JP2004309163A - Liquid feeding module, liquid feeding apparatus, and driving method therefor - Google Patents

Liquid feeding module, liquid feeding apparatus, and driving method therefor Download PDF

Info

Publication number
JP2004309163A
JP2004309163A JP2003099164A JP2003099164A JP2004309163A JP 2004309163 A JP2004309163 A JP 2004309163A JP 2003099164 A JP2003099164 A JP 2003099164A JP 2003099164 A JP2003099164 A JP 2003099164A JP 2004309163 A JP2004309163 A JP 2004309163A
Authority
JP
Japan
Prior art keywords
liquid
voltage
piezoelectric element
liquid feeding
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099164A
Other languages
Japanese (ja)
Inventor
Kazunari Matsuzaki
一成 松崎
Yukio Tsutsui
筒井  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003099164A priority Critical patent/JP2004309163A/en
Publication of JP2004309163A publication Critical patent/JP2004309163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid feeding apparatus that has a large liquid feeding flow rate, dispenses with any special sensors, and has high controllability of flow rate and flow velocity. <P>SOLUTION: A liquid feeding module 24 comprises a piezoelectric element 242; a diaphragm 241 that is fixed to the piezoelectric element, where one end can be swung freely; and a voltage supply wire 25 to the piezoelectric element. Additionally, other liquid feeding modules comprise a diaphragm, where a bimorph-type piezoelectric plate is provided on both the surfaces of a metal plate; and a support member, where one end of the diaphragm is fixed and a wire for supplying voltage to the metal plate and the piezoelectric plate is provided. The liquid feeding apparatus comprises a power supply, where a plurality of liquid feeding modules 24 are provided at a channel 23 of a substrate, and voltage is supplied to the pizoelectric element of the liquid feeding module; and a control unit for controlling voltage. Additionally, the liquid feeding module may be arranged so that directions for operating each other are inverted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、人工心臓の血管や、マイクロトータルアナリシスシステム中の微小流路の流れ制御に用いられる液送装置に関する。
【0002】
【従来の技術】
従来、液送装置として図10に示すようなものがある(例えば、特許文献1参照)。
図において、Tは進行波発生部、1はチューブ、3は超音波発生層、9は下部電極、13は上部電極、7、11は皮膜である。超音波マイクロチューブ1は、複数の進行波発生部Tを所定の間隔で連続させ、進行波発生部Tは、チューブ1の外周に、圧電材による超音波発生層3を、下部電極9と上部電極13間に形成する。進行波発生部Tを連鎖させた状態において、下部電極9と上部電極13との間に、或る周波数において振動し、高周波が発生することにより、チューブ1内の液体が一方向に移動する。そして、電圧の極性を逆にすれば、移動方向が逆転する。また、電流や電圧を変えることにより、液体の流速を変えることができる。
【0003】
【特許文献1】特開平6−233969号公報
【0004】
【発明が解決しようとする課題】
ところが、従来技術では、振動源である圧電変換素子の変位は一般に小さく、チューブの変位もまた小さい。チューブの変位が小さいと作動流体に十分な力が伝達されないため、作動流体の液送量が小さいという問題がある。また、流速を検出するために流速モニター用の検出器が別個に必要になる。
そこで、本発明は液送の流量が大きく、特別なセンサを必要とせずに流速を検出でき、流量・流速の制御性が高い液送装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、圧電素子と、前記圧電素子に一方端が自由に振れる振動板と、前記圧電素子への電圧供給線とを備えた液送モジュールである。
本構成によれば、圧電素子に電圧を印加することにより振動板を変位させることができる。
請求項2に記載の発明は、金属板の両面にバイモルフ型の圧電板を設けた振動板と、前記振動板の一方端が固定され、かつ前記金属板および圧電板に電圧を供給する配線を設けた支持部材とからなる液送モジュールである。
本構成によれば、圧電素子に電圧を印加することにより振動板を変位させることができる。
請求項3に記載の発明は、請求項1または請求項2記載の液送モジュールを基体の流路に複数設け、前記液送モジュールの圧電素子に電圧を供給する電源と、前記電圧を制御する制御装置とにより構成した液送装置である。
本構成によれば、圧電素子に電圧を印加することで振動板が変位し、液体に直接作用して液体を移動させることができる。
請求項4に記載の発明は、 前記液送モジュールを、互いに作用する方向が逆になるように配置した液送装置である。
本構成によれば、一方向に配置した液送モジュールと逆方向に配置した液送モジュールを交互に動かすことでの流れの方向や流量等を制御することができる。
請求項5に記載の発明は、前記振動板はその共振周波数を液送モジュールにより変えた液送装置である。
本構成によれば、駆動周波数を変えるだけで、液送モジュールを選択的に動作させることができるので、個別に動作させる際にも個別に配線する必要がなくなる。また、複数個の送液モジュールを選択的に動作させる場合においても、個別の配線が不要で周波数を変化させるだけで、選択的に送液モジュールを動作させることができる。
請求項6に記載の発明は、前記複数個の液送モジュールをグループに分け、前記グループ内の電圧供給線を直列配線した液送装置である。
本構成によれば、複数の液送モジュールを群グループ別に制御することができるので、電圧供給線が少なくて済み、単一電圧で流量および流速を制御することができる。
請求項7に記載の発明は、前記圧電素子全ての電圧供給線を直列配線した液送装置である。
本構成によれば、電圧供給線が2本で済むため、構造を簡素化することができる。
請求項8に記載の発明は、前記液送モジュールのうち電圧を印加していない液送モジュールを用い、前記液体の移動によって変位する金属板により発生する圧電素子の電圧信号を流速検出用の液送モジュールとした液送装置である。
本構成によれば、流速を検出するための検出器を特別に設ける必要がなくなるので、装置の構造が簡単になる。
請求項9に記載の発明は、圧電素子と、前記圧電素子に一方端が自由に振れる振動板と、前記圧電素子への電圧供給線とを備えた液送モジュールを、基体内部の流路に複数設け、前記圧電素子に電圧を供給して振動を発生させ、発生した振動を前記振動板に伝え、前記振動板により拡大した変位を液体に加えて液体を移動させる液送装置の駆動方法である。
本構成によれば、圧電素子に電圧を印加することで振動板が変位し、液体に直接作用して液体を移動させることができる。
請求項10に記載の発明は、金属板の両面にバイモルフ型の圧電板を設けた振動板と、前記振動板の一方端が固定され、かつ前記金属板および圧電板に電圧を供給する配線を設けた支持部材とからなる液送モジュールを、基体内部の流路に複数設け、前記圧電素子に電圧を供給して振動を発生させ、発生した振動を前記振動板に伝え、前記振動板により拡大した変位を液体に加えて液体を移動させる液送装置の駆動方法である。
本構成によれば、圧電素子に電圧を印加することで振動板が変位し、液体に直接作用して液体を移動させることができる。(請求項9とは異なる効果を書く)
請求項11に記載の発明は、前記圧電素子に供給する電圧を、前記振動板が共振する周波数とした液送装置の駆動方法である。
本構成によれば、振動板の変位を大きくすることができ、流量を増やすことができ、また、流速を速めることができる。
請求項12に記載の発明は、前記液送モジュールのうち電圧を印加していない液送モジュールを用い、前記液体の流速に応じて変化する前記圧電素子の電気信号を流速として検出し、前記液体の流量を制御する液送装置の駆動方法である。
本構成によれば、流速を検出するための検出器を特別に設ける必要がなくなるので、装置の構造が簡単になる。
【0006】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
(第1実施例)
図1は、本発明の第1実施例を示す液送装置の図であり、(a)は斜視図、(b)は液送モジュールの部分拡大断面図である。図において、21はシリコンやガラス、プラスティック等からなる微小な流路ベース、22はシリコンやガラス、プラスティック等からなる微小な流路カバー、23は、流路ベース21と流路カバー22により囲まれた微小な流路、24は液送モジュール、241は振動板、242は圧電素子、25は圧電素子用の電圧供給線、26はスペーサである。
流路ベース21上に電圧供給線25を施し、図示しないコンタクトパッド以外を、電気的絶縁性を有する薄膜で覆っている。その上に電圧供給線25と電気的にコンタクトが取れるように圧電素子242を配置している。圧電素子242は、積層型の圧電素子であり厚さ50μmの圧電セラミックスを何層にも重ねている。各層の体積変化を積算することで低い駆動電圧においても十分な体積変化を得ることができる。圧電素子242の表面に紫外線硬化型接着剤を塗布し、その上に振動板241を配置する。上面より紫外線を照射することで、振動板241と圧電素子242を固着させている。
つぎに、動作について説明する。
圧電素子242に交流電圧を印加すると、電圧の振幅に応じて厚さ方向に伸縮する。圧電素子242には振動板241の一端が接続されているので、圧電素子を適当な周波数で駆動させると、振動板241は、その他端が加振され、波状に変形する。この動作により微小な流路23内の液体を一方向に送液する。
【0007】
(第2実施例)
図2は、本発明の第2実施例を示す液送モジュールの部分拡大断面図である。
本実施例の液送モジュール24は、振動板241と支持部材242とからなる。その他の構成は、第1実施例と同じである。
振動板241は、金属板241aとバイモルフ型圧電素子の圧電板241bとからなり、金属板241aを、チタン酸バリウム若しくはチタン酸ジルコン酸鉛により形成される圧電板241bで挟んだ3層構造となっている。そして、振動板241の一端は支持部材243に固定されている。支持部材243は、絶縁体からなり内部に、金属板241aおよび圧電板241bに電圧を供給する中継配線243aを備えている。中継配線243aの一方端は電圧供給線25に接続され、他方端はコンタクトパッドとバイモルフ型圧電素子の圧電板241bが電気的にコンタクトされている。
つぎに、動作について説明する。
金属板241aと圧電板241bとの間に電圧と印加すると、圧電板241bは、図中の点線で示すように一方向に変形する。また、印加する電圧の極性を逆にすると圧電板241bは、逆方向に変形する。このような構成において、液送モジュール24に交流の駆動電圧を印加することにより振動板241が上下に撓み、その変形によって流路23内の液体に直接、力が伝わり効率よく液体が移動する。
【0008】
(第3実施例)
図3は、本発明の第3実施例を示す液送装置の斜視図である。複数個の送液モジュール24を+方向、―方向に配置している。+方向に作用する液送モジュール24のみを動作させた場合は、+方向に液体を移動させることができる。このような流れを瞬時に停止させたい場合には、逆方向に働く力が必要となる。したがって、−方向に配置した液送装置を動作させることで、ブレーキ力として作用させることが可能になる。さらに、+方向に配置した液送装置と―方向に配置した液送装置を同時に動作させることで、液送という機能に加えて、攪拌という機能を液送装置に持たせることもできる。
【0009】
(第4実施例)
図4は、本発明の第4実施例を示す液送装置の斜視図である。振動板241の厚さや長さ、幅等の形状に応じて共振周波数が変化する。また、ヤング率など材料の機械的特性によっても共振周波数は変化する。図4では、一例として、長さが異なる振動板241を配置した様子を示している。すべての圧電素子242を直列配線し、液体の入り口から出口に向かって徐々に共振周波数が増加するように共振周波数の異なる液送装置を配置している。このような構成において、駆動周波数を徐々に増加させていくと、入り口から出口に向かって順々に液送装置が動作していく。したがって、液体に対して進行波を与えることができ、単位時間あたりの流量が大きな液送が可能となる。
なお、共振周波数は、振動板241の長さの他、幅、厚さ等の形状やヤング率を変えてもよい。
【0010】
(第5実施例)
図5は、本発明の第5実施例を示す液送装置の斜視図である。フォトリソグラフィ技術を用いて、流路ベース21上にすべての圧電素子242に対して個別に電圧を供給する電圧供給線25が施されている。さらに、各圧電素子の電極とコンタクトするための電極パッドを除いて、電圧供給線25の表面は電気的絶縁性を有する薄膜により覆われている。任意の電極に電圧を印加することで、各液送装置を個別に駆動させることができる。このように、駆動させる液送装置の個数を調整することで、単位時間あたりの流量を高精度に調整することができる。また、任意の液送装置を動作させることで局所的に流れを発生させることも可能である。さらに、流路の入り口から出口に向かって液送装置が動作するように、印加する電極を切り替えることで、液体に進行波を与えることができ、単位時間あたりの流量が大きい液送が可能となる。
【0011】
(第6実施例)
図6は、本発明の第6実施例を示す液送装置の斜視図である。フォトリソグラフィ技術を用いて、流路ベース21上に送液モジュール群に対して、各群内は直列に配線されている。さらに、各圧電素子の電極とコンタクトするための電極パッドを除いて、電圧供給線25の表面は電気的絶縁性を有する薄膜により覆われている。このような電圧供給線25にすることで、例えば+方向に動作するものと―方向に動作するものを2群に分けて、配線することによって、電圧供給線25の本数を省線化することが可能になる。
【0012】
(第7実施例)
図7は、本発明の第7実施例を示す液送装置の斜視図である。フォトリソグラフィ技術を用いて、すべての圧電素子242が直列に配線されるように流路ベース21上に電圧供給線25を施している。第4の実施例と比較して、高精度な制御という点では不利ではあるが、駆動用の電源本数が2本で済むという利点がある。
【0013】
(第8実施例)
図8は、本発明の第8実施例を示す液送装置の斜視図である。
液送モジュール24は、第2実施例の図2に示すものと同じである。すなわち、振動板241と支持部材242とからなり、振動板241は、金属板241aと圧電板241bとからなる。24Aおよび24Cは駆動用液送モジュール、24Bは流速モニタ用液送モジュールである。
駆動用の液送モジュール24A、24Cでは、交流の駆動電圧を印加し、流速モニタ用の液送モジュールでは、金属板241aと圧電板241bとの間の電圧Vを検出している。図の配置によると駆動電圧を印加することで、液送モジュール24Aおよび24Cのバイモルフ型が上下に変形し、図中に記した矢印方向に流れが生じる。流れの速度に応じて液送モジュール24Bに加わる力が変化し、液送モジュールには力に応じた変形が生じ、その変形により前記金属板と前記圧電板の間に電圧が発生する。
図9は、本実施例の流速センサの出力特性を示すグラフである。流速の増加に応じて電圧が増加することが分かる。
【0014】
【発明の効果】
以上述べたように、本発明の液送装置によれば、従来の液送装置に比べて、流れの方向や流量、流速に対して制御性が高く、かつ送液量の大きな液送装置を提供することができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す液送装置の図であり、(a)は斜視図、(b)は液送モジュールの部分拡大断面図
【図2】本発明の第2実施例を示す液送モジュールの部分拡大断面図
【図3】本発明の第3実施例を示す液送装置の斜視図
【図4】本発明の第4実施例を示す液送装置の斜視図
【図5】本発明の第5実施例を示す液送装置の斜視図
【図6】本発明の第6実施例を示す液送装置の斜視図
【図7】本発明の第7実施例を示す液送装置の斜視図
【図8】本発明の第8実施例を示す液送装置の斜視図
【図9】本発明の第8実施例における流速センサの出力特性を示すグラフ
【図10】従来の液送装置を示す側断面図
【符号の説明】
T 進行波発生部
1 チューブ
3 超音波発生部
9 下部電極
13 上部電極
7、11 皮膜
21 流路ベース
22 流路カバー
23 流路
24、24A、24C 液送モジュール(駆動用)
24B 液送モジュール(流速モニタ用)
241 振動板
241a 金属板
241b 圧電板
242 圧電素子
243 支持部材
243a 中継配線
25 電圧供給線
26 スペーサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, a liquid feeding device used for controlling the flow of a blood vessel of an artificial heart or a microchannel in a micro total analysis system.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a liquid feeding device as shown in FIG. 10 (for example, see Patent Document 1).
In the figure, T is a traveling wave generator, 1 is a tube, 3 is an ultrasonic wave generating layer, 9 is a lower electrode, 13 is an upper electrode, and 7 and 11 are films. The ultrasonic microtube 1 has a plurality of traveling wave generating portions T continuous at a predetermined interval. The traveling wave generating portion T has an ultrasonic generating layer 3 made of a piezoelectric material on the outer periphery of the tube 1 and the lower electrode 9 and the upper electrode 9. It is formed between the electrodes 13. In a state where the traveling wave generating portions T are linked, the liquid in the tube 1 moves in one direction by vibrating at a certain frequency between the lower electrode 9 and the upper electrode 13 and generating a high frequency. If the polarity of the voltage is reversed, the moving direction is reversed. In addition, the flow rate of the liquid can be changed by changing the current or the voltage.
[0003]
[Patent Document 1] JP-A-6-233969
[Problems to be solved by the invention]
However, in the prior art, the displacement of the piezoelectric transducer as a vibration source is generally small, and the displacement of the tube is also small. If the displacement of the tube is small, a sufficient force is not transmitted to the working fluid, so that there is a problem that the amount of working fluid fed is small. In addition, a separate detector for monitoring the flow velocity is required to detect the flow velocity.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid feeder which has a large flow rate of liquid feed, can detect a flow rate without requiring a special sensor, and has high controllability of flow rate and flow rate.
[0005]
[Means for Solving the Problems]
To solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a liquid supply module including a piezoelectric element, a diaphragm whose one end freely swings on the piezoelectric element, and a voltage supply line to the piezoelectric element.
According to this configuration, the diaphragm can be displaced by applying a voltage to the piezoelectric element.
According to a second aspect of the present invention, there is provided a vibration plate having a bimorph-type piezoelectric plate provided on both surfaces of a metal plate, and a wiring for fixing one end of the vibration plate and supplying a voltage to the metal plate and the piezoelectric plate. It is a liquid feeding module including a provided supporting member.
According to this configuration, the diaphragm can be displaced by applying a voltage to the piezoelectric element.
According to a third aspect of the present invention, a plurality of the liquid supply modules according to the first or second aspect are provided in the flow path of the base, and a power supply for supplying a voltage to the piezoelectric element of the liquid supply module and the voltage are controlled. This is a liquid feeding device constituted by a control device.
According to this configuration, the diaphragm is displaced by applying a voltage to the piezoelectric element, and the liquid can be moved by directly acting on the liquid.
The invention according to claim 4 is a liquid feeder in which the liquid feed modules are arranged so that directions in which they act on each other are reversed.
According to this configuration, it is possible to control the flow direction, the flow rate, and the like by alternately moving the liquid feed module arranged in one direction and the liquid feed module arranged in the opposite direction.
The invention according to claim 5 is a liquid feeder in which the vibration frequency of the diaphragm is changed by a liquid feed module.
According to this configuration, the liquid feeding module can be selectively operated only by changing the driving frequency, so that it is not necessary to individually perform wiring when individually operating. Further, even when a plurality of liquid sending modules are selectively operated, the liquid sending modules can be selectively operated only by changing the frequency without requiring individual wiring.
The invention according to claim 6 is a liquid feeder in which the plurality of liquid feed modules are divided into groups, and voltage supply lines in the groups are wired in series.
According to this configuration, since a plurality of liquid supply modules can be controlled for each group, the number of voltage supply lines can be reduced, and the flow rate and the flow velocity can be controlled with a single voltage.
The invention according to claim 7 is a liquid feeder in which voltage supply lines for all the piezoelectric elements are wired in series.
According to this configuration, since only two voltage supply lines are required, the structure can be simplified.
The invention according to claim 8 uses a liquid supply module to which no voltage is applied among the liquid supply modules, and converts a voltage signal of a piezoelectric element generated by a metal plate displaced by the movement of the liquid into a liquid for flow velocity detection. This is a liquid feeding device as a feeding module.
According to this configuration, it is not necessary to provide a special detector for detecting the flow velocity, so that the structure of the apparatus is simplified.
According to a ninth aspect of the present invention, a liquid supply module including a piezoelectric element, a vibrating plate whose one end freely swings on the piezoelectric element, and a voltage supply line to the piezoelectric element is provided in a flow path inside the base. A driving method of a liquid feeding device that supplies a plurality of piezoelectric elements to generate a vibration by supplying a voltage to the piezoelectric element, transmits the generated vibration to the vibration plate, and applies a displacement enlarged by the vibration plate to the liquid to move the liquid. is there.
According to this configuration, the diaphragm is displaced by applying a voltage to the piezoelectric element, and the liquid can be moved by directly acting on the liquid.
According to a tenth aspect of the present invention, there is provided a vibration plate having a bimorph-type piezoelectric plate provided on both surfaces of a metal plate, and a wiring for fixing one end of the vibration plate and supplying a voltage to the metal plate and the piezoelectric plate. A plurality of liquid feed modules each including a supporting member provided are provided in a flow path inside the base body, a voltage is supplied to the piezoelectric element to generate vibration, the generated vibration is transmitted to the vibration plate, and the vibration is enlarged by the vibration plate. This is a driving method of a liquid feeding device that moves the liquid by applying the displacement to the liquid.
According to this configuration, the diaphragm is displaced by applying a voltage to the piezoelectric element, and the liquid can be moved by directly acting on the liquid. (Write effects different from those in claim 9)
An eleventh aspect of the present invention is a method for driving a liquid feeding device, wherein a voltage supplied to the piezoelectric element is set to a frequency at which the diaphragm resonates.
According to this configuration, the displacement of the diaphragm can be increased, the flow rate can be increased, and the flow velocity can be increased.
The invention according to claim 12 uses the liquid feeding module to which no voltage is applied among the liquid sending modules, detects an electric signal of the piezoelectric element that changes according to the flow rate of the liquid as a flow rate, and This is a method for driving a liquid feeding device for controlling the flow rate of the liquid.
According to this configuration, it is not necessary to provide a special detector for detecting the flow velocity, so that the structure of the apparatus is simplified.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIGS. 1A and 1B are diagrams of a liquid feeder showing a first embodiment of the present invention, wherein FIG. 1A is a perspective view, and FIG. 1B is a partially enlarged sectional view of a liquid feed module. In the figure, 21 is a minute flow path base made of silicon, glass, plastic, or the like, 22 is a minute flow path cover made of silicon, glass, plastic, or the like, and 23 is surrounded by the flow path base 21 and the flow path cover 22. 24, a liquid feed module, 241 a vibration plate, 242 a piezoelectric element, 25 a voltage supply line for the piezoelectric element, and 26 a spacer.
A voltage supply line 25 is provided on the flow path base 21, and portions other than the contact pads (not shown) are covered with a thin film having electrical insulation. The piezoelectric element 242 is arranged thereon so that the piezoelectric element 242 can be in electrical contact with the voltage supply line 25. The piezoelectric element 242 is a multi-layer piezoelectric element in which multiple layers of 50 μm thick piezoelectric ceramics are stacked. By integrating the volume change of each layer, a sufficient volume change can be obtained even at a low driving voltage. An ultraviolet curing adhesive is applied to the surface of the piezoelectric element 242, and the vibration plate 241 is disposed thereon. By irradiating ultraviolet rays from the upper surface, the vibration plate 241 and the piezoelectric element 242 are fixed.
Next, the operation will be described.
When an AC voltage is applied to the piezoelectric element 242, the piezoelectric element 242 expands and contracts in the thickness direction according to the amplitude of the voltage. Since one end of the vibration plate 241 is connected to the piezoelectric element 242, when the piezoelectric element is driven at an appropriate frequency, the other end of the vibration plate 241 is vibrated and deformed into a wave shape. By this operation, the liquid in the minute flow path 23 is sent in one direction.
[0007]
(Second embodiment)
FIG. 2 is a partially enlarged cross-sectional view of a liquid feeding module according to a second embodiment of the present invention.
The liquid feeding module 24 of the present embodiment includes a vibration plate 241 and a support member 242. Other configurations are the same as those of the first embodiment.
The vibration plate 241 includes a metal plate 241a and a piezoelectric plate 241b of a bimorph type piezoelectric element, and has a three-layer structure in which the metal plate 241a is sandwiched between piezoelectric plates 241b formed of barium titanate or lead zirconate titanate. ing. One end of the vibration plate 241 is fixed to the support member 243. The support member 243 is made of an insulator, and includes a relay wiring 243a that supplies a voltage to the metal plate 241a and the piezoelectric plate 241b. One end of the relay wiring 243a is connected to the voltage supply line 25, and the other end is electrically connected to the contact pad and the piezoelectric plate 241b of the bimorph piezoelectric element.
Next, the operation will be described.
When a voltage is applied between the metal plate 241a and the piezoelectric plate 241b, the piezoelectric plate 241b is deformed in one direction as shown by a dotted line in the drawing. When the polarity of the applied voltage is reversed, the piezoelectric plate 241b deforms in the opposite direction. In such a configuration, by applying an AC driving voltage to the liquid feed module 24, the diaphragm 241 bends up and down, and the deformation directly transmits a force to the liquid in the flow path 23 and the liquid moves efficiently.
[0008]
(Third embodiment)
FIG. 3 is a perspective view of a liquid feeder showing a third embodiment of the present invention. A plurality of liquid sending modules 24 are arranged in the + and-directions. When only the liquid feeding module 24 acting in the + direction is operated, the liquid can be moved in the + direction. To stop such a flow instantaneously, a force acting in the opposite direction is required. Therefore, it becomes possible to act as a braking force by operating the liquid feeding device arranged in the negative direction. Further, by simultaneously operating the liquid feeding device arranged in the + direction and the liquid feeding device arranged in the-direction, it is possible to provide the liquid feeding device with a function of stirring in addition to the function of liquid feeding.
[0009]
(Fourth embodiment)
FIG. 4 is a perspective view of a liquid feeder showing a fourth embodiment of the present invention. The resonance frequency changes according to the shape of the diaphragm 241 such as thickness, length, and width. Also, the resonance frequency changes depending on the mechanical properties of the material such as Young's modulus. FIG. 4 shows an example in which diaphragms 241 having different lengths are arranged. All the piezoelectric elements 242 are wired in series, and a liquid feeder having a different resonance frequency is arranged so that the resonance frequency gradually increases from the inlet to the outlet of the liquid. In such a configuration, when the drive frequency is gradually increased, the liquid feeder operates sequentially from the entrance to the exit. Therefore, a traveling wave can be given to the liquid, and the liquid can be sent at a high flow rate per unit time.
The resonance frequency may change the shape such as the width and the thickness and the Young's modulus in addition to the length of the diaphragm 241.
[0010]
(Fifth embodiment)
FIG. 5 is a perspective view of a liquid feeding apparatus according to a fifth embodiment of the present invention. A voltage supply line 25 for individually supplying a voltage to all the piezoelectric elements 242 is provided on the flow path base 21 by using a photolithography technique. Further, except for the electrode pads for contacting the electrodes of each piezoelectric element, the surface of the voltage supply line 25 is covered with an electrically insulating thin film. By applying a voltage to an arbitrary electrode, each liquid feeding device can be individually driven. As described above, by adjusting the number of liquid feeding devices to be driven, the flow rate per unit time can be adjusted with high accuracy. It is also possible to generate a flow locally by operating an arbitrary liquid feeding device. Furthermore, by switching the electrodes to be applied so that the liquid feeding device operates from the inlet to the outlet of the flow path, a traveling wave can be given to the liquid, and the liquid can be sent at a large flow rate per unit time. Become.
[0011]
(Sixth embodiment)
FIG. 6 is a perspective view of a liquid feeding device according to a sixth embodiment of the present invention. Using a photolithography technique, the inside of each group is wired in series with the group of liquid sending modules on the flow path base 21. Further, except for the electrode pads for contacting the electrodes of each piezoelectric element, the surface of the voltage supply line 25 is covered with an electrically insulating thin film. By using such voltage supply lines 25, for example, those operating in the + direction and those operating in the − direction are divided into two groups and wired, thereby reducing the number of voltage supply lines 25. Becomes possible.
[0012]
(Seventh embodiment)
FIG. 7 is a perspective view of a liquid feeder showing a seventh embodiment of the present invention. A voltage supply line 25 is provided on the flow path base 21 using a photolithography technique so that all the piezoelectric elements 242 are wired in series. As compared with the fourth embodiment, although it is disadvantageous in terms of high-precision control, there is an advantage that the number of driving power supplies is only two.
[0013]
(Eighth embodiment)
FIG. 8 is a perspective view of a liquid feeder showing an eighth embodiment of the present invention.
The liquid feeding module 24 is the same as that shown in FIG. 2 of the second embodiment. That is, the diaphragm 241 and the support member 242 are formed, and the diaphragm 241 is formed of the metal plate 241a and the piezoelectric plate 241b. Reference numerals 24A and 24C denote driving liquid sending modules, and 24B denotes a flow rate monitoring liquid sending module.
The driving liquid feed modules 24A and 24C apply an AC drive voltage, and the flow rate monitor liquid feed module detects a voltage V between the metal plate 241a and the piezoelectric plate 241b. According to the arrangement shown in the figure, by applying a drive voltage, the bimorph type of the liquid feed modules 24A and 24C is deformed up and down, and a flow occurs in the direction of the arrow shown in the figure. The force applied to the liquid feed module 24B changes according to the flow speed, and the liquid feed module undergoes deformation according to the force, and the deformation generates a voltage between the metal plate and the piezoelectric plate.
FIG. 9 is a graph showing the output characteristics of the flow rate sensor of this embodiment. It can be seen that the voltage increases as the flow velocity increases.
[0014]
【The invention's effect】
As described above, according to the liquid feeder of the present invention, a liquid feeder having a higher controllability with respect to the flow direction, the flow rate, and the flow velocity, and a larger liquid feed amount than the conventional liquid feeder. There are effects that can be provided.
[Brief description of the drawings]
FIG. 1 is a view of a liquid feeder showing a first embodiment of the present invention, (a) is a perspective view, and (b) is a partially enlarged cross-sectional view of a liquid feed module. FIG. 2 is a second embodiment of the present invention. FIG. 3 is a partially enlarged cross-sectional view of a liquid feeding module showing an example. FIG. 3 is a perspective view of a liquid feeding device showing a third embodiment of the present invention. FIG. 4 is a perspective view of a liquid feeding device showing a fourth embodiment of the present invention. FIG. 5 is a perspective view of a liquid feeder showing a fifth embodiment of the present invention. FIG. 6 is a perspective view of a liquid feeder showing a sixth embodiment of the present invention. FIG. 7 shows a seventh embodiment of the present invention. FIG. 8 is a perspective view of a liquid feeder according to an eighth embodiment of the present invention. FIG. 9 is a graph showing output characteristics of a flow rate sensor according to an eighth embodiment of the present invention. Sectional view showing the liquid feeder of [Description of reference numerals]
T Traveling wave generator 1 Tube 3 Ultrasonic generator 9 Lower electrode 13 Upper electrode 7, 11 Film 21 Flow path base 22 Flow path cover 23 Flow paths 24, 24A, 24C Liquid feed module (for driving)
24B liquid feed module (for flow velocity monitor)
241 Vibration plate 241a Metal plate 241b Piezoelectric plate 242 Piezoelectric element 243 Support member 243a Relay wiring 25 Voltage supply line 26 Spacer

Claims (12)

圧電素子と、前記圧電素子に固定され、かつ一方端が自由に振れる振動板と、前記圧電素子への電圧供給線とを備えたことを特徴とする液送モジュール。A liquid supply module comprising: a piezoelectric element; a vibration plate fixed to the piezoelectric element; one end of which freely swings; and a voltage supply line to the piezoelectric element. 金属板の両面にバイモルフ型の圧電板を設けた振動板と、前記振動板の一方端が固定され、かつ前記金属板および圧電板に電圧を供給する配線を設けた支持部材とからなることを特徴とする液送モジュール。A vibration plate provided with a bimorph-type piezoelectric plate on both surfaces of a metal plate, and a supporting member having one end fixed to the vibration plate and provided with wiring for supplying a voltage to the metal plate and the piezoelectric plate. Characteristic liquid supply module. 請求項1または請求項2記載の液送モジュールを基体の流路に複数設け、前記液送モジュールの圧電素子に電圧を供給する電源と、前記電圧を制御する制御装置とにより構成したことを特徴とする液送装置。A plurality of liquid supply modules according to claim 1 or 2 are provided in a flow path of a base, and are configured by a power supply for supplying a voltage to a piezoelectric element of the liquid supply module and a control device for controlling the voltage. Liquid feeding device. 前記液送モジュールを、互いに作用する方向が逆になるように配置したことを特徴とする請求項3記載の液送装置。4. The liquid feeding device according to claim 3, wherein the liquid feeding modules are arranged so that the directions acting on each other are reversed. 前記振動板はその共振周波数を液送モジュールにより変えたことを特徴とする請求項3または4記載の液送装置。The liquid feeding device according to claim 3, wherein the vibration frequency of the vibration plate is changed by a liquid feeding module. 前記複数個の液送モジュールをグループに分け、前記グループ内の電圧供給線を直列配線したことを特徴とする請求項3から5のいずれか1項に記載の液送装置。The liquid feeding apparatus according to any one of claims 3 to 5, wherein the plurality of liquid feeding modules are divided into groups, and voltage supply lines in the groups are wired in series. 前記圧電素子全ての電圧供給線を直列配線したことを特徴とする請求項3から5のいずれか1項に記載の液送装置。The liquid feeder according to any one of claims 3 to 5, wherein the voltage supply lines of all the piezoelectric elements are wired in series. 前記液送モジュールのうち電圧を印加していない液送モジュールを用い、前記液体の移動によって変位する金属板により発生する圧電素子の電圧信号を流速検出用の液送モジュールとしたことを特徴とする請求項3から7のいずれか1項に記載の液送装置。A liquid supply module to which a voltage is not applied is used, and a voltage signal of a piezoelectric element generated by a metal plate displaced by the movement of the liquid is used as a liquid supply module for detecting a flow velocity. The liquid feeder according to any one of claims 3 to 7. 圧電素子と、前記圧電素子に一方端が自由に振れる振動板と、前記圧電素子への電圧供給線とを備えた液送モジュールを、基体内部の流路に複数設け、前記圧電素子に電圧を供給して振動を発生させ、発生した振動を前記振動板に伝え、前記振動板により拡大した変位を液体に加えて液体を移動させることを特徴とする液送装置の駆動方法。A plurality of liquid feed modules each including a piezoelectric element, a vibration plate whose one end freely swings on the piezoelectric element, and a voltage supply line to the piezoelectric element are provided in a flow path inside the base, and a voltage is applied to the piezoelectric element. A driving method for a liquid feeder, comprising: supplying vibration to generate vibration, transmitting the generated vibration to the vibration plate, and applying displacement expanded by the vibration plate to the liquid to move the liquid. 金属板の両面にバイモルフ型の圧電板を設けた振動板と、前記振動板の一方端が固定され、かつ前記金属板および圧電板に電圧を供給する配線を設けた支持部材とからなる液送モジュールを、基体内部の流路に複数設け、前記圧電素子に電圧を供給して振動を発生させ、発生した振動を前記振動板に伝え、前記振動板により拡大した変位を液体に加えて液体を移動させることを特徴とする液送装置の駆動方法。A liquid feeder comprising: a vibrating plate having a bimorph-type piezoelectric plate provided on both surfaces of a metal plate; and a supporting member having one end fixed to the vibrating plate and having a wiring for supplying a voltage to the metal plate and the piezoelectric plate. A plurality of modules are provided in a flow path inside the base body, a voltage is supplied to the piezoelectric element to generate vibration, the generated vibration is transmitted to the vibration plate, and the displacement enlarged by the vibration plate is added to the liquid to apply the liquid. A method for driving a liquid feeding device, comprising: moving the liquid feeding device. 前記圧電素子に供給する電圧を、前記振動板が共振する周波数としたことを特徴とする請求項9または10記載の液送装置の駆動方法。11. The method according to claim 9, wherein the voltage supplied to the piezoelectric element is a frequency at which the diaphragm resonates. 前記液送モジュールのうち電圧を印加していない液送モジュールを用い、前記液体の流速に応じて変化する前記圧電素子の電気信号を流速として検出し、前記液体の流量を制御することを特徴とする請求項9から11のいずれか1項に記載の液送装置の駆動方法。Using a liquid supply module to which no voltage is applied among the liquid supply modules, detecting an electric signal of the piezoelectric element that changes according to the flow velocity of the liquid as a flow velocity, and controlling a flow rate of the liquid. The method for driving a liquid feeding device according to claim 9, wherein
JP2003099164A 2003-04-02 2003-04-02 Liquid feeding module, liquid feeding apparatus, and driving method therefor Pending JP2004309163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099164A JP2004309163A (en) 2003-04-02 2003-04-02 Liquid feeding module, liquid feeding apparatus, and driving method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099164A JP2004309163A (en) 2003-04-02 2003-04-02 Liquid feeding module, liquid feeding apparatus, and driving method therefor

Publications (1)

Publication Number Publication Date
JP2004309163A true JP2004309163A (en) 2004-11-04

Family

ID=33463706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099164A Pending JP2004309163A (en) 2003-04-02 2003-04-02 Liquid feeding module, liquid feeding apparatus, and driving method therefor

Country Status (1)

Country Link
JP (1) JP2004309163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121246A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Micro channel
JP2007162514A (en) * 2005-12-09 2007-06-28 Kyocera Corp Fluid actuator, heat generating device using same and analysis device
CN105375813A (en) * 2014-08-13 2016-03-02 精工爱普生株式会社 Piezoelectric driving device and driving method thereof, robot and driving method thereof
US9737327B2 (en) 2013-03-28 2017-08-22 Seiko Epson Corporation Fluid ejection device and medical apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121246A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Micro channel
JP2007162514A (en) * 2005-12-09 2007-06-28 Kyocera Corp Fluid actuator, heat generating device using same and analysis device
US9737327B2 (en) 2013-03-28 2017-08-22 Seiko Epson Corporation Fluid ejection device and medical apparatus
CN105375813A (en) * 2014-08-13 2016-03-02 精工爱普生株式会社 Piezoelectric driving device and driving method thereof, robot and driving method thereof
JP2016040986A (en) * 2014-08-13 2016-03-24 セイコーエプソン株式会社 Piezoelectric drive device and drive method of the same, robot and drive method of the robot

Similar Documents

Publication Publication Date Title
EP3547921B1 (en) Imaging devices having piezoelectric transducers
JP4794897B2 (en) Ultrasonic motor
JP4795158B2 (en) Ultrasonic motor
JP5676255B2 (en) Thin film detector for presence detection
KR20170054432A (en) Mems having micromechanical piezoelectric actuators for realizing high forces and deflections
CN105900253B (en) Piezoelectric device
US9827672B2 (en) Piezoelectric drive device, driving method thereof, robot, and driving method thereof
KR20080104785A (en) A piezoelectric actuator and device for lens transfer having the same
JP2004516783A (en) Electrostatic device
JP4999207B2 (en) Functional capillary device
JP4294924B2 (en) Matrix-type piezoelectric / electrostrictive device and manufacturing method
JP2013513355A (en) Miniaturized energy generation system
US20160241165A1 (en) Piezoelectric drive device, robot, and drive method thereof
WO2009122340A1 (en) Microfluidic mixing with ultrasound transducers
JP2004309163A (en) Liquid feeding module, liquid feeding apparatus, and driving method therefor
US10187037B2 (en) Stick-slip stage device and methods of use thereof
Aktakka et al. High stroke and high deflection bulk-PZT diaphragm and cantilever micro actuators and effect of pre-stress on device performance
JP2005033989A (en) Multiple-degree-of-freedoms oscillatory actuator
EP0704397B1 (en) Apparatus and method for moving a substrate
US7148605B2 (en) Biaxial piezoelectric motor
JP2006304425A (en) Operation method of ultrasonic motor
JP4206732B2 (en) Valve device and fluid control chip
JP3896141B2 (en) Micropump and micropump system
JP2020072532A (en) Piezoelectric drive device, robot, and printer
JP4945023B2 (en) Electro-mechanical transducer, ultrasonic motor and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080313