WO2023189403A1 - Pcr using rna/dna chimeric primer and method for ligating amplified fragments thereof - Google Patents

Pcr using rna/dna chimeric primer and method for ligating amplified fragments thereof Download PDF

Info

Publication number
WO2023189403A1
WO2023189403A1 PCT/JP2023/009253 JP2023009253W WO2023189403A1 WO 2023189403 A1 WO2023189403 A1 WO 2023189403A1 JP 2023009253 W JP2023009253 W JP 2023009253W WO 2023189403 A1 WO2023189403 A1 WO 2023189403A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
pcr
primer
rna
dna polymerase
Prior art date
Application number
PCT/JP2023/009253
Other languages
French (fr)
Japanese (ja)
Inventor
直人 根本
佑樹 望月
重文 熊地
美さき 村上
Original Assignee
国立大学法人埼玉大学
株式会社Epsilon Molecular Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人埼玉大学, 株式会社Epsilon Molecular Engineering filed Critical 国立大学法人埼玉大学
Publication of WO2023189403A1 publication Critical patent/WO2023189403A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes

Definitions

  • the present invention relates to techniques of nucleic acid chemistry. More specifically, the present invention relates to PCR using RNA/DNA chimeric primers and a method for joining amplified fragments thereof.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2016-098198 discloses that among a plurality of DNA fragments consisting of a base sequence obtained by dividing a DNA encoding an antibody into a plurality of parts, said DNA does not have at least a nonsense mutation or a frameshift mutation.
  • a method is described for producing a DNA library by selecting and recovering fragments and ligating at least two of the recovered DNA fragments to form DNA encoding the antibody.
  • the divided DNA fragments are transcribed into mRNA, and the end of the mRNA and the end of a nucleic acid linker are ligated.
  • each DNA fragment is subjected to PCR using a primer having a restriction enzyme recognition sequence, and a restriction enzyme recognition site is introduced at one end or both ends of each amplified fragment. Thereafter, the amplified fragments are cut with the restriction enzyme and further ligated to produce a DNA library.
  • restriction enzymes perform sequence-dependent cleavage, if a restriction enzyme recognition sequence is included at a location other than the desired one, the reading frame may shift due to cleavage, or a linked nucleic acid fragment having the designed sequence may not be obtained.
  • a problem may arise in that functional proteins are not produced. To avoid these phenomena, the degree of freedom of the library is restricted.
  • Non-Patent Document 1 (Baumann et al. BMC Biotechnology 2013, 13:81) states that PCR is performed using a primer with the third base from the 5' end as a deoxyinosine base, and the amplified product is treated with endonuclease V. A technique for creating a protruding end by doing this is disclosed. With this method, overhanging ends can be created without using type II restriction enzymes and without depending on the sequence. This method is used not to link nucleic acid sequences together, but to introduce them directly into a plasmid vector.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2019-149985
  • PCR is performed using a primer containing inosine at an arbitrary position to create multiple amplified fragments, and the amplified product is treated with T4 pyrimidine dimer glycosylase (PDG) or endonuclease.
  • PDG pyrimidine dimer glycosylase
  • a technique has been disclosed in which a plurality of amplified fragments are ligated by treatment with V to create overhanging ends.
  • Nucleic acid amplification methods include PCR, which repeats denaturation, annealing, and amplification by regularly changing the temperature, autonomous sequence replication reaction (3SR), which performs isothermal amplification, isothermal chimeric primer-initiated nucleic acid amplification (ICAN), and ligase chain reaction.
  • 3SR autonomous sequence replication reaction
  • ICAN isothermal chimeric primer-initiated nucleic acid amplification
  • ligase chain reaction Various methods such as reaction (LCR) and LAMP method are known. In such nucleic acid amplification methods, mutated proteins having more desirable properties are produced by introducing mutations at a fixed rate.
  • RNA/DNA chimeric primers are also used for amplification by chimeric primer-initiated nucleic acid amplification (ICAN) under isothermal conditions.
  • ICAN chimeric primer-initiated nucleic acid amplification
  • an RNA/DNA chimeric primer containing an RNA portion on the 3' side of the primer is used to extend the chain.
  • RNaseH cleaves the RNA portion derived from the chimeric primer, and an elongation reaction accompanied by a strand displacement reaction and a template exchange reaction occurs from the cleaved portion. Genes are amplified by repeating this reaction.
  • VHH variable region of HCAb
  • CDR1 to CDR3 CDRs (complementarity determining regions) and four framework regions (FR1 to FR4), and is similar to IgG antibodies.
  • Fab fragments, and single-chain antibody scFv it is expected to be applied to pharmaceuticals using antibody engineering technology.
  • VHH is inexpensive to produce, can be stably stored and transported at room temperature, and the structure of the antigen-binding site (paratope) to which VHH binds is more diverse than that of conventional antibody antigen-binding sites. Therefore, VHHs that allow various administration routes such as oral, pulmonary, and nasal administration are being developed, and are expected to be applied to future drug discovery.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2016-44126 discloses that desired mutations are introduced into each of multiple DNA fragments containing the complementarity determining region in the heavy chain of a camelid antibody.
  • next-generation fragment antibodies A method for producing next-generation fragment antibodies has been proposed in which an mRNA-mutated antibody is immobilized on a solid phase, followed by reverse transcription, cDNA display, and selection.
  • nucleic acid amplification and ligation method that can be used for ligation of nucleic acid sequences without depending on the sequence.
  • the base appearing at the complementary position of inosine is cytosine (C).
  • C cytosine
  • the cleavage site of endonuclease V cleaves the second and third phosphodiester bonds on the 3' side of inosine at a rate of 95% and 5%, respectively. Therefore, inosine is located at the third base of the triplet, and even if this third base changes, it is necessary to create a triplet sequence that corresponds to the same amino acid, which creates constraints on primer design.
  • the present invention performs PCR using an RNA/DNA chimeric primer, digests the sequence derived from the RNA sequence of the primer by treating with RNaseH to create overhanging ends, and uses the overhanging ends to connect multiple amplified fragments. This is the way to do it.
  • the nucleic acid amplification and ligation method of the present invention uses one or more primer pairs in which at least one primer is an RNA/DNA chimera primer containing an RNA sequence on the 5' side for a desired nucleic acid sequence.
  • the forward primer of one of the primer pairs that amplifies adjacent amplified fragments when ligated among the amplified fragments contained in the ligated nucleic acids is an RNA/DNA chimera primer;
  • the reverse primer of the other primer pair is an RNA/DNA chimeric primer, and the RNA sequences contained in the forward primer and the reverse primer can have substantially complementary sequences.
  • a single strand complementary to the ends of other amplified fragments is generated at one end or both ends of the amplified fragment after PCR.
  • the amplified fragments are linked using the complementary single strands.
  • any polymerase can be used as long as it is thermostable; for example, rTth DNA polymerase, KOD DNA polymerase derived from Thermococcus kodakarensis KOD 1 strain, Pfu DNA polymerase, and Taq DNA polymerase. etc. can be used.
  • PrimeSTAR registered trademark
  • TaKaRa Ex Taq registered trademark
  • TaKaRa La Taq registered trademark
  • TaKaRa Taq trademark
  • PCR using rTth DNA polymerase it is desirable to perform the PCR in the presence of Mn 2+ or Mg 2+ .
  • PCR using a DNA polymerase other than rTth DNA polymerase it is desirable to further perform reverse transcription using rTth DNA polymerase before RNaseH treatment.
  • the protruding ends of the amplified fragments after PCR can be ligated using, for example, Taq DNA ligase, T4 DNA ligase, and E. coli. This can be carried out using an enzyme selected from the group consisting of E. coli DNA ligase.
  • a desired nucleic acid sequence is amplified by PCR using one or more primer pairs in which at least one of the primers is an RNA/DNA chimera primer containing an RNA sequence on the 5' side. , providing a nucleic acid fragment comprising an RNA sequence derived from the chimeric primer at either the 5' or 3' end, or both the 5' and 3' ends of the desired nucleic acid sequence.
  • the present invention provides a pair of primers in which at least one primer is an RNA/DNA chimeric primer containing an RNA sequence on the 5'side; DNA polymerase and RNaseH and Taq DNA ligase, T4 DNA ligase, and E. and an enzyme selected from the group consisting of E. coli DNA ligase.
  • a protruding end can be formed by using an RNA/DNA chimeric primer, so that a target nucleic acid sequence can be easily amplified and ligated.
  • primers can be designed without depending on the nucleic acid sequence, and the mutation introduction rate can also be changed by selecting a polymerase.
  • the cleavage is sequence-dependent because the cleavage occurs at the restriction enzyme recognition site, and if the restriction enzyme recognition site is included at a location other than the intended location, unintended fragments may occur. may occur.
  • nucleic acid sequences can be ligated without the need for restriction enzymes, nucleic acid ligation can be performed sequence-independently and with fewer steps. Furthermore, during ligation, it is possible to create an overhanging end that has a longer single-stranded portion than the overhanging end produced by restriction enzyme cleavage.
  • a restriction enzyme that produces a protruding end when using a restriction enzyme that produces a protruding end, only a protruding end having a single strand of about 4 bases can be produced, whereas in the present invention, for example, a protruding end having a single strand of about 1 to 15 bases can be produced. Since it is possible to create a , the concatenation is highly accurate and can be concatenated in an array-independent manner.
  • the mutation introduction rate can be controlled by the DNA polymerase used.
  • DNA polymerases with high replication fidelity such as KOD One (registered trademark) series (manufactured by Toyobo Co., Ltd.), KOD-Plus series (manufactured by Toyobo Co., Ltd.), PrimeSTAR Max (manufactured by Takara Bio Inc.),
  • the mutation introduction rate can be changed depending on whether PCR is performed using CloneAmp (trademark) HiFi PCR Premix (manufactured by Clontech), Pfu DNA polymerase, Taq DNA polymerase, etc., or rTth DNA polymerase.
  • a DNA polymerase with high replication fidelity is a DNA polymerase that has a strong proofreading activity, and has a DNA sequence replication accuracy that is about 10 times or more, preferably about 50 times or more, than Taq DNA polymerase.
  • Taq DNA polymerase For example, if you want to amplify and link nucleic acids without introducing mutations, perform PCR using a DNA polymerase with high replication fidelity, and if you want to tolerate some mutations, perform PCR using Taq DNA polymerase to reduce mutations even further.
  • the rate of mutation introduction can be controlled by performing PCR using rTth DNA polymerase.
  • the mutation introduction rate can be changed depending on whether Mn 2+ or Mg 2+ is added. That is, if you want to introduce more mutations, Mn 2+ is added, and if you want to lower the mutation introduction rate than when Mn 2+ is added, Mg 2+ is added.
  • a library containing mutants with amino acid substitutions at various sites can be created at random, and this can be preferably used for "evolutionary molecular engineering" to screen for proteins with more desirable properties. be able to.
  • a short period of time after PCR and before reverse transcription using rTth DNA polymerase may be A heating step may be further performed.
  • the efficiency of reverse transcription usually decreases unless a purification step is performed.
  • reverse transcription can be performed with high efficiency without a purification step. Since no purification step is required after PCR, it is possible to perform a one-pot reaction, that is, to proceed with reverse transcription after sequential PCR in the same container.
  • This short heating step involves heating at a temperature of about 80 to 110°C, preferably about 85 to 105°C, more preferably about 90 to 100°C, for about 5 to 60 seconds, preferably about 10 to 40 seconds. , more preferably by heating for about 15 to 30 seconds.
  • a temperature of about 80 to 110°C preferably about 85 to 105°C, more preferably about 90 to 100°C, for about 5 to 60 seconds, preferably about 10 to 40 seconds. , more preferably by heating for about 15 to 30 seconds.
  • reverse transcription using rTth DNA polymerase can be performed with high efficiency without performing a purification step.
  • the attached DNA polymerase detached from the DNA strand, making reverse transcription possible without purification.
  • VHHs having various sequences can be created from existing VHHs by performing shuffling according to the present invention using nucleic acids encoding VHHs.
  • the method of the present invention can, for example, create a humanized VHH library in which the framework region (FR) is designed based on the human FR sequence and the structural characteristics obtained as a result of VHH crystal structure analysis data,
  • Various VHHs can be designed by introducing
  • mutations can be introduced into any specific region of any polypeptide.
  • a nucleotide region encoding a specific region in which you want to introduce random mutations (dotted line in Figure 11) is amplified by error-prone PCR to generate nucleotide fragments containing the specific region into which various mutations have been introduced.
  • the obtained fragment is amplified using an RNA/DNA chimeric primer to create an overhang at one or both of the 3' or 5' ends.
  • an overhang is introduced into the remaining nucleotide sequence encoding the polypeptide, and the specific region is mutated.
  • ligated with a nucleotide fragment containing By this method, it is possible to create a library in which random mutations are introduced only into specific regions of any polypeptide.
  • an overhang is introduced into only one of the nucleotide fragments containing the specific region into which a mutation has been introduced, but it is also possible to introduce overhang ends at both ends, and in that case, the 3' end It is possible to link both the and 5' ends with other nucleotide fragments.
  • various mutations can be introduced into arbitrary regions such as CDR1 to CDR3 of VHH to select VHH with better binding activity, or mutations can be introduced into the ligand-binding region of the receptor.
  • the binding activity with the ligand can be changed by
  • FIG. 1 is a schematic diagram showing one method of the present invention. It is a schematic diagram showing the case where PCR is performed using rTth DNA polymerase. It is a schematic diagram showing the case where PCR is performed using Taq DNA polymerase. It is a schematic diagram of the construction of a VHH gene in an example.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of DNA fragments produced by PCR under Mn 2+ addition conditions in Examples.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of DNA fragments produced by PCR under Mg 2+ addition conditions in Examples.
  • FIG. 2 is a schematic diagram of shuffling between VHH genes in Examples.
  • This is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of fragments A and B of VHH#1 to VHH#3 in Examples.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in which PCR conditions using rTth DNA polymerase in Examples were investigated.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in which conditions for producing overhanging ends using a combination of PrimeSTAR Max and rTth DNA polymerase in Examples were investigated.
  • FIG. 1 is a schematic diagram showing one embodiment of the present invention in which a mutation is introduced into any specific region of a polypeptide.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in the case where purification is not performed before reverse transcription using a DNA polymerase with high replication fidelity in an example.
  • FIG. 2 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in an example in which heat treatment was performed without purification before reverse transcription using a DNA polymerase with high replication fidelity.
  • FIG. 2 is a schematic diagram of creating a VHH library in which random mutations are introduced into CDR3 in Examples.
  • 1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel showing that a VHH library in which random mutations were introduced into CDR3 was created by ligation in an example.
  • nucleic acid is a biopolymer in which nucleotides consisting of a base, sugar, and phosphoric acid are linked by phosphodiester bonds.
  • Nucleic acid is a general term for ribonucleic acid (RNA) and deoxyribonucleic acid (DNA).
  • RNA has a sugar moiety of ribose
  • 2-deoxyribose has the hydroxyl group at the 2' position of ribose replaced with a hydrogen group. Things are DNA.
  • a base is attached to the 1' position of the sugar.
  • the 3'-position of the sugar and the 5'-position of the adjacent sugar are bonded in a phosphate ester structure, and this bond is repeated to form a long chain.
  • Chain elongation in transcription, translation, and PCR proceeds in the direction from the 5' position to the 3' position.
  • the 5' end with phosphoric acid bonded and cut is called the 5' end, and the opposite end is called the 3' end.
  • the 5' side of regions on adjacent nucleic acids is called upstream, and the 3' side is called downstream.
  • the length of a nucleic acid is any length.
  • oligonucleotide derivatives or “polynucleotide derivatives” are included as long as they do not inhibit the amplification reaction.
  • PCR is a nucleic acid amplification technique, also called polymerase chain reaction.
  • a short single-stranded primer with a sequence complementary to the target nucleic acid region, a free nucleotide, and a DNA polymerase are added to the template DNA to be amplified.
  • Double-stranded DNA is denatured at high temperature to become single-stranded, then cooled to anneal the primer to the complementary site of the single-stranded DNA, and then reheated to form single-stranded DNA using the primer as a starting point by DNA polymerase. Extends a strand complementary to DNA.
  • the template DNA is then amplified exponentially by repeating the same cycle from denaturation of the double-stranded DNA to proceed with amplification.
  • the term PCR also includes RT-PCR (reverse transcription polymerase chain reaction), in which reverse transcription is performed using RNA as a template, and PCR is performed on the resulting cDNA.
  • a primer is a short oligonucleotide that serves as a starting point for DNA replication.
  • a pair of primers consisting of a forward primer and a reverse primer is usually used.
  • Forward primer refers to a primer that anneals to the antisense strand of template DNA among a pair of primers used in the PCR method
  • reverse primer refers to a primer that anneals to the sense strand of template DNA.
  • DNA primers are used in PCR, but in the method of the present invention, one or both of the paired primers is an RNA/DNA chimera primer.
  • An RNA/DNA primer is one that contains an RNA sequence on the 5' side of the primer.
  • the length of the RNA sequence contained in the RNA/DNA primer is not particularly limited as long as it is long enough to create a protruding end to which the amplified fragments can be properly ligated; can be set.
  • the DNA polymerase used in PCR is not particularly limited as long as it is a heat-resistant DNA polymerase, but rTth DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), Taq DNA polymerase, etc. can be used. Without being limited to these, those skilled in the art can select various DNA polymerases depending on the purpose.
  • RNase particularly RNase H
  • RNase H can be used to digest the RNA sequence contained in the amplified fragment generated by PCR.
  • RNase H also called ribonuclease H, is an endoribonuclease that hydrolytically cleaves RNA forming a DNA/RNA hybrid double strand to produce single-stranded DNA.
  • Complementary refers to a state in which the pairing bases (A and T, G and C, A and U) can hydrogen bond and form base pairs in the base sequence of a double-stranded nucleic acid.
  • This specification includes not only complementarity between DNA and DNA, but also complementarity between DNA and RNA.
  • a complementary sequence includes not only a sequence in which all bases are complementary, but also a sequence in which there is a degree of complementarity that allows them to pair with each other, and this case is defined as having a substantially complementary sequence. It is said that it does.
  • an overhanging end is also referred to as a cohesive end or sticky end, and refers to an end structure having a single-stranded nucleic acid with mutually complementary sequences protruding from the 5' or 3' end of the DNA strand.
  • the length of the RNA sequence contained in the RNA/DNA primer corresponds to the length of the single-stranded portion of the overhanging end, for example, the overhanging end having a single-stranded portion of about 1 to 15 residues. can be formed.
  • DNA ligase is an enzyme that joins the ends of DNA strands with phosphodiester bonds, and is used in genetic engineering to create recombinant DNA, especially by acting on complementary strands with overhanging ends to create DNA fragments. Used when connecting.
  • any DNA ligase can be used to join the overhanging ends, and examples include Taq DNA ligase, T4 DNA ligase, and E. coli. E. coli DNA ligase can be used.
  • Taq DNA ligase forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of the oligonucleotide and ligates it only when the single-stranded parts of the overhanging ends of the DNA are completely complementary and there are no gaps. It is an enzyme that causes T4 DNA ligase is an enzyme that forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of an oligonucleotide to link them, and requires Mg 2+ and ATP.
  • E. E. coli DNA ligase is an enzyme that forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of an oligonucleotide to link them, and requires NAD.
  • Reverse transcription refers to the synthesis of DNA using RNA as a template in the presence of reverse transcriptase, which is an RNA-dependent DNA polymerase.
  • reverse transcriptase examples include rTth DNA polymerase, which is a thermostable DNA polymerase derived from the hyperthermophilic bacterium Thermus thermophilus HB8.
  • rTth DNA polymerase When using rTth DNA polymerase, reverse transcription can be performed in the presence of Mn 2+ or Mg 2+ to enhance activity.
  • Mn 2+ is added to a final concentration of about 0.1 mM to 1.0 mM, preferably 0.3 mM to 0.8 mM, for example, a final concentration of 0.63 mM.
  • Mg 2+ is added to a final concentration of about 0.5mM to 1.8mM, preferably about 0.8mM to 1.5mM, for example, 1.25mM.
  • DNA1 and DNA2 are drawn separately in the figure, DNA1 and DNA2 may be separate regions of one DNA. Furthermore, three or more pairs of primers may be used to amplify three or more DNAs or to produce three or more DNA fragments.
  • the reverse primer for DNA1 and the forward primer for DNA2 are RNA/DNA chimeric primers.
  • the RNA/DNA chimera primer has an RNA sequence in its 5' end (in the figure, the black part in the arrow indicating the primer), and the RNA sequence in the RNA/DNA chimera primer of DNA1 and the RNA/DNA chimera of DNA2
  • the RNA sequences in the primers have mutually complementary sequences.
  • PCR is performed using a heat-resistant DNA polymerase, such as rTth DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), or Taq DNA polymerase, etc., and amplification is performed as necessary. Perform reverse transcription.
  • a heat-resistant DNA polymerase such as rTth DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), or Taq DNA polymerase, etc.
  • the RNA sequence contained in the end of the amplified fragment (in the figure, the black part at the end of the PCR amplified fragment) is digested, thereby creating a protruding end.
  • the protruding ends of DNA1 and DNA2 are single-stranded DNA sequences that are complementary to each other, and can be specifically linked using a phosphodiester bond-linking enzyme.
  • Enzymes linked by phosphodiester bonds such as Taq DNA ligase, T4 DNA ligase, and E. Examples include enzymes selected from the group consisting of E. coli DNA ligase.
  • RNA/DNA primer a complementary strand of the RNA sequence in the RNA/DNA primer is also created during amplification.
  • an overhanging end having a single-stranded portion can be created.
  • This figure shows the case in which an overhanging end is created only at one end, but by using RNA/DNA primers for both primers (forward primer and reverse primer) of the primer pair, it is possible to create an overhang at both ends. It is also possible to create overhanging ends.
  • PCR is performed using a DNA polymerase with high replication fidelity such as Taq DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), etc.
  • a DNA polymerase with high replication fidelity such as Taq DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), etc.
  • RNA sequence contained at the end of the amplified fragment is digested by RNaseH treatment, an overhanging end having a single-stranded portion can be created.
  • This figure shows the case in which an overhanging end is created only at one end, but by using RNA/DNA primers for both primers (forward primer and reverse primer) of the primer pair, it is possible to create an overhang at both ends. It is also possible to create overhanging ends.
  • This method uses Taq DNA polymerase or a DNA polymerase with high replication fidelity in the PCR step. Compared to the case of using rTth DNA polymerase, this method requires a step of performing reverse transcription with rTth DNA polymerase after PCR, so rTth DNA polymerase is used in the PCR step. Although there is one additional step compared to the method, this reverse transcription step only involves adding rTth DNA polymerase, etc. to the container after PCR. As mentioned above, when performing PCR using rTth DNA polymerase, the mutation introduction rate is high, but in this method of performing PCR using Taq DNA polymerase or the like or a DNA polymerase with high replication fidelity, the mutation introduction rate is low.
  • Example 1 Construction of VHH gene using DNA fragment prepared by PCR using rTth DNA polymerase (Mn 2+ addition conditions)> PCR using rTth DNA polymerase was performed using DNA encoding VHH as a template and three types of primer sets. It was confirmed that the original sequence could be created by creating protruding ends for each DNA fragment by treating with RNaseH and ligating them (FIG. 4).
  • VHH#1 (577bp): (Sequence number 1) Base number: region name 14-33: T7 promoter 34-36: 5 ⁇ cap 37-107: ⁇ 110-114: kozak 118-516:VHH 517-528:GGGS 529-546:His Tag 547-555: GGS 556-577:NewYtag(cnvK)
  • PCR was performed using VHH#1 as a template and three types of primers to obtain VHH#1- ⁇ (SEQ ID NO: 8), VHH#1- ⁇ (SEQ ID NO: 9), and VHH#1- ⁇ (SEQ ID NO: 10).
  • Three types of RNA-containing DNA fragments were prepared. The sequences of the three types of primer sets used are as follows.
  • the PCR program for VHH#1- ⁇ preparation was as follows, and steps 3 to 5 were repeated for 25 cycles. 1.90 °C 30 seconds 2.94 °C 1 minute 3.94 °C 30 seconds 4.65 °C 30 seconds 5.72 °C 25 seconds 6.72 °C 7 minutes 7.10 °C ⁇
  • VHH#1- ⁇ The sequences of the amplified VHH#1- ⁇ , VHH#1- ⁇ , and VHH#1- ⁇ are as follows.
  • VHH#1- ⁇ (201bp): GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAAACAACAACAACAACAACAATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCGTGTGCAATTAATGACCGT (Sequence number 8)
  • VHH#1- ⁇ (152bp): ATGACCGTACCTTTAGTAACTATTCCATGGGCTGGTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCGGCTATTACTCATAATGGTAGTACAAACTTTCCAGACTCCGTGAAGGGCCGATTCACCATCTCCGTAGACAAGGCCAAG (Sequence number 9)
  • RNA-containing DNA fragments were purified using AMPure XP (manufactured by Beckman Coulter) according to the attached manual. Elution was performed with 30 ⁇ L of UPDW.
  • the specific PAGE conditions are as follows. First, 4.8 g of urea (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 1.0 mL of 5x TBE (manufactured by Nippon Gene Co., Ltd.), and 1.0 mL of a 40% (w/v) acrylamide bis mixture (19:1) (Fuji Film (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and diluted to 10 mL with MilliQ water. The mixture was heated in a microwave for about 10 seconds to completely melt the urea.
  • E. coli derived from colonies whose inserts were confirmed by colony PCR were cultured overnight in 5 mL of LB liquid medium (+100 ⁇ g/mL ampicillin), and the next day, bacterial cells were collected by centrifugation. Thereafter, the plasmid was purified using FastGene Plasmid Mini Kit (manufactured by Nippon Genetics) according to the manual. Sequencing of 18 plasmids was outsourced to Eurofin Genomics. As a result, out of 18 samples, only one sample had the same sequence as the target DNA. As a result of calculating the number of mutations, the error rate was 5.9 errors per 1000 bp (61 errors/10386 bp (577 bp x 18)).
  • Example 2 Ligation using PCR product with rTth DNA polymerase (Mg 2+ addition conditions)> Since the mutation introduction rate was somewhat high in PCR using rTth DNA polymerase in the presence of Mn 2+ , suppression of the mutation introduction rate by the use of Mg 2+ was investigated.
  • VHH gene using DNA fragment prepared by PCR under Mg 2+ addition conditions The VHH gene was constructed under the same conditions as the experiment described in Example 1, except that 50 mM Mn(OAc ) 2 was changed to 50 mM MgCl2. The results of ligation between the VHH#1- ⁇ , VHH#1- ⁇ , and VHH#1- ⁇ fragments are shown in FIG. Even when DNA fragments prepared under Mg 2+ addition conditions were used, the expected ligation products of ⁇ and ⁇ , ⁇ and ⁇ , and ⁇ , and ⁇ could be confirmed.
  • NGS next generation sequencing
  • MiSeq Reagent Kit v3 600-cycle
  • Samples for NGS analysis were prepared according to the manual of Nextera XT DNA Library Prep Kit (manufactured by Illumina).
  • Two-step PCR amplification was performed using the PAGE-purified VHH gene of interest as a template.
  • PrimeSTAR Max manufactured by Takara Bio Inc.
  • the first step of PCR was performed using the primer set described below.
  • the obtained PCR product was purified using AMPure XP, and second-stage PCR was performed using the purified product as a template.
  • the indexing primer specified in the kit was used.
  • the PCR product was purified using AMPure XP in the same manner as above, and the DNA concentration was measured using NanoPad DS-11 (manufactured by DeNovix). Furthermore, the DNA was made into a single strand, subjected to treatments such as dilution, and then loaded into a cartridge. The reagent cartridge was then set in MiSeq System (manufactured by Illumina) and run was performed.
  • VHH sequences were extracted from the NGS output data, 300 sequences were randomly selected from among them, and the sequences were confirmed. A total of 420 mutations were confirmed in 300 sequences. Therefore, the mutation rate was 3.2 errors per 1000 bp (420 errors/129888 bp (577 bp x 300 sequences)). Since the error rate under the Mn 2+ addition condition was 5.9 errors/1000 bp, it was found that the mutation rate could be suppressed to about half by adding Mg 2+ instead of Mn 2+ .
  • VHH genes Three types of VHH genes with a common framework region (FR) are divided within FR3, and a mixture of N-terminal and C-terminal fragments is ligated to create a total of nine types of VHH gene sequences. A model experiment was conducted ( Figure 7). The N-terminal fragment was designated A, and the C-terminal fragment was designated B. The three types of VHH genes used are as shown in SEQ ID NO: 1, SEQ ID NO: 11, and SEQ ID NO: 12.
  • VHH#2 (573bp): (Sequence number 11)
  • VHH#3 (570bp): (Sequence number 12)
  • PCR was performed in the presence of Mg 2+ using rTth DNA polymerase using the combinations of the primers in Tables 1 and 3 and the templates of VHH#1 to VHH#3 in Table 4, and the 5' Fragment A, which is a DNA fragment on the side, and fragment B, which is a DNA fragment on the 3' side, were prepared.
  • the PCR conditions for fragments A and B were as follows, and steps 3 to 5 were repeated for 25 cycles.
  • the PCR product was purified using AMPure XP (manufactured by Beckman Coulter).
  • AMPure XP manufactured by Beckman Coulter
  • For the ligation reaction a mixture of fragment A (3.0 ⁇ L for each fragment, 9.0 ⁇ L in total) and fragment B (3.0 ⁇ L for each fragment, 9.0 ⁇ L in total), 4.0 ⁇ L of 10xT4 ligase buffer, and 2.0 ⁇ L of T4 DNA.
  • Ligase manufactured by Takara Bio
  • NGS next generation sequencing
  • RNA-containing PCR product by combining general PCR and reverse transcription using rTth DNA polymerase>
  • a method for producing an RNA-containing PCR product using an RNA/DNA chimeric primer and rTth DNA polymerase we investigated a method in which the overhanging end portion of RNA is reverse transcribed using rTth DNA polymerase after general PCR.
  • the template DNA and RNA/DNA chimera primers used in the study are as follows.
  • PCR was performed using PF_1D11-#81 as a template, the primer set of FW-Shuffling-PL (SEQ ID NO: 18) and NewYtag (cnvk) (SEQ ID NO: 7) shown below, and rTth DNA polymerase (using RT Quick Master mix).
  • the final concentration was 1x RT-PCR Quick Master Mix, 0.3 ⁇ M FW-Shuffling-PL, 0.3 ⁇ M NewYtag (cnvK), 0.04 ng/ ⁇ L template DNA, 0-2.5 mM Mn(OAc) 2 Or MgCl2 , 20 ⁇ L of PCR reaction solution was prepared.
  • the PCR program was as follows, and steps 2 to 4 were repeated for 15 cycles.
  • FW-Shuffling-PL (lowercase letters are RNA) 5'-gaagauacTGCCGTGTACTACTGC-3' (Sequence number 18)
  • PCR was also performed using PrimeSTAR Max (manufactured by Takara Bio Inc.) for the purpose of comparison and use in the next study process.
  • a 50 ⁇ L PCR reaction solution was prepared such that the final concentration was 1x PrimeSTAR Max, 0.3 ⁇ M FW-Shuffling-PL, 0.3 ⁇ M NewYtag (cnvK), and 0.04 ng/ ⁇ L template DNA.
  • the PCR program was as follows, and steps 1 to 3 were repeated for 15 cycles. 1.95 °C 10 seconds 2.50 °C 5 seconds 3.72 °C 5 seconds 4.16 °C ⁇
  • PrimeSTAR Max PCR samples were purified by AMPure XP and eluted with 30 ⁇ L of UPDW. Using 3 ⁇ L of this purified product, a 25 ⁇ L reaction sample was prepared at a final concentration of 1 ⁇ RT-PCR Quick Master Mix, 0.63 mM Mn(OAc) 2 , or 1.25 mM MgCl 2 . 1 ⁇ L for reference and 2 ⁇ 10 ⁇ L for reaction were separated and incubated at 60° C. and 72° C. for 10 minutes each. Furthermore, each reaction solution was dispensed into 5 ⁇ L ⁇ 2, 0.5 ⁇ L of 10 ⁇ NE Buffer 2 and 0.2 ⁇ L of RNase H were added to one half, and further incubated at 37° C. for 10 minutes.
  • reaction solutions S1 to S9 were prepared according to the compositions shown in Table 6. The reaction solutions were incubated (72° C., 8 minutes) without purification, and then 2 ⁇ L of each reaction solution was analyzed on 5% denaturing PAGE containing 8 M urea (60° C., 200 V, 30 minutes) (FIG. 12).
  • one 160mer band was confirmed by heating at 95°C for 20 seconds after the end of PCR (lanes 3 to 10), and by heating the PCR product for a short time, It was confirmed that reverse transcription occurs without purifying the PCR product.
  • Example 5 Preparation of library into which CDR3 random mutations have been introduced>
  • a VHH library was created in which random mutations were introduced into CDR3.
  • the region encoding CDR3 was amplified using an error-prone primer to introduce random mutations.
  • PCR was performed using a DNA/RNA chimera primer as a forward primer and a primer containing FR4, His-tag, and linker hybridized region (LHR) sequences as a reverse primer, and the protruding end and FR4 and A nucleotide fragment encoding a randomly mutated CDR3 having a linker binding region was obtained.
  • LHR linker hybridized region
  • PCR was performed using a nucleotide sequence encoding VHH as a template and a DNA/RNA chimera primer as a reverse primer, and a nucleotide fragment containing CDR1 and CDR2 and FR1, FR2, and FR3 having an overhanging end near CDR3 was obtained. I got it. Both fragments were ligated using ligase to obtain a VHH library in which random mutations were introduced into CDR3.
  • the template DNA and primers used are as follows.
  • Error prone PCR was performed using PF_1E1-#5 DNA as a template and PL_FR3_FW (SEQ ID NO: 18) and PL-FR4-RV (SEQ ID NO: 20).
  • GeneMorph II Random Mutagenesis kit from Agilent Technologies, Inc. was used. According to the instructions of the kit, a 0.01 ng template DNA/25 ⁇ L reaction solution was prepared, and the PCR program described in the instructions was executed. The PCR reaction solution was purified using AMPure XP, eluted with 20 ⁇ L of UPDW, and the concentration was determined using DS-11+ NanoPad (mtCDR3 DNA).
  • mtCDR3 DNA was added to prepare 100 ⁇ L of a PCR reaction solution with a final concentration of 1 ⁇ PrimeSTAR Max, 0.3 ⁇ M PL_FR3_FW, and 0.3 ⁇ M PL_FR4-end_RV.
  • the PCR program was as follows, and steps 1 to 3 were repeated for 15 cycles.
  • PCR program was as follows, and steps 1 to 3 were repeated 20 cycles for the former and 10 cycles for the latter.
  • a 15 ⁇ L reaction solution was prepared containing 1 pmol each of the 5′-side fragment and the 3′-side fragment with overhanging ends, 1 ⁇ T4 DNA ligation buffer, and 1 ⁇ L of T4 DNA ligase, and incubated at 16° C. for 1 hour.
  • a 0.5 ⁇ L portion of the ligation product was analyzed on 4% denaturing PAGE containing 8 M urea (60° C., 200 V, 20 minutes) (FIG. 15).
  • a nucleotide encoding a full-length VHH of approximately 500 bp was detected (lane 3).
  • a 100 ⁇ L PCR reaction solution containing the remaining 14.5 ⁇ L of the ligation reaction solution with a final concentration of 1x PrimeSTAR Max, 0.3 ⁇ M Newleft, and 0.3 ⁇ M NewYtag (cnvK) was prepared and dispensed into two 50 ⁇ L bottles.
  • the PCR program was as follows, and steps 1 to 3 were repeated for 5 cycles.
  • the PCR product was purified using AMPure XP and then eluted into 20 ⁇ L of UPDW. This PCR product was subjected to 4% PAGE containing 8M urea (60°C, 200V, 25 minutes) to purify the ligation product band. 200 ⁇ L of a PCR reaction solution consisting of 1x PrimeSTAR Max containing the entire amount of the PAGE-purified ligation product, 0.3 ⁇ M Newleft, and 0.3 ⁇ M NewYtag (cnvK) was prepared and dispensed into 4 x 50 ⁇ L tubes. The PCR program was as follows, and steps 1 to 3 were repeated for 5 cycles.
  • the PCR product was purified using AMPure XP and eluted in 30 ⁇ L of UPDW.
  • the prepared library DNA in which random mutations were introduced into CDR3 was analyzed by NGS to evaluate the introduction of mutations. NGS analysis was performed in the same manner as in Example 2.
  • the population of sequences included in the library was confirmed from the number of unique sequence counts, and the top 20 abundances are shown in Table 9. Although the majority were wild type (WT), many sequences with mutations in CDR3 were also confirmed, confirming the construction of a CDR3 mutation library.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[Problem] To provide a method for efficiently and accurately ligating amplified fragments of a target nucleic acid sequence. [Solution] Nucleic acid is ligated by this method that comprises: a step of performing PCR for a target nucleic acid sequence using one or more primer pairs, wherein at least one primer is an RNA/DNA chimeric primer including an RNA sequence on the 5' side, to prepare amplified fragments, wherein the target nucleic acid sequence has been used as the template; a step of digesting an RNA sequence included in the amplified fragments by an RNase H treatment to form cohesive ends; and a step of ligating at least two amplified fragments by ligating the cohesive ends each other to prepare ligated nucleic acid.

Description

RNA/DNAキメラプライマーを用いたPCR及びその増幅断片連結方法PCR using RNA/DNA chimeric primer and its amplified fragment ligation method
 本発明は、核酸化学の技術に関する。より詳細には、本発明は、RNA/DNAキメラプライマーを用いたPCR及びその増幅断片連結方法に関する。 The present invention relates to techniques of nucleic acid chemistry. More specifically, the present invention relates to PCR using RNA/DNA chimeric primers and a method for joining amplified fragments thereof.
 タンパク質の機能を改良するとき、一般的には、当該タンパク質をコードするDNAに変異を加えることにより、アミノ酸に置換等を加えることが多い。そのために、ランダムに様々な部位のアミノ酸を置換した変異体を含むライブラリーを作成し、そのライブラリーからより良い機能を持つ変異体のスクリーニングを行う。得られたタンパク質にさらに変異を加え、再度スクリーニングを加えることを繰り返し、より良い機能を持ったタンパクを得ることが可能となる。すなわち、この一連の作業は、天然で行われてきた分子進化の過程を実験室の中で超高速化し、生物がもっているような高機能の分子を目の前で進化させてつくり出すという新しいバイオテクノロジーである。自然界での進化の過程に類似するため、この技術は「進化分子工学」とも呼ばれる。 When improving the function of a protein, amino acid substitutions and the like are generally added by mutating the DNA encoding the protein. To this end, a library containing mutants with amino acid substitutions at various positions is created at random, and the library is screened for mutants with better functionality. By repeating the process of adding further mutations to the obtained protein and screening again, it becomes possible to obtain proteins with even better functions. In other words, this series of work is a new kind of biotechnology in which the process of molecular evolution that takes place in nature is ultra-speeded up in the laboratory, and highly functional molecules similar to those found in living things are evolved and created right before our eyes. It's technology. This technique is also called "evolutionary molecular engineering" because it resembles the process of evolution in nature.
 例えば、特許文献1(特開2016-098198号公報)には、抗体をコードするDNAを複数に分割した塩基配列からなる複数のDNA断片のうち、少なくともナンセンス変異又はフレームシフト変異を有しない前記DNA断片を選別して回収する工程と、回収した少なくとも2つの前記DNA断片を連結して前記抗体をコードするDNAを形成する工程とにより、DNAライブラリーを製造する方法が記載されている。この方法では、DNAを複数に分割した塩基配列からなる複数のDNA断片を選別して回収する工程において、分割した前記DNA断片をmRNAに転写し、前記mRNAの末端と核酸リンカーの末端とをライゲーションし、前記mRNAを翻訳して得られる生成物と前記mRNAとが前記核酸リンカーを介して連結した複合体を形成し、さらに、前記複合体の前記mRNAを逆転写し、前記DNA断片を回収することにより行う。この方法では、各DNA断片を、制限酵素認識配列を有するプライマーを用いてPCRを行い、各増幅断片の一方の末端又は両末端に制限酵素認識部位を導入する。その後、当該制限酵素により増幅断片を切断し、さらに連結させることによって、DNAライブラリーを作製する。 For example, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2016-098198) discloses that among a plurality of DNA fragments consisting of a base sequence obtained by dividing a DNA encoding an antibody into a plurality of parts, said DNA does not have at least a nonsense mutation or a frameshift mutation. A method is described for producing a DNA library by selecting and recovering fragments and ligating at least two of the recovered DNA fragments to form DNA encoding the antibody. In this method, in the step of selecting and recovering multiple DNA fragments consisting of base sequences obtained by dividing DNA into multiple parts, the divided DNA fragments are transcribed into mRNA, and the end of the mRNA and the end of a nucleic acid linker are ligated. and forming a complex in which a product obtained by translating the mRNA and the mRNA are linked via the nucleic acid linker, and further, reverse transcribing the mRNA of the complex and recovering the DNA fragment. This is done by In this method, each DNA fragment is subjected to PCR using a primer having a restriction enzyme recognition sequence, and a restriction enzyme recognition site is introduced at one end or both ends of each amplified fragment. Thereafter, the amplified fragments are cut with the restriction enzyme and further ligated to produce a DNA library.
 連結核酸断片を作成するために、制限酵素を用いて断片化し、連結する方法が従来から知られている。しかし、制限酵素は配列依存性の切断を行うため、所望の箇所以外に制限酵素認識配列が含まれると、切断により読み枠がずれたり、設計通りの配列を有する連結核酸断片を得ることができず、機能を有するタンパク質が生成されないという問題が生じ得る。これらの現象を避けるためにライブラリーの自由度が制限される。 In order to create ligated nucleic acid fragments, methods of fragmenting using restriction enzymes and ligating are conventionally known. However, since restriction enzymes perform sequence-dependent cleavage, if a restriction enzyme recognition sequence is included at a location other than the desired one, the reading frame may shift due to cleavage, or a linked nucleic acid fragment having the designed sequence may not be obtained. First, a problem may arise in that functional proteins are not produced. To avoid these phenomena, the degree of freedom of the library is restricted.
 近年、任意の位置にイノシンを導入したプライマーを用いてPCRを行い、増幅後にイノシンを認識して特定位置のホスホジエステル結合を分解する酵素を用いて突出末端を形成する技術が開発された。 In recent years, a technique has been developed in which PCR is performed using primers with inosine introduced at arbitrary positions, and after amplification, an overhanging end is formed using an enzyme that recognizes inosine and decomposes phosphodiester bonds at specific positions.
 非特許文献1(Baumann et al. BMC Biotechnology 2013, 13:81)には、5’末端から3番目の塩基をデオキシイノシン塩基としたプライマーを用いてPCRを行い、増幅産物をエンドヌクレアーゼVにより処理することによって、突出末端を作成する技術が開示されている。この方法では、タイプII制限酵素を使用することなく、また、配列によらずに突出末端を作成することができる。この方法は、核酸配列同士を連結させるためではなく、プラスミドベクターにそのまま導入されるために用いられる。 Non-Patent Document 1 (Baumann et al. BMC Biotechnology 2013, 13:81) states that PCR is performed using a primer with the third base from the 5' end as a deoxyinosine base, and the amplified product is treated with endonuclease V. A technique for creating a protruding end by doing this is disclosed. With this method, overhanging ends can be created without using type II restriction enzymes and without depending on the sequence. This method is used not to link nucleic acid sequences together, but to introduce them directly into a plasmid vector.
 特許文献2(特開2019-149985号公報)では、任意の位置にイノシンを含むプライマーを用いてPCRを行って複数の増幅断片を作成し、増幅産物をT4ピリミジンダイマーグリコシラーゼ(PDG)やエンドヌクレアーゼVにより処理して、突出末端を作成して、複数の増幅断片を連結させる技術が開示されている。 In Patent Document 2 (Japanese Unexamined Patent Publication No. 2019-149985), PCR is performed using a primer containing inosine at an arbitrary position to create multiple amplified fragments, and the amplified product is treated with T4 pyrimidine dimer glycosylase (PDG) or endonuclease. A technique has been disclosed in which a plurality of amplified fragments are ligated by treatment with V to create overhanging ends.
 核酸の増幅方法としては、規則的に温度を変化させて変性、アニーリング、増幅を繰り返すPCRや、等温で増幅を行う自律配列複製反応(3SR)、等温キメラプライマー開始核酸増幅(ICAN)、リガーゼ連鎖反応(LCR)、LAMP法など各種知られている。このような核酸増幅方法において、一定の割合で変異を導入することによってより望ましい性質を有する変異タンパク質を作製することが行われている。 Nucleic acid amplification methods include PCR, which repeats denaturation, annealing, and amplification by regularly changing the temperature, autonomous sequence replication reaction (3SR), which performs isothermal amplification, isothermal chimeric primer-initiated nucleic acid amplification (ICAN), and ligase chain reaction. Various methods such as reaction (LCR) and LAMP method are known. In such nucleic acid amplification methods, mutated proteins having more desirable properties are produced by introducing mutations at a fixed rate.
 RNA/DNAキメラプライマーは、等温条件下キメラプライマー開始核酸増幅(ICAN)による増幅等でも用いられる。ICANでは、プライマーの3’側にRNA部分を含むRNA/DNAキメラプライマーを用いて鎖を伸長させる。RNaseHがキメラプライマー由来のRNA部分を切断し、切断部分から鎖置換反応と鋳型交換反応を伴った伸長反応が起こる。この反応が繰り返し起こることにより遺伝子が増幅される。 RNA/DNA chimeric primers are also used for amplification by chimeric primer-initiated nucleic acid amplification (ICAN) under isothermal conditions. In ICAN, an RNA/DNA chimeric primer containing an RNA portion on the 3' side of the primer is used to extend the chain. RNaseH cleaves the RNA portion derived from the chimeric primer, and an elongation reaction accompanied by a strand displacement reaction and a template exchange reaction occurs from the cleaved portion. Genes are amplified by repeating this reaction.
 アルパカやリャマなどのラクダ科動物の血液中には、2つの重鎖(H鎖)と軽鎖(L鎖)で構成されるIgG抗体の他に、重鎖のみで構成される抗体(重鎖抗体;HCAb)が存在する。VHHと称されるHCAbの可変領域は、VHHは、CDR(相補性決定領域)と呼ばれる3つのCDR(CDR1~CDR3)可変領域と4つのフレームワーク領域(FR1~FR4)とからなり、IgG抗体、Fab断片、一本鎖抗体scFvと比較しても分子量が小さいため、抗体工学技術を応用した医薬品への応用が期待されている。VHHは、製造コストが安く、室温での安定な保存や輸送が可能であるうえ、VHHの結合する抗原結合部位(パラトープ)の構造は、従来の抗体の抗原結合部位よりも多様性に富む。そのため、経口、経肺、経鼻投与など各種の投与ルートが可能なVHHが開発されつつあり、今後の創薬への応用が期待されている。その応用の一つとして、特許文献3(特開2016-44126号公報)では、ラクダ科動物の抗体の重鎖中にある相補性決定領域を含む複数のDNA断片それぞれに所望の変異を導入し、これらを連結して修飾二本鎖DNAを合成し、これらをコードするmRNAとピューロマイシン-DNAリンカーとを結合させ、mRNA-リンカーを調製後にこれらを無細胞翻訳系にて翻訳し、得られたmRNA-変異導入抗体を固相に固定化した後に逆転写を行なってcDNAディスプレイを行ない、セレクションを行なう次世代型フラグメント抗体の作製方法が提案されている。 In the blood of camelid animals such as alpacas and llamas, in addition to IgG antibodies composed of two heavy chains (H chain) and light chain (L chain), there are also antibodies composed only of heavy chains (heavy chain Antibody; HCAb) exists. The variable region of HCAb, called VHH, is composed of three CDRs (CDR1 to CDR3) called CDRs (complementarity determining regions) and four framework regions (FR1 to FR4), and is similar to IgG antibodies. , Fab fragments, and single-chain antibody scFv, it is expected to be applied to pharmaceuticals using antibody engineering technology. VHH is inexpensive to produce, can be stably stored and transported at room temperature, and the structure of the antigen-binding site (paratope) to which VHH binds is more diverse than that of conventional antibody antigen-binding sites. Therefore, VHHs that allow various administration routes such as oral, pulmonary, and nasal administration are being developed, and are expected to be applied to future drug discovery. As one of its applications, Patent Document 3 (Japanese Unexamined Patent Publication No. 2016-44126) discloses that desired mutations are introduced into each of multiple DNA fragments containing the complementarity determining region in the heavy chain of a camelid antibody. , these are linked together to synthesize modified double-stranded DNA, the mRNA encoding these is linked to a puromycin-DNA linker, and after the mRNA-linker is prepared, these are translated in a cell-free translation system. A method for producing next-generation fragment antibodies has been proposed in which an mRNA-mutated antibody is immobilized on a solid phase, followed by reverse transcription, cDNA display, and selection.
特開2016-098198号公報Japanese Patent Application Publication No. 2016-098198 特開2019-149985号公報JP2019-149985A 特開2016-44126号公報Japanese Patent Application Publication No. 2016-44126
 配列に依存せず核酸配列の連結に使用することができる核酸の増幅及び連結方法が望まれていた。例えば、イノシンを含むプライマーを用いる場合には、イノシンの相補の位置に出現する塩基はシトシン(C)となる。また、エンドヌクレアーゼVの切断箇所は、イノシンの3’側にある2番目及び3番目のホスホジエステル結合をそれぞれ95%及び5%の割合で切断する。そのため、イノシンはトリプレットの第三塩基に当たる位置であってこの第三塩基が変化しても同一のアミノ酸に対応しているトリプレット配列にする必要があるなど、プライマー設計には制約が生じる。 There has been a desire for a nucleic acid amplification and ligation method that can be used for ligation of nucleic acid sequences without depending on the sequence. For example, when using a primer containing inosine, the base appearing at the complementary position of inosine is cytosine (C). Furthermore, the cleavage site of endonuclease V cleaves the second and third phosphodiester bonds on the 3' side of inosine at a rate of 95% and 5%, respectively. Therefore, inosine is located at the third base of the triplet, and even if this third base changes, it is necessary to create a triplet sequence that corresponds to the same amino acid, which creates constraints on primer design.
 また、進化工学の観点から、一定の確率で変異が導入された核酸断片の連結方法が望まれていた。そのため、例えばPCRに伴い変異の導入を高める必要がある場合には、適宜変異導入率が高い方法を開発する必要があった。 Additionally, from the perspective of evolutionary engineering, a method for linking nucleic acid fragments into which mutations have been introduced with a certain probability has been desired. Therefore, for example, when it is necessary to increase the introduction of mutations due to PCR, it is necessary to develop a method that can appropriately increase the mutation introduction rate.
 さらに言うまでもないが工程数が少なく、容器を入れ替える等の作業が少ない又はそのような作業がない方法が、簡便であるのみならずコンタミネーション等を防ぐ観点から望ましい。 Furthermore, it goes without saying that a method with fewer steps and fewer or no operations such as changing containers is desirable not only from the viewpoint of simplicity but also from the viewpoint of preventing contamination.
 本発明は、RNA/DNAキメラプライマーを用いてPCRを行い、プライマーのRNA配列に由来する配列をRNaseH処理により消化して突出末端を作成し、この突出末端を利用して複数の増幅断片を連結する方法である。
 具体的には、本発明の核酸の増幅及び連結方法では、所望の核酸配列について、少なくとも一つのプライマーが5’側にRNA配列を含むRNA/DNAキメラプライマーである一又は複数のプライマー対を用いてPCRを行い、前記所望の核酸配列を鋳型とした増幅断片を作成する工程と、
 RNaseH処理によって前記増幅断片中に含まれるRNA配列を消化して突出末端を形成する工程と、
 突出末端同士を連結させることにより少なくとも2つの増幅断片を連結させて、連結された核酸を作成する工程と
を含む。
The present invention performs PCR using an RNA/DNA chimeric primer, digests the sequence derived from the RNA sequence of the primer by treating with RNaseH to create overhanging ends, and uses the overhanging ends to connect multiple amplified fragments. This is the way to do it.
Specifically, the nucleic acid amplification and ligation method of the present invention uses one or more primer pairs in which at least one primer is an RNA/DNA chimera primer containing an RNA sequence on the 5' side for a desired nucleic acid sequence. performing PCR to create an amplified fragment using the desired nucleic acid sequence as a template;
Digesting the RNA sequence contained in the amplified fragment by RNaseH treatment to form overhanging ends;
The step of ligating at least two amplified fragments by ligating their overhanging ends to create a ligated nucleic acid.
 上記方法において、前記連結された核酸に含まれる増幅断片のうち、連結されたときに互いに隣接する増幅断片を増幅するプライマー対のうちの一方プライマー対のフォワードプライマーがRNA/DNAキメラプライマーであり、他方のプライマー対のリバースプライマーがRNA/DNAキメラプライマーであり、前記フォワードプライマー及び前記リバースプライマーに含まれるRNA配列が実質的に相補的な配列を有することができる。その結果、PCR後の増幅断片の片側末端又は両端には、他の増幅断片の末端と相補的な一本鎖が生じることとなる。その相補的な一本鎖を利用して増幅断片の連結を行う。 In the above method, the forward primer of one of the primer pairs that amplifies adjacent amplified fragments when ligated among the amplified fragments contained in the ligated nucleic acids is an RNA/DNA chimera primer; The reverse primer of the other primer pair is an RNA/DNA chimeric primer, and the RNA sequences contained in the forward primer and the reverse primer can have substantially complementary sequences. As a result, a single strand complementary to the ends of other amplified fragments is generated at one end or both ends of the amplified fragment after PCR. The amplified fragments are linked using the complementary single strands.
 PCRのためのDNAポリメラーゼは、耐熱性であれば任意のポリメラーゼを使用することができるが、例えば、rTthDNAポリメラーゼ、Thermococcus kodakarensis KOD 1株由来のDNAポリメラーゼであるKOD DNAポリメラーゼ、PfuDNAポリメラーゼ、及びTaqDNAポリメラーゼなどを用いることができる。例えば、PrimeSTAR(登録商標)シリーズ(タカラバイオ社製)、TaKaRa Ex Taq(登録商標)シリーズ(タカラバイオ社製)、TaKaRa La Taq(登録商標)シリーズ(タカラバイオ社製)、TaKaRa Taq(商標)シリーズ(タカラバイオ社製)、Speed Star(商標)(タカラバイオ社製)、MightyAmp(商標)シリーズ、Prelude(商標)PreAmp Master Mix(クロンテック社製)、SuperPlex(商標)Premix(クロンテック社製)、Titanium(登録商標)Taq DNAポリメラーゼ(クロンテック社製)、Advantage(登録商標)2ポリメラーゼミックス&PCRキット(クロンテック社製)、Advantage(登録商標)GC2ポリメラーゼミックス&PCRキット(クロンテック社製)、CloneAmp(商標)HiFi PCR Premix(クロンテック社製)、High Yield PCR EcoDry(商標)Premix(クロンテック社製)、High Fidelity PCR EcoDry(商標)Premix(クロンテック社製)、SeqAmp(商標)DNA Polymerase(クロンテック社製)、KOD-Plusシリーズ(東洋紡株式会社製)、KOD One(登録商標)シリーズ(東洋紡株式会社製)、KOD DNA Polymerase(東洋紡株式会社製)、KOD FX Neo、KOD FX(東洋紡株式会社製)、KOD -Multi&Epi-(登録商標)(東洋紡株式会社製)、Blend Taq(登録商標)シリーズ(東洋紡株式会社製)、KOD Dash(登録商標)(東洋紡株式会社製)、Quick Taq(登録商標)(東洋紡株式会社製)、rTaq DNA Polymerase(東洋紡株式会社製)、Q5 High-Fidelity DNA Polymeraseシリーズ(ニュー・イングランド・バイオラボ・ジャパン株式会社)、Phusion High-Fidelity DNA Polymeraseシリーズ(ニュー・イングランド・バイオラボ・ジャパン株式会社)、OneTaq DNA Polymerase(ニュー・イングランド・バイオラボ・ジャパン株式会社)など広く使用することができるが、上記に限定されず、当業者は目的に応じてDNAポリメラーゼを選択することができる。 As the DNA polymerase for PCR, any polymerase can be used as long as it is thermostable; for example, rTth DNA polymerase, KOD DNA polymerase derived from Thermococcus kodakarensis KOD 1 strain, Pfu DNA polymerase, and Taq DNA polymerase. etc. can be used. For example, PrimeSTAR (registered trademark) series (manufactured by Takara Bio Inc.), TaKaRa Ex Taq (registered trademark) series (manufactured by Takara Bio Inc.), TaKaRa La Taq (registered trademark) series (manufactured by Takara Bio Inc.), TaKaRa Taq (trademark) Series (manufactured by Takara Bio), Speed Star (trademark) (manufactured by Takara Bio), MightyAmp (trademark) series, Prelude (trademark) PreAmp Master Mix (manufactured by Clontech), SuperPlex (trademark) Premix (manufactured by Clontech), Titanium (registered trademark) Taq DNA polymerase (manufactured by Clontech), Advantage (registered trademark) 2 polymerase mix & PCR kit (manufactured by Clontech), Advantage (registered trademark) GC2 polymerase mix & PCR kit (manufactured by Clontech), CloneAmp (trademark) HiFi PCR Premix (manufactured by Clontech), High Yield PCR EcoDry (trademark) Premix (manufactured by Clontech), High Fidelity PCR EcoDry (trademark) Premix (manufactured by Clontech), SeqA mp (trademark) DNA Polymerase (manufactured by Clontech), KOD -Plus series (manufactured by Toyobo Co., Ltd.), KOD One (registered trademark) series (manufactured by Toyobo Co., Ltd.), KOD DNA Polymerase (manufactured by Toyobo Co., Ltd.), KOD FX Neo, KOD FX (manufactured by Toyobo Co., Ltd.), KOD -Multi&Epi - (registered trademark) (manufactured by Toyobo Co., Ltd.), Blend Taq (registered trademark) series (manufactured by Toyobo Co., Ltd.), KOD Dash (registered trademark) (manufactured by Toyobo Co., Ltd.), Quick Taq (registered trademark) (manufactured by Toyobo Co., Ltd.) ), rTaq DNA Polymerase (manufactured by Toyobo Co., Ltd.), Q5 High-Fidelity DNA Polymerase series (New England Biolab Japan Co., Ltd.), Phusion High-Fidelity DNA Poly merase series (New England Biolab Japan Co., Ltd.), OneTaq DNA Polymerase (New England Biolab Japan Co., Ltd.) can be widely used, but is not limited to the above, and those skilled in the art can select a DNA polymerase depending on the purpose.
 rTthDNAポリメラーゼを用いるPCRの場合には、PCRをMn2+の存在下又はMg2+の存在下で行うのが望ましい。
 rTthDNAポリメラーゼ以外のDNAポリメラーゼを用いるPCRの場合には、RNaseH処理前にrTthDNAポリメラーゼを用いてさらに逆転写を行うのが望ましい。
In the case of PCR using rTth DNA polymerase, it is desirable to perform the PCR in the presence of Mn 2+ or Mg 2+ .
In the case of PCR using a DNA polymerase other than rTth DNA polymerase, it is desirable to further perform reverse transcription using rTth DNA polymerase before RNaseH treatment.
 PCR後の増幅断片の突出末端同士の連結は、例えば、TaqDNAリガーゼ、T4 DNAリガーゼ、及びE.coli DNAリガーゼからなる群から選択される酵素により行うことができる。 The protruding ends of the amplified fragments after PCR can be ligated using, for example, Taq DNA ligase, T4 DNA ligase, and E. coli. This can be carried out using an enzyme selected from the group consisting of E. coli DNA ligase.
 本発明は、所望の核酸配列について、一対のプライマーのうち少なくとも一つのプライマーが、5’側にRNA配列を含むRNA/DNAキメラプライマーである一又は複数のプライマー対を用いたPCRにより増幅された、前記所望の核酸配列の5’又は3’末端のいずれか、又は5’末端及び3’末端の両方に前記キメラプライマーに由来するRNA配列を含む核酸断片を提供する。 In the present invention, a desired nucleic acid sequence is amplified by PCR using one or more primer pairs in which at least one of the primers is an RNA/DNA chimera primer containing an RNA sequence on the 5' side. , providing a nucleic acid fragment comprising an RNA sequence derived from the chimeric primer at either the 5' or 3' end, or both the 5' and 3' ends of the desired nucleic acid sequence.
 本発明は、少なくとも一つのプライマーが、5’側にRNA配列を含むRNA/DNAキメラプライマーである一対のプライマーと、
 DNAポリメラーゼと、
 RNaseHと、
 TaqDNAリガーゼ、T4 DNAリガーゼ、及びE.coli DNAリガーゼからなる群から選択される酵素と
を含む、核酸を増幅及び連結するためのキットを提供する。
The present invention provides a pair of primers in which at least one primer is an RNA/DNA chimeric primer containing an RNA sequence on the 5'side;
DNA polymerase and
RNaseH and
Taq DNA ligase, T4 DNA ligase, and E. and an enzyme selected from the group consisting of E. coli DNA ligase.
 本発明の方法では、RNA/DNAキメラプライマーを用いることによって突出末端を形成できるため、目的とする核酸配列を容易に増幅し連結することができる。
 この方法では、核酸配列に依存することなくプライマーをデザインすることができ、ポリメラーゼを選択することによって、変異の導入率も変更可能である。
In the method of the present invention, a protruding end can be formed by using an RNA/DNA chimeric primer, so that a target nucleic acid sequence can be easily amplified and ligated.
With this method, primers can be designed without depending on the nucleic acid sequence, and the mutation introduction rate can also be changed by selecting a polymerase.
 さらに、例えば、制限酵素を用いる場合には、制限酵素認識部位で切断されるため配列依存的であり、また、目的とする場所以外に制限酵素認識部位が含まれた場合には、意図しない断片が生じる可能性がある。本発明では、制限酵素を必要とせずに、核酸配列を連結できるため、配列非依存的、かつ、より少ない工程により核酸の連結が可能である。また、連結に際し、制限酵素による切断により生じた突出末端よりも長い一本鎖部分を有する突出末端を作成することが可能である。さらに、突出末端を生じる制限酵素を用いる場合には、4塩基程度の一本鎖を有する突出末端しかできないのに対して、本発明では例えば、1~15塩基程度の一本鎖を有する突出末端を作成することができるため、連結の精度が高いうえ、配列非依存的に連結を行うことができる。 Furthermore, when using restriction enzymes, for example, the cleavage is sequence-dependent because the cleavage occurs at the restriction enzyme recognition site, and if the restriction enzyme recognition site is included at a location other than the intended location, unintended fragments may occur. may occur. In the present invention, since nucleic acid sequences can be ligated without the need for restriction enzymes, nucleic acid ligation can be performed sequence-independently and with fewer steps. Furthermore, during ligation, it is possible to create an overhanging end that has a longer single-stranded portion than the overhanging end produced by restriction enzyme cleavage. Furthermore, when using a restriction enzyme that produces a protruding end, only a protruding end having a single strand of about 4 bases can be produced, whereas in the present invention, for example, a protruding end having a single strand of about 1 to 15 bases can be produced. Since it is possible to create a , the concatenation is highly accurate and can be concatenated in an array-independent manner.
 さらに、本発明では、用いるDNAポリメラーゼにより、変異導入率を制御することができる。例えば、複製忠実度が高い(high fidelity)DNAポリメラーゼ、例えば、KOD One(登録商標)シリーズ(東洋紡株式会社製)、KOD-Plusシリーズ(東洋紡株式会社製)、PrimeSTAR Max(タカラバイオ社製)、CloneAmp(商標)HiFi PCR Premix(クロンテック社製)、PfuDNAポリメラーゼによりPCRを行うか、TaqDNAポリメラーゼ等によりPCRを行うか、rTthDNAポリメラーゼによりPCRを行うかによって変異導入率を変えることができる。ここで、複製忠実度が高いDNAポリメラーゼとは、強力なプルーフリーディング活性を持つDNAポリメラーゼであり、TaqDNAポリメラーゼの約10倍以上、好ましくは約50倍以上の高いDNA配列複製の正確性を有するDNAポリメラーゼを言う。例えば、変異を導入することなく核酸を増幅し連結したい場合には、複製忠実度が高いDNAポリメラーゼによりPCRを行い、若干の変異を許容する場合には、TaqDNAポリメラーゼによりPCRを行い、変異をより積極的に導入したい場合にはrTthDNAポリメラーゼによりPCRを行うことにより、変異導入率を制御できる。さらに、rTthDNAポリメラーゼによりPCRを行う際に、Mn2+を添加するかMg2+を添加するかによって変異導入率を変えることができる。すなわち、より多くの変異を導入したい場合には、Mn2+を添加し、変異導入率をMn2+を添加したときよりも下げたい場合にはMg2+を添加する。このように、変異導入率を制御することによって、ランダムに様々な部位のアミノ酸を置換した変異体を含むライブラリーを作成し、より好ましい特性を有するタンパク質をスクリーニングする「進化分子工学」に好ましく用いることができる。 Furthermore, in the present invention, the mutation introduction rate can be controlled by the DNA polymerase used. For example, DNA polymerases with high replication fidelity, such as KOD One (registered trademark) series (manufactured by Toyobo Co., Ltd.), KOD-Plus series (manufactured by Toyobo Co., Ltd.), PrimeSTAR Max (manufactured by Takara Bio Inc.), The mutation introduction rate can be changed depending on whether PCR is performed using CloneAmp (trademark) HiFi PCR Premix (manufactured by Clontech), Pfu DNA polymerase, Taq DNA polymerase, etc., or rTth DNA polymerase. Here, a DNA polymerase with high replication fidelity is a DNA polymerase that has a strong proofreading activity, and has a DNA sequence replication accuracy that is about 10 times or more, preferably about 50 times or more, than Taq DNA polymerase. Say polymerase. For example, if you want to amplify and link nucleic acids without introducing mutations, perform PCR using a DNA polymerase with high replication fidelity, and if you want to tolerate some mutations, perform PCR using Taq DNA polymerase to reduce mutations even further. When actively introducing mutations, the rate of mutation introduction can be controlled by performing PCR using rTth DNA polymerase. Furthermore, when performing PCR using rTth DNA polymerase, the mutation introduction rate can be changed depending on whether Mn 2+ or Mg 2+ is added. That is, if you want to introduce more mutations, Mn 2+ is added, and if you want to lower the mutation introduction rate than when Mn 2+ is added, Mg 2+ is added. In this way, by controlling the mutation introduction rate, a library containing mutants with amino acid substitutions at various sites can be created at random, and this can be preferably used for "evolutionary molecular engineering" to screen for proteins with more desirable properties. be able to.
 また、前記PCRを複製忠実度が高いDNAポリメラーゼ、又はTaqDNAポリメラーゼにより行い、RNaseH処理前にさらにrTthDNAポリメラーゼにより逆転写を行う場合に、PCRの後、rTthDNAポリメラーゼによる逆転写の前に、短時間の加熱工程をさらに行ってもよい。
 PCRを複製忠実度が高いDNAポリメラーゼ、又はTaqDNAポリメラーゼにより増幅を行った後、通常は、精製工程を経ないと逆転写の効率が下がる。しかし、PCRを行った後、短時間の加熱を行った後に、逆転写を行うことにより、精製工程無しでも高い効率で逆転写が可能となる。PCR後に精製工程を必要としないため、One-potでの反応、すなわち、同一容器中で順次PCR後、逆転写を進めることが可能となる。
In addition, when the above PCR is performed using DNA polymerase with high replication fidelity or Taq DNA polymerase, and reverse transcription is further performed using rTth DNA polymerase before RNaseH treatment, a short period of time after PCR and before reverse transcription using rTth DNA polymerase may be A heating step may be further performed.
After PCR is amplified using a DNA polymerase with high replication fidelity or Taq DNA polymerase, the efficiency of reverse transcription usually decreases unless a purification step is performed. However, by performing reverse transcription after short-time heating after PCR, reverse transcription can be performed with high efficiency without a purification step. Since no purification step is required after PCR, it is possible to perform a one-pot reaction, that is, to proceed with reverse transcription after sequential PCR in the same container.
 この短時間の加熱工程は、約80~110℃、好ましくは約85~105℃、より好ましくは約90~100℃程度の温度で加熱し、約5~60秒間、好ましくは約10~40秒、より好ましくは約15~30秒間の加熱を行うことにより行う。一例として、95℃で20秒間の加熱を行うことにより、精製工程を行うことなくrTthDNAポリメラーゼによる逆転写が高い効率で可能となる。
 理論に拘束されることを意図するものではないが、PCR終了後に精製を行わない場合には、複製忠実度が高いDNAポリメラーゼがDNA鎖に付着しているため、逆転写が妨げられていたと考えられるが、PCRプロダクトを短時間加熱するにより、付着していたDNAポリメラーゼがDNA鎖から外れて、精製無しでも逆転写が可能になったと考えられる。
This short heating step involves heating at a temperature of about 80 to 110°C, preferably about 85 to 105°C, more preferably about 90 to 100°C, for about 5 to 60 seconds, preferably about 10 to 40 seconds. , more preferably by heating for about 15 to 30 seconds. As an example, by heating at 95° C. for 20 seconds, reverse transcription using rTth DNA polymerase can be performed with high efficiency without performing a purification step.
Although not intending to be bound by theory, it is believed that if purification is not performed after PCR is completed, reverse transcription is hindered because DNA polymerase, which has high replication fidelity, is attached to the DNA strand. However, it is thought that by heating the PCR product for a short time, the attached DNA polymerase detached from the DNA strand, making reverse transcription possible without purification.
 さらに、VHHをコードする核酸を用いて本発明によりシャッフリングを行い、既存のVHHから様々な配列を有するVHHを作出することができる。本発明の方法によって、例えば、フレームワーク領域(FR)をヒトFR配列とVHHの結晶構造解析データの結果得られた構造特性を基にデザインしたヒト化VHHライブラリーを作出したり、CDR3に変異を導入するなどして多様なVHHを設計することができる。さらに、変異を導入することにより熱安定性等を高めたり、複数のVHHからCDRの一部をシャッフリングするなどして結合能をより高めたVHH抗体を作出することもできる。 Furthermore, VHHs having various sequences can be created from existing VHHs by performing shuffling according to the present invention using nucleic acids encoding VHHs. The method of the present invention can, for example, create a humanized VHH library in which the framework region (FR) is designed based on the human FR sequence and the structural characteristics obtained as a result of VHH crystal structure analysis data, Various VHHs can be designed by introducing Furthermore, it is also possible to create a VHH antibody with higher binding ability by introducing mutations to increase thermostability, or by shuffling a portion of CDRs from multiple VHHs.
 本発明を応用することによって、任意のポリペプチドの任意の特定の領域に変異を導入することができる。例えば、ランダム変異を導入したい特定領域をコードするヌクレオチド領域(図11中破線箇所)をエラープローンPCR(Error Prone PCR)により増幅して、様々な変異が導入された前記特定領域を含むヌクレオチド断片を得る。得られた前記断片をRNA/DNAキメラプライマーを用いて増幅して、3’又は5’末端の一方又は両方に突出末端を作成する。前記特定領域を含むヌクレオチド断片と連結する側にRNA/DNAキメラプライマーを用いてPCRを行うことにより、ポリペプチドをコードする残りのヌクレオチド配列に突出末端を導入し、変異が導入された前記特定領域を含むヌクレオチド断片と連結させる。この方法により、任意のポリペプチドのうち、特定の領域のみにランダム変異を導入させたライブラリーを作成することができる。 By applying the present invention, mutations can be introduced into any specific region of any polypeptide. For example, a nucleotide region encoding a specific region in which you want to introduce random mutations (dotted line in Figure 11) is amplified by error-prone PCR to generate nucleotide fragments containing the specific region into which various mutations have been introduced. obtain. The obtained fragment is amplified using an RNA/DNA chimeric primer to create an overhang at one or both of the 3' or 5' ends. By performing PCR using an RNA/DNA chimera primer on the side that connects to the nucleotide fragment containing the specific region, an overhang is introduced into the remaining nucleotide sequence encoding the polypeptide, and the specific region is mutated. ligated with a nucleotide fragment containing By this method, it is possible to create a library in which random mutations are introduced only into specific regions of any polypeptide.
 図11では、変異が導入された前記特定領域を含むヌクレオチド断片の一方のみに突出末端を導入しているが、両端に突出末端を導入することも可能であり、その場合には、3’末端及び5’末端の両方を、他のヌクレオチド断片と連結することが可能である。 In FIG. 11, an overhang is introduced into only one of the nucleotide fragments containing the specific region into which a mutation has been introduced, but it is also possible to introduce overhang ends at both ends, and in that case, the 3' end It is possible to link both the and 5' ends with other nucleotide fragments.
 この方法を用いて、例えば、VHHのCDR1~3等の任意の領域に多様な変異を導入して、より結合活性の優れたVHHの選択を行ったり、受容体のリガンド結合領域に変異を導入してリガンドとの結合活性を変化させることができる。 Using this method, for example, various mutations can be introduced into arbitrary regions such as CDR1 to CDR3 of VHH to select VHH with better binding activity, or mutations can be introduced into the ligand-binding region of the receptor. The binding activity with the ligand can be changed by
本発明の一方法を示す模式図である。FIG. 1 is a schematic diagram showing one method of the present invention. rTthDNAポリメラーゼを用いてPCRを行う場合を示す模式図である。It is a schematic diagram showing the case where PCR is performed using rTth DNA polymerase. TaqDNAポリメラーゼを用いてPCRを行う場合を示す模式図である。It is a schematic diagram showing the case where PCR is performed using Taq DNA polymerase. 実施例におけるVHH遺伝子の構築の模式図である。It is a schematic diagram of the construction of a VHH gene in an example. 実施例におけるMn2+添加条件のPCRにより作製したDNAフラグメント同士のライゲーションを確認した変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of DNA fragments produced by PCR under Mn 2+ addition conditions in Examples. 実施例におけるMg2+添加条件のPCRにより作製したDNAフラグメント同士のライゲーションを確認した変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of DNA fragments produced by PCR under Mg 2+ addition conditions in Examples. 実施例におけるVHH遺伝子間のシャッフリングの模式図である。FIG. 2 is a schematic diagram of shuffling between VHH genes in Examples. 実施例におけるVHH#1~VHH#3のフラグメントAとBのライゲーションを確認した変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。This is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel that confirmed the ligation of fragments A and B of VHH#1 to VHH#3 in Examples. 実施例におけるrTthDNAポリメラーゼによるPCR条件を検討した変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in which PCR conditions using rTth DNA polymerase in Examples were investigated. 実施例におけるPrimeSTAR MaxとrTthDNAポリメラーゼを組み合わせた突出末端作製条件を検討した変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in which conditions for producing overhanging ends using a combination of PrimeSTAR Max and rTth DNA polymerase in Examples were investigated. ポリペプチドの任意の特定の領域に変異を導入する本発明の一態様を示す模式図である。FIG. 1 is a schematic diagram showing one embodiment of the present invention in which a mutation is introduced into any specific region of a polypeptide. 実施例における、複製忠実度が高いDNAポリメラーゼを用いて逆転写前に精製を行わない場合の変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in the case where purification is not performed before reverse transcription using a DNA polymerase with high replication fidelity in an example. 実施例における、複製忠実度が高いDNAポリメラーゼを用いて逆転写前に精製を行なわず、加熱処理を行った場合の変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。FIG. 2 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel in an example in which heat treatment was performed without purification before reverse transcription using a DNA polymerase with high replication fidelity. 実施例におけるCDR3にランダム変異を導入したVHHライブラリーを作製する模式図である。FIG. 2 is a schematic diagram of creating a VHH library in which random mutations are introduced into CDR3 in Examples. 実施例における、CDR3にランダム変異を導入したVHHライブラリーがライゲーションにより作成されることを示す、変性ポリアクリルアミドゲル電気泳動(PAGE)のゲルの写真である。1 is a photograph of a denaturing polyacrylamide gel electrophoresis (PAGE) gel showing that a VHH library in which random mutations were introduced into CDR3 was created by ligation in an example.
 以下に本発明を、必要に応じて、添付の図面を参照して説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。本明細書では、単数形の表現は、特に言及しない限り、複数の場合をも含み得る。 The present invention will be described below with reference to the accompanying drawings as necessary. It should be understood that the terms used herein have the meanings commonly used in the art, unless otherwise specified. Accordingly, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In this specification, the singular forms include the plural unless specifically stated otherwise.
 本明細書では、「核酸」は、塩基と糖、リン酸からなるヌクレオチドがホスホジエステル結合で連なった生体高分子である。核酸は、リボ核酸(RNA)とデオキシリボ核酸(DNA)の総称であり、糖の部分がリボースであるものがRNA、リボースの2’位の水酸基が水素基に置換された2-デオキシリボースであるものがDNAである。糖の1’位には塩基が結合している。さらに糖の3’位と隣の糖の5’位はリン酸エステル構造で結合しており、その結合が繰り返されて長い鎖状になる。転写、翻訳やPCRにおける鎖伸長は5’位から3’位への方向に進む。なお、糖鎖の両端のうち、5’にリン酸が結合して切れている側のほうを5’末端と呼び、反対側を3’末端と呼ぶ。また、隣り合う核酸上の領域の、5’側を上流、3’側を下流という。
 本明細書では、特に言及がない限り、核酸の長さは任意の長さである。また、本明細書では、増幅反応を阻害しない限り「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」を含む。
As used herein, "nucleic acid" is a biopolymer in which nucleotides consisting of a base, sugar, and phosphoric acid are linked by phosphodiester bonds. Nucleic acid is a general term for ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). RNA has a sugar moiety of ribose, and 2-deoxyribose has the hydroxyl group at the 2' position of ribose replaced with a hydrogen group. Things are DNA. A base is attached to the 1' position of the sugar. Furthermore, the 3'-position of the sugar and the 5'-position of the adjacent sugar are bonded in a phosphate ester structure, and this bond is repeated to form a long chain. Chain elongation in transcription, translation, and PCR proceeds in the direction from the 5' position to the 3' position. Of the two ends of the sugar chain, the 5' end with phosphoric acid bonded and cut is called the 5' end, and the opposite end is called the 3' end. Furthermore, the 5' side of regions on adjacent nucleic acids is called upstream, and the 3' side is called downstream.
As used herein, unless otherwise specified, the length of a nucleic acid is any length. Furthermore, in this specification, "oligonucleotide derivatives" or "polynucleotide derivatives" are included as long as they do not inhibit the amplification reaction.
 PCRは、ポリメラーゼ連鎖反応(polymerase chain reaction)とも呼ばれる、核酸増幅技術である。増幅対象の鋳型DNAに、標的核酸領域に相補的な配列を持つ短い一本鎖プライマー、遊離ヌクレオチド、及びDNAポリメラーゼを加える。二本鎖DNAを高温下で変性させ一本鎖とし、次に冷却してプライマーを一本鎖DNAの相補的な部位にアニーリングし、さらに再加熱してプライマーを起点にDNAポリメラーゼにより一本鎖DNAに相補的な鎖を伸長させる。その後再度二本鎖DNAの変性から同じサイクルを繰り返すことによって、増幅を進めることによって鋳型DNAが指数関数的に増幅される。本明細書では、PCRの語は、RNAを鋳型として逆転写を行い、生じたcDNAに対してPCRを行うRT-PCR(逆転写ポリメラーゼ連鎖反応)も含む。 PCR is a nucleic acid amplification technique, also called polymerase chain reaction. A short single-stranded primer with a sequence complementary to the target nucleic acid region, a free nucleotide, and a DNA polymerase are added to the template DNA to be amplified. Double-stranded DNA is denatured at high temperature to become single-stranded, then cooled to anneal the primer to the complementary site of the single-stranded DNA, and then reheated to form single-stranded DNA using the primer as a starting point by DNA polymerase. Extends a strand complementary to DNA. The template DNA is then amplified exponentially by repeating the same cycle from denaturation of the double-stranded DNA to proceed with amplification. As used herein, the term PCR also includes RT-PCR (reverse transcription polymerase chain reaction), in which reverse transcription is performed using RNA as a template, and PCR is performed on the resulting cDNA.
 プライマーは、DNA複製の起点となる短鎖オリゴヌクレオチドである。PCR法では、通常は、フォワードプライマーとリバースプライマーからなる1組のプライマー対を用いる。フォワードプライマーとは、PCR法に用いる1組のプライマー対のうち、鋳型DNAのアンチセンス鎖にアニーリングするプライマーをいい、リバースプライマーとは、鋳型DNAのセンス鎖にアニーリングするプライマーをいう。一般にPCRではDNAプライマーを用いるが、本発明の方法では、対となるプライマーのうち一方又は両方をRNA/DNAキメラプライマーとする。RNA/DNAプライマーは、プライマーの5’側にRNA配列を含むものである。RNA/DNAプライマー中に含まれるRNA配列の長さは、増幅断片が適切に連結できるような突出末端を作成できる長さであれば特に限定されないが、例えば1~15残基程度RNA配列を含ませることができる。 A primer is a short oligonucleotide that serves as a starting point for DNA replication. In the PCR method, a pair of primers consisting of a forward primer and a reverse primer is usually used. Forward primer refers to a primer that anneals to the antisense strand of template DNA among a pair of primers used in the PCR method, and reverse primer refers to a primer that anneals to the sense strand of template DNA. Generally, DNA primers are used in PCR, but in the method of the present invention, one or both of the paired primers is an RNA/DNA chimera primer. An RNA/DNA primer is one that contains an RNA sequence on the 5' side of the primer. The length of the RNA sequence contained in the RNA/DNA primer is not particularly limited as long as it is long enough to create a protruding end to which the amplified fragments can be properly ligated; can be set.
 PCRに用いられるDNAポリメラーゼは、熱耐性DNAポリメラーゼであれば特に限定されないが、rTthDNAポリメラーゼ、KOD DNAポリメラーゼ、PfuDNAポリメラーゼ、PrimeSTAR Max(タカラバイオ社製)、又はTaqDNAポリメラーゼ等を用いることができるが、これらに限定されず、当業者は目的に応じて各種様々なDNAポリメラーゼを選択することができる。 The DNA polymerase used in PCR is not particularly limited as long as it is a heat-resistant DNA polymerase, but rTth DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), Taq DNA polymerase, etc. can be used. Without being limited to these, those skilled in the art can select various DNA polymerases depending on the purpose.
 PCRにより生じた増幅断片に含まれるRNA配列の消化には、RNase、特に、RNaseHを用いることができる。RNaseHは、リボヌクレアーゼHとも称され、DNA/RNAハイブリッド二本鎖を形成しているRNAを加水分解的に切断し、一本鎖DNAを生じるエンドリボヌクレアーゼである。 RNase, particularly RNase H, can be used to digest the RNA sequence contained in the amplified fragment generated by PCR. RNase H, also called ribonuclease H, is an endoribonuclease that hydrolytically cleaves RNA forming a DNA/RNA hybrid double strand to produce single-stranded DNA.
 相補的とは、二本鎖核酸の塩基配列で、対合する相手となる塩基間(AとT、GとC、AとU)が水素結合し塩基対を作ることができる状態をいう。本明細書では、DNA-DNA間のみならず、DNA-RNA間の相補性も含む。本明細書では、相補的な配列とは、全塩基が相補的な配列のみならず、互いに対合できる程度の相補性がある場合をも含み、この場合を実質的に相補的な配列を有するともいう。 Complementary refers to a state in which the pairing bases (A and T, G and C, A and U) can hydrogen bond and form base pairs in the base sequence of a double-stranded nucleic acid. This specification includes not only complementarity between DNA and DNA, but also complementarity between DNA and RNA. In this specification, a complementary sequence includes not only a sequence in which all bases are complementary, but also a sequence in which there is a degree of complementarity that allows them to pair with each other, and this case is defined as having a substantially complementary sequence. It is said that it does.
 突出末端とは、付着末端又は粘着末端とも称され、互いに相補的な配列がDNA鎖の5’末端または3’末端から突き出た一本鎖の状態の核酸を有する末端構造をいう。本発明では、RNA/DNAプライマー中に含まれるRNA配列の長さが、突出末端の一本鎖部分の長さに対応し、例えば1~15残基程度の一本鎖部分を有する突出末端を形成することができる。 An overhanging end is also referred to as a cohesive end or sticky end, and refers to an end structure having a single-stranded nucleic acid with mutually complementary sequences protruding from the 5' or 3' end of the DNA strand. In the present invention, the length of the RNA sequence contained in the RNA/DNA primer corresponds to the length of the single-stranded portion of the overhanging end, for example, the overhanging end having a single-stranded portion of about 1 to 15 residues. can be formed.
 DNAリガーゼは、DNA鎖の末端同士をリン酸ジエステル結合でつなぐ酵素であり、組換えDNAを作成するために遺伝子工学で用いられ、特に末端に突出末端の相補的な鎖に作用させてDNA断片を連結する際に用いられる。本発明において突出末端同士の連結をするために、任意のDNAリガーゼを用いることができるが、例えば、TaqDNAリガーゼ、T4DNAリガーゼ、及びE.coli DNAリガーゼを用いることができる。 DNA ligase is an enzyme that joins the ends of DNA strands with phosphodiester bonds, and is used in genetic engineering to create recombinant DNA, especially by acting on complementary strands with overhanging ends to create DNA fragments. Used when connecting. In the present invention, any DNA ligase can be used to join the overhanging ends, and examples include Taq DNA ligase, T4 DNA ligase, and E. coli. E. coli DNA ligase can be used.
 TaqDNAリガーゼは、DNAの突出末端の一本鎖部分が完全に相補的であり、ギャップがないときのみ、オリゴヌクレオチドの5’リン酸末端と3’ヒドロキシル末端とのホスホジエステル結合を形成して連結させる酵素である。T4DNAリガーゼは、オリゴヌクレオチドの5’リン酸末端端と3’ヒドロキシル末端とのホスホジエステル結合を形成して連結させる酵素であり、Mg2+とATPを要求する。E.coli DNAリガーゼは、オリゴヌクレオチドの5’リン酸末端端と3’ヒドロキシル末端とのホスホジエステル結合を形成して連結させる酵素であり、NADを要求する。 Taq DNA ligase forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of the oligonucleotide and ligates it only when the single-stranded parts of the overhanging ends of the DNA are completely complementary and there are no gaps. It is an enzyme that causes T4 DNA ligase is an enzyme that forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of an oligonucleotide to link them, and requires Mg 2+ and ATP. E. E. coli DNA ligase is an enzyme that forms a phosphodiester bond between the 5' phosphate end and 3' hydroxyl end of an oligonucleotide to link them, and requires NAD.
 逆転写とは、RNA依存性DNAポリメラーゼである逆転写酵素の存在下で、RNAを鋳型として、DNAを合成することをいう。逆転写酵素として、例えば、高度好熱菌Thermus thermophilus HB8由来の耐熱性DNAポリメラーゼであるrTthDNAポリメラーゼを挙げることができる。rTthDNAポリメラーゼを用いる場合に、活性を促進するためにMn2+又はMg2+存在下で逆転写を行うことができる。rTthDNAポリメラーゼを用いる場合には活性を促進するために、Mn2+を、0.1mM~1.0mM、好ましくは、0.3mM~0.8mM程度の終濃度、例えば、終濃度0.63mMとなるよう添加し、又は、Mg2+を0.5mM~1.8mM、好ましくは、0.8mM~1.5mM程度の終濃度、例えば、1.25mMの終濃度になるように添加するのが望ましい。 Reverse transcription refers to the synthesis of DNA using RNA as a template in the presence of reverse transcriptase, which is an RNA-dependent DNA polymerase. Examples of the reverse transcriptase include rTth DNA polymerase, which is a thermostable DNA polymerase derived from the hyperthermophilic bacterium Thermus thermophilus HB8. When using rTth DNA polymerase, reverse transcription can be performed in the presence of Mn 2+ or Mg 2+ to enhance activity. When using rTth DNA polymerase, in order to promote the activity, Mn 2+ is added to a final concentration of about 0.1 mM to 1.0 mM, preferably 0.3 mM to 0.8 mM, for example, a final concentration of 0.63 mM. Alternatively, it is desirable to add Mg 2+ to a final concentration of about 0.5mM to 1.8mM, preferably about 0.8mM to 1.5mM, for example, 1.25mM.
 図1を用いて、本発明の一態様を説明する。
 図中、DNA1及びDNA2は分離して描かれているが、DNA1及びDNA2は一つのDNAの別領域であってもよい。また、3対以上の複数のプライマー対を用いて、3つ複数のDNAを増幅したり、3つ以上のDNA断片を作製してもよい。
 DNA1のリバースプライマー及びDNA2のフォワードプライマーは、RNA/DNAキメラプライマーである。RNA/DNAキメラプライマーは、その5’中にRNA配列を有し(図中、プライマーを示す矢印中の黒部分)、DNA1のRNA/DNAキメラプライマー中のRNA配列と、DNA2のRNA/DNAキメラプライマー中のRNA配列は互いに相補的な配列を有する。DNA1及びDNA2を鋳型として、PCRは、熱耐性DNAポリメラーゼ、例えば、rTthDNAポリメラーゼ、KOD DNAポリメラーゼ、PfuDNAポリメラーゼ、PrimeSTAR Max(タカラバイオ社製)、又はTaqDNAポリメラーゼ等によりPCRにより増幅を行い、必要に応じて逆転写を行う。
One embodiment of the present invention will be described using FIG. 1.
Although DNA1 and DNA2 are drawn separately in the figure, DNA1 and DNA2 may be separate regions of one DNA. Furthermore, three or more pairs of primers may be used to amplify three or more DNAs or to produce three or more DNA fragments.
The reverse primer for DNA1 and the forward primer for DNA2 are RNA/DNA chimeric primers. The RNA/DNA chimera primer has an RNA sequence in its 5' end (in the figure, the black part in the arrow indicating the primer), and the RNA sequence in the RNA/DNA chimera primer of DNA1 and the RNA/DNA chimera of DNA2 The RNA sequences in the primers have mutually complementary sequences. Using DNA1 and DNA2 as templates, PCR is performed using a heat-resistant DNA polymerase, such as rTth DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), or Taq DNA polymerase, etc., and amplification is performed as necessary. Perform reverse transcription.
 続いて、RNaseH処理を行うことにより、増幅断片の末端に含まれるRNA配列(図中、PCR増幅断片の末端の黒部分)を消化することにより、突出末端を作成する。DNA1及びDNA2の突出末端は、互いに相補的な一本鎖DNA配列であり、ホスホジエステル結合により連結させる酵素により特異的に連結することができる。ホスホジエステル結合により連結させる酵素例えば、TaqDNAリガーゼ、T4 DNAリガーゼ、及びE.coli DNAリガーゼからなる群から選択される酵素を例示することができる。 Next, by performing RNaseH treatment, the RNA sequence contained in the end of the amplified fragment (in the figure, the black part at the end of the PCR amplified fragment) is digested, thereby creating a protruding end. The protruding ends of DNA1 and DNA2 are single-stranded DNA sequences that are complementary to each other, and can be specifically linked using a phosphodiester bond-linking enzyme. Enzymes linked by phosphodiester bonds, such as Taq DNA ligase, T4 DNA ligase, and E. Examples include enzymes selected from the group consisting of E. coli DNA ligase.
 rTthDNAポリメラーゼを用いてPCRを行う場合をさらに図2を用いて説明する。DNAポリメラーゼとしてrTthDNAポリメラーゼを用いたPCRを行う場合には、RNA/DNAプライマー中のRNA配列の相補鎖も増幅中に作成される。PCRにより増幅された増幅断片を、RNaseHで処理することによって増幅断片の末端に含まれるRNA配列を消化すると、一本鎖部分を有する突出末端を作成することができる。
 この図では、最終的に一方の末端のみに突出末端が作成される場合を示すが、プライマー対の両方のプライマー(フォワードプライマー及びリバースプライマー)に、RNA/DNAプライマーを使用することによって、両端に突出末端を作成することも可能である。
The case where PCR is performed using rTth DNA polymerase will be further explained using FIG. 2. When performing PCR using rTth DNA polymerase as the DNA polymerase, a complementary strand of the RNA sequence in the RNA/DNA primer is also created during amplification. When the amplified fragment amplified by PCR is treated with RNaseH to digest the RNA sequence contained at the end of the amplified fragment, an overhanging end having a single-stranded portion can be created.
This figure shows the case in which an overhanging end is created only at one end, but by using RNA/DNA primers for both primers (forward primer and reverse primer) of the primer pair, it is possible to create an overhang at both ends. It is also possible to create overhanging ends.
 なお、rTthDNAポリメラーゼを用いるPCRを行う場合、Mn2+又はMg2+の存在下で行うことが望ましい。Mn2+の存在下では、増幅された断片の10386塩基中に約61個変異が導入され、変異導入率は約5.9個/1kbpとなる。一方、Mg2+の存在下では、増幅された断片の129888塩基中に約420個変異が導入され、変異導入率は約3.2個/1kbpとなる。この変異導入率は、後述するTaqDNAポリメラーゼを用いた場合に、変異導入率約1.4個/1kbpであるのと比べてやや高い。そのため、Mn2+又はMg2+の存在下でrTthDNAポリメラーゼを用いてPCRを行う場合には、より多くの変異を含むライブラリーを作成し、そのライブラリーからより良い機能を持つ変異体のスクリーニングを行う進化分子工学を目的とする場合に特に好ましい。 Note that when performing PCR using rTth DNA polymerase, it is desirable to perform it in the presence of Mn 2+ or Mg 2+ . In the presence of Mn 2+ , approximately 61 mutations are introduced into 10,386 bases of the amplified fragment, resulting in a mutation introduction rate of approximately 5.9 mutations/1 kbp. On the other hand, in the presence of Mg 2+ , approximately 420 mutations are introduced into the 129,888 bases of the amplified fragment, resulting in a mutation introduction rate of approximately 3.2 mutations/1 kbp. This mutation introduction rate is slightly higher than the mutation introduction rate of approximately 1.4 pieces/1 kbp when Taq DNA polymerase, which will be described later, is used. Therefore, when performing PCR using rTth DNA polymerase in the presence of Mn 2+ or Mg 2+ , a library containing more mutations is created and the library is screened for mutants with better functionality. This is particularly preferred when the purpose is evolutionary molecular engineering.
 TaqDNAポリメラーゼ、又はKOD DNAポリメラーゼ、PfuDNAポリメラーゼ及びPrimeSTAR Max(タカラバイオ社製)等のような複製忠実度が高いDNAポリメラーゼを用いてPCRを行う場合をさらに図3を用いて説明する。DNAポリメラーゼとしてTaqDNAポリメラーゼ又は複製忠実度が高いDNAポリメラーゼを用いたPCRを行う場合には、RNA/DNAプライマー中のRNA配列の相補鎖は作成されず、増幅断片中の末端にはRNA配列からなる一本鎖が残ることとなる。そのため、適切なDNAポリメラーゼ、例えば、rTthDNAポリメラーゼ等により逆転写を行い、二本鎖を作成した上でRNaseHにより処理を行う。逆転写の際に、Mn2+又はMg2+を添加することが望ましい。RNaseH処理により増幅断片の末端に含まれるRNA配列を消化すると、一本鎖部分を有する突出末端を作成することができる。
 この図では、最終的に一方の末端のみに突出末端が作成される場合を示すが、プライマー対の両方のプライマー(フォワードプライマー及びリバースプライマー)に、RNA/DNAプライマーを使用することによって、両端に突出末端を作成することも可能である。
The case where PCR is performed using a DNA polymerase with high replication fidelity such as Taq DNA polymerase, KOD DNA polymerase, Pfu DNA polymerase, PrimeSTAR Max (manufactured by Takara Bio Inc.), etc. will be further explained using FIG. 3. When performing PCR using Taq DNA polymerase or a DNA polymerase with high replication fidelity as a DNA polymerase, a complementary strand to the RNA sequence in the RNA/DNA primer is not created, and the ends of the amplified fragment consist of the RNA sequence. A single strand will remain. Therefore, reverse transcription is performed using an appropriate DNA polymerase, such as rTth DNA polymerase, to create a double strand, which is then treated with RNaseH. It is desirable to add Mn 2+ or Mg 2+ during reverse transcription. When the RNA sequence contained at the end of the amplified fragment is digested by RNaseH treatment, an overhanging end having a single-stranded portion can be created.
This figure shows the case in which an overhanging end is created only at one end, but by using RNA/DNA primers for both primers (forward primer and reverse primer) of the primer pair, it is possible to create an overhang at both ends. It is also possible to create overhanging ends.
 PCR工程においてTaqDNAポリメラーゼ等又は複製忠実度が高いDNAポリメラーゼを用いるこの方法では、rTthDNAポリメラーゼを用いる場合に比べると、PCR後にrTthDNAポリメラーゼにより逆転写を行う工程を要するため、PCR工程においてrTthDNAポリメラーゼを用いる方法と比べて一工程増えるが、この逆転写工程は、PCR後の容器にrTthDNAポリメラーゼ等を添加するのみである。上述したとおり、rTthDNAポリメラーゼを用いてPCRを行う場合には、変異導入率が高いが、TaqDNAポリメラーゼ等又は複製忠実度が高いDNAポリメラーゼを用いたPCRを行う本方法では、変異導入率が低い。具体的には、複製忠実度が高いDNAポリメラーゼ、例えばKOD DNAポリメラーゼ、PfuDNAポリメラーゼ、又はPrimeSTAR Max(タカラバイオ社製)を用いたPCRを行う場合には、TaqDNAポリメラーゼを用いた場合よりも変異導入率がさらに低い。そのため、鋳型配列に変異を導入せず核酸配列を増幅し連結する場合に特に好ましい。 This method uses Taq DNA polymerase or a DNA polymerase with high replication fidelity in the PCR step. Compared to the case of using rTth DNA polymerase, this method requires a step of performing reverse transcription with rTth DNA polymerase after PCR, so rTth DNA polymerase is used in the PCR step. Although there is one additional step compared to the method, this reverse transcription step only involves adding rTth DNA polymerase, etc. to the container after PCR. As mentioned above, when performing PCR using rTth DNA polymerase, the mutation introduction rate is high, but in this method of performing PCR using Taq DNA polymerase or the like or a DNA polymerase with high replication fidelity, the mutation introduction rate is low. Specifically, when performing PCR using a DNA polymerase with high replication fidelity, such as KOD DNA polymerase, Pfu DNA polymerase, or PrimeSTAR Max (manufactured by Takara Bio Inc.), it is easier to introduce mutations than when using Taq DNA polymerase. The rate is even lower. Therefore, it is particularly preferred when amplifying and ligating nucleic acid sequences without introducing mutations into template sequences.
 以下に実施例に基づいて本発明を説明するが、下記の実施例は本発明を説明するためのものであり、本発明を限定するためのものではない。 The present invention will be described below based on Examples, but the following Examples are for illustrating the present invention and are not intended to limit the present invention.
<実施例1:rTthDNAポリメラーゼによるPCR(Mn2+添加条件)により調製したDNAフラグメントを用いたVHH遺伝子の構築>
 VHHをコードするDNAをテンプレートとして用いて、3種類のプライマーセットを用いて、rTthDNAポリメラーゼを用いたPCRを実施した。各DNAフラグメントに対してRNaseH処理により突出末端を作製し、ライゲーションすることで元の配列が作製できることを確認した(図4)。
<Example 1: Construction of VHH gene using DNA fragment prepared by PCR using rTth DNA polymerase (Mn 2+ addition conditions)>
PCR using rTth DNA polymerase was performed using DNA encoding VHH as a template and three types of primer sets. It was confirmed that the original sequence could be created by creating protruding ends for each DNA fragment by treating with RNaseH and ligating them (FIG. 4).
<1-1 PCRによるRNA含有DNAフラグメントの作製>
 ユーロフィン株式会社に人工遺伝子合成を外注して、VHHをコードするDNAであるVHH#1を合成した。そのDNA配列は下記のとおりである。
<1-1 Production of RNA-containing DNA fragment by PCR>
Artificial gene synthesis was outsourced to Eurofins Co., Ltd., and VHH#1, the DNA encoding VHH, was synthesized. Its DNA sequence is as follows.
VHH#1(577bp):
GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCGTGTGCAATTAATGACCGTACCTTTAGTAACTATTCCATGGGCTGGTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCGGCTATTACTCATAATGGTAGTACAAACTTTCCAGACTCCGTGAAGGGCCGATTCACCATCTCCGTAGACAAGGCCAAGAACACGGTGTATCTGCAAATGAACAGCCTGAAACCCGAGGACACGGCCGTCTATTACTGTGCGGTAGACCATAGTTTTATCACGGTAGTACGTGGAGAGGAAGATCTCGAAGTTTGGGGCCAGGGCACCCTGGTCACTGTCTCCTCAGCGCACCACAGCGAAGACCCCACGGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(配列番号1)
 
塩基番号:領域名
14-33:T7プロモーター
34-36:5`cap
37-107:Ω
110-114:kozak
118-516:VHH
517-528:GGGS
529-546:His Tag
547-555:GGS
556-577:NewYtag(cnvK)
VHH#1 (577bp):

(Sequence number 1)

Base number: region name
14-33: T7 promoter
34-36: 5`cap
37-107:Ω
110-114: kozak
118-516:VHH
517-528:GGGS
529-546:His Tag
547-555: GGS
556-577:NewYtag(cnvK)
 VHH#1をテンプレートに、3種類のプライマーを用いてPCRを行い、VHH#1-α(配列番号8)、VHH#1-β(配列番号9)、VHH#1-γ(配列番号10)の3種類のRNA含有DNAフラグメントを作製した。用いた3種のプライマーセットの配列は、下記のとおりである。
Figure JPOXMLDOC01-appb-T000001
PCR was performed using VHH#1 as a template and three types of primers to obtain VHH#1-α (SEQ ID NO: 8), VHH#1-β (SEQ ID NO: 9), and VHH#1-γ (SEQ ID NO: 10). Three types of RNA-containing DNA fragments were prepared. The sequences of the three types of primer sets used are as follows.
Figure JPOXMLDOC01-appb-T000001
 rTthDNAポリメラーゼとして2xRT Quick Master mix(東洋紡社製)を25μL、50mMのMn(OAc)を2.5μL、10μMのForwardプライマーを2.0μL、10μMのReverseプライマーを2.0μL、テンプレートDNA(プラスミドを1000倍希釈)を2.4μL混合し、UltraPure(商標)DNase/RNase-Free Distilled Water(UPDW)(Thermo Fisher Scientific社製)で50μLに調製した。VHH#1-α、VHH#1-β調製のPCRプログラムは以下の通りとし、ステップ3~5を25サイクル繰り返した。
1.90 ℃ 30秒
2.94 ℃ 1分
3.94 ℃ 30秒
4.60 ℃ 30秒
5.72 ℃ 25秒
6.72 ℃ 7分
7.10 ℃ ∞
25 μL of 2xRT Quick Master mix (manufactured by Toyobo Co., Ltd.) as rTth DNA polymerase, 2.5 μL of 50 mM Mn(OAc) 2 , 2.0 μL of 10 μM Forward primer, 2.0 μL of 10 μM Reverse primer, template DNA (plasmid) 1000-fold dilution) was mixed and adjusted to 50 μL using UltraPure (trademark) DNase/RNase-Free Distilled Water (UPDW) (manufactured by Thermo Fisher Scientific). The PCR program for preparing VHH#1-α and VHH#1-β was as follows, and steps 3 to 5 were repeated for 25 cycles.
1.90 ℃ 30 seconds 2.94 ℃ 1 minute 3.94 ℃ 30 seconds 4.60 ℃ 30 seconds 5.72 ℃ 25 seconds 6.72 ℃ 7 minutes 7.10 ℃ ∞
 VHH#1-γ調製のPCRプログラムは以下の通りとし、ステップ3~5を25サイクル繰り返した。
1.90 ℃ 30秒
2.94 ℃ 1分
3.94 ℃ 30秒
4.65 ℃ 30秒
5.72 ℃ 25秒
6.72 ℃ 7分
7.10 ℃ ∞
The PCR program for VHH#1-γ preparation was as follows, and steps 3 to 5 were repeated for 25 cycles.
1.90 ℃ 30 seconds 2.94 ℃ 1 minute 3.94 ℃ 30 seconds 4.65 ℃ 30 seconds 5.72 ℃ 25 seconds 6.72 ℃ 7 minutes 7.10 ℃ ∞
 なお、増幅されたVHH#1-α、VHH#1-β、VHH#1-γの配列は、下記のとおりである。 The sequences of the amplified VHH#1-α, VHH#1-β, and VHH#1-γ are as follows.
VHH#1-α(201bp):
GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCGTGTGCAATTAATGACCGT
(配列番号8)
VHH#1-α (201bp):
GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAAACAACAACAACAAACAACAACAATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCGTGTGCAATTAATGACCGT
(Sequence number 8)
VHH#1-β(152bp):
ATGACCGTACCTTTAGTAACTATTCCATGGGCTGGTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCGGCTATTACTCATAATGGTAGTACAAACTTTCCAGACTCCGTGAAGGGCCGATTCACCATCTCCGTAGACAAGGCCAAG
(配列番号9)
VHH#1-β (152bp):
ATGACCGTACCTTTAGTAACTATTCCATGGGCTGGTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCGGCTATTACTCATAATGGTAGTACAAACTTTCCAGACTCCGTGAAGGGCCGATTCACCATCTCCGTAGACAAGGCCAAG
(Sequence number 9)
VHH#1-γ(237bp):
CCAAGAACACGGTGTATCTGCAAATGAACAGCCTGAAACCCGAGGACACGGCCGTCTATTACTGTGCGGTAGACCATAGTTTTATCACGGTAGTACGTGGAGAGGAAGATCTCGAAGTTTGGGGCCAGGGCACCCTGGTCACTGTCTCCTCAGCGCACCACAGCGAAGACCCCACGGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(配列番号10)
VHH#1-γ (237bp):
CCAAGAACACGGTGTATTCTGCAAATGAACAGCCTGAAACCCGAGGACACGGCCGTCTATTACTGTGCGGTAGACCATAGTTTTATCACGGTAGTACGTGGAGAGGAAGATCTCGAAGTTTGGGGCCAGGGCACCCTGGTCACTGTCTCCTCAGCGCACCACAGCGAAGACCCCACGGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(Sequence number 10)
<1-2 RNA部位を含むフラグメントDNAの精製>
 AMPure XP(ベックマン・コールター社製)を用いて、添付のマニュアルに従い、RNA含有DNAフラグメントを精製した。溶出は30μLのUPDWで行った。
<1-2 Purification of fragment DNA containing RNA site>
RNA-containing DNA fragments were purified using AMPure XP (manufactured by Beckman Coulter) according to the attached manual. Elution was performed with 30 μL of UPDW.
<1-3 RNaseH処理による突出末端形成>
 27μLの精製済みのRNA含有DNAフラグメントDNA溶液に0.3μLのRNaseH(タカラバイオ社製)と3.0μLの10xNEBuffer2(New England Biolabs社製)を添加し、37℃で30分間インキュベートすることでRNA部分を分解した。
<1-3 Formation of protruding ends by RNaseH treatment>
Add 0.3 μL of RNase H (manufactured by Takara Bio) and 3.0 μL of 10xNEBuffer2 (manufactured by New England Biolabs) to 27 μL of purified RNA-containing DNA fragment DNA solution, and incubate at 37°C for 30 minutes to remove RNA. Disassembled the parts.
<1-4 T4 DNAリガーゼのよるDNAフラグメントのライゲーション>
 突出末端を有するVHH#1-α、VHH#1-β、VHH#1-γの各DNAフラグメントに関して、すべての組み合わせでライゲーションを実施した。各DNAフラグメントを等mol量となるように混合し、2.0μLの10xT4 ligase bufferと1.0μLのT4DNAリガーゼ(タカラバイオ社製)を添加し、反応液が20μLとなるようにUPDWで調整した。16℃で24時間インキュベーションした後に、反応サンプルを8M尿素含有4%変性ポリアクリルアミドゲル電気泳動(PAGE)により確認した(図5)。
<1-4 Ligation of DNA fragments using T4 DNA ligase>
Ligation was performed in all combinations of the VHH#1-α, VHH#1-β, and VHH#1-γ DNA fragments having overhanging ends. Each DNA fragment was mixed in equal molar amounts, 2.0 μL of 10xT4 ligase buffer and 1.0 μL of T4 DNA ligase (manufactured by Takara Bio Inc.) were added, and the reaction solution was adjusted to 20 μL with UPDW. . After 24 hours of incubation at 16°C, reaction samples were confirmed by 4% denaturing polyacrylamide gel electrophoresis (PAGE) containing 8M urea (Figure 5).
 具体的なPAGEの条件は以下の通りである。まず、4.8gの尿素(富士フイルム和光純薬社製)、1.0mLの5xTBE(ニッポンジーン社製)、1.0mLの40%(w/v)アクリルアミドビス混合液(19:1)(富士フィルム和光純薬社製)を混合し、MilliQ水で10mLにメスアップした。電子レンジで10秒程度温め、尿素を完全に融解させた。25μLの20%(w/v)過硫酸アンモニウム溶液と10μLのN,N,N’,N’-テトラメチルエチレンジアミン(富士フィルム和光純薬社製)を加えて軽く混ぜ、ラピダス・ミニスラブ電気泳動槽(ATTO社製)用のゲル板(8x9cmサイズ、1mm厚)に流し込み常温で30分静置してゲルを固めた。60℃にセットしたラピダス・ミニスラブ電気泳動槽にゲルをセットし、200Vで10分間プレランを行った。1μLのサンプルに対し2μLの2xローディングバッファーを添加し、95℃で3分間ボイルしてからゲルにアプライし、200Vで25分間泳動した。ゲルをTE(pH8.0)で10000倍に希釈したSYBR Nucleic Acid Gel Stain(Thermo Fisher Scientific社製)溶液で染色し、Amersham Typhoon scanner(Cytiva社製)にて確認した。 The specific PAGE conditions are as follows. First, 4.8 g of urea (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 1.0 mL of 5x TBE (manufactured by Nippon Gene Co., Ltd.), and 1.0 mL of a 40% (w/v) acrylamide bis mixture (19:1) (Fuji Film (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and diluted to 10 mL with MilliQ water. The mixture was heated in a microwave for about 10 seconds to completely melt the urea. Add 25 μL of 20% (w/v) ammonium persulfate solution and 10 μL of N,N,N',N'-tetramethylethylenediamine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), mix gently, and transfer to a Rapidus mini-slab electrophoresis tank ( The gel was poured into a gel plate (8 x 9 cm size, 1 mm thick) for ATTO (manufactured by ATTO) and allowed to stand at room temperature for 30 minutes to solidify the gel. The gel was set in a Rapidus mini-slab electrophoresis tank set at 60°C, and a pre-run was performed at 200V for 10 minutes. 2 μL of 2x loading buffer was added to 1 μL of sample, boiled at 95° C. for 3 minutes, applied to the gel, and run at 200 V for 25 minutes. The gel was stained with SYBR Nucleic Acid Gel Stain (manufactured by Thermo Fisher Scientific) solution diluted 10,000 times with TE (pH 8.0), and then stained using an Amersham Typhoon scanner. (manufactured by Cytiva).
 図5から明らかなように、αとβ、βとγ、αとβとγとそれぞれの混合条件で期待されるライゲーション産物を確認することができ、相補配列の突出末端同士のライゲーションが行われていることが確認できた。 As is clear from Figure 5, the expected ligation products can be confirmed under the mixed conditions of α and β, β and γ, and α, β, and γ, indicating that the protruding ends of complementary sequences are ligated together. It was confirmed that
<1-5 クローニングおよびシーケンシングによるライゲーション産物の確認>
 ライゲーション産物のクローニングおよびダイレクトシーケンシングを行い、目的の配列が構築されていることをさらに確認した。まず、ライゲーション産物に対して、NewleftとNewYtag(cnvK)プライマー、およびTaqDNAポリメラーゼ(Takara Ex Taq(タカラバイオ社製))を用いて、以下のプログラムで、ステップ2~4を30サイクル繰り返してPCRを行った。
 
1.98 ℃ 2分
2.98 ℃ 10秒
3.66 ℃ 5秒
4.72 ℃ 1分
5.72 ℃ 2分
6.10 ℃ ∞
<1-5 Confirmation of ligation product by cloning and sequencing>
Cloning and direct sequencing of the ligation products were performed to further confirm that the desired sequence had been constructed. First, PCR was performed on the ligation product by repeating steps 2 to 4 for 30 cycles using the following program using Newleft and NewYtag (cnvK) primers and Taq DNA polymerase (Takara Ex Taq (manufactured by Takara Bio Inc.)). went.

1.98 °C 2 minutes 2.98 °C 10 seconds 3.66 °C 5 seconds 4.72 °C 1 minute 5.72 °C 2 minutes 6.10 °C ∞
 8M尿素含有4%変性PAGEによりPCRプロダクトを確認した後、プロトコルに従いAMPure XPにより精製し、40μLのUPDWに溶出した。Ligation high Ver.2(東洋紡社製)を用いて、pGEM-T Easy vector(プロメガ社製)に上記精製プロダクトをマニュアルに従ってインサートした。マニュアルに従い、生成プロダクトがインサートされたベクターによって、コンピテントセルDH5αを形質転換させ、LBプレート(+100μg/mLアンピシリン)に播種し、プレート培養を行った。 After confirming the PCR product by 4% denaturing PAGE containing 8M urea, it was purified by AMPure XP according to the protocol and eluted in 40 μL of UPDW. Ligation high Ver. 2 (manufactured by Toyobo), the purified product was inserted into pGEM-T Easy vector (manufactured by Promega) according to the manual. According to the manual, competent cells DH5α were transformed with the vector into which the generated product was inserted, seeded on LB plates (+100 μg/mL ampicillin), and plate cultured.
 コロニーPCRによりインサートを確認できたコロニー由来の大腸菌を5mLのLB液体培地(+100μg/mLアンピシリン)で一晩培養し、翌日、遠心分離により菌体を回収した。その後、マニュアルに従いFastGene Plasmid Mini Kit(日本ジェネティクス社製)によりプラスミドを精製した。18個のプラスミドのシーケンシングをユーロフィンジェノミクス株式会社に外注した。その結果、18サンプルのうち、目的のDNAと同じ配列は1サンプルだけだった。変異数を計算した結果、エラー率は1000bpあたり5.9個のエラー(61個のエラー/10386bp(577bpx18)であった。 E. coli derived from colonies whose inserts were confirmed by colony PCR were cultured overnight in 5 mL of LB liquid medium (+100 μg/mL ampicillin), and the next day, bacterial cells were collected by centrifugation. Thereafter, the plasmid was purified using FastGene Plasmid Mini Kit (manufactured by Nippon Genetics) according to the manual. Sequencing of 18 plasmids was outsourced to Eurofin Genomics. As a result, out of 18 samples, only one sample had the same sequence as the target DNA. As a result of calculating the number of mutations, the error rate was 5.9 errors per 1000 bp (61 errors/10386 bp (577 bp x 18)).
<実施例2:rTthDNAポリメラーゼ(Mg2+添加条件)によるPCRプロダクトを用いたライゲーション>
 Mn2+存在下でのrTthDNAポリメラーゼを用いたPCRでは変異導入率がやや高くなることから、Mg2+の使用による変異導入率の抑制を検討した。
<Example 2: Ligation using PCR product with rTth DNA polymerase (Mg 2+ addition conditions)>
Since the mutation introduction rate was somewhat high in PCR using rTth DNA polymerase in the presence of Mn 2+ , suppression of the mutation introduction rate by the use of Mg 2+ was investigated.
<2-1 Mg2+添加条件のPCRにより調製したDNAフラグメントを用いたVHH遺伝子の構築>
 50mMのMn(OAc)から50mMのMgClに変更した以外、実施例1に記載された実験と同じ条件でVHH遺伝子を構築した。VHH#1-α、VHH#1-β、VHH#1-γの各フラグメント同士のライゲーション結果を図6に示す。Mg2+添加条件で作製したDNAフラグメントを使用しても、αとβ、βとγ、αとβとγとそれぞれ期待されるライゲーション産物を確認することができた。
<2-1 Construction of VHH gene using DNA fragment prepared by PCR under Mg 2+ addition conditions>
The VHH gene was constructed under the same conditions as the experiment described in Example 1, except that 50 mM Mn(OAc ) 2 was changed to 50 mM MgCl2. The results of ligation between the VHH#1-α, VHH#1-β, and VHH#1-γ fragments are shown in FIG. Even when DNA fragments prepared under Mg 2+ addition conditions were used, the expected ligation products of α and β, β and γ, and α, β, and γ could be confirmed.
 Mg2+を使用する方法で構築したVHH遺伝子のエラー率を評価するために、次世代シーケンシング(NGS)を用いて解析を行った。MiSeq Reagent Kit v3(600-cycle)(イルミナ社製)を用いてNGSを行った。NGS解析用のサンプルを、Nextera XT DNA Library Prep Kit(イルミナ社製)のマニュアルに従い調製した。まず、PAGE精製した目的のVHH遺伝子をテンプレートに2段階のPCR増幅を行った。PCRはPrimeSTAR Max(タカラバイオ社製)を用いた。1段階目のPCRは下記に記載のプライマーセットにより行った。得られたPCR産物をAMPure XPを用いて精製し、精製産物をテンプレートとして2段階目のPCRを行った。2段階目のPCRには、キットで指定されたインデックス付加用プライマーを使用した。上記と同様にAMPure XPを用いてPCR産物を精製し、DNA濃度をNanoPad DS-11(DeNovix社製)を用いて測定した。さらにDNAを1本鎖化して、希釈等の処理を行った上でカートリッジに投入後、MiSeq System(イルミナ社製)に試薬カートリッジをセットしランした。 In order to evaluate the error rate of the VHH gene constructed by the method using Mg 2+ , analysis was performed using next generation sequencing (NGS). NGS was performed using MiSeq Reagent Kit v3 (600-cycle) (manufactured by Illumina). Samples for NGS analysis were prepared according to the manual of Nextera XT DNA Library Prep Kit (manufactured by Illumina). First, two-step PCR amplification was performed using the PAGE-purified VHH gene of interest as a template. PrimeSTAR Max (manufactured by Takara Bio Inc.) was used for PCR. The first step of PCR was performed using the primer set described below. The obtained PCR product was purified using AMPure XP, and second-stage PCR was performed using the purified product as a template. For the second step of PCR, the indexing primer specified in the kit was used. The PCR product was purified using AMPure XP in the same manner as above, and the DNA concentration was measured using NanoPad DS-11 (manufactured by DeNovix). Furthermore, the DNA was made into a single strand, subjected to treatments such as dilution, and then loaded into a cartridge.The reagent cartridge was then set in MiSeq System (manufactured by Illumina) and run was performed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 NGSの出力データよりVHH配列を抽出し、その中からランダムに300配列を選び、配列を確認した。300配列中に計420個の変異が確認された。従って、変異率は1000bpあたり3.2個のエラー(420個のエラー/129888bp(577bpx300配列))となった。Mn2+添加条件時のエラー率が5.9個エラー/1000bpであったため、Mn2+ではなく、Mg2+を添加することによって変異率を半分程度に抑えられることがわかった。 VHH sequences were extracted from the NGS output data, 300 sequences were randomly selected from among them, and the sequences were confirmed. A total of 420 mutations were confirmed in 300 sequences. Therefore, the mutation rate was 3.2 errors per 1000 bp (420 errors/129888 bp (577 bp x 300 sequences)). Since the error rate under the Mn 2+ addition condition was 5.9 errors/1000 bp, it was found that the mutation rate could be suppressed to about half by adding Mg 2+ instead of Mn 2+ .
 また、rTthDNAポリメラーゼは、Mn2+添加条件で逆転写活性を有することが報告されていたが、今回、Mg2+添加条件でも、数bp程度であれば逆転写が行えることを確認できた。 Furthermore, it has been reported that rTth DNA polymerase has reverse transcription activity under Mn 2+ addition conditions, but this time it was confirmed that reverse transcription can be performed for approximately several bp even under Mg 2+ addition conditions.
<2-2 VHH遺伝子間のシャッフリング>
 フレームワーク領域(FR)が共通した3種類のVHH遺伝子をFR3内で分割し、N末端側とC末端側のフラグメントの混合物同士でライゲーションを行うことにより、合計9種類のVHH遺伝子配列を作製するモデル実験を行った(図7)。N末端側のフラグメントをA、C末端側のフラグメントをBとした。使用した3種類のVHH遺伝子は、配列番号1、配列番号11、配列番号12に示した通りである。
<2-2 Shuffling between VHH genes>
Three types of VHH genes with a common framework region (FR) are divided within FR3, and a mixture of N-terminal and C-terminal fragments is ligated to create a total of nine types of VHH gene sequences. A model experiment was conducted (Figure 7). The N-terminal fragment was designated A, and the C-terminal fragment was designated B. The three types of VHH genes used are as shown in SEQ ID NO: 1, SEQ ID NO: 11, and SEQ ID NO: 12.
VHH#2(573bp):
ATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGGGGAGGGTCGGTGCAGGCTGGGGGCTCTTTGAGACTCTCCTGTTCAGCCTCTGGACCCGAATGGCGGCACTATCACATGGGCTGGTTCCGCCAGCCTCCAGGAAAGGAACGTGAGTTTGTAGCCGCTATCAGCTGGAGTGGAGGCACCACAATGTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATGTTAAGAATACGGTGTATTTGCAAATGAACAGCCTGAAACCTGAGGACACGGCCGTTTATTACTGTGCAGCTGGGGACACGGTAGTAGCCTTACTAGATTATCGCGCCTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGAACCCAAGACACCAAAACCACAATCGGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(配列番号11)
VHH#2 (573bp):

(Sequence number 11)
VHH#3(570bp):
GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTACATTTTACATTCTACAACTACAAGCCACCATGGCTGAGGTGCAGCTCGTGGAGTCTGGCGGGGACTTGGTGCAGCCTGGGGGGTCTCTCAATCTCTCCTGTGTAGCCGACGCGACCATCTTCGGCTCTAATTCGATGGCCTGGTTCCGCCAATATCCGGGAAAGCAGCGCGACTTACTCGCAACGGTGGCGAGAAATGGTAACACGGGCTATGTGGACTCCGTGAAGGGCCGATTCACCATTTCCAGAGACGACGGACAGAACATAGTGTATTTGCAAATGAACAGCCTGAAACCTGAGGACACAGCCCTTTACACCTGTAATTTGAAAAGGTACCGGATGGGCTTCATTCTAGACGGTGACTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGAACCCAAGACACCAAAACCACAATCGGGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAA
(配列番号12)
VHH#3 (570bp):

(Sequence number 12)
<2-3 シャッフリング>
 表1および表3のプライマーとVHH#1~VHH#3のテンプレートを表4の組み合わせでrTthDNAポリメラーゼを用いてMg2+存在下でPCRを実施し、VHH#1~VHH#3からそれぞれ、5’側のDNAフラグメントであるフラグメントA、3’側のDNAフラグメントであるフラグメントBを調製した。フラグメントA及びBの各PCRの条件は次の条件で、ステップ3~5を25サイクル繰り返して行った。
<2-3 Shuffling>
PCR was performed in the presence of Mg 2+ using rTth DNA polymerase using the combinations of the primers in Tables 1 and 3 and the templates of VHH#1 to VHH#3 in Table 4, and the 5' Fragment A, which is a DNA fragment on the side, and fragment B, which is a DNA fragment on the 3' side, were prepared. The PCR conditions for fragments A and B were as follows, and steps 3 to 5 were repeated for 25 cycles.
フラグメントA
1.90 ℃ 30秒
2.94 ℃ 1分
3.94 ℃ 30秒
4.60 ℃ 30秒
5.72 ℃ 25秒
6.72 ℃ 7分
7.10 ℃ ∞
fragment A
1.90 ℃ 30 seconds 2.94 ℃ 1 minute 3.94 ℃ 30 seconds 4.60 ℃ 30 seconds 5.72 ℃ 25 seconds 6.72 ℃ 7 minutes 7.10 ℃ ∞
フラグメントB
1.90 ℃ 30秒
2.94 ℃ 1分
3.94 ℃ 30秒
4.65 ℃ 30秒
5.72 ℃ 25秒
6.72 ℃ 7分
7.10 ℃ ∞
fragment B
1.90 ℃ 30 seconds 2.94 ℃ 1 minute 3.94 ℃ 30 seconds 4.65 ℃ 30 seconds 5.72 ℃ 25 seconds 6.72 ℃ 7 minutes 7.10 ℃ ∞
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 PCRプロダクトをAMPure XP(ベックマン・コールター社製)により精製した。ライゲーション反応に、フラグメントA(各フラグメント3.0μL、計9.0μL)とフラグメントBの混合物(各フラグメント3.0μL、計9.0μL)、4.0μLの10xT4 ligase bufferと2.0μLのT4 DNAリガーゼ(タカラバイオ社製)を添加し、反応液が40μLとなるようにUPDWで調整した。16℃で24時間インキュベーションした後、各ライゲーションプロダクトを8M尿素含有4%変性PAGEにて確認した(図8)。 The PCR product was purified using AMPure XP (manufactured by Beckman Coulter). For the ligation reaction, a mixture of fragment A (3.0 μL for each fragment, 9.0 μL in total) and fragment B (3.0 μL for each fragment, 9.0 μL in total), 4.0 μL of 10xT4 ligase buffer, and 2.0 μL of T4 DNA. Ligase (manufactured by Takara Bio) was added, and the volume of the reaction solution was adjusted to 40 μL using UPDW. After incubation at 16°C for 24 hours, each ligation product was confirmed on 4% denaturing PAGE containing 8M urea (Figure 8).
<次世代シーケンシング(NGS)によるライゲーションプロダクトの配列解析>
 フラグメントA混合物とフラグメントB混合物のライゲーション産物をNGSにより解析した。NGS解析は、実施例2-1と同様の方法で実施した。NGS解析の結果、想定した9種類のVHH遺伝子が含まれており(表5)、シャッフリングが成功していることを確認できた。
<Sequence analysis of ligation products by next generation sequencing (NGS)>
The ligation products of the fragment A mixture and the fragment B mixture were analyzed by NGS. NGS analysis was performed in the same manner as in Example 2-1. As a result of NGS analysis, the expected nine types of VHH genes were included (Table 5), confirming that the shuffling was successful.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例3:一般的なPCRとrTthDNAポリメラーゼによる逆転写を組みわせたRNA含有PCRプロダクトの作製>
 RNA/DNAキメラプライマーとrTthDNAポリメラーゼを使用したRNA含有PCRプロダクトの作製方法として、一般的なPCR後にrTthDNAポリメラーゼによりRNA突出末端部分の逆転写を行う方法を検討した。検討に使用したテンプレートDNA及びRNA/DNAキメラプライマーは以下の通りである。
<Example 3: Production of RNA-containing PCR product by combining general PCR and reverse transcription using rTth DNA polymerase>
As a method for producing an RNA-containing PCR product using an RNA/DNA chimeric primer and rTth DNA polymerase, we investigated a method in which the overhanging end portion of RNA is reverse transcribed using rTth DNA polymerase after general PCR. The template DNA and RNA/DNA chimera primers used in the study are as follows.
PF_1D11-#81(520bp)
GATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCAATGGAAGTACAATTAGTTGAATCTGGTGGTGGGCTTGTACAGCCAGGTGGGAGTCTGCGCCTGAGCTGTGCAGCGAGTGGTCGTACTTTCTCTCGTTACACTATGGGTTGGTTTCGCCAGGCACCGGGAAAAGGCCGTGAGGGCGTGGCGGCTATCAACACTGGTGCTGGTACTACTTACTACGCTGACTCGGTCAAAGGCCGGTTTACCATCAGCCGTGACAACGCGAAGAACACCCTGTATCTCCAGATGAATTCCCTGCGTGCTGAAGATACTGCCGTGTACTACTGCGCTGCCCAGACCTCTGATTACAACGGTTGGGGTAACCGTTATTGGGGTCAAGGCACGTTGGTGACAGTCTCTTCAGGGGGAGGATCCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(配列番号17)
PF_1D11-#81 (520bp)
GATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCAATGGAAGTACAATTAGTTGAATCTGGTGGTGGGCTTGTACAGCCAGGTGGGAGTCTGCGCCTGAGCTGTGCAGCGAGTGGTCGTACTTTCTCTCGTTACACTATGGGTTGGTTTCGCCAGGCACCGGGAAAAGGCCGTGAGGGCGTGGCGGCTCAAC ACTGGTGCTGGTACTACTTACTACGCTGACTCGGTCAAAGGCCGGTTTACCATCAGCCGTGACAACGCGAAGAACACCCTGTATCTCCAGATGAATTCCCTGCGTGCTGAAGATACTGCCGTGTACTACTGCGCTGCCCAGACCTCTGATTACAACGGTTGGGGTAACCGTTATTGGGGTCAAGGCACGTTGGTGACAGTCTCTTCAGGGGGAGGATCCCATCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGC GTGGAAA
(Sequence number 17)
 まず、PF_1D11-#81をテンプレートとし、以下に示すFW-Shuffling-PL(配列番号18)とNewYtag(cnvk)(配列番号7)のプライマーセットと、rTthDNAポリメラーゼ(RT Quick Master mixを使用)によるPCRの条件検討を実施した。終濃度が、1xRT-PCR Quick Master Mix、0.3μMのFW-Shuffling-PL、0.3μMのNewYtag(cnvK)、0.04ng/μLのテンプレートDNA、0~2.5mMのMn(OAc)又はMgClとなるように20μLのPCR反応液を調製した。PCRプログラムは以下の通りとし、ステップ2~4は15サイクル繰り返した。 First, PCR was performed using PF_1D11-#81 as a template, the primer set of FW-Shuffling-PL (SEQ ID NO: 18) and NewYtag (cnvk) (SEQ ID NO: 7) shown below, and rTth DNA polymerase (using RT Quick Master mix). We conducted a study of the conditions. The final concentration was 1x RT-PCR Quick Master Mix, 0.3 μM FW-Shuffling-PL, 0.3 μM NewYtag (cnvK), 0.04 ng/μL template DNA, 0-2.5 mM Mn(OAc) 2 Or MgCl2 , 20 μL of PCR reaction solution was prepared. The PCR program was as follows, and steps 2 to 4 were repeated for 15 cycles.
FW-Shuffling-PL (小文字はRNA)
5’-gaagauacTGCCGTGTACTACTGC-3’
(配列番号18)
FW-Shuffling-PL (lowercase letters are RNA)
5'-gaagauacTGCCGTGTACTACTGC-3'
(Sequence number 18)
1.94 ℃ 1分
2.94 ℃ 30秒
3.60 ℃ 30秒
4.72 ℃ 1分
5.72 ℃ 2分
6.16 ℃ ∞
1.94 °C 1 minute 2.94 °C 30 seconds 3.60 °C 30 seconds 4.72 °C 1 minute 5.72 °C 2 minutes 6.16 °C ∞
 比較と次の検討プロセスに使用する目的でPrimeSTAR Max(タカラバイオ社製)を用いたPCRも実施した。終濃度が1xPrimeSTAR Max、0.3μMのFW-Shuffling-PL、0.3μMのNewYtag(cnvK)、0.04ng/μLテンプレートDNAとなるように50μLのPCR反応液を調製した。
PCRプログラムは以下の通りとし、ステップ1~3を15サイクル繰り返した。
1.95 ℃ 10秒
2.50 ℃ 5秒
3.72 ℃ 5秒
4.16 ℃ ∞
PCR was also performed using PrimeSTAR Max (manufactured by Takara Bio Inc.) for the purpose of comparison and use in the next study process. A 50 μL PCR reaction solution was prepared such that the final concentration was 1x PrimeSTAR Max, 0.3 μM FW-Shuffling-PL, 0.3 μM NewYtag (cnvK), and 0.04 ng/μL template DNA.
The PCR program was as follows, and steps 1 to 3 were repeated for 15 cycles.
1.95 ℃ 10 seconds 2.50 ℃ 5 seconds 3.72 ℃ 5 seconds 4.16 ℃ ∞
 各PCR反応液1μL分を8M尿素含有4.5%変性PAGE(60℃、200V、20分間)にアプライしPCRプロダクトを確認した(図9)。PrimeSTAR MaxによるPCRサンプルではFW-Shuffling-PLが伸長した160merと、NewYtag(cnvK)が伸長した152merと考えられる2本のバンドを確認できた(レーン2)。一方でrTthDNAポリメラーゼによるPCR産物の一部には(レーン4、5、10、11)では160merと考えられるバンドのみ確認できた。これは、rTthDNAポリメラーゼによりRNA部分まで相補DNAが伸長されているためと考えられる。レーン6、7、12では2本のバンドが確認できるが、これはMn2+又はMg2+濃度が濃すぎるために、RNA部分の分解が起こっているためと考えられる。また、これらのレーンでは200bpの少し上にサブバンドが出現している。以上の結果をもとに、PrimeSTAR MaxによるPCRプロダクトのRNA部分に対する相補鎖合成の条件検討を、Mn2+の終濃度を0.63mM又はMg2+の終濃度を1.25mMとして実施した。 1 μL of each PCR reaction solution was applied to 4.5% denaturing PAGE containing 8 M urea (60° C., 200 V, 20 minutes) to confirm the PCR product (FIG. 9). In the PCR sample using PrimeSTAR Max, two bands were confirmed, which are thought to be a 160mer extended by FW-Shuffling-PL and a 152mer extended by NewYtag (cnvK) (lane 2). On the other hand, in some of the PCR products produced by rTth DNA polymerase ( lanes 4, 5, 10, and 11), only a band considered to be a 160mer was confirmed. This is considered to be because the complementary DNA is extended to the RNA portion by rTth DNA polymerase. Two bands can be seen in lanes 6, 7, and 12, but this is thought to be due to degradation of the RNA portion due to the too high Mn 2+ or Mg 2+ concentration. Furthermore, in these lanes, a subband appears slightly above 200 bp. Based on the above results, conditions for complementary strand synthesis for the RNA portion of the PCR product using PrimeSTAR Max were investigated using a final Mn 2+ concentration of 0.63 mM or a final Mg 2+ concentration of 1.25 mM.
 PrimeSTAR MaxによるPCRサンプルをAMPure XPにより精製し、30μLのUPDWにより溶出した。本精製プロダクト3μLを用いて、終濃度が1x RT-PCR Quick Master Mix、0.63mMのMn(OAc)、又は1.25mMのMgClとなるように25μLの反応サンプルを調製した。リファレンス用に1μL、反応用に10μLx2本を分取し、各60℃と72℃で10分間インキュベートした。さらに各反応液を5μLx2に分注し、片方に0.5μLの10xNEBuffer2と0.2μLのRNaseHを添加し、さらに37℃で10分間インキュベートした。各反応液1μL分を8M尿素含有4.5%変性PAGE(60℃、200V、20分間)にアプライしプロダクトを確認した(図10)。Mn2+又はMg2+いずれの条件でも、72℃の条件(レーン5、10)で160merのバンドのみ確認できるようになり逆転写ができているものと考えられる。さらに、RNaseH処理することで、再度152merと考えられるバンドが出現しておりRNA部分が分解されたためと考えられる。以上の結果より、RNA/DNAキメラプライマーを使用したPCRプロダクトに対してrTthDNAポリメラーゼによる逆転写を実施し、さらにRNaseH処理することで突出末端が作製できることを確認した。 PrimeSTAR Max PCR samples were purified by AMPure XP and eluted with 30 μL of UPDW. Using 3 μL of this purified product, a 25 μL reaction sample was prepared at a final concentration of 1× RT-PCR Quick Master Mix, 0.63 mM Mn(OAc) 2 , or 1.25 mM MgCl 2 . 1 μL for reference and 2×10 μL for reaction were separated and incubated at 60° C. and 72° C. for 10 minutes each. Furthermore, each reaction solution was dispensed into 5 μL×2, 0.5 μL of 10×NE Buffer 2 and 0.2 μL of RNase H were added to one half, and further incubated at 37° C. for 10 minutes. 1 μL of each reaction solution was applied to 4.5% denaturing PAGE containing 8 M urea (60° C., 200 V, 20 minutes) to confirm the product (FIG. 10). Under either Mn 2+ or Mg 2+ conditions, only the 160mer band could be confirmed under the 72°C condition (lanes 5 and 10), indicating that reverse transcription had occurred. Furthermore, by RNaseH treatment, a band considered to be a 152mer appeared again, which is thought to be due to degradation of the RNA portion. From the above results, it was confirmed that overhanging ends can be created by performing reverse transcription using rTth DNA polymerase on a PCR product using an RNA/DNA chimeric primer and further treating with RNaseH.
<実施例4:PCR反応後に直接逆転写をする方法の検討>
 上述のPrimeSTAR MaxによるPCR反応液を用いて、表6の組成に従いS1~S9の反応液を調製した。精製することなく反応液をインキュベート(72℃、8分)してから、各反応液2μL分を8M尿素含有5%変性PAGE(60℃、200V、30分間)にて解析した(図12)。
<Example 4: Examination of method of direct reverse transcription after PCR reaction>
Using the above-mentioned PrimeSTAR Max PCR reaction solution, reaction solutions S1 to S9 were prepared according to the compositions shown in Table 6. The reaction solutions were incubated (72° C., 8 minutes) without purification, and then 2 μL of each reaction solution was analyzed on 5% denaturing PAGE containing 8 M urea (60° C., 200 V, 30 minutes) (FIG. 12).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 精製したPrimeSTRA MaxによるPCRプロダクトをテンプレートにrTthDNAポリメラーゼによる逆転写をした際には、160merのバンド1本になることが確認できたが(実施例3、図10、レーン10)、精製を行っていない本実験では、バンドが1本となる条件が見当たらず(図12)、プライマー中のRNA領域の逆転写ができていないことが示された。 When reverse transcription was performed using rTth DNA polymerase using the purified PrimeSTRA Max PCR product as a template, it was confirmed that a single 160mer band was obtained (Example 3, Figure 10, lane 10), but the product was not purified. In this experiment, no conditions were found that resulted in a single band (FIG. 12), indicating that the RNA region in the primer was not reverse transcribed.
 続いて、PrimeSTAR MaxによるPCR反応液を95℃で20秒間加熱してから表7の組成に従い逆転写反応液を調製した。その後、精製することなく反応液をインキュベート(72℃で8分)してから、各反応液2μL分を8M尿素含有5%変性PAGE(60℃、200V、30分間)にて解析した(図13)。 Subsequently, the PCR reaction solution using PrimeSTAR Max was heated at 95° C. for 20 seconds, and then a reverse transcription reaction solution was prepared according to the composition shown in Table 7. Thereafter, the reaction solutions were incubated without purification (8 minutes at 72°C), and 2 μL of each reaction solution was analyzed on 5% denaturing PAGE containing 8M urea (60°C, 200V, 30 minutes) (Figure 13 ).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図13に示す通り、PCR終了後に95℃で20秒間の加熱を行うことにより、160merの1本のバンドが確認され(レーン3~10)、PCRプロダクトを短時間の加熱処理を行うことによって、PCRプロダクトの精製を行わなくとも逆転写が起こることが確認された。 As shown in Figure 13, one 160mer band was confirmed by heating at 95°C for 20 seconds after the end of PCR (lanes 3 to 10), and by heating the PCR product for a short time, It was confirmed that reverse transcription occurs without purifying the PCR product.
<実施例5:CDR3のランダム変異を導入したライブラリーの作製>
 図14に示すように、CDR3にランダム変異を導入したVHHライブラリーを作製した。詳細には、VHHをコードするヌクレオチドのうち、CDR3をコードする領域をエラープローン(Error-prone)プライマーを用いて増幅し、ランダム変異を導入した。さらに、フォワードプライマーとしてDNA/RNAキメラプライマーと、リバースプライマーとしてFR4、His-tag、及びリンカー結合領域(LHR、Linker hybridized region)の配列を含むプライマーとを用いてPCRを行い、突出末端とFR4及びリンカー結合領域とを有する、ランダム変異を導入したCDR3をコードするヌクレオチド断片を得た。一方、VHHをコードするヌクレオチド配列をテンプレートに、リバースプライマーにDNA/RNAキメラプライマーを用いてPCRを実施し、CDR3近傍側に突出末端を有する、CDR1及びCDR2並びにFR1、FR2及びFR3を含むヌクレオチド断片を得た。両断片をリガーゼにより連結し、CDR3にランダム変異を導入したVHHライブラリーを得た。
 使用したテンプレートDNAおよびプライマーは以下の通りである。
<Example 5: Preparation of library into which CDR3 random mutations have been introduced>
As shown in FIG. 14, a VHH library was created in which random mutations were introduced into CDR3. Specifically, among the nucleotides encoding VHH, the region encoding CDR3 was amplified using an error-prone primer to introduce random mutations. Furthermore, PCR was performed using a DNA/RNA chimera primer as a forward primer and a primer containing FR4, His-tag, and linker hybridized region (LHR) sequences as a reverse primer, and the protruding end and FR4 and A nucleotide fragment encoding a randomly mutated CDR3 having a linker binding region was obtained. On the other hand, PCR was performed using a nucleotide sequence encoding VHH as a template and a DNA/RNA chimera primer as a reverse primer, and a nucleotide fragment containing CDR1 and CDR2 and FR1, FR2, and FR3 having an overhanging end near CDR3 was obtained. I got it. Both fragments were ligated using ligase to obtain a VHH library in which random mutations were introduced into CDR3.
The template DNA and primers used are as follows.
>PF_1E1-#5 (529 bp)
GATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCAATGGAAGTACAATTAGTTGAATCTGGTGGTGGGCTTGTACAGCCAGGTGGGAGTCTGCGCCTGAGCTGTGCAGCGAGTGGTCATACTTTCTCTGACTACGCTATGGGTTGGTTTCGCCAGGCACCGGGAAAAGGCCGTGAGTTTGTGGCGGCTATCTCTCGTAACGGTGGTTCTACTTACTACGCTGACTCGGTCAAAGGCCGGTTTACCATCAGCCGTGACAACGCGAAGAACACCGTGTATCTCCAGATGAATTCCCTGCGTGCTGAAGATACTGCCGTGTACTACTGCGCTGCCGTTCTGTTCTGGTTCCATCTGCGTCGTCATGCACATGTTGATTATTGGGGTCAAGGCACGTTGGTGACAGTCTCTTCAGGGGGAGGATCCCATCATCATCATCATCACGGCGGAAGCAGGACGGGGGGCGGCGTGGAAA
(配列番号26)
>PF_1E1-#5 (529 bp)

(Sequence number 26)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 PF_1E1-#5 DNAをテンプレートにPL_FR3_FW(配列番号18)とPL-FR4-RV(配列番号20)を使用してエラープローンPCRを実施した。エラープローンPCRにはアジレント・テクノロジー株式会社のGeneMorph II Random Mutagenesis kitを使用した。キットの説明書に従い、0.01ngテンプレートDNA/25μL反応液を調製し、説明書に記載のPCRプログラムを実施した。PCR反応液をAMPure XPを用いて精製し20μLのUPDWで溶出し、DS-11+ NanoPadにより濃度定量した(mtCDR3 DNA)。
 続いて、mtCDR3 DNA全量を投入し、終濃度が1xPrimeSTAR Max、0.3μMのPL_FR3_FW、0.3μMのPL_FR4-end_RVとなるPCR反応液100μLを調製した。PCRプログラムは以下の通りとし、ステップ1~3を15サイクル繰り返した。
Error prone PCR was performed using PF_1E1-#5 DNA as a template and PL_FR3_FW (SEQ ID NO: 18) and PL-FR4-RV (SEQ ID NO: 20). For error prone PCR, GeneMorph II Random Mutagenesis kit from Agilent Technologies, Inc. was used. According to the instructions of the kit, a 0.01 ng template DNA/25 μL reaction solution was prepared, and the PCR program described in the instructions was executed. The PCR reaction solution was purified using AMPure XP, eluted with 20 μL of UPDW, and the concentration was determined using DS-11+ NanoPad (mtCDR3 DNA).
Subsequently, the entire amount of mtCDR3 DNA was added to prepare 100 μL of a PCR reaction solution with a final concentration of 1×PrimeSTAR Max, 0.3 μM PL_FR3_FW, and 0.3 μM PL_FR4-end_RV. The PCR program was as follows, and steps 1 to 3 were repeated for 15 cycles.
1.95 ℃ 10秒
2.60 ℃ 8 秒
3.72 ℃ 10秒
 AMPure XPを用いて精製して、さらに20μLのUPDWで溶出し、DS-11+ NanoPadにより濃度定量した(mtCDR3-end DNA)。
1. 95°C for 10 seconds 2. 60°C for 8 seconds 3. 72°C for 10 seconds It was purified using AMPure XP, further eluted with 20 μL of UPDW, and the concentration was determined using DS-11+ NanoPad (mtCDR3-end DNA).
 RNA部位を有するPF_1E1-#5のプラス鎖5’側のフラグメントを得るために、1ngのPF_1E1-#5 DNAを含み、終濃度が1xPrimeSTAR Max、0.3μMのNewleft(-2G)、0.3μMのRV-Shuffling-PLからなるPCR反応液50μLを調製した。また、RNA部位を有するmtCDR3を含むプラス鎖3’側のフラグメントを得るために、100ngのmtCDR3-end DNAを含み、終濃度が1xPrimeSTAR Max、0.3μMのFW-Shuffling-PL、0.3μMのNewYtag(cnvK)からなるPCR反応液50μLを調製した。PCRプログラムは以下の通りとし、ステップ1~3を前者は20、後者は10サイクル繰り返した。 To obtain the plus-strand 5' fragment of PF_1E1-#5 with an RNA site, 1 ng of PF_1E1-#5 DNA was included, final concentration was 1x PrimeSTAR Max, 0.3 μM Newleft (-2G), 0.3 μM 50 μL of a PCR reaction solution consisting of RV-Shuffling-PL was prepared. In addition, in order to obtain a positive strand 3' fragment containing mtCDR3 having an RNA site, 100 ng of mtCDR3-end DNA was included, the final concentration was 1x PrimeSTAR Max, 0.3 μM FW-Shuffling-PL, 0.3 μM 50 μL of a PCR reaction solution consisting of NewYtag (cnvK) was prepared. The PCR program was as follows, and steps 1 to 3 were repeated 20 cycles for the former and 10 cycles for the latter.
1.95 ℃ 10秒
2.55 ℃ 5 秒
3.72 ℃ 5秒
4.95 ℃ 10秒
1.95 °C 10 seconds 2.55 °C 5 seconds 3.72 °C 5 seconds 4.95 °C 10 seconds
 続いて、37.5μLのPCR反応液を含み、終濃度が1xRT-PCR Quick MM、1.25mM MgClからなる反応液を150μL調製し、72℃で10分間インキュベートすることでRNA部位に対する逆転写を実施した。逆転写反応液にRNaseHを1μL添加し、37℃で15分間インキュベートすることで突出末端を作製した。AMPure XPを用いて精製し、20μLのUPDWに溶出しDS-11+ NanoPadにより濃度定量した。
 突出末端をもつ5’側のフラグメントと3’側のフラグメントを1pmolずつ含み、1xT4 DNA ligation buffer、1μLのT4 DNA ligaseからなる15μLの反応液を調製し、16℃で1時間インキュベートした。ライゲーションプロダクトを、0.5μL分を8M尿素含有4%変性PAGE(60℃、200V、20分間)にて解析した(図15)。リガーゼを添付したサンプルでは、約500bpの全長VHHをコードするヌクレオチドが検出された(レーン3)。
Next, prepare 150 μL of a reaction solution containing 37.5 μL of PCR reaction solution with a final concentration of 1x RT-PCR Quick MM and 1.25 mM MgCl 2 and incubate at 72°C for 10 minutes to perform reverse transcription for the RNA site. was carried out. 1 μL of RNaseH was added to the reverse transcription reaction solution and incubated at 37° C. for 15 minutes to create protruding ends. It was purified using AMPure XP, eluted into 20 μL of UPDW, and the concentration was determined using DS-11+ NanoPad.
A 15 μL reaction solution was prepared containing 1 pmol each of the 5′-side fragment and the 3′-side fragment with overhanging ends, 1×T4 DNA ligation buffer, and 1 μL of T4 DNA ligase, and incubated at 16° C. for 1 hour. A 0.5 μL portion of the ligation product was analyzed on 4% denaturing PAGE containing 8 M urea (60° C., 200 V, 20 minutes) (FIG. 15). In the sample with ligase, a nucleotide encoding a full-length VHH of approximately 500 bp was detected (lane 3).
 残りの14.5μLのライゲーション反応液を含む、終濃度が1xPrimeSTAR Max、0.3μMのNewleft、0.3μMのNewYtag(cnvK)からなるPCR反応液100μLを調製し、50μLx2本に分注した。PCRプログラムは以下の通りとし、ステップ1~3を5サイクル繰り返した。 A 100 μL PCR reaction solution containing the remaining 14.5 μL of the ligation reaction solution with a final concentration of 1x PrimeSTAR Max, 0.3 μM Newleft, and 0.3 μM NewYtag (cnvK) was prepared and dispensed into two 50 μL bottles. The PCR program was as follows, and steps 1 to 3 were repeated for 5 cycles.
1.95 ℃ 10秒
2.65 ℃ 5 秒
3.72 ℃ 10秒
1.95℃ 10 seconds 2.65℃ 5 seconds 3.72℃ 10 seconds
 AMPure XPを用いてPCRプロダクトを精製した後、20μLのUPDWに溶出した。本PCR産物を8M尿素含有4%PAGE(60℃,200V,25分)にかけライゲーションプロダクトのバンドを精製した。PAGE精製したライゲーションプロダクト全量を含む1xPrimeSTAR Max、0.3μMのNewleft、0.3μMのNewYtag(cnvK)からなるPCR反応液200μLを調製し、50μLx4本に分注した。PCRプログラムは以下の通りとし、ステップ1~3を5サイクル繰り返した。 The PCR product was purified using AMPure XP and then eluted into 20 μL of UPDW. This PCR product was subjected to 4% PAGE containing 8M urea (60°C, 200V, 25 minutes) to purify the ligation product band. 200 μL of a PCR reaction solution consisting of 1x PrimeSTAR Max containing the entire amount of the PAGE-purified ligation product, 0.3 μM Newleft, and 0.3 μM NewYtag (cnvK) was prepared and dispensed into 4 x 50 μL tubes. The PCR program was as follows, and steps 1 to 3 were repeated for 5 cycles.
1.95 ℃ 10秒
2.65 ℃ 5 秒
3.72 ℃ 10秒
1.95℃ 10 seconds 2.65℃ 5 seconds 3.72℃ 10 seconds
 AMPure XPを用いてPCRプロダクトを精製し30μLのUPDWに溶出した。
 作製したCDR3にランダム変異を導入したライブラリーDNAをNGSにより解析し、変異導入を評価した。NGS解析は実施例2と同様の手順で実施した。ユニークな配列のカウント数からライブラリー中に含まれる配列群のポピュレーションを確認し、存在率トップ20を表9に示した。野生型(WT)が大多数を占めるものの、CDR3に変異が入った配列も多数確認できており、CDR3変異ライブラリーの構築を確認できた。
The PCR product was purified using AMPure XP and eluted in 30 μL of UPDW.
The prepared library DNA in which random mutations were introduced into CDR3 was analyzed by NGS to evaluate the introduction of mutations. NGS analysis was performed in the same manner as in Example 2. The population of sequences included in the library was confirmed from the number of unique sequence counts, and the top 20 abundances are shown in Table 9. Although the majority were wild type (WT), many sequences with mutations in CDR3 were also confirmed, confirming the construction of a CDR3 mutation library.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (12)

  1.  所望の核酸配列について、少なくとも一つのプライマーが5’側にRNA配列を含むRNA/DNAキメラプライマーである、一又は複数のプライマー対を用いてPCRを行い、前記所望の核酸配列を鋳型とした増幅断片を作成する工程と、
     RNaseH処理によって前記増幅断片中に含まれるRNA配列を消化して突出末端を形成する工程と、
     突出末端同士を連結させることにより少なくとも2つの増幅断片を連結させて、連結された核酸を作成する工程と
    を含む、核酸の連結方法。
    PCR is performed on the desired nucleic acid sequence using one or more primer pairs, in which at least one primer is an RNA/DNA chimera primer containing an RNA sequence on the 5' side, and amplification is performed using the desired nucleic acid sequence as a template. a step of creating a fragment;
    Digesting the RNA sequence contained in the amplified fragment by RNaseH treatment to form overhanging ends;
    A method for linking nucleic acids, comprising the step of linking at least two amplified fragments by linking their overhanging ends to create linked nucleic acids.
  2.  前記連結された核酸に含まれる増幅断片のうち、連結されたときに互いに隣接する増幅断片を増幅するプライマー対のうちの一方のプライマー対のフォワードプライマーがRNA/DNAキメラプライマーであり、他方のプライマー対のリバースプライマーがRNA/DNAキメラプライマーであり、前記フォワードプライマー及び前記リバースプライマーに含まれるRNA配列が実質的に相補的な配列を有する、請求項1に記載の方法。 Among the amplified fragments contained in the linked nucleic acids, the forward primer of one of the primer pairs that amplifies adjacent amplified fragments when linked is an RNA/DNA chimera primer, and the other primer is an RNA/DNA chimera primer. 2. The method according to claim 1, wherein the pair of reverse primers is an RNA/DNA chimeric primer, and the RNA sequences contained in the forward primer and the reverse primer have substantially complementary sequences.
  3.  前記PCRをrTthDNAポリメラーゼにより行う、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the PCR is performed using rTth DNA polymerase.
  4.  前記PCRをMn2+の存在下で行う、請求項3に記載の方法。 4. The method of claim 3, wherein the PCR is performed in the presence of Mn2 + .
  5.  前記PCRをMg2+の存在下で行う、請求項3に記載の方法。 4. The method of claim 3, wherein the PCR is performed in the presence of Mg2 + .
  6.  前記PCRを複製忠実度が高いDNAポリメラーゼ、又はTaqDNAポリメラーゼにより行い、RNaseH処理前にさらにrTthDNAポリメラーゼにより逆転写を行う、請求項1に記載の方法。 The method according to claim 1, wherein the PCR is performed using a DNA polymerase with high replication fidelity or Taq DNA polymerase, and further reverse transcription is performed using rTth DNA polymerase before treatment with RNaseH.
  7.  前記逆転写をMn2+の存在下で行う、請求項6に記載の方法。 7. The method of claim 6, wherein the reverse transcription is performed in the presence of Mn2 + .
  8.  前記逆転写をMg2+の存在下で行う、請求項6に記載の方法。 7. The method of claim 6, wherein the reverse transcription is performed in the presence of Mg2 + .
  9.  PCRの後、rTthDNAポリメラーゼによる逆転写の前に、80~100℃で10~60秒間加熱を行う、請求項6に記載の方法。 The method according to claim 6, wherein after PCR and before reverse transcription using rTth DNA polymerase, heating is performed at 80 to 100°C for 10 to 60 seconds.
  10.  突出末端同士の連結が、TaqDNAリガーゼ、T4 DNAリガーゼ、及びE.coli DNAリガーゼからなる群から選択される酵素により行われる、請求項1に記載の方法。 The overhanging ends are ligated using Taq DNA ligase, T4 DNA ligase, and E. 2. The method according to claim 1, wherein the method is carried out with an enzyme selected from the group consisting of E. coli DNA ligase.
  11.  所望の核酸配列について、一対のプライマーのうち少なくとも一つのプライマーが、5’側にRNA配列を含むRNA/DNAキメラプライマーであるプライマー対を用いたPCRにより増幅された、前記所望の核酸配列の5’又は3’末端のいずれか、又は5’末端及び3’末端の両方に前記キメラプライマーに由来するRNA配列を含む核酸断片。 5 of the desired nucleic acid sequence, which is amplified by PCR using a primer pair in which at least one of the primers is an RNA/DNA chimera primer containing an RNA sequence on the 5' side. A nucleic acid fragment comprising an RNA sequence derived from said chimeric primer at either the ' or 3' end, or both the 5' and 3' ends.
  12.  DNAポリメラーゼと、
     RNaseHと、
     TaqDNAリガーゼ、T4 DNAリガーゼ、及びE.coli DNAリガーゼからなる群から選択される酵素と
    を含む、請求項1~10のいずれか一項の方法により核酸を増幅及び連結するためのキット。
    DNA polymerase and
    RNaseH and
    Taq DNA ligase, T4 DNA ligase, and E. and an enzyme selected from the group consisting of E. coli DNA ligase.
PCT/JP2023/009253 2022-03-31 2023-03-10 Pcr using rna/dna chimeric primer and method for ligating amplified fragments thereof WO2023189403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058415 2022-03-31
JP2022058415 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189403A1 true WO2023189403A1 (en) 2023-10-05

Family

ID=88200728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009253 WO2023189403A1 (en) 2022-03-31 2023-03-10 Pcr using rna/dna chimeric primer and method for ligating amplified fragments thereof

Country Status (1)

Country Link
WO (1) WO2023189403A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824517A (en) * 1995-07-24 1998-10-20 Bio Merieux Method for amplifying nucleic acid sequences by strand displacement using DNA/RNA chimeric primers
JP2001513639A (en) * 1997-02-27 2001-09-04 ゲシェール−イスラエル アドバンスト バイオテックス(1996)リミテッド Method for assembling multiple DNA fragments
JP2003509068A (en) * 1999-09-13 2003-03-11 ニューゲン テクノロジーズ, インコーポレイテッド Methods and compositions for linear isothermal amplification of polynucleotide sequences
JP2019149985A (en) * 2018-03-05 2019-09-12 国立大学法人埼玉大学 Method for producing linked nucleic acid fragment, linked nucleic acid fragment, and library composed of linked nucleic acid fragments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824517A (en) * 1995-07-24 1998-10-20 Bio Merieux Method for amplifying nucleic acid sequences by strand displacement using DNA/RNA chimeric primers
JP2001513639A (en) * 1997-02-27 2001-09-04 ゲシェール−イスラエル アドバンスト バイオテックス(1996)リミテッド Method for assembling multiple DNA fragments
JP2003509068A (en) * 1999-09-13 2003-03-11 ニューゲン テクノロジーズ, インコーポレイテッド Methods and compositions for linear isothermal amplification of polynucleotide sequences
JP2019149985A (en) * 2018-03-05 2019-09-12 国立大学法人埼玉大学 Method for producing linked nucleic acid fragment, linked nucleic acid fragment, and library composed of linked nucleic acid fragments

Similar Documents

Publication Publication Date Title
JP6068365B2 (en) Using template switches for DNA synthesis
JP4789271B2 (en) Synthesis of nucleic acid molecules with minimized errors
US9528137B2 (en) Methods for cell-free protein synthesis
US20240102203A1 (en) Immuno-PETE
KR101467969B1 (en) Method for synthesizing nucleic acid molecules
US20070231805A1 (en) Nucleic acid assembly optimization using clamped mismatch binding proteins
AU2018297861C1 (en) DNA production method and DNA fragment joining kit
JP6249947B2 (en) Compositions and methods for RT-PCR comprising anionic polymers
US20230257805A1 (en) Methods for ligation-coupled-pcr
US20210310048A1 (en) Method for generating single-stranded circular dna libraries for single molecule sequencing
US20220090090A1 (en) A method for assembling circular and linear dna molecules in an ordered manner
CN114901820B (en) Method for constructing gene mutation library
US20230079822A1 (en) Method and products for producing single stranded dna polynucleotides
WO2023189403A1 (en) Pcr using rna/dna chimeric primer and method for ligating amplified fragments thereof
CN112534062A (en) Cleavable partner primers and methods of amplifying nucleic acid sequences using the same
JP7029138B2 (en) A method for producing a linked nucleic acid fragment, a linked nucleic acid fragment, and a library composed of the linked nucleic acid fragment.
JP5129498B2 (en) Nucleic acid cloning method
JP2022519684A (en) Methods and Products for Making Functionalized Single-stranded oligonucleotides
KR101264295B1 (en) Hierarchial Gene Synthesis Methods of a Target Nucleic Acid Sequence
Wang et al. A universal method for directional cloning of PCR products based on asymmetric PCR
US20210262024A1 (en) Polynucleotide duplex probe molecule
WO2023183948A2 (en) Heteroduplex theromstable ligation assembly (htla) and/or cyclic heteroduplex thermostable ligation assembly (chtla) for generating double-stranded dna fragments with single-stranded sticky ends
Sanzone Assessing the bio-compatibility of a click DNA backbone linker
JP2008109875A (en) Convenient and sure method for introducing mutation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779427

Country of ref document: EP

Kind code of ref document: A1