WO2023189258A1 - Production method for hexagonal boron nitride thin film, laminate - Google Patents

Production method for hexagonal boron nitride thin film, laminate Download PDF

Info

Publication number
WO2023189258A1
WO2023189258A1 PCT/JP2023/008427 JP2023008427W WO2023189258A1 WO 2023189258 A1 WO2023189258 A1 WO 2023189258A1 JP 2023008427 W JP2023008427 W JP 2023008427W WO 2023189258 A1 WO2023189258 A1 WO 2023189258A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
iron
substrate
boron nitride
hexagonal boron
Prior art date
Application number
PCT/JP2023/008427
Other languages
French (fr)
Japanese (ja)
Inventor
健司 小廣
崇之 岡地
永 山田
Original Assignee
住友化学株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 住友化学株式会社
Publication of WO2023189258A1 publication Critical patent/WO2023189258A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Definitions

  • the present disclosure relates to a method for manufacturing a hexagonal boron nitride thin film and a laminate.
  • hexagonal boron nitride thin films Due to its properties, research on hexagonal boron nitride thin films has progressed in many application fields, and has been used to maximize the properties of light-emitting diodes and semiconductor lasers that emit light in the ultraviolet region, broadband light-receiving devices, and two-dimensional semiconductors such as graphene. It is expected to be applied to pull-out insulating films and release layers used in the production of free-standing substrates such as gallium nitride.
  • a raw material containing boron such as triethylborane and a raw material containing nitrogen such as ammonia are separately supplied and reacted on the substrate.
  • This is a method of growing hexagonal boron nitride on the substrate (see, for example, Japanese Patent No. 4358143).
  • VLS Vapor-Liquid-Solid Thin Film Growth
  • the hexagonal boron nitride thin film is thin, for example, it cannot sufficiently prevent phonon scattering, interface trapping of charged impurities, etc., which are factors that degrade mobility when applied to a graphene transistor.
  • a hexagonal boron nitride thin film having a plurality of layers can be obtained, and the thickness of the hexagonal boron nitride thin film can be increased.
  • hexagonal boron nitride does not have dangling bonds that allow crystals to grow regularly, so when layers of hexagonal boron nitride are stacked as in the conventional MOCVD method, the hexagonal boron nitride crystals gradually grow.
  • the properties of the hexagonal boron nitride thin film deteriorate, and the regular layer structure is lost, making it difficult to bring out the properties of the hexagonal boron nitride thin film (for example, properties that improve the mobility of graphene transistors). Therefore, there is a need for a method that can produce a highly crystalline hexagonal boron nitride thin film suitable for application to electronic materials and the like.
  • the metal when a thin film of metal is formed, the metal may aggregate and the flatness of the thin film may be impaired, and such a phenomenon may also occur in the formation of a thin film of hexagonal boron nitride. Therefore, the method for producing a hexagonal boron nitride thin film is also required to be able to produce a hexagonal boron nitride thin film with high uniformity.
  • conventional methods for producing hexagonal boron nitride thin films do not focus on improving both the crystallinity of hexagonal boron nitride and the uniformity of the hexagonal boron nitride thin film.
  • An object of an embodiment of the present disclosure is to provide a method for producing a hexagonal boron nitride thin film that can produce a highly crystalline hexagonal boron nitride thin film with high uniformity.
  • a problem to be solved by other embodiments of the present disclosure is to provide a laminate including a hexagonal boron nitride thin film with high crystallinity and film uniformity.
  • Step A of preparing a substrate with an iron thin film which includes a substrate and an iron thin film provided on the substrate and having a film thickness in a range of 200 nm or more and 1800 nm or less
  • Step B of forming an iron boride layer containing Fe 2 B on the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the iron thin film-coated substrate; Boron in the iron boride layer is removed by supplying at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound to the iron thin film-coated substrate on which the iron boride layer is formed.
  • a method for producing a hexagonal boron nitride thin film comprising: [2] The method for producing a hexagonal boron nitride thin film according to [1], wherein in the step C, the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is in a range of 900° C. or more and 1200° C. or less. [3] The method for producing a hexagonal boron nitride thin film according to [1] or [2], wherein the substrate is a sapphire substrate.
  • the substrate is a sapphire substrate.
  • a method for manufacturing a hexagonal boron nitride thin film that can manufacture a highly crystalline hexagonal boron nitride thin film with high uniformity.
  • a laminate including a hexagonal boron nitride thin film with high hexagonal boron nitride crystallinity and film uniformity is provided.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus suitably used in the manufacturing method of the present disclosure.
  • This is an example of an optical microscope transmission image of a laminate in which the uniformity evaluation result of the hexagonal boron nitride thin film is A.
  • This is an example of an optical microscope transmission image of a laminate whose uniformity evaluation result of the hexagonal boron nitride thin film is B. It is a graph showing the relationship between the film thickness of the iron thin film in a substrate with an iron thin film and the ratio of the exposed portion of the substrate in the laminate.
  • a numerical range indicated using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
  • step is used not only to refer to an independent process, but also to include a process that is not clearly distinguishable from other processes, as long as the intended purpose of the process is achieved. .
  • the method for producing a hexagonal boron nitride thin film of the present disclosure includes a substrate, an iron film provided on the substrate, and having a film thickness of 200 nm or more and 1800 nm or less. a step A of preparing an iron thin film-coated substrate having a thin film; and supplying a gas containing a boron compound to the iron thin film-coated substrate, so that Fe is formed on the surface of the iron thin film of the iron thin film-coated substrate.
  • a highly crystalline hexagonal boron nitride thin film can be manufactured with high uniformity.
  • an iron boride layer containing Fe 2 B is formed on the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the prepared iron thin film-coated substrate. do.
  • a gas containing a boron compound By supplying a gas containing a boron compound to a substrate with an iron thin film, the boron compound is decomposed on the surface of the iron thin film.
  • the boron produced by decomposition gradually enters the interior of the iron thin film from the surface and reacts with iron to produce iron boride.
  • a boron compound can be decomposed, for example, by heating a substrate with an iron thin film.
  • the type of iron boride produced can be controlled by conditions such as the amount of boron supplied, the temperature of the substrate with the iron thin film, and the thickness of the iron thin film.
  • Types of iron borides include, for example, Fe 3 B, Fe 2 B, and FeB, but in the manufacturing method of the present disclosure, the iron boride layer contains Fe 2 B, so that the final layer has high crystallinity. Thin films of hexagonal boron nitride tend to be obtained. Further, in the manufacturing method of the present disclosure, at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound (hereinafter referred to as "nitrogen source gas ), the boron in the iron boride layer is nitrided.
  • nitrogen source gas a gas containing a nitrogen compound
  • the nitrogen source gas By supplying nitrogen source gas to the iron thin film-coated substrate on which the iron boride layer is formed, the nitrogen source gas is decomposed on the surface of the iron boride layer.
  • the nitrogen source gas can be decomposed, for example, by heating a substrate with an iron thin film on which an iron boride layer is formed. Nitrogen generated by decomposition gradually enters the interior of the iron boride layer from the surface and nitrides boron in the iron boride layer, thereby generating hexagonal boron nitride. That is, the manufacturing method of the present disclosure is distinguished from methods of stacking layers of hexagonal boron nitride, such as conventional MOCVD methods.
  • the hexagonal boron nitride thin film is generated can be controlled by, for example, the substrate temperature in step C (in other words, the film formation temperature), the raw material supply method, etc. For example, when the deposition temperature is lowered, a hexagonal boron nitride thin film is generated on the side of the iron boride layer opposite to the substrate.
  • a hexagonal boron nitride thin film is formed on the surface of the iron boride layer opposite to the substrate, and the formed hexagonal boron nitride thin film and iron boride
  • a hexagonal boron nitride thin film is continuously generated. Note that this generation mechanism differs from the conventional mechanism in which new hexagonal boron nitride is grown on hexagonal boron nitride, and hexagonal boron nitride does not become polycrystalline but forms a regular layer structure.
  • boron and nitrogen spread to the inside of the iron boride layer so not only the side of the iron boride layer opposite to the substrate, but also the side of the iron boride layer facing the substrate ( That is, a hexagonal boron nitride thin film is also formed between the substrate and the iron boride layer.
  • a hexagonal boron nitride thin film is formed on the side of the iron boride layer opposite to the substrate and on the side of the iron boride layer facing the substrate.
  • boron nitride is less likely to interact with iron boride, and a flatter hexagonal boron nitride thin film can be obtained.
  • Step A is a step of preparing a substrate with an iron thin film, which includes a substrate and an iron thin film provided on the substrate and having a film thickness in a range of 200 nm or more and 1800 nm or less.
  • Preparing a substrate with an iron thin film means to prepare a substrate with an iron thin film in a usable state, and includes preparing a substrate with an iron thin film manufactured in advance by obtaining it, and preparing a substrate with an iron thin film. It includes manufacturing. That is, the substrate with an iron thin film used in the manufacturing method of the present disclosure may be a substrate with an iron thin film manufactured in advance, or may be a substrate with an iron thin film manufactured in Step A.
  • the substrate with an iron thin film in the present disclosure can be manufactured by forming an iron thin film having a thickness in the range of 200 nm or more and 1800 nm or less on the substrate. Preferred embodiments of the method for manufacturing a substrate with an iron thin film according to the present disclosure will be described below.
  • the material of the substrate is preferably a single crystal substrate.
  • the substrate is more preferably a sapphire substrate, an aluminum nitride substrate, or a silicon carbide substrate. More preferred.
  • the thickness of the substrate is not particularly limited, but is generally 200 ⁇ m to 1000 ⁇ m, preferably 300 ⁇ m to 800 ⁇ m.
  • the iron thin film may be formed on only one side of the substrate, or may be formed on both sides of the substrate.
  • the temperature of the substrate when forming the iron thin film is not particularly limited, but is preferably 25° C. to 300° C., for example.
  • the means for heating the substrate is not particularly limited, and examples thereof include a heater.
  • the thickness of the iron thin film formed on the substrate is in the range of 200 nm or more and 1800 nm or less. When the thickness of the iron thin film is within the above range, agglomeration of hexagonal boron nitride is suppressed, and a highly uniform hexagonal boron nitride thin film can be manufactured.
  • the thickness of the iron thin film is preferably in the range of 250 nm or more and 1750 nm or less, more preferably 500 nm or more and 1750 nm or less, even more preferably 500 nm or more and 1500 nm or less, and 500 nm or more and 1000 nm or less. It is particularly preferable that the range is within the range.
  • the “thickness of the iron thin film” in the present disclosure means the average thickness of the iron thin film.
  • the average film thickness of the iron thin film is a value obtained by forming an iron thin film using a separately prepared substrate and using the following method.
  • a substrate hereinafter also referred to as a "measurement substrate” equipped with a mask (eg, resist, polyimide tape, etc.) is prepared.
  • the mask is peeled off.
  • the level difference between the surface of the iron thin film and the surface of the substrate from which the mask has been removed is measured using a level difference meter.
  • the arithmetic mean value of the measured values of the step difference at five randomly selected locations is determined, and the obtained value is taken as the thickness of the iron thin film.
  • the thickness of the iron thin film can be controlled by the applied power, film formation time, etc. when forming the iron thin film by sputtering, for example. For example, when the applied power is increased, the thickness of the iron thin film becomes thicker, and when the applied power is lowered, the thickness of the iron thin film becomes thinner. Further, for example, when the film formation time is increased, the iron thin film becomes thicker, and when the film formation time is shortened, the iron thin film becomes thinner. Regarding the applied voltage, it is preferable to appropriately select optimal conditions, taking into account that it may affect the surface roughness of the iron thin film.
  • the method for forming the iron thin film for example, a sputtering method and a vacuum evaporation method can be applied.
  • the method for forming the iron thin film is preferably a sputtering method.
  • the method for forming the iron thin film is a magnetron sputtering method.
  • the magnetron sputtering method may be an RF (Radio Frequency) magnetron sputtering method or a DC (Direct Current) magnetron sputtering method, but a DC magnetron sputtering method is preferable.
  • the sputtering conditions are appropriately set, for example, depending on the desired thickness of the iron thin film.
  • the film-forming atmosphere is preferably argon gas, for example.
  • the film forming pressure is preferably 0.1 Pa to 10 Pa, for example.
  • the temperature of the film-forming substrate is preferably 25° C. to 300° C., for example.
  • the applied voltage is preferably 500W to 6000W, for example.
  • step B iron boride containing Fe 2 B is added onto the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the iron thin film-coated substrate prepared in step A. This is the process of forming layers.
  • a gas containing a boron compound is supplied to a substrate with an iron thin film, the iron in the iron thin film is borated, and an iron boride layer containing Fe 2 B is formed on the surface of the iron thin film of the iron thin film on the substrate.
  • the gas supplied to the substrate with the iron thin film contains a boron compound.
  • boron compounds include organic boron compounds such as trimethylborane (C 3 H 9 B) and triethyl borane (C 6 H 15 B); boron halides such as boron trichloride (BCl 3 ); and monoborane (BH 3 ), and boron hydrides such as diborane (B 2 H 6 ).
  • boron compound a boron halide or a boron hydride is preferable, and diborane is more preferable.
  • These boron compounds are suitable because they do not produce carbon during decomposition, and therefore there is no concern that carbon will be mixed into the hexagonal boron nitride finally obtained.
  • the gas supplied to the substrate with the iron thin film may be the gaseous boron compound itself, and when the boron compound is a liquid, the gas may be a gas obtained by vaporizing the liquid boron compound. There may be.
  • the gaseous boron compound itself and the vaporized liquid boron compound may be collectively referred to as "boron compound gas.”
  • the method of vaporizing the liquid boron compound is not particularly limited, but, for example, a bubbling method is suitable. In the bubbling method, a liquid boron compound in a tank is bubbled using a carrier gas to vaporize it.
  • the gas supplied to the iron thin film-coated substrate preferably contains a carrier gas in addition to the boron compound gas, for example, from the viewpoint of operability.
  • a carrier gas hydrogen gas or a mixed gas of hydrogen gas and an inert gas is preferable.
  • hydrogen gas is included in the carrier gas, boron particles are less likely to be generated, so a film of good quality tends to be obtained.
  • the mixed gas of hydrogen gas and inert gas is preferably a mixed gas of hydrogen gas and argon gas.
  • the supply amount of the boron compound gas is not particularly limited, and is set appropriately depending on, for example, the desired composition of iron boride in the iron boride layer and the desired thickness of the hexagonal boron nitride thin film. .
  • the amount of boron compound gas supplied can be controlled by, for example, the flow rate and supply time of boron compound gas.
  • the flow rate of the boron compound gas is, for example, preferably 0.05 cm 3 /min to 1 cm 3 /min, more preferably 0.1 cm 3 /min to 0.7 cm 3 /min.
  • the boron compound gas supply time is, for example, preferably 10 minutes to 80 minutes, more preferably 20 minutes to 60 minutes.
  • the temperature of the iron thin film-coated substrate when supplying the gas containing the boron compound is not particularly limited, and is appropriately set, for example, depending on the desired composition of iron boride in the iron boride layer.
  • the temperature of the iron thin film-coated substrate when supplying the gas containing the boron compound is preferably 1000° C. to 1100° C., for example.
  • the means for heating the substrate with an iron thin film is not particularly limited, and examples thereof include a heater.
  • the iron boride layer formed in step B contains Fe 2 B.
  • the iron boride layer may contain, in addition to Fe 2 B, at least one member selected from the group consisting of Fe, FeB, and Fe 3 B.
  • the type and proportion of iron boride contained in the iron boride layer can be controlled, for example, by adjusting the supply amount of the boron compound, the temperature of the substrate with the iron thin film, the thickness of the iron thin film, and the like. For example, when the amount of boron compound supplied is increased, boron is incorporated into iron, and iron boride with a gradually increasing proportion of boron is obtained.
  • the composition of iron boride contained in the iron boride layer is confirmed by an X-ray diffraction (XRD) method. Further, the composition ratio of iron boride contained in the iron boride layer is measured by an X-ray diffraction method. Specifically, a substrate with an iron thin film on which an iron boride layer is formed is irradiated with CuK ⁇ rays (characteristic X-rays), and based on the obtained X-ray diffraction pattern, the diffraction peak of FeB (130) is determined. It is determined from the ratio of the intensity (unit: cps), the intensity of the diffraction peak of Fe 2 B (022), and the intensity of the diffraction peak of Fe 3 B (330).
  • XRD X-ray diffraction
  • the X-ray conditions are a voltage of 45 kV and a current of 40 mA.
  • a device used for the X-ray diffraction method for example, X'Pert Pro MRD manufactured by PANalytical is suitable. However, the device is not limited to this.
  • the composition ratio of these that is, the Fe 2 B relative to the intensity of the diffraction peak of FeB (130) in the X-ray diffraction pattern of the iron boride layer.
  • the ratio of the intensity of the diffraction peak of (022) [Intensity of the diffraction peak of Fe 2 B (022)/Intensity of the diffraction peak of FeB (130)] is preferably 0.38 or more, for example, 0.40 It is more preferable that it is above.
  • the composition ratio of these that is, the intensity of the diffraction peak of Fe 2 B (022) in the X-ray diffraction pattern of the iron boride layer
  • the ratio of the intensity of the diffraction peak of Fe 3 B (330) to the intensity of the diffraction peak of Fe 3 B (330)/the intensity of the diffraction peak of Fe 2 B (022) is, for example, 0.32 or less. is preferable, and more preferably 0.30 or less.
  • step C at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound (i.e., nitrogen source gas) is applied to the iron thin film-coated substrate on which the iron boride layer has been formed in step B.
  • a gas containing a nitrogen compound i.e., nitrogen source gas
  • the type of nitrogen compound is not particularly limited.
  • nitrogen compounds include ammonia and hydrazine.
  • As the nitrogen raw material gas for example, from the viewpoint of reactivity, at least one gas selected from nitrogen gas and ammonia gas is preferable, and ammonia gas is more preferable.
  • the supply amount of the nitrogen raw material gas is not particularly limited, and is appropriately set, for example, depending on the desired thickness of the hexagonal boron nitride thin film.
  • the supply amount of the nitrogen source gas can be controlled by, for example, the flow rate and supply time of the nitrogen source gas.
  • the flow rate of the nitrogen source gas is, for example, preferably 100 cm 3 /min to 2000 cm 3 /min, more preferably 150 cm 3 /min to 1000 cm 3 /min.
  • the supply time of the nitrogen source gas is, for example, preferably 5 minutes to 300 minutes, more preferably 10 minutes to 200 minutes.
  • the nitrogen raw material gas When supplying the nitrogen raw material gas to the iron thin film-coated substrate on which the iron boride layer is formed, it is preferable to supply the nitrogen raw material gas together with the carrier gas, for example, from the viewpoint of operability.
  • the carrier gas for example, hydrogen gas or a mixed gas of hydrogen gas and inert gas is preferable, and a mixed gas of hydrogen gas and inert gas is more preferable.
  • hydrogen gas When hydrogen gas is included in the carrier gas, the reaction between the boron contained in iron boride and nitrogen is slowed down, resulting in a good film.
  • the formed hexagonal boron nitride thin film is etched by hydrogen. may be done.
  • the carrier gas contains an inert gas in addition to hydrogen gas, the hexagonal boron nitride thin film is etched gently by the hydrogen gas.
  • the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is preferably in the range of 850°C or more and 1200°C or less, and more preferably in the range of 900°C or more and 1200°C or less. , more preferably in the range of 930°C or higher and 1200°C or lower.
  • the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is set to 850° C. or higher, a thin film of hexagonal boron nitride with higher crystallinity tends to be produced with more uniformity.
  • the means for heating the iron thin film-coated substrate on which the iron boride layer is formed is not particularly limited, and includes, for example, a heater.
  • the thickness of the hexagonal boron nitride thin film formed in step C is not particularly limited and can be set as appropriate depending on the purpose, but is preferably 5 nm to 100 nm, for example.
  • the "thickness of a hexagonal boron nitride thin film" in the present disclosure is a value determined by the following method. A cross section of the hexagonal boron nitride thin film is observed using a scanning electron microscope (SEM), and the thickness of the cross section of the hexagonal boron nitride thin film at five randomly selected locations is measured. The arithmetic mean value of the measured values is determined, and the obtained value is taken as the thickness of the hexagonal boron nitride thin film.
  • the thickness of the hexagonal boron nitride thin film can be controlled, for example, by adjusting the thickness of the iron thin film, the amount of boron compound supplied, the amount of nitrogen source gas supplied, and the like. For example, if the thickness of the iron thin film is increased and the amount of boron compound and nitrogen raw material gas supplied is increased, the thickness of the hexagonal boron nitride thin film becomes thicker. On the other hand, regardless of the thickness of the iron thin film, if the supply amount of the boron compound and the nitrogen source gas are reduced, the thickness of the hexagonal boron nitride thin film becomes thinner.
  • the manufacturing method of the present disclosure may include steps other than Step A, Step B, and Step C (so-called other steps) as necessary within a range that does not impair the effects of the present disclosure.
  • the manufacturing method of the present disclosure preferably includes, as another step, a step of annealing the iron thin film with hydrogen gas after forming the iron thin film on the substrate and before producing hexagonal boron nitride. .
  • annealing the iron thin film not only can trace amounts of oxygen that may be contained in the iron thin film be removed, but also the adhesion between the substrate and the iron thin film and the orientation of the iron thin film can be improved.
  • the annealing of the iron thin film with hydrogen gas be performed immediately before hexagonal boron nitride is produced, for example, in a reactor that produces hexagonal boron nitride.
  • the annealing temperature is, for example, preferably 950°C to 1100°C, more preferably 1000°C to 1050°C.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus suitably used in the manufacturing method of the present disclosure.
  • reference numeral 1 indicates a vent gas line for exhausting gas containing each raw material without supplying it onto the substrate
  • reference numeral 2 indicates a vent gas line for supplying a gas containing a boron compound to the substrate with an iron thin film
  • Reference numeral 3 indicates a carrier gas line for supplying nitrogen raw material gas to the iron thin film coated substrate on which the iron boride layer is formed.
  • the carrier gas line is divided into a carrier gas line 2 for supplying a gas containing a boron compound and a carrier gas line 3 for supplying a nitrogen raw material gas. Mixing with the nitrogen raw material is prevented, and the formation of side reactants called adducts can be suppressed.
  • Reference numerals 4, 5, and 6 indicate valves for switching between supplying the gas containing each raw material to the carrier gas line or flowing it to the vent gas line.
  • Reference numerals 7, 8, 9 and 10 indicate gas lines for supplying the corresponding raw materials carrier gas A, carrier gas B, carrier gas C and gas D, respectively.
  • the gas D supplied from the gas line 10 functions not only as a carrier gas but also as a bubbling gas for vaporizing a liquid boron compound (for example, triethylborane).
  • Reference numeral 11 indicates a container for storing a liquid boron compound.
  • a liquid boron compound such as triethylborane is stored in the container 11, and one end of the gas line 10 is immersed in the liquid so that bubbling can be performed.
  • Reference numeral 12 indicates a container for storing a gaseous boron compound (for example, diborane), and reference numeral 13 indicates a container for storing a nitrogen source gas (for example, ammonia).
  • Reference numeral 14 indicates a reactor
  • reference numeral 15 indicates a substrate with an iron thin film
  • reference numeral 16 indicates a susceptor that supports the substrate 15 with the iron thin film
  • reference numeral 17 indicates a heater for heating the substrate 15 with the iron thin film. shows.
  • the iron thin film coated substrate 15 placed on the susceptor 16 is heated using the heater 17 to a predetermined temperature (for example, 1000° C. to 1100° C.).
  • a predetermined temperature for example, 1000° C. to 1100° C.
  • carrier gas A, carrier gas B, carrier gas C, and gas (carrier gas) D are supplied to gas line 7, gas line 8, gas line 9, and gas line 10, respectively.
  • supply A carrier gas (for example, hydrogen gas) is constantly supplied to the gas line 7, gas line 8, gas line 9, and gas line 10 until the formation of the hexagonal boron nitride thin film is completed.
  • a predetermined amount of nitrogen raw material gas (for example, ammonia gas) is supplied from the carrier gas line 3 to the iron thin film-coated substrate on which the iron boride layer has been formed, and the boron in the iron boride layer is nitrided. let By nitriding this boron, hexagonal boron nitride is generated, and a hexagonal boron nitride thin film is formed.
  • the temperature of the heater 17 is gradually lowered to room temperature (for example, 25° C.) while flowing the carrier gas, and then the substrate on which the hexagonal boron nitride thin film is formed is taken out.
  • the taken out substrate has a structure in which the substrate, a thin film containing iron boride and iron, and a hexagonal boron nitride thin film having a plurality of layers are stacked.
  • the laminate of the present disclosure includes a substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having a plurality of layers, the thin film containing Fe 2 B and iron and the hexagonal boron nitride
  • the total thickness of the boron thin film is in the range of 300 nm or more and 2100 nm or less.
  • the laminate of the present disclosure is a laminate including a hexagonal boron nitride thin film with high crystallinity and film uniformity, and is suitable for use as an electronic material, for example, and particularly suitable as a graphene substrate. It is.
  • the laminate of the present disclosure includes a substrate.
  • a specific example of the material of the substrate in the laminate of the present disclosure is the same as a specific example of the material of the substrate in the manufacturing method of the present disclosure.
  • the substrate in the laminate of the present disclosure is preferably a single crystal substrate, more preferably a sapphire substrate, an aluminum nitride substrate, or a silicon carbide substrate, and even more preferably a sapphire substrate.
  • the thickness of the substrate in the laminate of the present disclosure is not particularly limited, but is generally 200 ⁇ m to 1000 ⁇ m, preferably 300 ⁇ m to 800 ⁇ m.
  • the laminate of the present disclosure has a thin film containing Fe 2 B and iron. It can be confirmed, for example, by X-ray diffraction that the laminate of the present disclosure has a thin film containing Fe 2 B and iron.
  • the thin film may contain iron borides other than Fe 2 B. Examples of iron borides other than Fe 2 B include FeB and Fe 3 B.
  • the laminate of the present disclosure has a hexagonal boron nitride thin film having multiple layers.
  • the hexagonal boron nitride thin film may have two or more layers, preferably 30 or more layers, more preferably 60 or more layers, and even more preferably 100 or more layers.
  • the upper limit of the number of layers included in the hexagonal boron nitride thin film is not particularly limited.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film is in the range of 300 nm or more and 2100 nm or less, preferably 600 nm or more and 2100 nm or less, and 600 nm or more.
  • the range is more preferably 1750 nm or more, and even more preferably 600 nm or more and 1500 nm or less.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film is a value determined by the following method. Using a scanning electron microscope (SEM), the cross sections of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film were observed, and the thin film containing Fe 2 B and iron was observed at five randomly selected locations. Measure the cross-sectional thickness as well as the cross-sectional thickness of the hexagonal boron nitride thin film. The arithmetic mean value of the measured values is determined, and the obtained value is taken as the total film thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film.
  • SEM scanning electron microscope
  • the laminate of the present disclosure is suitably manufactured, for example, by the manufacturing method of the present disclosure described above.
  • the manufacturing method and laminate of the present disclosure will be explained in more detail by giving examples below.
  • the manufacturing method and laminate of the present disclosure are not limited to the following examples unless the gist thereof is exceeded.
  • Example 1 An iron thin film was formed on a sapphire substrate by magnetron sputtering to prepare a substrate with an iron thin film [Step A]. The sputtering conditions are shown below.
  • the thickness of the iron thin film on the prepared substrate with iron thin film was 500 nm when measured by the method described above.
  • the prepared substrate with the iron thin film was placed on the susceptor 16 installed in the reactor 14. After heating the substrate with the iron thin film using the heater 17 so that the temperature thereof reached 1033° C., hydrogen gas was supplied as a carrier gas to the gas line 7, the gas line 8, and the gas line 9. Next, only hydrogen gas used as a carrier gas was supplied to the heated substrate with the iron thin film to anneal the iron thin film.
  • diborane which is a boron compound in the container 12
  • hydrogen gas which is a carrier gas
  • a mixed gas of diborane and hydrogen gas ie, a gas containing a boron compound
  • Diborane was supplied for 20 minutes at a flow rate of 0.33 cm 3 /min.
  • the internal pressure of the reactor was set at 30 mbar.
  • ammonia gas which is the nitrogen raw material gas
  • the container 13 is supplied to the gas line 9 through which hydrogen gas, which is the carrier gas, flows.
  • nitrogen raw material gas was supplied from the carrier gas line 3 to the iron thin film coated substrate on which the iron boride layer was formed.
  • boron in the iron boride layer was nitrided [Step C].
  • Ammonia gas was supplied for 100 minutes at a flow rate of 250 cm 3 /min.
  • the internal pressure of the reactor was set at 30 mbar.
  • the temperature of the heater 17 is gradually lowered while flowing hydrogen gas as a carrier gas into the reactor 14, and after reaching room temperature (25° C.), the substrate in the reactor 14 is heated. I took it out.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 650 nm. It was confirmed by X-ray diffraction that the thin film contained Fe 2 B and iron.
  • Example 2 A substrate with an iron thin film having a thickness of 500 nm was prepared in the same manner as in Example 1 [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 60 minutes. was formed [Step B]. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 60 minutes [Step C].
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 661 nm.
  • Example 3 A substrate with an iron thin film having a thickness of 500 nm was prepared in the same manner as in Example 1 [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B].
  • the iron thin film-coated substrate on which the iron boride layer was formed was heated to 1200° C., and ammonia gas was supplied at a flow rate of 970 cm 3 /min for 60 minutes without using hydrogen gas as a carrier gas, and Boron in the iron boride layer was nitrided in the same manner as in Example 1, except that the internal pressure of the reactor was set to 1013 mbar [Step C].
  • the substrate was taken out.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 665 nm.
  • Example 4 A substrate with an iron thin film having a thickness of 250 nm was prepared in the same manner as in Example 1, except that the film formation time was 5 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the iron thin film surface of the iron thin film coated substrate in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes. was formed [Step B]. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 150 cm 3 /min for 50 minutes [Step C].
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 328 nm.
  • Example 5 A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1301 nm.
  • Example 6 A substrate with an iron thin film having a thickness of 1500 nm was prepared in the same manner as in Example 1, except that the film formation time was 30 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.33 cm 3 /min for 40 minutes. was formed [Step B].
  • boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 100 minutes [Step C].
  • the substrate was taken out.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1711 nm.
  • Example 7 A substrate with an iron thin film having a thickness of 1750 nm was prepared in the same manner as in Example 1, except that the film formation time was 35 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 2041 nm.
  • Example 8> A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 60 minutes. was formed [Step B]. Next, the iron boride film substrate on which the iron boride layer was formed was heated to 922° C., and ammonia gas was supplied at a flow rate of 500 cm 3 /min for 60 minutes.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1150 nm.
  • Example 9 A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.33 cm 3 /min for 40 minutes. was formed [Step B]. Next, the iron boride layer was heated to 943° C., and ammonia gas was supplied at a flow rate of 250 cm 3 /min for 200 minutes.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1168 nm.
  • Example 10 A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1072° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1207 nm.
  • Example 11 A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, in the same manner as in Example 1, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate [Step B].
  • the iron thin film-coated substrate on which the iron boride layer was formed was heated to 1200° C., and ammonia gas was supplied at a flow rate of 970 cm 3 /min for 10 minutes without using hydrogen gas as a carrier gas, and Boron in the iron boride layer was nitrided in the same manner as in Example 1, except that the internal pressure of the reactor was set to 1013 mbar [Step C].
  • the substrate was taken out.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1341 nm.
  • ⁇ Comparative example 1> In the same manner as in Example 1, a substrate with an iron thin film having a thickness of 500 nm was prepared. Next, the iron thin film was annealed in the same manner as in Example 1. Next, in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes, Fe 2 B was contained as iron boride on the surface of the iron thin film of the iron thin film-coated substrate. No iron boride layer was formed. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1 except that ammonia gas was supplied at a flow rate of 150 cm 3 /min for 50 minutes.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 3 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 3 B and iron and the hexagonal boron nitride thin film in this laminate was 580 nm. Note that the thin film containing Fe 3 B and iron was a thin film that did not contain Fe 2 B as iron boride.
  • a substrate with an iron thin film having a thickness of 150 nm was prepared in the same manner as in Example 1, except that the film formation time was 3 minutes.
  • the iron thin film was annealed in the same manner as in Example 1.
  • an iron boride layer containing Fe 2 B was formed on the iron thin film surface of the iron thin film coated substrate in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes. was formed.
  • the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 50 minutes at a flow rate of 150 cm 3 /min.
  • the boron in the iron oxide layer was nitrided.
  • the substrate was taken out.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 282 nm.
  • a substrate with an iron thin film having a thickness of 2000 nm was prepared in the same manner as in Example 1 except that the film formation time was 40 minutes.
  • the iron thin film was annealed in the same manner as in Example 1.
  • an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed.
  • boron in the iron boride layer was nitrided in the same manner as in Example 1 except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 100 minutes.
  • the substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers.
  • the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 2249 nm.
  • the half width of the diffraction peak of hexagonal boron nitride (002) in the obtained X-ray diffraction pattern was calculated as the distance between the inflection points on both sides of the curve leading to the peak maximum value using the spreadsheet software "Excel (registered trademark)”. ” was used. Then, based on the obtained half-width value, the crystallinity of hexagonal boron nitride was evaluated according to the following evaluation criteria. The results are shown in Tables 1, 3 and 4. Evaluation "A" is a practically acceptable level.
  • the reason why we set the half-width of the diffraction peak to be 0.4° or less as a practical allowable range is that the cross-section of a hexagonal boron nitride thin film whose half-width of the diffraction peak is around 0.4° was examined using a transmission electron microscope (TEM). When the half-width of the diffraction peak was 0.4° or less, good lamination in the C direction was confirmed, whereas when the half-width of the diffraction peak exceeded 0.4°, the laminated structure This is based on the fact that it was confirmed that the stacking structure in the C direction was not maintained.
  • TEM transmission electron microscope
  • the uniformity of a hexagonal boron nitride thin film is determined by the area ratio of the exposed portion of the substrate caused by agglomeration of iron boride, iron, etc., and hexagonal boron nitride contained in the iron boride layer. was evaluated as an index. This is based on the fact that when iron boride, iron, etc., hexagonal boron nitride, etc. contained in the iron boride layer aggregate, the uniformity of the hexagonal boron nitride thin film is impaired.
  • a transmitted image of the laminate obtained above (ie, the substrate on which the hexagonal boron nitride thin film was formed) was photographed using an optical microscope.
  • the photographing conditions were a shutter speed of 1/25 second, ISO sensitivity of 800, and magnification of 200 times.
  • the ratio of the area of the exposed area of the substrate to the area of the photographed area (also known as the "exposed area ratio") is calculated. ) was calculated based on the following formula. The obtained value was rounded to the second decimal place and used for evaluation.
  • Percentage of exposed area (%) [Area of the exposed part of the board/Area of the photographed part] x 100...Formula
  • Image processing and calculation of the proportion of the exposed area were performed using "ImageJ", which is image processing software developed by the National Institutes of Health (NIH). Binarization was performed by converting the transmitted image into 8-bit grayscale, and then setting Threshold to Auto. The uniformity of the hexagonal boron nitride thin film was then evaluated based on the proportion of the exposed portion of the substrate and according to the following evaluation criteria. The results are shown in Tables 1, 3 and 4. Evaluation "A" is a practically acceptable level.
  • FIG. 2 an example of an optical microscope transmission image of a laminate with an evaluation result of A is shown in FIG. 2, and an example of an optical microscope transmission image of a laminate with an evaluation result of B is shown in FIG.
  • the white portions in FIGS. 2 and 3 are portions where the substrate is exposed due to aggregation of iron boride, iron, etc., hexagonal boron nitride, etc. contained in the iron boride layer (so-called exposed portions).
  • Example 2 shown in Table 3 is described for comparison with other Examples and Comparative Examples, and is the same as Example 2 shown in Table 1 already described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention provides a production method for a hexagonal boron nitride thin film that involves a step A for preparing an iron thin film–coated substrate that includes a substrate and an iron thin film that is provided on the substrate and has a film thickness of 200–1800 nm, a step B for supplying a gas that includes a boron compound to the iron thin film–coated substrate to form an iron boride layer that includes Fe2B on the surface of the iron thin film of the iron thin film–coated substrate, and a step C for supplying at least one type of gas selected from the group that consists of nitrogen gas and gases that include a nitrogen compound to the iron thin film–coated substrate on which the iron boride layer has been formed to nitride the boron in the iron boride layer. The present invention also provides a laminate.

Description

六方晶窒化ホウ素薄膜の製造方法及び積層体Manufacturing method and laminate of hexagonal boron nitride thin film
 本開示は、六方晶窒化ホウ素薄膜の製造方法及び積層体に関する。 The present disclosure relates to a method for manufacturing a hexagonal boron nitride thin film and a laminate.
 六方晶窒化ホウ素薄膜は、その特性から多くの応用分野で研究が進展し、紫外領域で発光する発光ダイオード及び半導体レーザー、広帯域の受光素子、グラフェンを代表とする2次元半導体の特性を最大限に引き出す絶縁膜、窒化ガリウム等の自立基板製造時に使用される剥離層などへの適用が期待されている。 Due to its properties, research on hexagonal boron nitride thin films has progressed in many application fields, and has been used to maximize the properties of light-emitting diodes and semiconductor lasers that emit light in the ultraviolet region, broadband light-receiving devices, and two-dimensional semiconductors such as graphene. It is expected to be applied to pull-out insulating films and release layers used in the production of free-standing substrates such as gallium nitride.
 六方晶窒化ホウ素薄膜の製造方法については、多くの提案がなされており、例えば、高温高圧条件で原料を溶解させたフラックスから窒化ホウ素を析出させる高温高圧法、及び基板表面に原料ガスを接触させて窒化ホウ素を堆積させる化学気相堆積(CVD)法がある。高温高圧法は、例えば、グラフェントランジスタの電界効果移動度を飛躍的に向上させる六方晶窒化ホウ素薄膜を製造できるものの、高温高圧法による結晶成長では、応用に必要な大面積化が困難である。その点、CVD法は、大面積の薄膜を得るのに適した方法であることから、近年、CVD法による新たな六方晶窒化ホウ素薄膜の製造方法の開発が盛んに行われている。CVD法により六方晶窒化ホウ素薄膜を製造する方法としては、大きく分けて2種類の方法がある。1つは、アンモニアボラン、ボラジン等を原料として用い、基板上に配置した金属触媒上で上記原料を脱水素反応させることにより、上記基板上に六方晶窒化ホウ素を成長させる方法であり、もう1つは、有機金属化学気相成長(MOCVD)法のように、トリエチルボラン等のホウ素を含む原料とアンモニア等の窒素を含む原料とを別々に供給して基板上で反応させることにより、上記基板上で六方晶窒化ホウ素を成長させる方法である(例えば、特許第4358143号公報参照)。また、近年では、新たな方法として、気相、固相及び液相という物質の三態を利用して窒化ホウ素の結晶を成長させるVapor-Liquid-solid薄膜成長(VLS)法も報告されている(例えば、Zhiyuan Shi, Xiujun Wang, Qingtian Li, Peng Yang, Guangyuan Lu, Ren Jiang, Huishan Wang, Chao Zhang, Chunxiao Cong, Ahi Liu, Tianru Wu, Haomin Wang, Qingkai Yu, and Xiaoming Xie, “Vapor-liquid-solid growth of large-areamultilayer hexagonal boron nitride on dielectric substrates”,NATURE COMMUNICATIONS, volume 11, Article number. 849(2020), pp. 1-8.参照)。 Many proposals have been made regarding methods for producing hexagonal boron nitride thin films, including a high-temperature, high-pressure method in which boron nitride is precipitated from a flux in which raw materials are dissolved under high-temperature, high-pressure conditions, and a method in which boron nitride is deposited by bringing a raw material gas into contact with the substrate surface. There is a chemical vapor deposition (CVD) method for depositing boron nitride. Although high-temperature, high-pressure methods can produce, for example, hexagonal boron nitride thin films that dramatically improve the field-effect mobility of graphene transistors, crystal growth using high-temperature, high-pressure methods makes it difficult to grow the area necessary for application. In this respect, since the CVD method is suitable for obtaining a thin film with a large area, new methods for manufacturing hexagonal boron nitride thin films using the CVD method have been actively developed in recent years. There are roughly two types of methods for manufacturing hexagonal boron nitride thin films using the CVD method. One is a method of growing hexagonal boron nitride on the substrate by using ammonia borane, borazine, etc. as a raw material and dehydrogenating the raw material on a metal catalyst placed on the substrate. First, as in the metal organic chemical vapor deposition (MOCVD) method, a raw material containing boron such as triethylborane and a raw material containing nitrogen such as ammonia are separately supplied and reacted on the substrate. This is a method of growing hexagonal boron nitride on the substrate (see, for example, Japanese Patent No. 4358143). Additionally, in recent years, a new method, Vapor-Liquid-Solid Thin Film Growth (VLS), has been reported in which boron nitride crystals are grown using three states of matter: gas phase, solid phase, and liquid phase. (For example, Zhiyuan Shi, Xiujun Wang, Qingtian Li, Peng Yang, Guangyuan Lu, Ren Jiang, Huishan Wang, Chao Zhang, Chunxiao Cong, Ahi Liu, Tianru Wu, Haomin Wang, Qingkai Yu, and Xiaoming Xie, “Vapor -liquid -solid growth of large-areamultilayer hexagonal boron nitride on dielectric substrates”, NATURE COMMUNICATIONS, volume 11, Article number. 849(2020), pp. 1-8.).
 近年、六方晶窒化ホウ素薄膜の電子材料としての応用にますます期待が高まっており、より高品質の六方晶窒化ホウ素薄膜を製造できる方法の開発が求められている。金属触媒の作用を利用する従来のCVD法によれば、比較的高い結晶性を有する六方晶窒化ホウ素の薄膜が得られるものの、析出した六方晶窒化ホウ素により金属触媒が覆われることで触媒作用が低下するため、複数の層を有する六方晶窒化ホウ素薄膜を得ることが難しい。六方晶窒化ホウ素薄膜の膜厚が薄いと、例えば、グラフェントランジスタに適用した場合に移動度を劣化させる要因となるフォノン散乱、荷電不純物の界面トラップ等を十分に防止できない。一方、金属触媒の作用を必要としない従来のMOCVD法によれば、複数の層を有する六方晶窒化ホウ素薄膜を得ることができ、六方晶窒化ホウ素薄膜の膜厚を厚くできる。しかし、六方晶窒化ホウ素には、結晶を規則的に成長させ得るダングリングボンドが存在しないため、従来のMOCVD法のように六方晶窒化ホウ素の層を積み重ねると、徐々に六方晶窒化ホウ素の結晶性が悪くなり、規則正しい層構造が失われてしまい、六方晶窒化ホウ素薄膜の特性(例えば、グラフェントランジスタの移動度を向上させる性質)を引き出すことが困難となる。このため、電子材料等への応用に適した、結晶性の高い六方晶窒化ホウ素の薄膜を製造できる方法が求められている。また、金属の薄膜を形成すると、金属が凝集し、薄膜の平坦さが損なわれることがあり、このような現象は、六方晶窒化ホウ素の薄膜の形成においても生じ得る。このため、六方晶窒化ホウ素薄膜の製造方法には、六方晶窒化ホウ素薄膜を高い均一性で製造できることも求められる。しかしながら、従来の六方晶窒化ホウ素薄膜の製造方法には、六方晶窒化ホウ素の結晶性の向上及び六方晶窒化ホウ素薄膜の均一性の両方を高めることについての着目はない。 In recent years, expectations have been increasing for the application of hexagonal boron nitride thin films as electronic materials, and there is a need to develop a method that can produce higher quality hexagonal boron nitride thin films. According to the conventional CVD method that utilizes the action of a metal catalyst, a thin film of hexagonal boron nitride with relatively high crystallinity can be obtained, but the metal catalyst is covered with the precipitated hexagonal boron nitride, which reduces the catalytic action. This makes it difficult to obtain hexagonal boron nitride thin films with multiple layers. If the hexagonal boron nitride thin film is thin, for example, it cannot sufficiently prevent phonon scattering, interface trapping of charged impurities, etc., which are factors that degrade mobility when applied to a graphene transistor. On the other hand, according to the conventional MOCVD method which does not require the action of a metal catalyst, a hexagonal boron nitride thin film having a plurality of layers can be obtained, and the thickness of the hexagonal boron nitride thin film can be increased. However, hexagonal boron nitride does not have dangling bonds that allow crystals to grow regularly, so when layers of hexagonal boron nitride are stacked as in the conventional MOCVD method, the hexagonal boron nitride crystals gradually grow. The properties of the hexagonal boron nitride thin film deteriorate, and the regular layer structure is lost, making it difficult to bring out the properties of the hexagonal boron nitride thin film (for example, properties that improve the mobility of graphene transistors). Therefore, there is a need for a method that can produce a highly crystalline hexagonal boron nitride thin film suitable for application to electronic materials and the like. Furthermore, when a thin film of metal is formed, the metal may aggregate and the flatness of the thin film may be impaired, and such a phenomenon may also occur in the formation of a thin film of hexagonal boron nitride. Therefore, the method for producing a hexagonal boron nitride thin film is also required to be able to produce a hexagonal boron nitride thin film with high uniformity. However, conventional methods for producing hexagonal boron nitride thin films do not focus on improving both the crystallinity of hexagonal boron nitride and the uniformity of the hexagonal boron nitride thin film.
 本開示は、上記事情に鑑みてなされたものである。
 本開示の一実施形態が解決しようとする課題は、結晶性の高い六方晶窒化ホウ素の薄膜を高い均一性で製造できる六方晶窒化ホウ素薄膜の製造方法を提供することにある。
 本開示の他の実施形態が解決しようとする課題は、六方晶窒化ホウ素の結晶性及び膜の均一性が高い六方晶窒化ホウ素薄膜を備えた積層体を提供することにある。
The present disclosure has been made in view of the above circumstances.
An object of an embodiment of the present disclosure is to provide a method for producing a hexagonal boron nitride thin film that can produce a highly crystalline hexagonal boron nitride thin film with high uniformity.
A problem to be solved by other embodiments of the present disclosure is to provide a laminate including a hexagonal boron nitride thin film with high crystallinity and film uniformity.
 上記課題を解決するための具体的手段には、以下の態様が含まれる。
 [1] 基板と、上記基板上に設けられ、膜厚が200nm以上1800nm以下の範囲である鉄薄膜と、を有する鉄薄膜付き基板を準備する工程Aと、
 上記鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給することにより、上記鉄薄膜付き基板の上記鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する工程Bと、
 上記ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素ガス及び窒素化合物を含むガスからなる群より選ばれる少なくとも1種のガスを供給することにより、上記ホウ化鉄層中のホウ素を窒化させる工程Cと、
を含む、六方晶窒化ホウ素薄膜の製造方法。
 [2] 上記工程Cでは、上記ホウ化鉄層が形成された鉄薄膜付き基板の温度を900℃以上1200℃以下の範囲にする、[1]に記載の六方晶窒化ホウ素薄膜の製造方法。
 [3] 上記基板は、サファイア基板である、[1]又は[2]に記載の六方晶窒化ホウ素薄膜の製造方法。
 [4] 上記ホウ素化合物は、ジボランである、[1]~[3]のいずれか1つに記載の六方晶窒化ホウ素薄膜の製造方法。
 [5] 上記窒素化合物は、アンモニアである、[1]~[4]のいずれか1つに記載の六方晶窒化ホウ素薄膜の製造方法。
 [6] 基板と、
 FeB及び鉄を含む薄膜と、
 複数の層を有する六方晶窒化ホウ素薄膜と、
を有し、
 上記FeB及び鉄を含む薄膜と上記六方晶窒化ホウ素薄膜との合計膜厚が、300nm以上2100nm以下の範囲である、積層体。
 [7] 上記基板は、サファイア基板である、[6]に記載の積層体。
Specific means for solving the above problems include the following aspects.
[1] Step A of preparing a substrate with an iron thin film, which includes a substrate and an iron thin film provided on the substrate and having a film thickness in a range of 200 nm or more and 1800 nm or less;
Step B of forming an iron boride layer containing Fe 2 B on the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the iron thin film-coated substrate;
Boron in the iron boride layer is removed by supplying at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound to the iron thin film-coated substrate on which the iron boride layer is formed. nitriding step C;
A method for producing a hexagonal boron nitride thin film, comprising:
[2] The method for producing a hexagonal boron nitride thin film according to [1], wherein in the step C, the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is in a range of 900° C. or more and 1200° C. or less.
[3] The method for producing a hexagonal boron nitride thin film according to [1] or [2], wherein the substrate is a sapphire substrate.
[4] The method for producing a hexagonal boron nitride thin film according to any one of [1] to [3], wherein the boron compound is diborane.
[5] The method for producing a hexagonal boron nitride thin film according to any one of [1] to [4], wherein the nitrogen compound is ammonia.
[6] A substrate,
A thin film containing Fe 2 B and iron,
a hexagonal boron nitride thin film having multiple layers;
has
A laminate, wherein the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film is in the range of 300 nm or more and 2100 nm or less.
[7] The laminate according to [6], wherein the substrate is a sapphire substrate.
 本開示の一実施形態によれば、結晶性の高い六方晶窒化ホウ素の薄膜を高い均一性で製造できる六方晶窒化ホウ素薄膜の製造方法が提供される。
 本開示の他の実施形態によれば、六方晶窒化ホウ素の結晶性及び膜の均一性が高い六方晶窒化ホウ素薄膜を備えた積層体が提供される。
According to an embodiment of the present disclosure, there is provided a method for manufacturing a hexagonal boron nitride thin film that can manufacture a highly crystalline hexagonal boron nitride thin film with high uniformity.
According to another embodiment of the present disclosure, a laminate including a hexagonal boron nitride thin film with high hexagonal boron nitride crystallinity and film uniformity is provided.
本開示の製造方法に好適に用いられる装置の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of an apparatus suitably used in the manufacturing method of the present disclosure. 六方晶窒化ホウ素薄膜の均一性の評価結果がAである積層体の光学顕微鏡の透過像の一例である。This is an example of an optical microscope transmission image of a laminate in which the uniformity evaluation result of the hexagonal boron nitride thin film is A. 六方晶窒化ホウ素薄膜の均一性の評価結果がBである積層体の光学顕微鏡の透過像の一例である。This is an example of an optical microscope transmission image of a laminate whose uniformity evaluation result of the hexagonal boron nitride thin film is B. 鉄薄膜付き基板における鉄薄膜の膜厚と、積層体における基板の露出部の割合との関係を示すグラフである。It is a graph showing the relationship between the film thickness of the iron thin film in a substrate with an iron thin film and the ratio of the exposed portion of the substrate in the laminate.
 以下、本開示に係る六方晶窒化ホウ素薄膜の製造方法及び積層体について、詳細に説明する。以下に記載する要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではなく、本開示の目的の範囲内において、適宜、変更を加えて実施することができる。 Hereinafter, a method for manufacturing a hexagonal boron nitride thin film and a laminate according to the present disclosure will be described in detail. Although the description of the requirements set forth below may be based on representative implementations of this disclosure, this disclosure is not limited to such implementations and is within the scope of this disclosure. can be implemented with appropriate changes.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, a numerical range indicated using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
 本開示において、2つ以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。 In this disclosure, the term "step" is used not only to refer to an independent process, but also to include a process that is not clearly distinguishable from other processes, as long as the intended purpose of the process is achieved. .
[六方晶窒化ホウ素薄膜の製造方法]
 本開示の六方晶窒化ホウ素薄膜の製造方法(以下、単に「本開示の製造方法」ともいう。)は、基板と、上記基板上に設けられ、膜厚が200nm以上1800nm以下の範囲である鉄薄膜と、を有する鉄薄膜付き基板を準備する工程Aと、上記鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給することにより、上記鉄薄膜付き基板の上記鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する工程Bと、上記ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素ガス及び窒素化合物を含むガスからなる群より選ばれる少なくとも1種のガスを供給することにより、上記ホウ化鉄層中のホウ素を窒化させる工程Cと、を含む。
 本開示の製造方法によれば、結晶性の高い六方晶窒化ホウ素の薄膜を高い均一性で製造できる。
[Method for manufacturing hexagonal boron nitride thin film]
The method for producing a hexagonal boron nitride thin film of the present disclosure (hereinafter also simply referred to as "the production method of the present disclosure") includes a substrate, an iron film provided on the substrate, and having a film thickness of 200 nm or more and 1800 nm or less. a step A of preparing an iron thin film-coated substrate having a thin film; and supplying a gas containing a boron compound to the iron thin film-coated substrate, so that Fe is formed on the surface of the iron thin film of the iron thin film-coated substrate. Step B of forming an iron boride layer containing 2 B, and at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound on the iron thin film-coated substrate on which the iron boride layer is formed. and a step C of nitriding boron in the iron boride layer by supplying.
According to the manufacturing method of the present disclosure, a highly crystalline hexagonal boron nitride thin film can be manufactured with high uniformity.
 本開示の製造方法による六方晶窒化ホウ素薄膜の生成機構の詳細は明らかでないが、本発明者らは以下のように推測している。但し、以下の推測は、本開示の製造方法を限定的に解釈するものではなく、一例として説明するものである。 Although the details of the production mechanism of the hexagonal boron nitride thin film by the manufacturing method of the present disclosure are not clear, the present inventors speculate as follows. However, the following speculations are not intended to limit the manufacturing method of the present disclosure, but are explained as an example.
 本開示の製造方法では、準備した鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給することにより、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する。鉄薄膜付き基板に対して、ホウ素化合物を含むガスを供給することで、ホウ素化合物を鉄薄膜の表面で分解させる。分解により生成したホウ素は、鉄薄膜の表面から徐々に内部に入り込み、鉄と反応することでホウ化鉄が生成する。ホウ素化合物は、例えば、鉄薄膜付き基板を加熱することで分解できる。生成するホウ化鉄の種類は、例えば、ホウ素の供給量、鉄薄膜付き基板の温度、鉄薄膜の膜厚等の条件により制御できる。ホウ化鉄の種類には、例えば、FeB、FeB及びFeBがあるが、本開示の製造方法では、ホウ化鉄層がFeBを含むことで、最終的に結晶性の高い六方晶窒化ホウ素の薄膜が得られる傾向がある。また、本開示の製造方法では、ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素ガス及び窒素化合物を含むガスからなる群より選ばれる少なくとも1種のガス(以下、「窒素原料ガス」ともいう。)を供給することにより、ホウ化鉄層中のホウ素を窒化させる。ホウ化鉄層が形成された鉄薄膜付き基板に対して、窒素原料ガスを供給することで、窒素原料ガスをホウ化鉄層の表面で分解させる。窒素原料ガスは、例えば、ホウ化鉄層が形成された鉄薄膜付き基板を加熱することで分解できる。分解により生成した窒素は、ホウ化鉄層の表面から徐々に内部に入り込み、ホウ化鉄層中のホウ素を窒化させることで六方晶窒化ホウ素が生成する。つまり、本開示の製造方法は、従来のMOCVD法のような六方晶窒化ホウ素の層を積み重ねる方法とは区別される。 In the manufacturing method of the present disclosure, an iron boride layer containing Fe 2 B is formed on the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the prepared iron thin film-coated substrate. do. By supplying a gas containing a boron compound to a substrate with an iron thin film, the boron compound is decomposed on the surface of the iron thin film. The boron produced by decomposition gradually enters the interior of the iron thin film from the surface and reacts with iron to produce iron boride. A boron compound can be decomposed, for example, by heating a substrate with an iron thin film. The type of iron boride produced can be controlled by conditions such as the amount of boron supplied, the temperature of the substrate with the iron thin film, and the thickness of the iron thin film. Types of iron borides include, for example, Fe 3 B, Fe 2 B, and FeB, but in the manufacturing method of the present disclosure, the iron boride layer contains Fe 2 B, so that the final layer has high crystallinity. Thin films of hexagonal boron nitride tend to be obtained. Further, in the manufacturing method of the present disclosure, at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound (hereinafter referred to as "nitrogen source gas ), the boron in the iron boride layer is nitrided. By supplying nitrogen source gas to the iron thin film-coated substrate on which the iron boride layer is formed, the nitrogen source gas is decomposed on the surface of the iron boride layer. The nitrogen source gas can be decomposed, for example, by heating a substrate with an iron thin film on which an iron boride layer is formed. Nitrogen generated by decomposition gradually enters the interior of the iron boride layer from the surface and nitrides boron in the iron boride layer, thereby generating hexagonal boron nitride. That is, the manufacturing method of the present disclosure is distinguished from methods of stacking layers of hexagonal boron nitride, such as conventional MOCVD methods.
 本開示の製造方法において、六方晶窒化ホウ素薄膜をどこに生成させるかは、例えば、工程Cにおける基板温度(換言すると成膜温度)、原料の供給方法等により制御できる。例えば、成膜温度を低くすると、ホウ化鉄層の基板とは反対の面側に六方晶窒化ホウ素薄膜が生成される。すなわち、ホウ化鉄層中のホウ素及び窒素により、ホウ化鉄層の基板とは反対側の面上に、六方晶窒化ホウ素薄膜が生成され、この生成された六方晶窒化ホウ素薄膜とホウ化鉄層との界面に、ホウ化鉄層からホウ素及び窒素が供給されることで、六方晶窒化ホウ素薄膜が連続的に生成される。なお、この生成機構は、六方晶窒化ホウ素上に新たな六方晶窒化ホウ素を成長させる従来の機構とは異なり、六方晶窒化ホウ素が多結晶化することはなく、規則正しい層構造を形成する。例えば、成膜温度を高くすると、ホウ化鉄層の内部までホウ素及び窒素が行き渡るため、ホウ化鉄層の基板とは反対の面側のみならず、ホウ化鉄層の基板側の面側(即ち、基板とホウ化鉄層との間)にも六方晶窒化ホウ素薄膜が生成される。さらに基板の温度が上がってホウ化鉄が融解した場合も、六方晶窒化ホウ素薄膜は、ホウ化鉄層の基板とは反対の面側及びホウ化鉄層の基板側の面側に生成されるが、この場合、ホウ化鉄層が融解しているため、窒化ホウ素がホウ化鉄との相互作用を受け難く、より平坦な六方晶窒化ホウ素薄膜が得られる。 In the manufacturing method of the present disclosure, where the hexagonal boron nitride thin film is generated can be controlled by, for example, the substrate temperature in step C (in other words, the film formation temperature), the raw material supply method, etc. For example, when the deposition temperature is lowered, a hexagonal boron nitride thin film is generated on the side of the iron boride layer opposite to the substrate. That is, due to the boron and nitrogen in the iron boride layer, a hexagonal boron nitride thin film is formed on the surface of the iron boride layer opposite to the substrate, and the formed hexagonal boron nitride thin film and iron boride By supplying boron and nitrogen from the iron boride layer to the interface with the iron boron layer, a hexagonal boron nitride thin film is continuously generated. Note that this generation mechanism differs from the conventional mechanism in which new hexagonal boron nitride is grown on hexagonal boron nitride, and hexagonal boron nitride does not become polycrystalline but forms a regular layer structure. For example, when the film-forming temperature is raised, boron and nitrogen spread to the inside of the iron boride layer, so not only the side of the iron boride layer opposite to the substrate, but also the side of the iron boride layer facing the substrate ( That is, a hexagonal boron nitride thin film is also formed between the substrate and the iron boride layer. Furthermore, when the temperature of the substrate rises and the iron boride melts, a hexagonal boron nitride thin film is formed on the side of the iron boride layer opposite to the substrate and on the side of the iron boride layer facing the substrate. However, in this case, since the iron boride layer is melted, boron nitride is less likely to interact with iron boride, and a flatter hexagonal boron nitride thin film can be obtained.
〔工程A〕
 工程Aは、基板と、上記基板上に設けられ、膜厚が200nm以上1800nm以下の範囲である鉄薄膜と、を有する鉄薄膜付き基板を準備する工程である。
 「鉄薄膜付き基板を準備する」とは、鉄薄膜付き基板を使用可能な状態にすることを意味し、予め製造された鉄薄膜付き基板を入手により準備すること、及び、鉄薄膜付き基板を製造することを包含する。すなわち、本開示の製造方法において使用される鉄薄膜付き基板は、予め製造された鉄薄膜付き基板であってもよく、工程Aにおいて製造された鉄薄膜付き基板であってもよい。
[Process A]
Step A is a step of preparing a substrate with an iron thin film, which includes a substrate and an iron thin film provided on the substrate and having a film thickness in a range of 200 nm or more and 1800 nm or less.
"Preparing a substrate with an iron thin film" means to prepare a substrate with an iron thin film in a usable state, and includes preparing a substrate with an iron thin film manufactured in advance by obtaining it, and preparing a substrate with an iron thin film. It includes manufacturing. That is, the substrate with an iron thin film used in the manufacturing method of the present disclosure may be a substrate with an iron thin film manufactured in advance, or may be a substrate with an iron thin film manufactured in Step A.
 本開示における鉄薄膜付き基板は、基板上に、膜厚が200nm以上1800nm以下の範囲である鉄薄膜を形成することにより製造できる。以下に、本開示における鉄薄膜付き基板の製造方法の好ましい態様について説明する。 The substrate with an iron thin film in the present disclosure can be manufactured by forming an iron thin film having a thickness in the range of 200 nm or more and 1800 nm or less on the substrate. Preferred embodiments of the method for manufacturing a substrate with an iron thin film according to the present disclosure will be described below.
 基板の材料は、例えば、融点、熱分解性、還元雰囲気下での安定性等を考慮し、適宜選択することが好ましい。
 基板の材料としては、例えば、サファイア(Al)、シリコン(Si)、二酸化ケイ素(SiO)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、スピネル(MgAl)、酸化マグネシウム(MgO)、ヒ化ガリウム(GaAs)、リン化ガリウム(GaP)、及びネオジムガレート(NdGaO)が挙げられる。
 積層する鉄の面方位を揃える観点から、基板は、単結晶基板であることが好ましい。また、積層する鉄及び生成する六方晶窒化ホウ素との相性(例えば、格子整合性)を考慮すると、基板は、サファイア基板、窒化アルミニウム基板、又は炭化ケイ素基板であることがより好ましく、サファイア基板が更に好ましい。
It is preferable to select the material of the substrate as appropriate, taking into consideration, for example, melting point, thermal decomposition properties, stability under a reducing atmosphere, and the like.
Examples of substrate materials include sapphire (Al 2 O 3 ), silicon (Si), silicon dioxide (SiO 2 ), aluminum nitride (AlN), silicon carbide (SiC), spinel (MgAl 2 O 4 ), and magnesium oxide. (MgO), gallium arsenide (GaAs), gallium phosphide (GaP), and neodymium gallate (NdGaO 3 ).
From the viewpoint of aligning the plane orientations of the laminated iron, the substrate is preferably a single crystal substrate. Furthermore, in consideration of the compatibility (for example, lattice matching) between the iron to be laminated and the hexagonal boron nitride to be produced, the substrate is more preferably a sapphire substrate, an aluminum nitride substrate, or a silicon carbide substrate. More preferred.
 基板の厚さは、特に限定されないが、一般には、200μm~1000μmであり、300μm~800μmであることが好ましい。 The thickness of the substrate is not particularly limited, but is generally 200 μm to 1000 μm, preferably 300 μm to 800 μm.
 鉄薄膜は、基板の片面のみに形成してもよく、基板の両面に形成してもよい。 The iron thin film may be formed on only one side of the substrate, or may be formed on both sides of the substrate.
 鉄薄膜を形成する際の基板の温度は、特に限定されないが、例えば、25℃~300℃であることが好ましい。
 基板を加熱する手段としては、特に限定されず、例えば、ヒーターが挙げられる。
The temperature of the substrate when forming the iron thin film is not particularly limited, but is preferably 25° C. to 300° C., for example.
The means for heating the substrate is not particularly limited, and examples thereof include a heater.
 基板上に形成する鉄薄膜の膜厚は、200nm以上1800nm以下の範囲である。
 鉄薄膜の膜厚が上記範囲内であると、六方晶窒化ホウ素の凝集が抑制され、均一性の高い六方晶窒化ホウ素薄膜を製造し得る。
 鉄薄膜の膜厚は、250nm以上1750nm以下の範囲であることが好ましく、500nm以上1750nm以下の範囲であることがより好ましく、500nm以上1500nm以下の範囲であることが更に好ましく、500nm以上1000nm以下の範囲であることが特に好ましい。
The thickness of the iron thin film formed on the substrate is in the range of 200 nm or more and 1800 nm or less.
When the thickness of the iron thin film is within the above range, agglomeration of hexagonal boron nitride is suppressed, and a highly uniform hexagonal boron nitride thin film can be manufactured.
The thickness of the iron thin film is preferably in the range of 250 nm or more and 1750 nm or less, more preferably 500 nm or more and 1750 nm or less, even more preferably 500 nm or more and 1500 nm or less, and 500 nm or more and 1000 nm or less. It is particularly preferable that the range is within the range.
 本開示における「鉄薄膜の膜厚」は、鉄薄膜の平均膜厚を意味する。
 鉄薄膜の平均膜厚は、別途、準備した基板を用いて鉄薄膜を形成し、以下の方法により求められる値である。
 マスク(例:レジスト、ポリイミドテープ等)を装着した基板(以下、「測定用基板」ともいう。)を準備する。準備した測定用基板上に、鉄薄膜を形成した後、マスクを剥離する。鉄薄膜の表面とマスクを剥離した基板の表面との間の段差を、段差計を用いて測定する。無作為に選択した5箇所における段差の測定値の算術平均値を求め、得られた値を鉄薄膜の膜厚とする。
The "thickness of the iron thin film" in the present disclosure means the average thickness of the iron thin film.
The average film thickness of the iron thin film is a value obtained by forming an iron thin film using a separately prepared substrate and using the following method.
A substrate (hereinafter also referred to as a "measurement substrate") equipped with a mask (eg, resist, polyimide tape, etc.) is prepared. After forming an iron thin film on the prepared measurement substrate, the mask is peeled off. The level difference between the surface of the iron thin film and the surface of the substrate from which the mask has been removed is measured using a level difference meter. The arithmetic mean value of the measured values of the step difference at five randomly selected locations is determined, and the obtained value is taken as the thickness of the iron thin film.
 鉄薄膜の膜厚は、例えば、鉄薄膜をスパッタリング法により形成する場合には、印加電力、成膜時間等により制御できる。例えば、印加電力を高くすると、鉄薄膜の膜厚は厚くなり、印加電力を低くすると、鉄薄膜の膜厚は薄くなる。また、例えば、成膜時間を長くすると、鉄薄膜は厚くなり、成膜時間を短くすると、鉄薄膜は薄くなる。
 なお、印加電圧については、鉄薄膜の表面粗さに影響を及ぼす場合がある点も考慮の上、最適な条件を適宜選択することが好ましい。
The thickness of the iron thin film can be controlled by the applied power, film formation time, etc. when forming the iron thin film by sputtering, for example. For example, when the applied power is increased, the thickness of the iron thin film becomes thicker, and when the applied power is lowered, the thickness of the iron thin film becomes thinner. Further, for example, when the film formation time is increased, the iron thin film becomes thicker, and when the film formation time is shortened, the iron thin film becomes thinner.
Regarding the applied voltage, it is preferable to appropriately select optimal conditions, taking into account that it may affect the surface roughness of the iron thin film.
 鉄薄膜の形成方法としては、例えば、スパッタリング法及び真空蒸着法を適用できる。
 広い面積の基板上に均一性の高い鉄薄膜を形成できる観点から、鉄薄膜の形成方法は、スパッタリング法であることが好ましい。また、形成される鉄薄膜の純度を考慮すると、鉄薄膜の形成方法は、マグネトロンスパッタリング法であることがより好ましい。
 マグネトロンスパッタリング法における方式は、RF(Radio Frequency)マグネトロンスパッタ方式であってもよく、DC(Direct Current)マグネトロンスパッタ方式であってもよいが、DCマグネトロンスパッタ方式であることが好ましい。
As a method for forming the iron thin film, for example, a sputtering method and a vacuum evaporation method can be applied.
From the viewpoint of being able to form a highly uniform iron thin film on a wide-area substrate, the method for forming the iron thin film is preferably a sputtering method. Further, in consideration of the purity of the formed iron thin film, it is more preferable that the method for forming the iron thin film is a magnetron sputtering method.
The magnetron sputtering method may be an RF (Radio Frequency) magnetron sputtering method or a DC (Direct Current) magnetron sputtering method, but a DC magnetron sputtering method is preferable.
 鉄薄膜の形成方法がマグネトロンスパッタリング法である場合、スパッタリング条件は、例えば、所望とする鉄薄膜の膜厚に応じて、適宜設定される。
 成膜雰囲気は、例えば、アルゴンガスであることが好ましい。
 成膜圧力は、例えば、0.1Pa~10Paであることが好ましい。
 成膜基板温度は、例えば、25℃~300℃であることが好ましい。
 印加電圧は、例えば、500W~6000Wであることが好ましい。
When the method for forming the iron thin film is magnetron sputtering, the sputtering conditions are appropriately set, for example, depending on the desired thickness of the iron thin film.
The film-forming atmosphere is preferably argon gas, for example.
The film forming pressure is preferably 0.1 Pa to 10 Pa, for example.
The temperature of the film-forming substrate is preferably 25° C. to 300° C., for example.
The applied voltage is preferably 500W to 6000W, for example.
〔工程B〕
 工程Bは、工程Aにて準備した鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給することにより、上記鉄薄膜付き基板の上記鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する工程である。
 鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給すると、鉄薄膜の鉄がホウ化され、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層が形成される。
[Process B]
In step B, iron boride containing Fe 2 B is added onto the surface of the iron thin film of the iron thin film-coated substrate by supplying a gas containing a boron compound to the iron thin film-coated substrate prepared in step A. This is the process of forming layers.
When a gas containing a boron compound is supplied to a substrate with an iron thin film, the iron in the iron thin film is borated, and an iron boride layer containing Fe 2 B is formed on the surface of the iron thin film of the iron thin film on the substrate. .
 鉄薄膜付き基板に供給するガスは、ホウ素化合物を含む。
 ホウ素化合物としては、例えば、トリメチルボラン(CB)、トリエチルボラン(C15B)等の有機ホウ素化合物;三塩化ホウ素(BCl)等のホウ素のハロゲン化物;及びモノボラン(BH)、ジボラン(B)等のホウ素の水素化物が挙げられる。
 中でも、ホウ素化合物としては、ホウ素のハロゲン化物又はホウ素の水素化物が好ましく、ジボランがより好ましい。これらのホウ素化合物は、分解時に炭素が生成しないため、最終的に得られる六方晶窒化ホウ素に炭素が混入するという懸念がない点において、好適である。
The gas supplied to the substrate with the iron thin film contains a boron compound.
Examples of boron compounds include organic boron compounds such as trimethylborane (C 3 H 9 B) and triethyl borane (C 6 H 15 B); boron halides such as boron trichloride (BCl 3 ); and monoborane (BH 3 ), and boron hydrides such as diborane (B 2 H 6 ).
Among these, as the boron compound, a boron halide or a boron hydride is preferable, and diborane is more preferable. These boron compounds are suitable because they do not produce carbon during decomposition, and therefore there is no concern that carbon will be mixed into the hexagonal boron nitride finally obtained.
 鉄薄膜付き基板に供給するガスは、ホウ素化合物が気体である場合には、気体のホウ素化合物自体であってもよく、ホウ素化合物が液体である場合には、液体のホウ素化合物を気化したものであってもよい。本開示では、気体のホウ素化合物自体及び液体のホウ素化合物を気化したものを「ホウ素化合物ガス」と総称する場合がある。
 ホウ素化合物が液体である場合、液体のホウ素化合物を気化する方法は、特に限定されないが、例えば、バブリング方式が好適である。バブリング方式では、キャリアガスを用いて、タンク内の液体のホウ素化合物をバブリングすることにより気化させる。
When the boron compound is a gas, the gas supplied to the substrate with the iron thin film may be the gaseous boron compound itself, and when the boron compound is a liquid, the gas may be a gas obtained by vaporizing the liquid boron compound. There may be. In the present disclosure, the gaseous boron compound itself and the vaporized liquid boron compound may be collectively referred to as "boron compound gas."
When the boron compound is a liquid, the method of vaporizing the liquid boron compound is not particularly limited, but, for example, a bubbling method is suitable. In the bubbling method, a liquid boron compound in a tank is bubbled using a carrier gas to vaporize it.
 鉄薄膜付き基板に供給するガスは、例えば、操作性の観点から、ホウ素化合物ガス以外にキャリアガスを含むことが好ましい。
 キャリアガスとしては、水素ガス、又は、水素ガスと不活性ガスとの混合ガスが好ましい。
 キャリアガスに水素ガスが含まれていると、ホウ素粒子が発生し難くなるため、良好な品質の膜が得られやすい傾向がある。
 水素ガスと不活性ガスとの混合ガスとしては、水素ガスとアルゴンガスとの混合ガスが好ましい。
The gas supplied to the iron thin film-coated substrate preferably contains a carrier gas in addition to the boron compound gas, for example, from the viewpoint of operability.
As the carrier gas, hydrogen gas or a mixed gas of hydrogen gas and an inert gas is preferable.
When hydrogen gas is included in the carrier gas, boron particles are less likely to be generated, so a film of good quality tends to be obtained.
The mixed gas of hydrogen gas and inert gas is preferably a mixed gas of hydrogen gas and argon gas.
 ホウ素化合物ガスの供給量は、特に限定されず、例えば、所望とするホウ化鉄層中のホウ化鉄の組成、及び所望とする六方晶窒化ホウ素薄膜の膜厚に応じて、適宜設定される。
 ホウ素化合物ガスの供給量は、例えば、ホウ素化合物ガスの流量及び供給時間により制御できる。
 ホウ素化合物ガスの流量は、例えば、0.05cm/min~1cm/minであることが好ましく、0.1cm/min~0.7cm/minであることがより好ましい。
 ホウ素化合物ガスの供給時間は、例えば、10分間~80分間であることが好ましく、20分間~60分間であることがより好ましい。
The supply amount of the boron compound gas is not particularly limited, and is set appropriately depending on, for example, the desired composition of iron boride in the iron boride layer and the desired thickness of the hexagonal boron nitride thin film. .
The amount of boron compound gas supplied can be controlled by, for example, the flow rate and supply time of boron compound gas.
The flow rate of the boron compound gas is, for example, preferably 0.05 cm 3 /min to 1 cm 3 /min, more preferably 0.1 cm 3 /min to 0.7 cm 3 /min.
The boron compound gas supply time is, for example, preferably 10 minutes to 80 minutes, more preferably 20 minutes to 60 minutes.
 ホウ素化合物を含むガスを供給する際の鉄薄膜付き基板の温度は、特に限定されず、例えば、所望とするホウ化鉄層中のホウ化鉄の組成に応じて、適宜設定される。
 ホウ素化合物を含むガスを供給する際の鉄薄膜付き基板の温度は、例えば、1000℃~1100℃であることが好ましい。
 鉄薄膜付き基板を加熱する手段としては、特に限定されず、例えば、ヒーターが挙げられる。
The temperature of the iron thin film-coated substrate when supplying the gas containing the boron compound is not particularly limited, and is appropriately set, for example, depending on the desired composition of iron boride in the iron boride layer.
The temperature of the iron thin film-coated substrate when supplying the gas containing the boron compound is preferably 1000° C. to 1100° C., for example.
The means for heating the substrate with an iron thin film is not particularly limited, and examples thereof include a heater.
 工程Bにて形成されるホウ化鉄層は、FeBを含む。
 ホウ化鉄層がFeBを含むと、結晶性の高い六方晶窒化ホウ素の薄膜を製造し得る。
 ホウ化鉄層は、FeB以外に、Fe、FeB、及びFeBからなる群より選ばれる少なくとも1種を含んでいてもよい。
 ホウ化鉄層に含まれるホウ化鉄の種類及びその割合は、例えば、ホウ素化合物の供給量、鉄薄膜付き基板の温度、鉄薄膜の膜厚等の調整により制御できる。
 例えば、ホウ素化合物の供給量を増加させると、鉄にホウ素が取り込まれて、徐々にホウ素の占める割合が多いホウ化鉄が得られる。ホウ素の割合は、Fe<FeB<FeB<FeBの順に多くなるが、FeBは、準安定相であると言われており、比較的得られ難い。FeBが得られる条件は、明らかにされていないが、本開示では、鉄薄膜が薄い方がより得られやすいと考えている。なお、文献(Intermetallics 11 (2003) 1293-1299)には、鉄-ホウ素系の状態図が開示されており、この状態図に従って、ホウ素化合物の供給量を増減させると、比較的ホウ化鉄の種類及びその割合を制御しやすい。上記文献の内容は、参照により本明細書に取り込まれる。
 また、鉄薄膜付き基板の温度を制御することで、鉄にホウ素が取り込まれる速度を調整し、所望の組成のホウ化鉄を得ることもできる。
The iron boride layer formed in step B contains Fe 2 B.
When the iron boride layer contains Fe 2 B, a highly crystalline hexagonal boron nitride thin film can be produced.
The iron boride layer may contain, in addition to Fe 2 B, at least one member selected from the group consisting of Fe, FeB, and Fe 3 B.
The type and proportion of iron boride contained in the iron boride layer can be controlled, for example, by adjusting the supply amount of the boron compound, the temperature of the substrate with the iron thin film, the thickness of the iron thin film, and the like.
For example, when the amount of boron compound supplied is increased, boron is incorporated into iron, and iron boride with a gradually increasing proportion of boron is obtained. The proportion of boron increases in the order of Fe<Fe 3 B<Fe 2 B<FeB, but Fe 3 B is said to be a metastable phase and is relatively difficult to obtain. Although the conditions for obtaining Fe 3 B have not been clarified, the present disclosure believes that it is easier to obtain Fe 3 B when the iron thin film is thinner. Note that the literature (Intermetallics 11 (2003) 1293-1299) discloses a phase diagram of iron-boron system, and according to this phase diagram, if the amount of boron compound supplied is increased or decreased, the amount of iron boride is relatively reduced. Easy to control types and proportions. The contents of the above documents are incorporated herein by reference.
Further, by controlling the temperature of the substrate with the iron thin film, the speed at which boron is incorporated into iron can be adjusted, and iron boride with a desired composition can be obtained.
 ホウ化鉄層に含まれるホウ化鉄の組成は、X線回折(XRD)法により確認する。
 また、ホウ化鉄層に含まれるホウ化鉄の組成比は、X線回折法により測定される。具体的には、ホウ化鉄層が形成された鉄薄膜付き基板に対してCuKα線(特性X線)を照射し、得られたX線回折パターンに基づいて、FeB(130)の回折ピークの強度(単位:cps)、FeB(022)の回折ピークの強度、及びFeB(330)の回折ピークの強度の比から求める。
 X線の条件は、電圧を45kV、電流を40mAとする。
 X線回折法に用いる装置としては、例えば、PANalytical社製のX’Pert Pro MRDが好適である。但し、装置は、これに限定されない。
The composition of iron boride contained in the iron boride layer is confirmed by an X-ray diffraction (XRD) method.
Further, the composition ratio of iron boride contained in the iron boride layer is measured by an X-ray diffraction method. Specifically, a substrate with an iron thin film on which an iron boride layer is formed is irradiated with CuKα rays (characteristic X-rays), and based on the obtained X-ray diffraction pattern, the diffraction peak of FeB (130) is determined. It is determined from the ratio of the intensity (unit: cps), the intensity of the diffraction peak of Fe 2 B (022), and the intensity of the diffraction peak of Fe 3 B (330).
The X-ray conditions are a voltage of 45 kV and a current of 40 mA.
As a device used for the X-ray diffraction method, for example, X'Pert Pro MRD manufactured by PANalytical is suitable. However, the device is not limited to this.
 ホウ化鉄層に含まれるホウ化鉄がFeB及びFeBである場合、これらの組成比、すなわち、ホウ化鉄層のX線回折パターンにおけるFeB(130)の回折ピークの強度に対するFeB(022)の回折ピークの強度の比〔FeB(022)の回折ピークの強度/FeB(130)の回折ピークの強度〕は、例えば、0.38以上であることが好ましく、0.40以上であることがより好ましい。
 「FeB(022)の回折ピークの強度/FeB(130)の回折ピークの強度」が0.38以上であると、六方晶窒化ホウ素の凝集がより良好に抑制され、より均一性の高い六方晶窒化ホウ素薄膜を製造できる傾向がある。
When the iron borides contained in the iron boride layer are Fe 2 B and FeB, the composition ratio of these, that is, the Fe 2 B relative to the intensity of the diffraction peak of FeB (130) in the X-ray diffraction pattern of the iron boride layer. The ratio of the intensity of the diffraction peak of (022) [Intensity of the diffraction peak of Fe 2 B (022)/Intensity of the diffraction peak of FeB (130)] is preferably 0.38 or more, for example, 0.40 It is more preferable that it is above.
When "Intensity of the diffraction peak of Fe 2 B (022) / Intensity of the diffraction peak of FeB (130)" is 0.38 or more, the aggregation of hexagonal boron nitride is better suppressed and the uniformity is higher. There is a tendency to produce hexagonal boron nitride thin films.
 ホウ化鉄層に含まれるホウ化鉄がFeB及びFeBである場合、これらの組成比、すなわち、ホウ化鉄層のX線回折パターンにおけるFeB(022)の回折ピークの強度に対するFeB(330)の回折ピークの強度の比〔FeB(330)の回折ピークの強度/FeB(022)の回折ピークの強度〕は、例えば、0.32以下であることが好ましく、0.30以下であることがより好ましい。
 「FeB(330)の回折ピークの強度/FeB(022)の回折ピークの強度」が0.32以下であると、より結晶性の高い六方晶窒化ホウ素の薄膜を製造できる傾向がある。
When the iron borides contained in the iron boride layer are Fe 2 B and Fe 3 B, the composition ratio of these, that is, the intensity of the diffraction peak of Fe 2 B (022) in the X-ray diffraction pattern of the iron boride layer The ratio of the intensity of the diffraction peak of Fe 3 B (330) to the intensity of the diffraction peak of Fe 3 B (330)/the intensity of the diffraction peak of Fe 2 B (022) is, for example, 0.32 or less. is preferable, and more preferably 0.30 or less.
When "Intensity of diffraction peak of Fe 3 B (330)/Intensity of diffraction peak of Fe 2 B (022)" is 0.32 or less, it tends to be possible to produce a thin film of hexagonal boron nitride with higher crystallinity. be.
〔工程C〕
 工程Cは、工程Bにてホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素ガス及び窒素化合物を含むガスからなる群より選ばれる少なくとも1種のガス(即ち、窒素原料ガス)を供給することにより、上記ホウ化鉄層中のホウ素を窒化させる工程である。
 ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素原料ガスを供給すると、ホウ化鉄層中のホウ素が窒化されて、六方晶窒化ホウ素が生成し、複数の層からなる六方晶窒化ホウ素薄膜が形成される。
[Process C]
In step C, at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound (i.e., nitrogen source gas) is applied to the iron thin film-coated substrate on which the iron boride layer has been formed in step B. This is a step of nitriding boron in the iron boride layer by supplying the iron boride layer.
When a nitrogen raw material gas is supplied to a substrate with an iron thin film on which an iron boride layer has been formed, the boron in the iron boride layer is nitrided and hexagonal boron nitride is generated, resulting in hexagonal nitride consisting of multiple layers. A thin boron film is formed.
 窒素化合物の種類は、特に限定されない。
 窒素化合物としては、例えば、アンモニア及びヒドラジンが挙げられる。
 窒素原料ガスとしては、例えば、反応性の観点から、窒素ガス及びアンモニアガスから選ばれる少なくとも1種のガスが好ましく、アンモニアガスがより好ましい。
The type of nitrogen compound is not particularly limited.
Examples of nitrogen compounds include ammonia and hydrazine.
As the nitrogen raw material gas, for example, from the viewpoint of reactivity, at least one gas selected from nitrogen gas and ammonia gas is preferable, and ammonia gas is more preferable.
 窒素原料ガスの供給量は、特に限定されず、例えば、所望とする六方晶窒化ホウ素薄膜の膜厚に応じて、適宜設定される。
 窒素原料ガスの供給量は、例えば、窒素原料ガスの流量及び供給時間により制御できる。
 窒素原料ガスの流量は、例えば、100cm/min~2000cm/minであることが好ましく、150cm/min~1000cm/minであることがより好ましい。
 窒素原料ガスの供給時間は、例えば、5分間~300分間であることが好ましく、10分間~200分間であることがより好ましい。
The supply amount of the nitrogen raw material gas is not particularly limited, and is appropriately set, for example, depending on the desired thickness of the hexagonal boron nitride thin film.
The supply amount of the nitrogen source gas can be controlled by, for example, the flow rate and supply time of the nitrogen source gas.
The flow rate of the nitrogen source gas is, for example, preferably 100 cm 3 /min to 2000 cm 3 /min, more preferably 150 cm 3 /min to 1000 cm 3 /min.
The supply time of the nitrogen source gas is, for example, preferably 5 minutes to 300 minutes, more preferably 10 minutes to 200 minutes.
 ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素原料ガスを供給する際には、例えば、操作性の観点から、窒素原料ガスをキャリアガスとともに供給することが好ましい。
 キャリアガスとしては、例えば、水素ガス、又は、水素ガスと不活性ガスとの混合ガスが好ましく、水素ガスと不活性ガスとの混合ガスがより好ましい。
 キャリアガスに水素ガスが含まれていると、ホウ化鉄に含まれるホウ素と窒素との反応が緩やかになり、良好な膜が得られる一方で、形成される六方晶窒化ホウ素薄膜が水素によってエッチングされる場合がある。これに対し、キャリアガスが水素ガスに加えて不活性ガスを含んでいると、水素ガスによる六方晶窒化ホウ素薄膜のエッチングが穏やかになる。
When supplying the nitrogen raw material gas to the iron thin film-coated substrate on which the iron boride layer is formed, it is preferable to supply the nitrogen raw material gas together with the carrier gas, for example, from the viewpoint of operability.
As the carrier gas, for example, hydrogen gas or a mixed gas of hydrogen gas and inert gas is preferable, and a mixed gas of hydrogen gas and inert gas is more preferable.
When hydrogen gas is included in the carrier gas, the reaction between the boron contained in iron boride and nitrogen is slowed down, resulting in a good film. However, the formed hexagonal boron nitride thin film is etched by hydrogen. may be done. On the other hand, if the carrier gas contains an inert gas in addition to hydrogen gas, the hexagonal boron nitride thin film is etched gently by the hydrogen gas.
 工程Cでは、ホウ化鉄層が形成された鉄薄膜付き基板の温度を、例えば、850℃以上1200℃以下の範囲にすることが好ましく、900℃以上1200℃以下の範囲にすることがより好ましく、930℃以上1200℃以下の範囲にすることが更に好ましい。
 ホウ化鉄層が形成された鉄薄膜付き基板の温度を850℃以上にすると、より結晶性の高い六方晶窒化ホウ素の薄膜をより均一性で製造できる傾向がある。
 ホウ化鉄層が形成された鉄薄膜付き基板の温度を1200℃以下にすると、六方晶窒化ホウ素の凝集がより良好に抑制され、より均一性の高い六方晶窒化ホウ素薄膜を製造できる傾向がある。
 ホウ化鉄層が形成された鉄薄膜付き基板を加熱する手段としては、特に限定されず、例えば、ヒーターが挙げられる。
In step C, the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is preferably in the range of 850°C or more and 1200°C or less, and more preferably in the range of 900°C or more and 1200°C or less. , more preferably in the range of 930°C or higher and 1200°C or lower.
When the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is set to 850° C. or higher, a thin film of hexagonal boron nitride with higher crystallinity tends to be produced with more uniformity.
When the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is kept below 1200°C, agglomeration of hexagonal boron nitride is better suppressed, and a more uniform hexagonal boron nitride thin film tends to be produced. .
The means for heating the iron thin film-coated substrate on which the iron boride layer is formed is not particularly limited, and includes, for example, a heater.
 工程Cにおいて形成される六方晶窒化ホウ素薄膜の膜厚は、特に限定されず、目的に応じて、適宜設定できるが、例えば、5nm~100nmであることが好ましい。
 本開示における「六方晶窒化ホウ素薄膜の膜厚」は、以下の方法により求められる値である。走査型電子顕微鏡(SEM)を用いて、六方晶窒化ホウ素薄膜の断面を観察し、無作為に選択した5箇所における六方晶窒化ホウ素薄膜の断面の厚さを測定する。測定値の算術平均値を求め、得られた値を六方晶窒化ホウ素薄膜の膜厚とする。
The thickness of the hexagonal boron nitride thin film formed in step C is not particularly limited and can be set as appropriate depending on the purpose, but is preferably 5 nm to 100 nm, for example.
The "thickness of a hexagonal boron nitride thin film" in the present disclosure is a value determined by the following method. A cross section of the hexagonal boron nitride thin film is observed using a scanning electron microscope (SEM), and the thickness of the cross section of the hexagonal boron nitride thin film at five randomly selected locations is measured. The arithmetic mean value of the measured values is determined, and the obtained value is taken as the thickness of the hexagonal boron nitride thin film.
 六方晶窒化ホウ素薄膜の膜厚は、例えば、鉄薄膜の膜厚、ホウ素化合物の供給量、窒素原料ガスの供給量等の調整によって制御できる。例えば、鉄薄膜の膜厚を厚くし、ホウ素化合物の供給量及び窒素原料ガスの供給量を多くすると、六方晶窒化ホウ素薄膜の膜厚は厚くなる。一方、鉄薄膜の膜厚に関わらず、ホウ素化合物の供給量及び窒素原料ガスの供給量を少なくすると、六方晶窒化ホウ素薄膜の膜厚は薄くなる。 The thickness of the hexagonal boron nitride thin film can be controlled, for example, by adjusting the thickness of the iron thin film, the amount of boron compound supplied, the amount of nitrogen source gas supplied, and the like. For example, if the thickness of the iron thin film is increased and the amount of boron compound and nitrogen raw material gas supplied is increased, the thickness of the hexagonal boron nitride thin film becomes thicker. On the other hand, regardless of the thickness of the iron thin film, if the supply amount of the boron compound and the nitrogen source gas are reduced, the thickness of the hexagonal boron nitride thin film becomes thinner.
〔その他の工程〕
 本開示の製造方法は、本開示の効果を損なわない範囲において、必要に応じて、工程A、工程B及び工程C以外の工程(所謂、その他の工程)を含んでいてもよい。
 本開示の製造方法は、その他の工程として、基板上に鉄薄膜を形成した後であって、六方晶窒化ホウ素を生成させる前に、水素ガスによる鉄薄膜のアニーリングを行う工程を含むことが好ましい。
 鉄薄膜に対し、アニーリングを行うと、鉄薄膜に含まれ得る微量の酸素を取り除くことができるほか、基板と鉄薄膜との密着性、及び、鉄薄膜の配向性を改善させることができる。鉄薄膜に含まれ得る微量の酸素を取り除く観点から、水素ガスによる鉄薄膜のアニーリングは、六方晶窒化ホウ素を生成させる直前に、例えば、六方晶窒化ホウ素を生成させる反応炉内で行うことが好ましい。
 アニール温度は、例えば、950℃~1100℃であることが好ましく、1000℃~1050℃であることがより好ましい。
[Other processes]
The manufacturing method of the present disclosure may include steps other than Step A, Step B, and Step C (so-called other steps) as necessary within a range that does not impair the effects of the present disclosure.
The manufacturing method of the present disclosure preferably includes, as another step, a step of annealing the iron thin film with hydrogen gas after forming the iron thin film on the substrate and before producing hexagonal boron nitride. .
By annealing the iron thin film, not only can trace amounts of oxygen that may be contained in the iron thin film be removed, but also the adhesion between the substrate and the iron thin film and the orientation of the iron thin film can be improved. From the viewpoint of removing trace amounts of oxygen that may be contained in the iron thin film, it is preferable that the annealing of the iron thin film with hydrogen gas be performed immediately before hexagonal boron nitride is produced, for example, in a reactor that produces hexagonal boron nitride. .
The annealing temperature is, for example, preferably 950°C to 1100°C, more preferably 1000°C to 1050°C.
 図1は、本開示の製造方法に好適に用いられる装置の一例を示す概略構成図である。
 図1において、符号1は、各原料を含むガスを基板上に供給せずにそのまま排気するためのベントガスラインを示し、符号2は、鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給するためのキャリアガスラインを示し、符号3は、ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素原料ガスを供給するためのキャリアガスラインを示す。
 図1に示す装置では、キャリアガスラインが、ホウ素化合物を含むガスを供給するためのキャリアガスライン2と、窒素原料ガスを供給するためのキャリアガスライン3とに分かれているため、ホウ素原料と窒素原料との混ざり合いが防止され、アダクツと呼ばれる副反応物の生成が抑制できる。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus suitably used in the manufacturing method of the present disclosure.
In FIG. 1, reference numeral 1 indicates a vent gas line for exhausting gas containing each raw material without supplying it onto the substrate, and reference numeral 2 indicates a vent gas line for supplying a gas containing a boron compound to the substrate with an iron thin film. Reference numeral 3 indicates a carrier gas line for supplying nitrogen raw material gas to the iron thin film coated substrate on which the iron boride layer is formed.
In the apparatus shown in FIG. 1, the carrier gas line is divided into a carrier gas line 2 for supplying a gas containing a boron compound and a carrier gas line 3 for supplying a nitrogen raw material gas. Mixing with the nitrogen raw material is prevented, and the formation of side reactants called adducts can be suppressed.
 符号4、符号5及び符号6は、各原料を含むガスをキャリアガスラインに供給するか、或いは、ベントガスラインに流すかを切り替えるためのバルブを示す。符号7、符号8、符号9及び符号10は、対応する原料のキャリアガスA、キャリアガスB、キャリアガスC及びガスDをそれぞれ供給するためのガスラインを示す。ガスライン10から供給されるガスDは、キャリアガスとして機能する他、液体のホウ素化合物(例えば、トリエチルボラン)を気化させるためのバブリング用ガスとしても機能し得る。 Reference numerals 4, 5, and 6 indicate valves for switching between supplying the gas containing each raw material to the carrier gas line or flowing it to the vent gas line. Reference numerals 7, 8, 9 and 10 indicate gas lines for supplying the corresponding raw materials carrier gas A, carrier gas B, carrier gas C and gas D, respectively. The gas D supplied from the gas line 10 functions not only as a carrier gas but also as a bubbling gas for vaporizing a liquid boron compound (for example, triethylborane).
 符号11は、液体のホウ素化合物を貯蔵するための容器を示す。容器11内には、トリエチルボラン等の液体のホウ素化合物が貯蔵されており、バブリングを行えるように、ガスライン10の一方端は、液中に浸されている。符号12は、気体のホウ素化合物(例えば、ジボラン)を貯蔵するための容器を示し、符号13は、窒素原料ガス(例えば、アンモニア)を貯蔵するための容器を示す。 Reference numeral 11 indicates a container for storing a liquid boron compound. A liquid boron compound such as triethylborane is stored in the container 11, and one end of the gas line 10 is immersed in the liquid so that bubbling can be performed. Reference numeral 12 indicates a container for storing a gaseous boron compound (for example, diborane), and reference numeral 13 indicates a container for storing a nitrogen source gas (for example, ammonia).
 符号14は、反応炉を示し、符号15は、鉄薄膜付き基板を示し、符号16は、鉄薄膜付き基板15を支えるサセプターを示し、符号17は、鉄薄膜付き基板15を加熱するためのヒーターを示す。 Reference numeral 14 indicates a reactor, reference numeral 15 indicates a substrate with an iron thin film, reference numeral 16 indicates a susceptor that supports the substrate 15 with the iron thin film, and reference numeral 17 indicates a heater for heating the substrate 15 with the iron thin film. shows.
 図1に示す装置を用いた、本開示の製造方法の具体的な手順の一例について説明する。
 まず、反応炉14内において、サセプター16上に配置した鉄薄膜付き基板15を、所定の温度(例えば、1000℃~1100℃)になるように、ヒーター17を用いて加熱する。鉄薄膜付き基板15を所定の温度まで加熱したら、キャリアガスA、キャリアガスB、キャリアガスC及びガス(キャリアガス)Dを、それぞれガスライン7、ガスライン8、ガスライン9及びガスライン10に供給する。六方晶窒化ホウ素薄膜の形成が終了するまで、ガスライン7、ガスライン8、ガスライン9及びガスライン10には、常にキャリアガス(例えば、水素ガス)を供給する。
 次に、所定の温度まで加熱した鉄薄膜付き基板15に対し、キャリアガスとして用いる水素ガスのみを供給し、鉄薄膜のアニーリングを行う。
 次に、キャリアガスライン2から反応炉14内の鉄薄膜付き基板15に対し、ホウ素化合物(例えば、ジボラン)を含むガスを所定量供給し、鉄薄膜の鉄をホウ化させることで、鉄薄膜付き基板15の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する。
 次に、ヒーター17の設定温度を切り替えて、ホウ化鉄層が形成された鉄薄膜付き基板が所定の温度(例えば、900℃~1200℃)になるようにする。温度が安定した後、キャリアガスライン3からホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素原料ガス(例えば、アンモニアガス)を所定量供給し、ホウ化鉄層中のホウ素を窒化させる。このホウ素の窒化により六方晶窒化ホウ素が生成し、六方晶窒化ホウ素薄膜が形成される。
 窒素原料ガスの供給終了後、キャリアガスを流しながらヒーター17の温度を徐々に室温(例えば、25℃)まで下げてから、六方晶窒化ホウ素薄膜が形成された基板を取り出す。取り出された基板は、基板と、ホウ化鉄及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜と、が積層された構成を有する。
An example of a specific procedure of the manufacturing method of the present disclosure using the apparatus shown in FIG. 1 will be described.
First, in the reactor 14, the iron thin film coated substrate 15 placed on the susceptor 16 is heated using the heater 17 to a predetermined temperature (for example, 1000° C. to 1100° C.). After heating the iron thin film coated substrate 15 to a predetermined temperature, carrier gas A, carrier gas B, carrier gas C, and gas (carrier gas) D are supplied to gas line 7, gas line 8, gas line 9, and gas line 10, respectively. supply A carrier gas (for example, hydrogen gas) is constantly supplied to the gas line 7, gas line 8, gas line 9, and gas line 10 until the formation of the hexagonal boron nitride thin film is completed.
Next, only hydrogen gas used as a carrier gas is supplied to the iron thin film coated substrate 15 heated to a predetermined temperature to anneal the iron thin film.
Next, a predetermined amount of gas containing a boron compound (for example, diborane) is supplied from the carrier gas line 2 to the substrate 15 with the iron thin film in the reactor 14 to boride the iron in the iron thin film. An iron boride layer containing Fe 2 B is formed on the surface of the iron thin film of the attached substrate 15 .
Next, the set temperature of the heater 17 is changed so that the iron thin film coated substrate on which the iron boride layer is formed reaches a predetermined temperature (for example, 900° C. to 1200° C.). After the temperature has stabilized, a predetermined amount of nitrogen raw material gas (for example, ammonia gas) is supplied from the carrier gas line 3 to the iron thin film-coated substrate on which the iron boride layer has been formed, and the boron in the iron boride layer is nitrided. let By nitriding this boron, hexagonal boron nitride is generated, and a hexagonal boron nitride thin film is formed.
After the supply of the nitrogen raw material gas is completed, the temperature of the heater 17 is gradually lowered to room temperature (for example, 25° C.) while flowing the carrier gas, and then the substrate on which the hexagonal boron nitride thin film is formed is taken out. The taken out substrate has a structure in which the substrate, a thin film containing iron boride and iron, and a hexagonal boron nitride thin film having a plurality of layers are stacked.
[積層体]
 本開示の積層体は、基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜と、を有し、上記FeB及び鉄を含む薄膜及び上記六方晶窒化ホウ素薄膜の合計膜厚が、300nm以上2100nm以下の範囲である。
 本開示の積層体は、六方晶窒化ホウ素の結晶性及び膜の均一性が高い六方晶窒化ホウ素薄膜を備えた積層体であり、例えば、電子材料用として好適であり、グラフェン用基板として特に好適である。
[Laminated body]
The laminate of the present disclosure includes a substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having a plurality of layers, the thin film containing Fe 2 B and iron and the hexagonal boron nitride The total thickness of the boron thin film is in the range of 300 nm or more and 2100 nm or less.
The laminate of the present disclosure is a laminate including a hexagonal boron nitride thin film with high crystallinity and film uniformity, and is suitable for use as an electronic material, for example, and particularly suitable as a graphene substrate. It is.
 本開示の積層体は、基板を有する。
 本開示の積層体における基板の材料の具体例は、本開示の製造方法における基板の材料の具体例と同様である。
 本開示の積層体における基板は、単結晶基板であることが好ましく、サファイア基板、窒化アルミニウム基板、又は炭化ケイ素基板であることがより好ましく、サファイア基板であることが更に好ましい。
 本開示の積層体における基板の厚さは、特に限定されないが、一般には、200μm~1000μmであり、300μm~800μmであることが好ましい。
The laminate of the present disclosure includes a substrate.
A specific example of the material of the substrate in the laminate of the present disclosure is the same as a specific example of the material of the substrate in the manufacturing method of the present disclosure.
The substrate in the laminate of the present disclosure is preferably a single crystal substrate, more preferably a sapphire substrate, an aluminum nitride substrate, or a silicon carbide substrate, and even more preferably a sapphire substrate.
The thickness of the substrate in the laminate of the present disclosure is not particularly limited, but is generally 200 μm to 1000 μm, preferably 300 μm to 800 μm.
 本開示の積層体は、FeB及び鉄を含む薄膜を有する。
 本開示の積層体がFeB及び鉄を含む薄膜を有することは、例えば、X線回折により確認できる。
 薄膜は、FeB以外のホウ化鉄を含んでいてもよい。
 FeB以外のホウ化鉄としては、例えば、FeB及びFeBが挙げられる。
The laminate of the present disclosure has a thin film containing Fe 2 B and iron.
It can be confirmed, for example, by X-ray diffraction that the laminate of the present disclosure has a thin film containing Fe 2 B and iron.
The thin film may contain iron borides other than Fe 2 B.
Examples of iron borides other than Fe 2 B include FeB and Fe 3 B.
 本開示の積層体は、複数の層を有する六方晶窒化ホウ素薄膜を有する。
 六方晶窒化ホウ素薄膜が有する複数の層は、2層以上であればよく、30層以上であることが好ましく、60層以上であることがより好ましく、100層以上であることが更に好ましい。六方晶窒化ホウ素薄膜が有する層の上限は、特に限定されない。
The laminate of the present disclosure has a hexagonal boron nitride thin film having multiple layers.
The hexagonal boron nitride thin film may have two or more layers, preferably 30 or more layers, more preferably 60 or more layers, and even more preferably 100 or more layers. The upper limit of the number of layers included in the hexagonal boron nitride thin film is not particularly limited.
 本開示の積層体は、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚が、300nm以上2100nm以下の範囲であり、600nm以上2100nm以下の範囲であることが好ましく、600nm以上1750nm以下の範囲であることがより好ましく、600nm以上1500nm以下の範囲であることが更に好ましい。 In the laminate of the present disclosure, the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film is in the range of 300 nm or more and 2100 nm or less, preferably 600 nm or more and 2100 nm or less, and 600 nm or more. The range is more preferably 1750 nm or more, and even more preferably 600 nm or more and 1500 nm or less.
 本開示における「FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚」は、以下の方法により求められる値である。
 走査型電子顕微鏡(SEM)を用いて、FeB及び鉄を含む薄膜、並びに、六方晶窒化ホウ素薄膜の断面を観察し、無作為に選択した5箇所におけるFeB及び鉄を含む薄膜の断面の厚さ、並びに、六方晶窒化ホウ素薄膜の断面の厚さを測定する。測定値の算術平均値を求め、得られた値をFeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚とする。
In the present disclosure, "the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film" is a value determined by the following method.
Using a scanning electron microscope (SEM), the cross sections of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film were observed, and the thin film containing Fe 2 B and iron was observed at five randomly selected locations. Measure the cross-sectional thickness as well as the cross-sectional thickness of the hexagonal boron nitride thin film. The arithmetic mean value of the measured values is determined, and the obtained value is taken as the total film thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film.
 本開示の積層体は、例えば、既述の本開示の製造方法により好適に製造される。 The laminate of the present disclosure is suitably manufactured, for example, by the manufacturing method of the present disclosure described above.
 以下に実施例を挙げて、本開示の製造方法及び積層体を更に具体的に説明する。本開示の製造方法及び積層体は、その主旨を越えない限り、以下の実施例に限定されるものではない。 The manufacturing method and laminate of the present disclosure will be explained in more detail by giving examples below. The manufacturing method and laminate of the present disclosure are not limited to the following examples unless the gist thereof is exceeded.
[六方晶窒化ホウ素薄膜の製造]
<実施例1>
 マグネトロンスパッタリング法により、サファイア基板上に鉄薄膜を形成し、鉄薄膜付き基板を準備した〔工程A〕。スパッタリング条件を以下に示す。
[Manufacture of hexagonal boron nitride thin film]
<Example 1>
An iron thin film was formed on a sapphire substrate by magnetron sputtering to prepare a substrate with an iron thin film [Step A]. The sputtering conditions are shown below.
-スパッタリング条件-
 ターゲット:Fe
 成膜圧力:0.4Pa
 成膜基板の温度:250℃
 成膜雰囲気:Arガス
 印加電力:2000W
 成膜時間:10分
-Sputtering conditions-
Target: Fe
Film forming pressure: 0.4Pa
Temperature of film-forming substrate: 250℃
Film-forming atmosphere: Ar gas Applied power: 2000W
Film forming time: 10 minutes
 準備した鉄薄膜付き基板における鉄薄膜の膜厚は、既述の方法により測定したところ、500nmであった。 The thickness of the iron thin film on the prepared substrate with iron thin film was 500 nm when measured by the method described above.
 次に、図1に示す構成を有する装置を用い、以下の操作を行った。
 準備した鉄薄膜付き基板を、反応炉14内に設置されたサセプター16上に配置した。鉄薄膜付き基板の温度が1033℃になるように、ヒーター17を用いて加熱した後、キャリアガスとして水素ガスを、ガスライン7、ガスライン8及びガスライン9に供給した。次に、加熱した鉄薄膜付き基板に対し、キャリアガスとして用いる水素ガスのみを供給し、鉄薄膜のアニーリングを行った。
Next, using an apparatus having the configuration shown in FIG. 1, the following operations were performed.
The prepared substrate with the iron thin film was placed on the susceptor 16 installed in the reactor 14. After heating the substrate with the iron thin film using the heater 17 so that the temperature thereof reached 1033° C., hydrogen gas was supplied as a carrier gas to the gas line 7, the gas line 8, and the gas line 9. Next, only hydrogen gas used as a carrier gas was supplied to the heated substrate with the iron thin film to anneal the iron thin film.
 次に、バルブ5の切り替えにより、容器12中のホウ素化合物であるジボランを、キャリアガスである水素ガスが流れるガスライン8に供給することで、キャリアガスライン2から反応炉14内の1033℃に加熱した鉄薄膜付き基板に対し、ジボラン及び水素ガスの混合ガス(即ち、ホウ素化合物を含むガス)を供給した。ジボランは、流量0.33cm/minで20分間供給した。反応炉の内圧は、30mbarに設定した。ホウ素化合物を含むガスの供給により、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。 Next, by switching the valve 5, diborane, which is a boron compound in the container 12, is supplied to the gas line 8 through which hydrogen gas, which is a carrier gas, flows. A mixed gas of diborane and hydrogen gas (ie, a gas containing a boron compound) was supplied to the heated substrate with the iron thin film. Diborane was supplied for 20 minutes at a flow rate of 0.33 cm 3 /min. The internal pressure of the reactor was set at 30 mbar. By supplying a gas containing a boron compound, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate [Step B].
 ホウ化鉄層中のホウ化鉄の組成は、既述のX線回折法により確認したところ、FeB及びFeBであった。また、ホウ化鉄層のX線回折パターンにおける、FeB(330)の回折ピークの強度は21cpsであり、FeB(022)の回折ピークの強度は68cpsであった。また、これらの回折ピークの強度の比〔FeB(330)の回折ピークの強度/FeB(022)の回折ピークの強度〕は、21/68=0.308・・・≒0.31であった。 The composition of iron boride in the iron boride layer was confirmed by the aforementioned X-ray diffraction method, and was found to be Fe 3 B and Fe 2 B. Further, in the X-ray diffraction pattern of the iron boride layer, the intensity of the diffraction peak of Fe 3 B (330) was 21 cps, and the intensity of the diffraction peak of Fe 2 B (022) was 68 cps. Further, the ratio of the intensities of these diffraction peaks [intensity of the diffraction peak of Fe 3 B (330)/intensity of the diffraction peak of Fe 2 B (022)] is 21/68=0.308...≒0. It was 31.
 次に、鉄薄膜付き基板の温度を1033℃に保持したまま、バルブ6の切り替えにより、容器13中の窒素原料ガスであるアンモニアガスを、キャリアガスである水素ガスが流れるガスライン9に供給することで、キャリアガスライン3からホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素原料ガスを供給した。窒素原料ガスの供給により、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。アンモニアガスは、流量250cm/minで100分間供給した。反応炉の内圧は、30mbarに設定した。 Next, while maintaining the temperature of the substrate with the iron thin film at 1033° C., by switching the valve 6, ammonia gas, which is the nitrogen raw material gas, in the container 13 is supplied to the gas line 9 through which hydrogen gas, which is the carrier gas, flows. In this way, nitrogen raw material gas was supplied from the carrier gas line 3 to the iron thin film coated substrate on which the iron boride layer was formed. By supplying nitrogen source gas, boron in the iron boride layer was nitrided [Step C]. Ammonia gas was supplied for 100 minutes at a flow rate of 250 cm 3 /min. The internal pressure of the reactor was set at 30 mbar.
 窒素原料ガスの供給が終了した後、反応炉14内にキャリアガスである水素ガスを流しながらヒーター17の温度を徐々に下げ、室温(25℃)になってから、反応炉14内の基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、650nmであった。
 薄膜がFeB及び鉄を含むことは、X線回折法により確認した。複数の層を有する六方晶窒化ホウ素薄膜が形成されていることは、X線回折法による測定及び透過型電子顕微鏡(TEM)による断面観察により確認した。FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、既述の方法により測定した。以下の実施例及び比較例についても同様である。
After the supply of nitrogen raw material gas is completed, the temperature of the heater 17 is gradually lowered while flowing hydrogen gas as a carrier gas into the reactor 14, and after reaching room temperature (25° C.), the substrate in the reactor 14 is heated. I took it out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 650 nm.
It was confirmed by X-ray diffraction that the thin film contained Fe 2 B and iron. The formation of a hexagonal boron nitride thin film having a plurality of layers was confirmed by measurement using an X-ray diffraction method and cross-sectional observation using a transmission electron microscope (TEM). The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film was measured by the method described above. The same applies to the following Examples and Comparative Examples.
<実施例2>
 実施例1と同様にして、鉄薄膜の膜厚が500nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.1cm/minで60分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、アンモニアガスを流量500cm/minで60分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、661nmであった。
<Example 2>
A substrate with an iron thin film having a thickness of 500 nm was prepared in the same manner as in Example 1 [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 60 minutes. was formed [Step B]. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 60 minutes [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 661 nm.
<実施例3>
 実施例1と同様にして、鉄薄膜の膜厚が500nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.66cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1200℃に加熱し、キャリアガスである水素ガスを使用せずに、アンモニアガスを流量970cm/minで60分間供給し、かつ、反応炉の内圧1013mbarに設定したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、665nmであった。
<Example 3>
A substrate with an iron thin film having a thickness of 500 nm was prepared in the same manner as in Example 1 [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the iron thin film-coated substrate on which the iron boride layer was formed was heated to 1200° C., and ammonia gas was supplied at a flow rate of 970 cm 3 /min for 60 minutes without using hydrogen gas as a carrier gas, and Boron in the iron boride layer was nitrided in the same manner as in Example 1, except that the internal pressure of the reactor was set to 1013 mbar [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 665 nm.
<実施例4>
 成膜時間を5分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が250nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.1cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、アンモニアガスを流量150cm/minで50分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、328nmであった。
<Example 4>
A substrate with an iron thin film having a thickness of 250 nm was prepared in the same manner as in Example 1, except that the film formation time was 5 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the iron thin film surface of the iron thin film coated substrate in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes. was formed [Step B]. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 150 cm 3 /min for 50 minutes [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 328 nm.
<実施例5>
 成膜時間を20分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1000nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.66cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1130℃に加熱し、かつ、アンモニアガスを流量500cm/minで100分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1301nmであった。
<Example 5>
A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min. Boron in the iron oxide layer was nitrided [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1301 nm.
<実施例6>
 成膜時間を30分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1500nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.33cm/minで40分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、アンモニアガスを流量500cm/minで100分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1711nmであった。
<Example 6>
A substrate with an iron thin film having a thickness of 1500 nm was prepared in the same manner as in Example 1, except that the film formation time was 30 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.33 cm 3 /min for 40 minutes. was formed [Step B]. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1, except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 100 minutes [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1711 nm.
<実施例7>
 成膜時間を35分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1750nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.66cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1130℃に加熱し、かつ、アンモニアガスを流量500cm/minで100分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、2041nmであった。
<Example 7>
A substrate with an iron thin film having a thickness of 1750 nm was prepared in the same manner as in Example 1, except that the film formation time was 35 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min. Boron in the iron oxide layer was nitrided [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 2041 nm.
<実施例8>
 成膜時間を20分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1000nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.1cm/minで60分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を922℃に加熱し、かつ、アンモニアガスを流量500cm/minで60分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1150nmであった。
<Example 8>
A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 60 minutes. was formed [Step B]. Next, the iron boride film substrate on which the iron boride layer was formed was heated to 922° C., and ammonia gas was supplied at a flow rate of 500 cm 3 /min for 60 minutes. Boron in the iron oxide layer was nitrided [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1150 nm.
<実施例9>
 成膜時間を20分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1000nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.33cm/minで40分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を943℃に加熱し、かつ、アンモニアガスを流量250cm/minで200分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1168nmであった。
<Example 9>
A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.33 cm 3 /min for 40 minutes. was formed [Step B]. Next, the iron boride layer was heated to 943° C., and ammonia gas was supplied at a flow rate of 250 cm 3 /min for 200 minutes. Boron in the iron oxide layer was nitrided [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1168 nm.
<実施例10>
 成膜時間を20分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1000nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.66cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1072℃に加熱し、かつ、アンモニアガスを流量500cm/minで100分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1207nmであった。
<Example 10>
A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed [Step B]. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1072° C., and ammonia gas was supplied for 100 minutes at a flow rate of 500 cm 3 /min. Boron in the iron oxide layer was nitrided [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1207 nm.
<実施例11>
 成膜時間を20分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が1000nmである鉄薄膜付き基板を準備した〔工程A〕。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した〔工程B〕。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1200℃に加熱し、キャリアガスである水素ガスを使用せずに、アンモニアガスを流量970cm/minで10分間供給し、かつ、反応炉の内圧1013mbarに設定したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた〔工程C〕。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、1341nmであった。
<Example 11>
A substrate with an iron thin film having a thickness of 1000 nm was prepared in the same manner as in Example 1, except that the film formation time was 20 minutes [Step A]. Next, the iron thin film was annealed in the same manner as in Example 1. Next, in the same manner as in Example 1, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate [Step B]. Next, the iron thin film-coated substrate on which the iron boride layer was formed was heated to 1200° C., and ammonia gas was supplied at a flow rate of 970 cm 3 /min for 10 minutes without using hydrogen gas as a carrier gas, and Boron in the iron boride layer was nitrided in the same manner as in Example 1, except that the internal pressure of the reactor was set to 1013 mbar [Step C]. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 1341 nm.
<比較例1>
 実施例1と同様にして、鉄薄膜の膜厚が500nmである鉄薄膜付き基板を準備した。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.1cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、ホウ化鉄としてFeBを含まないホウ化鉄層を形成した。次に、アンモニアガスを流量150cm/minで50分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、580nmであった。なお、FeB及び鉄を含む薄膜は、ホウ化鉄としてFeBを含まない薄膜であった。
<Comparative example 1>
In the same manner as in Example 1, a substrate with an iron thin film having a thickness of 500 nm was prepared. Next, the iron thin film was annealed in the same manner as in Example 1. Next, in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes, Fe 2 B was contained as iron boride on the surface of the iron thin film of the iron thin film-coated substrate. No iron boride layer was formed. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1 except that ammonia gas was supplied at a flow rate of 150 cm 3 /min for 50 minutes. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 3 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 3 B and iron and the hexagonal boron nitride thin film in this laminate was 580 nm. Note that the thin film containing Fe 3 B and iron was a thin film that did not contain Fe 2 B as iron boride.
<比較例2>
 成膜時間を3分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が150nmである鉄薄膜付き基板を準備した。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.1cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した。次に、ホウ化鉄層が形成された鉄薄膜付き基板を1130℃に加熱し、かつ、アンモニアガスを流量150cm/minで50分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、282nmであった。
<Comparative example 2>
A substrate with an iron thin film having a thickness of 150 nm was prepared in the same manner as in Example 1, except that the film formation time was 3 minutes. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the iron thin film surface of the iron thin film coated substrate in the same manner as in Example 1 except that diborane was supplied at a flow rate of 0.1 cm 3 /min for 20 minutes. was formed. Next, the substrate with the iron thin film on which the iron boride layer was formed was heated to 1130° C., and ammonia gas was supplied for 50 minutes at a flow rate of 150 cm 3 /min. The boron in the iron oxide layer was nitrided. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 282 nm.
<比較例3>
 成膜時間を40分としたこと以外は、実施例1と同様にして、鉄薄膜の膜厚が2000nmである鉄薄膜付き基板を準備した。次に、実施例1と同様にして、鉄薄膜のアニーリングを行った。次に、ジボランを流量0.66cm/minで20分間供給したこと以外は、実施例1と同様にして、鉄薄膜付き基板の鉄薄膜の面上に、FeBを含むホウ化鉄層を形成した。次に、アンモニアガスを流量500cm/minで100分間供給したこと以外は、実施例1と同様にして、ホウ化鉄層中のホウ素を窒化させた。次に、実施例1と同様にして、基板を取り出した。取り出した基板は、サファイア基板と、FeB及び鉄を含む薄膜と、複数の層を有する六方晶窒化ホウ素薄膜とを有する積層体であった。この積層体における、FeB及び鉄を含む薄膜と六方晶窒化ホウ素薄膜との合計膜厚は、2249nmであった。
<Comparative example 3>
A substrate with an iron thin film having a thickness of 2000 nm was prepared in the same manner as in Example 1 except that the film formation time was 40 minutes. Next, the iron thin film was annealed in the same manner as in Example 1. Next, an iron boride layer containing Fe 2 B was formed on the surface of the iron thin film of the iron thin film-coated substrate in the same manner as in Example 1, except that diborane was supplied at a flow rate of 0.66 cm 3 /min for 20 minutes. was formed. Next, boron in the iron boride layer was nitrided in the same manner as in Example 1 except that ammonia gas was supplied at a flow rate of 500 cm 3 /min for 100 minutes. Next, in the same manner as in Example 1, the substrate was taken out. The substrate taken out was a laminate including a sapphire substrate, a thin film containing Fe 2 B and iron, and a hexagonal boron nitride thin film having multiple layers. The total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film in this laminate was 2249 nm.
[測定及び評価]
1.六方晶窒化ホウ素の結晶性
 六方晶窒化ホウ素の結晶性は、六方晶窒化ホウ素薄膜のX線回折パターンにおける六方晶窒化ホウ素の回折ピークの半値幅(単位:°)に基づいて判断した。
 上記にて得られた六方晶窒化ホウ素薄膜に対し、測定装置としてPANalytical社製のX’Pert Pro MRDを用い、電圧45kV、電流40mAの条件で、CuKα線(特性X線)を照射し、X線回折パターンを得た。得られたX線回折パターンにおける六方晶窒化ホウ素(002)の回折ピークの半値幅を、ピーク最大値に至る曲線両側の変曲点間の距離として、表計算ソフトである「Excel(登録商標)」を用いて求めた。そして、得られた半値幅の値に基づき、下記の評価基準に従い、六方晶窒化ホウ素の結晶性を評価した。結果を表1、表3及び表4に示す。
 評価「A」は、実用上許容されるレベルである。
[Measurement and evaluation]
1. Crystallinity of hexagonal boron nitride The crystallinity of hexagonal boron nitride was determined based on the half-width (unit: °) of the diffraction peak of hexagonal boron nitride in the X-ray diffraction pattern of the hexagonal boron nitride thin film.
The hexagonal boron nitride thin film obtained above was irradiated with CuKα rays (characteristic A line diffraction pattern was obtained. The half width of the diffraction peak of hexagonal boron nitride (002) in the obtained X-ray diffraction pattern was calculated as the distance between the inflection points on both sides of the curve leading to the peak maximum value using the spreadsheet software "Excel (registered trademark)". ” was used. Then, based on the obtained half-width value, the crystallinity of hexagonal boron nitride was evaluated according to the following evaluation criteria. The results are shown in Tables 1, 3 and 4.
Evaluation "A" is a practically acceptable level.
-評価基準-
 A:六方晶窒化ホウ素(002)の回折ピークの半値幅が0.4°以下であった。
 B:六方晶窒化ホウ素(002)の回折ピークの半値幅が0.4°を超えた。
-Evaluation criteria-
A: The half width of the diffraction peak of hexagonal boron nitride (002) was 0.4° or less.
B: The half width of the diffraction peak of hexagonal boron nitride (002) exceeded 0.4°.
 回折ピークの半値幅0.4°以下を実用上の許容範囲とした理由は、回折ピークの半値幅が0.4°前後である六方晶窒化ホウ素薄膜の断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、回折ピークの半値幅が0.4°以下では、C方向の良好な積層が確認されたのに対し、回折ピークの半値幅が0.4°を超えると、積層構造が乱れ、C方向の積層を保っていないことが確認されたことに基づく。 The reason why we set the half-width of the diffraction peak to be 0.4° or less as a practical allowable range is that the cross-section of a hexagonal boron nitride thin film whose half-width of the diffraction peak is around 0.4° was examined using a transmission electron microscope (TEM). When the half-width of the diffraction peak was 0.4° or less, good lamination in the C direction was confirmed, whereas when the half-width of the diffraction peak exceeded 0.4°, the laminated structure This is based on the fact that it was confirmed that the stacking structure in the C direction was not maintained.
2.六方晶窒化ホウ素薄膜の均一性
 六方晶窒化ホウ素薄膜の均一性は、ホウ化鉄層に含まれるホウ化鉄、鉄等、六方晶窒化ホウ素などの凝集によって発生した基板の露出部分の面積の割合を指標として評価した。ホウ化鉄層に含まれるホウ化鉄、鉄等、六方晶窒化ホウ素などが凝集すると、六方晶窒化ホウ素薄膜の均一性が損なわれることに基づく。
 上記にて得られた積層体(即ち、六方晶窒化ホウ素薄膜が形成された基板)の透過像を、光学顕微鏡を用いて撮影した。撮影条件は、シャッタースピード1/25秒、ISO感度800、及び倍率200倍とした。透過像において基板が露出した部分と露出していない部分の画像処理(二値化)を行った後、撮影した部分の面積に対する基板が露出した部分の面積の割合(「露出部の割合」ともいう。)を、下記の式に基づいて算出した。得られた値の小数点以下2桁目を四捨五入し、評価に用いた。
  露出部の割合(%)
    =[基板が露出した部分の面積/撮影した部分の面積]×100・・・式
2. Uniformity of a hexagonal boron nitride thin film The uniformity of a hexagonal boron nitride thin film is determined by the area ratio of the exposed portion of the substrate caused by agglomeration of iron boride, iron, etc., and hexagonal boron nitride contained in the iron boride layer. was evaluated as an index. This is based on the fact that when iron boride, iron, etc., hexagonal boron nitride, etc. contained in the iron boride layer aggregate, the uniformity of the hexagonal boron nitride thin film is impaired.
A transmitted image of the laminate obtained above (ie, the substrate on which the hexagonal boron nitride thin film was formed) was photographed using an optical microscope. The photographing conditions were a shutter speed of 1/25 second, ISO sensitivity of 800, and magnification of 200 times. After performing image processing (binarization) on the exposed and unexposed areas of the substrate in the transmission image, the ratio of the area of the exposed area of the substrate to the area of the photographed area (also known as the "exposed area ratio") is calculated. ) was calculated based on the following formula. The obtained value was rounded to the second decimal place and used for evaluation.
Percentage of exposed area (%)
= [Area of the exposed part of the board/Area of the photographed part] x 100...Formula
 画像処理及び露出部の割合の算出は、アメリカ国立衛生研究所(NIH)が開発した画像処理ソフトである「ImageJ」を用いて行った。二値化は、透過像を8bitでグレースケールにした後、ThresholdをAutoに設定して行った。そして、基板の露出部の割合に基づき、下記の評価基準に従い、六方晶窒化ホウ素薄膜の均一性を評価した。結果を表1、表3及び表4に示す。
 評価「A」は、実用上許容されるレベルである。
Image processing and calculation of the proportion of the exposed area were performed using "ImageJ", which is image processing software developed by the National Institutes of Health (NIH). Binarization was performed by converting the transmitted image into 8-bit grayscale, and then setting Threshold to Auto. The uniformity of the hexagonal boron nitride thin film was then evaluated based on the proportion of the exposed portion of the substrate and according to the following evaluation criteria. The results are shown in Tables 1, 3 and 4.
Evaluation "A" is a practically acceptable level.
-評価基準-
 A:露出部の割合が2.0%以下であった。
 B:露出部の割合が2.0%を超えた。
-Evaluation criteria-
A: The ratio of exposed parts was 2.0% or less.
B: The ratio of exposed parts exceeded 2.0%.
 参考までに、評価結果がAである積層体の光学顕微鏡の透過像の一例を図2に示し、評価結果がBである積層体の光学顕微鏡の透過像の一例を図3に示す。図2及び図3における白い部分は、ホウ化鉄層に含まれるホウ化鉄、鉄等、六方晶窒化ホウ素などの凝集により基板が露出した部分(所謂、露出部)である。 For reference, an example of an optical microscope transmission image of a laminate with an evaluation result of A is shown in FIG. 2, and an example of an optical microscope transmission image of a laminate with an evaluation result of B is shown in FIG. The white portions in FIGS. 2 and 3 are portions where the substrate is exposed due to aggregation of iron boride, iron, etc., hexagonal boron nitride, etc. contained in the iron boride layer (so-called exposed portions).
 表1に示すように、FeBを含むホウ化鉄層を形成する工程Bを含む実施例1~実施例3の各製造方法によれば、結晶性の高い六方晶窒化ホウ素の薄膜を高い均一性で製造できることが明らかとなった。また、表1及び表2に示すように、工程Bにて形成するホウ化鉄層に含まれるホウ化鉄がFeB及びFeBである場合、FeBの割合が少ない方が、より結晶性の高い六方晶窒化ホウ素の薄膜をより高い均一性で製造できることが明らかとなった。また、工程Bにて形成するホウ化鉄層に含まれるホウ化鉄がFeB及びFeBである場合、FeBの割合が少ない方が、結晶性の高い六方晶窒化ホウ素の薄膜をより高い均一性で製造できることが明らかとなった。
 一方、ホウ化鉄層を形成する工程を含むものの、ホウ化鉄層がFeBを含まない比較例1の製造方法では、結晶性の高い六方晶窒化ホウ素の薄膜を製造できないことが明らかとなった。
As shown in Table 1, according to each of the manufacturing methods of Examples 1 to 3 including step B of forming an iron boride layer containing Fe 2 B, a thin film of hexagonal boron nitride with high crystallinity was It has become clear that it can be manufactured with uniformity. Moreover, as shown in Tables 1 and 2, when the iron borides contained in the iron boride layer formed in step B are Fe 3 B and Fe 2 B, the smaller the proportion of Fe 3 B, the more It has become clear that thin films of more highly crystalline hexagonal boron nitride can be produced with higher uniformity. In addition, when the iron borides contained in the iron boride layer formed in step B are Fe 2 B and FeB, the smaller the proportion of FeB, the more uniform the highly crystalline hexagonal boron nitride thin film. It has become clear that it can be manufactured using
On the other hand, it is clear that the manufacturing method of Comparative Example 1, which includes the step of forming an iron boride layer but in which the iron boride layer does not contain Fe 2 B, cannot manufacture a thin film of hexagonal boron nitride with high crystallinity. became.
 表3に記載の実施例2は、他の実施例及び比較例との対比のために記載したものであり、既述の表1に記載の実施例2と同じものである。 Example 2 shown in Table 3 is described for comparison with other Examples and Comparative Examples, and is the same as Example 2 shown in Table 1 already described.
 表3及び図4に示すように、鉄薄膜付き基板の鉄薄膜の膜厚が200nm以上1800nm以下の範囲である実施例2及び実施例4~実施例7の各製造方法によれば、結晶性の高い六方晶窒化ホウ素の薄膜を高い均一性で製造できることが明らかとなった。
 一方、鉄薄膜付き基板の鉄薄膜の膜厚が200nm未満である比較例2の製造方法、及び、鉄薄膜付き基板の鉄薄膜の膜厚が1800nmを超える比較例3の製造方法では、均一性の高い六方晶窒化ホウ素薄膜を形成できないことが明らかとなった。
As shown in Table 3 and FIG. 4, according to each of the manufacturing methods of Example 2 and Examples 4 to 7, in which the thickness of the iron thin film of the iron thin film-coated substrate is in the range of 200 nm or more and 1800 nm or less, crystallinity It has become clear that thin films of hexagonal boron nitride with high chromatography can be produced with high uniformity.
On the other hand, in the manufacturing method of Comparative Example 2, in which the thickness of the iron thin film on the substrate with the iron thin film is less than 200 nm, and in the manufacturing method of Comparative Example 3, in which the film thickness of the iron thin film on the substrate with the iron thin film exceeds 1800 nm, the uniformity It has become clear that it is not possible to form a hexagonal boron nitride thin film with a high crystallinity.
 表4に示すように、実施例8~実施例11の各製造方法により製造された六方晶窒化ホウ素薄膜は、六方晶窒化ホウ素の結晶性及び膜の均一性が高いことが確認された。
 これらの結果から、六方晶窒化ホウ素薄膜における六方晶窒化ホウ素の結晶性及び膜の均一性は、工程Cにおけるホウ化鉄層が形成された鉄薄膜付き基板の温度の影響を受け難いと推測される。
As shown in Table 4, it was confirmed that the hexagonal boron nitride thin films manufactured by each of the manufacturing methods of Examples 8 to 11 had high crystallinity of hexagonal boron nitride and high film uniformity.
From these results, it is assumed that the crystallinity of hexagonal boron nitride and film uniformity in the hexagonal boron nitride thin film are not easily affected by the temperature of the iron thin film-coated substrate on which the iron boride layer is formed in step C. Ru.
 2022年3月31日に出願された日本国特許出願2022-061216号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-061216 filed on March 31, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are specifically and exclusively incorporated by reference as if each individual document, patent application, and technical standard were specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (7)

  1.  基板と、前記基板上に設けられ、膜厚が200nm以上1800nm以下の範囲である鉄薄膜と、を有する鉄薄膜付き基板を準備する工程Aと、
     前記鉄薄膜付き基板に対し、ホウ素化合物を含むガスを供給することにより、前記鉄薄膜付き基板の前記鉄薄膜の面上に、FeBを含むホウ化鉄層を形成する工程Bと、
     前記ホウ化鉄層が形成された鉄薄膜付き基板に対し、窒素ガス及び窒素化合物を含むガスからなる群より選ばれる少なくとも1種のガスを供給することにより、前記ホウ化鉄層中のホウ素を窒化させる工程Cと、
    を含む、六方晶窒化ホウ素薄膜の製造方法。
    Step A of preparing a substrate with an iron thin film, which has a substrate and an iron thin film provided on the substrate and having a film thickness in a range of 200 nm or more and 1800 nm or less;
    Step B of forming an iron boride layer containing Fe 2 B on the surface of the iron thin film of the iron thin film coated substrate by supplying a gas containing a boron compound to the iron thin film coated substrate;
    Boron in the iron boride layer is removed by supplying at least one gas selected from the group consisting of nitrogen gas and a gas containing a nitrogen compound to the iron thin film-coated substrate on which the iron boride layer is formed. nitriding step C;
    A method for producing a hexagonal boron nitride thin film, comprising:
  2.  前記工程Cでは、前記ホウ化鉄層が形成された鉄薄膜付き基板の温度を900℃以上1200℃以下の範囲にする、請求項1に記載の六方晶窒化ホウ素薄膜の製造方法。 The method for producing a hexagonal boron nitride thin film according to claim 1, wherein in the step C, the temperature of the iron thin film-coated substrate on which the iron boride layer is formed is set in a range of 900°C or more and 1200°C or less.
  3.  前記基板は、サファイア基板である、請求項1又は請求項2に記載の六方晶窒化ホウ素薄膜の製造方法。 The method for manufacturing a hexagonal boron nitride thin film according to claim 1 or 2, wherein the substrate is a sapphire substrate.
  4.  前記ホウ素化合物は、ジボランである、請求項1又は請求項2に記載の六方晶窒化ホウ素薄膜の製造方法。 The method for producing a hexagonal boron nitride thin film according to claim 1 or 2, wherein the boron compound is diborane.
  5.  前記窒素化合物は、アンモニアである、請求項1又は請求項2に記載の六方晶窒化ホウ素薄膜の製造方法。 The method for producing a hexagonal boron nitride thin film according to claim 1 or 2, wherein the nitrogen compound is ammonia.
  6.  基板と、
     FeB及び鉄を含む薄膜と、
     複数の層を有する六方晶窒化ホウ素薄膜と、
    を有し、
     前記FeB及び鉄を含む薄膜と前記六方晶窒化ホウ素薄膜との合計膜厚が、300nm以上2100nm以下の範囲である、積層体。
    A substrate and
    A thin film containing Fe 2 B and iron,
    a hexagonal boron nitride thin film having multiple layers;
    has
    A laminate, wherein the total thickness of the thin film containing Fe 2 B and iron and the hexagonal boron nitride thin film is in the range of 300 nm or more and 2100 nm or less.
  7.  前記基板は、サファイア基板である、請求項6に記載の積層体。 The laminate according to claim 6, wherein the substrate is a sapphire substrate.
PCT/JP2023/008427 2022-03-31 2023-03-06 Production method for hexagonal boron nitride thin film, laminate WO2023189258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061216 2022-03-31
JP2022-061216 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189258A1 true WO2023189258A1 (en) 2023-10-05

Family

ID=88201277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008427 WO2023189258A1 (en) 2022-03-31 2023-03-06 Production method for hexagonal boron nitride thin film, laminate

Country Status (2)

Country Link
TW (1) TW202348828A (en)
WO (1) WO2023189258A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547379A (en) * 1978-10-02 1980-04-03 Takehiko Takahashi Manufacture of boron nitride coated film by chemical vapor deposition
JPH07300665A (en) * 1994-05-02 1995-11-14 Yuken Kogyo Kk Method for forming boron cementation layer and boron film on metallic base material
JP2011174110A (en) * 2010-02-23 2011-09-08 Kyushu Univ Material for cubic boron nitride coating, and method for manufacturing the same
US20130140526A1 (en) * 2011-12-06 2013-06-06 Samsung Electronics Co., Ltd. Hexagonal boron nitride sheet, method of preparing the hexagonal boron nitride sheet, and electronic device including the hexagonal boron nitride sheet
US20160281221A1 (en) * 2015-03-27 2016-09-29 Korea Institute Of Science And Technology (Kist) Formation method of hexagonal boron nitride thick film on a substrate and hexagonal boron nitride thick film laminates thereby
WO2018128193A1 (en) * 2017-01-06 2018-07-12 国立研究開発法人科学技術振興機構 Hexagonal boron nitride thin film and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547379A (en) * 1978-10-02 1980-04-03 Takehiko Takahashi Manufacture of boron nitride coated film by chemical vapor deposition
JPH07300665A (en) * 1994-05-02 1995-11-14 Yuken Kogyo Kk Method for forming boron cementation layer and boron film on metallic base material
JP2011174110A (en) * 2010-02-23 2011-09-08 Kyushu Univ Material for cubic boron nitride coating, and method for manufacturing the same
US20130140526A1 (en) * 2011-12-06 2013-06-06 Samsung Electronics Co., Ltd. Hexagonal boron nitride sheet, method of preparing the hexagonal boron nitride sheet, and electronic device including the hexagonal boron nitride sheet
US20160281221A1 (en) * 2015-03-27 2016-09-29 Korea Institute Of Science And Technology (Kist) Formation method of hexagonal boron nitride thick film on a substrate and hexagonal boron nitride thick film laminates thereby
WO2018128193A1 (en) * 2017-01-06 2018-07-12 国立研究開発法人科学技術振興機構 Hexagonal boron nitride thin film and method for manufacturing same

Also Published As

Publication number Publication date
TW202348828A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
CA2678488C (en) Method of producing a group iii nitride crystal
JP4468990B2 (en) Method and apparatus for growing group III metal nitride films
US11352692B2 (en) Hexagonal boron nitride thin film and method for producing the same
CN105861987B (en) Growing method of gallium nitride based on hexagonal boron nitride and magnetron sputtering aluminium nitride
EP2484816B1 (en) Method for production of laminate
TW202248121A (en) A method of forming a graphene layer structure and a graphene substrate
CN105931946B (en) Growing method of gallium nitride based on black phosphorus and magnetron sputtering aluminium nitride
WO2023189258A1 (en) Production method for hexagonal boron nitride thin film, laminate
CN109119327A (en) The method of epitaxial growth aluminium nitride on nano-patterned sapphire substrate
CN110714190B (en) Group III nitride substrate and method for producing group III nitride crystal
WO2018230663A1 (en) Gallium nitride particles and method for producing same
Bhattacharya et al. Synthesis of large-area MoS2 films by plasma-enhanced chemical film conversion of solution-processed ammonium tetrathiomolybdate
GB2607410A (en) A method of forming a graphene layer structure and a graphene substrate
US11837635B2 (en) Method of forming graphene on a silicon substrate
US20050271817A1 (en) Method for preparation of aluminum oxide thin film
JP7556197B2 (en) Laminated film and its manufacturing method
WO2024004998A1 (en) Method for producing silicon film, and silicon film
US20230160051A1 (en) Method for manufacturing crystalline gallium nitride thin film
JP2023014561A (en) Method of producing multilayer graphene
CN118461125A (en) Layer number control method of graphene single crystal wafer
GB2617851A (en) A graphene-containing laminate
KR20220124521A (en) Large-scale uniform multilayer hexagonal boron nitride film and the method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779286

Country of ref document: EP

Kind code of ref document: A1