the upper layer.
Note that the raw material layer 10 on the upstream side may be in the middle of cooling after soaking.
また、下流側の原料投入装置7による焼結鉱原料を投入するタイミングを適切にする目的で、加熱・均熱状態を把握するために焼結鉱温度の測定箇所を各層に対して2個以上設けるのが好ましい。
In addition, in order to optimize the timing of charging the sintered ore raw material by the downstream raw material charging device 7, the sintered ore temperature is measured at two or more points for each layer in order to understand the heating and soaking state. It is preferable to provide one.
<原料層加熱装置>
原料層加熱装置9は、原料投入装置7よりも搬送装置5の搬送方向における下流側に設けられ、原料層10の高さ方向全体を加熱して焼結させるよう構成されている。即ち、従来の焼結機のように焼結鉱原料に含まれたコークスに点火してコークスの燃焼により発生する熱で焼結させる必要がなく、原料層加熱装置9が与える熱によって原料層10の全体を焼結させることができるよう構成されている。
また、原料層加熱装置9は、1000~1400℃程度に加温、均熱できる装置であればよく、ガス燃焼バーナーによる加熱や加熱体接触による加熱などの直接加熱、電熱ヒーター等の間接加熱などがあげられる。特に、ガス燃焼バーナーを用い、燃料として水素を使用することで、燃焼によりCO2が発生することがなく、CO2排出量を著しく減少させることができる。 <Raw material layer heating device>
The raw material layer heating device 9 is provided downstream of the raw material input device 7 in the conveying direction of the conveying device 5, and is configured to heat and sinter the entire raw material layer 10 in the height direction. That is, unlike conventional sintering machines, there is no need to ignite the coke contained in the sintered ore raw material and sinter it using the heat generated by the combustion of the coke, and the raw material layer 10 is heated by the heat provided by the raw material layer heating device 9. The structure is such that the entire structure can be sintered.
The raw material layer heating device 9 may be any device that can heat and soak the temperature to about 1000 to 1400°C, and may include direct heating such as heating with a gas combustion burner or heating by contact with a heating element, indirect heating such as an electric heater, etc. can be given. In particular, by using a gas-fired burner and using hydrogen as a fuel, no CO 2 is generated due to combustion, and the amount of CO 2 emissions can be significantly reduced.
原料層加熱装置9は、原料投入装置7よりも搬送装置5の搬送方向における下流側に設けられ、原料層10の高さ方向全体を加熱して焼結させるよう構成されている。即ち、従来の焼結機のように焼結鉱原料に含まれたコークスに点火してコークスの燃焼により発生する熱で焼結させる必要がなく、原料層加熱装置9が与える熱によって原料層10の全体を焼結させることができるよう構成されている。
また、原料層加熱装置9は、1000~1400℃程度に加温、均熱できる装置であればよく、ガス燃焼バーナーによる加熱や加熱体接触による加熱などの直接加熱、電熱ヒーター等の間接加熱などがあげられる。特に、ガス燃焼バーナーを用い、燃料として水素を使用することで、燃焼によりCO2が発生することがなく、CO2排出量を著しく減少させることができる。 <Raw material layer heating device>
The raw material layer heating device 9 is provided downstream of the raw material input device 7 in the conveying direction of the conveying device 5, and is configured to heat and sinter the entire raw material layer 10 in the height direction. That is, unlike conventional sintering machines, there is no need to ignite the coke contained in the sintered ore raw material and sinter it using the heat generated by the combustion of the coke, and the raw material layer 10 is heated by the heat provided by the raw material layer heating device 9. The structure is such that the entire structure can be sintered.
The raw material layer heating device 9 may be any device that can heat and soak the temperature to about 1000 to 1400°C, and may include direct heating such as heating with a gas combustion burner or heating by contact with a heating element, indirect heating such as an electric heater, etc. can be given. In particular, by using a gas-fired burner and using hydrogen as a fuel, no CO 2 is generated due to combustion, and the amount of CO 2 emissions can be significantly reduced.
なお、加熱・均熱は混合する原料の成分や粒度などにより異なるが、温度に関しては上記のように1000~1400℃であればよく、加熱・均熱時間は、1~5分であればよい。
また、原料層加熱装置9が昇降機能を有することにより、加熱効率を向上させることができ、また焼結鉱原料との接触の回避を図ることができるので好ましい。 The heating and soaking time will vary depending on the ingredients and particle size of the raw materials to be mixed, but the temperature may be 1000 to 1400°C as described above, and the heating and soaking time may be 1 to 5 minutes. .
Further, it is preferable that the raw material layer heating device 9 has an elevating function because heating efficiency can be improved and contact with the sintered ore raw material can be avoided.
また、原料層加熱装置9が昇降機能を有することにより、加熱効率を向上させることができ、また焼結鉱原料との接触の回避を図ることができるので好ましい。 The heating and soaking time will vary depending on the ingredients and particle size of the raw materials to be mixed, but the temperature may be 1000 to 1400°C as described above, and the heating and soaking time may be 1 to 5 minutes. .
Further, it is preferable that the raw material layer heating device 9 has an elevating function because heating efficiency can be improved and contact with the sintered ore raw material can be avoided.
<測温装置>
測温装置11は、原料層10の表面温度を測定するものであって、本実施形態では放射温度計である。また、表面温度プロファイルを示す画像を生成するサーモグラフィカメラを用いてもよい。 <Temperature measuring device>
The temperature measuring device 11 measures the surface temperature of the raw material layer 10, and is a radiation thermometer in this embodiment. A thermographic camera may also be used that generates an image showing the surface temperature profile.
測温装置11は、原料層10の表面温度を測定するものであって、本実施形態では放射温度計である。また、表面温度プロファイルを示す画像を生成するサーモグラフィカメラを用いてもよい。 <Temperature measuring device>
The temperature measuring device 11 measures the surface temperature of the raw material layer 10, and is a radiation thermometer in this embodiment. A thermographic camera may also be used that generates an image showing the surface temperature profile.
<制御装置>
制御装置13は、測温装置11の測定値に基づいて、原料投入装置7により形成された原料層10の焼結が完了するように原料層加熱装置9の出力を制御するものである。
なお、図1に示す例は、制御装置13の制御対象を原料層加熱装置9としたものであるが、制御装置13の制御対象を原料層加熱装置9に代えて搬送装置5としてもよい。この場合には、測温装置11の測定値に基づいて原料投入装置7により形成された原料層10の焼結が完了するように搬送装置5の速さを制御するようにすればよい。
また、制御対象は原料層加熱装置9又は搬送装置5のいずれか一方でなく、両者を制御対象としてもよい。但し、搬送装置5の速さを制御する場合には、同時に原料投入装置7も制御し、原料層10の厚さが所定範囲内となるようにする。 <Control device>
The control device 13 controls the output of the raw material layer heating device 9 based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
In the example shown in FIG. 1, the control target of the control device 13 is the raw material layer heating device 9, but the control target of the control device 13 may be replaced with the raw material layer heating device 9 and the conveying device 5. In this case, the speed of the conveying device 5 may be controlled based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
Furthermore, the object to be controlled is not either the raw material layer heating device 9 or the transport device 5, but both may be the object to be controlled. However, when controlling the speed of the conveyance device 5, the raw material input device 7 is also controlled at the same time so that the thickness of the raw material layer 10 is within a predetermined range.
制御装置13は、測温装置11の測定値に基づいて、原料投入装置7により形成された原料層10の焼結が完了するように原料層加熱装置9の出力を制御するものである。
なお、図1に示す例は、制御装置13の制御対象を原料層加熱装置9としたものであるが、制御装置13の制御対象を原料層加熱装置9に代えて搬送装置5としてもよい。この場合には、測温装置11の測定値に基づいて原料投入装置7により形成された原料層10の焼結が完了するように搬送装置5の速さを制御するようにすればよい。
また、制御対象は原料層加熱装置9又は搬送装置5のいずれか一方でなく、両者を制御対象としてもよい。但し、搬送装置5の速さを制御する場合には、同時に原料投入装置7も制御し、原料層10の厚さが所定範囲内となるようにする。 <Control device>
The control device 13 controls the output of the raw material layer heating device 9 based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
In the example shown in FIG. 1, the control target of the control device 13 is the raw material layer heating device 9, but the control target of the control device 13 may be replaced with the raw material layer heating device 9 and the conveying device 5. In this case, the speed of the conveying device 5 may be controlled based on the measured value of the temperature measuring device 11 so that the sintering of the raw material layer 10 formed by the raw material charging device 7 is completed.
Furthermore, the object to be controlled is not either the raw material layer heating device 9 or the transport device 5, but both may be the object to be controlled. However, when controlling the speed of the conveyance device 5, the raw material input device 7 is also controlled at the same time so that the thickness of the raw material layer 10 is within a predetermined range.
<動作説明>
以上のように構成された本実施の形態の加熱式焼結機1の動作を説明する。
最も上流側の第1焼結装置3aの原料投入装置7により、所定の速さで移動している搬送装置5に焼結鉱原料が投入される。この際の供給量は、原料層10の層厚が20~300mm程度となる供給量が好ましく、更に好ましくは20~100mm程度となる供給量である。
供給量は搬送装置5の速さや原料層加熱装置9の加熱能力を考慮して、原料層加熱装置9によって焼結・均熱が可能な原料層10の層厚となるように予め設定された量とする。 <Operation explanation>
The operation of the heating type sintering machine 1 of this embodiment configured as above will be explained.
The raw material input device 7 of the first sintering device 3a on the most upstream side supplies the sintered ore raw material to the conveying device 5 that is moving at a predetermined speed. The supply amount at this time is preferably such that the thickness of the raw material layer 10 is approximately 20 to 300 mm, and more preferably such that the thickness is approximately 20 to 100 mm.
The supply amount is preset in consideration of the speed of the conveying device 5 and the heating capacity of the raw material layer heating device 9 so that the thickness of the raw material layer 10 can be sintered and soaked by the raw material layer heating device 9. Quantity.
以上のように構成された本実施の形態の加熱式焼結機1の動作を説明する。
最も上流側の第1焼結装置3aの原料投入装置7により、所定の速さで移動している搬送装置5に焼結鉱原料が投入される。この際の供給量は、原料層10の層厚が20~300mm程度となる供給量が好ましく、更に好ましくは20~100mm程度となる供給量である。
供給量は搬送装置5の速さや原料層加熱装置9の加熱能力を考慮して、原料層加熱装置9によって焼結・均熱が可能な原料層10の層厚となるように予め設定された量とする。 <Operation explanation>
The operation of the heating type sintering machine 1 of this embodiment configured as above will be explained.
The raw material input device 7 of the first sintering device 3a on the most upstream side supplies the sintered ore raw material to the conveying device 5 that is moving at a predetermined speed. The supply amount at this time is preferably such that the thickness of the raw material layer 10 is approximately 20 to 300 mm, and more preferably such that the thickness is approximately 20 to 100 mm.
The supply amount is preset in consideration of the speed of the conveying device 5 and the heating capacity of the raw material layer heating device 9 so that the thickness of the raw material layer 10 can be sintered and soaked by the raw material layer heating device 9. Quantity.
搬送装置5に投入された焼結鉱原料によって原料層10が形成されると、原料層加熱装置9によって原料層10の上面側から加熱・均熱が行われる。加熱・均熱時間は例えば1~5分である。本発明においては従来例のように原料層10に混入させたコークスの燃焼によって焼結鉱原料を加熱して焼結・均熱するというのではなく、原料層加熱装置9による加熱によって焼結・均熱を行う点が特徴であり、そのため、本実施の形態のように測温装置11及び制御装置13を設けてより緻密に加熱制御を行うのが好ましい。
When the raw material layer 10 is formed from the sintered ore raw material introduced into the conveyance device 5, the raw material layer 10 is heated and soaked from the upper surface side by the raw material layer heating device 9. The heating/soaking time is, for example, 1 to 5 minutes. In the present invention, instead of heating the sintered ore raw material by burning coke mixed in the raw material layer 10 for sintering and soaking as in the conventional example, the sintered ore raw material is sintered and soaked by heating by the raw material layer heating device 9. It is characterized by uniform heating, and therefore it is preferable to provide a temperature measuring device 11 and a control device 13 as in this embodiment to perform more precise heating control.
この点、本実施の形態では、原料層加熱装置9の後段で原料層10の温度を測温装置11によって測定し、その測定値を制御装置13に入力し、制御装置13は入力値によって原料層加熱装置9の出力を制御する。具体的には、原料層10の温度が高すぎる場合には、加熱エネルギーが無駄になっているため、出力を低下させる。他方、温度が低い場合には出力を上げて焼結・均熱を完了するようにする。
なお、制御装置13の制御対象が搬送装置5の場合、原料層10の温度が高すぎる場合には、搬送速度を上げ、温度が低い場合には搬送速度を下げるようにすればよい。 In this regard, in the present embodiment, the temperature of the raw material layer 10 is measured by the temperature measuring device 11 at the subsequent stage of the raw material layer heating device 9, and the measured value is inputted to the control device 13. The output of the layer heating device 9 is controlled. Specifically, if the temperature of the raw material layer 10 is too high, heating energy is wasted, so the output is reduced. On the other hand, when the temperature is low, the output is increased to complete sintering and soaking.
In addition, when the control target of the control device 13 is the conveyance device 5, the conveyance speed may be increased when the temperature of the raw material layer 10 is too high, and the conveyance speed may be decreased when the temperature is low.
なお、制御装置13の制御対象が搬送装置5の場合、原料層10の温度が高すぎる場合には、搬送速度を上げ、温度が低い場合には搬送速度を下げるようにすればよい。 In this regard, in the present embodiment, the temperature of the raw material layer 10 is measured by the temperature measuring device 11 at the subsequent stage of the raw material layer heating device 9, and the measured value is inputted to the control device 13. The output of the layer heating device 9 is controlled. Specifically, if the temperature of the raw material layer 10 is too high, heating energy is wasted, so the output is reduced. On the other hand, when the temperature is low, the output is increased to complete sintering and soaking.
In addition, when the control target of the control device 13 is the conveyance device 5, the conveyance speed may be increased when the temperature of the raw material layer 10 is too high, and the conveyance speed may be decreased when the temperature is low.
第1焼結装置3aを通過するときには第1層の原料層10は焼結・均熱が完了して第2焼結装置3bに搬送される。
第2焼結装置3bでは、原料投入装置7から第1層の原料層10の上に焼結鉱原料が投入されて第2層の原料層10が形成される。このとき、第1層の焼成が完了した後に第2層が投入されるため、焼結鉱原料の荷重によって燃焼溶融帯で発生するガス流路の閉塞や内部歪を抑制することができる。 When passing through the first sintering device 3a, the first raw material layer 10 has been sintered and soaked and is transported to the second sintering device 3b.
In the second sintering device 3b, the sintered ore raw material is charged from the raw material input device 7 onto the first raw material layer 10 to form the second raw material layer 10. At this time, since the second layer is introduced after the firing of the first layer is completed, it is possible to suppress clogging of the gas flow path and internal distortion that occur in the combustion melting zone due to the load of the sintered ore raw material.
第2焼結装置3bでは、原料投入装置7から第1層の原料層10の上に焼結鉱原料が投入されて第2層の原料層10が形成される。このとき、第1層の焼成が完了した後に第2層が投入されるため、焼結鉱原料の荷重によって燃焼溶融帯で発生するガス流路の閉塞や内部歪を抑制することができる。 When passing through the first sintering device 3a, the first raw material layer 10 has been sintered and soaked and is transported to the second sintering device 3b.
In the second sintering device 3b, the sintered ore raw material is charged from the raw material input device 7 onto the first raw material layer 10 to form the second raw material layer 10. At this time, since the second layer is introduced after the firing of the first layer is completed, it is possible to suppress clogging of the gas flow path and internal distortion that occur in the combustion melting zone due to the load of the sintered ore raw material.
第2焼結装置3bでは第1焼結装置3aと同様に原料層加熱装置9によって第2層の原料層10の焼結・均熱が行われる。
制御装置13による原料層加熱装置9の制御方法は第1焼結装置3aの制御装置13と同様である。 In the second sintering device 3b, the second raw material layer 10 is sintered and soaked by the raw material layer heating device 9 similarly to the first sintering device 3a.
The method of controlling the raw material layer heating device 9 by the control device 13 is the same as that of the control device 13 of the first sintering device 3a.
制御装置13による原料層加熱装置9の制御方法は第1焼結装置3aの制御装置13と同様である。 In the second sintering device 3b, the second raw material layer 10 is sintered and soaked by the raw material layer heating device 9 similarly to the first sintering device 3a.
The method of controlling the raw material layer heating device 9 by the control device 13 is the same as that of the control device 13 of the first sintering device 3a.
図2は、第1層と第2層の焼結・均熱の進む様子をグラフ化したものであり、縦軸が原料層高さで横軸が焼結経過時間を示している。
図2に示すように、第1層の焼結鉱原料は上層から順に焼結が進行し、第2焼結装置3bに到達する前に第1層の焼結と均熱が完了している。
そして、第2焼結装置3bでは、焼結・均熱が完了した第1層の上に焼結鉱原料が投入されて第2層が形成され、焼結・均熱が行われる。 FIG. 2 is a graph showing the progress of sintering and soaking of the first and second layers, with the vertical axis representing the height of the raw material layer and the horizontal axis representing the elapsed sintering time.
As shown in FIG. 2, sintering of the sintered ore raw material in the first layer progresses in order from the upper layer, and the sintering and soaking of the first layer are completed before reaching the second sintering device 3b. .
Then, in the second sintering device 3b, the sintered ore raw material is introduced onto the first layer that has been sintered and soaked to form a second layer, and sintered and soaked.
図2に示すように、第1層の焼結鉱原料は上層から順に焼結が進行し、第2焼結装置3bに到達する前に第1層の焼結と均熱が完了している。
そして、第2焼結装置3bでは、焼結・均熱が完了した第1層の上に焼結鉱原料が投入されて第2層が形成され、焼結・均熱が行われる。 FIG. 2 is a graph showing the progress of sintering and soaking of the first and second layers, with the vertical axis representing the height of the raw material layer and the horizontal axis representing the elapsed sintering time.
As shown in FIG. 2, sintering of the sintered ore raw material in the first layer progresses in order from the upper layer, and the sintering and soaking of the first layer are completed before reaching the second sintering device 3b. .
Then, in the second sintering device 3b, the sintered ore raw material is introduced onto the first layer that has been sintered and soaked to form a second layer, and sintered and soaked.
以上のように、本実施の形態によれば、コークスを使用せずに原料層加熱装置9によって焼結・均熱を行うので、焼結プロセスにおいて二酸化炭素(CO2)排出量の削減が実現できる。
また、コークスの燃焼による制御が難しい成り行きでの加熱ではなく、制御可能な原料層加熱装置9による加熱のため、焼結・均熱をより確実に行うことができる。
しかも、焼結鉱原料が薄層であるため、各層の上下での温度差が抑制され各層の温度管理が容易となり、放射温度計やサーモグラフィカメラを利用して測定した焼結鉱温度を原料層加熱装置9の出力にフィードバックすることにより加熱エネルギーを抑制することができる。
また、本実施の形態では原料層10を複数の層に分け、各層の層厚を薄層にすることにより短時間で一定温度以上に加熱して均熱することか可能となり、且つ、焼結後の保有熱は接触による伝熱により次の層(上層)の加熱に有効利用することができる。 As described above, according to the present embodiment, sintering and soaking are performed by the raw material layer heating device 9 without using coke, so that carbon dioxide (CO 2 ) emissions can be reduced in the sintering process. can.
Moreover, since heating is performed by the controllable raw material layer heating device 9 instead of heating by the combustion of coke, which is difficult to control, sintering and soaking can be performed more reliably.
Moreover, since the sintered ore raw material is a thin layer, the temperature difference between the top and bottom of each layer is suppressed, making it easy to control the temperature of each layer, and the sintered ore temperature measured using a radiation thermometer or thermography camera is By feeding back the output of the heating device 9, heating energy can be suppressed.
Furthermore, in this embodiment, by dividing the raw material layer 10 into a plurality of layers and making each layer thinner, it is possible to heat the raw material layer 10 to a certain temperature or higher in a short period of time and to soak it. The remaining heat can be effectively used to heat the next layer (upper layer) by heat transfer through contact.
また、コークスの燃焼による制御が難しい成り行きでの加熱ではなく、制御可能な原料層加熱装置9による加熱のため、焼結・均熱をより確実に行うことができる。
しかも、焼結鉱原料が薄層であるため、各層の上下での温度差が抑制され各層の温度管理が容易となり、放射温度計やサーモグラフィカメラを利用して測定した焼結鉱温度を原料層加熱装置9の出力にフィードバックすることにより加熱エネルギーを抑制することができる。
また、本実施の形態では原料層10を複数の層に分け、各層の層厚を薄層にすることにより短時間で一定温度以上に加熱して均熱することか可能となり、且つ、焼結後の保有熱は接触による伝熱により次の層(上層)の加熱に有効利用することができる。 As described above, according to the present embodiment, sintering and soaking are performed by the raw material layer heating device 9 without using coke, so that carbon dioxide (CO 2 ) emissions can be reduced in the sintering process. can.
Moreover, since heating is performed by the controllable raw material layer heating device 9 instead of heating by the combustion of coke, which is difficult to control, sintering and soaking can be performed more reliably.
Moreover, since the sintered ore raw material is a thin layer, the temperature difference between the top and bottom of each layer is suppressed, making it easy to control the temperature of each layer, and the sintered ore temperature measured using a radiation thermometer or thermography camera is By feeding back the output of the heating device 9, heating energy can be suppressed.
Furthermore, in this embodiment, by dividing the raw material layer 10 into a plurality of layers and making each layer thinner, it is possible to heat the raw material layer 10 to a certain temperature or higher in a short period of time and to soak it. The remaining heat can be effectively used to heat the next layer (upper layer) by heat transfer through contact.
<変形例1>
なお、上記の説明では、各焼結装置3が1台の原料層加熱装置9を有するものであったが、本発明はこれに限られず、各焼結装置3が複数台の原料層加熱装置9を有するものであってもよく、その場合に、各焼結装置3が測温装置11と制御装置13を備えるようにしてもよい。
各焼結装置3が2台の原料層加熱装置9、測温装置11及び制御装置13を有する例を図3に示す。
なお、各焼結装置3が有する原料層加熱装置9の台数は同じである必要はなく、例えば第1焼結装置3aのみ複数台の原料層加熱装置9を備え、他の焼結装置は1台の原料層加熱装置9を有するものであってもよい。 <Modification 1>
In the above description, each sintering device 3 has one raw material layer heating device 9, but the present invention is not limited to this, and each sintering device 3 has a plurality of raw material layer heating devices. 9, and in that case, each sintering device 3 may be provided with a temperature measuring device 11 and a control device 13.
FIG. 3 shows an example in which each sintering device 3 includes two raw material layer heating devices 9, a temperature measuring device 11, and a control device 13.
Note that the number of raw material layer heating devices 9 included in each sintering device 3 does not need to be the same; for example, only the first sintering device 3a has a plurality of raw material layer heating devices 9, and the other sintering devices have one raw material layer heating device 9. It may also have one raw material layer heating device 9.
なお、上記の説明では、各焼結装置3が1台の原料層加熱装置9を有するものであったが、本発明はこれに限られず、各焼結装置3が複数台の原料層加熱装置9を有するものであってもよく、その場合に、各焼結装置3が測温装置11と制御装置13を備えるようにしてもよい。
各焼結装置3が2台の原料層加熱装置9、測温装置11及び制御装置13を有する例を図3に示す。
なお、各焼結装置3が有する原料層加熱装置9の台数は同じである必要はなく、例えば第1焼結装置3aのみ複数台の原料層加熱装置9を備え、他の焼結装置は1台の原料層加熱装置9を有するものであってもよい。 <Modification 1>
In the above description, each sintering device 3 has one raw material layer heating device 9, but the present invention is not limited to this, and each sintering device 3 has a plurality of raw material layer heating devices. 9, and in that case, each sintering device 3 may be provided with a temperature measuring device 11 and a control device 13.
FIG. 3 shows an example in which each sintering device 3 includes two raw material layer heating devices 9, a temperature measuring device 11, and a control device 13.
Note that the number of raw material layer heating devices 9 included in each sintering device 3 does not need to be the same; for example, only the first sintering device 3a has a plurality of raw material layer heating devices 9, and the other sintering devices have one raw material layer heating device 9. It may also have one raw material layer heating device 9.
<変形例2>
薄層の原料層10を均等に加熱するには焼結鉱原料が均一な層厚であるのが好ましい。しかし、焼結鉱原料は粒度、形状のバラツキがあり、さらには搬送装置5へ投入するシュート形状等、搬送装置5後の流動により幅方向に対して均一厚となりにくい場合がある。
原料層10を均一に加熱するために、原料層加熱装置9を幅方向に分割して出力調整することも考えられるが、このような態様では設備コストが増大する。
そこで、図4に示すように、原料投入装置7と原料層加熱装置9との間に、原料層10の表面の高さを調整可能なローラー、ガイド等の調整装置15設けるのが好ましい。 <Modification 2>
In order to uniformly heat the thin raw material layer 10, it is preferable that the sintered ore raw material has a uniform layer thickness. However, the sintered ore raw material has variations in particle size and shape, and furthermore, it may be difficult to obtain a uniform thickness in the width direction due to the shape of the chute fed into the conveyor 5 and the flow after the conveyor 5.
In order to uniformly heat the raw material layer 10, it is conceivable to divide the raw material layer heating device 9 in the width direction and adjust the output, but such an embodiment increases the equipment cost.
Therefore, as shown in FIG. 4, it is preferable to provide an adjusting device 15 such as a roller or a guide that can adjust the height of the surface of the raw material layer 10 between the raw material input device 7 and the raw material layer heating device 9.
薄層の原料層10を均等に加熱するには焼結鉱原料が均一な層厚であるのが好ましい。しかし、焼結鉱原料は粒度、形状のバラツキがあり、さらには搬送装置5へ投入するシュート形状等、搬送装置5後の流動により幅方向に対して均一厚となりにくい場合がある。
原料層10を均一に加熱するために、原料層加熱装置9を幅方向に分割して出力調整することも考えられるが、このような態様では設備コストが増大する。
そこで、図4に示すように、原料投入装置7と原料層加熱装置9との間に、原料層10の表面の高さを調整可能なローラー、ガイド等の調整装置15設けるのが好ましい。 <Modification 2>
In order to uniformly heat the thin raw material layer 10, it is preferable that the sintered ore raw material has a uniform layer thickness. However, the sintered ore raw material has variations in particle size and shape, and furthermore, it may be difficult to obtain a uniform thickness in the width direction due to the shape of the chute fed into the conveyor 5 and the flow after the conveyor 5.
In order to uniformly heat the raw material layer 10, it is conceivable to divide the raw material layer heating device 9 in the width direction and adjust the output, but such an embodiment increases the equipment cost.
Therefore, as shown in FIG. 4, it is preferable to provide an adjusting device 15 such as a roller or a guide that can adjust the height of the surface of the raw material layer 10 between the raw material input device 7 and the raw material layer heating device 9.
また、調整装置15を層厚方向に対して昇降可能とすることにより、焼結鉱原料成分、粒度等変更に伴う層厚調整に対応可能となる。昇降手段としては特に限定するものではなく、例えば、ジャッキ、吊り治具、複数の設置(ボルト)穴を有するハンガ等でよい。
特に、調整装置15としてローラーを用いて原料層10を圧下できる機構とすれば、原料層10の空隙率減少による層厚低減および製品強度の向上や、生産量を拡大することもでき、また、焼結鉱強度の増加を図ることもできる。 Further, by making the adjustment device 15 movable up and down in the layer thickness direction, it becomes possible to adjust the layer thickness in accordance with changes in the sintered ore raw material composition, particle size, etc. The elevating means is not particularly limited, and may be, for example, a jack, a hanging jig, a hanger having a plurality of installation (bolt) holes, or the like.
In particular, if the adjustment device 15 is a mechanism that can reduce the raw material layer 10 using a roller, it is possible to reduce the layer thickness and improve the product strength by reducing the porosity of the raw material layer 10, and also to increase the production volume. It is also possible to increase the strength of the sintered ore.
特に、調整装置15としてローラーを用いて原料層10を圧下できる機構とすれば、原料層10の空隙率減少による層厚低減および製品強度の向上や、生産量を拡大することもでき、また、焼結鉱強度の増加を図ることもできる。 Further, by making the adjustment device 15 movable up and down in the layer thickness direction, it becomes possible to adjust the layer thickness in accordance with changes in the sintered ore raw material composition, particle size, etc. The elevating means is not particularly limited, and may be, for example, a jack, a hanging jig, a hanger having a plurality of installation (bolt) holes, or the like.
In particular, if the adjustment device 15 is a mechanism that can reduce the raw material layer 10 using a roller, it is possible to reduce the layer thickness and improve the product strength by reducing the porosity of the raw material layer 10, and also to increase the production volume. It is also possible to increase the strength of the sintered ore.
さらに、ローラーに溝やテーパーを設けて原料層幅方向の一以上の箇所の高さを変更可能にすることにより、原料層加熱装置9の加熱デッドゾーンや加熱能力の低下箇所における未焼結を低減することができる。搬送装置5の幅方向両端にはサイドウォールがあるため加熱装置を設置できず、加熱されにくいこともあり、このような場合に有効な手段である。
また、ローラーは幅方向に分割してもよく、さらには焼結鉱原料の進行方向に複数個設けてもよい。 Furthermore, by providing grooves or tapers on the rollers to make it possible to change the height at one or more points in the width direction of the raw material layer, unsintering can be prevented in the heating dead zone of the raw material layer heating device 9 or at a location where the heating capacity is reduced. can be reduced. Since there are sidewalls at both ends of the conveying device 5 in the width direction, a heating device cannot be installed and it is difficult to heat the device, so this is an effective means in such a case.
Further, the rollers may be divided in the width direction, and furthermore, a plurality of rollers may be provided in the direction of movement of the sintered ore raw material.
また、ローラーは幅方向に分割してもよく、さらには焼結鉱原料の進行方向に複数個設けてもよい。 Furthermore, by providing grooves or tapers on the rollers to make it possible to change the height at one or more points in the width direction of the raw material layer, unsintering can be prevented in the heating dead zone of the raw material layer heating device 9 or at a location where the heating capacity is reduced. can be reduced. Since there are sidewalls at both ends of the conveying device 5 in the width direction, a heating device cannot be installed and it is difficult to heat the device, so this is an effective means in such a case.
Further, the rollers may be divided in the width direction, and furthermore, a plurality of rollers may be provided in the direction of movement of the sintered ore raw material.
なお、調整装置15は全ての焼結装置3が有してもよく、いずれか一つまたは複数の焼結装置3が必要に応じて有するようにしてもよい。
Note that all the sintering devices 3 may have the adjusting device 15, or any one or more sintering devices 3 may have the adjusting device 15 as necessary.
<変形例3>
また、図5に示すように、少なくとも1つの焼結装置3が、原料層10に水素ガスまたは酸素ガスを吹き込むガス吹込み装置17を更に備え、原料層加熱装置9が燃料ガスとして水素を用いたガス燃焼方式としてもよい。
ガス吹込み装置17を備えることで、原料層内でのガス燃焼により加熱性能を高めることができる。
なお、ガス吹き込みノズル19の吹出口は原料層内でもよいし、あるいは原料層外であってもよい。 <Modification 3>
Further, as shown in FIG. 5, at least one sintering device 3 further includes a gas blowing device 17 that blows hydrogen gas or oxygen gas into the raw material layer 10, and the raw material layer heating device 9 uses hydrogen as a fuel gas. It is also possible to use a gas combustion method.
By providing the gas blowing device 17, heating performance can be improved by gas combustion within the raw material layer.
Note that the outlet of the gas blowing nozzle 19 may be inside the raw material layer, or may be outside the raw material layer.
また、図5に示すように、少なくとも1つの焼結装置3が、原料層10に水素ガスまたは酸素ガスを吹き込むガス吹込み装置17を更に備え、原料層加熱装置9が燃料ガスとして水素を用いたガス燃焼方式としてもよい。
ガス吹込み装置17を備えることで、原料層内でのガス燃焼により加熱性能を高めることができる。
なお、ガス吹き込みノズル19の吹出口は原料層内でもよいし、あるいは原料層外であってもよい。 <Modification 3>
Further, as shown in FIG. 5, at least one sintering device 3 further includes a gas blowing device 17 that blows hydrogen gas or oxygen gas into the raw material layer 10, and the raw material layer heating device 9 uses hydrogen as a fuel gas. It is also possible to use a gas combustion method.
By providing the gas blowing device 17, heating performance can be improved by gas combustion within the raw material layer.
Note that the outlet of the gas blowing nozzle 19 may be inside the raw material layer, or may be outside the raw material layer.
なお、上記の実施の形態においては、搬送方向に焼結装置3を複数台設置するものを例示したが、本発明に係る加熱式焼結機1は1台の焼結装置3によって構成されるものも含む。
本発明の加熱式焼結機1の特徴は、焼結鉱原料にコークスを混入させてコークスを燃焼させる従来例とは異なり、原料層10を比較的薄層とし、原料層10の上方に設置した原料層加熱装置9によって焼結・均熱をさせることにあるので、かかる構成を備えるかぎり、焼結装置3が単体であっても本発明に含まれる。
但し、焼結装置3が搬送方向において所定以上の間隔を空けて複数設けられていることにより、1つのみである場合と比較し、装置全長が同じであればより多くの量の焼結鉱原料を焼結することが可能となる。 In the above embodiment, a plurality of sintering devices 3 are installed in the transport direction, but the heating type sintering machine 1 according to the present invention is configured by one sintering device 3. Including things.
The feature of the heating type sintering machine 1 of the present invention is that unlike the conventional example in which coke is mixed into the sintered ore raw material and the coke is burned, the raw material layer 10 is made into a relatively thin layer and is installed above the raw material layer 10. Since the purpose is to perform sintering and soaking by the raw material layer heating device 9, even if the sintering device 3 is a single unit, it is included in the present invention as long as it has such a configuration.
However, since a plurality of sintering devices 3 are provided at a predetermined interval or more in the transport direction, a larger amount of sintered ore can be produced if the overall length of the device is the same compared to a case where there is only one sintering device 3. It becomes possible to sinter the raw material.
本発明の加熱式焼結機1の特徴は、焼結鉱原料にコークスを混入させてコークスを燃焼させる従来例とは異なり、原料層10を比較的薄層とし、原料層10の上方に設置した原料層加熱装置9によって焼結・均熱をさせることにあるので、かかる構成を備えるかぎり、焼結装置3が単体であっても本発明に含まれる。
但し、焼結装置3が搬送方向において所定以上の間隔を空けて複数設けられていることにより、1つのみである場合と比較し、装置全長が同じであればより多くの量の焼結鉱原料を焼結することが可能となる。 In the above embodiment, a plurality of sintering devices 3 are installed in the transport direction, but the heating type sintering machine 1 according to the present invention is configured by one sintering device 3. Including things.
The feature of the heating type sintering machine 1 of the present invention is that unlike the conventional example in which coke is mixed into the sintered ore raw material and the coke is burned, the raw material layer 10 is made into a relatively thin layer and is installed above the raw material layer 10. Since the purpose is to perform sintering and soaking by the raw material layer heating device 9, even if the sintering device 3 is a single unit, it is included in the present invention as long as it has such a configuration.
However, since a plurality of sintering devices 3 are provided at a predetermined interval or more in the transport direction, a larger amount of sintered ore can be produced if the overall length of the device is the same compared to a case where there is only one sintering device 3. It becomes possible to sinter the raw material.
[実施の形態2]
本実施の形態2に係る加熱式焼結機20は、図6に示すように、搬送装置5の下方から上方に向けて原料層10を通して空気を流す通気装置21を含む排熱回収装置23を備えたものである。
そして、本実施の形態の原料投入装置7は、搬送装置5に投入する前に焼結鉱原料を加熱する投入前加熱装置25を備えている。
また、本実施の形態の原料層加熱装置9は、実施の形態1で例示したようなバーナー式の加熱装置ではなく、ジュール熱による電熱ヒーター等の電気加熱装置であるのが好ましい。 [Embodiment 2]
As shown in FIG. 6, the heating type sintering machine 20 according to the second embodiment includes an exhaust heat recovery device 23 including a ventilation device 21 that flows air through the raw material layer 10 from below to above the conveying device 5. It is prepared.
The raw material charging device 7 of this embodiment includes a pre-charging heating device 25 that heats the sintered ore raw material before charging it into the conveying device 5.
Further, the raw material layer heating device 9 of this embodiment is preferably an electric heating device such as an electric heater using Joule heat, rather than a burner-type heating device as exemplified in the first embodiment.
本実施の形態2に係る加熱式焼結機20は、図6に示すように、搬送装置5の下方から上方に向けて原料層10を通して空気を流す通気装置21を含む排熱回収装置23を備えたものである。
そして、本実施の形態の原料投入装置7は、搬送装置5に投入する前に焼結鉱原料を加熱する投入前加熱装置25を備えている。
また、本実施の形態の原料層加熱装置9は、実施の形態1で例示したようなバーナー式の加熱装置ではなく、ジュール熱による電熱ヒーター等の電気加熱装置であるのが好ましい。 [Embodiment 2]
As shown in FIG. 6, the heating type sintering machine 20 according to the second embodiment includes an exhaust heat recovery device 23 including a ventilation device 21 that flows air through the raw material layer 10 from below to above the conveying device 5. It is prepared.
The raw material charging device 7 of this embodiment includes a pre-charging heating device 25 that heats the sintered ore raw material before charging it into the conveying device 5.
Further, the raw material layer heating device 9 of this embodiment is preferably an electric heating device such as an electric heater using Joule heat, rather than a burner-type heating device as exemplified in the first embodiment.
電気加熱装置とした理由は以下の通りである。
排熱回収装置23を設けた場合、通気装置21によって下方から上方に空気が流れるため、バーナー式のようなガス燃焼による加熱では気流の流れの影響を受け、加熱時間、加熱温度が変化する。この点、原料層加熱装置9が電気加熱装置であれば、気流の流れの影響を受けないので、排熱回収を行っても加熱時間や加熱温度が変化することなく、安定した焼結・均熱ができる。 The reason for using an electric heating device is as follows.
When the exhaust heat recovery device 23 is provided, air flows from the bottom to the top by the ventilation device 21, so heating by gas combustion such as a burner type is affected by the airflow, and the heating time and heating temperature change. In this regard, if the raw material layer heating device 9 is an electric heating device, it will not be affected by the air flow, so even if exhaust heat is recovered, the heating time and heating temperature will not change, resulting in stable sintering and uniformity. I can get a fever.
排熱回収装置23を設けた場合、通気装置21によって下方から上方に空気が流れるため、バーナー式のようなガス燃焼による加熱では気流の流れの影響を受け、加熱時間、加熱温度が変化する。この点、原料層加熱装置9が電気加熱装置であれば、気流の流れの影響を受けないので、排熱回収を行っても加熱時間や加熱温度が変化することなく、安定した焼結・均熱ができる。 The reason for using an electric heating device is as follows.
When the exhaust heat recovery device 23 is provided, air flows from the bottom to the top by the ventilation device 21, so heating by gas combustion such as a burner type is affected by the airflow, and the heating time and heating temperature change. In this regard, if the raw material layer heating device 9 is an electric heating device, it will not be affected by the air flow, so even if exhaust heat is recovered, the heating time and heating temperature will not change, resulting in stable sintering and uniformity. I can get a fever.
また、投入前加熱装置25を設けたのは、電気加熱装置はガス燃焼による加熱方式よりも加熱能力が劣る場合もあるので、これを補うためである。投入前加熱では焼結反応が生じない程度の加熱温度(例えば、900℃)での加熱を行う。
加熱方法としては、例えばホッパー内の焼結鉱原料を加熱する装置を用いて加熱するようにしてもよい。
なお、下流側で排熱を回収し、上流側の加熱に利用するようにしてもよい。 Further, the reason why the pre-charging heating device 25 is provided is to compensate for the fact that the heating ability of an electric heating device is sometimes inferior to that of a heating method using gas combustion. In the heating before charging, heating is performed at a heating temperature (for example, 900° C.) that does not cause a sintering reaction.
As a heating method, for example, a device that heats the sintered ore raw material in the hopper may be used.
Note that exhaust heat may be recovered on the downstream side and used for heating on the upstream side.
加熱方法としては、例えばホッパー内の焼結鉱原料を加熱する装置を用いて加熱するようにしてもよい。
なお、下流側で排熱を回収し、上流側の加熱に利用するようにしてもよい。 Further, the reason why the pre-charging heating device 25 is provided is to compensate for the fact that the heating ability of an electric heating device is sometimes inferior to that of a heating method using gas combustion. In the heating before charging, heating is performed at a heating temperature (for example, 900° C.) that does not cause a sintering reaction.
As a heating method, for example, a device that heats the sintered ore raw material in the hopper may be used.
Note that exhaust heat may be recovered on the downstream side and used for heating on the upstream side.
上記の実施の形態1、2においては、二酸化炭素削減の観点から原料にはコークス等のカーボンを添加しないものであった。
しかしながら、装置上の制約から所定温度まで加熱されにくい、または加熱時間を要する場合はコークスを添加した方が経済的であり、例えばコークスとしてバイオマス由来の炭材を添加するようなものを排除するものではない。 In the first and second embodiments described above, carbon such as coke was not added to the raw material from the viewpoint of reducing carbon dioxide.
However, if it is difficult to heat up to the specified temperature due to equipment constraints, or if heating takes a long time, it is more economical to add coke.For example, adding coke to a biomass-derived carbonaceous material is excluded. isn't it.
しかしながら、装置上の制約から所定温度まで加熱されにくい、または加熱時間を要する場合はコークスを添加した方が経済的であり、例えばコークスとしてバイオマス由来の炭材を添加するようなものを排除するものではない。 In the first and second embodiments described above, carbon such as coke was not added to the raw material from the viewpoint of reducing carbon dioxide.
However, if it is difficult to heat up to the specified temperature due to equipment constraints, or if heating takes a long time, it is more economical to add coke.For example, adding coke to a biomass-derived carbonaceous material is excluded. isn't it.
<加熱焼結方法>
上記の実施の形態1、2においては、具体的な加熱式焼結機1、20の装置構成を示し、かかる加熱式焼結機1、20を用いた加熱式焼結方法について説明した。
しかし、本発明に係る加熱式焼結方法は、上記の加熱式焼結機1、20を前提とするものではなく、以下に示すような加熱焼結方法を含むものである。 <Heat sintering method>
In the first and second embodiments described above, specific device configurations of the heating type sintering machines 1 and 20 were shown, and a heating type sintering method using the heating type sintering machines 1 and 20 was explained.
However, the heating sintering method according to the present invention is not based on the heating sintering machines 1 and 20 described above, but includes a heating sintering method as shown below.
上記の実施の形態1、2においては、具体的な加熱式焼結機1、20の装置構成を示し、かかる加熱式焼結機1、20を用いた加熱式焼結方法について説明した。
しかし、本発明に係る加熱式焼結方法は、上記の加熱式焼結機1、20を前提とするものではなく、以下に示すような加熱焼結方法を含むものである。 <Heat sintering method>
In the first and second embodiments described above, specific device configurations of the heating type sintering machines 1 and 20 were shown, and a heating type sintering method using the heating type sintering machines 1 and 20 was explained.
However, the heating sintering method according to the present invention is not based on the heating sintering machines 1 and 20 described above, but includes a heating sintering method as shown below.
所定の速さで移動する搬送装置上に所定範囲内の厚さを有する原料層が形成される所定の供給量で、焼結鉱原料を前記搬送装置の上方から投入すること、及び前記原料層の高さ方向全体を原料層加熱装置を用いて加熱して焼結させることを含む焼結工程を含む焼結鉱の加熱式焼結方法。
また、前記焼結工程を前記搬送装置上で複数回繰り返す焼結鉱の加熱式焼結方法。
さらに、前記焼結工程が、前記加熱することの後に前記原料層の温度を測定すること、及び前記温度の測定値に基づいて、前記加熱することにより前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御することを更に含む焼結鉱の加熱式焼結方法。
またさらに、前記焼結工程が、前記投入することと前記加熱することとの間に、前記原料層の表面の高さを調整することを更に含む焼結鉱の加熱式焼結方法。 Injecting the sintered ore raw material from above the conveyance device at a predetermined supply amount such that a raw material layer having a thickness within a predetermined range is formed on the conveyance device moving at a predetermined speed, and the raw material layer A thermal sintering method for sintered ore, which includes a sintering process that includes heating and sintering the entire height of the sintered ore using a raw material layer heating device.
Further, a method for heating sintering sintered ore in which the sintering step is repeated multiple times on the conveying device.
Furthermore, the sintering step includes measuring the temperature of the raw material layer after the heating, and based on the measured value of the temperature, the sintering of the raw material layer is completed by the heating. A thermal sintering method for sintered ore, further comprising controlling at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device.
Furthermore, the method for heating sintering of sintered ore, wherein the sintering step further includes adjusting the height of the surface of the raw material layer between the charging and heating.
また、前記焼結工程を前記搬送装置上で複数回繰り返す焼結鉱の加熱式焼結方法。
さらに、前記焼結工程が、前記加熱することの後に前記原料層の温度を測定すること、及び前記温度の測定値に基づいて、前記加熱することにより前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御することを更に含む焼結鉱の加熱式焼結方法。
またさらに、前記焼結工程が、前記投入することと前記加熱することとの間に、前記原料層の表面の高さを調整することを更に含む焼結鉱の加熱式焼結方法。 Injecting the sintered ore raw material from above the conveyance device at a predetermined supply amount such that a raw material layer having a thickness within a predetermined range is formed on the conveyance device moving at a predetermined speed, and the raw material layer A thermal sintering method for sintered ore, which includes a sintering process that includes heating and sintering the entire height of the sintered ore using a raw material layer heating device.
Further, a method for heating sintering sintered ore in which the sintering step is repeated multiple times on the conveying device.
Furthermore, the sintering step includes measuring the temperature of the raw material layer after the heating, and based on the measured value of the temperature, the sintering of the raw material layer is completed by the heating. A thermal sintering method for sintered ore, further comprising controlling at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device.
Furthermore, the method for heating sintering of sintered ore, wherein the sintering step further includes adjusting the height of the surface of the raw material layer between the charging and heating.
以上、本発明を実施形態及び変形例を用いて説明してきたが、本発明はこれらの形態の構成には限られない。本発明の範囲は添付の特許請求の範囲の記載に基づいて定まるものであり、その範囲内において実施の形態及び変形例に示した構成要素の一部の省略や変形、またそれらの改良を施した構成の全てが本発明に含まれる。
Although the present invention has been described above using embodiments and modifications, the present invention is not limited to the configurations of these forms. The scope of the present invention is determined based on the description of the appended claims, and within that scope, some of the constituent elements shown in the embodiments and modifications may be omitted or modified, and improvements thereof may be made. All such configurations are included in the present invention.
1 加熱式焼結機(実施の形態1)
3 焼結装置
3a 第1焼結装置
3b 第2焼結装置
3c 第3焼結装置
5 搬送装置
7 原料投入装置
9 原料層加熱装置
10 原料層
11 測温装置
13 制御装置
15 調整装置
17 ガス吹込み装置
19 ガス吹込みノズル
20 加熱式焼結機(実施の形態2)
21 通気装置
23 排熱回収装置
25 投入前加熱装置 1 Heating type sintering machine (Embodiment 1)
3 Sintering device 3a First sintering device 3b Second sintering device 3c Third sintering device 5 Conveying device 7 Raw material input device 9 Raw material layer heating device 10 Raw material layer 11 Temperature measuring device 13 Control device 15 Adjustment device 17 Gas blowing device 19 Gas blowing nozzle 20 Heating type sintering machine (Embodiment 2)
21 Ventilation device 23 Exhaust heat recovery device 25 Pre-injection heating device
3 焼結装置
3a 第1焼結装置
3b 第2焼結装置
3c 第3焼結装置
5 搬送装置
7 原料投入装置
9 原料層加熱装置
10 原料層
11 測温装置
13 制御装置
15 調整装置
17 ガス吹込み装置
19 ガス吹込みノズル
20 加熱式焼結機(実施の形態2)
21 通気装置
23 排熱回収装置
25 投入前加熱装置 1 Heating type sintering machine (Embodiment 1)
3 Sintering device 3a First sintering device 3b Second sintering device 3c Third sintering device 5 Conveying device 7 Raw material input device 9 Raw material layer heating device 10 Raw material layer 11 Temperature measuring device 13 Control device 15 Adjustment device 17 Gas blowing device 19 Gas blowing nozzle 20 Heating type sintering machine (Embodiment 2)
21 Ventilation device 23 Exhaust heat recovery device 25 Pre-injection heating device
Claims (10)
- 所定の速さで移動する搬送装置と、
前記搬送装置の上方に設けられ、前記所定の速さで移動する前記搬送装置上に所定範囲内の厚さを有する原料層が形成される所定の供給量で、焼結鉱原料を前記搬送装置の上方から投入するよう構成された原料投入装置、及び前記原料投入装置よりも前記搬送装置の搬送方向における下流側に設けられた、前記原料層の高さ方向全体を加熱して焼結させるよう構成された原料層加熱装置を含む焼結装置と、を備えていることを特徴とする焼結鉱の加熱式焼結機。 a transport device that moves at a predetermined speed;
The sintered ore raw material is fed to the conveying device at a predetermined supply rate so that a raw material layer having a thickness within a predetermined range is formed on the conveying device that is provided above the conveying device and moves at the predetermined speed. A raw material input device configured to input from above, and a raw material input device provided downstream of the raw material input device in the conveyance direction of the conveyance device, so as to heat and sinter the entire height direction of the raw material layer. 1. A heating type sintering machine for sintered ore, comprising: a sintering device including a raw material layer heating device configured as above. - 前記焼結装置が、前記搬送方向において所定以上の間隔を空けて複数設けられていることを特徴とする請求項1に記載の焼結鉱の加熱式焼結機。 The heating type sintering machine for sintered ore according to claim 1, wherein a plurality of the sintering devices are provided at a predetermined interval or more in the transport direction.
- 少なくとも1つの前記焼結装置が、前記原料層加熱装置の後段で前記原料層の温度を測定する測温装置と、該測温装置の測定値に基づいて、前記原料投入装置により形成された前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御する制御装置とを更に備えることを特徴とする請求項1又は2に記載の焼結鉱の加熱式焼結機。 At least one of the sintering devices includes a temperature measuring device that measures the temperature of the raw material layer after the raw material layer heating device, and a temperature measuring device that measures the temperature of the raw material layer after the raw material layer heating device; 2. The method according to claim 1, further comprising a control device that controls at least one of the output of the raw material layer heating device and the predetermined speed of the conveying device so that sintering of the raw material layer is completed. 2. The heating type sintering machine for sintered ore according to 2.
- 少なくとも1つの前記焼結装置が、前記原料投入装置と前記原料層加熱装置との間に、前記原料層の表面の高さを調整可能な調整装置を更に備えることを特徴とする請求項1~3のいずれか一項に記載の焼結鉱の加熱式焼結機。 At least one of the sintering devices further comprises an adjusting device between the raw material input device and the raw material layer heating device that can adjust the height of the surface of the raw material layer. 3. The heating type sintering machine for sintered ore according to any one of 3.
- 少なくとも1つの前記焼結装置が、前記原料層に水素ガスまたは酸素ガスを吹き込むガス吹込み装置を更に備え、前記原料層加熱装置が燃料ガスとして水素を用いたガス燃焼方式であることを特徴とする請求項1~4のいずれか一項に記載の焼結鉱の加熱式焼結機。 At least one of the sintering devices further includes a gas blowing device for blowing hydrogen gas or oxygen gas into the raw material layer, and the raw material layer heating device is of a gas combustion type using hydrogen as a fuel gas. The heating type sintering machine for sintered ore according to any one of claims 1 to 4.
- 前記搬送装置の下方から上方に向けて前記原料層を通して空気を流す通気装置を含む廃熱回収装置を更に備え、
前記原料投入装置が、前記搬送装置に投入する前に前記焼結鉱原料を加熱する投入前加熱装置を備え、
前記原料層加熱装置が、電気加熱装置であることを特徴とする請求項1~4のいずれか一項に記載の焼結鉱の加熱式焼結機。 Further comprising a waste heat recovery device including a ventilation device that flows air through the raw material layer from below to above the conveying device,
The raw material input device includes a pre-injection heating device that heats the sintered ore raw material before inputting it into the conveyance device,
The heating type sintering machine for sintered ore according to any one of claims 1 to 4, wherein the raw material layer heating device is an electric heating device. - 所定の速さで移動する搬送装置上に所定範囲内の厚さを有する原料層が形成される所定の供給量で、焼結鉱原料を前記搬送装置の上方から投入すること、及び前記原料層の高さ方向全体を原料層加熱装置を用いて加熱して焼結させることを含む焼結工程を含むことを特徴とする焼結鉱の加熱式焼結方法。 Injecting the sintered ore raw material from above the conveyance device at a predetermined supply amount such that a raw material layer having a thickness within a predetermined range is formed on the conveyance device moving at a predetermined speed, and the raw material layer 1. A heating sintering method for sintered ore, comprising a sintering step of heating and sintering the entire height of the sintered ore using a raw material layer heating device.
- 前記焼結工程を前記搬送装置上で複数回繰り返すことを特徴とする請求項7に記載の焼結鉱の加熱式焼結方法。 The heating sintering method for sintered ore according to claim 7, wherein the sintering step is repeated multiple times on the conveying device.
- 前記焼結工程が、前記加熱することの後に前記原料層の温度を測定すること、及び前記温度の測定値に基づいて、前記加熱することにより前記原料層の焼結が完了するように前記原料層加熱装置の出力及び前記搬送装置の前記所定の速さのうちの少なくとも一方を制御することを更に含むことを特徴とする請求項7又は8に記載の焼結鉱の加熱式焼結方法。 The sintering step includes measuring the temperature of the raw material layer after the heating, and controlling the raw material layer so that the heating completes sintering of the raw material layer based on the measured temperature value. The thermal sintering method for sintered ore according to claim 7 or 8, further comprising controlling at least one of the output of the layer heating device and the predetermined speed of the conveying device.
- 前記焼結工程が、前記投入することと前記加熱することとの間に、前記原料層の表面の高さを調整することを更に含むことを特徴とする請求項7~9のいずれか一項に記載の焼結鉱の加熱式焼結方法。 Any one of claims 7 to 9, wherein the sintering step further includes adjusting the height of the surface of the raw material layer between the charging and the heating. The heating sintering method for sintered ore described in .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-052951 | 2022-03-29 | ||
JP2022052951A JP2023145996A (en) | 2022-03-29 | 2022-03-29 | Heating sintering machine and heating sintering method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189570A1 true WO2023189570A1 (en) | 2023-10-05 |
Family
ID=88201592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/009976 WO2023189570A1 (en) | 2022-03-29 | 2023-03-15 | Heating-type sintering machine and heating-type sintering method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023145996A (en) |
WO (1) | WO2023189570A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06200330A (en) * | 1992-12-28 | 1994-07-19 | Nippon Steel Corp | Sintering method using scrap as raw material |
JPH09176750A (en) * | 1995-12-26 | 1997-07-08 | Nippon Steel Corp | Production of sintered ore |
JP2012052152A (en) * | 2010-08-31 | 2012-03-15 | Jfe Steel Corp | Method of producing sintered ore |
JP2021080504A (en) * | 2019-11-15 | 2021-05-27 | 日本製鉄株式会社 | Manufacturing method of sintered ore |
JP2021515844A (en) * | 2018-03-14 | 2021-06-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Microwave sintering method of iron ore |
-
2022
- 2022-03-29 JP JP2022052951A patent/JP2023145996A/en active Pending
-
2023
- 2023-03-15 WO PCT/JP2023/009976 patent/WO2023189570A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06200330A (en) * | 1992-12-28 | 1994-07-19 | Nippon Steel Corp | Sintering method using scrap as raw material |
JPH09176750A (en) * | 1995-12-26 | 1997-07-08 | Nippon Steel Corp | Production of sintered ore |
JP2012052152A (en) * | 2010-08-31 | 2012-03-15 | Jfe Steel Corp | Method of producing sintered ore |
JP2021515844A (en) * | 2018-03-14 | 2021-06-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Microwave sintering method of iron ore |
JP2021080504A (en) * | 2019-11-15 | 2021-05-27 | 日本製鉄株式会社 | Manufacturing method of sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP2023145996A (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8961650B2 (en) | Partially-reduced iron producing method and partially-reduced iron producing apparatus | |
US8974571B2 (en) | Partially-reduced iron producing apparatus and partially-reduced iron producing method | |
CN107843113A (en) | A kind of energy-efficient automation roller kilns | |
CN102634654A (en) | Method for producing metallized pellets by using composite carbon-containing pellets and chain belt type roasting machine | |
WO2023189570A1 (en) | Heating-type sintering machine and heating-type sintering method | |
JP2020002457A (en) | Dl sintering machine and manufacturing method of sintered ore using dl sintering machine | |
CN106369996B (en) | A kind of heat accumulating type tunnel oven for iron ore magnetizing roast or direct-reduction | |
JP6179726B2 (en) | Method for producing sintered ore | |
JP2022039966A (en) | Manufacturing method of sintered ore and production apparatus of sintered ore | |
JP5871062B2 (en) | Raw material charging method to blast furnace | |
JP7464844B2 (en) | Sinter manufacturing method | |
CN102288032B (en) | Heat compensation composite sintering method for sintering machine material surface in metallurgical industry | |
KR20150016635A (en) | Method for producing sinter | |
JP2002121621A (en) | Method for producing sintered ore and dl type sintering machine | |
JP7095561B2 (en) | Sintered ore manufacturing method | |
JP6213734B2 (en) | Method for producing sintered ore | |
KR200462156Y1 (en) | Reduction firing apparatus | |
CN203869497U (en) | Tunnel kiln capable of achieving layered distribution of materials | |
JP7571806B2 (en) | Manufacturing method and manufacturing equipment for blast furnace raw materials | |
JPH07116528B2 (en) | Combustion method of iron ore pellet process | |
JP7533321B2 (en) | Method and apparatus for producing reduced iron | |
JPH0734141A (en) | Production of sintered ore | |
KR101460198B1 (en) | Manufacturing method of reduced iron | |
JPH09279262A (en) | Production of sintered ore | |
JPH09279261A (en) | Two-stage ignition type sintering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779588 Country of ref document: EP Kind code of ref document: A1 |