WO2023189056A1 - Furnace core tube, heat treatment apparatus and support unit - Google Patents

Furnace core tube, heat treatment apparatus and support unit Download PDF

Info

Publication number
WO2023189056A1
WO2023189056A1 PCT/JP2023/006635 JP2023006635W WO2023189056A1 WO 2023189056 A1 WO2023189056 A1 WO 2023189056A1 JP 2023006635 W JP2023006635 W JP 2023006635W WO 2023189056 A1 WO2023189056 A1 WO 2023189056A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
layer
tube
wafer
sic
Prior art date
Application number
PCT/JP2023/006635
Other languages
French (fr)
Japanese (ja)
Inventor
佑紀 中野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023189056A1 publication Critical patent/WO2023189056A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a furnace core tube, a heat treatment device, and a support unit.
  • Patent Document 1 discloses a vertical heat treatment apparatus that includes a reaction tube, a heat treatment boat that supports wafers, and a heater.
  • One embodiment provides a furnace tube, a heat treatment device, and a support unit that can contribute to high-quality heat treatment of silicon carbide wafers.
  • One embodiment includes: a tube body having an inner wall that partitions a processing space in which a silicon carbide wafer is accommodated and having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer; and a tantalum coating layer that covers the inner wall.
  • a furnace core tube including:
  • One embodiment includes the furnace core tube, a support unit configured to be accommodated in the processing space while supporting the silicon carbide wafer, and a heating unit disposed around the furnace core tube.
  • a heat treatment apparatus including:
  • One embodiment includes a column main body having a heat resistance temperature higher than a heat resistance temperature of a silicon carbide wafer and having a support portion that supports the silicon carbide wafer, and a column body having a tantalum coating layer covering the pillar body. , providing a support unit.
  • One embodiment is a dummy wafer used together with a silicon carbide wafer during heat treatment of the silicon carbide wafer, the dummy wafer having a wafer body having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer, and a tantalum coating layer covering the wafer body.
  • We provide dummy wafers including and.
  • FIG. 1 is a schematic cross-sectional view showing a heat treatment apparatus according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus.
  • FIG. 3 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus.
  • FIG. 4A is a diagram illustrating an example of a first tantalum coating layer.
  • FIG. 4B is a diagram illustrating one embodiment of the first tantalum coating layer.
  • FIG. 5A is a diagram illustrating one embodiment of the second tantalum coating layer.
  • FIG. 5B is a diagram illustrating one embodiment of the second tantalum coating layer.
  • FIG. 6A is a diagram illustrating one embodiment of the third tantalum coating layer.
  • FIG. 6B is a diagram illustrating one embodiment of the third tantalum coating layer.
  • FIG. 7 is a diagram for explaining an operation of the heat treatment apparatus.
  • FIG. 8 is a schematic cross-sectional view showing a heat treatment apparatus according to the second embodiment.
  • FIG. 9 is a diagram for explaining another example of heat treatment of a SiC wafer.
  • FIG. 10 is a diagram for explaining an example of a form of a dummy wafer.
  • FIG. 11A is a diagram illustrating an example of a fourth tantalum coating layer.
  • FIG. 11B is a diagram illustrating one embodiment of the fourth tantalum coating layer.
  • FIG. 1 is a schematic cross-sectional view showing a heat treatment apparatus 1A according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus 1A.
  • FIG. 3 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus 1A.
  • the heat treatment apparatus 1A in this embodiment, consists of a vertical heat treatment furnace used for heat treatment of SiC wafers 2 (silicon carbide wafers).
  • the heat treatment includes thermal oxidation treatment for the SiC wafer 2, annealing treatment for the SiC wafer 2, activation treatment for impurities (trivalent elements, pentavalent elements, etc.) for the SiC wafer 2, and CVD treatment for the SiC wafer 2 (e.g., low pressure CVD treatment). , including Si vapor pressure etching treatment on the SiC wafer 2, etc.
  • the SiC wafer 2 is a base member of a SiC semiconductor device. After a predetermined device structure is formed on the SiC wafer 2, a plurality of SiC semiconductor devices are manufactured by cutting the SiC wafer 2 in a predetermined pattern.
  • the SiC wafer 2 includes a hexagonal SiC single crystal and is formed into a plate shape (disk shape).
  • the hexagonal SiC single crystal has multiple types of polytypes including 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, and the like. In this embodiment, an example is shown in which the SiC wafer 2 includes a 4H-SiC single crystal, but the SiC wafer 2 may include other polytypes.
  • the SiC wafer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and a side surface 5 connecting the first main surface 3 and the second main surface 4.
  • the first main surface 3 and the second main surface 4 are preferably formed of a c-plane of a SiC single crystal.
  • the first main surface 3 is formed by a silicon surface of a SiC single crystal
  • the second main surface 4 is formed by a carbon surface of a SiC single crystal.
  • the first main surface 3 and the second main surface 4 may have an off angle that is inclined at a predetermined angle in a predetermined off direction with respect to the c-plane.
  • the off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the off angle may be greater than 0° and less than or equal to 10°.
  • the off angle is preferably 5° or less.
  • the SiC wafer 2 may have a mark indicating the crystal direction of the SiC single crystal on the side surface 5.
  • the mark may be an orientation flat consisting of a notch extending linearly or an orientation notch consisting of a notch concave in a polygonal shape (for example, triangular) toward the center.
  • the SiC wafer 2 may have an outer diameter (diameter) of 50 mm or more and 300 mm or less (that is, 2 inches or more and 12 inches or less) in plan view.
  • the outer diameter of the SiC wafer 2 is defined by the length of a chord passing through the center of the SiC wafer 2.
  • SiC wafer 2 may have a thickness of 100 ⁇ m or more and 1100 ⁇ m or less.
  • the SiC wafer 2 may have a stacked structure including a SiC substrate and an SiC epitaxial layer stacked on the SiC substrate.
  • the second main surface 4 is formed by the SiC substrate
  • the first main surface 3 is formed by the SiC epitaxial layer.
  • the SiC substrate may have an n-type impurity concentration.
  • the SiC epitaxial layer may have a different n-type impurity concentration than the SiC substrate.
  • the n-type impurity concentration of the SiC epitaxial layer may be lower than the n-type impurity concentration of the SiC substrate.
  • the SiC epitaxial layer has a thickness less than the thickness of the SiC substrate.
  • the thickness of the SiC epitaxial layer may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the SiC epitaxial layer is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the SiC substrate may have a p-type impurity concentration.
  • the SiC epitaxial layer may have a different p-type impurity concentration than the SiC substrate. While the SiC substrate has an n-type impurity concentration, the SiC epitaxial layer may have a p-type impurity concentration. While the SiC substrate has a p-type impurity concentration, the SiC epitaxial layer may have an n-type impurity concentration.
  • the heat treatment apparatus 1A includes a furnace core tube 10.
  • the furnace core tube 10 includes a tube body 11 and a first tantalum coating layer 12 .
  • the first tantalum coating layer 12 may be referred to as a "core side tantalum coating layer.”
  • the tube body 11 has a cylindrical single-tube structure having a closed end on one side (upper side in the vertical direction) and an open end on the other side (lower side in the vertical direction).
  • the tube body 11 has an inner wall 14 that defines a processing space 13 in which at least one SiC wafer 2 is accommodated, and is arranged with the open end facing downward in the vertical direction.
  • Processing space 13 may also be referred to as an "internal space” or "accommodation space.”
  • the tube body 11 is divided into a cylindrical (for example, cylindrical) tubular wall 15, a top wall 16 (closed end) that closes one end of the tubular wall 15, and the other end of the tubular wall 15. It has a furnace mouth part 17 (open end).
  • the inner wall 14 of the tube body 11 is defined by an inner wall portion of the tubular wall 15 and an inner wall portion of the top wall 16 .
  • the tube body 11 is formed into a longitudinal cylindrical shape extending in one direction (specifically, a longitudinal cylindrical shape extending in the vertical direction), and has a processing space 13 in which a plurality of SiC wafers 2 are accommodated. There is.
  • the tube body 11 is made of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2 .
  • the allowable temperature limit of the SiC wafer 2 may be defined by the sublimation temperature (2300° C. to 2600° C.) of the SiC wafer 2.
  • the allowable temperature limit of the tube body 11 may be defined by the lower of the melting temperature of the tube body 11 and the sublimation temperature of the tube body 11.
  • the tube body 11 preferably has a heat-resistant temperature of 2300° C. or higher. It is particularly preferable that the tube body 11 has a heat-resistant temperature of 2600° C. or higher.
  • the tube body 11 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element.
  • the tube body 11 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic.
  • the tube body 11 contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
  • the first tantalum coating layer 12 only needs to cover at least a portion of the inner wall 14.
  • the first tantalum coating layer 12 may cover either the inner wall portion of the tubular wall 15 or the inner wall portion of the top wall 16.
  • the first tantalum coating layer 12 covers both the inner wall portion of the tubular wall 15 and the inner wall portion of the top wall 16. It is particularly preferred that the first tantalum coating layer 12 covers the entire inner wall 14 .
  • the first tantalum coating layer 12 may cover a part of the outer wall of the tube body 11. That is, the first tantalum coating layer 12 may cover either or both of the outer wall portion of the tubular wall 15 and the outer wall portion of the top wall 16. The first tantalum coating layer 12 may cover the entire outer wall of the tube body 11.
  • the first tantalum coating layer 12 may have the configuration shown in FIGS. 4A and 4B.
  • 4A and 4B are diagrams illustrating an example of a form of the first tantalum coating layer 12.
  • the first tantalum coating layer 12 has a laminated structure including a first tantalum layer 18, a first tantalum carbide layer 19, and a first tantalum silicide layer 20 laminated in this order from the tube body 11 side. You may do so.
  • Such a structure is preferably applied when the wall surface (inner wall 14) of the tube body 11 is made of a material other than tantalum.
  • the first tantalum layer 18 includes a pure Ta layer (a Ta layer with a purity of 99% or more).
  • the first tantalum carbide layer 19 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 19a and the TaC layer 19b.
  • the first tantalum carbide layer 19 has a laminated structure including a Ta 2 C layer 19a and a TaC layer 19b laminated in this order from the tube body 11 side.
  • the first tantalum silicide layer 20 includes a Ta ⁇ Si ⁇ C ⁇ layer.
  • the first tantalum silicide layer 20 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer . It may have a structure.
  • the first tantalum silicide layer 20 has a single layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers.
  • the first tantalum silicide layer 20 preferably has a thickness less than the thickness of the first tantalum carbide layer 19 .
  • the first tantalum silicide layer 20 may have a thickness greater than the thickness of the first tantalum carbide layer 19.
  • the first tantalum coating layer 12 may have a laminated structure including a first tantalum carbide layer 19 and a first tantalum silicide layer 20 laminated in this order from the tube body 11 side. Such a structure is preferably applied when the wall surface (inner wall 14) of the tube body 11 is made of tantalum.
  • the heat treatment apparatus 1A includes a lid unit 25 configured to open and close the furnace mouth portion 17 on one end side of the furnace tube 10.
  • the lid unit 25 includes a lid made of metal (for example, stainless steel).
  • the lid body may be made of the same material as the tube body 11.
  • the lid unit 25 increases the airtightness within the processing space 13 by closing the furnace mouth portion 17 .
  • the heat treatment apparatus 1A includes a heat retention unit 26 configured to restrict the movement of heat in and out of the processing space 13 via the furnace opening 17.
  • the heat retention unit 26 includes a heat retention cylinder as an example of a heat insulating material.
  • the heat retention unit 26 is disposed above the lid unit 25 so that it is accommodated in the processing space 13 with the reactor core tube 10 closed by the lid unit 25.
  • the heat treatment apparatus 1A includes a support unit 30 configured to be accommodated in the processing space 13 while supporting at least one SiC wafer 2.
  • Support unit 30 may be referred to as a "wafer boat.”
  • the support unit 30 is placed above the lid unit 25 with the heat retention unit 26 in between so that the furnace core tube 10 is accommodated in the processing space 13 with the lid unit 25 closed.
  • the support unit 30 is configured to support a plurality of SiC wafers 2.
  • the support unit 30 includes a first support plate 31 on one side (closed end side of the furnace core tube 10), a second support plate 32 on the other side (open end side of the furnace core tube 10), and a first support plate 31 on one side (closed end side of the furnace core tube 10). It includes at least one (in this embodiment, a plurality of) columns 33 connected to the support plate 31 and the second support plate 32 . The second support plate 32 is fixed to the heat retention unit 26. Support unit 30 includes three columns 33 in this form.
  • the first support plate 31 and the second support plate 32 each include a plate main body 34 and a second tantalum coating layer 35.
  • the second tantalum coating layer 35 may be referred to as a "support side tantalum coating layer.”
  • the plate main body 34 is formed into a plate shape (for example, a disk shape or an annular plate shape).
  • the plate main body 34 has an outer diameter (diameter) larger than the outer diameter of the SiC wafer 2 in plan view.
  • the plate main body 34 has a thickness that exceeds the thickness of the SiC wafer 2.
  • the plate main body 34 is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2.
  • the allowable temperature limit of the plate body 34 may be defined by the lower of the melting temperature of the plate body 34 and the sublimation temperature of the plate body 34.
  • the heat resistant temperature of the plate main body 34 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the plate main body 34 is 2600° C. or higher.
  • the plate main body 34 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element.
  • the plate body 34 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic.
  • the plate main body 34 contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
  • the second tantalum coating layer 35 only needs to cover at least a portion of the outer surface of the plate body 34.
  • the second tantalum coating layer 35 preferably covers a portion of the outer surface of the plate body 34 that is exposed to the processing space 13 . It is particularly preferable that the second tantalum coating layer 35 covers the entire area of the plate body 34.
  • the second tantalum coating layer 35 may have the configuration shown in FIGS. 5A and 5B.
  • 5A and 5B are diagrams showing an example of a form of the second tantalum coating layer 35.
  • the second tantalum coating layer 35 has a laminated structure including a second tantalum layer 36, a second tantalum carbide layer 37, and a second tantalum silicide layer 38 laminated in this order from the plate main body 34 side. You may do so.
  • Such a structure is preferably applied when the wall surface of the plate main body 34 is made of a material other than tantalum.
  • the second tantalum layer 36 includes a pure Ta layer (a Ta layer with a purity of 99% or more).
  • the second tantalum carbide layer 37 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 36a and the TaC layer 36b.
  • the second tantalum carbide layer 37 has a laminated structure including a Ta 2 C layer 36a and a TaC layer 36b laminated in this order from the plate main body 34 side.
  • the second tantalum silicide layer 38 includes a Ta ⁇ Si ⁇ C ⁇ layer.
  • the second tantalum silicide layer 38 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer . It may have a structure.
  • the second tantalum silicide layer 38 preferably has a single-layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers.
  • the second tantalum silicide layer 38 preferably has a thickness less than the thickness of the second tantalum carbide layer 37.
  • the second tantalum silicide layer 38 may have a thickness greater than the thickness of the second tantalum carbide layer 37.
  • the second tantalum coating layer 35 may have a laminated structure including a second tantalum carbide layer 37 and a second tantalum silicide layer 38 laminated in this order from the plate main body 34 side. Such a structure is preferably applied when the wall surface of the plate main body 34 is made of tantalum.
  • the plurality of support columns 33 are arranged at equal intervals along the circumferential direction of the first support plate 31 and the second support plate 32.
  • Each support 33 is formed into a columnar shape (cylindrical or prismatic) extending in the vertical direction, and has a first end 33a on one side (first support plate 31 side) and a first end 33a on the other side (second support plate 32 side). It has two end portions 33b.
  • the first end 33a is fixed to the first support plate 31, and the second end 33b is fixed to the second support plate 32.
  • the method of fixing the first end 33a to the first support plate 31 and the method of fixing the second end 33b to the second support plate 32 are arbitrary.
  • the first end 33a may be inserted into a groove or hole provided in the first support plate 31.
  • the first end 33a may be welded or bolted to the first support plate 31.
  • the second end portion 33b may be inserted into a groove or hole provided in the second support plate 32.
  • the second end portion 33b may be welded or bolted to the second support plate 32.
  • the plurality of pillars 33 each include a pillar body 39 and a third tantalum coating layer 40.
  • the third tantalum coating layer 40 may be referred to as a "post-side tantalum coating layer.”
  • the column main body 39 is formed in a columnar shape (cylindrical or prismatic) extending in the vertical direction, and has a first end 33a and a second end 33b.
  • the pillar body 39 includes a plurality of support parts 41 formed at intervals in the vertical direction (longitudinal direction) in the region between the first end 33a and the second end 33b.
  • each of the plurality of support parts 41 is formed by a slit 42 formed in a cutout shape (groove shape).
  • the slit 42 may also be referred to as a "support groove.”
  • the plurality of slits 42 are provided at the same height along the vertical direction, and are each configured to abut against the peripheral edge of the SiC wafer 2. It is preferable that the plurality of slits 42 (support portions 41) are formed at equal intervals in the vertical direction.
  • the plurality of pillar bodies 39 support the plurality of SiC wafers 2 in a horizontal position in multiple stages at intervals in the vertical direction through the plurality of slits 42 .
  • the plurality of slits 42 may be in contact with the peripheral edge of the first main surface 3 of the SiC wafer 2 or may be in contact with the peripheral edge of the second main surface 4 of the SiC wafer 2.
  • the pillar body 39 is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2.
  • the allowable temperature limit of the column body 39 may be defined by the lower of the melting temperature of the column body 39 and the sublimation temperature of the column body 39.
  • the heat resistant temperature of the column main body 39 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the column main body 39 is 2600° C. or higher.
  • the pillar body 39 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element.
  • the pillar body 39 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic.
  • the pillar body 39 preferably contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
  • the third tantalum coating layer 40 only needs to cover at least a portion of the outer surface of the pillar body 39.
  • the third tantalum coating layer 40 preferably covers a portion of the outer surface of the column body 39 that is exposed to the processing space 13 . It is preferable that the third tantalum coating layer 40 covers the plurality of slits 42 of the pillar body 39.
  • the third tantalum coating layer 40 is preferably formed in the form of a film along the wall surfaces of the plurality of slits 42 so as to partition the plurality of slits 42. In this case, the third tantalum coating layer 40 is brought into contact with the peripheral edge of the SiC wafer 2 within the slit 42 . It is particularly preferable that the third tantalum coating layer 40 covers the entire area of the column body 39.
  • the third tantalum coating layer 40 may have the configuration shown in FIGS. 6A and 6B.
  • FIGS. 6A and 6B are diagrams showing an example of a form of the third tantalum coating layer 40.
  • the third tantalum coating layer 40 has a laminated structure including a third tantalum layer 43, a third tantalum carbide layer 44, and a third tantalum silicide layer 45 laminated in this order from the pillar body 39 side. You may do so.
  • Such a structure is preferably applied when the wall surface of the column main body 39 is made of a material other than tantalum.
  • the third tantalum layer 43 includes a pure Ta layer (a Ta layer with a purity of 99% or more).
  • the third tantalum carbide layer 44 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 44a and the TaC layer 44b.
  • the third tantalum carbide layer 44 has a laminated structure including a Ta 2 C layer 44a and a TaC layer 44b laminated in this order from the column main body 39 side.
  • the third tantalum silicide layer 45 includes a Ta ⁇ Si ⁇ C ⁇ layer.
  • the third tantalum silicide layer 45 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. It may have a structure.
  • the third tantalum silicide layer 45 has a single layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers.
  • the third tantalum silicide layer 45 preferably has a thickness less than the thickness of the third tantalum carbide layer 44 .
  • the third tantalum silicide layer 45 may have a thickness greater than the thickness of the third tantalum carbide layer 44.
  • the third tantalum coating layer 40 may have a laminated structure including a third tantalum carbide layer 44 and a third tantalum silicide layer 45 laminated in this order from the pillar body 39 side. Such a structure is preferably applied when the wall surface of the column main body 39 is made of tantalum.
  • the heat treatment apparatus 1A includes a transport unit 50 that transports the support unit 30 into the processing space 13 and transports the support unit 30 from the processing space 13.
  • the transport unit 50 includes a lifting unit attached to a portion of the lid unit 25 located on the opposite side of the furnace core tube 10, and lifts and lowers the lid unit 25 to one side and the other side in the vertical direction.
  • the transport unit 50 integrally moves the lid unit 25, the heat retention unit 26, and the support unit 30 up and down between the processing position and the retreat position.
  • the processing position is a position where the reactor core tube 10 is closed by the lid unit 25 and the support unit 30 and the heat retention unit 26 are housed within the reactor core tube 10 .
  • the retracted position is a position where the support unit 30 and the heat retention unit 26 are exposed from the core tube 10 and the support unit 30 and the heat retention unit 26 can be removed.
  • the heat treatment apparatus 1A includes a gas supply unit 51 that supplies processing gas into the furnace core tube 10, and a gas exhaust unit 52 that exhausts the processing gas inside the furnace core tube 10.
  • the gas supply unit 51 is attached to the top wall 16 of the furnace core tube 10 in this embodiment.
  • the gas exhaust unit 52 is in this embodiment attached to the tubular wall 15 of the reactor core tube 10 .
  • the gas supply unit 51 may be attached to the tubular wall 15 and the gas exhaust unit 52 may be attached to the top wall 16.
  • the processing gas supplied into the furnace core tube 10 differs depending on the content of the heat treatment. There may be one type of processing gas, or there may be multiple types of processing gas.
  • the processing gas may be a gas containing Si (for example, silane gas (SiH 4 )).
  • SiH 4 silane gas
  • the process gas may be oxygen gas.
  • the processing gas may contain an inert gas.
  • a plurality of gas supply units 51 may be connected to the furnace core tube 10 depending on the type of gas to be supplied.
  • the heat treatment apparatus 1A includes a heating unit 53 arranged around the furnace tube 10 so as to heat the SiC wafer 2 in the processing space 13 from outside the furnace tube 10.
  • the heating unit 53 may include a cylindrical heater surrounding the furnace core tube 10.
  • the heat treatment apparatus 1A includes a control unit 54 that is connected to a transport unit 50, a gas supply unit 51, a gas exhaust unit 52, and a heating unit 53, and controls the transport unit 50, gas supply unit 51, gas exhaust unit 52, and heating unit 53.
  • the control unit 54 includes a CPU and memory (for example, ROM, RAM, non-volatile memory, etc.), and controls the transport unit 50, the gas supply unit 51, the gas exhaust unit 52, and the like based on a predetermined processing recipe stored in the memory. Controls heating unit 53.
  • the support unit 30 that supports at least one SiC wafer 2 is placed in a retracted position with the heat insulating unit 26 in between. mounted on the unit 25 (first step).
  • the support unit 30 is raised from the retracted position to the processing position by the transport unit 50, and the support unit 30 is housed in the reactor core tube 10 (second step).
  • a predetermined processing gas is supplied into the processing space 13, and the SiC wafer 2 is heated by the heating unit 53 (third step).
  • the SiC wafer 2 is heated in a predetermined processing gas atmosphere in a temperature range of 1500° C. or more and 2200° C. or less (preferably a temperature range of 1600° C. or more and 2000° C. or less).
  • the heat treatment for the SiC wafer 2 includes thermal oxidation treatment for the SiC wafer 2, annealing treatment for the SiC wafer 2, activation treatment for impurities (trivalent elements, pentavalent elements, etc.) for the SiC wafer 2, and CVD treatment for the SiC wafer 2 (for example, (low pressure CVD treatment), Si vapor pressure etching treatment for the SiC wafer 2, or the like.
  • CVD treatment for the SiC wafer 2 (for example, (low pressure CVD treatment), Si vapor pressure etching treatment for the SiC wafer 2, or the like.
  • FIG. 7 is a diagram for explaining an action of the heat treatment apparatus 1A.
  • SiC wafer 2 when SiC wafer 2 is heated, Si atoms (silicon atoms) are separated from the SiC single crystal as vapor due to thermal decomposition. C atoms (carbon atoms) remain on the second main surface 4 and the side surface 5).
  • the furnace core tube 10 includes a first tantalum coating layer 12 that coats the inner wall 14 of the tube body 11.
  • the C atoms of the SiC wafer 2 can be reacted with Ta atoms through the atmosphere of the processing space 13.
  • C atoms can be taken into the first tantalum coating layer 12, and the C atoms remaining on the outer surface of the SiC wafer 2 are reduced. Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be suppressed, so that the SiC wafer 2 can be heat-treated with high quality.
  • the first tantalum coating layer 12 includes a first tantalum silicide layer 20 that covers the inner wall 14 of the tube body 11.
  • the first tantalum silicide layer 20 can function as a Si supply source. That is, the first tantalum silicide layer 20 supplies Si vapor into the processing space 13 by being heated simultaneously with the SiC wafer 2 .
  • Si vapor generated from the first tantalum silicide layer 20 reacts with C atoms generated on the outer surface of the SiC wafer 2. As a result, C atoms are removed from the outer surface of the SiC wafer 2.
  • vapor containing Si 2 C, SiC 2 , etc. is generated as a result of the reaction between Si vapor and C atoms.
  • the steam containing Si 2 C and SiC 2 reacts with the first tantalum silicide layer 20 of the furnace tube 10, and as a result, TaC, Ta 2 C, Si, TaSi 2, etc. are generated on the furnace tube 10 side.
  • the first tantalum silicide layer 20 includes TaSi 2
  • TaC and Si are generated as a result of Si 2 C reacting with TaSi 2
  • Ta 5 Si 3 when the first tantalum silicide layer 20 includes Ta 5 Si 3 , Ta 2 C and TaSi 2 are generated as a result of Si 2 C reacting with Ta 5 Si 3 .
  • C atoms such as Si 2 C and SiC 2 in the processing space 13 are incorporated into the first tantalum silicide layer 20 . Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
  • the first tantalum coating layer 12 may include a first tantalum carbide layer 19 interposed between the tube body 11 and the first tantalum silicide layer 20. According to this structure, the reaction rate in the SiC wafer 2 can be adjusted depending on the composition of the first tantalum carbide layer 19 and the first tantalum silicide layer 20.
  • the heat treatment apparatus 1A may include a gas supply unit 51 that supplies processing gas to the processing space 13.
  • a gas containing Si for example, silane gas (SiH 4 )
  • SiH 4 silane gas
  • the Si vapor originating from the gas supply unit 51 reacts with C atoms generated on the outer surface of the SiC wafer 2, and as a result, vapor containing Si 2 C, SiC 2, etc. is generated in the processing space 13.
  • C atoms such as Si 2 C and SiC 2 are incorporated into the first tantalum coating layer 12 . Therefore, by using the first tantalum coating layer 12 and the gas containing Si, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
  • the support unit 30 includes a first support plate 31 , a second support plate 32 , and a column 33 connected to the first support plate 31 and the second support plate 32 .
  • the first support plate 31 (second support plate 32) may include a second tantalum carbide layer 37 covering the plate body 34.
  • the first support plate 31 (second support plate 32) also provides the same functions and effects as those described for the furnace core tube 10.
  • Post 33 may include a third tantalum carbide layer 44 covering post body 39 .
  • the struts 33 also have the same functions and effects as those described for the furnace core tube 10.
  • FIG. 8 is a schematic cross-sectional view showing a heat treatment apparatus 1B according to the second embodiment.
  • the furnace core tube 10 having the tube body 11 having a single tube structure was shown.
  • the heat treatment apparatus 1B according to the second embodiment includes a core tube 10 having a tube body 61 having a cylindrical multi-tube structure having a closed end on one side and an open end on the other side.
  • the tube body 61 has an inner wall 14 that defines a processing space 13 in which at least one SiC wafer 2 is accommodated, and is arranged with the open end facing downward in the vertical direction. There is.
  • the tube body 61 includes an inner tube 62 located inside and an outer tube 63 located outside the inner tube 62, and has an inner wall 14 constituted by the inner tube 62 and the outer tube 63.
  • the inner tube 62 has a cylindrical (for example, cylindrical) inner tubular wall 64 having a first open end on one side (upper side in the vertical direction) and a second open end on the other side (lower side in the vertical direction). ing.
  • the inner wall portion of the inner tubular wall 64 defines a portion of the inner wall 14 .
  • the outer tube 63 has a cylindrical (for example, cylindrical) outer tubular wall 65 and an outer top wall 66 that closes one end of the outer tubular wall 65.
  • the outer tube 63 is fitted onto the inner tube 62 (inner tubular wall 64) from the first open end side.
  • the inner wall portion of the outer tubular wall 65 and the inner wall portion of the outer top wall 66 each define a portion of the inner wall 14.
  • the outer tube 63 (outer tubular wall 65) defines the furnace mouth portion 17 at its lower end.
  • the shapes of the inner tube 62 (inner tubular wall 64) and the outer tube 63 (outer tubular wall 65) are changed so that the furnace opening 17 is defined at the lower end of the inner tube 62 (inner tubular wall 64). It's okay.
  • the tube main body 61 is formed into a longitudinal cylindrical shape (specifically, a longitudinal cylindrical shape) extending in the vertical direction by an inner tube 62 and an outer tube 63, and is configured to accommodate a plurality of SiC wafers 2. has been done.
  • the tube body 11 is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2, as in the first embodiment.
  • the furnace core tube 10 includes the first tantalum coating layer 12 covering the tube body 61, as in the first embodiment.
  • the first tantalum coating layer 12 only needs to cover at least the inner wall 14 of the tube body 61.
  • the first tantalum coating layer 12 only needs to cover at least one of the inner wall of the inner tubular wall 64 , the inner wall of the outer tubular wall 65 , and the inner wall of the outer top wall 66 .
  • the first tantalum coating layer 12 preferably covers the entire inner wall portion of the inner tubular wall 64.
  • the first tantalum coating layer 12 covers the entire inner wall portion of the outer tubular wall 65.
  • the first tantalum coating layer 12 covers the entire inner wall portion of the outer top wall 66. It is preferable that the first tantalum coating layer 12 covers the entire inner wall 14 of the tube body 61.
  • the first tantalum coating layer 12 may cover part or all of the outer wall portion of the inner tubular wall 64.
  • the first tantalum coating layer 12 may cover part or all of the outer wall portion of the outer tubular wall 65.
  • the first tantalum coating layer 12 may cover part or all of the outer wall portion of the outer top wall 66.
  • the gas supply unit 51 is attached to the lower end of the furnace core tube 10 (the outer tube 63 in this form).
  • the gas supply unit 51 may be attached to the inner tube 62 side at the lower end of the reactor core tube 10 depending on the arrangement of the inner tube 62 and the outer tube 63.
  • the gas exhaust unit 52 is formed in the outer tube 63 so that an exhaust flow path is formed in the space between the inner tube 62 and the outer tube 63.
  • the arrangement of the gas supply unit 51 and the gas exhaust unit 52 may be interchanged.
  • the configurations of the lid unit 25, heat retention unit 26, support unit 30, transport unit 50, heating unit 53, and control unit 54 are the same as in the first embodiment, so their description will be omitted.
  • the heat treatment apparatus 1B also provides the same functions and effects as those described for the heat treatment apparatus 1A.
  • FIG. 9 is a diagram for explaining another example of heat treatment of the SiC wafer 2.
  • FIG. 10 is a diagram for explaining an example of a form of the dummy wafer 70. In FIG. 9, a heat treatment apparatus 1A is illustrated.
  • At least one dummy wafer 70 and at least one SiC wafer 2 may be supported by support unit 30.
  • a plurality of dummy wafers 70 may be supported by the support unit 30 so as to sandwich one or more SiC wafers 2 therebetween.
  • a plurality of dummy wafers 70 and a plurality of SiC wafers 2 are alternately supported by the support unit 30.
  • the structure of the dummy wafer 70 will be explained below.
  • dummy wafer 70 includes a wafer body 71 and a fourth tantalum coating layer 72.
  • the fourth tantalum coating layer 72 may be referred to as a "wafer side tantalum coating layer.”
  • the wafer body 71 is made of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2 .
  • the allowable temperature limit of the wafer body 71 may be defined by the lower of the melting temperature of the wafer body 71 and the sublimation temperature of the wafer body 71.
  • the heat-resistant temperature of the wafer body 71 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the wafer body 71 is 2600° C. or higher.
  • the wafer body 71 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element.
  • the wafer body 71 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic.
  • the wafer body 71 preferably contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
  • the wafer body 71 is preferably formed using the SiC wafer 2. That is, the wafer main body 71 preferably includes a hexagonal SiC single crystal and is formed in a plate shape (disk shape). In this case, the wafer body 71 may be formed of 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, or the like. The wafer body 71 is preferably formed of 4H-SiC single crystal.
  • the wafer body 71 has a first wafer main surface 73 on one side, a second wafer main surface 74 on the other side, and a wafer side surface 75 connecting the first wafer main surface 73 and the second wafer main surface 74.
  • the first wafer main surface 73 and the second wafer main surface 74 are preferably formed of a c-plane of SiC single crystal.
  • the first wafer main surface 73 is formed by a silicon surface of a SiC single crystal
  • the second wafer main surface 74 is formed by a carbon surface of a SiC single crystal.
  • the first wafer main surface 73 and the second wafer main surface 74 may have an off angle that is inclined at a predetermined angle in a predetermined off direction with respect to the c-plane.
  • the off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the off angle may be greater than 0° and less than or equal to 10°.
  • the off angle is preferably 5° or less.
  • the wafer body 71 may have an orientation flat (a notch that extends linearly) or an orientation notch (a notch that is triangularly depressed toward the center) that indicates the crystal direction of the SiC single crystal on the wafer side surface 75. .
  • the wafer body 71 may have an outer diameter (diameter) of 50 mm or more and 300 mm or less (that is, 2 inches or more and 12 inches or less) in plan view.
  • the outer diameter of the wafer body 71 is preferably approximately equal to the outer diameter of the SiC wafer 2.
  • the wafer body 71 may have a thickness of 100 ⁇ m or more and 1100 ⁇ m or less.
  • the thickness of the wafer body 71 may be greater than or equal to the thickness of the SiC wafer 2, or may be less than the thickness of the SiC wafer 2.
  • the wafer main body 71 may have a stacked structure including a SiC substrate and a SiC epitaxial layer stacked on the SiC substrate.
  • the second wafer main surface 74 is formed by the SiC substrate
  • the first wafer main surface 73 is formed by the SiC epitaxial layer.
  • the SiC substrate may have an n-type impurity concentration.
  • the SiC epitaxial layer may have a different n-type impurity concentration than the SiC substrate.
  • the n-type impurity concentration of the SiC epitaxial layer may be lower than the n-type impurity concentration of the SiC substrate.
  • the SiC epitaxial layer has a thickness less than the thickness of the SiC substrate.
  • the thickness of the SiC epitaxial layer may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the SiC epitaxial layer is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the wafer body 71 may have a single layer structure made of a SiC substrate.
  • the SiC substrate may have a p-type impurity concentration.
  • the SiC epitaxial layer may have a different p-type impurity concentration than the SiC substrate. While the SiC substrate has an n-type impurity concentration, the SiC epitaxial layer may have a p-type impurity concentration. While the SiC substrate has a p-type impurity concentration, the SiC epitaxial layer may have an n-type impurity concentration.
  • the fourth tantalum coating layer 72 only needs to cover a part of the wafer body 71.
  • the fourth tantalum coating layer 72 preferably covers one or both of the first wafer main surface 73 and the second wafer main surface 74. It is particularly preferable that the fourth tantalum coating layer 72 covers the entire area of one or both of the first wafer main surface 73 and the second wafer main surface 74.
  • the fourth tantalum coating layer 72 may cover the entire area of the wafer body 71 (first wafer main surface 73, second wafer main surface 74, and wafer side surface 75).
  • the fourth tantalum coating layer 72 may have the configuration shown in FIGS. 11A and 11B.
  • FIG. 11A and FIG. 11B are diagrams showing an example of a form of the fourth tantalum coating layer 72.
  • the fourth tantalum coating layer 72 has a laminated structure including a fourth tantalum layer 76, a fourth tantalum carbide layer 77, and a fourth tantalum silicide layer 78, which are laminated in this order from the wafer body 71 side. You may do so.
  • Such a structure is preferably applied when the wafer body 71 is made of a material other than tantalum.
  • the fourth tantalum layer 76 includes a pure Ta layer (a Ta layer with a purity of 99% or more).
  • the fourth tantalum carbide layer 77 may have a single layer structure or a laminated structure including at least one of a Ta 2 C layer 77a and a TaC layer 77b.
  • the fourth tantalum carbide layer 77 has a stacked structure including a Ta 2 C layer 77a and a TaC layer 77b stacked in this order from the wafer body 71 side.
  • the fourth tantalum silicide layer 78 includes a Ta ⁇ Si ⁇ C ⁇ layer.
  • the fourth tantalum silicide layer 78 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. It may have a structure.
  • the fourth tantalum silicide layer 78 has a single-layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers.
  • the fourth tantalum silicide layer 78 preferably has a thickness less than the thickness of the fourth tantalum carbide layer 77.
  • the fourth tantalum silicide layer 78 may have a thickness greater than the thickness of the fourth tantalum carbide layer 77.
  • the fourth tantalum coating layer 72 may have a stacked structure including a fourth tantalum carbide layer 77 and a fourth tantalum silicide layer 78 stacked in this order from the wafer body 71 side. Such a structure is preferably applied when the wafer body 71 is made of tantalum.
  • the dummy wafer 70 is a jig used together with the SiC wafer 2 during heat treatment of the SiC wafer 2, and is mounted on the support unit 30 together with the SiC wafer 2.
  • the dummy wafer 70 includes a wafer body 71 and a fourth tantalum coating layer 72 covering the wafer body 71. According to the fourth tantalum coating layer 72, C atoms can be taken in by causing the C atoms of the SiC wafer 2 to react with Ta atoms through the atmosphere in the processing space 13.
  • C atoms can be taken in at a position close to the SiC wafer 2 while mounted on the support unit 30.
  • C atoms can be taken in through the atmosphere interposed in the wafer space 79 between the SiC wafer 2 and the dummy wafer 70. This reduces the amount of C atoms remaining on the outer surface of the SiC wafer 2, thereby suppressing roughness of the outer surface of the SiC wafer 2 caused by C atoms. Therefore, the SiC wafer 2 can be heat-treated with high quality.
  • the fourth tantalum coating layer 72 includes a fourth tantalum silicide layer 78 that covers the wafer body 71.
  • the fourth tantalum silicide layer 78 can function as a Si supply source. That is, the fourth tantalum silicide layer 78 is heated simultaneously with the SiC wafer 2, thereby supplying Si vapor into the wafer space 79.
  • Si vapor generated from the fourth tantalum silicide layer 78 reacts with C atoms generated on the outer surface (first main surface 3, second main surface 4, and side surface 5) of the SiC wafer 2.
  • C atoms are removed from the outer surface of the SiC wafer 2, and vapor containing Si 2 C, SiC 2 , etc. is generated within the wafer space 79.
  • C atoms such as Si 2 C and SiC 2 in the wafer space 79 are incorporated into the fourth tantalum silicide layer 78 . Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
  • the fourth tantalum coating layer 72 may include a fourth tantalum carbide layer 77 interposed between the wafer body 71 and the fourth tantalum silicide layer 78. According to this structure, the reaction rate in the SiC wafer 2 can be adjusted according to the compositions of the fourth tantalum carbide layer 77 and the fourth tantalum silicide layer 78.
  • each of the embodiments described above can be implemented in other forms.
  • a furnace core tube 10 and a support unit 30 were applied in a vertical heat treatment furnace having a structure in which a plurality of SiC wafers 2 are supported in multiple stages in the vertical direction with the first principal surface 3 (second principal surface 4) extending in the horizontal direction.
  • the furnace core tube 10 and the support unit 30 are not applied to a horizontal heat treatment furnace in which a plurality of SiC wafers 2 are supported in a row in the horizontal direction with the first principal surface 3 (second principal surface 4) extending in the vertical direction. It's okay.
  • the furnace core tube 10 includes the first tantalum coating layer 12, the first support plate 31 (second support plate 32) includes the second tantalum coating layer 35, and the support column 33 includes the third tantalum coating layer 40. It has been shown. However, a configuration may be adopted in which one or two of the first to third tantalum coating layers 12, 35, and 40 are not included.
  • a form having the first and second tantalum coating layers 12 and 35 but not having the third tantalum coating layer 40 may be adopted. Further, a configuration may be adopted in which the first and third tantalum coating layers 12 and 40 are provided, but the second tantalum coating layer 35 is not provided. Further, a configuration may be adopted in which the second and third tantalum coating layers 35 and 40 are provided, but the first tantalum coating layer 12 is not provided.
  • first tantalum coating layer 12 is provided but the second and third tantalum coating layers 35 and 40 are not provided.
  • a configuration may be adopted in which the second tantalum coating layer 35 is provided but the first and third tantalum coating layers 12 and 40 are not provided.
  • a configuration may be adopted in which the third tantalum coating layer 40 is provided but the first and second tantalum coating layers 12 and 35 are not provided.
  • the dummy wafer 70 including the fourth tantalum coating layer 72 is applied, a configuration in which one, two, or three of the first to third tantalum coating layers 12, 35, and 40 are not included is adopted. It's okay.
  • the first tantalum silicide layer 20 does not have the first A tantalum coating layer 12 may be employed.
  • a gas containing Si for example, silane gas (SiH 4 )
  • the first tantalum coating layer 12 may have a single layer structure or a laminated structure including either or both of the first tantalum layer 18 and the first tantalum carbide layer 19. Furthermore, if the tube body 11 includes tantalum exposed from the inner wall 14 or if the tube body 11 is made of tantalum, a core tube 10 without the first tantalum coating layer 12 may be employed.
  • a gas containing Si for example, silane gas (SiH 4 )
  • SiH 4 silane gas
  • the second tantalum coating layer 35 may have a single layer structure or a laminated structure including either or both of the second tantalum layer 36 and the second tantalum carbide layer 37. Further, when the plate main body 34 includes tantalum exposed from the outer surface or when the plate main body 34 is made of tantalum, the first support plate 31 (second support plate 32) without the second tantalum coating layer 35 is used. Good too.
  • the pillar 33 when a gas containing Si (for example, silane gas (SiH 4 )) is supplied from the gas supply unit 51 to the processing space 13, the pillar 33 does not have the third tantalum silicide layer 45.
  • a third tantalum coating layer 40 may be employed.
  • the third tantalum coating layer 40 may have a single layer structure or a laminated structure including either one or both of the third tantalum layer 43 and the third tantalum carbide layer 44. Further, when the pillar body 39 includes tantalum exposed from the outer surface or when the pillar body 39 is made of tantalum, the pillar 33 without the third tantalum coating layer 40 may be employed.
  • the dummy wafer 70 when a gas containing Si (for example, silane gas (SiH 4 )) is supplied from the gas supply unit 51 to the processing space 13, the dummy wafer 70 does not have the fourth tantalum silicide layer 78.
  • a fourth tantalum coating layer 72 may be employed.
  • the fourth tantalum coating layer 72 may have a single layer structure or a laminated structure including either one or both of the fourth tantalum layer 76 and the fourth tantalum carbide layer 77. Further, when the wafer body 71 includes tantalum exposed from the outer surface or when the wafer body 71 is made of tantalum, a dummy wafer 70 without the fourth tantalum coating layer 72 may be employed.
  • the tantalum silicide layer (20) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer.
  • the tube body (11, 61) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
  • the furnace core tube (10) according to any one of A1 to A6.
  • the tube body (61) includes an inner tube (62) and an outer tube (63), and has the inner wall (14) constituted by the inner tube (62) and the outer tube (63).
  • the furnace core tube (10) according to any one of A1 to A7, having a tube structure.
  • the tube body (11, 61) has the processing space (13) in which a plurality of silicon carbide wafers (2) are accommodated, according to any one of A1 to A11.
  • the reactor core tube (10) according to any one of A1 to A19, wherein the silicon carbide wafer (2) has a laminated structure including a silicon carbide substrate and a silicon carbide epitaxial layer.
  • the reactor core tube (10) according to any one of A1 to A20 is configured to be housed in the processing space (13) while supporting the silicon carbide wafer (2).
  • the pillar (33) includes a pillar main body (39) having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer (2), and a pillar-side tantalum coating layer (40) that covers the pillar main body (39). )
  • the pillar-side tantalum silicide layer (45) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer.
  • the pillar-side tantalum coating layer (40) includes a pillar-side tantalum carbide layer (44) interposed between the pillar body (39) and the pillar-side tantalum silicide layer (45), B5 or B6.
  • the pillar-side tantalum coating layer (40) includes a pillar-side tantalum layer (43) interposed between the pillar body (39) and the pillar-side tantalum carbide layer (44), according to B7 or B8.
  • the pillar body (39) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), B4 ⁇
  • the heat treatment apparatus (1A, 1B) according to any one of B9.
  • the support unit (30) includes a support plate (31, 32) and the support column (33) connected to the support plate (31, 32), according to any one of B2 to B10. Heat treatment equipment (1A, 1B).
  • the support plate (31, 32) includes a plate body (34) having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer (2), and a support-side tantalum coating that covers the plate body (34).
  • the supporting tantalum silicide layer (38) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer.
  • the supporting tantalum coating layer (35) includes a supporting tantalum carbide layer (37) interposed between the plate body (34) and the supporting tantalum silicide layer (38), B13 or B14.
  • the supporting tantalum coating layer (35) includes a supporting tantalum layer (36) interposed between the plate body (34) and the supporting tantalum carbide layer (37), in B15 or B16.
  • the plate main body (34) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), B12 ⁇
  • the support unit (30) further includes a lid unit (25) configured to open and close the reactor core tube (10), and the support unit (30) is configured such that the lid unit (25) closes the reactor core tube (10).
  • the heat treatment apparatus (1A, 1B) according to any one of B1 to B18, wherein the heat treatment apparatus (1A, 1B) is arranged on the lid unit (25) so as to be accommodated in the treatment space (13) in a state of being accommodated in the treatment space (13).
  • the support unit (30) is arranged above the heat retention unit (26) so that the lid unit (25) is accommodated in the processing space (13) with the reactor core tube (10) closed.
  • B21 Any of B1 to B20, further including a transport unit (50) that transports the support unit (30) into the processing space (13) and transports the support unit (30) from the processing space (13).
  • the heat treatment apparatus (1A, 1B) according to any one of (1A, 1B).
  • the support unit (30) according to any one of C1 to C3 further includes a support plate (31, 32), and the support column (33) is connected to the support plate (31, 32). ).
  • the support plate (31, 32) includes a plate body (34) having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer (2), and a support-side tantalum coating that covers the plate body (34).
  • Support unit (30) according to C4 comprising a layer (35).
  • Support plate (31, 32) having a plate body (34) having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer (2), and a tantalum coating layer (35) covering the plate body (34). and a support unit (33) connected to the support plate (31, 32) and having a support part (41) for supporting the silicon carbide wafer (2).
  • the tantalum silicide layer (78) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. Dummy wafer (70) described in E2.
  • the wafer body (71) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), E1 to A dummy wafer (70) according to any one of E6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

The furnace core tube includes: a tube main body having an inner wall that partitions a processing space in which a silicon carbide wafer is accommodated, the tube main body having a heat resistant temperature equal to or higher than the heat resistant temperature of the silicon carbide wafer; and a tantalum coating layer that covers the inner wall.

Description

炉心管、熱処理装置および支持ユニットFurnace tube, heat treatment equipment and support unit
 この出願は、2022年3月31日提出の日本国特許出願2022-061170号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれる。本発明は、炉心管、熱処理装置および支持ユニットに関する。 This application claims priority based on Japanese Patent Application No. 2022-061170 filed on March 31, 2022, and the entire contents of this application are incorporated herein by reference. The present invention relates to a furnace core tube, a heat treatment device, and a support unit.
 特許文献1は、反応管、ウエハを支持する熱処理用ボート、および、ヒータを含む縦型熱処理装置を開示している。 Patent Document 1 discloses a vertical heat treatment apparatus that includes a reaction tube, a heat treatment boat that supports wafers, and a heater.
米国特許出願公開第2007/0148607号明細書US Patent Application Publication No. 2007/0148607
 一実施形態は、シリコンカーバイドウエハの高品質な熱処理に寄与できる炉心管、熱処理装置および支持ユニットを提供する。 One embodiment provides a furnace tube, a heat treatment device, and a support unit that can contribute to high-quality heat treatment of silicon carbide wafers.
 一実施形態は、シリコンカーバイドウエハが収容される処理空間を区画する内壁を有し、前記シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有する管本体と、前記内壁を被覆するタンタルコーティング層と、を含む、炉心管を提供する。 One embodiment includes: a tube body having an inner wall that partitions a processing space in which a silicon carbide wafer is accommodated and having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer; and a tantalum coating layer that covers the inner wall. A furnace core tube including:
 一実施形態は、前記炉心管と、前記シリコンカーバイドウエハを支持した状態で前記処理空間内に収容されるように構成された支持ユニットと、前記炉心管の周囲に配置された加熱ユニットと、を含む、熱処理装置を提供する。 One embodiment includes the furnace core tube, a support unit configured to be accommodated in the processing space while supporting the silicon carbide wafer, and a heating unit disposed around the furnace core tube. Provided is a heat treatment apparatus including:
 一実施形態は、シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有し、前記シリコンカーバイドウエハを支持する支持部を有する柱本体と、前記柱本体を被覆するタンタルコーティング層を有する支柱と、を含む、支持ユニットを提供する。 One embodiment includes a column main body having a heat resistance temperature higher than a heat resistance temperature of a silicon carbide wafer and having a support portion that supports the silicon carbide wafer, and a column body having a tantalum coating layer covering the pillar body. , providing a support unit.
 一実施形態は、シリコンカーバイドウエハの熱処理に際して当該シリコンカーバイドウエハと併用されるダミーウエハであって、前記シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有するウエハ本体と、前記ウエハ本体を被覆するタンタルコーティング層と、を含む、ダミーウエハを提供する。 One embodiment is a dummy wafer used together with a silicon carbide wafer during heat treatment of the silicon carbide wafer, the dummy wafer having a wafer body having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer, and a tantalum coating layer covering the wafer body. We provide dummy wafers including and.
 上述のまたはさらに他の目的、特徴および効果は、添付図面の参照によって説明される実施形態により明らかにされる。 The above-mentioned and further objects, features and effects will be made clear by the embodiments described with reference to the accompanying drawings.
図1は、第1実施形態に係る熱処理装置を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing a heat treatment apparatus according to a first embodiment. 図2は、熱処理装置の要部を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus. 図3は、熱処理装置の要部を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus. 図4Aは、第1タンタルコーティング層の一形態例を示す図である。FIG. 4A is a diagram illustrating an example of a first tantalum coating layer. 図4Bは、第1タンタルコーティング層の一形態例を示す図である。FIG. 4B is a diagram illustrating one embodiment of the first tantalum coating layer. 図5Aは、第2タンタルコーティング層の一形態例を示す図である。FIG. 5A is a diagram illustrating one embodiment of the second tantalum coating layer. 図5Bは、第2タンタルコーティング層の一形態例を示す図である。FIG. 5B is a diagram illustrating one embodiment of the second tantalum coating layer. 図6Aは、第3タンタルコーティング層の一形態例を示す図である。FIG. 6A is a diagram illustrating one embodiment of the third tantalum coating layer. 図6Bは、第3タンタルコーティング層の一形態例を示す図である。FIG. 6B is a diagram illustrating one embodiment of the third tantalum coating layer. 図7は、熱処理装置の一作用を説明するための図である。FIG. 7 is a diagram for explaining an operation of the heat treatment apparatus. 図8は、第2実施形態に係る熱処理装置を示す模式的な断面図である。FIG. 8 is a schematic cross-sectional view showing a heat treatment apparatus according to the second embodiment. 図9は、SiCウエハの他の熱処理例を説明するための図である。FIG. 9 is a diagram for explaining another example of heat treatment of a SiC wafer. 図10は、ダミーウエハの一形態例を説明するための図である。FIG. 10 is a diagram for explaining an example of a form of a dummy wafer. 図11Aは、第4タンタルコーティング層の一形態例を示す図である。FIG. 11A is a diagram illustrating an example of a fourth tantalum coating layer. 図11Bは、第4タンタルコーティング層の一形態例を示す図である。FIG. 11B is a diagram illustrating one embodiment of the fourth tantalum coating layer.
 以下、添付図面を参照して、実施形態が詳細に説明される。添付図面は、模式図であり、厳密に図示されたものではなく、縮尺等は必ずしも一致しない。また、添付図面の間で対応する構造には同一の参照符号が付され、重複する説明は省略または簡略化される。説明が省略または簡略化された構造については、省略または簡略化される前になされた説明が適用される。実施形態では「第1」、「第2」、「第3」等の文言が使用されるが、これらは説明順序を明確にするために各構造の名称に付された記号であり、各構造の名称を限定する趣旨で付されていない。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The attached drawings are schematic diagrams and are not strictly illustrated, and the scale etc. do not necessarily match. Further, corresponding structures in the accompanying drawings are denoted by the same reference numerals, and overlapping explanations are omitted or simplified. For structures whose explanations have been omitted or simplified, the explanation given before the abbreviation or simplification applies. In the embodiment, words such as "first", "second", "third", etc. are used, but these are symbols attached to the name of each structure to clarify the order of explanation; It is not given for the purpose of limiting the name.
 図1は、第1実施形態に係る熱処理装置1Aを示す模式的な断面図である。図2は、熱処理装置1Aの要部を示す模式的な断面図である。図3は、熱処理装置1Aの要部を示す模式的な断面図である。 FIG. 1 is a schematic cross-sectional view showing a heat treatment apparatus 1A according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus 1A. FIG. 3 is a schematic cross-sectional view showing the main parts of the heat treatment apparatus 1A.
 図1~図3を参照して、熱処理装置1Aは、この形態(this embodiment)では、SiCウエハ2(シリコンカーバイドウエハ)の熱処理に供される縦型熱処理炉からなる。熱処理は、SiCウエハ2に対する熱酸化処理、SiCウエハ2に対するアニール処理、SiCウエハ2に対する不純物(3価元素や5価元素等)の活性化処理、SiCウエハ2に対するCVD処理(たとえば減圧CVD処理)、SiCウエハ2に対するSi蒸気圧エッチング処理等を含む。 Referring to FIGS. 1 to 3, the heat treatment apparatus 1A, in this embodiment, consists of a vertical heat treatment furnace used for heat treatment of SiC wafers 2 (silicon carbide wafers). The heat treatment includes thermal oxidation treatment for the SiC wafer 2, annealing treatment for the SiC wafer 2, activation treatment for impurities (trivalent elements, pentavalent elements, etc.) for the SiC wafer 2, and CVD treatment for the SiC wafer 2 (e.g., low pressure CVD treatment). , including Si vapor pressure etching treatment on the SiC wafer 2, etc.
 SiCウエハ2は、SiC半導体装置のベース部材である。SiCウエハ2に所定のデバイス構造が作り込まれた後、SiCウエハ2を所定のパターンで切断することによって複数のSiC半導体装置が製造される。SiCウエハ2は、六方晶のSiC単結晶を含み、板状(円板状)に形成されている。六方晶のSiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶、6H-SiC単結晶等を含む複数種のポリタイプを有している。この形態では、SiCウエハ2が4H-SiC単結晶を含む例が示されるが、SiCウエハ2は他のポリタイプを含んでいてもよい。 The SiC wafer 2 is a base member of a SiC semiconductor device. After a predetermined device structure is formed on the SiC wafer 2, a plurality of SiC semiconductor devices are manufactured by cutting the SiC wafer 2 in a predetermined pattern. The SiC wafer 2 includes a hexagonal SiC single crystal and is formed into a plate shape (disk shape). The hexagonal SiC single crystal has multiple types of polytypes including 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, and the like. In this embodiment, an example is shown in which the SiC wafer 2 includes a 4H-SiC single crystal, but the SiC wafer 2 may include other polytypes.
 SiCウエハ2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する側面5を有している。第1主面3および第2主面4は、SiC単結晶のc面によって形成されていることが好ましい。第1主面3はSiC単結晶のシリコン面によって形成され、第2主面4はSiC単結晶のカーボン面によって形成されていることが好ましい。 The SiC wafer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and a side surface 5 connecting the first main surface 3 and the second main surface 4. The first main surface 3 and the second main surface 4 are preferably formed of a c-plane of a SiC single crystal. Preferably, the first main surface 3 is formed by a silicon surface of a SiC single crystal, and the second main surface 4 is formed by a carbon surface of a SiC single crystal.
 第1主面3および第2主面4は、c面に対して所定のオフ方向に所定の角度で傾斜したオフ角を有していてもよい。オフ方向は、SiC単結晶のa軸方向([11-20]方向)であることが好ましい。オフ角は、0°を超えて10°以下であってもよい。オフ角は、5°以下であることが好ましい。 The first main surface 3 and the second main surface 4 may have an off angle that is inclined at a predetermined angle in a predetermined off direction with respect to the c-plane. The off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal. The off angle may be greater than 0° and less than or equal to 10°. The off angle is preferably 5° or less.
 SiCウエハ2は、側面5においてSiC単結晶の結晶方向を示す目印を有していてもよい。目印は、直線状に延びる切欠部からなるオリエンテーションフラットまたは中心に向かって多角形状(たとえば三角形状)に窪んだ切欠部からなるオリエンテーションノッチであってもよい。 The SiC wafer 2 may have a mark indicating the crystal direction of the SiC single crystal on the side surface 5. The mark may be an orientation flat consisting of a notch extending linearly or an orientation notch consisting of a notch concave in a polygonal shape (for example, triangular) toward the center.
 SiCウエハ2は、平面視において50mm以上300mm以下(つまり2インチ以上12インチ以下)の外径(直径)を有していてもよい。SiCウエハ2の外径は、SiCウエハ2の中心を通る弦の長さによって定義される。SiCウエハ2は、100μm以上1100μm以下の厚さを有していてもよい。 The SiC wafer 2 may have an outer diameter (diameter) of 50 mm or more and 300 mm or less (that is, 2 inches or more and 12 inches or less) in plan view. The outer diameter of the SiC wafer 2 is defined by the length of a chord passing through the center of the SiC wafer 2. SiC wafer 2 may have a thickness of 100 μm or more and 1100 μm or less.
 具体的な図示は省略されるが、SiCウエハ2は、SiC基板およびSiC基板の上に積層されたSiCエピタキシャル層を含む積層構造を有していてもよい。この場合、SiC基板によって第2主面4が形成され、SiCエピタキシャル層によって第1主面3が形成される。SiC基板は、n型の不純物濃度を有していてもよい。SiCエピタキシャル層は、SiC基板とは異なるn型不純物濃度を有していてもよい。 Although specific illustration is omitted, the SiC wafer 2 may have a stacked structure including a SiC substrate and an SiC epitaxial layer stacked on the SiC substrate. In this case, the second main surface 4 is formed by the SiC substrate, and the first main surface 3 is formed by the SiC epitaxial layer. The SiC substrate may have an n-type impurity concentration. The SiC epitaxial layer may have a different n-type impurity concentration than the SiC substrate.
 SiCエピタキシャル層のn型不純物濃度は、SiC基板のn型不純物濃度よりも低くてもよい。SiCエピタキシャル層は、SiC基板の厚さ未満の厚さを有していることが好ましい。SiCエピタキシャル層の厚さは、1μm以上50μm以下であってもよい。SiCエピタキシャル層の厚さは、5μm以上25μm以下であることが好ましい。 The n-type impurity concentration of the SiC epitaxial layer may be lower than the n-type impurity concentration of the SiC substrate. Preferably, the SiC epitaxial layer has a thickness less than the thickness of the SiC substrate. The thickness of the SiC epitaxial layer may be 1 μm or more and 50 μm or less. The thickness of the SiC epitaxial layer is preferably 5 μm or more and 25 μm or less.
 SiC基板は、p型不純物濃度を有していてもよい。SiCエピタキシャル層は、SiC基板とは異なるp型不純物濃度を有していてもよい。SiC基板がn型不純物濃度を有する一方、SiCエピタキシャル層がp型不純物濃度を有していてもよい。SiC基板がp型不純物濃度を有する一方、SiCエピタキシャル層がn型不純物濃度を有していてもよい。 The SiC substrate may have a p-type impurity concentration. The SiC epitaxial layer may have a different p-type impurity concentration than the SiC substrate. While the SiC substrate has an n-type impurity concentration, the SiC epitaxial layer may have a p-type impurity concentration. While the SiC substrate has a p-type impurity concentration, the SiC epitaxial layer may have an n-type impurity concentration.
 熱処理装置1Aは、炉心管10を含む。炉心管10は、管本体11および第1タンタルコーティング層12を含む。第1タンタルコーティング層12は、「炉心側タンタルコーティング層」と称されてもよい。 The heat treatment apparatus 1A includes a furnace core tube 10. The furnace core tube 10 includes a tube body 11 and a first tantalum coating layer 12 . The first tantalum coating layer 12 may be referred to as a "core side tantalum coating layer."
 管本体11は、一方側(鉛直方向の上側)の閉口端および他方側(鉛直方向の下側)の開口端を有する筒状の単管構造を有している。管本体11は、少なくとも1枚のSiCウエハ2が収容される処理空間13を区画する内壁14を有し、開口端を鉛直方向下向きにした姿勢で配置されている。処理空間13は、「内部空間」または「収容空間」と称されてもよい。 The tube body 11 has a cylindrical single-tube structure having a closed end on one side (upper side in the vertical direction) and an open end on the other side (lower side in the vertical direction). The tube body 11 has an inner wall 14 that defines a processing space 13 in which at least one SiC wafer 2 is accommodated, and is arranged with the open end facing downward in the vertical direction. Processing space 13 may also be referred to as an "internal space" or "accommodation space."
 具体的には、管本体11は、筒状(たとえば円筒状)の管状壁15、管状壁15の一端部を閉塞する頂壁16(閉口端)、および、管状壁15の他端部に区画された炉口部17(開放端)を有している。管本体11の内壁14は、管状壁15の内壁部および頂壁16の内壁部によって区画されている。 Specifically, the tube body 11 is divided into a cylindrical (for example, cylindrical) tubular wall 15, a top wall 16 (closed end) that closes one end of the tubular wall 15, and the other end of the tubular wall 15. It has a furnace mouth part 17 (open end). The inner wall 14 of the tube body 11 is defined by an inner wall portion of the tubular wall 15 and an inner wall portion of the top wall 16 .
 管本体11は、この形態では、一方方向に延びる長手筒状(具体的には鉛直方向に延びる長手円筒状)に形成され、複数枚のSiCウエハ2が収容される処理空間13を有している。管本体11は、SiCウエハ2の耐熱温度以上の耐熱温度を有する材料によって形成されている。SiCウエハ2の耐熱温度は、SiCウエハ2の昇華温度(2300℃~2600℃)によって定義されてもよい。 In this embodiment, the tube body 11 is formed into a longitudinal cylindrical shape extending in one direction (specifically, a longitudinal cylindrical shape extending in the vertical direction), and has a processing space 13 in which a plurality of SiC wafers 2 are accommodated. There is. The tube body 11 is made of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2 . The allowable temperature limit of the SiC wafer 2 may be defined by the sublimation temperature (2300° C. to 2600° C.) of the SiC wafer 2.
 管本体11の耐熱温度は、管本体11の溶融温度および管本体11の昇華温度のうちの温度の低い方によって定義されてもよい。管本体11の耐熱温度は、2300℃以上であることが好ましい。管本体11の耐熱温度は、2600℃以上であることが特に好ましい。 The allowable temperature limit of the tube body 11 may be defined by the lower of the melting temperature of the tube body 11 and the sublimation temperature of the tube body 11. The tube body 11 preferably has a heat-resistant temperature of 2300° C. or higher. It is particularly preferable that the tube body 11 has a heat-resistant temperature of 2600° C. or higher.
 管本体11は、金属元素を有する無機材料、非金属元素を有する無機材料、ならびに、金属元素および非金属元素を有する無機材料のうちの少なくとも1つを含んでいてもよい。管本体11は、非金属、非合金、合金およびセラミックのうちの少なくとも1つを含んでいてもよい。管本体11は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つを含むことが好ましい。 The tube body 11 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element. The tube body 11 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic. Preferably, the tube body 11 contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
 第1タンタルコーティング層12は、内壁14の少なくとも一部を被覆していればよい。第1タンタルコーティング層12は、管状壁15の内壁部および頂壁16の内壁部のいずれか一方を被覆していればよい。第1タンタルコーティング層12は、管状壁15の内壁部および頂壁16の内壁部の双方を被覆していることが好ましい。第1タンタルコーティング層12は、内壁14の全域を被覆していることが特に好ましい。 The first tantalum coating layer 12 only needs to cover at least a portion of the inner wall 14. The first tantalum coating layer 12 may cover either the inner wall portion of the tubular wall 15 or the inner wall portion of the top wall 16. Preferably, the first tantalum coating layer 12 covers both the inner wall portion of the tubular wall 15 and the inner wall portion of the top wall 16. It is particularly preferred that the first tantalum coating layer 12 covers the entire inner wall 14 .
 第1タンタルコーティング層12は、管本体11の外壁の一部を被覆していてもよい。つまり、第1タンタルコーティング層12は、管状壁15の外壁部および頂壁16の外壁部のいずれか一方または双方を被覆していてもよい。第1タンタルコーティング層12は、管本体11の外壁の全域を被覆していてもよい。 The first tantalum coating layer 12 may cover a part of the outer wall of the tube body 11. That is, the first tantalum coating layer 12 may cover either or both of the outer wall portion of the tubular wall 15 and the outer wall portion of the top wall 16. The first tantalum coating layer 12 may cover the entire outer wall of the tube body 11.
 たとえば、第1タンタルコーティング層12は、図4Aおよび図4Bに示される構成を有し得る。図4Aおよび図4Bは、第1タンタルコーティング層12の一形態例を示す図である。図4Aを参照して、第1タンタルコーティング層12は、管本体11側からこの順に積層された第1タンタル層18、第1タンタルカーバイド層19および第1タンタルシリサイド層20を含む積層構造を有していてもよい。このような構造は、管本体11の壁面(内壁14)がタンタル以外の材料によって構成されている場合に適用されることが好ましい。 For example, the first tantalum coating layer 12 may have the configuration shown in FIGS. 4A and 4B. 4A and 4B are diagrams illustrating an example of a form of the first tantalum coating layer 12. Referring to FIG. 4A, the first tantalum coating layer 12 has a laminated structure including a first tantalum layer 18, a first tantalum carbide layer 19, and a first tantalum silicide layer 20 laminated in this order from the tube body 11 side. You may do so. Such a structure is preferably applied when the wall surface (inner wall 14) of the tube body 11 is made of a material other than tantalum.
 第1タンタル層18は、純Ta層(純度が99%以上のTa層)を含む。第1タンタルカーバイド層19は、TaC層19aおよびTaC層19bのうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。第1タンタルカーバイド層19は、この形態例では、管本体11側からこの順に積層されたTaC層19aおよびTaC層19bを含む積層構造を有している。 The first tantalum layer 18 includes a pure Ta layer (a Ta layer with a purity of 99% or more). The first tantalum carbide layer 19 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 19a and the TaC layer 19b. In this embodiment, the first tantalum carbide layer 19 has a laminated structure including a Ta 2 C layer 19a and a TaC layer 19b laminated in this order from the tube body 11 side.
 第1タンタルシリサイド層20は、TaαSiβγ層を含む。第1タンタルシリサイド層20は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。 The first tantalum silicide layer 20 includes a Ta α Si β C γ layer. The first tantalum silicide layer 20 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer . It may have a structure.
 第1タンタルシリサイド層20は、TaSi層およびTaSi層のいずれか一方または双方を含む単層構造または積層構造を有していることが好ましい。第1タンタルシリサイド層20は、第1タンタルカーバイド層19の厚さ未満の厚さを有していることが好ましい。むろん、第1タンタルシリサイド層20は、第1タンタルカーバイド層19の厚さ以上の厚さを有していてもよい。 It is preferable that the first tantalum silicide layer 20 has a single layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers. The first tantalum silicide layer 20 preferably has a thickness less than the thickness of the first tantalum carbide layer 19 . Of course, the first tantalum silicide layer 20 may have a thickness greater than the thickness of the first tantalum carbide layer 19.
 図4Bを参照して、第1タンタルコーティング層12は、管本体11側からこの順に積層された第1タンタルカーバイド層19および第1タンタルシリサイド層20を含む積層構造を有していてもよい。このような構造は、管本体11の壁面(内壁14)がタンタルによって構成されている場合に適用されることが好ましい。 Referring to FIG. 4B, the first tantalum coating layer 12 may have a laminated structure including a first tantalum carbide layer 19 and a first tantalum silicide layer 20 laminated in this order from the tube body 11 side. Such a structure is preferably applied when the wall surface (inner wall 14) of the tube body 11 is made of tantalum.
 熱処理装置1Aは、炉心管10の一端部側において炉口部17を開閉するように構成された蓋ユニット25を含む。たとえば、蓋ユニット25は、金属製(たとえばステンレス製)の蓋体を含む。むろん、蓋体は、管本体11と同一材料によって形成されていてもよい。蓋ユニット25は、炉口部17を閉塞することによって処理空間13内の気密性を高める。 The heat treatment apparatus 1A includes a lid unit 25 configured to open and close the furnace mouth portion 17 on one end side of the furnace tube 10. For example, the lid unit 25 includes a lid made of metal (for example, stainless steel). Of course, the lid body may be made of the same material as the tube body 11. The lid unit 25 increases the airtightness within the processing space 13 by closing the furnace mouth portion 17 .
 熱処理装置1Aは、炉口部17を介する処理空間13内外の熱の移動を制限するように構成された保温ユニット26を含む。たとえば、保温ユニット26は、断熱材の一例としての保温筒を含む。保温ユニット26は、蓋ユニット25によって炉心管10が閉塞された状態で処理空間13に収容されるように蓋ユニット25の上に配置されている。 The heat treatment apparatus 1A includes a heat retention unit 26 configured to restrict the movement of heat in and out of the processing space 13 via the furnace opening 17. For example, the heat retention unit 26 includes a heat retention cylinder as an example of a heat insulating material. The heat retention unit 26 is disposed above the lid unit 25 so that it is accommodated in the processing space 13 with the reactor core tube 10 closed by the lid unit 25.
 熱処理装置1Aは、少なくとも1枚のSiCウエハ2を支持した状態で処理空間13内に収容されるように構成された支持ユニット30を含む。支持ユニット30は、「ウエハボート」と称されてもよい。支持ユニット30は、蓋ユニット25によって炉心管10が閉塞された状態で処理空間13に収容されるように保温ユニット26を挟んで蓋ユニット25の上に配置されている。支持ユニット30は、この形態では、複数枚のSiCウエハ2を支持するように構成されている。 The heat treatment apparatus 1A includes a support unit 30 configured to be accommodated in the processing space 13 while supporting at least one SiC wafer 2. Support unit 30 may be referred to as a "wafer boat." The support unit 30 is placed above the lid unit 25 with the heat retention unit 26 in between so that the furnace core tube 10 is accommodated in the processing space 13 with the lid unit 25 closed. In this embodiment, the support unit 30 is configured to support a plurality of SiC wafers 2.
 具体的には、支持ユニット30は、一方側(炉心管10の閉口端側)の第1支持板31、他方側(炉心管10の開口端側)の第2支持板32、ならびに、第1支持板31および第2支持板32に連結された少なくとも1つ(この形態では複数)の支柱33を含む。第2支持板32は、保温ユニット26に固定される。支持ユニット30は、この形態では、3つの支柱33を含む。 Specifically, the support unit 30 includes a first support plate 31 on one side (closed end side of the furnace core tube 10), a second support plate 32 on the other side (open end side of the furnace core tube 10), and a first support plate 31 on one side (closed end side of the furnace core tube 10). It includes at least one (in this embodiment, a plurality of) columns 33 connected to the support plate 31 and the second support plate 32 . The second support plate 32 is fixed to the heat retention unit 26. Support unit 30 includes three columns 33 in this form.
 第1支持板31および第2支持板32は、板本体34および第2タンタルコーティング層35をそれぞれ含む。第2タンタルコーティング層35は、「支持側タンタルコーティング層」と称されてもよい。板本体34は、板状(たとえば円板状または円環板状)に形成されている。板本体34は、平面視においてSiCウエハ2の外径よりも大きい外径(直径)を有している。板本体34は、SiCウエハ2の厚さを超える厚さを有していることが好ましい。 The first support plate 31 and the second support plate 32 each include a plate main body 34 and a second tantalum coating layer 35. The second tantalum coating layer 35 may be referred to as a "support side tantalum coating layer." The plate main body 34 is formed into a plate shape (for example, a disk shape or an annular plate shape). The plate main body 34 has an outer diameter (diameter) larger than the outer diameter of the SiC wafer 2 in plan view. Preferably, the plate main body 34 has a thickness that exceeds the thickness of the SiC wafer 2.
 板本体34は、SiCウエハ2の耐熱温度以上の耐熱温度を有する材料によって形成されている。板本体34の耐熱温度は、板本体34の溶融温度および板本体34の昇華温度のうちの温度の低い方によって定義されてもよい。板本体34の耐熱温度は、2300℃以上であることが好ましい。板本体34の耐熱温度は、2600℃以上であることが特に好ましい。 The plate main body 34 is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2. The allowable temperature limit of the plate body 34 may be defined by the lower of the melting temperature of the plate body 34 and the sublimation temperature of the plate body 34. The heat resistant temperature of the plate main body 34 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the plate main body 34 is 2600° C. or higher.
 板本体34は、金属元素を有する無機材料、非金属元素を有する無機材料、ならびに、金属元素および非金属元素を有する無機材料のうちの少なくとも1つを含んでいてもよい。板本体34は、非金属、非合金、合金およびセラミックのうちの少なくとも1つを含んでいてもよい。板本体34は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つを含むことが好ましい。 The plate main body 34 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element. The plate body 34 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic. Preferably, the plate main body 34 contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
 第2タンタルコーティング層35は、板本体34の外面の少なくとも一部を被覆していればよい。第2タンタルコーティング層35は、板本体34の外面のうち処理空間13に露出する部分を被覆していることが好ましい。第2タンタルコーティング層35は、板本体34の全域を被覆していることが特に好ましい。 The second tantalum coating layer 35 only needs to cover at least a portion of the outer surface of the plate body 34. The second tantalum coating layer 35 preferably covers a portion of the outer surface of the plate body 34 that is exposed to the processing space 13 . It is particularly preferable that the second tantalum coating layer 35 covers the entire area of the plate body 34.
 たとえば、第2タンタルコーティング層35は、図5Aおよび図5Bに示される構成を有し得る。図5Aおよび図5Bは、第2タンタルコーティング層35の一形態例を示す図である。図5Aを参照して、第2タンタルコーティング層35は、板本体34側からこの順に積層された第2タンタル層36、第2タンタルカーバイド層37および第2タンタルシリサイド層38を含む積層構造を有していてもよい。このような構造は、板本体34の壁面がタンタル以外の材料によって構成されている場合に適用されることが好ましい。 For example, the second tantalum coating layer 35 may have the configuration shown in FIGS. 5A and 5B. 5A and 5B are diagrams showing an example of a form of the second tantalum coating layer 35. Referring to FIG. 5A, the second tantalum coating layer 35 has a laminated structure including a second tantalum layer 36, a second tantalum carbide layer 37, and a second tantalum silicide layer 38 laminated in this order from the plate main body 34 side. You may do so. Such a structure is preferably applied when the wall surface of the plate main body 34 is made of a material other than tantalum.
 第2タンタル層36は、純Ta層(純度が99%以上のTa層)を含む。第2タンタルカーバイド層37は、TaC層36aおよびTaC層36bのうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。第2タンタルカーバイド層37は、この形態例では、板本体34側からこの順に積層されたTaC層36aおよびTaC層36bを含む積層構造を有している。 The second tantalum layer 36 includes a pure Ta layer (a Ta layer with a purity of 99% or more). The second tantalum carbide layer 37 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 36a and the TaC layer 36b. In this embodiment, the second tantalum carbide layer 37 has a laminated structure including a Ta 2 C layer 36a and a TaC layer 36b laminated in this order from the plate main body 34 side.
 第2タンタルシリサイド層38は、TaαSiβγ層を含む。第2タンタルシリサイド層38は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。 The second tantalum silicide layer 38 includes a Ta α Si β C γ layer. The second tantalum silicide layer 38 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer . It may have a structure.
 第2タンタルシリサイド層38は、TaSi層およびTaSi層のいずれか一方または双方を含む単層構造または積層構造を有していることが好ましい。第2タンタルシリサイド層38は、第2タンタルカーバイド層37の厚さ未満の厚さを有していることが好ましい。むろん、第2タンタルシリサイド層38は、第2タンタルカーバイド層37の厚さ以上の厚さを有していてもよい。 The second tantalum silicide layer 38 preferably has a single-layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers. The second tantalum silicide layer 38 preferably has a thickness less than the thickness of the second tantalum carbide layer 37. Of course, the second tantalum silicide layer 38 may have a thickness greater than the thickness of the second tantalum carbide layer 37.
 図5Bを参照して、第2タンタルコーティング層35は、板本体34側からこの順に積層された第2タンタルカーバイド層37および第2タンタルシリサイド層38を含む積層構造を有していてもよい。このような構造は、板本体34の壁面がタンタルによって構成されている場合に適用されることが好ましい。 Referring to FIG. 5B, the second tantalum coating layer 35 may have a laminated structure including a second tantalum carbide layer 37 and a second tantalum silicide layer 38 laminated in this order from the plate main body 34 side. Such a structure is preferably applied when the wall surface of the plate main body 34 is made of tantalum.
 複数の支柱33は、第1支持板31および第2支持板32の周方向に沿って等間隔に配置されている。各支柱33は、鉛直方向に延びる柱状(円柱状または角柱状)に形成され、一方側(第1支持板31側)の第1端部33aおよび他方側(第2支持板32側)の第2端部33bを有している。第1端部33aは第1支持板31に固定され、第2端部33bは第2支持板32に固定されている。第1支持板31に対する第1端部33aの固定法、および、第2支持板32に対する第2端部33bの固定法は任意である。 The plurality of support columns 33 are arranged at equal intervals along the circumferential direction of the first support plate 31 and the second support plate 32. Each support 33 is formed into a columnar shape (cylindrical or prismatic) extending in the vertical direction, and has a first end 33a on one side (first support plate 31 side) and a first end 33a on the other side (second support plate 32 side). It has two end portions 33b. The first end 33a is fixed to the first support plate 31, and the second end 33b is fixed to the second support plate 32. The method of fixing the first end 33a to the first support plate 31 and the method of fixing the second end 33b to the second support plate 32 are arbitrary.
 第1端部33aは、第1支持板31に設けられた溝または孔に挿通されていてもよい。むろん、第1端部33aは、第1支持板31に溶接またはボルト止めされていてもよい。第2端部33bは、第2支持板32に設けられた溝または孔に挿通されていてもよい。むろん、第2端部33bは、第2支持板32に溶接またはボルト止めされていてもよい。 The first end 33a may be inserted into a groove or hole provided in the first support plate 31. Of course, the first end 33a may be welded or bolted to the first support plate 31. The second end portion 33b may be inserted into a groove or hole provided in the second support plate 32. Of course, the second end portion 33b may be welded or bolted to the second support plate 32.
 複数の支柱33は、柱本体39および第3タンタルコーティング層40をそれぞれ含む。第3タンタルコーティング層40は、「支柱側タンタルコーティング層」と称されてもよい。柱本体39は、鉛直方向に延びる柱状(円柱状または角柱状)に形成され、第1端部33aおよび第2端部33bを形成している。 The plurality of pillars 33 each include a pillar body 39 and a third tantalum coating layer 40. The third tantalum coating layer 40 may be referred to as a "post-side tantalum coating layer." The column main body 39 is formed in a columnar shape (cylindrical or prismatic) extending in the vertical direction, and has a first end 33a and a second end 33b.
 柱本体39は、第1端部33aおよび第2端部33bの間の領域において鉛直方向(長手方向)に間隔を空けて形成された複数の支持部41を含む。複数の支持部41は、この形態では、切り欠き状(溝状)に形成されたスリット42によってそれぞれ形成されている。スリット42は、「支持溝」と称されてもよい。 The pillar body 39 includes a plurality of support parts 41 formed at intervals in the vertical direction (longitudinal direction) in the region between the first end 33a and the second end 33b. In this embodiment, each of the plurality of support parts 41 is formed by a slit 42 formed in a cutout shape (groove shape). The slit 42 may also be referred to as a "support groove."
 複数の柱本体39の間において、複数のスリット42は鉛直方向に沿って同一高さにそれぞれ設けられ、かつ、SiCウエハ2の周縁部に当接されるようにそれぞれ構成されている。複数のスリット42(支持部41)は、鉛直方向に等間隔に形成されていることが好ましい。 Between the plurality of pillar bodies 39, the plurality of slits 42 are provided at the same height along the vertical direction, and are each configured to abut against the peripheral edge of the SiC wafer 2. It is preferable that the plurality of slits 42 (support portions 41) are formed at equal intervals in the vertical direction.
 複数の柱本体39は、複数のスリット42によって複数のSiCウエハ2を水平な姿勢で鉛直方向に間隔を空けて多段に支持する。複数のスリット42は、SiCウエハ2の第1主面3の周縁部に当接されてもよいし、SiCウエハ2の第2主面4の周縁部に当接されてもよい。 The plurality of pillar bodies 39 support the plurality of SiC wafers 2 in a horizontal position in multiple stages at intervals in the vertical direction through the plurality of slits 42 . The plurality of slits 42 may be in contact with the peripheral edge of the first main surface 3 of the SiC wafer 2 or may be in contact with the peripheral edge of the second main surface 4 of the SiC wafer 2.
 柱本体39は、SiCウエハ2の耐熱温度以上の耐熱温度を有する材料によって形成されている。柱本体39の耐熱温度は、柱本体39の溶融温度および柱本体39の昇華温度のうちの温度の低い方によって定義されてもよい。柱本体39の耐熱温度は、2300℃以上であることが好ましい。柱本体39の耐熱温度は、2600℃以上であることが特に好ましい。 The pillar body 39 is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2. The allowable temperature limit of the column body 39 may be defined by the lower of the melting temperature of the column body 39 and the sublimation temperature of the column body 39. The heat resistant temperature of the column main body 39 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the column main body 39 is 2600° C. or higher.
 柱本体39は、金属元素を有する無機材料、非金属元素を有する無機材料、ならびに、金属元素および非金属元素を有する無機材料のうちの少なくとも1つを含んでいてもよい。柱本体39は、非金属、非合金、合金およびセラミックのうちの少なくとも1つを含んでいてもよい。柱本体39は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つを含むことが好ましい。 The pillar body 39 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element. The pillar body 39 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic. The pillar body 39 preferably contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
 第3タンタルコーティング層40は、柱本体39の外面の少なくとも一部を被覆していればよい。第3タンタルコーティング層40は、柱本体39の外面のうち処理空間13に露出する部分を被覆していることが好ましい。第3タンタルコーティング層40は、柱本体39の複数のスリット42を被覆していることが好ましい。 The third tantalum coating layer 40 only needs to cover at least a portion of the outer surface of the pillar body 39. The third tantalum coating layer 40 preferably covers a portion of the outer surface of the column body 39 that is exposed to the processing space 13 . It is preferable that the third tantalum coating layer 40 covers the plurality of slits 42 of the pillar body 39.
 第3タンタルコーティング層40は、複数のスリット42を区画するように複数のスリット42の壁面に沿って膜状に形成されていることが好ましい。この場合、第3タンタルコーティング層40が、スリット42内においてSiCウエハ2の周縁部に当接される。第3タンタルコーティング層40は、柱本体39の全域を被覆していることが特に好ましい。 The third tantalum coating layer 40 is preferably formed in the form of a film along the wall surfaces of the plurality of slits 42 so as to partition the plurality of slits 42. In this case, the third tantalum coating layer 40 is brought into contact with the peripheral edge of the SiC wafer 2 within the slit 42 . It is particularly preferable that the third tantalum coating layer 40 covers the entire area of the column body 39.
 たとえば、第3タンタルコーティング層40は、図6Aおよび図6Bに示される構成を有し得る。図6Aおよび図6Bは、第3タンタルコーティング層40の一形態例を示す図である。図6Aを参照して、第3タンタルコーティング層40は、柱本体39側からこの順に積層された第3タンタル層43、第3タンタルカーバイド層44および第3タンタルシリサイド層45を含む積層構造を有していてもよい。このような構造は、柱本体39の壁面がタンタル以外の材料によって構成されている場合に適用されることが好ましい。 For example, the third tantalum coating layer 40 may have the configuration shown in FIGS. 6A and 6B. FIGS. 6A and 6B are diagrams showing an example of a form of the third tantalum coating layer 40. Referring to FIG. 6A, the third tantalum coating layer 40 has a laminated structure including a third tantalum layer 43, a third tantalum carbide layer 44, and a third tantalum silicide layer 45 laminated in this order from the pillar body 39 side. You may do so. Such a structure is preferably applied when the wall surface of the column main body 39 is made of a material other than tantalum.
 第3タンタル層43は、純Ta層(純度が99%以上のTa層)を含む。第3タンタルカーバイド層44は、TaC層44aおよびTaC層44bのうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。第3タンタルカーバイド層44は、この形態例では、柱本体39側からこの順に積層されたTaC層44aおよびTaC層44bを含む積層構造を有している。 The third tantalum layer 43 includes a pure Ta layer (a Ta layer with a purity of 99% or more). The third tantalum carbide layer 44 may have a single layer structure or a laminated structure including at least one of the Ta 2 C layer 44a and the TaC layer 44b. In this embodiment, the third tantalum carbide layer 44 has a laminated structure including a Ta 2 C layer 44a and a TaC layer 44b laminated in this order from the column main body 39 side.
 第3タンタルシリサイド層45は、TaαSiβγ層を含む。第3タンタルシリサイド層45は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。 The third tantalum silicide layer 45 includes a Ta α Si β C γ layer. The third tantalum silicide layer 45 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. It may have a structure.
 第3タンタルシリサイド層45は、TaSi層およびTaSi層のいずれか一方または双方を含む単層構造または積層構造を有していることが好ましい。第3タンタルシリサイド層45は、第3タンタルカーバイド層44の厚さ未満の厚さを有していることが好ましい。むろん、第3タンタルシリサイド層45は、第3タンタルカーバイド層44の厚さ以上の厚さを有していてもよい。 It is preferable that the third tantalum silicide layer 45 has a single layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers. The third tantalum silicide layer 45 preferably has a thickness less than the thickness of the third tantalum carbide layer 44 . Of course, the third tantalum silicide layer 45 may have a thickness greater than the thickness of the third tantalum carbide layer 44.
 図6Bを参照して、第3タンタルコーティング層40は、柱本体39側からこの順に積層された第3タンタルカーバイド層44および第3タンタルシリサイド層45を含む積層構造を有していてもよい。このような構造は、柱本体39の壁面がタンタルによって構成されている場合に適用されることが好ましい。 Referring to FIG. 6B, the third tantalum coating layer 40 may have a laminated structure including a third tantalum carbide layer 44 and a third tantalum silicide layer 45 laminated in this order from the pillar body 39 side. Such a structure is preferably applied when the wall surface of the column main body 39 is made of tantalum.
 熱処理装置1Aは、支持ユニット30を処理空間13に搬入し、支持ユニット30を処理空間13から搬出する搬送ユニット50を含む。搬送ユニット50は、この形態では、蓋ユニット25において炉心管10とは反対側に位置する部分に取り付けられた昇降ユニットを含み、蓋ユニット25を鉛直方向の一方側および他方側に昇降させる。 The heat treatment apparatus 1A includes a transport unit 50 that transports the support unit 30 into the processing space 13 and transports the support unit 30 from the processing space 13. In this embodiment, the transport unit 50 includes a lifting unit attached to a portion of the lid unit 25 located on the opposite side of the furnace core tube 10, and lifts and lowers the lid unit 25 to one side and the other side in the vertical direction.
 具体的には、搬送ユニット50は、処理位置および退避位置の間で蓋ユニット25、保温ユニット26および支持ユニット30を一体的に昇降させる。処理位置は、蓋ユニット25によって炉心管10が閉塞され、炉心管10内に支持ユニット30および保温ユニット26が収容される位置である。退避位置は、炉心管10から支持ユニット30および保温ユニット26が露出し、支持ユニット30および保温ユニット26の取り外しが可能になる位置である。 Specifically, the transport unit 50 integrally moves the lid unit 25, the heat retention unit 26, and the support unit 30 up and down between the processing position and the retreat position. The processing position is a position where the reactor core tube 10 is closed by the lid unit 25 and the support unit 30 and the heat retention unit 26 are housed within the reactor core tube 10 . The retracted position is a position where the support unit 30 and the heat retention unit 26 are exposed from the core tube 10 and the support unit 30 and the heat retention unit 26 can be removed.
 熱処理装置1Aは、炉心管10内に処理ガスを供給するガス供給ユニット51、および、炉心管10内の処理ガスを排気するガス排気ユニット52を含む。ガス供給ユニット51は、この形態では、炉心管10の頂壁16に取り付けられている。ガス排気ユニット52は、この形態では、炉心管10の管状壁15に取り付けられている。むろん、ガス供給ユニット51が管状壁15に取り付けられ、ガス排気ユニット52が頂壁16に取り付けられていてもよい。 The heat treatment apparatus 1A includes a gas supply unit 51 that supplies processing gas into the furnace core tube 10, and a gas exhaust unit 52 that exhausts the processing gas inside the furnace core tube 10. The gas supply unit 51 is attached to the top wall 16 of the furnace core tube 10 in this embodiment. The gas exhaust unit 52 is in this embodiment attached to the tubular wall 15 of the reactor core tube 10 . Of course, the gas supply unit 51 may be attached to the tubular wall 15 and the gas exhaust unit 52 may be attached to the top wall 16.
 炉心管10内に供給される処理ガスは、熱処理の内容に応じて異なる。処理ガスは、1種類であってもよいし、複数種類であってもよい。たとえば、SiCウエハ2に対して不純物の活性化処理が実施される場合、処理ガスはSiを含むガス(たとえばシランガス(SiH))であってもよい。たとえば、SiCウエハ2に対して熱酸化処理が実施される場合、処理ガスは酸素ガスであってもよい。むろん、処理ガスは、不活性ガスを含んでいてもよい。また、供給されるガスの種類に応じて複数のガス供給ユニット51が炉心管10に接続されていてもよい。 The processing gas supplied into the furnace core tube 10 differs depending on the content of the heat treatment. There may be one type of processing gas, or there may be multiple types of processing gas. For example, when impurity activation processing is performed on the SiC wafer 2, the processing gas may be a gas containing Si (for example, silane gas (SiH 4 )). For example, when a thermal oxidation process is performed on the SiC wafer 2, the process gas may be oxygen gas. Of course, the processing gas may contain an inert gas. Further, a plurality of gas supply units 51 may be connected to the furnace core tube 10 depending on the type of gas to be supplied.
 熱処理装置1Aは、炉心管10外から処理空間13内のSiCウエハ2を加熱するように炉心管10の周囲に配置された加熱ユニット53を含む。加熱ユニット53は、炉心管10を取り囲む円筒状のヒータを含んでいてもよい。 The heat treatment apparatus 1A includes a heating unit 53 arranged around the furnace tube 10 so as to heat the SiC wafer 2 in the processing space 13 from outside the furnace tube 10. The heating unit 53 may include a cylindrical heater surrounding the furnace core tube 10.
 熱処理装置1Aは、搬送ユニット50、ガス供給ユニット51、ガス排気ユニット52および加熱ユニット53に接続され、搬送ユニット50、ガス供給ユニット51、ガス排気ユニット52および加熱ユニット53を制御する制御ユニット54を含む。たとえば、制御ユニット54は、CPUおよびメモリ(たとえばROM、RAM、不揮発性メモリ等)を含み、メモリに格納された所定の処理レシピに基づいて搬送ユニット50、ガス供給ユニット51、ガス排気ユニット52および加熱ユニット53を制御する。 The heat treatment apparatus 1A includes a control unit 54 that is connected to a transport unit 50, a gas supply unit 51, a gas exhaust unit 52, and a heating unit 53, and controls the transport unit 50, gas supply unit 51, gas exhaust unit 52, and heating unit 53. include. For example, the control unit 54 includes a CPU and memory (for example, ROM, RAM, non-volatile memory, etc.), and controls the transport unit 50, the gas supply unit 51, the gas exhaust unit 52, and the like based on a predetermined processing recipe stored in the memory. Controls heating unit 53.
 熱処理装置1Aを用いたSiCウエハ2の熱処理工程(つまり、SiC半導体装置の製造方法)では、まず、退避位置において少なくとも1枚のSiCウエハ2を支持する支持ユニット30が保温ユニット26を挟んで蓋ユニット25の上に取り付けられる(第1ステップ)。 In the heat treatment process for the SiC wafer 2 using the heat treatment apparatus 1A (that is, the method for manufacturing a SiC semiconductor device), first, the support unit 30 that supports at least one SiC wafer 2 is placed in a retracted position with the heat insulating unit 26 in between. mounted on the unit 25 (first step).
 次に、支持ユニット30が搬送ユニット50によって退避位置から処理位置まで上昇され、支持ユニット30が炉心管10内に収容される(第2ステップ)。次に、処理空間13内に所定の処理ガスが供給され、加熱ユニット53によってSiCウエハ2が加熱される(第3ステップ)。たとえば、SiCウエハ2は、所定の処理ガス雰囲気において1500℃以上2200℃以下の温度範囲(好ましくは、1600℃以上2000℃以下の温度範囲)で加熱される。 Next, the support unit 30 is raised from the retracted position to the processing position by the transport unit 50, and the support unit 30 is housed in the reactor core tube 10 (second step). Next, a predetermined processing gas is supplied into the processing space 13, and the SiC wafer 2 is heated by the heating unit 53 (third step). For example, the SiC wafer 2 is heated in a predetermined processing gas atmosphere in a temperature range of 1500° C. or more and 2200° C. or less (preferably a temperature range of 1600° C. or more and 2000° C. or less).
 SiCウエハ2に対する熱処理は、SiCウエハ2に対する熱酸化処理、SiCウエハ2に対するアニール処理、SiCウエハ2に対する不純物(3価元素や5価元素等)の活性化処理、SiCウエハ2に対するCVD処理(たとえば減圧CVD処理)、SiCウエハ2に対するSi蒸気圧エッチング処理等であってもよい。SiCウエハ2に対する熱処理工程が終了すると、搬送ユニット50によって支持ユニット30が処理位置から退避位置に下降され、支持ユニット30が炉心管10から取り外される(第3ステップ)。 The heat treatment for the SiC wafer 2 includes thermal oxidation treatment for the SiC wafer 2, annealing treatment for the SiC wafer 2, activation treatment for impurities (trivalent elements, pentavalent elements, etc.) for the SiC wafer 2, and CVD treatment for the SiC wafer 2 (for example, (low pressure CVD treatment), Si vapor pressure etching treatment for the SiC wafer 2, or the like. When the heat treatment process for the SiC wafer 2 is completed, the support unit 30 is lowered from the processing position to the retreat position by the transport unit 50, and the support unit 30 is removed from the furnace tube 10 (third step).
 図7は、熱処理装置1Aの一作用を説明するための図である。図7を参照して、SiCウエハ2が加熱されると、熱分解によってSiC単結晶からSi原子(シリコン原子)が蒸気となって離脱する結果、SiCウエハ2の外面(第1主面3、第2主面4および側面5)においてC原子(炭素原子)が残存する。 FIG. 7 is a diagram for explaining an action of the heat treatment apparatus 1A. Referring to FIG. 7, when SiC wafer 2 is heated, Si atoms (silicon atoms) are separated from the SiC single crystal as vapor due to thermal decomposition. C atoms (carbon atoms) remain on the second main surface 4 and the side surface 5).
 炉心管10は、この形態では、管本体11の内壁14を被覆する第1タンタルコーティング層12を含む。第1タンタルコーティング層12によれば、処理空間13の雰囲気を介してSiCウエハ2のC原子をTa原子と反応させることができる。これにより、C原子を第1タンタルコーティング層12に取り込むことができ、SiCウエハ2の外面に残存するC原子が低減される。よって、C原子に起因したSiCウエハ2の外面の荒れを抑制できるから、SiCウエハ2を高品質に熱処理できる。 In this form, the furnace core tube 10 includes a first tantalum coating layer 12 that coats the inner wall 14 of the tube body 11. According to the first tantalum coating layer 12, the C atoms of the SiC wafer 2 can be reacted with Ta atoms through the atmosphere of the processing space 13. Thereby, C atoms can be taken into the first tantalum coating layer 12, and the C atoms remaining on the outer surface of the SiC wafer 2 are reduced. Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be suppressed, so that the SiC wafer 2 can be heat-treated with high quality.
 具体的には、第1タンタルコーティング層12は、管本体11の内壁14を被覆する第1タンタルシリサイド層20を含む。この構造によれば、第1タンタルシリサイド層20をSi供給源として機能させることができる。つまり、第1タンタルシリサイド層20は、SiCウエハ2と同時に加熱されることにより、処理空間13内にSi蒸気を供給する。 Specifically, the first tantalum coating layer 12 includes a first tantalum silicide layer 20 that covers the inner wall 14 of the tube body 11. According to this structure, the first tantalum silicide layer 20 can function as a Si supply source. That is, the first tantalum silicide layer 20 supplies Si vapor into the processing space 13 by being heated simultaneously with the SiC wafer 2 .
 第1タンタルシリサイド層20から生じたSi蒸気は、SiCウエハ2の外面に生じたC原子と反応する。これにより、SiCウエハ2の外面からC原子が除去される。処理空間13内では、Si蒸気およびC原子の反応に伴ってSiCやSiC等を含む蒸気が生成される。SiCやSiCを含む蒸気は、炉心管10の第1タンタルシリサイド層20と反応する結果、炉心管10側においてTaC、TaC、Si、TaSi等が生成される。 Si vapor generated from the first tantalum silicide layer 20 reacts with C atoms generated on the outer surface of the SiC wafer 2. As a result, C atoms are removed from the outer surface of the SiC wafer 2. In the processing space 13, vapor containing Si 2 C, SiC 2 , etc. is generated as a result of the reaction between Si vapor and C atoms. The steam containing Si 2 C and SiC 2 reacts with the first tantalum silicide layer 20 of the furnace tube 10, and as a result, TaC, Ta 2 C, Si, TaSi 2, etc. are generated on the furnace tube 10 side.
 たとえば、第1タンタルシリサイド層20がTaSiを含む場合、SiCがTaSiと反応する結果、TaCおよびSiが生成される。たとえば、第1タンタルシリサイド層20がTaSiを含む場合、SiCがTaSiと反応する結果、TaCおよびTaSiが生成される。このように、処理空間13内のSiCやSiC等のC原子は、第1タンタルシリサイド層20に取り込まれる。よって、C原子に起因したSiCウエハ2の外面の荒れを適切に抑制できる。 For example, when the first tantalum silicide layer 20 includes TaSi 2 , TaC and Si are generated as a result of Si 2 C reacting with TaSi 2 . For example, when the first tantalum silicide layer 20 includes Ta 5 Si 3 , Ta 2 C and TaSi 2 are generated as a result of Si 2 C reacting with Ta 5 Si 3 . In this way, C atoms such as Si 2 C and SiC 2 in the processing space 13 are incorporated into the first tantalum silicide layer 20 . Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
 第1タンタルコーティング層12は、管本体11および第1タンタルシリサイド層20の間に介在された第1タンタルカーバイド層19を含んでいてもよい。この構造によれば、第1タンタルカーバイド層19および第1タンタルシリサイド層20の組成に応じてSiCウエハ2における反応速度を調節できる。 The first tantalum coating layer 12 may include a first tantalum carbide layer 19 interposed between the tube body 11 and the first tantalum silicide layer 20. According to this structure, the reaction rate in the SiC wafer 2 can be adjusted depending on the composition of the first tantalum carbide layer 19 and the first tantalum silicide layer 20.
 熱処理装置1Aは、処理空間13に処理ガスを供給するガス供給ユニット51を含んでいてもよい。この場合、ガス供給ユニット51によってSiを含むガス(たとえばシランガス(SiH))が処理空間13に供給されてもよい。この構造によれば、ガス供給ユニット51を利用して処理空間13内にSi蒸気を作り出すことができる。 The heat treatment apparatus 1A may include a gas supply unit 51 that supplies processing gas to the processing space 13. In this case, a gas containing Si (for example, silane gas (SiH 4 )) may be supplied to the processing space 13 by the gas supply unit 51. According to this structure, Si vapor can be created in the processing space 13 using the gas supply unit 51.
 ガス供給ユニット51に起因するSi蒸気はSiCウエハ2の外面に生じたC原子と反応する結果、SiCやSiC等を含む蒸気が処理空間13内に生成される。SiCやSiC等のC原子は、第1タンタルコーティング層12に取り込まれる。よって、第1タンタルコーティング層12およびSiを含むガスを利用して、C原子に起因したSiCウエハ2の外面の荒れを適切に抑制できる。 The Si vapor originating from the gas supply unit 51 reacts with C atoms generated on the outer surface of the SiC wafer 2, and as a result, vapor containing Si 2 C, SiC 2, etc. is generated in the processing space 13. C atoms such as Si 2 C and SiC 2 are incorporated into the first tantalum coating layer 12 . Therefore, by using the first tantalum coating layer 12 and the gas containing Si, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
 支持ユニット30は、第1支持板31、第2支持板32、ならびに、第1支持板31および第2支持板32に連結された支柱33を含む。第1支持板31(第2支持板32)は、板本体34を被覆する第2タンタルカーバイド層37を含んでいてもよい。この場合、第1支持板31(第2支持板32)においても炉心管10に対して述べられた効果と同様の作用および効果が奏される。支柱33は、柱本体39を被覆する第3タンタルカーバイド層44を含んでいてもよい。この場合、支柱33においても炉心管10に対して述べられた効果と同様の作用および効果が奏される。 The support unit 30 includes a first support plate 31 , a second support plate 32 , and a column 33 connected to the first support plate 31 and the second support plate 32 . The first support plate 31 (second support plate 32) may include a second tantalum carbide layer 37 covering the plate body 34. In this case, the first support plate 31 (second support plate 32) also provides the same functions and effects as those described for the furnace core tube 10. Post 33 may include a third tantalum carbide layer 44 covering post body 39 . In this case, the struts 33 also have the same functions and effects as those described for the furnace core tube 10.
 図8は、第2実施形態に係る熱処理装置1Bを示す模式的な断面図である。前述の第1実施形態では、単管構造の管本体11を有する炉心管10が示された。これに対して、第2実施形態に係る熱処理装置1Bは、一方側の閉口端および他方側の開口端を有する筒状の多重管構造の管本体61を有する炉心管10を含む。 FIG. 8 is a schematic cross-sectional view showing a heat treatment apparatus 1B according to the second embodiment. In the first embodiment described above, the furnace core tube 10 having the tube body 11 having a single tube structure was shown. On the other hand, the heat treatment apparatus 1B according to the second embodiment includes a core tube 10 having a tube body 61 having a cylindrical multi-tube structure having a closed end on one side and an open end on the other side.
 管本体61は、第1実施形態の場合と同様、少なくとも1枚のSiCウエハ2が収容される処理空間13を区画する内壁14を有し、開口端を鉛直方向下向きにした姿勢で配置されている。 As in the case of the first embodiment, the tube body 61 has an inner wall 14 that defines a processing space 13 in which at least one SiC wafer 2 is accommodated, and is arranged with the open end facing downward in the vertical direction. There is.
 管本体61は、この形態では、内側に位置する内管62、および、内管62の外側に位置する外管63を含み、内管62および外管63によって構成された内壁14を有している。内管62は、一方側(鉛直方向の上側)の第1開口端および他方側(鉛直方向の下側)の第2開口端を有する筒状(たとえば円筒状)の内側管状壁64を有している。内側管状壁64の内壁部は、内壁14の一部を区画している。 In this form, the tube body 61 includes an inner tube 62 located inside and an outer tube 63 located outside the inner tube 62, and has an inner wall 14 constituted by the inner tube 62 and the outer tube 63. There is. The inner tube 62 has a cylindrical (for example, cylindrical) inner tubular wall 64 having a first open end on one side (upper side in the vertical direction) and a second open end on the other side (lower side in the vertical direction). ing. The inner wall portion of the inner tubular wall 64 defines a portion of the inner wall 14 .
 外管63は、筒状(たとえば円筒状)の外側管状壁65および外側管状壁65の一端部を閉塞する外側頂壁66を有している。外管63は、第1開口端側から内管62(内側管状壁64)に外嵌されている。外側管状壁65の内壁部および外側頂壁66の内壁部は、内壁14の一部をそれぞれ区画している。 The outer tube 63 has a cylindrical (for example, cylindrical) outer tubular wall 65 and an outer top wall 66 that closes one end of the outer tubular wall 65. The outer tube 63 is fitted onto the inner tube 62 (inner tubular wall 64) from the first open end side. The inner wall portion of the outer tubular wall 65 and the inner wall portion of the outer top wall 66 each define a portion of the inner wall 14.
 外管63(外側管状壁65)は、この形態では、下端部において炉口部17を区画している。むろん、内管62(内側管状壁64)の下端部に炉口部17が区画されるように、内管62(内側管状壁64)および外管63(外側管状壁65)の形状が変更されてもよい。 In this form, the outer tube 63 (outer tubular wall 65) defines the furnace mouth portion 17 at its lower end. Of course, the shapes of the inner tube 62 (inner tubular wall 64) and the outer tube 63 (outer tubular wall 65) are changed so that the furnace opening 17 is defined at the lower end of the inner tube 62 (inner tubular wall 64). It's okay.
 管本体61は、この形態では、内管62および外管63によって鉛直方向に延びる長手筒状(具体的には長手円筒状)に形成され、複数枚のSiCウエハ2が収容されるように構成されている。管本体11(内管62および外管63)は、第1実施形態の場合と同様、SiCウエハ2の耐熱温度以上の耐熱温度を有する材料によって形成されている。 In this embodiment, the tube main body 61 is formed into a longitudinal cylindrical shape (specifically, a longitudinal cylindrical shape) extending in the vertical direction by an inner tube 62 and an outer tube 63, and is configured to accommodate a plurality of SiC wafers 2. has been done. The tube body 11 (inner tube 62 and outer tube 63) is formed of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2, as in the first embodiment.
 炉心管10は、第1実施形態の場合と同様、管本体61を被覆する第1タンタルコーティング層12を含む。第1タンタルコーティング層12は、少なくとも管本体61の内壁14を被覆していればよい。第1タンタルコーティング層12は、内側管状壁64の内壁部、外側管状壁65の内壁部および外側頂壁66の内壁部のうちの少なくとも1つを被覆していればよい。 The furnace core tube 10 includes the first tantalum coating layer 12 covering the tube body 61, as in the first embodiment. The first tantalum coating layer 12 only needs to cover at least the inner wall 14 of the tube body 61. The first tantalum coating layer 12 only needs to cover at least one of the inner wall of the inner tubular wall 64 , the inner wall of the outer tubular wall 65 , and the inner wall of the outer top wall 66 .
 第1タンタルコーティング層12は、内側管状壁64の内壁部の全域を被覆していることが好ましい。第1タンタルコーティング層12は、外側管状壁65の内壁部の全域を被覆していることが好ましい。第1タンタルコーティング層12は、外側頂壁66の内壁部の全域を被覆していることが好ましい。第1タンタルコーティング層12は、管本体61の内壁14の全域を被覆していることが好ましい。 The first tantalum coating layer 12 preferably covers the entire inner wall portion of the inner tubular wall 64. Preferably, the first tantalum coating layer 12 covers the entire inner wall portion of the outer tubular wall 65. Preferably, the first tantalum coating layer 12 covers the entire inner wall portion of the outer top wall 66. It is preferable that the first tantalum coating layer 12 covers the entire inner wall 14 of the tube body 61.
 第1タンタルコーティング層12は、内側管状壁64の外壁部の一部または全域を被覆していてもよい。第1タンタルコーティング層12は、外側管状壁65の外壁部の一部または全域を被覆していてもよい。第1タンタルコーティング層12は、外側頂壁66の外壁部の一部または全域を被覆していてもよい。 The first tantalum coating layer 12 may cover part or all of the outer wall portion of the inner tubular wall 64. The first tantalum coating layer 12 may cover part or all of the outer wall portion of the outer tubular wall 65. The first tantalum coating layer 12 may cover part or all of the outer wall portion of the outer top wall 66.
 ガス供給ユニット51は、この形態では、炉心管10の下端部(この形態では外管63)に取り付けられている。むろん、ガス供給ユニット51は、内管62および外管63の配置に応じて炉心管10の下端部において内管62側に取り付けられていてもよい。ガス排気ユニット52は、この形態では、内管62および外管63の間の空間に排気流路が形成されるように外管63に形成されている。むろん、ガス供給ユニット51とガス排気ユニット52の配置は入れ替えられてもよい。 In this form, the gas supply unit 51 is attached to the lower end of the furnace core tube 10 (the outer tube 63 in this form). Of course, the gas supply unit 51 may be attached to the inner tube 62 side at the lower end of the reactor core tube 10 depending on the arrangement of the inner tube 62 and the outer tube 63. In this embodiment, the gas exhaust unit 52 is formed in the outer tube 63 so that an exhaust flow path is formed in the space between the inner tube 62 and the outer tube 63. Of course, the arrangement of the gas supply unit 51 and the gas exhaust unit 52 may be interchanged.
 蓋ユニット25、保温ユニット26、支持ユニット30、搬送ユニット50、加熱ユニット53および制御ユニット54の構成は、第1実施形態の場合と同様であるので、それらの説明は省略される。以上、熱処理装置1Bによっても、熱処理装置1Aにおいて述べられた作用および効果と同様の作用および効果が奏される。 The configurations of the lid unit 25, heat retention unit 26, support unit 30, transport unit 50, heating unit 53, and control unit 54 are the same as in the first embodiment, so their description will be omitted. As described above, the heat treatment apparatus 1B also provides the same functions and effects as those described for the heat treatment apparatus 1A.
 以下、図9および図10を参照して、前述の熱処理装置1Aおよび熱処理装置1Bの熱処理工程時に適用されるSiCウエハ2の他の熱処理例(つまり、SiC半導体装置の一製造方法)が説明される。図9は、SiCウエハ2の他の熱処理例を説明するための図である。図10は、ダミーウエハ70の一形態例を説明するための図である。図9では、熱処理装置1Aが例示されている。 Hereinafter, with reference to FIGS. 9 and 10, another example of heat treatment of the SiC wafer 2 (that is, one method of manufacturing a SiC semiconductor device) applied during the heat treatment process of the heat treatment apparatus 1A and the heat treatment apparatus 1B described above will be explained. Ru. FIG. 9 is a diagram for explaining another example of heat treatment of the SiC wafer 2. FIG. 10 is a diagram for explaining an example of a form of the dummy wafer 70. In FIG. 9, a heat treatment apparatus 1A is illustrated.
 図9を参照して、SiCウエハ2の熱処理工程において、少なくとも1枚のダミーウエハ70および少なくとも1枚のSiCウエハ2が支持ユニット30によって支持されてもよい。この場合、少なくとも1枚のダミーウエハ70および少なくとも1枚のSiCウエハ2が、互いに向かい合うように支持ユニット30によって支持されることが好ましい。 Referring to FIG. 9, in the heat treatment process of SiC wafer 2, at least one dummy wafer 70 and at least one SiC wafer 2 may be supported by support unit 30. In this case, it is preferable that at least one dummy wafer 70 and at least one SiC wafer 2 be supported by the support unit 30 so as to face each other.
 たとえば、1つまたは複数のSiCウエハ2を挟みこむように複数のダミーウエハ70が支持ユニット30によって支持されていてもよい。図9では、一例として、複数のダミーウエハ70および複数のSiCウエハ2が支持ユニット30によって交互に支持されている例が示されている。以下、ダミーウエハ70の構造が説明される。 For example, a plurality of dummy wafers 70 may be supported by the support unit 30 so as to sandwich one or more SiC wafers 2 therebetween. In FIG. 9, as an example, a plurality of dummy wafers 70 and a plurality of SiC wafers 2 are alternately supported by the support unit 30. The structure of the dummy wafer 70 will be explained below.
 図10を参照して、ダミーウエハ70は、ウエハ本体71および第4タンタルコーティング層72を含む。第4タンタルコーティング層72は、「ウエハ側タンタルコーティング層」と称されてもよい。ウエハ本体71は、SiCウエハ2の耐熱温度以上の耐熱温度を有する材料によって形成されている。ウエハ本体71の耐熱温度は、ウエハ本体71の溶融温度およびウエハ本体71の昇華温度のうちの温度の低い方によって定義されてもよい。 Referring to FIG. 10, dummy wafer 70 includes a wafer body 71 and a fourth tantalum coating layer 72. The fourth tantalum coating layer 72 may be referred to as a "wafer side tantalum coating layer." The wafer body 71 is made of a material having a heat resistant temperature higher than the heat resistant temperature of the SiC wafer 2 . The allowable temperature limit of the wafer body 71 may be defined by the lower of the melting temperature of the wafer body 71 and the sublimation temperature of the wafer body 71.
 ウエハ本体71の耐熱温度は、2300℃以上であることが好ましい。ウエハ本体71の耐熱温度は、2600℃以上であることが特に好ましい。ウエハ本体71は、金属元素を有する無機材料、非金属元素を有する無機材料、ならびに、金属元素および非金属元素を有する無機材料のうちの少なくとも1つを含んでいてもよい。 The heat-resistant temperature of the wafer body 71 is preferably 2300° C. or higher. It is particularly preferable that the heat resistant temperature of the wafer body 71 is 2600° C. or higher. The wafer body 71 may include at least one of an inorganic material having a metal element, an inorganic material having a non-metal element, and an inorganic material having a metal element and a non-metal element.
 ウエハ本体71は、非金属、非合金、合金およびセラミックのうちの少なくとも1つを含んでいてもよい。ウエハ本体71は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つを含むことが好ましい。 The wafer body 71 may include at least one of a nonmetal, a nonalloy, an alloy, and a ceramic. The wafer body 71 preferably contains at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC).
 支持ユニット30への装着を鑑みると、ウエハ本体71は、SiCウエハ2を利用して形成されていることが好ましい。つまり、ウエハ本体71は、六方晶のSiC単結晶を含み、板状(円板状)に形成されていることが好ましい。この場合、ウエハ本体71は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶、6H-SiC単結晶等によって形成されていてもよい。ウエハ本体71は、4H-SiC単結晶によって形成されていることが好ましい。 In view of attachment to the support unit 30, the wafer body 71 is preferably formed using the SiC wafer 2. That is, the wafer main body 71 preferably includes a hexagonal SiC single crystal and is formed in a plate shape (disk shape). In this case, the wafer body 71 may be formed of 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, or the like. The wafer body 71 is preferably formed of 4H-SiC single crystal.
 ウエハ本体71は、一方側の第1ウエハ主面73、他方側の第2ウエハ主面74、ならびに、第1ウエハ主面73および第2ウエハ主面74を接続するウエハ側面75を有している。第1ウエハ主面73および第2ウエハ主面74は、SiC単結晶のc面によって形成されていることが好ましい。第1ウエハ主面73はSiC単結晶のシリコン面によって形成され、第2ウエハ主面74はSiC単結晶のカーボン面によって形成されていることが好ましい。 The wafer body 71 has a first wafer main surface 73 on one side, a second wafer main surface 74 on the other side, and a wafer side surface 75 connecting the first wafer main surface 73 and the second wafer main surface 74. There is. The first wafer main surface 73 and the second wafer main surface 74 are preferably formed of a c-plane of SiC single crystal. Preferably, the first wafer main surface 73 is formed by a silicon surface of a SiC single crystal, and the second wafer main surface 74 is formed by a carbon surface of a SiC single crystal.
 第1ウエハ主面73および第2ウエハ主面74は、c面に対して所定のオフ方向に所定の角度で傾斜したオフ角を有していてもよい。オフ方向は、SiC単結晶のa軸方向([11-20]方向)であることが好ましい。オフ角は、0°を超えて10°以下であってもよい。オフ角は、5°以下であることが好ましい。 The first wafer main surface 73 and the second wafer main surface 74 may have an off angle that is inclined at a predetermined angle in a predetermined off direction with respect to the c-plane. The off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal. The off angle may be greater than 0° and less than or equal to 10°. The off angle is preferably 5° or less.
 ウエハ本体71は、ウエハ側面75においてSiC単結晶の結晶方向を示すオリエンテーションフラット(直線状に延びる切欠部)またはオリエンテーションノッチ(中心に向かって三角形状に窪んだ切欠部)を有していてもよい。ウエハ本体71は、平面視において50mm以上300mm以下(つまり2インチ以上12インチ以下)の外径(直径)を有していてもよい。 The wafer body 71 may have an orientation flat (a notch that extends linearly) or an orientation notch (a notch that is triangularly depressed toward the center) that indicates the crystal direction of the SiC single crystal on the wafer side surface 75. . The wafer body 71 may have an outer diameter (diameter) of 50 mm or more and 300 mm or less (that is, 2 inches or more and 12 inches or less) in plan view.
 ウエハ本体71の外径は、SiCウエハ2の外径とほぼ等しいことが好ましい。ウエハ本体71は、100μm以上1100μm以下の厚さを有していてもよい。ウエハ本体71の厚さは、SiCウエハ2の厚さ以上であってもよいし、SiCウエハ2の厚さ未満であってもよい。 The outer diameter of the wafer body 71 is preferably approximately equal to the outer diameter of the SiC wafer 2. The wafer body 71 may have a thickness of 100 μm or more and 1100 μm or less. The thickness of the wafer body 71 may be greater than or equal to the thickness of the SiC wafer 2, or may be less than the thickness of the SiC wafer 2.
 具体的な図示は省略されるが、ウエハ本体71は、SiC基板およびSiC基板の上に積層されたSiCエピタキシャル層を含む積層構造を有していてもよい。この場合、SiC基板によって第2ウエハ主面74が形成され、SiCエピタキシャル層によって第1ウエハ主面73が形成される。たとえば、SiC基板は、n型の不純物濃度を有していてもよい。SiCエピタキシャル層は、SiC基板とは異なるn型不純物濃度を有していてもよい。 Although specific illustration is omitted, the wafer main body 71 may have a stacked structure including a SiC substrate and a SiC epitaxial layer stacked on the SiC substrate. In this case, the second wafer main surface 74 is formed by the SiC substrate, and the first wafer main surface 73 is formed by the SiC epitaxial layer. For example, the SiC substrate may have an n-type impurity concentration. The SiC epitaxial layer may have a different n-type impurity concentration than the SiC substrate.
 SiCエピタキシャル層のn型不純物濃度は、SiC基板のn型不純物濃度よりも低くてもよい。SiCエピタキシャル層は、SiC基板の厚さ未満の厚さを有していることが好ましい。SiCエピタキシャル層の厚さは、1μm以上50μm以下であってもよい。SiCエピタキシャル層の厚さは、5μm以上25μm以下であることが好ましい。むろん、ウエハ本体71は、SiC基板からなる単層構造を有していてもよい。 The n-type impurity concentration of the SiC epitaxial layer may be lower than the n-type impurity concentration of the SiC substrate. Preferably, the SiC epitaxial layer has a thickness less than the thickness of the SiC substrate. The thickness of the SiC epitaxial layer may be 1 μm or more and 50 μm or less. The thickness of the SiC epitaxial layer is preferably 5 μm or more and 25 μm or less. Of course, the wafer body 71 may have a single layer structure made of a SiC substrate.
 SiC基板は、p型不純物濃度を有していてもよい。SiCエピタキシャル層は、SiC基板とは異なるp型不純物濃度を有していてもよい。SiC基板がn型不純物濃度を有する一方、SiCエピタキシャル層がp型不純物濃度を有していてもよい。SiC基板がp型不純物濃度を有する一方、SiCエピタキシャル層がn型不純物濃度を有していてもよい。 The SiC substrate may have a p-type impurity concentration. The SiC epitaxial layer may have a different p-type impurity concentration than the SiC substrate. While the SiC substrate has an n-type impurity concentration, the SiC epitaxial layer may have a p-type impurity concentration. While the SiC substrate has a p-type impurity concentration, the SiC epitaxial layer may have an n-type impurity concentration.
 第4タンタルコーティング層72は、ウエハ本体71の一部を被覆していればよい。第4タンタルコーティング層72は、第1ウエハ主面73および第2ウエハ主面74のいずれか一方または双方を被覆していることが好ましい。第4タンタルコーティング層72は、第1ウエハ主面73および第2ウエハ主面74のいずれか一方の全域または双方の全域を被覆していることが特に好ましい。第4タンタルコーティング層72は、ウエハ本体71の全域(第1ウエハ主面73、第2ウエハ主面74およびウエハ側面75)を被覆していてもよい。 The fourth tantalum coating layer 72 only needs to cover a part of the wafer body 71. The fourth tantalum coating layer 72 preferably covers one or both of the first wafer main surface 73 and the second wafer main surface 74. It is particularly preferable that the fourth tantalum coating layer 72 covers the entire area of one or both of the first wafer main surface 73 and the second wafer main surface 74. The fourth tantalum coating layer 72 may cover the entire area of the wafer body 71 (first wafer main surface 73, second wafer main surface 74, and wafer side surface 75).
 たとえば、第4タンタルコーティング層72は、図11Aおよび図11Bに示される構成を有し得る。図11Aおよび図11Bは、第4タンタルコーティング層72の一形態例を示す図である。図11Aを参照して、第4タンタルコーティング層72は、ウエハ本体71側からこの順に積層された第4タンタル層76、第4タンタルカーバイド層77および第4タンタルシリサイド層78を含む積層構造を有していてもよい。このような構造は、ウエハ本体71がタンタル以外の材料によって構成されている場合に適用されることが好ましい。 For example, the fourth tantalum coating layer 72 may have the configuration shown in FIGS. 11A and 11B. FIG. 11A and FIG. 11B are diagrams showing an example of a form of the fourth tantalum coating layer 72. Referring to FIG. 11A, the fourth tantalum coating layer 72 has a laminated structure including a fourth tantalum layer 76, a fourth tantalum carbide layer 77, and a fourth tantalum silicide layer 78, which are laminated in this order from the wafer body 71 side. You may do so. Such a structure is preferably applied when the wafer body 71 is made of a material other than tantalum.
 第4タンタル層76は、純Ta層(純度が99%以上のTa層)を含む。第4タンタルカーバイド層77は、TaC層77aおよびTaC層77bのうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。第4タンタルカーバイド層77は、この形態例では、ウエハ本体71側からこの順に積層されたTaC層77aおよびTaC層77bを含む積層構造を有している。 The fourth tantalum layer 76 includes a pure Ta layer (a Ta layer with a purity of 99% or more). The fourth tantalum carbide layer 77 may have a single layer structure or a laminated structure including at least one of a Ta 2 C layer 77a and a TaC layer 77b. In this embodiment, the fourth tantalum carbide layer 77 has a stacked structure including a Ta 2 C layer 77a and a TaC layer 77b stacked in this order from the wafer body 71 side.
 第4タンタルシリサイド層78は、TaαSiβγ層を含む。第4タンタルシリサイド層78は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む単層構造または積層構造を有していてもよい。 The fourth tantalum silicide layer 78 includes a Ta α Si β C γ layer. The fourth tantalum silicide layer 78 has a single-layer structure or a laminated structure including at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. It may have a structure.
 第4タンタルシリサイド層78は、TaSi層およびTaSi層のいずれか一方または双方を含む単層構造または積層構造を有していることが好ましい。第4タンタルシリサイド層78は、第4タンタルカーバイド層77の厚さ未満の厚さを有していることが好ましい。むろん、第4タンタルシリサイド層78は、第4タンタルカーバイド層77の厚さ以上の厚さを有していてもよい。 It is preferable that the fourth tantalum silicide layer 78 has a single-layer structure or a laminated structure including one or both of two TaSi layers and three Ta 5 Si layers. The fourth tantalum silicide layer 78 preferably has a thickness less than the thickness of the fourth tantalum carbide layer 77. Of course, the fourth tantalum silicide layer 78 may have a thickness greater than the thickness of the fourth tantalum carbide layer 77.
 図11Bを参照して、第4タンタルコーティング層72は、ウエハ本体71側からこの順に積層された第4タンタルカーバイド層77および第4タンタルシリサイド層78を含む積層構造を有していてもよい。このような構造は、ウエハ本体71がタンタルによって構成されている場合に適用されることが好ましい。 Referring to FIG. 11B, the fourth tantalum coating layer 72 may have a stacked structure including a fourth tantalum carbide layer 77 and a fourth tantalum silicide layer 78 stacked in this order from the wafer body 71 side. Such a structure is preferably applied when the wafer body 71 is made of tantalum.
 以上、ダミーウエハ70は、SiCウエハ2の熱処理に際してSiCウエハ2と併用される治具であり、SiCウエハ2と共に支持ユニット30に装着される。ダミーウエハ70は、ウエハ本体71、および、当該ウエハ本体71を被覆する第4タンタルコーティング層72を含む。第4タンタルコーティング層72によれば、処理空間13内の雰囲気を介してSiCウエハ2のC原子をTa原子と反応させることによって、C原子を取り込むことができる。 As described above, the dummy wafer 70 is a jig used together with the SiC wafer 2 during heat treatment of the SiC wafer 2, and is mounted on the support unit 30 together with the SiC wafer 2. The dummy wafer 70 includes a wafer body 71 and a fourth tantalum coating layer 72 covering the wafer body 71. According to the fourth tantalum coating layer 72, C atoms can be taken in by causing the C atoms of the SiC wafer 2 to react with Ta atoms through the atmosphere in the processing space 13.
 特に、ダミーウエハ70によれば、支持ユニット30に装着された状態でSiCウエハ2に近接する位置において、C原子を取り込むことができる。たとえば、SiCウエハ2に対向するようにダミーウエハ70を支持ユニット30に装着することによって、SiCウエハ2およびダミーウエハ70の間のウエハ空間79に介在される雰囲気を介してC原子を取り込むことができる。これにより、SiCウエハ2の外面に残存するC原子が低減されるから、C原子に起因したSiCウエハ2の外面の荒れを抑制できる。よって、SiCウエハ2を高品質に熱処理できる。 In particular, according to the dummy wafer 70, C atoms can be taken in at a position close to the SiC wafer 2 while mounted on the support unit 30. For example, by mounting the dummy wafer 70 on the support unit 30 so as to face the SiC wafer 2, C atoms can be taken in through the atmosphere interposed in the wafer space 79 between the SiC wafer 2 and the dummy wafer 70. This reduces the amount of C atoms remaining on the outer surface of the SiC wafer 2, thereby suppressing roughness of the outer surface of the SiC wafer 2 caused by C atoms. Therefore, the SiC wafer 2 can be heat-treated with high quality.
 具体的には、第4タンタルコーティング層72は、ウエハ本体71を被覆する第4タンタルシリサイド層78を含む。この構造によれば、第4タンタルシリサイド層78をSi供給源として機能させることができる。つまり、第4タンタルシリサイド層78は、SiCウエハ2と同時に加熱されることにより、ウエハ空間79内にSi蒸気を供給する。 Specifically, the fourth tantalum coating layer 72 includes a fourth tantalum silicide layer 78 that covers the wafer body 71. According to this structure, the fourth tantalum silicide layer 78 can function as a Si supply source. That is, the fourth tantalum silicide layer 78 is heated simultaneously with the SiC wafer 2, thereby supplying Si vapor into the wafer space 79.
 第4タンタルシリサイド層78から生じたSi蒸気はSiCウエハ2の外面(第1主面3、第2主面4および側面5)に生じたC原子と反応する。これにより、SiCウエハ2の外面からC原子が除去され、ウエハ空間79内においてSiCやSiC等を含む蒸気が生成される。ウエハ空間79内のSiCやSiC等のC原子は、第4タンタルシリサイド層78に取り込まれる。よって、C原子に起因したSiCウエハ2の外面の荒れを適切に抑制できる。 Si vapor generated from the fourth tantalum silicide layer 78 reacts with C atoms generated on the outer surface (first main surface 3, second main surface 4, and side surface 5) of the SiC wafer 2. As a result, C atoms are removed from the outer surface of the SiC wafer 2, and vapor containing Si 2 C, SiC 2 , etc. is generated within the wafer space 79. C atoms such as Si 2 C and SiC 2 in the wafer space 79 are incorporated into the fourth tantalum silicide layer 78 . Therefore, roughness on the outer surface of the SiC wafer 2 caused by C atoms can be appropriately suppressed.
 第4タンタルコーティング層72は、ウエハ本体71および第4タンタルシリサイド層78の間に介在された第4タンタルカーバイド層77を含んでいてもよい。この構造によれば、第4タンタルカーバイド層77および第4タンタルシリサイド層78の組成に応じてSiCウエハ2における反応速度を調節できる。 The fourth tantalum coating layer 72 may include a fourth tantalum carbide layer 77 interposed between the wafer body 71 and the fourth tantalum silicide layer 78. According to this structure, the reaction rate in the SiC wafer 2 can be adjusted according to the compositions of the fourth tantalum carbide layer 77 and the fourth tantalum silicide layer 78.
 前述の各実施形態は、他の形態で実施されることができる。たとえば、前述の各実施形態では、第1主面3(第2主面4)が水平方向に延びる姿勢で複数のSiCウエハ2が鉛直方向に多段に支持される構造を有する縦型熱処理炉において、炉心管10および支持ユニット30が適用された。しかし、第1主面3(第2主面4)が鉛直方向に延びる姿勢で複数のSiCウエハ2が水平方向に一列に支持される横型熱処理炉において、炉心管10および支持ユニット30が適用されてもよい。 Each of the embodiments described above can be implemented in other forms. For example, in each of the above-described embodiments, in a vertical heat treatment furnace having a structure in which a plurality of SiC wafers 2 are supported in multiple stages in the vertical direction with the first principal surface 3 (second principal surface 4) extending in the horizontal direction, , a furnace core tube 10 and a support unit 30 were applied. However, the furnace core tube 10 and the support unit 30 are not applied to a horizontal heat treatment furnace in which a plurality of SiC wafers 2 are supported in a row in the horizontal direction with the first principal surface 3 (second principal surface 4) extending in the vertical direction. It's okay.
 前述の各実施形態では、第1タンタルコーティング層12を含む炉心管10、第2タンタルコーティング層35を含む第1支持板31(第2支持板32)、第3タンタルコーティング層40を含む支柱33が示された。しかし、第1~第3タンタルコーティング層12、35、40のうちのいずれか1つまたは2つを有さない形態が採用されてもよい。 In each of the above embodiments, the furnace core tube 10 includes the first tantalum coating layer 12, the first support plate 31 (second support plate 32) includes the second tantalum coating layer 35, and the support column 33 includes the third tantalum coating layer 40. It has been shown. However, a configuration may be adopted in which one or two of the first to third tantalum coating layers 12, 35, and 40 are not included.
 つまり、第1および第2タンタルコーティング層12、35を有する一方で、第3タンタルコーティング層40を有さない形態が採用されてもよい。また、第1および第3タンタルコーティング層12、40を有する一方で、第2タンタルコーティング層35を有さない形態が採用されてもよい。また、第2および第3タンタルコーティング層35、40を有する一方で、第1タンタルコーティング層12を有さない形態が採用されてもよい。 In other words, a form having the first and second tantalum coating layers 12 and 35 but not having the third tantalum coating layer 40 may be adopted. Further, a configuration may be adopted in which the first and third tantalum coating layers 12 and 40 are provided, but the second tantalum coating layer 35 is not provided. Further, a configuration may be adopted in which the second and third tantalum coating layers 35 and 40 are provided, but the first tantalum coating layer 12 is not provided.
 また、第1タンタルコーティング層12を有する一方で、第2および第3タンタルコーティング層35、40を有さない形態が採用されてもよい。また、第2タンタルコーティング層35を有する一方で、第1および第3タンタルコーティング層12、40を有さない形態が採用されてもよい。また、第3タンタルコーティング層40を有する一方で、第1および第2タンタルコーティング層12、35を有さない形態が採用されてもよい。 Furthermore, a configuration may be adopted in which the first tantalum coating layer 12 is provided but the second and third tantalum coating layers 35 and 40 are not provided. Further, a configuration may be adopted in which the second tantalum coating layer 35 is provided but the first and third tantalum coating layers 12 and 40 are not provided. Further, a configuration may be adopted in which the third tantalum coating layer 40 is provided but the first and second tantalum coating layers 12 and 35 are not provided.
 また、第4タンタルコーティング層72を含むダミーウエハ70が適用される場合、第1~第3タンタルコーティング層12、35、40のうちの1つ、2つまたは3つを有さない形態が採用されてもよい。 Further, when the dummy wafer 70 including the fourth tantalum coating layer 72 is applied, a configuration in which one, two, or three of the first to third tantalum coating layers 12, 35, and 40 are not included is adopted. It's okay.
 前述の各実施形態においてガス供給ユニット51からSiを含むガス(たとえばシランガス(SiH))が処理空間13に供給される場合、炉心管10において、第1タンタルシリサイド層20を有さない第1タンタルコーティング層12が採用されてもよい。 In each of the above-described embodiments, when a gas containing Si (for example, silane gas (SiH 4 )) is supplied from the gas supply unit 51 to the processing space 13, in the reactor core tube 10, the first tantalum silicide layer 20 does not have the first A tantalum coating layer 12 may be employed.
 この場合、第1タンタルコーティング層12は、第1タンタル層18および第1タンタルカーバイド層19のいずれか一方または双方を含む単層構造または積層構造を有していてもよい。また、管本体11が内壁14から露出したタンタルを含む場合や管本体11がタンタルからなる場合、第1タンタルコーティング層12を有さない炉心管10が採用されてもよい。 In this case, the first tantalum coating layer 12 may have a single layer structure or a laminated structure including either or both of the first tantalum layer 18 and the first tantalum carbide layer 19. Furthermore, if the tube body 11 includes tantalum exposed from the inner wall 14 or if the tube body 11 is made of tantalum, a core tube 10 without the first tantalum coating layer 12 may be employed.
 同様に、前述の各実施形態においてガス供給ユニット51からSiを含むガス(たとえばシランガス(SiH))が処理空間13に供給される場合、第1支持板31(第2支持板32)において、第2タンタルシリサイド層38を有さない第2タンタルコーティング層35が採用されてもよい。 Similarly, in each of the above-described embodiments, when a gas containing Si (for example, silane gas (SiH 4 )) is supplied to the processing space 13 from the gas supply unit 51, in the first support plate 31 (second support plate 32), A second tantalum coating layer 35 without the second tantalum silicide layer 38 may be employed.
 この場合、第2タンタルコーティング層35は、第2タンタル層36および第2タンタルカーバイド層37のいずれか一方または双方を含む単層構造または積層構造を有していてもよい。また、板本体34が外面から露出したタンタルを含む場合や板本体34がタンタルからなる場合、第2タンタルコーティング層35を有さない第1支持板31(第2支持板32)が採用されてもよい。 In this case, the second tantalum coating layer 35 may have a single layer structure or a laminated structure including either or both of the second tantalum layer 36 and the second tantalum carbide layer 37. Further, when the plate main body 34 includes tantalum exposed from the outer surface or when the plate main body 34 is made of tantalum, the first support plate 31 (second support plate 32) without the second tantalum coating layer 35 is used. Good too.
 同様に、前述の各実施形態においてガス供給ユニット51からSiを含むガス(たとえばシランガス(SiH))が処理空間13に供給される場合、支柱33において、第3タンタルシリサイド層45を有さない第3タンタルコーティング層40が採用されてもよい。 Similarly, in each of the above-described embodiments, when a gas containing Si (for example, silane gas (SiH 4 )) is supplied from the gas supply unit 51 to the processing space 13, the pillar 33 does not have the third tantalum silicide layer 45. A third tantalum coating layer 40 may be employed.
 この場合、第3タンタルコーティング層40は、第3タンタル層43および第3タンタルカーバイド層44のいずれか一方または双方を含む単層構造または積層構造を有していてもよい。また、柱本体39が外面から露出したタンタルを含む場合や柱本体39がタンタルからなる場合、第3タンタルコーティング層40を有さない支柱33が採用されてもよい。 In this case, the third tantalum coating layer 40 may have a single layer structure or a laminated structure including either one or both of the third tantalum layer 43 and the third tantalum carbide layer 44. Further, when the pillar body 39 includes tantalum exposed from the outer surface or when the pillar body 39 is made of tantalum, the pillar 33 without the third tantalum coating layer 40 may be employed.
 同様に、前述の各実施形態においてガス供給ユニット51からSiを含むガス(たとえばシランガス(SiH))が処理空間13に供給される場合、ダミーウエハ70において、第4タンタルシリサイド層78を有さない第4タンタルコーティング層72が採用されてもよい。 Similarly, in each of the above-described embodiments, when a gas containing Si (for example, silane gas (SiH 4 )) is supplied from the gas supply unit 51 to the processing space 13, the dummy wafer 70 does not have the fourth tantalum silicide layer 78. A fourth tantalum coating layer 72 may be employed.
 この場合、第4タンタルコーティング層72は、第4タンタル層76および第4タンタルカーバイド層77のいずれか一方または双方を含む単層構造または積層構造を有していてもよい。また、ウエハ本体71が外面から露出したタンタルを含む場合やウエハ本体71がタンタルからなる場合、第4タンタルコーティング層72を有さないダミーウエハ70が採用されてもよい。 In this case, the fourth tantalum coating layer 72 may have a single layer structure or a laminated structure including either one or both of the fourth tantalum layer 76 and the fourth tantalum carbide layer 77. Further, when the wafer body 71 includes tantalum exposed from the outer surface or when the wafer body 71 is made of tantalum, a dummy wafer 70 without the fourth tantalum coating layer 72 may be employed.
 以下、この明細書および図面から抽出される特徴例が示される。以下、括弧内の英数字等は前述の各実施形態における対応構成要素等を表すが、各項目(Clause)の範囲を実施形態に限定する趣旨ではない。 Examples of features extracted from this specification and drawings are shown below. Hereinafter, alphanumeric characters in parentheses represent corresponding components in each of the embodiments described above, but this is not intended to limit the scope of each item (Clause) to the embodiments.
 [A1]シリコンカーバイドウエハ(2)が収容される処理空間(13)を区画する内壁(14)を有し、前記シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有する管本体(11、61)と、前記内壁(14)を被覆するタンタルコーティング層(12)と、を含む、炉心管(10)。 [A1] A tube body (11, 61) and a tantalum coating layer (12) covering said inner wall (14).
 [A2]前記タンタルコーティング層(12)は、前記内壁(14)を被覆するタンタルシリサイド層(20)を含む、A1に記載の炉心管(10)。 [A2] The reactor core tube (10) according to A1, wherein the tantalum coating layer (12) includes a tantalum silicide layer (20) covering the inner wall (14).
 [A3]前記タンタルシリサイド層(20)は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む、A2に記載の炉心管(10)。 [A3] The tantalum silicide layer (20) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. The furnace core tube (10) described in A2.
 [A4]前記タンタルコーティング層(12)は、前記内壁(14)および前記タンタルシリサイド層(20)の間に介在されたタンタルカーバイド層(19)を含む、A2またはA3に記載の炉心管(10)。 [A4] The reactor core tube (10) according to A2 or A3, wherein the tantalum coating layer (12) includes a tantalum carbide layer (19) interposed between the inner wall (14) and the tantalum silicide layer (20). ).
 [A5]前記タンタルカーバイド層(19)は、TaC層(19a)およびTaC層(19b)のうちの少なくとも1つを含む、A4に記載の炉心管(10)。 [A5] The furnace tube (10) according to A4, wherein the tantalum carbide layer (19) includes at least one of a Ta 2 C layer (19a) and a TaC layer (19b).
 [A6]前記タンタルコーティング層(12)は、前記内壁(14)および前記タンタルカーバイド層(19)の間に介在されたタンタル層(18)を含む、A4またはA5に記載の炉心管(10)。 [A6] The reactor core tube (10) according to A4 or A5, wherein the tantalum coating layer (12) includes a tantalum layer (18) interposed between the inner wall (14) and the tantalum carbide layer (19). .
 [A7]前記管本体(11、61)は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、A1~A6のいずれか一つに記載の炉心管(10)。 [A7] The tube body (11, 61) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC). The furnace core tube (10) according to any one of A1 to A6.
 [A8]前記管本体(11)は、単管構造を有している、A1~A7のいずれか一つに記載の炉心管(10)。 [A8] The core tube (10) according to any one of A1 to A7, wherein the tube body (11) has a single tube structure.
 [A9]前記管本体(61)は、内管(62)および外管(63)を含み、前記内管(62)および前記外管(63)によって構成された前記内壁(14)を有する多重管構造を有している、A1~A7のいずれか一つに記載の炉心管(10)。 [A9] The tube body (61) includes an inner tube (62) and an outer tube (63), and has the inner wall (14) constituted by the inner tube (62) and the outer tube (63). The furnace core tube (10) according to any one of A1 to A7, having a tube structure.
 [A10]前記タンタルコーティング層(12)は、前記内管(62)の内壁部を被覆する部分を有している、A9に記載の炉心管(10)。 [A10] The reactor core tube (10) according to A9, wherein the tantalum coating layer (12) has a portion that covers an inner wall portion of the inner tube (62).
 [A11]前記タンタルコーティング層(12)は、前記外管(63)の内壁部を被覆する部分を有している、A9またはA10に記載の炉心管(10)。 [A11] The furnace core tube (10) according to A9 or A10, wherein the tantalum coating layer (12) has a portion that covers an inner wall portion of the outer tube (63).
 [A12]前記管本体(11、61)は、複数枚の前記シリコンカーバイドウエハ(2)が収容される前記処理空間(13)を有している、A1~A11のいずれか一つに記載の炉心管(10)。 [A12] The tube body (11, 61) has the processing space (13) in which a plurality of silicon carbide wafers (2) are accommodated, according to any one of A1 to A11. Hearth tube (10).
 [A13]前記管本体(11、61)は、長手円筒状に形成されている、A1~A12のいずれか一つに記載の炉心管(10)。 [A13] The core tube (10) according to any one of A1 to A12, wherein the tube body (11, 61) is formed into a longitudinal cylindrical shape.
 [A14]前記シリコンカーバイドウエハ(2)は、六方晶のSiC単結晶を含む、A1~A13のいずれか一つに記載の炉心管(10)。 [A14] The furnace tube (10) according to any one of A1 to A13, wherein the silicon carbide wafer (2) includes a hexagonal SiC single crystal.
 [A15]前記シリコンカーバイドウエハ(2)は、4H-SiC単結晶を含む、A14に記載の炉心管(10)。 [A15] The furnace tube (10) according to A14, wherein the silicon carbide wafer (2) includes a 4H-SiC single crystal.
 [A16]前記シリコンカーバイドウエハ(2)は、オフ角を有している、A14またはA15に記載の炉心管(10)。 [A16] The furnace tube (10) according to A14 or A15, wherein the silicon carbide wafer (2) has an off-angle.
 [A17]前記シリコンカーバイドウエハ(2)は、SiC単結晶の結晶方位を示す目印を有している、A14~A16のいずれか一つに記載の炉心管(10)。 [A17] The furnace tube (10) according to any one of A14 to A16, wherein the silicon carbide wafer (2) has a mark indicating the crystal orientation of the SiC single crystal.
 [A18]前記シリコンカーバイドウエハ(2)は、2インチ以上12インチ以下の径を有している、A1~A17のいずれか一つに記載の炉心管(10)。 [A18] The furnace core tube (10) according to any one of A1 to A17, wherein the silicon carbide wafer (2) has a diameter of 2 inches or more and 12 inches or less.
 [A19]前記シリコンカーバイドウエハ(2)は、100μm以上1100μm以下の厚さを有している、A1~A18のいずれか一つに記載の炉心管(10)。 [A19] The furnace tube (10) according to any one of A1 to A18, wherein the silicon carbide wafer (2) has a thickness of 100 μm or more and 1100 μm or less.
 [A20]前記シリコンカーバイドウエハ(2)は、シリコンカーバイド基板およびシリコンカーバイドエピタキシャル層を含む積層構造を有している、A1~A19のいずれか一つに記載の炉心管(10)。 [A20] The reactor core tube (10) according to any one of A1 to A19, wherein the silicon carbide wafer (2) has a laminated structure including a silicon carbide substrate and a silicon carbide epitaxial layer.
 [B1]A1~A20のいずれか一つに記載の前記炉心管(10)と、前記シリコンカーバイドウエハ(2)を支持した状態で前記処理空間(13)内に収容されるように構成された支持ユニット(30)と、前記炉心管(10)の周囲に配置された加熱ユニット(53)と、を含む、熱処理装置(1A、1B)。 [B1] The reactor core tube (10) according to any one of A1 to A20 is configured to be housed in the processing space (13) while supporting the silicon carbide wafer (2). A heat treatment apparatus (1A, 1B) including a support unit (30) and a heating unit (53) arranged around the furnace core tube (10).
 [B2]前記支持ユニット(30)は、前記シリコンカーバイドウエハ(2)を支持する支持部(41)を有する支柱(33)を含む、B1に記載の熱処理装置(1A、1B)。 [B2] The heat treatment apparatus (1A, 1B) according to B1, wherein the support unit (30) includes a column (33) having a support portion (41) that supports the silicon carbide wafer (2).
 [B3]前記支持部(41)は、切欠き状のスリット(42)からなる、B2に記載の熱処理装置(1A、1B)。 [B3] The heat treatment apparatus (1A, 1B) according to B2, wherein the support portion (41) is a notch-shaped slit (42).
 [B4]前記支柱(33)は、前記シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有する柱本体(39)、および、前記柱本体(39)を被覆する支柱側タンタルコーティング層(40)を含む、B2またはB3に記載の熱処理装置(1A、1B)。 [B4] The pillar (33) includes a pillar main body (39) having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer (2), and a pillar-side tantalum coating layer (40) that covers the pillar main body (39). ) The heat treatment apparatus (1A, 1B) according to B2 or B3.
 [B5]前記支柱側タンタルコーティング層(40)は、前記柱本体(39)を被覆する支柱側タンタルシリサイド層(45)を含む、B4に記載の熱処理装置(1A、1B)。 [B5] The heat treatment apparatus (1A, 1B) according to B4, wherein the pillar-side tantalum coating layer (40) includes a pillar-side tantalum silicide layer (45) that covers the pillar body (39).
 [B6]前記支柱側タンタルシリサイド層(45)は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む、B5に記載の熱処理装置(1A、1B)。 [B6] The pillar-side tantalum silicide layer (45) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. The heat treatment apparatus (1A, 1B) according to B5.
 [B7]前記支柱側タンタルコーティング層(40)は、前記柱本体(39)および前記支柱側タンタルシリサイド層(45)の間に介在された支柱側タンタルカーバイド層(44)を含む、B5またはB6に記載の熱処理装置(1A、1B)。 [B7] The pillar-side tantalum coating layer (40) includes a pillar-side tantalum carbide layer (44) interposed between the pillar body (39) and the pillar-side tantalum silicide layer (45), B5 or B6. The heat treatment apparatus (1A, 1B) described in .
 [B8]前記支柱側タンタルカーバイド層(44)は、TaC層(45a)およびTaC層(45b)のうちの少なくとも1つを含む、B7に記載の熱処理装置(1A、1B)。 [B8] The heat treatment apparatus (1A, 1B) according to B7, wherein the pillar-side tantalum carbide layer (44) includes at least one of a Ta 2 C layer (45a) and a TaC layer (45b).
 [B9]前記支柱側タンタルコーティング層(40)は、前記柱本体(39)および前記支柱側タンタルカーバイド層(44)の間に介在された支柱側タンタル層(43)を含む、B7またはB8に記載の熱処理装置(1A、1B)。 [B9] The pillar-side tantalum coating layer (40) includes a pillar-side tantalum layer (43) interposed between the pillar body (39) and the pillar-side tantalum carbide layer (44), according to B7 or B8. The heat treatment apparatus (1A, 1B) described.
 [B10]前記柱本体(39)は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、B4~B9のいずれか一つに記載の熱処理装置(1A、1B)。 [B10] The pillar body (39) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), B4~ The heat treatment apparatus (1A, 1B) according to any one of B9.
 [B11]前記支持ユニット(30)は、支持板(31、32)および前記支持板(31、32)に連結された前記支柱(33)を含む、B2~B10のいずれか一つに記載の熱処理装置(1A、1B)。 [B11] The support unit (30) includes a support plate (31, 32) and the support column (33) connected to the support plate (31, 32), according to any one of B2 to B10. Heat treatment equipment (1A, 1B).
 [B12]前記支持板(31、32)は、前記シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有する板本体(34)、および、前記板本体(34)を被覆する支持側タンタルコーティング層(35)を含む、B11に記載の熱処理装置(1A、1B)。 [B12] The support plate (31, 32) includes a plate body (34) having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer (2), and a support-side tantalum coating that covers the plate body (34). The heat treatment apparatus (1A, 1B) according to B11, comprising a layer (35).
 [B13]前記支持側タンタルコーティング層(35)は、前記板本体(34)を被覆する支持側タンタルシリサイド層(38)を含む、B12に記載の熱処理装置(1A、1B)。 [B13] The heat treatment apparatus (1A, 1B) according to B12, wherein the supporting tantalum coating layer (35) includes a supporting tantalum silicide layer (38) that covers the plate main body (34).
 [B14]前記支持側タンタルシリサイド層(38)は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む、B13に記載の熱処理装置(1A、1B)。 [B14] The supporting tantalum silicide layer (38) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. The heat treatment apparatus (1A, 1B) according to B13, including:
 [B15]前記支持側タンタルコーティング層(35)は、前記板本体(34)および前記支持側タンタルシリサイド層(38)の間に介在された支持側タンタルカーバイド層(37)を含む、B13またはB14に記載の熱処理装置(1A、1B)。 [B15] The supporting tantalum coating layer (35) includes a supporting tantalum carbide layer (37) interposed between the plate body (34) and the supporting tantalum silicide layer (38), B13 or B14. The heat treatment apparatus (1A, 1B) described in .
 [B16]前記支持側タンタルカーバイド層(37)は、TaC層(37a)およびTaC層(37b)のうちの少なくとも1つを含む、B15に記載の熱処理装置(1A、1B)。 [B16] The heat treatment apparatus (1A, 1B) according to B15, wherein the supporting tantalum carbide layer (37) includes at least one of a Ta 2 C layer (37a) and a TaC layer (37b).
 [B17]前記支持側タンタルコーティング層(35)は、前記板本体(34)および前記支持側タンタルカーバイド層(37)の間に介在された支持側タンタル層(36)を含む、B15またはB16に記載の熱処理装置(1A、1B)。 [B17] The supporting tantalum coating layer (35) includes a supporting tantalum layer (36) interposed between the plate body (34) and the supporting tantalum carbide layer (37), in B15 or B16. The heat treatment apparatus (1A, 1B) described.
 [B18]前記板本体(34)は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、B12~B17のいずれか一つに記載の熱処理装置(1A、1B)。 [B18] The plate main body (34) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), B12~ The heat treatment apparatus (1A, 1B) according to any one of B17.
 [B19]前記炉心管(10)を開閉するように構成された蓋ユニット(25)をさらに含み、前記支持ユニット(30)は、前記蓋ユニット(25)が前記炉心管(10)を閉塞した状態で前記処理空間(13)に収容されるように前記蓋ユニット(25)の上に配置されている、B1~B18のいずれか一つに記載の熱処理装置(1A、1B)。 [B19] The support unit (30) further includes a lid unit (25) configured to open and close the reactor core tube (10), and the support unit (30) is configured such that the lid unit (25) closes the reactor core tube (10). The heat treatment apparatus (1A, 1B) according to any one of B1 to B18, wherein the heat treatment apparatus (1A, 1B) is arranged on the lid unit (25) so as to be accommodated in the treatment space (13) in a state of being accommodated in the treatment space (13).
 [B20]前記蓋ユニット(25)が前記炉心管(10)を閉塞した状態で前記処理空間(13)に収容されるように前記蓋ユニット(25)の上に配置された保温ユニット(26)をさらに含み、前記支持ユニット(30)は、前記蓋ユニット(25)が前記炉心管(10)を閉塞した状態で前記処理空間(13)に収容されるように前記保温ユニット(26)の上に配置されている、B19に記載の熱処理装置(1A、1B)。 [B20] A heat retention unit (26) disposed on the lid unit (25) so that the lid unit (25) is accommodated in the processing space (13) with the reactor core tube (10) closed. The support unit (30) is arranged above the heat retention unit (26) so that the lid unit (25) is accommodated in the processing space (13) with the reactor core tube (10) closed. The heat treatment apparatus (1A, 1B) according to B19, which is located at.
 [B21]前記支持ユニット(30)を前記処理空間(13)に搬入し、前記支持ユニット(30)を前記処理空間(13)から搬出する搬送ユニット(50)をさらに含む、B1~B20のいずれか一つに記載の熱処理装置(1A、1B)。 [B21] Any of B1 to B20, further including a transport unit (50) that transports the support unit (30) into the processing space (13) and transports the support unit (30) from the processing space (13). The heat treatment apparatus (1A, 1B) described in one of the above.
 [B22]前記処理空間(13)に処理ガスを供給するガス供給ユニット(51)と、前記処理空間(13)の処理ガスを排気するガス排気ユニット(52)と、をさらに含む、B1~B21のいずれか一つに記載の熱処理装置(1A、1B)。 [B22] B1 to B21, further including a gas supply unit (51) that supplies a processing gas to the processing space (13), and a gas exhaust unit (52) that exhausts the processing gas from the processing space (13). The heat treatment apparatus (1A, 1B) according to any one of (1A, 1B).
 [C1]シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有し、前記シリコンカーバイドウエハ(2)を支持する支持部(41)を有する柱本体(39)と、前記柱本体(39)を被覆するタンタルコーティング層(40)を有する支柱(33)と、を含む、支持ユニット(30)。 [C1] A pillar main body (39) having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer (2) and having a support part (41) that supports the silicon carbide wafer (2), and the pillar main body (39) a support unit (30) comprising a strut (33) having a tantalum coating layer (40) covering the strut (33);
 [C2]前記支持部(41)は、切欠き状のスリット(42)からなる、C1に記載の支持ユニット(30)。 [C2] The support unit (30) according to C1, wherein the support portion (41) is a notch-shaped slit (42).
 [C3]前記タンタルコーティング層(40)は、前記柱本体(39)を被覆するタンタルシリサイド層(45)を含む、C1またはC2に記載の支持ユニット(30)。 [C3] The support unit (30) according to C1 or C2, wherein the tantalum coating layer (40) includes a tantalum silicide layer (45) that covers the pillar body (39).
 [C4]支持板(31、32)をさらに含み、前記支柱(33)は、前記支持板(31、32)に連結されている、C1~C3のいずれか一つに記載の支持ユニット(30)。 [C4] The support unit (30) according to any one of C1 to C3 further includes a support plate (31, 32), and the support column (33) is connected to the support plate (31, 32). ).
 [C5]前記支持板(31、32)は、前記シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有する板本体(34)、および、前記板本体(34)を被覆する支持側タンタルコーティング層(35)を含む、C4に記載の支持ユニット(30)。 [C5] The support plate (31, 32) includes a plate body (34) having a heat-resistant temperature higher than the heat-resistant temperature of the silicon carbide wafer (2), and a support-side tantalum coating that covers the plate body (34). Support unit (30) according to C4, comprising a layer (35).
 [D1]シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有する板本体(34)、および、前記板本体(34)を被覆するタンタルコーティング層(35)を有する支持板(31、32)と、前記支持板(31、32)に連結され、前記シリコンカーバイドウエハ(2)を支持する支持部(41)を有する支柱(33)と、を含む、支持ユニット(30)。 [D1] Support plate (31, 32) having a plate body (34) having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer (2), and a tantalum coating layer (35) covering the plate body (34). and a support unit (33) connected to the support plate (31, 32) and having a support part (41) for supporting the silicon carbide wafer (2).
 [D2]前記タンタルコーティング層(35)は、前記板本体(34)を被覆するタンタルシリサイド層(38)を含む、D1に記載の支持ユニット(30)。 [D2] The support unit (30) according to D1, wherein the tantalum coating layer (35) includes a tantalum silicide layer (38) covering the plate body (34).
 [E1]シリコンカーバイドウエハ(2)の熱処理に際して当該シリコンカーバイドウエハ(2)と併用されるダミーウエハ(70)であって、前記シリコンカーバイドウエハ(2)の耐熱温度以上の耐熱温度を有するウエハ本体(71)と、前記ウエハ本体(71)を被覆するタンタルコーティング層(72)と、を含む、ダミーウエハ(70)。 [E1] A dummy wafer (70) that is used together with the silicon carbide wafer (2) during heat treatment of the silicon carbide wafer (2), and has a wafer body ( 71); and a tantalum coating layer (72) covering said wafer body (71).
 [E2]前記タンタルコーティング層(72)は、前記ウエハ本体(71)を被覆するタンタルシリサイド層(78)を含む、E1に記載のダミーウエハ(70)。 [E2] The dummy wafer (70) according to E1, wherein the tantalum coating layer (72) includes a tantalum silicide layer (78) covering the wafer body (71).
 [E3]前記タンタルシリサイド層(78)は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む、E2に記載のダミーウエハ(70)。 [E3] The tantalum silicide layer (78) includes at least one of two TaSi layers, three Ta 5 Si layers, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. Dummy wafer (70) described in E2.
 [E4]前記タンタルコーティング層(72)は、前記ウエハ本体(71)および前記タンタルシリサイド層(78)の間に介在されたタンタルカーバイド層(77)を含む、E2またはE3に記載のダミーウエハ(70)。 [E4] The dummy wafer (70) according to E2 or E3, wherein the tantalum coating layer (72) includes a tantalum carbide layer (77) interposed between the wafer body (71) and the tantalum silicide layer (78). ).
 [E5]前記タンタルカーバイド層(77)は、TaC層(77a)およびTaC層(77b)のうちの少なくとも1つを含む、E4に記載のダミーウエハ(70)。 [E5] The dummy wafer (70) according to E4, wherein the tantalum carbide layer (77) includes at least one of a Ta 2 C layer (77a) and a TaC layer (77b).
 [E6]前記タンタルコーティング層(72)は、前記ウエハ本体(71)および前記タンタルカーバイド層(77)の間に介在されたタンタル層(76)を含む、E4またはE5に記載のダミーウエハ(70)。 [E6] The dummy wafer (70) according to E4 or E5, wherein the tantalum coating layer (72) includes a tantalum layer (76) interposed between the wafer body (71) and the tantalum carbide layer (77). .
 [E7]前記ウエハ本体(71)は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、E1~E6のいずれか一つに記載のダミーウエハ(70)。 [E7] The wafer body (71) is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC), E1 to A dummy wafer (70) according to any one of E6.
 以上、実施形態が詳細に説明されたが、これらは技術的内容を明示する具体例に過ぎない。この明細書から抽出される種々の技術的思想は、明細書内の説明順序や実施形態の順序等に制限されずにそれらの間で適宜組み合わせ可能である。 Although the embodiments have been described in detail above, these are merely specific examples to clarify the technical contents. Various technical ideas extracted from this specification can be appropriately combined without being limited by the order of explanation or the order of embodiments in the specification.
1A  熱処理装置
1B  熱処理装置
2   SiCウエハ
10  炉心管
11  管本体
12  第1タンタルコーティング層
13  処理空間
14  内壁
18  第1タンタル層
19  第1タンタルカーバイド層
19a TaC層
19b TaC層
20  第1タンタルシリサイド層
25  蓋ユニット
26  保温ユニット
30  支持ユニット
31  第1支持板
32  第2支持板
33  支柱
34  板本体
35  第2タンタルコーティング層
36  第2タンタル層
37  第2タンタルカーバイド層
37a TaC層
37b TaC層
38  第2タンタルシリサイド層
39  柱本体
40  第3タンタルコーティング層
41  支持部
42  スリット
43  第3タンタル層
44  第3タンタルカーバイド層
44a TaC層
44b TaC層
45  第3タンタルシリサイド層
50  搬送ユニット
51  ガス供給ユニット
52  ガス排気ユニット
53  加熱ユニット
61  管本体
62  内管
63  外管
70  ダミーウエハ
71  ウエハ本体
72  第4タンタルコーティング層
76  第4タンタル層
77  第4タンタルカーバイド層
77a TaC層
77b TaC層
78  第4タンタルシリサイド層
1A Heat treatment apparatus 1B Heat treatment apparatus 2 SiC wafer 10 Furnace tube 11 Tube body 12 First tantalum coating layer 13 Processing space 14 Inner wall 18 First tantalum layer 19 First tantalum carbide layer 19a Ta2C layer 19b TaC layer 20 First tantalum silicide Layer 25 Lid unit 26 Heat retention unit 30 Support unit 31 First support plate 32 Second support plate 33 Support column 34 Plate body 35 Second tantalum coating layer 36 Second tantalum layer 37 Second tantalum carbide layer 37a Ta 2 C layer 37b TaC layer 38 Second tantalum silicide layer 39 Pillar body 40 Third tantalum coating layer 41 Support part 42 Slit 43 Third tantalum layer 44 Third tantalum carbide layer 44a Ta 2 C layer 44b TaC layer 45 Third tantalum silicide layer 50 Transport unit 51 Gas Supply unit 52 Gas exhaust unit 53 Heating unit 61 Tube body 62 Inner tube 63 Outer tube 70 Dummy wafer 71 Wafer body 72 Fourth tantalum coating layer 76 Fourth tantalum layer 77 Fourth tantalum carbide layer 77a Ta 2 C layer 77b TaC layer 78 4 tantalum silicide layer

Claims (20)

  1.  シリコンカーバイドウエハが収容される処理空間を区画する内壁を有し、前記シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有する管本体と、
     前記内壁を被覆するタンタルコーティング層と、を含む、炉心管。
    a tube body having an inner wall that partitions a processing space in which a silicon carbide wafer is accommodated, and having a heat resistance temperature higher than the heat resistance temperature of the silicon carbide wafer;
    a tantalum coating layer covering the inner wall.
  2.  前記タンタルコーティング層は、前記内壁を被覆するタンタルシリサイド層を含む、請求項1に記載の炉心管。 The reactor core tube according to claim 1, wherein the tantalum coating layer includes a tantalum silicide layer covering the inner wall.
  3.  前記タンタルシリサイド層は、TaSi層、TaSi層、TaSi層、TaSi層およびTaSi0.5層のうちの少なくとも1つを含む、請求項2に記載の炉心管。 3 . The tantalum silicide layer includes at least one of a TaSi 2 layer, a Ta 5 Si 3 layer, a Ta 2 Si layer, a Ta 3 Si layer, and a Ta 5 Si 3 C 0.5 layer. Furnace tube.
  4.  前記タンタルコーティング層は、前記内壁および前記タンタルシリサイド層の間に介在されたタンタルカーバイド層を含む、請求項2または3に記載の炉心管。 The furnace tube according to claim 2 or 3, wherein the tantalum coating layer includes a tantalum carbide layer interposed between the inner wall and the tantalum silicide layer.
  5.  前記タンタルカーバイド層は、TaC層およびTaC層のうちの少なくとも1つを含む、請求項4に記載の炉心管。 The furnace tube of claim 4, wherein the tantalum carbide layer includes at least one of a Ta2C layer and a TaC layer.
  6.  前記管本体は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、請求項1~5のいずれか一項に記載の炉心管。 Any one of claims 1 to 5, wherein the tube body is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC). The furnace core tube described in paragraph 1.
  7.  前記管本体は、単管構造を有している、請求項1~6のいずれか一項に記載の炉心管。 The reactor core tube according to any one of claims 1 to 6, wherein the tube body has a single tube structure.
  8.  前記管本体は、内管および外管を含み、前記内管および前記外管によって構成された前記内壁を有する多重管構造を有している、請求項1~6のいずれか一項に記載の炉心管。 The tube body according to any one of claims 1 to 6 has a multi-tube structure including an inner tube and an outer tube, and the inner wall is constituted by the inner tube and the outer tube. Furnace tube.
  9.  請求項1~8のいずれか一項に記載の前記炉心管と、
     前記シリコンカーバイドウエハを支持した状態で前記処理空間内に収容されるように構成された支持ユニットと、
     前記炉心管の周囲に配置された加熱ユニットと、を含む、熱処理装置。
    The furnace core tube according to any one of claims 1 to 8,
    a support unit configured to be accommodated in the processing space while supporting the silicon carbide wafer;
    A heating unit disposed around the furnace core tube.
  10.  前記支持ユニットは、前記シリコンカーバイドウエハを支持する支持部を有する支柱を含む、請求項9に記載の熱処理装置。 The heat treatment apparatus according to claim 9, wherein the support unit includes a column having a support portion that supports the silicon carbide wafer.
  11.  前記支持部は、支持溝からなる、請求項10に記載の熱処理装置。 The heat treatment apparatus according to claim 10, wherein the support portion comprises a support groove.
  12.  前記支柱は、前記シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有する柱本体、および、前記柱本体を被覆する支柱側タンタルコーティング層を含む、請求項10または11に記載の熱処理装置。 The heat treatment apparatus according to claim 10 or 11, wherein the pillar includes a pillar main body having a heat resistant temperature equal to or higher than the heat resistant temperature of the silicon carbide wafer, and a pillar side tantalum coating layer covering the pillar main body.
  13.  前記柱本体は、カーボン(C)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)およびシリコンカーバイド(SiC)のうちの少なくとも1つによって構成されている、請求項12に記載の熱処理装置。 The heat treatment apparatus according to claim 12, wherein the pillar body is made of at least one of carbon (C), molybdenum (Mo), tantalum (Ta), tungsten (W), and silicon carbide (SiC). .
  14.  前記支柱側タンタルコーティング層は、前記柱本体を被覆する支柱側タンタルシリサイド層を含む、請求項12または13に記載の熱処理装置。 The heat treatment apparatus according to claim 12 or 13, wherein the pillar-side tantalum coating layer includes a pillar-side tantalum silicide layer that covers the pillar body.
  15.  前記炉心管を開閉するように構成された蓋ユニットと、
     前記蓋ユニットが前記炉心管を閉塞した状態で前記処理空間に収容されるように前記蓋ユニットの上に配置された保温ユニットと、をさらに含み、
     前記支持ユニットは、前記蓋ユニットが前記炉心管を閉塞した状態で前記処理空間に収容されるように前記保温ユニットの上に配置されている、請求項9~14のいずれか一項に記載の熱処理装置。
    a lid unit configured to open and close the reactor core tube;
    further comprising a heat retention unit disposed on the lid unit so that the lid unit is accommodated in the processing space with the reactor core tube closed;
    The support unit according to any one of claims 9 to 14, wherein the support unit is arranged on the heat retention unit so that the lid unit is accommodated in the processing space with the reactor core tube closed. Heat treatment equipment.
  16.  前記支持ユニットを前記処理空間に搬入し、前記支持ユニットを前記処理空間から搬出する搬送ユニットをさらに含む、請求項9~15のいずれか一項に記載の熱処理装置。 The heat treatment apparatus according to any one of claims 9 to 15, further comprising a transport unit that transports the support unit into the processing space and transports the support unit from the processing space.
  17.  前記処理空間に処理ガスを供給するガス供給ユニットと、
     前記処理空間の処理ガスを排気するガス排気ユニットと、をさらに含む、請求項9~16のいずれか一項に記載の熱処理装置。
    a gas supply unit that supplies processing gas to the processing space;
    The heat processing apparatus according to any one of claims 9 to 16, further comprising a gas exhaust unit that exhausts processing gas from the processing space.
  18.  シリコンカーバイドウエハの耐熱温度以上の耐熱温度を有し、前記シリコンカーバイドウエハを支持する支持部を有する柱本体と、
     前記柱本体を被覆するタンタルコーティング層を有する支柱と、を含む、支持ユニット。
    a pillar body having a heat-resistant temperature higher than the heat-resistant temperature of a silicon carbide wafer and having a support portion that supports the silicon carbide wafer;
    A support unit comprising: a column having a tantalum coating layer covering the column body.
  19.  前記支持部は、切欠き状のスリットからなる、請求項18に記載の支持ユニット。 19. The support unit according to claim 18, wherein the support portion includes a notch-shaped slit.
  20.  前記タンタルコーティング層は、前記柱本体を被覆するタンタルシリサイド層を含む、請求項18または19に記載の支持ユニット。 The support unit according to claim 18 or 19, wherein the tantalum coating layer includes a tantalum silicide layer covering the pillar body.
PCT/JP2023/006635 2022-03-31 2023-02-24 Furnace core tube, heat treatment apparatus and support unit WO2023189056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061170 2022-03-31
JP2022061170 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189056A1 true WO2023189056A1 (en) 2023-10-05

Family

ID=88200459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006635 WO2023189056A1 (en) 2022-03-31 2023-02-24 Furnace core tube, heat treatment apparatus and support unit

Country Status (1)

Country Link
WO (1) WO2023189056A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283336A (en) * 2009-05-01 2010-12-16 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP2016050164A (en) * 2014-09-02 2016-04-11 昭和電工株式会社 SiC chemical vapor deposition apparatus
WO2016079980A1 (en) * 2014-11-18 2016-05-26 東洋炭素株式会社 Sic substrate treatment method
WO2016079983A1 (en) * 2014-11-18 2016-05-26 東洋炭素株式会社 Etching method for sic substrate and holding container
JP2021190547A (en) * 2020-05-29 2021-12-13 昭和電工株式会社 Susceptor, chemical vapor deposition device, and manufacturing method for epitaxial wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283336A (en) * 2009-05-01 2010-12-16 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP2016050164A (en) * 2014-09-02 2016-04-11 昭和電工株式会社 SiC chemical vapor deposition apparatus
WO2016079980A1 (en) * 2014-11-18 2016-05-26 東洋炭素株式会社 Sic substrate treatment method
WO2016079983A1 (en) * 2014-11-18 2016-05-26 東洋炭素株式会社 Etching method for sic substrate and holding container
JP2021190547A (en) * 2020-05-29 2021-12-13 昭和電工株式会社 Susceptor, chemical vapor deposition device, and manufacturing method for epitaxial wafer

Similar Documents

Publication Publication Date Title
JP6208588B2 (en) Support mechanism and substrate processing apparatus
EP2099063B1 (en) Film forming apparatus and method of forming film
TWI373818B (en) Vertical boat and vertical heat processing apparatus for semiconductor process
KR101814478B1 (en) Support structure, processing container structure and processing apparatus
US6344631B1 (en) Substrate support assembly and processing apparatus
TWI736687B (en) Processing device and cover member
EP2099062A1 (en) Film deposition apparatus and film deposition method
US6740167B1 (en) Device for mounting a substrate and method for producing an insert for a susceptor
JP5098873B2 (en) Susceptor and vapor phase growth apparatus for vapor phase growth apparatus
WO2023189056A1 (en) Furnace core tube, heat treatment apparatus and support unit
EP2516048B1 (en) Heat treatment container for vacuum heat treatment apparatus
JP4369448B2 (en) Quartz product baking method
KR20190126716A (en) Heat treatment apparatus
US20010052324A1 (en) Device for producing and processing semiconductor substrates
WO2004055874A1 (en) Method for producing silicon epitaxial wafer
JP2002033284A (en) Wafer holder for vertical cvd
JP7023147B2 (en) Insulation structure and vertical heat treatment equipment
CN112334607B (en) Silicon carbide single crystal and method for producing same
WO2020137171A1 (en) Vapor phase growth device and carrier used in same
JP5946124B2 (en) Manufacturing method of semiconductor device
JP6290585B2 (en) Batch type substrate processing equipment
JP2009158504A (en) Apparatus for manufacturing semiconductor and method of manufacturing semiconductor device
US20220186374A1 (en) Susceptor arrangement of a cvd reactor
JP3507624B2 (en) Heat treatment boat and heat treatment equipment
JP4665204B2 (en) Thermal processing chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779086

Country of ref document: EP

Kind code of ref document: A1