WO2023189078A1 - Transducer - Google Patents

Transducer Download PDF

Info

Publication number
WO2023189078A1
WO2023189078A1 PCT/JP2023/006801 JP2023006801W WO2023189078A1 WO 2023189078 A1 WO2023189078 A1 WO 2023189078A1 JP 2023006801 W JP2023006801 W JP 2023006801W WO 2023189078 A1 WO2023189078 A1 WO 2023189078A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
dielectric elastomer
elastomer molded
transducer
fluid
Prior art date
Application number
PCT/JP2023/006801
Other languages
French (fr)
Japanese (ja)
Inventor
智也 永沼
智則 平林
将之 豊田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023189078A1 publication Critical patent/WO2023189078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present disclosure relates to transducers using dielectric elastomers.
  • dielectric elastomers have been used for various purposes, such as medical and nursing care devices such as artificial muscles, power generation devices, sensors, and speakers.
  • Patent Document 1 discloses a shape deforming device.
  • the shape deforming device has a deformable surface.
  • the shape-deforming device includes: a compliant material member having a volume; a plurality of electroactive polymer microparticles distributed within the volume of the compliant material member and adapted to deform in response to application of an electrical stimulus; It has one or more electrode arrangements for applying electrical stimulation to the plurality of electroactive polymers, and a controller for controlling the electrode arrangements.
  • the electrical stimulation induces different actuation responses in different regions of the compliant material member. This results in a non-uniform deformation profile on the deformable surface.
  • 5,001,301 discloses a dielectric elastomer as an example of a device using an electroactive polymer.
  • the shape-changing device is manufactured by dispensing a plurality of microparticles of electroactive polymer into a flexible material and then forming a compliant material member from the flexible material in which these microparticles are embedded by a compound extrusion process. be done.
  • shape-changing devices have a plurality of fine electroactive polymer particles dispersed within the volume of a conformable material member, and the shape is changed by changing the area to which electrical stimulation is applied, resulting in complex deformation and And it is difficult to realize modifications suitable for various purposes.
  • an object of the present disclosure is to provide a transducer that can realize complex deformation and deformation suitable for various purposes using a dielectric elastomer.
  • the transducer according to the present disclosure may include a non-dielectric elastomer molded body and a dielectric elastomer molded body that is provided adjacent to the non-dielectric elastomer molded body and deforms in response to an applied voltage.
  • transducer According to the transducer according to the present disclosure, complex deformation and deformation suitable for various purposes can be realized using a dielectric elastomer.
  • FIG. 1 is a perspective view showing a transducer according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the transducer shown in FIG. 1.
  • FIG. 3 is a sectional view showing how the transducer shown in FIG. 1 is deformed.
  • FIG. 4 is a sectional view showing a transducer according to the second embodiment.
  • FIG. 5 is a sectional view showing how the transducer shown in FIG. 4 is deformed.
  • FIG. 6 is a sectional view showing a transducer according to a third embodiment.
  • FIG. 7 is a perspective view showing a land sacer according to the fourth embodiment.
  • FIG. 8 is a sectional view showing a transducer according to the fifth embodiment.
  • FIG. 1 is a perspective view showing a transducer according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the transducer shown in FIG. 1.
  • FIG. 3 is a sectional view showing how the transducer shown in FIG
  • FIG. 9 is a sectional view showing how the transducer shown in FIG. 7 is deformed.
  • FIG. 10 is a perspective view showing a transducer according to a sixth embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a transducer according to a seventh embodiment.
  • FIG. 12 is a perspective view showing the state of the wiring.
  • FIG. 13 is a cross-sectional view showing the state of the wiring.
  • a transducer may include a non-dielectric elastomer molded body and a dielectric elastomer molded body that is provided adjacent to the non-dielectric elastomer molded body and deforms in response to an applied voltage.
  • the dielectric elastomer molded body may include a first electrode and a second electrode.
  • the first electrode and the second electrode may be patterned so that the dielectric elastomer molding deforms into a desired shape. This makes it possible to realize modifications for various purposes.
  • the dielectric elastomer molded body may control the controlled object by its deformation. Thereby, the object to be controlled can be controlled by deforming the dielectric elastomer molded body.
  • the non-dielectric elastomer molded body may form a channel through which fluid flows.
  • a dielectric elastomer molded body may be provided in the flow path.
  • the controlled object may be a fluid flowing within the flow path. Thereby, the fluid can be controlled by deformation of the dielectric elastomer molded body.
  • the dielectric elastomer molded body may be provided in the flow path so as to be continuous with the non-dielectric elastomer molded body and form a part of the flow path.
  • the dielectric elastomer molded body may control fluid by deforming in a direction transverse to the direction of fluid flow. Thereby, the flow direction of the fluid can be controlled.
  • the distance between the first electrode and the second electrode may gradually change along the flow direction.
  • the dielectric elastomer molded body may be provided on the inner wall surface of the non-dielectric elastomer molded body that forms the flow path.
  • the dielectric elastomer molded body may expand and contract within the flow path to open and close the flow path. Thereby, the transducer can be used as an on-off valve.
  • the first and second electrodes may contain at least one selected from the group consisting of silver nanowires and carbon nanotubes.
  • the transducer includes a sensor that detects the state of the controlled object and a control section that deforms the dielectric elastomer molded body into a desired shape based on the state of the controlled object detected by the sensor and controls the state of the controlled object. and may be provided. Thereby, the state of the controlled object can be appropriately controlled according to the actual state of the controlled object.
  • the non-dielectric elastomer molded body may form a channel through which fluid flows.
  • a dielectric elastomer molded body may be provided in the flow path.
  • the controlled object may be a fluid flowing within the flow path.
  • the sensor may be disposed on the downstream side in the fluid flow direction with respect to the dielectric elastomer molded body, and may detect either the flow rate or the flow velocity of the fluid.
  • the control unit may change the dielectric elastomer molded body into a desired shape based on at least one of the flow rate and flow rate detected by the sensor, and control the state of the fluid to have at least one of the desired flow rate and flow rate. . Thereby, the state of the fluid can be appropriately controlled according to the actual flow rate or flow velocity of the fluid.
  • the transducer may include a fluid sending section that is disposed upstream in the flow direction with respect to the dielectric elastomer molded body and sends fluid toward the dielectric elastomer molded body.
  • the control unit may operate the fluid sending unit based on at least one of the flow rate and flow rate detected by the sensor, and may control the state of the fluid to be at least one of the desired flow rate and flow rate. Thereby, the state of the fluid can be controlled more appropriately according to the actual flow rate or flow rate of the fluid.
  • a transducer 1 is comprised of a non-dielectric elastomer molded body 2 and a dielectric elastomer molded body 3.
  • the non-dielectric elastomer molded body 2 has a cylindrical shape.
  • the non-dielectric elastomer molded body 2 is made of a flexible material that can be elastically deformed, such as silicone elastomer, acrylic elastomer, and urethane elastomer.
  • the non-dielectric elastomer molded body 2 forms a flow path through which the fluid W flows in the flow direction F in its internal space.
  • the fluid W is a liquid and a gas, and is a controlled object controlled by the transducer 1.
  • the dielectric elastomer molded body 3 has a cylindrical shape that is adjacent to and continuous with the non-dielectric elastomer molded body 2.
  • the dielectric elastomer molded body 3 is made of a flexible material that can be elastically deformed, such as silicone elastomer, acrylic elastomer, and urethane elastomer.
  • the dielectric elastomer molded body 3 constitutes a part of the flow path together with the non-dielectric elastomer molded body 2.
  • the dielectric elastomer molded body 3 includes an electrode 4 provided on its outer wall surface (outer peripheral surface) and an electrode 5 provided on its inner wall surface (inner peripheral surface). The dielectric elastomer molded body 3 deforms in response to the voltage applied to the electrodes 4 and 5.
  • the electrodes 4 and 5 have a sheet shape and are adhered to the surface of the dielectric elastomer molded body 3. However, the electrodes 4 and 5 may be films formed on the surface of the dielectric elastomer molded body 3 by a method such as vapor deposition.
  • the electrode 4 and the electrode 5 are made of a flexible material that is electrically conductive and can be elastically deformed. That is, the electrodes 4 and 5 are made of a material that can be deformed following the deformation of the dielectric elastomer molded body 3.
  • the electrodes 4 and 5 are made of, for example, a resin material containing a conductive filler. Electrode 4 and electrode 5 contain at least one selected from the group consisting of silver nanowires and carbon nanotubes as a conductive filler. Silver nanowires are transparent and can be suitably used to make the transducer 1 transparent.
  • the dielectric elastomer molded body 3 deforms in a direction intersecting the flow direction F of the fluid W, here, in a direction perpendicular to the flow direction F, when a voltage is applied. That is, in the dielectric elastomer molded body 3, the electrode 4 contracts toward the electrode 5 in the thickness direction (radial direction) connecting the electrodes 4 and 5 due to the Coulomb force generated between the electrodes 4 and 5, and the thickness decreases. Since it extends in the direction perpendicular to the flow direction (flow direction F), it deforms so as to protrude inward in the radial direction of the flow path.
  • the fluid W is pushed by the dielectric elastomer molded body 3, and flows in both directions (left and right directions in the figure) centering on the dielectric elastomer molded body 3 in the flow direction F, as shown by the arrows in the figure.
  • the transducer 1 can control the flow of the fluid W by combining the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3. That is, the transducer 1 can function as a pump that controls the flow of the fluid W.
  • the flow rate of the fluid W can also be adjusted by deforming the dielectric elastomer molded body 3 radially inward while the fluid W is flowing in one flow direction F.
  • non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3 may be integrally molded, and then the electrodes 4 and 5 may be formed. They may be formed separately and then combined. In this way, the transducer 1 can be easily formed.
  • the transducer 1 of the second embodiment differs from the transducer 1 of the first embodiment in the shape of the dielectric elastomer molded body 3 and the arrangement of the electrodes 4 and 5.
  • the dielectric elastomer molded body 3 has a semi-cylindrical shape including a semi-conical surface that slopes from the inner wall surface to the outer wall surface of the non-dielectric elastomer molded body 2 in the flow direction F.
  • the semi-conical surface constitutes the outer peripheral surface of the dielectric elastomer molded body 3.
  • the inner wall surface (inner peripheral surface) of the dielectric elastomer molded body 3 that comes into contact with the fluid W is formed flush with the inner wall surface of the non-dielectric elastomer molded body 2 . That is, the dielectric elastomer molded body 3 has a thickness that gradually increases in the flow direction F.
  • the outer circumferential surface of the dielectric elastomer molded body 3 comes into contact with the inner circumferential surface of the non-dielectric elastomer molded body 2, which is formed into a semi-conical surface.
  • the electrode 4 is arranged along the outer peripheral surface of the dielectric elastomer molded body 3 so as to be inclined with respect to the flow direction F.
  • the electrodes 5 are arranged parallel to the flow direction F along the inner peripheral surface of the dielectric elastomer molded body 3, so that the distance between the electrodes 4 and 5 gradually increases along the flow direction F. It is changing to become larger. Note that the distance between the electrodes 4 and 5 may change so that it gradually becomes smaller along the flow direction F, or may change so that it becomes larger and then becomes smaller. It suffices if they are arranged so that they change into a desired shape.
  • the dielectric elastomer molded body 3 moves inward in the radial direction and in a direction slightly inclined to the flow direction F, as the distance between the electrodes 4 and 5 gradually increases. Transform to protrude. Then, the fluid W is pushed by the dielectric elastomer molded body 3, causing a slightly inclined flow in the flow direction F, as shown by the arrow in the figure. Therefore, the fluid W flows in the flow direction F (flow to the right in the figure).
  • the transducer 1 can control the flow of the fluid W. Further, the transducer 1 can have a plurality of dielectric elastomer molded bodies 3 according to the second embodiment arranged therein. Thereby, the fluid W can be caused to flow continuously in the flow direction F in the flow path.
  • the transducer 1 of the third embodiment will be specifically described using FIG. 6. Note that, here, description of the same configuration as the transducer 1 of the second embodiment will be omitted, and basically only the configuration that is different from the transducer 1 of the second embodiment will be described.
  • the transducer 1 of the third embodiment has a cylindrical dielectric elastomer molded body 3, unlike the transducer 1 of the second embodiment, which has a semicylindrical dielectric elastomer molded body 3. . That is, in the transducer 1 of the third embodiment, the dielectric elastomer molded body 3 is provided in the entire circumferential direction of the non-dielectric elastomer molded body 2. The outer peripheral surface of the dielectric elastomer molded body 3 is constituted by an inclined conical surface as in the second embodiment. The transducer 1 can cause the fluid W to flow in the flow direction F, similarly to the transducer 1 of the second embodiment.
  • the transducer 1 of the fourth embodiment differs from the transducer 1 of the first embodiment in that the dielectric elastomer molded body 3 is provided on the outer periphery of the non-dielectric elastomer molded body 2.
  • the electrode 5 provided on the inner wall surface of the dielectric elastomer molded body 3 is in contact with the outer peripheral surface of the non-dielectric elastomer molded body 2.
  • the dielectric elastomer molded body 3 contracts radially inward and expands in the axial direction. Then, following the expansion of the dielectric elastomer molded body 3, the non-dielectric elastomer molded body 2 also expands. Thereby, the non-dielectric elastomer molded body 2 can be deformed so as to protrude radially inward. As a result, similarly to the transducer 1 of the first embodiment, it is possible to cause the fluid W to flow in both directions in the flow direction F as shown in FIG.
  • the transducer 1 of the fifth embodiment will be specifically described using FIGS. 8 and 9.
  • the transducer 1 includes a non-dielectric elastomer molded body 2, a dielectric elastomer molded body 3, an electrode 4, and an electrode 5.
  • the materials of each of the non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrode 4, and the electrode 5 are the same as those of the transducer 1 of the first embodiment, so a description thereof will be omitted.
  • the non-dielectric elastomer molded body 2 has a cylindrical shape and forms a flow path for the fluid W flowing through its internal space.
  • the dielectric elastomer molded body 3 is provided adjacent to the non-dielectric elastomer molded body 2.
  • the dielectric elastomer molded body 3 functions as an on-off valve in the flow path of the fluid W.
  • the dielectric elastomer molded body 3 has a cylindrical shape, as shown in FIG.
  • the inner circumferential surface of the non-dielectric elastomer molded body 2 and the outer circumferential surface of the dielectric elastomer molded body 3 are adhered.
  • the dielectric elastomer molded body 3 has an inner circumferential surface that gradually slopes outward from the upstream (left side in the figure) to the downstream (right side in the figure) of the flow path.
  • the thickness of the dielectric elastomer molded body 3 gradually decreases from upstream to downstream.
  • No voltage is applied to the dielectric elastomer molded body 3 shown in FIG. 8, and the inner peripheral surfaces of the dielectric elastomer molded body 3 are pressed together in a relatively thick region on the upstream side and are in contact with each other. .
  • the outer circumferential surface of the dielectric elastomer molded body 3 is adhered to the inner circumferential surface of the non-dielectric elastomer molded body 2 via an electrode 4 . In this way, the dielectric elastomer molded body 3 closes the flow path when no voltage is applied.
  • the electrode 4 is provided on the outer peripheral surface of the dielectric elastomer molded body 3.
  • the electrode 4 has a cylindrical shape and is arranged between the inner circumferential surface of the non-dielectric elastomer molded body 2 and the outer circumferential surface of the dielectric elastomer molded body 3.
  • the electrode 5 is provided on the inner peripheral surface of the dielectric elastomer molded body 3. That is, the electrode 5 has a truncated conical shape.
  • the dielectric elastomer molded body 3 contracts radially outward and expands in the flow direction F when a voltage is applied. As a result, the closed state of the flow path is released, and the fluid W begins to flow in the flow direction F.
  • the transducer 1 combines the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3, so that the dielectric elastomer molded body 3 can function as an on-off valve and control the flow of the fluid W. .
  • the transducer 1 of the sixth embodiment will be specifically described using FIG. 10.
  • the transducer 1 is composed of a non-dielectric elastomer molded body 2, a dielectric elastomer molded body 3 including an electrode 4, and an electrode 5.
  • the materials of each of the non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrode 4, and the electrode 5 are the same as those of the transducer 1 of the first embodiment, so a description thereof will be omitted.
  • the non-dielectric elastomer molded body 2 has a recess 21, a recess 22, and a groove-shaped flow path 23 on its upper surface.
  • the recess 21 and the recess 22 are connected by a flow path 23.
  • a pair of dielectric elastomer molded bodies 3 facing each other is provided on the inner wall surface of the flow path 23 .
  • the dielectric elastomer molded body 3 is provided with electrodes 4, 4 and electrodes 5, 5, respectively.
  • the electrodes 4 are each provided on the surface of the dielectric elastomer molded body 3 on the flow path 23 side.
  • the electrodes 5 are each provided on the surface of the dielectric elastomer molded body 3 on the side opposite to the flow path 23 side. As shown in FIG.
  • each of the dielectric elastomer molded bodies 3, electrodes 4, and electrodes 5 are accommodated by cutting out the inner wall surface of the flow path 23.
  • the contact surface of the electrode 5 with the fluid W and the inner wall surface of the flow path 23 are formed flush with each other.
  • the dielectric elastomer molded body 3 tends to expand in the flow direction F when a voltage is applied.
  • the dielectric elastomer molded body 3 is accommodated by cutting out the inner wall surface of the flow path 23 and is in contact with the non-dielectric elastomer molded body 2 in the direction of expansion, so that the expansion in the flow direction F is limited. limited.
  • the dielectric elastomer molded body 3 deforms so as to protrude from the inner wall surface of the flow path 23.
  • the transducer 1 can control the flow of the fluid W in the same manner as in the first to fifth embodiments described above.
  • this embodiment is merely an example for explaining the groove-shaped flow path 23.
  • the groove-shaped flow path 23 is not limited to this embodiment.
  • the transducer 1 of the first to sixth embodiments has been described.
  • the transducer 1 of the present disclosure is configured such that the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3 are adjacent to each other, so that complex deformation can be performed more directly, and various types of deformations can be performed. It is possible to realize transformations suitable for purposes. That is, the electrodes 4 and 5 are arranged in a pattern as shown in the first to sixth embodiments according to various purposes, and by changing this arrangement pattern, the dielectric elastomer molded body can be appropriately formed. 3 can be transformed into a desired shape.
  • the transducer 1 of the seventh embodiment includes a dielectric elastomer molded body 3 including a non-dielectric elastomer molded body 2, an electrode 4, and an electrode 5, a fluid feed section 6, a sensor 7, and a control section 8. configured.
  • the non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrodes 4, and the electrodes 5 are made of the same material as the transducer 1 of the first embodiment, and the patterns of the electrodes 4 and 5 described above are the same. The same applies to appropriately changing the dielectric elastomer molded body 3 into a desired shape by the arranged arrangement, so a description thereof will be omitted.
  • the fluid feed section 6 is arranged on the upstream side of the dielectric elastomer molded body 3 in the flow direction F.
  • the fluid feeding section 6 may be any device that allows the fluid W to flow in one direction toward the dielectric elastomer molded body 3 .
  • the fluid sending unit 6 is, for example, an on-off valve, a screw pump, a motor pump, a piston pump, or the like.
  • a drive section for operating the fluid sending section 6 may be provided separately.
  • the sensor 7 is arranged on the downstream side of the dielectric elastomer molded body 3 in the flow direction F.
  • the sensor 7 detects the state of the controlled object on the downstream side of the dielectric elastomer molded body 3.
  • the sensor 7 detects at least one or both of the flow rate and flow velocity of the fluid W flowed by the fluid feeder 6 or the dielectric elastomer molded body 3.
  • the control unit 8 causes the dielectric elastomer molded body 3 to deform based on the flow rate or flow velocity of the fluid W detected by the sensor 7.
  • the control unit 8 includes a power source.
  • a power supply built into the control unit 8 is connected to the electrode 4 by a wiring 81 and connected to the electrode 5 by a wiring 82.
  • a voltage is applied to the dielectric elastomer molded body 3.
  • the dielectric elastomer molded body 3 is deformed by applied voltage.
  • the sensor 7 transmits information on at least one of the detected flow rate and flow velocity of the fluid W to the control unit 8.
  • control unit 8 applies a voltage to the electrodes 4 and 5 based on at least one of the flow rate or flow velocity of the fluid W detected by the sensor 7, and changes the dielectric elastomer molded body 3 into a desired shape. be able to.
  • the transducer 1 can appropriately change the dielectric elastomer molded body 3 according to the actual state of the controlled object (fluid W), and adjust at least one of the relatively small flow rate or flow velocity of the fluid W. can.
  • control section 8 may control the fluid sending section 6. That is, based on the flow rate or flow velocity of the fluid W detected by the sensor 7, the control unit 8 controls at least the flow rate or flow velocity of the fluid W flowed toward the dielectric elastomer molded body 3 by operating the fluid sending unit 6. Either one may be controlled.
  • the fluid sending section 6 is constituted by a pump or the like including a driving section. Therefore, compared to the dielectric elastomer molded body 3, the fluid sending section 6 can change at least one of the flow rate and the flow velocity of the fluid W flowing in the flow path to a greater extent.
  • control unit 8 adjusts at least one of the approximate flow rate or flow rate of the fluid W in the fluid sending unit 6, and adjusts at least one of the relatively small flow rate or flow rate of the fluid W in the dielectric elastomer molded body 3. can do. That is, by adjusting at least one of the flow rate or the flow velocity of the fluid W by combining the fluid sending section 6 and the dielectric elastomer molded body 3, it is possible to more appropriately control the flow of the fluid W depending on the use of the transducer 1. can.
  • a plurality of control sections 8 may be provided, such as a control section 8 corresponding to the dielectric elastomer molded body 3 and another control section 8 corresponding to the fluid feeding section 6.
  • the control unit 8 can be configured by, for example, a computer such as a microcomputer or a circuit.
  • the control unit 8 controls the dielectric elastomer molded body 3 or the fluid sending unit 6 based on at least one of the flow rate and flow velocity of the fluid W detected by the sensor 7, for example, depending on the use of the transducer 1. This may be realized by operating a computer according to a program that causes a process to control the state (at least one of the flow rate and the flow rate) of the flow rate.
  • the dielectric elastomer molded body 3 is arranged between the fluid feed section 6 and the sensor 7.
  • a plurality of dielectric elastomer molded bodies 3 may be arranged between the fluid sending section 6 and the sensor 7. That is, the plurality of dielectric elastomer molded bodies 3 may be arranged side by side along the flow direction F between the fluid sending section 6 and the sensor 7.
  • the plurality of dielectric elastomer molded bodies 3 may be one type of dielectric elastomer molded bodies 3 of the first to fifth embodiments or a combination thereof, and various changes can be made depending on the use of the transducer 1. It is. Furthermore, the transducer 1 of this embodiment is also applicable to the transducer 1 of the sixth embodiment.
  • control unit 8 can be arranged to correspond to each dielectric elastomer molded body 3 according to the number of the plurality of dielectric elastomer molded bodies 3, and one control unit 8 can be arranged to correspond to each dielectric elastomer molded body 3. It is also possible to arrange a plurality of dielectric elastomer moldings 3 in a controlled manner relative to the part 8.
  • the wiring 82 may connect the electrode 5 and the power source via the outlet of the flow path formed by the non-dielectric elastomer molded body 2. That is, one end of the wiring 82 is connected to the electrode 5 within the flow path formed by the non-dielectric elastomer molded body 2. The wiring 82 exits from inside the flow path to the outside of the flow path via an outlet in the flow direction F of the flow path. The other end of the wiring 82 is connected to the power source of the control unit 8 outside the flow path. Further, the wiring 82 may pass through the non-dielectric elastomer molded body 2 to connect the electrode 5 and the power source. In addition, in FIG. 12, in order to make the display of the wiring 81 and the wiring 82 easier to understand, illustration of the fluid sending part 6 and the sensor 7 is omitted.
  • the dielectric elastomer molded body 3 is formed on the inner circumferential surface of the non-dielectric elastomer molded body 2 as in the transducer 1 of the fifth embodiment described above, as shown in FIG.
  • the electrode 4 and the power source may be connected from the upstream side of the flow direction F of the channel, and the wiring 82 may connect the electrode 5 and the power source from the downstream side of the flow direction F of the flow channel. Since the thickness of the dielectric elastomer molded body 3 gradually decreases from upstream to downstream, a gap is created on the downstream side where the inner circumferential surface of the dielectric elastomer molded body 3 is exposed. Thereby, the wiring 82 can be connected to the electrode 4 relatively easily. In FIG. 13, illustration of the fluid feed section 6, sensor 7, and control section 8 is omitted to make the display of the wiring 81 and the wiring 82 easier to understand.
  • the transducer 1 of the present disclosure can be used in products such as carburetors that adjust the flow rate of not only liquid but also gas, and can also be used in various products that control controlled objects by deformation.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Provided is a transducer which can achieve complicated deformation and deformation suitable for various purposes. A transducer 1 comprises a non-dielectric elastomer molded body 2 and a dielectric elastomer molded body 3 which is provided adjacent to the non-dielectric elastomer molded body 2 and deforms in response to voltage application. In addition, the dielectric elastomer molded body 3 includes an electrode 4 and an electrode 5. The electrode 4 and the electrode 5 are patterned and disposed so that the dielectric elastomer molded body 3 deforms in a desired shape. Accordingly, it is possible to achieve complicated deformation and deformation suitable for various purposes. In addition, the flow or flow rate of a fluid W in a flow path is controlled due to the deformation of the dielectric elastomer molded body 3.

Description

トランデューサtransducer
 本開示は、誘電エラストマを用いたトランデューサに関する。 The present disclosure relates to transducers using dielectric elastomers.
 従来、誘電エラストマは、人工筋肉等の医療器具及び介護器具、発電装置、センサ、並びに、スピーカ等、種々の目的に利用されている。 Conventionally, dielectric elastomers have been used for various purposes, such as medical and nursing care devices such as artificial muscles, power generation devices, sensors, and speakers.
 国際公開第2018/007441号(特許文献1)は、形状変形装置を開示している。形状変形装置は、変形可能な表面を有する。形状変形装置は、容積を有する追従性材料部材と、追従性材料部材の容積内に分散され、電気的刺激の印加に応じて変形するように適合された複数の電気活性ポリマーの微細粒子と、複数の電気活性ポリマーに電気的刺激を印加する1又は2以上の電極配置と、電極配置を制御する制御器とを有する。電気的刺激は、追従性材料部材の異なる領域において、異なる作動応答を誘発させる。これにより、変形可能な表面において、不均一な変形プロファイルが生じる。特許文献1は、電気活性ポリマーを使用する装置の一例として、誘電エラストマを開示している。形状変形装置は、可撓性材料に複数の電気活性ポリマーの微細粒子を投与し、その後、化合物押し出しプロセスによって、これら微細粒子を埋設した可撓性材料から追従性材料部材を形成することにより製造される。 International Publication No. 2018/007441 (Patent Document 1) discloses a shape deforming device. The shape deforming device has a deformable surface. The shape-deforming device includes: a compliant material member having a volume; a plurality of electroactive polymer microparticles distributed within the volume of the compliant material member and adapted to deform in response to application of an electrical stimulus; It has one or more electrode arrangements for applying electrical stimulation to the plurality of electroactive polymers, and a controller for controlling the electrode arrangements. The electrical stimulation induces different actuation responses in different regions of the compliant material member. This results in a non-uniform deformation profile on the deformable surface. US Pat. No. 5,001,301 discloses a dielectric elastomer as an example of a device using an electroactive polymer. The shape-changing device is manufactured by dispensing a plurality of microparticles of electroactive polymer into a flexible material and then forming a compliant material member from the flexible material in which these microparticles are embedded by a compound extrusion process. be done.
国際公開第2018/007441号International Publication No. 2018/007441
 しかしながら、形状変形装置は、追従性材料部材の容積内に複数の電気活性ポリマーの微細粒子が分散され、電気的刺激を印加する領域を変えることによって形状を変化させているため、複雑な変形、及び、種々の目的に適した変形を実現することは困難である。 However, shape-changing devices have a plurality of fine electroactive polymer particles dispersed within the volume of a conformable material member, and the shape is changed by changing the area to which electrical stimulation is applied, resulting in complex deformation and And it is difficult to realize modifications suitable for various purposes.
 そこで、本開示は、誘電エラストマを用いて、複雑な変形、及び、種々の目的に適した変形を実現することができるトランデューサを提供することを課題とする。 Therefore, an object of the present disclosure is to provide a transducer that can realize complex deformation and deformation suitable for various purposes using a dielectric elastomer.
 上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係るトランデューサは、非誘電エラストマ成形体と、非誘電エラストマ成形体に隣接して設けられ、印加電圧に応答して変形する誘電エラストマ成形体とを備えてよい。 In order to solve the above problems, the present disclosure is configured as follows. That is, the transducer according to the present disclosure may include a non-dielectric elastomer molded body and a dielectric elastomer molded body that is provided adjacent to the non-dielectric elastomer molded body and deforms in response to an applied voltage.
 本開示に係るトランデューサによれば、誘電エラストマを用いて、複雑な変形、及び、種々の目的に適した変形を実現することができる。 According to the transducer according to the present disclosure, complex deformation and deformation suitable for various purposes can be realized using a dielectric elastomer.
図1は、第1実施形態に係るトランデューサを示す斜視図である。FIG. 1 is a perspective view showing a transducer according to a first embodiment. 図2は、図1に示すトランデューサを示す断面図である。FIG. 2 is a cross-sectional view of the transducer shown in FIG. 1. 図3は、図1に示すトランデューサの変形の様子を示す断面図である。FIG. 3 is a sectional view showing how the transducer shown in FIG. 1 is deformed. 図4は、第2実施形態に係るトランデューサを示す断面図である。FIG. 4 is a sectional view showing a transducer according to the second embodiment. 図5は、図4に示すトランデューサの変形の様子を示す断面図である。FIG. 5 is a sectional view showing how the transducer shown in FIG. 4 is deformed. 図6は、第3実施形態に係るトランデューサを示す断面図である。FIG. 6 is a sectional view showing a transducer according to a third embodiment. 図7は、第4実施形態に係るとランディーサを示す斜視図である。FIG. 7 is a perspective view showing a land sacer according to the fourth embodiment. 図8は、第5実施形態に係るトランデューサを示す断面図である。FIG. 8 is a sectional view showing a transducer according to the fifth embodiment. 図9は、図7に示すトランデューサの変形の様子を示す断面図である。FIG. 9 is a sectional view showing how the transducer shown in FIG. 7 is deformed. 図10は、第6実施形態に係るトランデューサを示す斜視図である。FIG. 10 is a perspective view showing a transducer according to a sixth embodiment. 図11は、第7実施形態に係るトランデューサを示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a transducer according to a seventh embodiment. 図12は、配線の様子を示す斜視図である。FIG. 12 is a perspective view showing the state of the wiring. 図13は、配線の様子を示す断面図である。FIG. 13 is a cross-sectional view showing the state of the wiring.
 本開示の実施形態に係るトランデューサは、非誘電エラストマ成形体と、非誘電エラストマ成形体に隣接して設けられ、印加電圧に応答して変形する誘電エラストマ成形体とを備えてよい。 A transducer according to an embodiment of the present disclosure may include a non-dielectric elastomer molded body and a dielectric elastomer molded body that is provided adjacent to the non-dielectric elastomer molded body and deforms in response to an applied voltage.
 これにより、複雑な変形、及び、種々の目的に適した変形を実現することができる。また、容易にトランデューサを形成することができる。 This makes it possible to realize complex deformations and deformations suitable for various purposes. Further, a transducer can be easily formed.
 誘電エラストマ成形体は、第1電極及び第2電極を含んでよい。第1電極と第2電極とは、誘電エラストマ成形体が所望の形状に変形するようにパターン化されてよい。これにより、種々の目的に応じた変形を実現することができる。 The dielectric elastomer molded body may include a first electrode and a second electrode. The first electrode and the second electrode may be patterned so that the dielectric elastomer molding deforms into a desired shape. This makes it possible to realize modifications for various purposes.
 誘電エラストマ成形体は、その変形によって被制御体を制御してよい。これにより、誘電エラストマ成形体の変形によって被制御体を制御することができる。 The dielectric elastomer molded body may control the controlled object by its deformation. Thereby, the object to be controlled can be controlled by deforming the dielectric elastomer molded body.
 非誘電エラストマ成形体は、流体が流れる流路を形成してよい。誘電エラストマ成形体は、流路に設けられてよい。被制御体は、流路内を流れる流体であってよい。これにより、誘電エラストマ成形体の変形によって流体を制御することができる。 The non-dielectric elastomer molded body may form a channel through which fluid flows. A dielectric elastomer molded body may be provided in the flow path. The controlled object may be a fluid flowing within the flow path. Thereby, the fluid can be controlled by deformation of the dielectric elastomer molded body.
 誘電エラストマ成形体は、非誘電エラストマ成形体と連続して流路の一部を形成するように流路に設けられてよい。誘電エラストマ成形体は、流体の流れ方向に交差する方向に変形することにより流体を制御してよい。これにより、流体の流れ方向を制御することができる。 The dielectric elastomer molded body may be provided in the flow path so as to be continuous with the non-dielectric elastomer molded body and form a part of the flow path. The dielectric elastomer molded body may control fluid by deforming in a direction transverse to the direction of fluid flow. Thereby, the flow direction of the fluid can be controlled.
 第1電極と第2電極との間の距離は、流れ方向に沿って徐々に変化してよい。第1電極及び第2電極が非対称に配置されたことにより、目的に応じた種々の変形を実現することができる。 The distance between the first electrode and the second electrode may gradually change along the flow direction. By arranging the first electrode and the second electrode asymmetrically, various modifications can be realized depending on the purpose.
 誘電エラストマ成形体は、流路を形成する非誘電エラストマ成形体の内壁面に設けられてよい。誘電エラストマ成形体は、流路内で膨縮変形することにより前記流路を開閉してよい。これにより、トランデューサは、開閉弁として利用することができる。 The dielectric elastomer molded body may be provided on the inner wall surface of the non-dielectric elastomer molded body that forms the flow path. The dielectric elastomer molded body may expand and contract within the flow path to open and close the flow path. Thereby, the transducer can be used as an on-off valve.
 第1及び第2の電極は、銀ナノワイヤ及びカーボンナノチューブからなる群から選択される少なくとも1つを含有してよい。 The first and second electrodes may contain at least one selected from the group consisting of silver nanowires and carbon nanotubes.
 トランデューサは、被制御体の状態を検知するセンサと、センサにより検知された被制御体の状態に基づいて誘電エラストマ成形体を所望の形状に変形させ、被制御体の状態を制御する制御部とを備えてよい。これにより、実際の被制御体の状態に応じて適切に被制御体の状態を制御することができる。 The transducer includes a sensor that detects the state of the controlled object and a control section that deforms the dielectric elastomer molded body into a desired shape based on the state of the controlled object detected by the sensor and controls the state of the controlled object. and may be provided. Thereby, the state of the controlled object can be appropriately controlled according to the actual state of the controlled object.
 非誘電エラストマ成形体は、流体が流れる流路を形成してよい。誘電エラストマ成形体は、流路に設けられてよい。被制御体は前記流路内を流れる流体であってよい。センサは、誘電エラストマ成形体に対して流体の流れ方向下流側に配置され、流体の流量及び流速のいずれか一方を検知してよい。制御部は、センサで検知された流量及び流速の少なくとも一方に基づいて誘電エラストマ成形体を所望の形状に変化させ、流体の状態を所望の流量及び流速の少なくとも一方になるように制御してよい。これにより、実際の流体の流量又は流速に応じて適切に流体の状態を制御することができる。 The non-dielectric elastomer molded body may form a channel through which fluid flows. A dielectric elastomer molded body may be provided in the flow path. The controlled object may be a fluid flowing within the flow path. The sensor may be disposed on the downstream side in the fluid flow direction with respect to the dielectric elastomer molded body, and may detect either the flow rate or the flow velocity of the fluid. The control unit may change the dielectric elastomer molded body into a desired shape based on at least one of the flow rate and flow rate detected by the sensor, and control the state of the fluid to have at least one of the desired flow rate and flow rate. . Thereby, the state of the fluid can be appropriately controlled according to the actual flow rate or flow velocity of the fluid.
 トランデューサは、誘電エラストマ成形体に対して流れ方向上流側に配置され、流体を誘電エラストマ成形体に向かって送り出す流体送り部を備えてよい。制御部は、センサで検知された流量及び流速の少なくとも一方に基づいて流体送り部を動作させ、流体の状態を所望の流量及び流速の少なくとも一方となるように制御してよい。これにより、実際の流体の流量又は流速に応じて、より適切に流体の状態を制御することができる。 The transducer may include a fluid sending section that is disposed upstream in the flow direction with respect to the dielectric elastomer molded body and sends fluid toward the dielectric elastomer molded body. The control unit may operate the fluid sending unit based on at least one of the flow rate and flow rate detected by the sensor, and may control the state of the fluid to be at least one of the desired flow rate and flow rate. Thereby, the state of the fluid can be controlled more appropriately according to the actual flow rate or flow rate of the fluid.
(第1実施形態)
 以下、本開示に係る第1実施形態のトランデューサ1について、図1~3を用いて具体的に説明する。まず、図1及び2に示すように、トランデューサ1は、非誘電エラストマ成形体2及び誘電エラストマ成形体3から構成されている。
(First embodiment)
Hereinafter, the transducer 1 according to the first embodiment of the present disclosure will be specifically described using FIGS. 1 to 3. First, as shown in FIGS. 1 and 2, a transducer 1 is comprised of a non-dielectric elastomer molded body 2 and a dielectric elastomer molded body 3.
 非誘電エラストマ成形体2は、円筒形状を有する。非誘電エラストマ成形体2は、例えば、シリコーンエラストマ、アクリルエラストマ及びウレタンエラストマ等、弾性変形可能な可撓性材料からなる。非誘電エラストマ成形体2は、その内部空間において流体Wを流れ方向Fに流すための流路を形成する。流体Wは、液体及び気体であり、トランデューサ1によって制御される被制御体である。 The non-dielectric elastomer molded body 2 has a cylindrical shape. The non-dielectric elastomer molded body 2 is made of a flexible material that can be elastically deformed, such as silicone elastomer, acrylic elastomer, and urethane elastomer. The non-dielectric elastomer molded body 2 forms a flow path through which the fluid W flows in the flow direction F in its internal space. The fluid W is a liquid and a gas, and is a controlled object controlled by the transducer 1.
 誘電エラストマ成形体3は、非誘電エラストマ成形体2に隣接し、非誘電エラストマ成形体2と連続して形成された円筒形状を有する。誘電エラストマ成形体3は、例えば、シリコーンエラストマ、アクリルエラストマ及びウレタンエラストマ等、弾性変形可能な可撓性材料からなる。誘電エラストマ成形体3は、非誘電エラストマ成形体2とともに流路の一部を構成する。誘電エラストマ成形体3は、その外壁面(外周面)に設けられた電極4及び内壁面(内周面)に設けられた電極5を含む。誘電エラストマ成形体3は、電極4及び電極5の印加電圧に応答して変形する。 The dielectric elastomer molded body 3 has a cylindrical shape that is adjacent to and continuous with the non-dielectric elastomer molded body 2. The dielectric elastomer molded body 3 is made of a flexible material that can be elastically deformed, such as silicone elastomer, acrylic elastomer, and urethane elastomer. The dielectric elastomer molded body 3 constitutes a part of the flow path together with the non-dielectric elastomer molded body 2. The dielectric elastomer molded body 3 includes an electrode 4 provided on its outer wall surface (outer peripheral surface) and an electrode 5 provided on its inner wall surface (inner peripheral surface). The dielectric elastomer molded body 3 deforms in response to the voltage applied to the electrodes 4 and 5.
 電極4及び電極5は、シート形状を有し、誘電エラストマ成形体3の表面に接着されている。ただし、電極4及び電極5は、蒸着等の方法により誘電エラストマ成形体3の表面に形成された被膜であってもよい。電極4及び電極5は、導電性を有し、弾性変形可能な可撓性材料からなる。すなわち、電極4及び電極5は、誘電エラストマ成形体3の変形に追従して変形可能な材料からなる。電極4及び電極5は、例えば、導電性フィラーを含む樹脂材料等からなる。電極4及び電極5は、導電性フィラーとして、銀ナノワイヤ及びカーボンナノチューブからなる群から選択される少なくとも1つを含有する。銀ナノワイヤは、透明であり、トランデューサ1を透明にする際に適して用いることができる。 The electrodes 4 and 5 have a sheet shape and are adhered to the surface of the dielectric elastomer molded body 3. However, the electrodes 4 and 5 may be films formed on the surface of the dielectric elastomer molded body 3 by a method such as vapor deposition. The electrode 4 and the electrode 5 are made of a flexible material that is electrically conductive and can be elastically deformed. That is, the electrodes 4 and 5 are made of a material that can be deformed following the deformation of the dielectric elastomer molded body 3. The electrodes 4 and 5 are made of, for example, a resin material containing a conductive filler. Electrode 4 and electrode 5 contain at least one selected from the group consisting of silver nanowires and carbon nanotubes as a conductive filler. Silver nanowires are transparent and can be suitably used to make the transducer 1 transparent.
 図3に示すように、誘電エラストマ成形体3は、電圧を印加すると流体Wの流れ方向Fに交差する方向、ここでは流れ方向Fに直交する方向に変形する。すなわち、誘電エラストマ成形体3は、電極4及び電極5の間に生じるクーロン力により、電極4及び電極5を結ぶ厚み方向(径方向)において電極4が電極5に向かって収縮し、かつ、厚み方向に直交する方向(流れ方向F)に伸長するため、流路の径方向内方に向かって突出するように変形する。そうすると、流体Wが誘電エラストマ成形体3によって押され、図示矢印に示すように、流れ方向Fにおいて誘電エラストマ成形体3を中心とする両方向(図示の左右方向)への流れが生じる。 As shown in FIG. 3, the dielectric elastomer molded body 3 deforms in a direction intersecting the flow direction F of the fluid W, here, in a direction perpendicular to the flow direction F, when a voltage is applied. That is, in the dielectric elastomer molded body 3, the electrode 4 contracts toward the electrode 5 in the thickness direction (radial direction) connecting the electrodes 4 and 5 due to the Coulomb force generated between the electrodes 4 and 5, and the thickness decreases. Since it extends in the direction perpendicular to the flow direction (flow direction F), it deforms so as to protrude inward in the radial direction of the flow path. Then, the fluid W is pushed by the dielectric elastomer molded body 3, and flows in both directions (left and right directions in the figure) centering on the dielectric elastomer molded body 3 in the flow direction F, as shown by the arrows in the figure.
 このように、トランデューサ1は、非誘電エラストマ成形体2と誘電エラストマ成形体3とを組み合わせたことにより、流体Wの流れを制御することができる。すなわち、トランデューサ1は、流体Wの流れを制御するポンプとして機能させることができる。また、流体Wが一方の流れ方向Fに向かって流れている状態で、誘電エラストマ成形体3を径方向内方へ変形させることにより、流体Wの流量を調整することもできる。 In this way, the transducer 1 can control the flow of the fluid W by combining the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3. That is, the transducer 1 can function as a pump that controls the flow of the fluid W. The flow rate of the fluid W can also be adjusted by deforming the dielectric elastomer molded body 3 radially inward while the fluid W is flowing in one flow direction F.
 なお、非誘電エラストマ成形体2と誘電エラストマ成形体3とは、一体的に成形したのちに、電極4及び電極5を形成してもよく、非誘電エラストマ成形体2と誘電エラストマ成形体3とを別途成形しのちに、組み合せてもよい。このように、トランデューサ1は、容易に形成することができる。 Note that the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3 may be integrally molded, and then the electrodes 4 and 5 may be formed. They may be formed separately and then combined. In this way, the transducer 1 can be easily formed.
(第2実施形態)
 次に、第2実施形態のトランデューサ1について、図4を用いて具体的に説明する。なお、ここでは、第1実施形態のトランデューサ1と同じ構成についての説明は省略し、基本的には第1実施形態のトランデューサ1と異なる構成についてのみ説明する。
(Second embodiment)
Next, the transducer 1 of the second embodiment will be specifically described using FIG. 4. Note that, here, description of the same configuration as the transducer 1 of the first embodiment will be omitted, and basically only the configuration that is different from the transducer 1 of the first embodiment will be described.
 第2実施形態のトランデューサ1は、誘電エラストマ成形体3の形状、並びに、電極4及び電極5の配置において第1実施形態のトランデューサ1と異なる。 The transducer 1 of the second embodiment differs from the transducer 1 of the first embodiment in the shape of the dielectric elastomer molded body 3 and the arrangement of the electrodes 4 and 5.
 図4に示すように、誘電エラストマ成形体3は、流れ方向Fにおいて、非誘電エラストマ成形体2の内壁面から外壁面に向かって傾斜する半円錐面を含む半円筒形状を有する。半円錐面は、誘電エラストマ成形体3の外周面を構成する。誘電エラストマ成形体3において流体Wと接触する内壁面(内周面)は、非誘電エラストマ成形体2の内壁面と面一に形成されている。すなわち、誘電エラストマ成形体3は、流れ方向Fに向かって徐々に大きくなる厚みを有する。誘電エラストマ成形体3の外周面は、半円錐面に形成された非誘電エラストマ成形体2の内周面と当接する。 As shown in FIG. 4, the dielectric elastomer molded body 3 has a semi-cylindrical shape including a semi-conical surface that slopes from the inner wall surface to the outer wall surface of the non-dielectric elastomer molded body 2 in the flow direction F. The semi-conical surface constitutes the outer peripheral surface of the dielectric elastomer molded body 3. The inner wall surface (inner peripheral surface) of the dielectric elastomer molded body 3 that comes into contact with the fluid W is formed flush with the inner wall surface of the non-dielectric elastomer molded body 2 . That is, the dielectric elastomer molded body 3 has a thickness that gradually increases in the flow direction F. The outer circumferential surface of the dielectric elastomer molded body 3 comes into contact with the inner circumferential surface of the non-dielectric elastomer molded body 2, which is formed into a semi-conical surface.
 電極4は、誘電エラストマ成形体3の外周面に沿って、流れ方向Fに対して傾斜するように配置される。電極5は、誘電エラストマ成形体3の内周面に沿って、流れ方向Fに平行となるように配置されることによって、電極4及び電極5の間の距離は、流れ方向Fに沿って徐々に大きくなるように変化している。なお、電極4及び電極5の間の距離は、流れ方向Fに沿って徐々に小さくなるように変化してもよく、大きくなってから小さくなるように変化してもよく、誘電エラストマ成形体3が所望の形状に変化するように配置さていればよい。 The electrode 4 is arranged along the outer peripheral surface of the dielectric elastomer molded body 3 so as to be inclined with respect to the flow direction F. The electrodes 5 are arranged parallel to the flow direction F along the inner peripheral surface of the dielectric elastomer molded body 3, so that the distance between the electrodes 4 and 5 gradually increases along the flow direction F. It is changing to become larger. Note that the distance between the electrodes 4 and 5 may change so that it gradually becomes smaller along the flow direction F, or may change so that it becomes larger and then becomes smaller. It suffices if they are arranged so that they change into a desired shape.
 図5に示すように、誘電エラストマ成形体3は、電圧を印加すると、徐々に大きくなる電極4及び電極5の距離に応じて、径方向内方、かつ、流れ方向Fにやや傾斜した方向に突出するように変形する。そうすると、流体Wが誘電エラストマ成形体3によって押され、図示矢印に示すように、流れ方向Fに向かうやや傾斜方向の流れが生じる。そのため、流体Wは、流れ方向Fに向かう流れ(図示右方への流れ)が生じる。 As shown in FIG. 5, when a voltage is applied, the dielectric elastomer molded body 3 moves inward in the radial direction and in a direction slightly inclined to the flow direction F, as the distance between the electrodes 4 and 5 gradually increases. Transform to protrude. Then, the fluid W is pushed by the dielectric elastomer molded body 3, causing a slightly inclined flow in the flow direction F, as shown by the arrow in the figure. Therefore, the fluid W flows in the flow direction F (flow to the right in the figure).
 このようにして、トランデューサ1は、流体Wの流れを制御することができる。また、トランデューサ1は、第2実施形態に係る誘電エラストマ成形体3を複数配置することができる。これにより、流路において、流れ方向Fへの流体Wの流れを連続して生じさせることができる。 In this way, the transducer 1 can control the flow of the fluid W. Further, the transducer 1 can have a plurality of dielectric elastomer molded bodies 3 according to the second embodiment arranged therein. Thereby, the fluid W can be caused to flow continuously in the flow direction F in the flow path.
(第3実施形態)
 次に、第3実施形態のトランデューサ1について、図6を用いて具体的に説明する。なお、ここでは、第2実施形態のトランデューサ1と同じ構成についての説明は省略し、基本的には第2実施形態のトランデューサ1と異なる構成についてのみ説明する。
(Third embodiment)
Next, the transducer 1 of the third embodiment will be specifically described using FIG. 6. Note that, here, description of the same configuration as the transducer 1 of the second embodiment will be omitted, and basically only the configuration that is different from the transducer 1 of the second embodiment will be described.
 図6に示すように、第3実施形態のトランデューサ1は、半円筒形状の誘電エラストマ成形体3を有する第2実施形態のトランデューサ1とは異なり、円筒形状の誘電エラストマ成形体3を有する。すなわち、第3実施形態のトランデューサ1は、非誘電エラストマ成形体2の周方向全体に誘電エラストマ成形体3が設けられる。誘電エラストマ成形体3の外周面は、第2実施形態と同じように傾斜した円錐面によって構成される。トランデューサ1は、第2実施形態のトランデューサ1と同様に、流れ方向Fに向かう流体Wの流れを生じさせることができる。 As shown in FIG. 6, the transducer 1 of the third embodiment has a cylindrical dielectric elastomer molded body 3, unlike the transducer 1 of the second embodiment, which has a semicylindrical dielectric elastomer molded body 3. . That is, in the transducer 1 of the third embodiment, the dielectric elastomer molded body 3 is provided in the entire circumferential direction of the non-dielectric elastomer molded body 2. The outer peripheral surface of the dielectric elastomer molded body 3 is constituted by an inclined conical surface as in the second embodiment. The transducer 1 can cause the fluid W to flow in the flow direction F, similarly to the transducer 1 of the second embodiment.
(第4実施形態)
 次に、第4実施形態のトランデューサ1について、図7を用いて具体的に説明する。なお、ここでは、第1実施形態のトランデューサ1と同じ構成についての説明は省略し、基本的には第1実施形態のトランデューサ1と異なる構成についてのみ説明する。
(Fourth embodiment)
Next, the transducer 1 of the fourth embodiment will be specifically described using FIG. 7. Note that, here, description of the same configuration as the transducer 1 of the first embodiment will be omitted, and basically only the configuration that is different from the transducer 1 of the first embodiment will be described.
 図7に示すように、第4実施形態のトランデューサ1は、誘電エラストマ成形体3が非誘電エラストマ成形体2の外周に設けられている点において第1実施形態のトランデューサ1と異なる。第4実施形態において、誘電エラストマ成形体3の内壁面に設けられた電極5は、非誘電エラストマ成形体2の外周面と当接している。 As shown in FIG. 7, the transducer 1 of the fourth embodiment differs from the transducer 1 of the first embodiment in that the dielectric elastomer molded body 3 is provided on the outer periphery of the non-dielectric elastomer molded body 2. In the fourth embodiment, the electrode 5 provided on the inner wall surface of the dielectric elastomer molded body 3 is in contact with the outer peripheral surface of the non-dielectric elastomer molded body 2.
 誘電エラストマ成形体3は、電圧を印加すると、誘電エラストマ成形体3の径方向内方へと収縮するとともに、軸方向に向かって伸長する。そうすると、誘電エラストマ成形体3の伸長に追従して非誘電エラストマ成形体2も伸長する。これにより、非誘電エラストマ成形体2を径方向内方に向かって突出するように変形させることができる。その結果、第1実施形態のトランデューサ1と同様に、図1に示すような流れ方向Fの両方向に向かう流体Wの流れを生じさせることができる。 When a voltage is applied to the dielectric elastomer molded body 3, the dielectric elastomer molded body 3 contracts radially inward and expands in the axial direction. Then, following the expansion of the dielectric elastomer molded body 3, the non-dielectric elastomer molded body 2 also expands. Thereby, the non-dielectric elastomer molded body 2 can be deformed so as to protrude radially inward. As a result, similarly to the transducer 1 of the first embodiment, it is possible to cause the fluid W to flow in both directions in the flow direction F as shown in FIG.
(第5実施形態)
 次に、第5実施形態のトランデューサ1について、図8及び図9を用いて具体的に説明する。図8に示すように、トランデューサ1は、非誘電エラストマ成形体2、誘電エラストマ成形体3、電極4及び電極5とから構成される。なお、非誘電エラストマ成形体2、誘電エラストマ成形体3、電極4及び電極5の各々の素材は、第1実施形態のトランデューサ1と同様であるため説明を省略する。
(Fifth embodiment)
Next, the transducer 1 of the fifth embodiment will be specifically described using FIGS. 8 and 9. As shown in FIG. 8, the transducer 1 includes a non-dielectric elastomer molded body 2, a dielectric elastomer molded body 3, an electrode 4, and an electrode 5. Note that the materials of each of the non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrode 4, and the electrode 5 are the same as those of the transducer 1 of the first embodiment, so a description thereof will be omitted.
 非誘電エラストマ成形体2は、円筒形状を有し、その内部空間を流れる流体Wの流路を形成する。 The non-dielectric elastomer molded body 2 has a cylindrical shape and forms a flow path for the fluid W flowing through its internal space.
 誘電エラストマ成形体3は、非誘電エラストマ成形体2に隣接して設けられる。誘電エラストマ成形体3は、流体Wの流路において開閉弁として機能する。誘電エラストマ成形体3は、図8に示すように、円筒形状を有する。非誘電エラストマ成形体2の内周面と誘電エラストマ成形体3の外周面とは接着されている。誘電エラストマ成形体3は、流路の上流(図示の左方)から下流(図示の右方)に向かって徐々に外方に傾斜した内周面を有する。すなわち、誘電エラストマ成形体3の厚みは、上流から下流に向かって徐々に小さくなる。図8に示す誘電エラストマ成形体3は電圧を印加されておらず、その上流側の比較的厚みが大きい領域において、誘電エラストマ成形体3の内周面同士が押しつぶされるようにして接触している。また、誘電エラストマ成形体3の外周面は、電極4を介して非誘電エラストマ成形体2の内周面に接着されている。このように、誘電エラストマ成形体3は、電圧を印加されていない状態で、流路を閉鎖している。 The dielectric elastomer molded body 3 is provided adjacent to the non-dielectric elastomer molded body 2. The dielectric elastomer molded body 3 functions as an on-off valve in the flow path of the fluid W. The dielectric elastomer molded body 3 has a cylindrical shape, as shown in FIG. The inner circumferential surface of the non-dielectric elastomer molded body 2 and the outer circumferential surface of the dielectric elastomer molded body 3 are adhered. The dielectric elastomer molded body 3 has an inner circumferential surface that gradually slopes outward from the upstream (left side in the figure) to the downstream (right side in the figure) of the flow path. That is, the thickness of the dielectric elastomer molded body 3 gradually decreases from upstream to downstream. No voltage is applied to the dielectric elastomer molded body 3 shown in FIG. 8, and the inner peripheral surfaces of the dielectric elastomer molded body 3 are pressed together in a relatively thick region on the upstream side and are in contact with each other. . Further, the outer circumferential surface of the dielectric elastomer molded body 3 is adhered to the inner circumferential surface of the non-dielectric elastomer molded body 2 via an electrode 4 . In this way, the dielectric elastomer molded body 3 closes the flow path when no voltage is applied.
 電極4は、誘電エラストマ成形体3の外周面に設けられている。電極4は、円筒形状を有し、非誘電エラストマ成形体2の内周面と誘電エラストマ成形体3の外周面との間に配置される。電極5は、誘電エラストマ成形体3の内周面に設けられている。すなわち、電極5は、円錐台筒形状を有する。 The electrode 4 is provided on the outer peripheral surface of the dielectric elastomer molded body 3. The electrode 4 has a cylindrical shape and is arranged between the inner circumferential surface of the non-dielectric elastomer molded body 2 and the outer circumferential surface of the dielectric elastomer molded body 3. The electrode 5 is provided on the inner peripheral surface of the dielectric elastomer molded body 3. That is, the electrode 5 has a truncated conical shape.
 図9に示すように、誘電エラストマ成形体3は、電圧を印加されると、径方向外方に収縮するとともに、流れ方向Fに伸長する。これにより、流路の閉鎖状態が開放され、流体Wが流れ方向Fに向かって流れ始める。 As shown in FIG. 9, the dielectric elastomer molded body 3 contracts radially outward and expands in the flow direction F when a voltage is applied. As a result, the closed state of the flow path is released, and the fluid W begins to flow in the flow direction F.
 このように、トランデューサ1は、非誘電エラストマ成形体2と誘電エラストマ成形体3とを組み合わせたことにより、誘電エラストマ成形体3を開閉弁として機能させ、流体Wの流れを制御することができる。 In this way, the transducer 1 combines the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3, so that the dielectric elastomer molded body 3 can function as an on-off valve and control the flow of the fluid W. .
(第6実施形態)
 次に、第6実施形態のトランデューサ1について、図10を用いて具体的に説明する。図10に示すように、トランデューサ1は、非誘電エラストマ成形体2、電極4及び電極5を含む誘電エラストマ成形体3とから構成される。なお、非誘電エラストマ成形体2、誘電エラストマ成形体3、電極4及び電極5の各々の素材は、第1実施形態のトランデューサ1と同様であるため説明を省略する。
(Sixth embodiment)
Next, the transducer 1 of the sixth embodiment will be specifically described using FIG. 10. As shown in FIG. 10, the transducer 1 is composed of a non-dielectric elastomer molded body 2, a dielectric elastomer molded body 3 including an electrode 4, and an electrode 5. As shown in FIG. Note that the materials of each of the non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrode 4, and the electrode 5 are the same as those of the transducer 1 of the first embodiment, so a description thereof will be omitted.
 非誘電エラストマ成形体2は、その上面に凹部21と、凹部22と、溝状の流路23とを有する。凹部21と凹部22とは、流路23により接続されている。流路23の内壁面には、互いに対向する一対の誘電エラストマ成形体3が設けられている。誘電エラストマ成形体3には各々、電極4、4及び電極5、5が設けられている。電極4は各々、誘電エラストマ成形体3の流路23側の面に設けられている。電極5は各々、誘電エラストマ成形体3の流路23側とは反対側の面に設けられている。図10に示すように、各々の誘電エラストマ成形体3、電極4及び電極5は各々、流路23の内壁面を切り欠いて収容される。電極5の流体Wとの接触面と流路23の内壁面とは面一に形成される。 The non-dielectric elastomer molded body 2 has a recess 21, a recess 22, and a groove-shaped flow path 23 on its upper surface. The recess 21 and the recess 22 are connected by a flow path 23. A pair of dielectric elastomer molded bodies 3 facing each other is provided on the inner wall surface of the flow path 23 . The dielectric elastomer molded body 3 is provided with electrodes 4, 4 and electrodes 5, 5, respectively. The electrodes 4 are each provided on the surface of the dielectric elastomer molded body 3 on the flow path 23 side. The electrodes 5 are each provided on the surface of the dielectric elastomer molded body 3 on the side opposite to the flow path 23 side. As shown in FIG. 10, each of the dielectric elastomer molded bodies 3, electrodes 4, and electrodes 5 are accommodated by cutting out the inner wall surface of the flow path 23. The contact surface of the electrode 5 with the fluid W and the inner wall surface of the flow path 23 are formed flush with each other.
 誘電エラストマ成形体3は、電圧を印加されると、流れ方向Fに伸長しようとする。ただし、誘電エラストマ成形体3は、上述の通り、流路23の内壁面を切り欠いて収容され、非誘電エラストマ成形体2とは伸長方向に当接しているため、流れ方向Fへの伸長が制限される。その結果、誘電エラストマ成形体3は、流路23の内壁面から突出するように変形する。 The dielectric elastomer molded body 3 tends to expand in the flow direction F when a voltage is applied. However, as described above, the dielectric elastomer molded body 3 is accommodated by cutting out the inner wall surface of the flow path 23 and is in contact with the non-dielectric elastomer molded body 2 in the direction of expansion, so that the expansion in the flow direction F is limited. limited. As a result, the dielectric elastomer molded body 3 deforms so as to protrude from the inner wall surface of the flow path 23.
 このように、誘電エラストマ成形体3が変形することにより、トランデューサ1は、上述の第1~5実施形態と同じように流体Wの流れを制御することができる。 By deforming the dielectric elastomer molded body 3 in this way, the transducer 1 can control the flow of the fluid W in the same manner as in the first to fifth embodiments described above.
 なお、本実施形態は、溝状の流路23を説明するための一例に過ぎない。溝状の流路23は、本実施形態に限定されるものではない。 Note that this embodiment is merely an example for explaining the groove-shaped flow path 23. The groove-shaped flow path 23 is not limited to this embodiment.
 上述の通り、第1~6実施形態のトランデューサ1について説明した。このように、本開示のトランデューサ1は、非誘電エラストマ成形体2と誘電エラストマ成形体3とを隣接するように構成したことにより、複雑な変形をより直接的に行うことができ、種々の目的に適した変形を実現することができる。すなわち、種々の目的に応じて、第1~第6実施形態に示すように電極4及び電極5がパターン化されて配置されており、この配置パターンを変更することにより、適切に誘電エラストマ成形体3を所望の形状に変形させることができる。 As mentioned above, the transducer 1 of the first to sixth embodiments has been described. In this way, the transducer 1 of the present disclosure is configured such that the non-dielectric elastomer molded body 2 and the dielectric elastomer molded body 3 are adjacent to each other, so that complex deformation can be performed more directly, and various types of deformations can be performed. It is possible to realize transformations suitable for purposes. That is, the electrodes 4 and 5 are arranged in a pattern as shown in the first to sixth embodiments according to various purposes, and by changing this arrangement pattern, the dielectric elastomer molded body can be appropriately formed. 3 can be transformed into a desired shape.
(第7実施形態)
 次に、第7実施形態のトランデューサ1について、図11を用いて具体的に説明する。図11に示すように、トランデューサ1は、非誘電エラストマ成形体2、電極4及び電極5を含む誘電エラストマ成形体3と、さらに、流体送り部6と、センサ7と、制御部8とから構成される。なお、非誘電エラストマ成形体2、誘電エラストマ成形体3、電極4及び電極5の各々の素材は、第1実施形態のトランデューサ1と同様であり、また、上述した電極4及び電極5のパターン化された配置により、適切に誘電エラストマ成形体3を所望の形状に変化させる点についても同様であるため、説明を省略する。
(Seventh embodiment)
Next, the transducer 1 of the seventh embodiment will be specifically described using FIG. 11. As shown in FIG. 11, the transducer 1 includes a dielectric elastomer molded body 3 including a non-dielectric elastomer molded body 2, an electrode 4, and an electrode 5, a fluid feed section 6, a sensor 7, and a control section 8. configured. The non-dielectric elastomer molded body 2, the dielectric elastomer molded body 3, the electrodes 4, and the electrodes 5 are made of the same material as the transducer 1 of the first embodiment, and the patterns of the electrodes 4 and 5 described above are the same. The same applies to appropriately changing the dielectric elastomer molded body 3 into a desired shape by the arranged arrangement, so a description thereof will be omitted.
 流体送り部6は、誘電エラストマ成形体3に対して流れ方向Fの上流側に配置される。流体送り部6は、流体Wを誘電エラストマ成形体3に向かって一方に流す装置であればよい。流体送り部6は、例えば、開閉弁、スクリューポンプ、モータポンプ又はピストンポンプ等である。なお、特に図示はしないが、流体送り部6を動作させる駆動部を別途備えてもよい。 The fluid feed section 6 is arranged on the upstream side of the dielectric elastomer molded body 3 in the flow direction F. The fluid feeding section 6 may be any device that allows the fluid W to flow in one direction toward the dielectric elastomer molded body 3 . The fluid sending unit 6 is, for example, an on-off valve, a screw pump, a motor pump, a piston pump, or the like. Although not particularly illustrated, a drive section for operating the fluid sending section 6 may be provided separately.
 センサ7は、誘電エラストマ成形体3に対して流れ方向Fの下流側に配置される。センサ7は、誘電エラストマ成形体3の下流側において、被制御体の状態を検知する。本実施形態において、センサ7は、流体送り部6又は誘電エラストマ成形体3によって流された流体Wの流量及び流速の少なくとも一方又は両方を検知する。 The sensor 7 is arranged on the downstream side of the dielectric elastomer molded body 3 in the flow direction F. The sensor 7 detects the state of the controlled object on the downstream side of the dielectric elastomer molded body 3. In the present embodiment, the sensor 7 detects at least one or both of the flow rate and flow velocity of the fluid W flowed by the fluid feeder 6 or the dielectric elastomer molded body 3.
 制御部8は、センサ7によって検知された流体Wの流量又は流速に基づいて、誘電エラストマ成形体3の変形をさせる。制御部8は、特に図示はしないが、電源を備える。制御部8に内蔵される電源は、電極4と配線81により接続されており、電極5と配線82により接続されている。これにより、誘電エラストマ成形体3に対して電圧を印加する。誘電エラストマ成形体3は、印加電圧により変形する。センサ7は、検知された流体Wの流量又は流速の少なくとも一方の情報を制御部8に送信する。すなわち、制御部8は、センサ7により検知された流体Wの流量又は流速の少なくとも一方に基づいて電極4及び電極5に対して電圧を印加し、誘電エラストマ成形体3を所望の形状に変化させることができる。これにより、トランデューサ1は、実際の被制御体(流体W)の状態に応じて適切に誘電エラストマ成形体3を変化させ、流体Wの比較的小さい流量又は流速の少なくとも一方を調整することができる。 The control unit 8 causes the dielectric elastomer molded body 3 to deform based on the flow rate or flow velocity of the fluid W detected by the sensor 7. Although not particularly illustrated, the control unit 8 includes a power source. A power supply built into the control unit 8 is connected to the electrode 4 by a wiring 81 and connected to the electrode 5 by a wiring 82. As a result, a voltage is applied to the dielectric elastomer molded body 3. The dielectric elastomer molded body 3 is deformed by applied voltage. The sensor 7 transmits information on at least one of the detected flow rate and flow velocity of the fluid W to the control unit 8. That is, the control unit 8 applies a voltage to the electrodes 4 and 5 based on at least one of the flow rate or flow velocity of the fluid W detected by the sensor 7, and changes the dielectric elastomer molded body 3 into a desired shape. be able to. Thereby, the transducer 1 can appropriately change the dielectric elastomer molded body 3 according to the actual state of the controlled object (fluid W), and adjust at least one of the relatively small flow rate or flow velocity of the fluid W. can.
 また、制御部8は、流体送り部6を制御してもよい。すなわち、制御部8は、センサ7により検知された流体Wの流量又は流速に基づいて、流体送り部6を動作させることによって誘電エラストマ成形体3の方向へ流される流体Wの流量又は流速の少なくとも一方を制御してもよい。流体送り部6は、上述の通り、駆動部を備えるポンプ等により構成される。そのため、流体送り部6は、誘電エラストマ成形体3に比べて、流路内を流れる流体Wの流量又は流速の少なくとも一方を大きく変化させることができる。これにより、制御部8は、流体送り部6において大まかな流体Wの流量又は流速の少なくとも一方を調整し、かつ、誘電エラストマ成形体3において流体Wの比較的小さい流量又は流速の少なくとも一方を調整することができる。すなわち、流体送り部6及び誘電エラストマ成形体3を組み合わせて流体Wの流量又は流速の少なくとも一方を調整することにより、トランデューサ1の用途に応じて流体Wの流れをより適切に制御することができる。なお、誘電エラストマ成形体3に対応する制御部8と流体送り部6に対応する他の制御部8というように、複数の制御部8が設けられてもよい。制御部8は、例えば、マイコン等のコンピュータ又は回路で構成することができる。センサ7において検知された流体Wの流量又は流速の少なくとも一方に基づく誘電エラストマ成形体3又は流体送り部6の制御部8による制御は、例えば、トランデューサ1の用途に応じて所望される流体Wの状態(流量又は流速の少なくとも一方)を制御する処理を実行させるプログラムに従って、コンピュータを動作させることで実現されてよい。 Additionally, the control section 8 may control the fluid sending section 6. That is, based on the flow rate or flow velocity of the fluid W detected by the sensor 7, the control unit 8 controls at least the flow rate or flow velocity of the fluid W flowed toward the dielectric elastomer molded body 3 by operating the fluid sending unit 6. Either one may be controlled. As described above, the fluid sending section 6 is constituted by a pump or the like including a driving section. Therefore, compared to the dielectric elastomer molded body 3, the fluid sending section 6 can change at least one of the flow rate and the flow velocity of the fluid W flowing in the flow path to a greater extent. Thereby, the control unit 8 adjusts at least one of the approximate flow rate or flow rate of the fluid W in the fluid sending unit 6, and adjusts at least one of the relatively small flow rate or flow rate of the fluid W in the dielectric elastomer molded body 3. can do. That is, by adjusting at least one of the flow rate or the flow velocity of the fluid W by combining the fluid sending section 6 and the dielectric elastomer molded body 3, it is possible to more appropriately control the flow of the fluid W depending on the use of the transducer 1. can. Note that a plurality of control sections 8 may be provided, such as a control section 8 corresponding to the dielectric elastomer molded body 3 and another control section 8 corresponding to the fluid feeding section 6. The control unit 8 can be configured by, for example, a computer such as a microcomputer or a circuit. The control unit 8 controls the dielectric elastomer molded body 3 or the fluid sending unit 6 based on at least one of the flow rate and flow velocity of the fluid W detected by the sensor 7, for example, depending on the use of the transducer 1. This may be realized by operating a computer according to a program that causes a process to control the state (at least one of the flow rate and the flow rate) of the flow rate.
 図11に示すように、誘電エラストマ成形体3は、流体送り部6とセンサ7との間に配置されている。誘電エラストマ成形体3は、流体送り部6とセンサ7との間に複数配置されてもよい。すなわち、複数の誘電エラストマ成形体3は、流体送り部6とセンサ7との間に流れ方向Fに沿って並べて配置されてもよい。複数の誘電エラストマ成形体3は、第1実施形態~第5実施形態の誘電エラストマ成形体3の1種又はこれらの組合わせであってもよく、トランデューサ1の用途に応じて種々変更が可能である。また、本実施形態のトランデューサ1は、第6実施形態のトランデューサ1にも適用可能である。複数の誘電エラストマ成形体3を設ける場合、制御部8は、複数の誘電エラストマ成形体3の数に応じ、各々の誘電エラストマ成形体3に対応するように配置することができるし、一つの制御部8に対して複数の誘電エラストマ成形体3を制御するように配置することもできる。 As shown in FIG. 11, the dielectric elastomer molded body 3 is arranged between the fluid feed section 6 and the sensor 7. A plurality of dielectric elastomer molded bodies 3 may be arranged between the fluid sending section 6 and the sensor 7. That is, the plurality of dielectric elastomer molded bodies 3 may be arranged side by side along the flow direction F between the fluid sending section 6 and the sensor 7. The plurality of dielectric elastomer molded bodies 3 may be one type of dielectric elastomer molded bodies 3 of the first to fifth embodiments or a combination thereof, and various changes can be made depending on the use of the transducer 1. It is. Furthermore, the transducer 1 of this embodiment is also applicable to the transducer 1 of the sixth embodiment. When a plurality of dielectric elastomer molded bodies 3 are provided, the control unit 8 can be arranged to correspond to each dielectric elastomer molded body 3 according to the number of the plurality of dielectric elastomer molded bodies 3, and one control unit 8 can be arranged to correspond to each dielectric elastomer molded body 3. It is also possible to arrange a plurality of dielectric elastomer moldings 3 in a controlled manner relative to the part 8.
 なお、図12に示すように、配線82は、非誘電エラストマ成形体2によって形成される流路の出口を介して電極5と電源とを接続してもよい。すなわち、配線82の一端は、非誘電エラストマ成形体2により形成された流路内において電極5と接続される。配線82は、流路内から流路の流れ方向Fにおける出口を経由して流路の外部に出る。配線82の他端は、流路の外部において制御部8の電源と接続される。また、配線82は、非誘電エラストマ成形体2を貫通させて電極5と電源とを接続してもよい。なお、図12では、配線81及び配線82の表示を分かり易くするため、流体送り部6及びセンサ7の図示を省略している。 Note that, as shown in FIG. 12, the wiring 82 may connect the electrode 5 and the power source via the outlet of the flow path formed by the non-dielectric elastomer molded body 2. That is, one end of the wiring 82 is connected to the electrode 5 within the flow path formed by the non-dielectric elastomer molded body 2. The wiring 82 exits from inside the flow path to the outside of the flow path via an outlet in the flow direction F of the flow path. The other end of the wiring 82 is connected to the power source of the control unit 8 outside the flow path. Further, the wiring 82 may pass through the non-dielectric elastomer molded body 2 to connect the electrode 5 and the power source. In addition, in FIG. 12, in order to make the display of the wiring 81 and the wiring 82 easier to understand, illustration of the fluid sending part 6 and the sensor 7 is omitted.
 また、上述の第5実施形態のトランデューサ1のように、誘電エラストマ成形体3が非誘電エラストマ成形体2の内周面に形成される場合、図13に示すように、配線81は、流路の流れ方向F上流側から電極4と電源とを接続し、配線82は、流路の流れ方向F下流側から電極5と電源とを接続してもよい。誘電エラストマ成形体3の厚みが上流から下流に向かって徐々に小さくなっているため、下流側に誘電エラストマ成形体3の内周面が露出する隙間が生じる。これにより、配線82を比較的容易に電極4に接続することができる。図13では、配線81及び配線82の表示を分かり易くするため、流体送り部6、センサ7及び制御部8の図示を省略している。 Further, when the dielectric elastomer molded body 3 is formed on the inner circumferential surface of the non-dielectric elastomer molded body 2 as in the transducer 1 of the fifth embodiment described above, as shown in FIG. The electrode 4 and the power source may be connected from the upstream side of the flow direction F of the channel, and the wiring 82 may connect the electrode 5 and the power source from the downstream side of the flow direction F of the flow channel. Since the thickness of the dielectric elastomer molded body 3 gradually decreases from upstream to downstream, a gap is created on the downstream side where the inner circumferential surface of the dielectric elastomer molded body 3 is exposed. Thereby, the wiring 82 can be connected to the electrode 4 relatively easily. In FIG. 13, illustration of the fluid feed section 6, sensor 7, and control section 8 is omitted to make the display of the wiring 81 and the wiring 82 easier to understand.
 本開示のトランデューサ1は、液体だけでなく、気体の流量を調節するキャブレター等の製品に用いることもでき、また、変形により被制御体を制御する種々の製品に用いることもできる。 The transducer 1 of the present disclosure can be used in products such as carburetors that adjust the flow rate of not only liquid but also gas, and can also be used in various products that control controlled objects by deformation.
 以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the spirit thereof.
  1 トランデューサ、2 エラストマ、3 誘電エラストマ、4 電極、5 電極、6 流体送り部、7 センサ、8 制御部、81 配線、82 配線、W 流体 1 Transducer, 2 Elastomer, 3 Dielectric elastomer, 4 Electrode, 5 Electrode, 6 Fluid feed section, 7 Sensor, 8 Control section, 81 Wiring, 82 Wiring, W Fluid

Claims (11)

  1.  非誘電エラストマ成形体と、
     前記非誘電エラストマ成形体に隣接して設けられ、印加電圧に応答して変形する誘電エラストマ成形体とを備える、トランデューサ。
    a non-dielectric elastomer molded body,
    a dielectric elastomer molded body provided adjacent to the non-dielectric elastomer molded body and deformed in response to an applied voltage.
  2.  請求項1に記載のトランデューサであって、
     前記誘電エラストマ成形体は、第1電極及び第2電極を含み、
     前記第1電極と第2電極とは、前記誘電エラストマ成形体が所望の形状に変形するようにパターン化されている、トランデューサ。
    The transducer according to claim 1,
    The dielectric elastomer molded body includes a first electrode and a second electrode,
    The first electrode and the second electrode are patterned so that the dielectric elastomer molded body is deformed into a desired shape.
  3.  請求項1又は2に記載のトランデューサであって、
     前記誘電エラストマ成形体は、その変形によって被制御体を制御する、トランデューサ。
    The transducer according to claim 1 or 2,
    The dielectric elastomer molded body is a transducer that controls a controlled object by its deformation.
  4.  請求項3に記載のトランデューサであって、
     前記非誘電エラストマ成形体は、流体が流れる流路を形成し、
     前記誘電エラストマ成形体は、前記流路に設けられ、
     前記被制御体は前記流路内を流れる流体である、トランデューサ。
    4. The transducer according to claim 3,
    The non-dielectric elastomer molded body forms a flow path through which a fluid flows,
    The dielectric elastomer molded body is provided in the flow path,
    The transducer, wherein the controlled object is a fluid flowing within the flow path.
  5.  請求項4に記載のトランデューサであって、
     前記誘電エラストマ成形体は、前記非誘電エラストマ成形体と連続して前記流路の一部を形成するように前記流路に設けられ、
     前記誘電エラストマ成形体は、前記流体の流れ方向に交差する方向に変形することにより前記流体を制御する、トランデューサ。
    5. The transducer according to claim 4,
    The dielectric elastomer molded body is provided in the flow path so as to be continuous with the non-dielectric elastomer molded body and form a part of the flow path,
    A transducer, wherein the dielectric elastomer molded body controls the fluid by deforming in a direction crossing the flow direction of the fluid.
  6.  請求項5に記載のトランデューサであって、
     前記第1電極と第2電極との間の距離は、流れ方向に沿って徐々に変化する、トランデューサ。
    6. The transducer according to claim 5,
    The transducer, wherein the distance between the first and second electrodes gradually changes along the flow direction.
  7.  請求項4に記載のトランデューサであって、
     前記誘電エラストマ成形体は、前記流路を形成する前記非誘電エラストマ成形体の内壁面に設けられ、
     前記誘電エラストマ成形体は、前記流路内で膨縮変形することにより前記流路を開閉する、トランデューサ。
    5. The transducer according to claim 4,
    The dielectric elastomer molded body is provided on an inner wall surface of the non-dielectric elastomer molded body forming the flow path,
    The dielectric elastomer molded body expands and contracts within the flow path to open and close the flow path.
  8.  請求項2に記載のトランデューサであって、
     前記第1及び第2の電極は、銀ナノワイヤ及びカーボンナノチューブからなる群から選択される少なくとも1つを含有する、トランデューサ。
    3. The transducer according to claim 2,
    The transducer, wherein the first and second electrodes contain at least one selected from the group consisting of silver nanowires and carbon nanotubes.
  9.  請求項3に記載のトランデューサであって、
     前記被制御体の状態を検知するセンサと、
     前記センサにより検知された被制御体の状態に基づいて前記誘電エラストマ成形体を所望の形状に変形させ、前記被制御体の状態を制御する制御部とを備える、トランデューサ。
    4. The transducer according to claim 3,
    a sensor that detects the state of the controlled object;
    A transducer comprising: a control section that controls the state of the controlled object by deforming the dielectric elastomer molded body into a desired shape based on the state of the controlled object detected by the sensor.
  10.  請求項9に記載のトランデューサであって、
     前記非誘電エラストマ成形体は、流体が流れる流路を形成し、
     前記誘電エラストマ成形体は、前記流路に設けられ、
     前記被制御体は前記流路内を流れる流体であり、 
     前記センサは、前記誘電エラストマ成形体に対して前記流体の流れ方向下流側に配置され、前記流体の流量及び流速の少なくとも一方を検知し、
     前記制御部は、前記センサで検知された流量及び流速の少なくとも一方に基づいて前記誘電エラストマ成形体を所望の形状に変化させ、前記流体の状態を所望の流量及び流速の少なくとも一方になるように制御する、トランデューサ。
    The transducer according to claim 9,
    The non-dielectric elastomer molded body forms a flow path through which a fluid flows,
    The dielectric elastomer molded body is provided in the flow path,
    The controlled object is a fluid flowing in the flow path,
    The sensor is disposed downstream in the flow direction of the fluid with respect to the dielectric elastomer molded body, and detects at least one of the flow rate and flow velocity of the fluid,
    The control unit changes the dielectric elastomer molded body into a desired shape based on at least one of the flow rate and flow velocity detected by the sensor, and changes the state of the fluid to at least one of the desired flow rate and flow velocity. Controlled, transducer.
  11.  請求項10に記載のトランデューサであって、
     前記誘電エラストマ成形体に対して流れ方向上流側に配置され、前記流体を前記誘電エラストマ成形体に向かって送り出す流体送り部を備え、
     前記制御部は、前記センサで検知された流量及び流速の少なくとも一方に基づいて前記流体送り部を動作させ、前記流体の状態を所望の流量及び流速の少なくとも一方となるように制御する、トランデューサ。
    The transducer according to claim 10,
    comprising a fluid sending part disposed upstream in the flow direction with respect to the dielectric elastomer molded body and sending out the fluid toward the dielectric elastomer molded body,
    The control unit is a transducer that operates the fluid sending unit based on at least one of a flow rate and a flow rate detected by the sensor, and controls the state of the fluid to be at least one of a desired flow rate and flow rate. .
PCT/JP2023/006801 2022-03-29 2023-02-24 Transducer WO2023189078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053959 2022-03-29
JP2022-053959 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189078A1 true WO2023189078A1 (en) 2023-10-05

Family

ID=88200547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006801 WO2023189078A1 (en) 2022-03-29 2023-02-24 Transducer

Country Status (1)

Country Link
WO (1) WO2023189078A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502671A (en) * 2003-08-20 2007-02-15 ネオガイド システムズ, インコーポレイテッド Active polymer articulating instrument and insertion method
JP2010004736A (en) * 2002-03-05 2010-01-07 Sri Internatl Electroactive polymer devices for controlling fluid flow
JP2019534719A (en) * 2016-08-31 2019-12-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Surface analysis apparatus and method for analyzing elasticity of receiving surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004736A (en) * 2002-03-05 2010-01-07 Sri Internatl Electroactive polymer devices for controlling fluid flow
JP2007502671A (en) * 2003-08-20 2007-02-15 ネオガイド システムズ, インコーポレイテッド Active polymer articulating instrument and insertion method
JP2019534719A (en) * 2016-08-31 2019-12-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Surface analysis apparatus and method for analyzing elasticity of receiving surface

Similar Documents

Publication Publication Date Title
JP6310622B1 (en) Actuators or sensor devices based on electroactive polymers
EP3482425B1 (en) Shape change device
EP3304606B1 (en) Control of actuator device based on an electroactive polymer
EP1481467B1 (en) Electroactive polymer devices for controlling fluid flow
US7537197B2 (en) Electroactive polymer devices for controlling fluid flow
Abe et al. Concept of a micro finger using electro-conjugate fluid and fabrication of a large model prototype
US20030214199A1 (en) Electroactive polymer devices for controlling fluid flow
US20220407437A1 (en) Electrode pairs having saw-tooth configuration and artificial muscles including same
FR2586372B1 (en) FORMING TOOL FOR AN EXTRUDER FOR THERMOPLASTIC MATERIAL COMPRISING AN ADJUSTING MEMBER CONSISTING OF A PIEZOELECTRIC TRANSLATOR
WO2023189078A1 (en) Transducer
US20220239238A1 (en) Artificial muscles comprising an electrode pair having fan portions and artificial muscle assemblies including same
CN109314128B (en) Electroactive polymer actuator device and driving method
KR20100047797A (en) Hollow type actuator driven droplet dispensing apparatus
US8814134B2 (en) Piezoelectric drive and microvalve comprising said drive
US20220149264A1 (en) Actuator device based on an electroactive material
CN108281542B (en) Bionic manual driving device
JP2008187079A (en) Dielectric elastomer film for electrostriction type actuator and its manufacturing method
US20230000715A1 (en) Artificial muscle light weight seat massager and haptic response chair
WO1989007199A1 (en) Pump
WO2020120524A1 (en) Actuator device based on an electroactive material
CN117908680A (en) Haptic driver and electronic device
Ahluwalia et al. Microfabricated electroactive carbon nanotube actuators
CN108281543B (en) Bionic manual driving device
JP2004309163A (en) Liquid feeding module, liquid feeding apparatus, and driving method therefor
JP2004316445A (en) Liquid feed device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779108

Country of ref document: EP

Kind code of ref document: A1