WO2023189034A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2023189034A1
WO2023189034A1 PCT/JP2023/006404 JP2023006404W WO2023189034A1 WO 2023189034 A1 WO2023189034 A1 WO 2023189034A1 JP 2023006404 W JP2023006404 W JP 2023006404W WO 2023189034 A1 WO2023189034 A1 WO 2023189034A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
shaft
drive device
flow path
motor
Prior art date
Application number
PCT/JP2023/006404
Other languages
French (fr)
Japanese (ja)
Inventor
優海 杉野
直大 和田
祐輔 牧野
啓介 麻生
祥平 大菅
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023189034A1 publication Critical patent/WO2023189034A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a drive device.
  • This application claims priority based on Japanese Patent Application No. 2022-061134 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a structure in which the shafts on the motor side and the speed reducer side are hollow shafts, and oil is supplied to the connecting portion by flowing oil into the hollow shafts.
  • one of the objects of the present invention is to provide a drive device that can supply fluid to a connecting portion between shafts.
  • One aspect of the drive device of the present invention includes a rotor having a first shaft that rotates around a central axis, a motor having a stator surrounding the rotor, a plurality of gears, and a first shaft that rotates around the central axis.
  • a housing that has two shafts and is provided with a power transmission section that transmits the power of the motor, a motor chamber that accommodates the motor, and a gear chamber that accommodates the power transmission section; and a housing that supports the first shaft.
  • a second bearing that supports the second shaft, a flow path through which fluid flows, and a first storage section and a second storage section in which the fluid is stored.
  • One of the axially one end of the first shaft and the other axially end of the second shaft has a recess in which a plurality of axially extending spline grooves are provided in the inner circumferential surface.
  • the other has a convex portion provided with a plurality of spline protrusions extending in the axial direction on the outer circumferential surface and inserted into the concave portion.
  • the first shaft and the second shaft are connected to each other by engagement between the spline groove of the recess and the spline protrusion of the convex part.
  • the housing has a partition wall that partitions the motor chamber and the gear chamber.
  • the partition wall is provided with a communication hole that communicates the motor chamber and the gear chamber.
  • the inner peripheral surface of the communication hole holds the first bearing and the second bearing.
  • a connection space in which the recess opens is provided between the first bearing and the second bearing in the communication hole in the axial direction.
  • the flow path includes a first flow path that connects the first storage section and the connection space, a second flow path that connects the connection space and the inside of the recess, and a connection space and the second storage section. and a third flow path connecting the. The fluid flows into the first flow path, the second flow path, and the third flow path.
  • a drive device that is capable of supplying fluid to a connecting portion between shafts.
  • FIG. 1 is a conceptual diagram of a drive device according to an embodiment.
  • FIG. 2 is a front view of the gear chamber of one embodiment viewed from one side in the axial direction.
  • FIG. 3 is a rear view of the gear chamber of one embodiment viewed from the other axial side.
  • FIG. 4 is a cross-sectional view of a connecting portion of a first shaft and a second shaft in one embodiment.
  • FIG. 5 is a partial cross-sectional view of a coupling portion of one embodiment.
  • FIG. 6 is a cross-sectional view of a connecting portion of a first shaft and a second shaft in a modified example.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the up-down direction), the +Z direction is the upper side (opposite to the direction of gravity), and the -Z direction is the lower side (the direction of gravity).
  • the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle in which the drive device 1 is mounted.
  • the side to which the X-axis arrow points (+X side) is the front side of the vehicle, and the side opposite to the side to which the X-axis arrow points (-X side) is the rear side of the vehicle.
  • the Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle.
  • the side to which the Y-axis arrow points (+Y side) is the left side of the vehicle, and the side opposite to the side to which the Y-axis arrow points (-Y side) is the right side of the vehicle.
  • the front-rear direction and the left-right direction are horizontal directions perpendicular to the vertical direction.
  • the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction", and the radial direction centered on the central axis J1 is simply referred to as the "radial direction”.
  • the circumferential direction centered on the central axis J1, that is, the circumferential direction around the central axis J1 is simply referred to as the "circumferential direction.”
  • the above-mentioned "parallel direction” also includes substantially parallel directions.
  • the -Y direction may be simply referred to as one axial direction
  • the +Y direction may simply be referred to as the other axial direction.
  • FIG. 1 is a conceptual diagram of a drive device 1 of this embodiment.
  • the drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV).
  • the drive device 1 includes a motor 2, a power transmission section 4, an inverter 7, a housing 6, and a plurality of bearings 5A, 5B, 5C, 5D, 5E, 5F, 5G, and 5H.
  • Housing 6 accommodates motor 2, power transmission section 4, inverter 7, and a plurality of bearings 5A to 5H.
  • the motor 2, the power transmission section 4, and the inverter 7 are arranged on the central axis J1.
  • the plurality of bearings 5A to 5H are respectively referred to as a first bearing 5A, a second bearing 5B, a third bearing 5C, a fourth bearing 5D, a fifth bearing 5E, a sixth bearing 5F, a seventh bearing 5G, and 8th bearing 5H.
  • the motor 2 of this embodiment is an inner rotor type three-phase AC motor.
  • the motor 2 functions both as an electric motor and as a generator. Note that the configuration of the motor 2 is not limited to this embodiment, and may be, for example, a four-phase or more AC motor.
  • the motor 2 is arranged in the motor chamber R1 of the housing 6.
  • the motor 2 includes a rotor 20 and a stator 30 that faces the rotor 20 in the radial direction.
  • the motor 2 of this embodiment is an inner rotor type motor in which a rotor 20 is arranged inside a stator 30.
  • the rotor 20 rotates around a central axis J1 that extends in the horizontal direction.
  • the rotor 20 includes a first shaft 21, a rotor core 24 fixed to the outer peripheral surface of the first shaft 21, and a rotor magnet (not shown) fixed to the rotor core 24.
  • the torque of the rotor 20 is transmitted to the power transmission section 4.
  • the first shaft 21 extends in the axial direction centering on the central axis J1.
  • the first shaft 21 rotates around the central axis J1. Both ends of the first shaft 21 are rotatably supported by a first bearing 5A and a third bearing 5C.
  • the rotor 20 of this embodiment is provided with a pair of fans 25.
  • the fan 25 rotates together with the rotor 20 around the central axis J1.
  • One of the pair of fans 25 is fixed to the end surface of the rotor core 24 on one axial side, and the other is fixed to the end surface of the rotor core 24 on the other axial side.
  • One fan 25 faces each coil end of the stator 30.
  • the fan 25 sends air radially outward.
  • the fan 25 circulates air within the motor room R1.
  • the motor 2 can be cooled by the wind generated by the fan 25 without directly applying refrigerant to the motor 2.
  • the seal structure of the motor chamber R1 can be simplified.
  • the stator 30 is held in the housing 6.
  • the stator 30 surrounds the rotor 20 from the outside in the radial direction.
  • the stator 30 includes an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke.
  • a coil wire is arranged between the magnetic pole teeth.
  • the coil wire located within the gap between adjacent magnetic pole teeth constitutes the coil 31.
  • the insulator is made of an insulating material.
  • Inverter 7 is electrically connected to motor 2 .
  • the inverter 7 is connected to a battery (not shown) mounted on the vehicle, converts direct current supplied from the battery into alternating current, and supplies the alternating current to the motor 2. Further, the inverter 7 controls the motor 2.
  • the inverter 7 of this embodiment is arranged on the other axial side (+Y side) with respect to the motor 2. According to this embodiment, the drive device 1 can be made smaller in the radial direction compared to the case where the inverter 7 is arranged outside the motor 2 in the radial direction.
  • the power transmission section 4 is arranged on one axial side (-Y side) with respect to the motor 2.
  • the power transmission section 4 is connected to the rotor 20 and transmits the power of the motor 2, and outputs the power to the output shaft 47.
  • the power transmission section 4 includes a reduction gear 4a and a differential gear 4b. That is, the drive device 1 includes a speed reduction device 4a and a differential device 4b.
  • the torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a.
  • the reduction gear device 4a of this embodiment the rotational axes of each gear are arranged in parallel.
  • the differential device 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
  • the reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43.
  • the differential device 4b includes a ring gear 46g, a differential case 46, and a differential mechanism section 46c disposed inside the differential case 46. That is, the power transmission section 4 includes a plurality of gears 41, 42, 43, 46g and a plurality of shafts 44, 45.
  • the second shaft 44 extends in the axial direction centering on the central axis J1.
  • the second shaft 44 is arranged coaxially with the first shaft 21.
  • the second shaft 44 is connected to the end of the first shaft 21 on the one axial side (-Y side) at the end on the other axial side (+Y side).
  • the second shaft 44 rotates together with the first shaft 21 about the central axis J1.
  • the second shaft 44 is rotatably supported by the second bearing 5B and the fourth bearing 5D.
  • the first gear 41 is fixed to the outer peripheral surface of the second shaft 44.
  • the first gear 41 rotates together with the second shaft 44 around the central axis J1.
  • the third shaft 45 rotates around an intermediate axis J2 that is parallel to the central axis J1.
  • the third shaft 45 is rotatably supported by the fifth bearing 5E and the sixth bearing 5F.
  • the second gear 42 and the third gear 43 are arranged side by side in the axial direction.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45.
  • the second gear 42 and the third gear 43 are connected via a third shaft 45.
  • the second gear 42 and the third gear 43 rotate about the intermediate axis J2.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with a ring gear 46g of the differential device 4b.
  • the first gear 41, the second gear 42, the third gear 43, and the ring gear 46g are each helical gears.
  • the ring gear 46g rotates around an output axis J3 that is parallel to the central axis J1. Torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. Ring gear 46g is fixed to differential case 46.
  • the differential case 46 includes a case portion 46b that accommodates a differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes to the other side and the other side in the axial direction with respect to the case portion 46b. That is, the power transmission section 4 includes a differential case shaft 46a.
  • the differential case shaft 46a has a cylindrical shape that extends in the axial direction centering on the output axis J3.
  • the differential case shaft 46a is rotatably supported by a seventh bearing 5G and an eighth bearing 5H.
  • Ring gear 46g is provided on the outer peripheral surface of differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g about the output axis J3.
  • the pair of output shafts 47 are connected to the differential gear 4b.
  • the pair of output shafts 47 protrude from the differential case 46 of the differential device 4b to the other side in the axial direction and to the other side.
  • the output shaft 47 is arranged inside the differential case shaft 46a.
  • the output shaft 47 is rotatably supported on the inner peripheral surface of the differential case shaft 46a via a bearing (not shown).
  • the torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, first gear 41, second gear 42, third shaft 45, and third gear 43 of the motor 2, It is output to the output shaft 47 via the differential mechanism section 46c of the differential device 4b.
  • the plurality of gears 41, 42, 43, and 46g of the power transmission section 4 transmit the power of the motor 2 to the second shaft 44, the third shaft 45, and the differential case shaft 46a in this order.
  • the housing 6 includes a first housing member 6A, a second housing member 6B, a third housing member 6C, a water jacket 6D, and a bearing holder 6E.
  • the first housing member 6A, the second housing member 6B, the third housing member 6C, the water jacket 6D, and the bearing holder 6E are each separate members.
  • the first housing member 6A is arranged on the other axial side (+Y side) of the second housing member 6B.
  • the third housing member 6C is arranged on one axial side (-Y side) of the second housing member 6B.
  • the water jacket 6D and the bearing holder 6E are arranged inside the second housing member 6B.
  • the housing 6 is provided with a circulation channel 90 through which the cooling water L flows.
  • the cooling water L is, for example, water.
  • the circulation waterway 90 includes an external pipe 97 that passes through the outside of the housing 6, and a first waterway 91, a second waterway 92, a third waterway (waterway) 93, and a fourth waterway 94 that pass through the inside of the housing 6. include.
  • a radiator (not shown) that cools the cooling water L is arranged in the path of the external piping 97.
  • the cooling water L flows inside the housing 6 in the order of the first water channel 91 , the second water channel 92 , the third water channel 93 , and the fourth water channel 94 .
  • the first water channel 91 is provided in the first housing member 6A.
  • the first water channel 91 is connected to an external pipe 97.
  • the cooling water L mainly cools the inverter 7 in the first water channel 91 .
  • the second water channel 92 is provided in the second housing member 6B.
  • the second waterway 92 connects the first waterway 91 and the third waterway 93.
  • the third water channel 93 is provided along the outer peripheral surface of the water jacket 6D.
  • the cooling water L mainly cools the motor 2 in the third water channel 93.
  • the fourth water channel 94 is provided in the second housing member 6B.
  • the fourth water channel 94 is connected to an external pipe 97.
  • the second housing member 6B accommodates the motor 2 and opens on the other axial side (+Y side).
  • the second housing member 6B includes a cylindrical outer cylindrical portion 65 centered on the central axis J1, and is arranged on one axial side ( ⁇ Y side) of the outer cylindrical portion 65 and is located on one axial side of the outer cylindrical portion 65. It has a partition wall 65a that covers the opening, and a first peripheral wall portion 65b that extends from the outer edge of the partition wall 65a to one side in the axial direction (-Y side). That is, the housing 6 has a partition wall 65a.
  • a communication hole 65h is provided in the partition wall 65a.
  • a first bearing 5A, a second bearing 5B, and a seal member 5S are arranged inside the communication hole 65h.
  • the first shaft 21 and the second shaft 44 are connected to each other inside the communication hole 65h.
  • the configuration of the communication hole 65h will be described in detail later based on FIG. 4.
  • the outer cylindrical portion 65 surrounds the motor 2 from the outside in the radial direction.
  • the outer cylindrical portion 65 supports the stator 30 via the water jacket 6D.
  • the outer cylinder portion 65 is provided with a second water channel 92 extending in the axial direction and a fourth water channel 94 extending in the radial direction.
  • the third housing member 6C is arranged on one axial side (-Y side) of the second housing member 6B.
  • the third housing member 6C includes an opposing wall 67 that faces the partition wall 65a, and a second peripheral wall portion 67a extending from the outer edge of the opposing wall 67 toward the other axial side (+Y side).
  • the end face of the second peripheral wall portion 67a on the other axial side (+Y side) is fastened to the end face of the first peripheral wall portion 65b on the one axial side ( ⁇ Y side).
  • the first housing member 6A holds the inverter 7.
  • the first housing member 6A covers the opening on the other axial side (+Y side) of the outer cylinder portion 65 of the second housing member 6B.
  • the water jacket 6D has a cylindrical inner cylinder part 64 centered on the central axis J1, and a protruding rib 64a provided on the outer peripheral surface of the inner cylinder part 64.
  • the inner cylinder portion 64 surrounds the stator 30 from the outside in the radial direction.
  • the inner diameter of the inner cylindrical portion 64 substantially matches the outer diameter of the stator core 32.
  • the inner circumferential surface of the inner cylindrical portion 64 contacts the outer circumferential surface of the stator 30. Moreover, the inner cylinder part 64 is surrounded by the outer cylinder part 65 from the outside in the radial direction. The outer diameter of the inner cylindrical portion 64 is smaller than the inner diameter of the outer cylindrical portion 65 of the second housing member 6B. A gap is provided between the inner cylindrical portion 64 and the outer cylindrical portion 65, which functions as a third water channel 93.
  • the protruding rib 64a extends spirally around the central axis J1.
  • the protruding rib 64a has a tip located at the radially outer end.
  • the tip of the protruding rib 64a contacts the inner circumferential surface of the outer cylindrical portion 65, or faces the inner circumferential surface of the outer cylindrical portion 65 with a slight gap therebetween.
  • the protruding rib 64a partitions off the gap between the inner cylindrical portion 64 and the outer cylindrical portion 65, and forms the third water channel 93 in a spiral shape.
  • the housing 6 is provided with a third water channel 93 that extends along the outer peripheral surface of the stator 30.
  • the stator 30 can be cooled by the cooling water L flowing through the third water channel 93 without directly applying refrigerant to the stator 30 .
  • the seal structure of the motor chamber R1 can be simplified.
  • the third water channel 93 extends spirally has been described.
  • the third water channel 93 is not limited to this embodiment as long as it surrounds the stator 30.
  • the third water channel 93 may be a meandering channel in the axial direction or the circumferential direction.
  • the flow path configuration of the third water channel 93 can be determined by the shape of the protruding rib 64a.
  • the bearing holder 6E is arranged on the other axial side (+Y side) of the motor 2 inside the second housing member 6B.
  • the bearing holder 6E is fixed to the end face of the water jacket 6D on the other axial side (+Y side).
  • the bearing holder 6E holds a third bearing 5C that rotatably supports the rotor 20.
  • a motor chamber R1 that accommodates the motor 2 Inside the housing 6, a motor chamber R1 that accommodates the motor 2, a gear chamber R2 that accommodates the power transmission section 4, and an inverter chamber R3 that accommodates the inverter 7 are provided.
  • the gear chamber R2, the motor chamber R1, and the inverter chamber R3 are arranged in this order from one axial side (-Y side) to the other axial side (+Y side).
  • the motor chamber R1 and the gear chamber R2 are partitioned by a partition wall 65a.
  • Motor chamber R1 and inverter chamber R3 are partitioned by bearing holder 6E.
  • the motor chamber R1 is a space surrounded from the outside in the radial direction by the inner cylinder portion 64 and sandwiched in the axial direction by the partition wall 65a and the bearing holder 6E.
  • the inverter chamber R3 is a space surrounded from the outside in the radial direction by the outer cylinder portion 65 and sandwiched in the axial direction by the bearing holder 6E and the first housing member 6A.
  • the motor chamber R1 and the inverter chamber R3 communicate with each other via a through hole provided in the bearing holder 6E.
  • a breather 63 is provided in the outer cylindrical portion 65 surrounding the inverter chamber R3. Breather 63 communicates motor chamber R1 and inverter chamber R3 with the outside of housing 6. Breather 63 suppresses the pressure in motor chamber R1 and inverter chamber R3 from increasing too much.
  • the gear chamber R2 is a space surrounded by the first circumferential wall portion 65b and the second circumferential wall portion 67a in the radial direction, and sandwiched between the partition wall 65a and the opposing wall 67 in the axial direction.
  • the gear chamber R2 is arranged on one axial side (-Y side) of the motor chamber R1.
  • a fluid O is stored in the gear chamber R2.
  • the fluid O is, for example, oil.
  • the fluid O is used as a lubricating oil for the power transmission section 4 and the bearings.
  • As the fluid O for example, in order to perform the functions of a refrigerant and a lubricant, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity.
  • ATF automatic transmission fluid
  • the housing 6 is provided with a fluid path 50 through which the fluid O passes.
  • fluid path means a path for the fluid O circulating within the housing 6. Therefore, the term “fluid path” refers not only to a tubular flow path that forms a steady flow of fluid O that constantly goes in one direction, but also to a path that temporarily retains fluid O (for example, a storage section), a fluid This concept also includes a path through which O drips and a path through which fluid O scatters.
  • the fluid path 50 includes a first raking path 58, a second raking path 59, a first supply path 51, a second supply path (flow path) 52, a third supply path 53, and a second raking path 59. It has a fourth supply flow path 54 and a fifth supply flow path 55. Further, in the fluid path 50, a first storage section 84, a second storage section 82, and a third storage section B (see FIG. 4) are arranged.
  • the drive device 1 includes a first scraping path 58, a second scraping path 59, a first supply channel 51, a second supply channel 52, a third supply channel 53, a fourth supply channel 54, and a 5 supply channel 55, a first storage section 84, a second storage section 82, and a third storage section B.
  • Fluid O flows through the first supply channel 51 , the second supply channel 52 , the third supply channel 53 , the fourth supply channel 54 , and the fifth supply channel 55 . Further, fluid O is accumulated in the first storage section 84 and the second storage section 82 .
  • the first storage portion 84 is arranged in the gear chamber R2.
  • the first storage section 84 is a catch tank that opens upward.
  • the first storage section 84 receives the fluid O scooped up by each gear (for example, the ring gear 46g and the second gear 42) of the power transmission section 4 within the gear chamber R2.
  • FIG. 2 is a front view of the gear chamber R2 viewed from one axial side (-Y side).
  • FIG. 3 is a rear view of the gear chamber R2 viewed from the other axial side (+Y side).
  • the first storage portion 84 of this embodiment includes a first rib 84d that protrudes from the partition wall 65a to one axial side (-Y side), and a first rib 84d that protrudes from the opposite wall 67 to the other axial side (-Y side). +Y side).
  • the first rib 84d and the second rib 84e are connected with their end surfaces in contact with each other.
  • the second storage portion 82 is a fluid reservoir provided in the lower region of the gear chamber R2. That is, the second storage section 82 in which the fluid O is stored is provided in the lower region of the gear chamber R2. A lower end of the ring gear 46g and a lower end of the second gear 42 are located within the second storage portion 82. Therefore, the ring gear 46g and a portion of the second gear 42 are immersed in the fluid O accumulated in the second storage section 82.
  • the first scooping path 58 scrapes up the fluid O in the second storage section 82 and transfers it to the first storage section 84 by the rotation of the gears of the power transmission section 4 (in this embodiment, the ring gear 46g and the second gear 42). It is a path that leads.
  • the amount of storage in the first storage section 84 increases, and the liquid level of the fluid O in the first storage section 84 increases. Go down.
  • the liquid level in the second storage part 82 can be lowered and the stirring resistance of the power transmission part 4 caused by the fluid O can be reduced.
  • the second scooping path 59 scoops up the fluid O in the second storage section 82 and supplies it to the eighth bearing 5H by the rotation of the gears of the power transmission section 4 (in this embodiment, the ring gear 46g and the second gear 42). This is the route to
  • the first supply channel 51 and the third supply channel 53 are provided on the opposing wall 67 of the third housing member 6C.
  • the first supply channel 51 extends from the first storage section 84 toward the outer peripheral surface of the fourth bearing 5D.
  • the first supply channel 51 supplies the fluid O in the first storage section 84 to the fourth bearing 5D.
  • the third supply channel 53 extends from the first storage section 84 toward the outer peripheral surface of the sixth bearing 5F.
  • the third supply channel 53 supplies the fluid O in the first storage section 84 to the sixth bearing 5F.
  • the second supply flow path 52, the fourth supply flow path 54, and the fifth supply flow path 55 are provided in the partition wall 65a of the second housing member 6B.
  • the second supply channel 52 extends from the first storage section 84 toward the inner peripheral surface of the communication hole 65h. The configuration of the second supply channel 52 will be described in detail later.
  • the fourth supply flow path 54 extends from the first storage section 84 toward the outer peripheral surface of the fifth bearing 5E.
  • the fourth supply channel 54 supplies the fluid O in the first storage section 84 to the fifth bearing 5E.
  • the fifth supply channel 55 extends from the first storage section 84 toward the outer peripheral surface of the seventh bearing 5G.
  • the fifth supply channel 55 supplies the fluid O in the first storage section 84 to the seventh bearing 5G.
  • FIG. 4 is a sectional view of the first shaft 21 and the second shaft 44 arranged in the communication hole 65h.
  • the communication hole 65h communicates the motor chamber R1 and the gear chamber R2.
  • the inner circumferential surface of the communication hole 65h is circular centered on the central axis J1.
  • the inner peripheral surface of the communication hole 65h holds the first bearing 5A, the second bearing 5B, and the seal member 5S.
  • the partition wall 65a has a cylindrical portion 11 that protrudes toward the gear chamber R2 side (ie, one axial side (-Y side)) along the inner edge of the communication hole 65h.
  • the cylindrical portion 11 has a cylindrical shape centered on the central axis J1.
  • the cylindrical portion 11 surrounds and holds the first bearing 5A and the second bearing 5B.
  • the inner circumferential surface of the cylindrical portion 11 is the inner circumferential surface of the communication hole 65h.
  • the inner circumferential surface of the communication hole 65h includes a first inner circumferential surface 66a, a second inner circumferential surface 66b, a third inner circumferential surface 66c, a fourth inner circumferential surface 66d, a first stepped surface 66e, a second stepped surface 66f, and a third inner circumferential surface 66c. It has a three-step surface 66g.
  • the first inner circumferential surface 66a, the second inner circumferential surface 66b, the third inner circumferential surface 66c, and the fourth inner circumferential surface 66d extend from the other axial side (+Y side) to the one axial side (-Y side). Line up in the order of levers.
  • the first inner peripheral surface 66a surrounds the outer peripheral surface of the first bearing 5A.
  • the first inner peripheral surface 66a holds the first bearing 5A.
  • the diameter of the first inner peripheral surface 66a is larger than the diameter of the second inner peripheral surface 66b.
  • a first step surface 66e facing the other axial side (+Y side) is provided between the first inner circumferential surface 66a and the second inner circumferential surface 66b.
  • the outer ring 5Aa of the first bearing 5A is pressed against the first step surface 66e.
  • the first bearing 5A supports the first shaft 21.
  • a seal member 5S is held on the second inner circumferential surface 66b.
  • the second inner peripheral surface 66b holds the seal member 5S.
  • the diameter of the second inner circumferential surface 66b is larger than the diameter of the third inner circumferential surface 66c. Therefore, there is a gap between the second inner circumferential surface 66b and the third inner circumferential surface 66c on the other side in the axial direction (+Y side). ) is provided.
  • the seal member 5S contacts and is aligned with the second step surface 66f.
  • the third inner peripheral surface 66c has the smallest diameter on the inner peripheral surface of the communication hole 65h.
  • the third inner circumferential surface 66c surrounds a connection space A, which will be described later, from the outside in the radial direction.
  • the fourth inner peripheral surface 66d surrounds the outer peripheral surface of the second bearing 5B.
  • the fourth inner peripheral surface 66d holds the second bearing 5B.
  • the diameter of the fourth inner peripheral surface 66d is larger than the diameter of the third inner peripheral surface 66c.
  • a third step surface 66g facing one side in the axial direction (-Y side) is provided between the fourth inner circumferential surface 66d and the third inner circumferential surface 66c.
  • the outer ring 5Ba of the second bearing 5B is pressed against the third step surface 66g.
  • the second bearing 5B supports the second shaft 44.
  • the end of the first shaft 21 on one axial side (-Y side) has a recess 21a.
  • the recess 21a has a circular shape centered on the central axis J1 when viewed from the axial direction.
  • the recess 21a has a bottom surface 21b facing one side in the axial direction (-Y side) and an inner circumferential surface facing inward in the radial direction.
  • a plurality of spline grooves 21s are provided on the inner peripheral surface of the recess 21a.
  • the plurality of spline grooves 21s extend in the axial direction.
  • the plurality of spline grooves 21s are arranged along the circumferential direction.
  • the end of the second shaft 44 on the other axial side (+Y side) has a convex portion 44a.
  • the convex portion 44a has a cylindrical shape centered on the central axis J1.
  • the convex portion 44a has a distal end surface 44b facing the other side in the axial direction (+Y side) and an outer circumferential surface facing outward in the radial direction.
  • a plurality of spline protrusions 44s are provided on the outer peripheral surface of the convex portion 44a.
  • the plurality of spline protrusions 44s extend in the axial direction.
  • the plurality of spline protrusions 44s are arranged along the circumferential direction.
  • FIG. 5 is a cross-sectional view showing a connecting portion between the concave portion 21a and the convex portion 44a.
  • the first shaft 21 and the second shaft 44 are connected to each other by engagement between the spline groove 21s of the recess 21a and the spline protrusion 44s of the convex portion 44a.
  • the portion where the spline groove 21s and the spline protrusion 44s engage and are connected will be referred to as a connecting portion 3.
  • the spline groove 21s has a uniform cross-sectional shape and extends along the axial direction.
  • the spline protrusion 44s has a uniform cross-sectional shape and extends in the axial direction.
  • One spline projection 44s is inserted into one spline groove 21s.
  • the diameter of the bottom surface of the spline groove 21s facing radially inward is larger than the diameter of the tip surface facing radially outside of the spline protrusion 44s.
  • the width dimension of the spline groove 21s is larger than the width dimension of the spline protrusion 44s.
  • a gap 3a is provided between the inner surface of the spline groove 21s and the outer surface of the spline projection 44s.
  • the fluid O mutually moves between one end and the other end of the connecting portion 3 in the axial direction through the gap 3a.
  • an axial gap is provided between the bottom surface 21b of the recess 21a and the tip surface 44b of the convex portion 44a.
  • the gap between the bottom surface 21b and the tip surface 44b will be referred to as a third storage section B. That is, the third reservoir B is provided between the bottom surface 21b and the tip surface 44b.
  • the third storage portion B is a space surrounded from the outside in the radial direction by the inner circumferential surface of the recess 21a and sandwiched in the axial direction by the bottom surface 21b and the tip surface 44b.
  • the fluid O remains in the third reservoir B.
  • first shaft 21 and the second shaft 44 Relative movement of the first shaft 21 and the second shaft 44 in the circumferential direction is restricted at the connecting portion 3. Therefore, the first shaft 21 and the second shaft 44 rotate synchronously around the central axis J1. Further, the first shaft 21 and the second shaft 44 allow relative movement in the axial direction in the connecting portion 3.
  • helical gears can be employed as the first gear 41 and the second gear 42. Therefore, the first gear 41 receives a reaction force directed in the axial direction from the second gear 42 during driving.
  • the axial force applied to the first gear 41 is It is possible to suppress the transmission of the heat to the first shaft 21 via the portion 3 . Therefore, it is possible to suppress a large thrust load from being applied to the bearings 5A, 5C that support the second shaft 44.
  • the end of the first shaft 21 on one axial side ( ⁇ Y side) has a stepped shape that becomes narrower toward the tip.
  • the first shaft 21 has a first outer peripheral surface 21d, a second outer peripheral surface 21e, and a third outer peripheral surface 21f.
  • the first outer circumferential surface 21d, the second outer circumferential surface 21e, and the third outer circumferential surface 21f are arranged in this order from the other axial side (+Y side) to the one side.
  • the diameters of the first outer circumferential surface 21d, the second outer circumferential surface 21e, and the third outer circumferential surface 21f decrease in this order.
  • the second outer peripheral surface 21e faces the first inner peripheral surface 66a of the communication hole 65h in the radial direction.
  • the first bearing 5A is mounted on the second outer peripheral surface 21e. That is, the second outer peripheral surface 21e is surrounded by the first bearing 5A.
  • a fourth step surface 21g facing one side in the axial direction (-Y side) is provided between the second outer peripheral surface 21e and the first outer peripheral surface 21d. The inner ring 5Ac of the first bearing 5A is pressed against the fourth step surface 21g.
  • the third outer circumferential surface 21f is located at one end of the first shaft 21 in the axial direction (-Y side).
  • the third outer peripheral surface 21f faces the second inner peripheral surface 66b of the communication hole 65h in the radial direction.
  • the inner end of the seal member 5S contacts the third outer peripheral surface 21f. As the first shaft 21 rotates, the third outer peripheral surface 21f slides on the seal member 5S.
  • connection space A is provided between the first bearing 5A and the second bearing 5B in the axial direction in the communication hole 65h.
  • the space between the first bearing 5A and the second bearing 5B in the axial direction is divided into two by the seal member 5S.
  • the connecting space A of this embodiment is one of the two spaces defined by the seal member 5S on one side in the axial direction (-Y side) where the recess 21a opens. That is, the recess 21a opens in the connection space A.
  • the connection space A of this embodiment is sandwiched between the third inner circumferential surface 66c of the communication hole 65h and the outer circumferential surface of the second shaft 44 in the radial direction, and between the second bearing 5B and the seal member 5S in the axial direction.
  • a fluid O is supplied to the connection space A through a first flow path 52a of a second supply flow path 52, which will be described later.
  • connection space A does not include the insides of the first shaft 21 and the second shaft 44.
  • the connection space A is a space radially inside the inner peripheral surface of the communication hole 65h and radially outside the outer peripheral surfaces of the first shaft 21 and the second shaft 44. That is, the connection space A is located between the first bearing 5A and the second bearing 5B in the communication hole 65h in the axial direction, and between the inner peripheral surface of the communication hole 65h, the outer peripheral surface of the first shaft 21, and the outer peripheral surface of the second shaft 44. It is provided between the surface and the surface in the radial direction.
  • a seal member 5S is provided in the communication hole 65h of this embodiment.
  • the seal member 5S seals the gap between the inner peripheral surface of the communication hole 65h and the outer peripheral surface of the first shaft 21. According to this embodiment, it is possible to seal between the motor chamber R1 and the gear chamber R2, and it is possible to suppress the fluid O from entering the motor chamber R1. Thereby, the seal structure of the motor chamber R1 can be simplified. Moreover, since the seal member 5S retains the fluid O in the connection space A, a large amount of fluid O can be supplied to the connection portion 3 and the second bearing 5B.
  • the seal member 5S is located between the first bearing 5A and the second bearing 5B. Moreover, in this embodiment, the connection space A is provided between the seal member 5S and the second bearing 5B. Since the fluid O is supplied to the connection space A, the fluid O comes into contact with the sealing member 5S. According to this embodiment, it is possible to lubricate the space between the seal member 5S and the third outer circumferential surface 21f of the first shaft 21, and the sliding resistance of the seal member 5S can be suppressed.
  • the seal member 105S may be arranged on the other axial side (+Y side) of the first bearing 5A and the second bearing 5B.
  • the fluid O flowing into the connection space A touches not only the second bearing 5B but also the first bearing 5A, and can lubricate the first bearing 5A.
  • the seal member 5S is held on the inner peripheral surface of the communication hole 65h and contacts the outer peripheral surface of the first shaft 21. Further, in the first shaft 21, the outer diameter of the portion (third outer circumferential surface 21f) in contact with the seal member 5S is smaller than the outer diameter of the portion (second outer circumferential surface 21e) supported by the first bearing 5A. When the first shaft 21 rotates, the seal member 5S and the third outer peripheral surface 21f slide. By reducing the diameter of the third outer circumferential surface 21f, the sliding speed between the seal member 5S and the third outer circumferential surface 21f can be reduced, and heat generation due to sliding can be suppressed.
  • the diameter of the third outer circumferential surface 21f it is possible to reduce the torque applied to the first shaft 21 due to the dynamic friction force during sliding, thereby increasing the rotational efficiency of the first shaft 21. be able to.
  • the outer shape of the second outer circumferential surface 21e larger than the third outer circumferential surface 21f, a sufficient thickness of the first shaft 21 can be ensured inside the second outer circumferential surface 21e. Thereby, the rigidity of the portion of the first shaft 21 supported by the first bearing 5A can be increased, and the first shaft 21 can be stably held by the first bearing 5A.
  • the second supply channel 52 has a first channel 52a, a second channel 52e, and a third channel 52d.
  • the second supply channel 52 is a channel that extends from the first storage section 84 through the connecting section 3 and reaches the second storage section 82 .
  • the first flow path 52a connects the first storage section 84 and the connection space A.
  • the second flow path 52e connects the connection space A and the inside of the recess 21a.
  • the third flow path 52d connects the connection space A and the second storage section 82.
  • the fluid O flows into the first flow path 52a, the second flow path 52e, and the third flow path 52d.
  • the first flow path 52a has a hole 84a, a first groove (groove) 11a, and a second groove 11b.
  • the hole 84a is provided in the partition wall 65a of the housing 6.
  • the hole 84a is formed by drilling.
  • the upper end of the hole 84 a is connected to the first storage section 84 .
  • the upper end of the hole 84a opens to the bottom surface of the first storage section 84.
  • the lower end of the hole 84a is connected to the inner circumferential surface of the cylindrical portion 11. That is, the hole portion 84a penetrates the cylindrical portion 11 in the radial direction. Further, the hole 84a extends from the first storage portion 84 to the inner circumferential surface of the cylindrical portion 11.
  • the cylindrical portion 11 is provided with a hole 84a that extends along the radial direction and constitutes a part of the first flow path 52a.
  • the hole 84a By forming a part of the first flow path 52a as the hole 84a, the fluid O can be stably supplied from the first storage section 84 to the connection space A.
  • the first flow path 52a may penetrate inside and outside of the cylindrical portion 11 by a notch provided in the cylindrical portion 11. That is, the cylindrical portion 11 may be provided with a notch that extends along the radial direction and constitutes a part of the first flow path 52a.
  • the first flow path 52a penetrates the inside of the partition wall 65a at the hole 84a.
  • the first flow path 52a may have a groove or a rib provided on the surface of the partition wall 65a instead of the hole 84a. That is, the partition wall 65a may have a groove or a rib that extends from the first storage section 84 toward the cylindrical section 11 and constitutes a part of the first flow path 52a.
  • the first groove 11a is provided on the inner peripheral surface of the cylindrical portion 11.
  • the first groove 11a of this embodiment is provided on the fourth inner peripheral surface 66d of the communication hole 65h.
  • the first groove 11a extends along the axial direction.
  • the first groove 11a is provided over the entire length of the fourth inner peripheral surface 66d in the axial direction.
  • the fourth inner peripheral surface 66d surrounds the second bearing 5B from the outside in the radial direction. Therefore, the first groove 11a is covered by the outer peripheral surface of the second bearing 5B. The fluid O that reaches the first groove 11a flows through a space surrounded by the inner surface of the first groove 11a and the outer peripheral surface of the second bearing 5B.
  • the first groove 11a has a bottom surface 11c facing radially inward.
  • a hole 84a is opened in the bottom surface 11c. That is, the hole 84a opens to the bottom surface 11c of the first groove 11a.
  • the opening of the hole 84a is covered by the outer peripheral surface of the second bearing 5B, and the fluid O is not supplied from the hole 84a to the connection space A. It's not done smoothly.
  • the first groove 11a is provided in the fourth inner circumferential surface 66d, and the hole 84a is opened at the bottom surface 11c of the first groove 11a, thereby allowing fluid O to flow smoothly from the opening of the hole 84a. can be supplied to
  • the second groove 11b is provided on the third step surface 66g, which is the inner peripheral surface of the communication hole 65h.
  • the second groove 11b extends in the radial direction.
  • the radially outer end of the second groove 11b is connected to the end of the first groove 11a on the other axial side (+Y side).
  • a radially inner end of the second groove 11b is connected to the connection space A.
  • the third step surface 66g contacts the outer ring 5Ba of the second bearing 5B. Therefore, the second groove 11b is covered by the outer ring 5Ba of the second bearing 5B. The fluid O reaching the second groove 11b flows through a space surrounded by the inner surface of the second groove 11b and the outer ring 5Ba of the second bearing 5B.
  • the second channel 52e has an inflow channel 52b and an outflow channel 52c.
  • Both the inflow channel 52b and the outflow channel 52c are channels that connect the connection space A and the third storage section B.
  • the inflow channel 52b is a path through which the fluid O flows from the connection space A toward the third storage section B.
  • the outflow channel 52c is a path through which the fluid O flows from the third storage section B toward the connection space A. Both the inflow channel 52b and the outflow channel 52c pass between the spline groove 21s and the spline protrusion 44s.
  • the fluid O can flow through the inflow channel 52b and the outflow channel 52c simultaneously.
  • a relatively large amount of fluid O remains in the connection space A and a relatively small amount of fluid O remains in the third storage section B, more fluid O flows into the inflow channel 52b.
  • the amount of fluid O accumulated in the connection space A is relatively small and the amount of fluid O remaining in the third storage section B is relatively large, more fluid O flows through the outflow channel 52c.
  • the fluid O can be supplied to the connecting portion 3 by flowing through the second flow path 52e.
  • the fluid O can be filled between the spline groove 21s and the spline protrusion 44s, and the impact on the connecting portion 3 when the rotation direction of the first shaft 21 is switched can be alleviated.
  • the third reservoir B is provided within the recess 21a.
  • the fluid O remains in the third reservoir B. Therefore, when the supply of fluid O from the first storage section 84 to the connection section 3 is delayed, the fluid O in the third storage section B flows through the outflow channel 52c and reaches the connection space A. In other words, the fluid O remaining in the third reservoir B gradually travels through the gap between the spline groove 21s and the spline protrusion 44s, and can lubricate the connecting portion 3.
  • the first shaft 21 and the second shaft 44 of this embodiment are solid shafts. Therefore, the fluid O remaining in the third reservoir B does not flow into the first shaft 21 and the second shaft 44. Therefore, more fluid O remaining in the third reservoir B can be supplied to the connecting part 3.
  • the third flow path 52d is a flow path provided between the inner ring 5Bc and outer ring 5Ba of the second bearing 5B. That is, the third flow path 52d is a flow path that includes the second bearing 5B. According to this embodiment, the second bearing 5B is lubricated by the fluid O flowing through the third flow path 52d.
  • connection space A of this embodiment is connected to the first storage section 84 via the first flow path 52a.
  • the fluid O is stably supplied to the connection space A from the first storage section 84.
  • the connection space A can stably supply the fluid O to the second flow path 52e and the third flow path 52d, and lubricate the connection portion 3 in the second flow path 52e.
  • the second bearing 5B can be lubricated in the third flow path 52d.
  • the second supply flow path 52 includes a first flow path 152a of the modified example instead of the first flow path 52a of the embodiment, or together with the first flow path 52a. may have.
  • the first flow path 152a of the modified example connects the first storage section 84 and the connection space A.
  • the first flow path 152a of the modified example is, for example, a path that passes through a groove provided in the partition wall 65a and reaches the end surface of the second bearing 5B on one axial side (-Y side).
  • the first flow path 152a of the modified example is provided between the inner ring 5Bc and the outer ring 5Ba of the second bearing 5B. That is, the first flow path 152a is a flow path that includes the second bearing 5B.
  • the second bearing 5B can be lubricated by the fluid O flowing through the first flow path 152a.
  • the first storage section 84 and the second storage section 82 are both provided in the gear chamber R2. That is, the second supply flow path 52 is a flow path that flows from the gear chamber R2 into the connection space A and the third storage section B, and returns to the gear chamber R2 again.
  • the connecting portion 3 can be lubricated without allowing the fluid O to enter the motor chamber R1.
  • the fluid O is not allowed to enter the motor chamber R1, so that the sealing structure of the motor chamber R1 can be simplified.
  • the second supply flow path 52 may include a third flow path 152d of a modified example.
  • the third flow path 152d of the modified example connects the connection space A and the motor chamber R1.
  • the third flow path 152d of the modified example can lubricate the first bearing 5A in the path. In this way, if the first storage section 84 is provided in the gear chamber and the second storage section 82 is provided in the gear chamber R2 or the motor chamber R1, the first bearing 5A is , or the second bearing 5B.
  • the second bearing 5B of this embodiment supports the second shaft 44 of the power transmission section 4. Therefore, vibrations caused by the meshing of the gears are more easily transmitted to the second bearing 5B than to the first bearing 5A. According to this embodiment, the operation of the second bearing 5B can be stabilized by providing the third flow path 52d between the outer ring 5Ba and the inner ring 5Bc of the second bearing 5B to lubricate the second bearing 5B. can.
  • the first bearing 5A and the second bearing 5B are ball bearings.
  • the first bearing 5A and the second bearing 5B have spherical rolling elements 5Ab and 5Bb, respectively.
  • the diameter of the rolling elements 5Bb of the second bearing 5B is larger than the diameter of the rolling elements 5Ab of the first bearing 5A.
  • the strength and rigidity of the second bearing 5B which is susceptible to vibrations from the power transmission section 4, can be increased, and the operation of the power transmission section 4 can be made smooth.
  • helical gears are used as the first gear 41 and the second gear 42, an axial force is applied to the second bearing 5B when the power transmission section 4 is driven.
  • the second bearing 5B can stably support the second shaft 44 against the axial force applied to the second shaft 44 by increasing the size of the rolling elements 5Bb.
  • first bearing 5A and the second bearing 5B may be roller bearings having cylindrical rolling elements 5Ab and 5Bb. Even in this case, the above-mentioned effect can be obtained if the diameters of the spherical or cylindrical rolling elements 5Ab and 5Bb are compared and the first bearing 5A is larger.
  • the recess 21a is provided at the end of the first shaft 21 on one axial side (-Y side), and the protrusion 44a is provided on the end of the second shaft 44 on the other axial side (+Y side).
  • the case where it is provided has been explained.
  • the recess 21a be provided on the first shaft 21 and the protrusion 44a be provided on the second shaft 44 as in this embodiment. Since the protrusion 44a and the recess 21a fit into each other, the shaft provided with the protrusion 44a has a larger diameter than the shaft provided with the recess. According to this embodiment, the second shaft 44 can be made smaller in diameter than the first shaft 21 by providing the first shaft 21 with the recess 21a and the second shaft 44 with the protrusion 44a. Therefore, even if the rolling elements 5Bb of the second bearing 5B that supports the second shaft 44 are increased in size, the outer diameter of the second bearing 5B can be prevented from becoming too large. As a result, it is possible to suppress the space in the gear chamber R2 from being compressed by the second bearing 5B.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

One embodiment of this drive device comprises: a motor having a first shaft; a power transmission unit having a second shaft; a housing; and a flow channel through which a fluid flows. The first shaft and the second shaft are mutually connected by engagement between a spline groove in a recess section and a spline protrusion of a protrusion section. The housing is provided with a dividing wall that partitions the interior of the housing into a motor chamber and a gear chamber. The dividing wall is provided with an interconnecting hole interconnecting the motor chamber and the gear chamber. An inner peripheral surface of the interconnecting hole holds a first bearing and a second bearing. An interconnecting space to which the recess section is open is provided in an interval in the axial direction between the first bearing and the second bearing in the interconnecting hole. The flow channel inlcudes: a first flow channel linking a first storage part to the interconnecting space; a second flow channel linking the interconnecting space to the inside of the recess section; and a third flow channel linking the interconnecting space to a second storage part.

Description

駆動装置drive device
 本発明は、駆動装置に関する。
 本願は、2022年3月31日に日本に出願された特願2022-061134号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a drive device.
This application claims priority based on Japanese Patent Application No. 2022-061134 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
 近年、電気自動車に搭載される駆動装置として、モータと減速装置とをユニット化した駆動装置の開発が進んでいる。このような駆動装置では、モータ側のシャフトと減速装置のシャフトとがスプライン溝とスプライン突起が互いに噛み合うことにより、連結される。特許文献1には、モータ側および減速装置側のシャフトを中空シャフトとして、中空シャフト内にオイルを流すことで連結部にオイルを供給する構造が開示されている。 In recent years, the development of a drive device that combines a motor and a speed reduction device into a unit has been progressing as a drive device installed in an electric vehicle. In such a drive device, the shaft on the motor side and the shaft of the speed reducer are connected by meshing of the spline grooves and the spline protrusions with each other. Patent Document 1 discloses a structure in which the shafts on the motor side and the speed reducer side are hollow shafts, and oil is supplied to the connecting portion by flowing oil into the hollow shafts.
特開2017-75627号公報JP2017-75627A
 中空シャフト内にオイルを流す場合、ハウジング内のモータ側の空間に達したオイルをギヤ側に戻すための流路が必要となりハウジングの構造が複雑になる。そこで、中空シャフトを用いることなくシャフトの結合部分に流体を供給できる構造が必要とされている。 When oil flows into the hollow shaft, a flow path is required to return the oil that has reached the space on the motor side in the housing to the gear side, which complicates the structure of the housing. Therefore, there is a need for a structure that can supply fluid to the coupling portion of the shaft without using a hollow shaft.
 本発明は、上記事情に鑑みて、シャフト同士の連結部への流体の供給が可能な駆動装置の提供を目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a drive device that can supply fluid to a connecting portion between shafts.
 本発明の駆動装置の一つの態様は、中心軸線を中心として回転する第1シャフトを有するロータ、および前記ロータを囲むステータを有するモータと、複数のギヤ、および前記中心軸線を中心として回転する第2シャフトを有し、前記モータの動力を伝達する動力伝達部と、前記モータを収容するモータ室と前記動力伝達部を収容するギヤ室とが内部に設けられるハウジングと、前記第1シャフトを支持する第1ベアリングと、前記第2シャフトを支持する第2ベアリングと、流体が流れる流路と、前記流体が溜まる第1貯留部、および第2貯留部と、を備える。前記第1シャフトの軸方向一方側の端部、および前記第2シャフトの軸方向他方側の端部のうち、一方は内周面に軸方向に延びる複数のスプライン溝が設けられる凹部を有し、他方は外周面に軸方向に延びる複数のスプライン突起が設けられ前記凹部に挿入される凸部を有する。前記第1シャフトと前記第2シャフトとは、前記凹部の前記スプライン溝と前記凸部の前記スプライン突起との噛み合いにより互いに連結される。前記ハウジングは、前記モータ室と前記ギヤ室とを区画する隔壁を有する。前記隔壁には、前記モータ室と前記ギヤ室とを連通する連通孔が設けられる。前記連通孔の内周面は、前記第1ベアリングおよび前記第2ベアリングを保持する。前記連通孔における前記第1ベアリングと前記第2ベアリングの軸方向の間には、前記凹部が開口する連結空間が設けられる。前記流路は、前記第1貯留部と前記連結空間とを繋ぐ第1流路と、前記連結空間と前記凹部の内部とを繋ぐ第2流路と、前記連結空間と前記第2貯留部とを繋ぐ第3流路と、を有する。前記流体は、前記第1流路、前記第2流路、および前記第3流路に流れる。 One aspect of the drive device of the present invention includes a rotor having a first shaft that rotates around a central axis, a motor having a stator surrounding the rotor, a plurality of gears, and a first shaft that rotates around the central axis. a housing that has two shafts and is provided with a power transmission section that transmits the power of the motor, a motor chamber that accommodates the motor, and a gear chamber that accommodates the power transmission section; and a housing that supports the first shaft. A second bearing that supports the second shaft, a flow path through which fluid flows, and a first storage section and a second storage section in which the fluid is stored. One of the axially one end of the first shaft and the other axially end of the second shaft has a recess in which a plurality of axially extending spline grooves are provided in the inner circumferential surface. The other has a convex portion provided with a plurality of spline protrusions extending in the axial direction on the outer circumferential surface and inserted into the concave portion. The first shaft and the second shaft are connected to each other by engagement between the spline groove of the recess and the spline protrusion of the convex part. The housing has a partition wall that partitions the motor chamber and the gear chamber. The partition wall is provided with a communication hole that communicates the motor chamber and the gear chamber. The inner peripheral surface of the communication hole holds the first bearing and the second bearing. A connection space in which the recess opens is provided between the first bearing and the second bearing in the communication hole in the axial direction. The flow path includes a first flow path that connects the first storage section and the connection space, a second flow path that connects the connection space and the inside of the recess, and a connection space and the second storage section. and a third flow path connecting the. The fluid flows into the first flow path, the second flow path, and the third flow path.
 本発明の一つの態様によれば、シャフト同士の連結部への流体の供給が可能な駆動装置を提供できる。 According to one aspect of the present invention, it is possible to provide a drive device that is capable of supplying fluid to a connecting portion between shafts.
図1は、一実施形態の駆動装置の概念図である。FIG. 1 is a conceptual diagram of a drive device according to an embodiment. 図2は、一実施形態のギヤ室を軸方向一方側から見た正面図である。FIG. 2 is a front view of the gear chamber of one embodiment viewed from one side in the axial direction. 図3は、一実施形態のギヤ室を軸方向他方側から見た背面図である。FIG. 3 is a rear view of the gear chamber of one embodiment viewed from the other axial side. 図4は、一実施形態の第1シャフトおよび第2シャフトの連結部の断面図である。FIG. 4 is a cross-sectional view of a connecting portion of a first shaft and a second shaft in one embodiment. 図5は、一実施形態の連結部の部分断面図である。FIG. 5 is a partial cross-sectional view of a coupling portion of one embodiment. 図6は、変形例の第1シャフトおよび第2シャフトの連結部の断面図である。FIG. 6 is a cross-sectional view of a connecting portion of a first shaft and a second shaft in a modified example.
 以下の説明では、駆動装置1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。 In the following explanation, the direction of gravity will be defined and explained based on the positional relationship when the drive device 1 is mounted on a vehicle located on a horizontal road surface. In addition, in the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
 XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であって駆動装置1が搭載される車両の前後方向を示す。以下の実施形態において、X軸の矢印が向く側(+X側)は、車両における前側であり、X軸の矢印が向く側と逆側(-X側)は、車両における後側である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。以下の実施形態において、Y軸の矢印が向く側(+Y側)は、車両における左側であり、Y軸の矢印が向く側と逆側(-Y側)は、車両における右側である。前後方向および左右方向は、鉛直方向と直交する水平方向である。 In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (that is, the up-down direction), the +Z direction is the upper side (opposite to the direction of gravity), and the -Z direction is the lower side (the direction of gravity). Moreover, the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle in which the drive device 1 is mounted. In the following embodiments, the side to which the X-axis arrow points (+X side) is the front side of the vehicle, and the side opposite to the side to which the X-axis arrow points (-X side) is the rear side of the vehicle. The Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle. In the following embodiments, the side to which the Y-axis arrow points (+Y side) is the left side of the vehicle, and the side opposite to the side to which the Y-axis arrow points (-Y side) is the right side of the vehicle. The front-rear direction and the left-right direction are horizontal directions perpendicular to the vertical direction.
 以下の説明において特に断りのない限り、モータ2の中心軸線J1に平行な方向(Y軸方向)を単に「軸方向」と呼び、中心軸線J1を中心とする径方向を単に「径方向」と呼び、中心軸線J1を中心とする周方向、すなわち、中心軸線J1の軸周りを単に「周方向」と呼ぶ。ただし、上記の「平行な方向」は、略平行な方向も含む。さらに、以下の説明において、中心軸線J1の軸方向のうち、-Y方向を単に軸方向一方側と呼び、+Y方向を単に軸方向他方側と呼ぶ場合がある。 In the following description, unless otherwise specified, the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction", and the radial direction centered on the central axis J1 is simply referred to as the "radial direction". The circumferential direction centered on the central axis J1, that is, the circumferential direction around the central axis J1 is simply referred to as the "circumferential direction." However, the above-mentioned "parallel direction" also includes substantially parallel directions. Furthermore, in the following description, among the axial directions of the central axis J1, the -Y direction may be simply referred to as one axial direction, and the +Y direction may simply be referred to as the other axial direction.
 <駆動装置>
 図1は、本実施形態の駆動装置1の概念図である。
 本実施形態の駆動装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
<Drive device>
FIG. 1 is a conceptual diagram of a drive device 1 of this embodiment.
The drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
 図1に示すように、駆動装置1は、モータ2と動力伝達部4とインバータ7とハウジング6と複数のベアリング5A、5B、5C、5D、5E、5F、5G、5Hとを備える。ハウジング6は、モータ2、動力伝達部4、インバータ7、および複数のベアリング5A~5Hを収容する。ハウジング6の内部において、モータ2、動力伝達部4、およびインバータ7は、中心軸線J1上に配置される。以下の説明において、複数のベアリング5A~5Hを、それぞれ第1ベアリング5A、第2ベアリング5B、第3ベアリング5C、第4ベアリング5D、第5ベアリング5E、第6ベアリング5F、第7ベアリング5G、および第8ベアリング5Hと、する。 As shown in FIG. 1, the drive device 1 includes a motor 2, a power transmission section 4, an inverter 7, a housing 6, and a plurality of bearings 5A, 5B, 5C, 5D, 5E, 5F, 5G, and 5H. Housing 6 accommodates motor 2, power transmission section 4, inverter 7, and a plurality of bearings 5A to 5H. Inside the housing 6, the motor 2, the power transmission section 4, and the inverter 7 are arranged on the central axis J1. In the following description, the plurality of bearings 5A to 5H are respectively referred to as a first bearing 5A, a second bearing 5B, a third bearing 5C, a fourth bearing 5D, a fifth bearing 5E, a sixth bearing 5F, a seventh bearing 5G, and 8th bearing 5H.
 <モータ>
 本実施形態のモータ2は、インナーロータ型の三相交流モータである。モータ2は、電動機としての機能と発電機としての機能とを兼ねる。なお、モータ2の構成は本実施形態に限定されず、例えば四相以上の交流モータであってもよい。
<Motor>
The motor 2 of this embodiment is an inner rotor type three-phase AC motor. The motor 2 functions both as an electric motor and as a generator. Note that the configuration of the motor 2 is not limited to this embodiment, and may be, for example, a four-phase or more AC motor.
 モータ2は、ハウジング6のモータ室R1に配置される。モータ2は、ロータ20と、ロータ20と径方向に対向するステータ30と、を備える。本実施形態のモータ2は、ステータ30の内側にロータ20が配置されるインナーロータ型モータである。 The motor 2 is arranged in the motor chamber R1 of the housing 6. The motor 2 includes a rotor 20 and a stator 30 that faces the rotor 20 in the radial direction. The motor 2 of this embodiment is an inner rotor type motor in which a rotor 20 is arranged inside a stator 30.
 ロータ20は、水平方向に延びる中心軸線J1を中心として回転する。ロータ20は、第1シャフト21と、第1シャフト21の外周面に固定されるロータコア24と、ロータコア24に固定されるロータマグネット(図示略)と、を有する。ロータ20のトルクは、動力伝達部4に伝達される。第1シャフト21は、中心軸線J1を中心として軸方向に沿って延びる。第1シャフト21は、中心軸線J1を中心として回転する。第1シャフト21の両端部は、第1ベアリング5A、および第3ベアリング5Cに回転可能に支持される。 The rotor 20 rotates around a central axis J1 that extends in the horizontal direction. The rotor 20 includes a first shaft 21, a rotor core 24 fixed to the outer peripheral surface of the first shaft 21, and a rotor magnet (not shown) fixed to the rotor core 24. The torque of the rotor 20 is transmitted to the power transmission section 4. The first shaft 21 extends in the axial direction centering on the central axis J1. The first shaft 21 rotates around the central axis J1. Both ends of the first shaft 21 are rotatably supported by a first bearing 5A and a third bearing 5C.
 本実施形態のロータ20には、一対のファン25が設けられる。ファン25は、ロータ20とともに中心軸線J1周りを回転する。一対のファン25のうち、一方はロータコア24の軸方向一方側の端面に固定され、他方はロータコア24の軸方向他方側の端面に固定される。一方のファン25は、それぞれステータ30のコイルエンドに対向する。ファン25は、径方向外側に向かって風を送る。ファン25は、モータ室R1内で空気を循環させる。本実施形態によれば、モータ2に直接的に冷媒をかけることなく、ファン25によって生じる風によってモータ2を冷却できる。本実施形態によれば、モータ室R1のシール構造を簡素化できる。 The rotor 20 of this embodiment is provided with a pair of fans 25. The fan 25 rotates together with the rotor 20 around the central axis J1. One of the pair of fans 25 is fixed to the end surface of the rotor core 24 on one axial side, and the other is fixed to the end surface of the rotor core 24 on the other axial side. One fan 25 faces each coil end of the stator 30. The fan 25 sends air radially outward. The fan 25 circulates air within the motor room R1. According to this embodiment, the motor 2 can be cooled by the wind generated by the fan 25 without directly applying refrigerant to the motor 2. According to this embodiment, the seal structure of the motor chamber R1 can be simplified.
 ステータ30は、ハウジング6に保持される。ステータ30は、ロータ20を径方向外側から囲む。ステータ30は、中心軸線J1を中心とする環状のステータコア32と、ステータコア32に装着されるコイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータコア32は、環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。磁極歯の間には、コイル線が配置される。隣り合う磁極歯の間の間隙内に位置するコイル線は、コイル31を構成する。インシュレータは、絶縁性の材料からなる。 The stator 30 is held in the housing 6. The stator 30 surrounds the rotor 20 from the outside in the radial direction. The stator 30 includes an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, and an insulator (not shown) interposed between the stator core 32 and the coil 31. The stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke. A coil wire is arranged between the magnetic pole teeth. The coil wire located within the gap between adjacent magnetic pole teeth constitutes the coil 31. The insulator is made of an insulating material.
 <インバータ>
 インバータ7は、モータ2と電気的に接続される。インバータ7は、車両に搭載されるバッテリ(不図示)に接続され、バッテリーから供給された直流電流を交流電流に変換して、モータ2に供給する。また、インバータ7は、モータ2を制御する。本実施形態のインバータ7は、モータ2に対し軸方向他方側(+Y側)に配置される。本実施形態によれば、インバータ7をモータ2の径方向外側に配置する場合と比較して駆動装置1を径方向に小型化することができる。
<Inverter>
Inverter 7 is electrically connected to motor 2 . The inverter 7 is connected to a battery (not shown) mounted on the vehicle, converts direct current supplied from the battery into alternating current, and supplies the alternating current to the motor 2. Further, the inverter 7 controls the motor 2. The inverter 7 of this embodiment is arranged on the other axial side (+Y side) with respect to the motor 2. According to this embodiment, the drive device 1 can be made smaller in the radial direction compared to the case where the inverter 7 is arranged outside the motor 2 in the radial direction.
 <動力伝達部>
 動力伝達部4は、モータ2に対し軸方向一方側(-Y側)に配置される。動力伝達部4は、ロータ20に接続されてモータ2の動力を伝達し出力シャフト47に出力する。動力伝達部4は、減速装置4aと差動装置4bとを有する。すなわち、駆動装置1は、減速装置4aおよび差動装置4bを有する。
<Power transmission section>
The power transmission section 4 is arranged on one axial side (-Y side) with respect to the motor 2. The power transmission section 4 is connected to the rotor 20 and transmits the power of the motor 2, and outputs the power to the output shaft 47. The power transmission section 4 includes a reduction gear 4a and a differential gear 4b. That is, the drive device 1 includes a speed reduction device 4a and a differential device 4b.
 モータ2から出力されるトルクは、減速装置4aを介して差動装置4bに伝達される。本実施形態の減速装置4aでは、各ギヤの回転軸線が平行に配置される。差動装置4bは、車両の旋回時に、左右の車輪の速度差を吸収しつつ左右両輪に同トルクを伝達する。 The torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a. In the reduction gear device 4a of this embodiment, the rotational axes of each gear are arranged in parallel. The differential device 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
 減速装置4aは、第2シャフト44、第3シャフト45、第1ギヤ41、第2ギヤ42、および第3ギヤ43を有する。差動装置4bは、リングギヤ46g、デフケース46、およびデフケース46の内部に配置される差動機構部46cを有する。すなわち、動力伝達部4は、複数のギヤ41、42、43、46gと、複数のシャフト44、45と、を有する。 The reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43. The differential device 4b includes a ring gear 46g, a differential case 46, and a differential mechanism section 46c disposed inside the differential case 46. That is, the power transmission section 4 includes a plurality of gears 41, 42, 43, 46g and a plurality of shafts 44, 45.
 第2シャフト44は、中心軸線J1を中心として軸方向に延びる。第2シャフト44は、第1シャフト21と同軸上に配置される。第2シャフト44は、軸方向他方側(+Y側)の端部において、第1シャフト21の軸方向一方側(-Y側)の端部に連結される。第2シャフト44は、第1シャフト21ととともに中心軸線J1を中心として回転する。第2シャフト44は、第2ベアリング5B、および第4ベアリング5Dに回転可能に支持される。 The second shaft 44 extends in the axial direction centering on the central axis J1. The second shaft 44 is arranged coaxially with the first shaft 21. The second shaft 44 is connected to the end of the first shaft 21 on the one axial side (-Y side) at the end on the other axial side (+Y side). The second shaft 44 rotates together with the first shaft 21 about the central axis J1. The second shaft 44 is rotatably supported by the second bearing 5B and the fourth bearing 5D.
 第1ギヤ41は、第2シャフト44の外周面に固定される。第1ギヤ41は、第2シャフト44とともに中心軸線J1周りに回転する。 The first gear 41 is fixed to the outer peripheral surface of the second shaft 44. The first gear 41 rotates together with the second shaft 44 around the central axis J1.
 第3シャフト45は、中心軸線J1と平行な中間軸線J2を中心として回転する。第3シャフト45は、第5ベアリング5E、および第6ベアリング5Fに回転可能に支持される。 The third shaft 45 rotates around an intermediate axis J2 that is parallel to the central axis J1. The third shaft 45 is rotatably supported by the fifth bearing 5E and the sixth bearing 5F.
 第2ギヤ42と第3ギヤ43とは、軸方向に並んで配置される。第2ギヤ42および第3ギヤ43は、第3シャフト45の外周面に設けられる。第2ギヤ42および第3ギヤ43は、第3シャフト45を介して接続される。第2ギヤ42および第3ギヤ43は、中間軸線J2を中心として回転する。第2ギヤ42は、第1ギヤ41と噛み合う。第3ギヤ43は、差動装置4bのリングギヤ46gと噛み合う。本実施形態において、第1ギヤ41、第2ギヤ42、第3ギヤ43、およびリングギヤ46gは、それぞれヘリカルギヤである。 The second gear 42 and the third gear 43 are arranged side by side in the axial direction. The second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45. The second gear 42 and the third gear 43 are connected via a third shaft 45. The second gear 42 and the third gear 43 rotate about the intermediate axis J2. The second gear 42 meshes with the first gear 41. The third gear 43 meshes with a ring gear 46g of the differential device 4b. In this embodiment, the first gear 41, the second gear 42, the third gear 43, and the ring gear 46g are each helical gears.
 リングギヤ46gは、中心軸線J1と平行な出力軸線J3を中心として回転する。リングギヤ46gには、モータ2から出力されるトルクが減速装置4aを介して伝えられる。リングギヤ46gは、デフケース46に固定される。 The ring gear 46g rotates around an output axis J3 that is parallel to the central axis J1. Torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. Ring gear 46g is fixed to differential case 46.
 デフケース46は、内部に差動機構部46cを収容するケース部46bと、ケース部46bに対して軸方向他方側および他方側にそれぞれ突出するデフケースシャフト46aと、を有する。すなわち、動力伝達部4は、デフケースシャフト46aを有する。デフケースシャフト46aは、出力軸線J3を中心として軸方向に沿って延びる筒状である。デフケースシャフト46aは、第7ベアリング5G、および第8ベアリング5Hに回転可能に支持される。リングギヤ46gは、デフケースシャフト46aの外周面に設けられる。デフケースシャフト46aは、出力軸線J3を中心としてリングギヤ46gとともに回転する。 The differential case 46 includes a case portion 46b that accommodates a differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes to the other side and the other side in the axial direction with respect to the case portion 46b. That is, the power transmission section 4 includes a differential case shaft 46a. The differential case shaft 46a has a cylindrical shape that extends in the axial direction centering on the output axis J3. The differential case shaft 46a is rotatably supported by a seventh bearing 5G and an eighth bearing 5H. Ring gear 46g is provided on the outer peripheral surface of differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g about the output axis J3.
 一対の出力シャフト47は、差動装置4bに接続される。一対の出力シャフト47は、差動装置4bのデフケース46から軸方向他方側および他方側に突出する。出力シャフト47は、デフケースシャフト46aの内側に配置される。出力シャフト47は、デフケースシャフト46aの内周面に、ベアリング(図示略)を介して回転可能に支持される。 The pair of output shafts 47 are connected to the differential gear 4b. The pair of output shafts 47 protrude from the differential case 46 of the differential device 4b to the other side in the axial direction and to the other side. The output shaft 47 is arranged inside the differential case shaft 46a. The output shaft 47 is rotatably supported on the inner peripheral surface of the differential case shaft 46a via a bearing (not shown).
 モータ2から出力されるトルクは、モータ2の第2シャフト44、第1ギヤ41、第2ギヤ42、第3シャフト45および第3ギヤ43を介して差動装置4bのリングギヤ46gに伝達され、差動装置4bの差動機構部46cを介して出力シャフト47に出力される。動力伝達部4の複数のギヤ41、42、43、46gは、第2シャフト44、第3シャフト45、デフケースシャフト46aの順でモータ2の動力を伝達する。 The torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, first gear 41, second gear 42, third shaft 45, and third gear 43 of the motor 2, It is output to the output shaft 47 via the differential mechanism section 46c of the differential device 4b. The plurality of gears 41, 42, 43, and 46g of the power transmission section 4 transmit the power of the motor 2 to the second shaft 44, the third shaft 45, and the differential case shaft 46a in this order.
 <ハウジング>
 ハウジング6は、第1ハウジング部材6Aと第2ハウジング部材6Bと第3ハウジング部材6Cとウォータジャケット6Dとベアリングホルダ6Eとを有する。第1ハウジング部材6A、第2ハウジング部材6B、第3ハウジング部材6C、ウォータジャケット6D、およびベアリングホルダ6Eは、それぞれ別部材である。第1ハウジング部材6Aは、第2ハウジング部材6Bの軸方向他方側(+Y側)に配置される。第3ハウジング部材6Cは、第2ハウジング部材6Bの軸方向一方側(-Y側)に配置される。ウォータジャケット6D、およびベアリングホルダ6Eは、第2ハウジング部材6Bの内部に配置される。
<Housing>
The housing 6 includes a first housing member 6A, a second housing member 6B, a third housing member 6C, a water jacket 6D, and a bearing holder 6E. The first housing member 6A, the second housing member 6B, the third housing member 6C, the water jacket 6D, and the bearing holder 6E are each separate members. The first housing member 6A is arranged on the other axial side (+Y side) of the second housing member 6B. The third housing member 6C is arranged on one axial side (-Y side) of the second housing member 6B. The water jacket 6D and the bearing holder 6E are arranged inside the second housing member 6B.
 ハウジング6には、冷却水Lが流れる循環水路90が設けられる。冷却水Lは、例えば、水である。循環水路90は、ハウジング6の外部を通過する外部配管97と、ハウジング6の内部を通過する第1水路91、第2水路92、第3水路(水路)93、および第4水路94と、を含む。外部配管97の経路中には、冷却水Lを冷却するラジエータ(図示略)が配置される。 The housing 6 is provided with a circulation channel 90 through which the cooling water L flows. The cooling water L is, for example, water. The circulation waterway 90 includes an external pipe 97 that passes through the outside of the housing 6, and a first waterway 91, a second waterway 92, a third waterway (waterway) 93, and a fourth waterway 94 that pass through the inside of the housing 6. include. A radiator (not shown) that cools the cooling water L is arranged in the path of the external piping 97.
 冷却水Lは、ハウジング6の内部において、第1水路91、第2水路92、第3水路93、第4水路94の順で流れる。第1水路91は、第1ハウジング部材6Aに設けられる。第1水路91は、外部配管97に接続される。冷却水Lは、第1水路91で主にインバータ7を冷却する。第2水路92は、第2ハウジング部材6Bに設けられる。第2水路92は、第1水路91と第3水路93とを繋ぐ。第3水路93は、ウォータジャケット6Dの外周面に沿って設けられる。冷却水Lは、第3水路93で主にモータ2を冷却する。第4水路94は、第2ハウジング部材6Bに設けられる。第4水路94は、外部配管97に接続される。 The cooling water L flows inside the housing 6 in the order of the first water channel 91 , the second water channel 92 , the third water channel 93 , and the fourth water channel 94 . The first water channel 91 is provided in the first housing member 6A. The first water channel 91 is connected to an external pipe 97. The cooling water L mainly cools the inverter 7 in the first water channel 91 . The second water channel 92 is provided in the second housing member 6B. The second waterway 92 connects the first waterway 91 and the third waterway 93. The third water channel 93 is provided along the outer peripheral surface of the water jacket 6D. The cooling water L mainly cools the motor 2 in the third water channel 93. The fourth water channel 94 is provided in the second housing member 6B. The fourth water channel 94 is connected to an external pipe 97.
 第2ハウジング部材6Bは、モータ2を収容し軸方向他方側(+Y側)に開口する。第2ハウジング部材6Bは、中心軸線J1を中心とする筒状の外側筒部65と、外側筒部65の軸方向一方側(-Y側)に配置され外側筒部65の軸方向一方側の開口を覆う隔壁65aと、隔壁65aの外縁から軸方向一方側(-Y側)に延びる第1周壁部65bと、を有する。すなわち、ハウジング6は、隔壁65aを有する。 The second housing member 6B accommodates the motor 2 and opens on the other axial side (+Y side). The second housing member 6B includes a cylindrical outer cylindrical portion 65 centered on the central axis J1, and is arranged on one axial side (−Y side) of the outer cylindrical portion 65 and is located on one axial side of the outer cylindrical portion 65. It has a partition wall 65a that covers the opening, and a first peripheral wall portion 65b that extends from the outer edge of the partition wall 65a to one side in the axial direction (-Y side). That is, the housing 6 has a partition wall 65a.
 隔壁65aには、連通孔65hが設けられる。連通孔65hの内部には、第1ベアリング5A、第2ベアリング5B、およびシール部材5Sが配置される。第1シャフト21と第2シャフト44とは、連通孔65hの内部で互いに連結される。連通孔65hの構成については、図4を基に後段において詳細に説明する。 A communication hole 65h is provided in the partition wall 65a. A first bearing 5A, a second bearing 5B, and a seal member 5S are arranged inside the communication hole 65h. The first shaft 21 and the second shaft 44 are connected to each other inside the communication hole 65h. The configuration of the communication hole 65h will be described in detail later based on FIG. 4.
 外側筒部65は、モータ2を径方向外側から囲む。外側筒部65は、ウォータジャケット6Dを介してステータ30を支持する。外側筒部65には、軸方向に延びる第2水路92と径方向に延びる第4水路94とが設けられる。 The outer cylindrical portion 65 surrounds the motor 2 from the outside in the radial direction. The outer cylindrical portion 65 supports the stator 30 via the water jacket 6D. The outer cylinder portion 65 is provided with a second water channel 92 extending in the axial direction and a fourth water channel 94 extending in the radial direction.
 第3ハウジング部材6Cは、第2ハウジング部材6Bの軸方向一方側(-Y側)に配置される。第3ハウジング部材6Cは、隔壁65aと対向する対向壁67と、対向壁67の外縁から軸方向他方側(+Y側)に延びる第2周壁部67aと、を有する。第2周壁部67aの軸方向他方側(+Y側)の端面は、第1周壁部65bの軸方向一方側(-Y側)の端面に締結される。 The third housing member 6C is arranged on one axial side (-Y side) of the second housing member 6B. The third housing member 6C includes an opposing wall 67 that faces the partition wall 65a, and a second peripheral wall portion 67a extending from the outer edge of the opposing wall 67 toward the other axial side (+Y side). The end face of the second peripheral wall portion 67a on the other axial side (+Y side) is fastened to the end face of the first peripheral wall portion 65b on the one axial side (−Y side).
 第1ハウジング部材6Aは、インバータ7を保持する。第1ハウジング部材6Aは、第2ハウジング部材6Bの外側筒部65の軸方向他方側(+Y側)の開口を覆う。 The first housing member 6A holds the inverter 7. The first housing member 6A covers the opening on the other axial side (+Y side) of the outer cylinder portion 65 of the second housing member 6B.
 ウォータジャケット6Dは、中心軸線J1を中心とする筒状の内側筒部64と、内側筒部64の外周面に設けられる突出リブ64aと、を有する。内側筒部64は、ステータ30を径方向外側から囲む。内側筒部64の内径は、ステータコア32の外径と略一致する。 The water jacket 6D has a cylindrical inner cylinder part 64 centered on the central axis J1, and a protruding rib 64a provided on the outer peripheral surface of the inner cylinder part 64. The inner cylinder portion 64 surrounds the stator 30 from the outside in the radial direction. The inner diameter of the inner cylindrical portion 64 substantially matches the outer diameter of the stator core 32.
 内側筒部64の内周面は、ステータ30の外周面と接触する。また、内側筒部64は、外側筒部65によって径方向外側から囲まれる。内側筒部64の外径は、第2ハウジング部材6Bの外側筒部65の内径より小さい。内側筒部64と外側筒部65との間には、第3水路93として機能する隙間が設けられる。 The inner circumferential surface of the inner cylindrical portion 64 contacts the outer circumferential surface of the stator 30. Moreover, the inner cylinder part 64 is surrounded by the outer cylinder part 65 from the outside in the radial direction. The outer diameter of the inner cylindrical portion 64 is smaller than the inner diameter of the outer cylindrical portion 65 of the second housing member 6B. A gap is provided between the inner cylindrical portion 64 and the outer cylindrical portion 65, which functions as a third water channel 93.
 突出リブ64aは、中心軸線J1を中心として螺旋状に延びる。突出リブ64aは、径方向外側の端部に位置する先端部を有する。突出リブ64aの先端部は、外側筒部65の内周面に接触するか、又はわずかな隙間を介して外側筒部65の内周面と対向する。これにより、突出リブ64aは、内側筒部64と外側筒部65との間の隙間を仕切って第3水路93を螺旋状とする。 The protruding rib 64a extends spirally around the central axis J1. The protruding rib 64a has a tip located at the radially outer end. The tip of the protruding rib 64a contacts the inner circumferential surface of the outer cylindrical portion 65, or faces the inner circumferential surface of the outer cylindrical portion 65 with a slight gap therebetween. Thereby, the protruding rib 64a partitions off the gap between the inner cylindrical portion 64 and the outer cylindrical portion 65, and forms the third water channel 93 in a spiral shape.
 本実施形態によれば、ハウジング6には、ステータ30の外周面に沿って延びる第3水路93が設けられる。本実施形態によれば、ステータ30に冷媒を直接的にかけることなく、第3水路93を流れる冷却水Lによってステータ30を冷却することができる。本実施形態によれば、モータ室R1のシール構造を簡素化できる。 According to this embodiment, the housing 6 is provided with a third water channel 93 that extends along the outer peripheral surface of the stator 30. According to this embodiment, the stator 30 can be cooled by the cooling water L flowing through the third water channel 93 without directly applying refrigerant to the stator 30 . According to this embodiment, the seal structure of the motor chamber R1 can be simplified.
 本実施形態では、第3水路93が螺旋状に延びる場合について説明した。しかしながら、第3水路93は、ステータ30を囲むものであれば、本実施形態に限定されない。第3水路93は、軸方向又は周方向に蛇行する流路であってもよい。第3水路93の流路構成は、突出リブ64aの形状によって決めることができる。 In this embodiment, the case where the third water channel 93 extends spirally has been described. However, the third water channel 93 is not limited to this embodiment as long as it surrounds the stator 30. The third water channel 93 may be a meandering channel in the axial direction or the circumferential direction. The flow path configuration of the third water channel 93 can be determined by the shape of the protruding rib 64a.
 ベアリングホルダ6Eは第2ハウジング部材6Bの内部でモータ2の軸方向他方側(+Y側)に配置される。ベアリングホルダ6Eは、ウォータジャケット6Dの軸方向他方側(+Y側)の端面に固定される。ベアリングホルダ6Eは、ロータ20を回転可能に支持する第3ベアリング5Cを保持する。 The bearing holder 6E is arranged on the other axial side (+Y side) of the motor 2 inside the second housing member 6B. The bearing holder 6E is fixed to the end face of the water jacket 6D on the other axial side (+Y side). The bearing holder 6E holds a third bearing 5C that rotatably supports the rotor 20.
 ハウジング6の内部には、モータ2を収容するモータ室R1と、動力伝達部4を収容するギヤ室R2と、インバータ7を収容するインバータ室R3と、が設けられる。ギヤ室R2、モータ室R1、およびインバータ室R3は、軸方向一方側(-Y側)から軸方向他方側(+Y側)に向かってこの順で並ぶ。モータ室R1とギヤ室R2とは、隔壁65aによって区画される。モータ室R1とインバータ室R3とは、ベアリングホルダ6Eによって区画される。 Inside the housing 6, a motor chamber R1 that accommodates the motor 2, a gear chamber R2 that accommodates the power transmission section 4, and an inverter chamber R3 that accommodates the inverter 7 are provided. The gear chamber R2, the motor chamber R1, and the inverter chamber R3 are arranged in this order from one axial side (-Y side) to the other axial side (+Y side). The motor chamber R1 and the gear chamber R2 are partitioned by a partition wall 65a. Motor chamber R1 and inverter chamber R3 are partitioned by bearing holder 6E.
 モータ室R1は、内側筒部64によって径方向外側から囲まれ、隔壁65aとベアリングホルダ6Eとによって軸方向に挟まれる空間である。 The motor chamber R1 is a space surrounded from the outside in the radial direction by the inner cylinder portion 64 and sandwiched in the axial direction by the partition wall 65a and the bearing holder 6E.
 インバータ室R3は、外側筒部65によって径方向外側から囲まれ、ベアリングホルダ6Eと第1ハウジング部材6Aとによって軸方向に挟まれる空間である。 The inverter chamber R3 is a space surrounded from the outside in the radial direction by the outer cylinder portion 65 and sandwiched in the axial direction by the bearing holder 6E and the first housing member 6A.
 モータ室R1とインバータ室R3とは、ベアリングホルダ6Eに設けられる貫通孔を介して、互いに連通する。インバータ室R3を囲む外側筒部65には、ブリーザ63が設けられる。ブリーザ63は、モータ室R1およびインバータ室R3と、ハウジング6の外部と、を連通する。ブリーザ63は、モータ室R1、およびインバータ室R3の圧力が高まり過ぎることを抑制する。 The motor chamber R1 and the inverter chamber R3 communicate with each other via a through hole provided in the bearing holder 6E. A breather 63 is provided in the outer cylindrical portion 65 surrounding the inverter chamber R3. Breather 63 communicates motor chamber R1 and inverter chamber R3 with the outside of housing 6. Breather 63 suppresses the pressure in motor chamber R1 and inverter chamber R3 from increasing too much.
 ギヤ室R2は、径方向において第1周壁部65bおよび第2周壁部67aで囲まれ、軸方向において隔壁65aと対向壁67とに挟まれる空間である。ギヤ室R2は、モータ室R1の軸方向一方側(-Y側)に配置される。 The gear chamber R2 is a space surrounded by the first circumferential wall portion 65b and the second circumferential wall portion 67a in the radial direction, and sandwiched between the partition wall 65a and the opposing wall 67 in the axial direction. The gear chamber R2 is arranged on one axial side (-Y side) of the motor chamber R1.
 ギヤ室R2には、流体Oが貯留される。流体Oは、例えばオイルである。本実施形態において流体Oは、動力伝達部4およびベアリングに対して潤滑油として使用される。流体Oとしては、例えば、冷媒および潤滑油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。 A fluid O is stored in the gear chamber R2. The fluid O is, for example, oil. In this embodiment, the fluid O is used as a lubricating oil for the power transmission section 4 and the bearings. As the fluid O, for example, in order to perform the functions of a refrigerant and a lubricant, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity.
 ハウジング6には、流体Oが通過する流体経路50が設けられる。
 なお、本明細書において、「流体経路」とは、ハウジング6内で循環する流体Oの経路を意味する。したがって、「流体経路」とは、定常的に一方向に向かう定常的な流体Oの流動を形成する管状の流路のみならず、流体Oを一時的に滞留させる経路(例えば貯留部)、流体Oが滴り落ちる経路、流体Oが飛散する経路をも含む概念である。
The housing 6 is provided with a fluid path 50 through which the fluid O passes.
Note that in this specification, the term "fluid path" means a path for the fluid O circulating within the housing 6. Therefore, the term "fluid path" refers not only to a tubular flow path that forms a steady flow of fluid O that constantly goes in one direction, but also to a path that temporarily retains fluid O (for example, a storage section), a fluid This concept also includes a path through which O drips and a path through which fluid O scatters.
 流体経路50は、第1掻き上げ経路58と、第2掻き上げ経路59と、第1供給流路51と、第2供給流路(流路)52と、第3供給流路53と、第4供給流路54と、第5供給流路55と、を有する。また、流体経路50には、第1貯留部84、第2貯留部82、および第3貯留部B(図4参照)が配置される。すなわち、駆動装置1は、第1掻き上げ経路58、第2掻き上げ経路59、第1供給流路51、第2供給流路52、第3供給流路53、第4供給流路54、第5供給流路55、第1貯留部84、第2貯留部82、および第3貯留部Bを有する。第1供給流路51、第2供給流路52、第3供給流路53、第4供給流路54、および第5供給流路55には、流体Oが流れる。また、第1貯留部84、および第2貯留部82には、流体Oが溜まる。 The fluid path 50 includes a first raking path 58, a second raking path 59, a first supply path 51, a second supply path (flow path) 52, a third supply path 53, and a second raking path 59. It has a fourth supply flow path 54 and a fifth supply flow path 55. Further, in the fluid path 50, a first storage section 84, a second storage section 82, and a third storage section B (see FIG. 4) are arranged. That is, the drive device 1 includes a first scraping path 58, a second scraping path 59, a first supply channel 51, a second supply channel 52, a third supply channel 53, a fourth supply channel 54, and a 5 supply channel 55, a first storage section 84, a second storage section 82, and a third storage section B. Fluid O flows through the first supply channel 51 , the second supply channel 52 , the third supply channel 53 , the fourth supply channel 54 , and the fifth supply channel 55 . Further, fluid O is accumulated in the first storage section 84 and the second storage section 82 .
 第1貯留部84は、ギヤ室R2に配置される。第1貯留部84は、上側に開口するキャッチタンクである。第1貯留部84は、ギヤ室R2内で、動力伝達部4の各ギヤ(例えば、リングギヤ46g、および第2ギヤ42)にかき上げられた流体Oを受ける。 The first storage portion 84 is arranged in the gear chamber R2. The first storage section 84 is a catch tank that opens upward. The first storage section 84 receives the fluid O scooped up by each gear (for example, the ring gear 46g and the second gear 42) of the power transmission section 4 within the gear chamber R2.
 図2は、ギヤ室R2を軸方向一方側(-Y側)から見た正面図である。図3は、ギヤ室R2を軸方向他方側(+Y側)から見た背面図である。
 図2および図3に示すように本実施形態の第1貯留部84は、隔壁65aから軸方向一方側(-Y側)に突出する第1リブ84dと、対向壁67から軸方向他方側(+Y側)に突出する第2リブ84eと、を有する。第1リブ84dと第2リブ84eとは、端面同士を接触させて連結される。
FIG. 2 is a front view of the gear chamber R2 viewed from one axial side (-Y side). FIG. 3 is a rear view of the gear chamber R2 viewed from the other axial side (+Y side).
As shown in FIGS. 2 and 3, the first storage portion 84 of this embodiment includes a first rib 84d that protrudes from the partition wall 65a to one axial side (-Y side), and a first rib 84d that protrudes from the opposite wall 67 to the other axial side (-Y side). +Y side). The first rib 84d and the second rib 84e are connected with their end surfaces in contact with each other.
 図1に示すように、第2貯留部82は、ギヤ室R2の下部領域に設けられる流体溜りである。すなわち、ギヤ室R2の下部領域には、流体Oが溜まる第2貯留部82が設けられる。第2貯留部82内には、リングギヤ46gの下側の端部、および第2ギヤ42の下側の端部が位置する。したがって、リングギヤ46gおよび第2ギヤ42の一部は、第2貯留部82に溜る流体Oに浸漬される。 As shown in FIG. 1, the second storage portion 82 is a fluid reservoir provided in the lower region of the gear chamber R2. That is, the second storage section 82 in which the fluid O is stored is provided in the lower region of the gear chamber R2. A lower end of the ring gear 46g and a lower end of the second gear 42 are located within the second storage portion 82. Therefore, the ring gear 46g and a portion of the second gear 42 are immersed in the fluid O accumulated in the second storage section 82.
 第1掻き上げ経路58は、動力伝達部4のギヤ(本実施形態ではリングギヤ46g、および第2ギヤ42)の回転によって、第2貯留部82の流体Oを掻き上げて第1貯留部84に導く経路である。第1掻き上げ経路58によって流体Oを第2貯留部82から第1貯留部84に移送することで、第1貯留部84の貯留量が高まり、第1貯留部84の流体Oの液位が下がる。本実施形態によれば、第1貯留部84に流体Oを貯留することで、第2貯留部82の液位を下げ流体Oによる動力伝達部4の撹拌抵抗を低減させることができる。 The first scooping path 58 scrapes up the fluid O in the second storage section 82 and transfers it to the first storage section 84 by the rotation of the gears of the power transmission section 4 (in this embodiment, the ring gear 46g and the second gear 42). It is a path that leads. By transferring the fluid O from the second storage section 82 to the first storage section 84 through the first scooping path 58, the amount of storage in the first storage section 84 increases, and the liquid level of the fluid O in the first storage section 84 increases. Go down. According to this embodiment, by storing the fluid O in the first storage part 84, the liquid level in the second storage part 82 can be lowered and the stirring resistance of the power transmission part 4 caused by the fluid O can be reduced.
 第2掻き上げ経路59は、動力伝達部4のギヤ(本実施形態ではリングギヤ46g、および第2ギヤ42)の回転によって、第2貯留部82の流体Oを掻き上げて第8ベアリング5Hに供給する経路である。 The second scooping path 59 scoops up the fluid O in the second storage section 82 and supplies it to the eighth bearing 5H by the rotation of the gears of the power transmission section 4 (in this embodiment, the ring gear 46g and the second gear 42). This is the route to
 図3に示すように、第1供給流路51、および第3供給流路53は、第3ハウジング部材6Cの対向壁67に設けられる。第1供給流路51は、第1貯留部84から第4ベアリング5Dの外周面に向かって延びる。第1供給流路51は、第1貯留部84の流体Oを第4ベアリング5Dに供給する。第3供給流路53は、第1貯留部84から第6ベアリング5Fの外周面に向かって延びる。第3供給流路53は、第1貯留部84の流体Oを第6ベアリング5Fに供給する。 As shown in FIG. 3, the first supply channel 51 and the third supply channel 53 are provided on the opposing wall 67 of the third housing member 6C. The first supply channel 51 extends from the first storage section 84 toward the outer peripheral surface of the fourth bearing 5D. The first supply channel 51 supplies the fluid O in the first storage section 84 to the fourth bearing 5D. The third supply channel 53 extends from the first storage section 84 toward the outer peripheral surface of the sixth bearing 5F. The third supply channel 53 supplies the fluid O in the first storage section 84 to the sixth bearing 5F.
 図2に示すように、第2供給流路52、第4供給流路54、および第5供給流路55は、第2ハウジング部材6Bの隔壁65aに設けられる。第2供給流路52は、第1貯留部84から連通孔65hの内周面に向かって延びる。第2供給流路52の構成については、後段において詳細に説明する。 As shown in FIG. 2, the second supply flow path 52, the fourth supply flow path 54, and the fifth supply flow path 55 are provided in the partition wall 65a of the second housing member 6B. The second supply channel 52 extends from the first storage section 84 toward the inner peripheral surface of the communication hole 65h. The configuration of the second supply channel 52 will be described in detail later.
 第4供給流路54は、第1貯留部84から第5ベアリング5Eの外周面に向かって延びる。第4供給流路54は、第1貯留部84の流体Oを第5ベアリング5Eに供給する。第5供給流路55は、第1貯留部84から第7ベアリング5Gの外周面に向かって延びる。第5供給流路55は、第1貯留部84の流体Oを第7ベアリング5Gに供給する。 The fourth supply flow path 54 extends from the first storage section 84 toward the outer peripheral surface of the fifth bearing 5E. The fourth supply channel 54 supplies the fluid O in the first storage section 84 to the fifth bearing 5E. The fifth supply channel 55 extends from the first storage section 84 toward the outer peripheral surface of the seventh bearing 5G. The fifth supply channel 55 supplies the fluid O in the first storage section 84 to the seventh bearing 5G.
 <連通孔>
 図4は、連通孔65hに配置される第1シャフト21および第2シャフト44の断面図である。
 連通孔65hは、モータ室R1とギヤ室R2とを連通する。連通孔65hの内周面は、中心軸線J1を中心とする円形である。連通孔65hの内周面は、第1ベアリング5A、第2ベアリング5B、およびシール部材5Sを保持する。
<Communication hole>
FIG. 4 is a sectional view of the first shaft 21 and the second shaft 44 arranged in the communication hole 65h.
The communication hole 65h communicates the motor chamber R1 and the gear chamber R2. The inner circumferential surface of the communication hole 65h is circular centered on the central axis J1. The inner peripheral surface of the communication hole 65h holds the first bearing 5A, the second bearing 5B, and the seal member 5S.
 隔壁65aは、連通孔65hの内縁に沿ってギヤ室R2側(すなわち、軸方向一方側(-Y側))に突出する筒部11を有する。筒部11は、中心軸線J1を中心とする円筒状である。筒部11は、第1ベアリング5A、および第2ベアリング5Bを囲み保持する。本明細書において、筒部11の内周面とは、すなわち連通孔65hの内周面である。隔壁65aに筒部11が設けられることで、連通孔65hの内周面を軸方向に沿って延長できる。これにより、連通孔65hの内周面に複数のベアリングを安定して保持できる。 The partition wall 65a has a cylindrical portion 11 that protrudes toward the gear chamber R2 side (ie, one axial side (-Y side)) along the inner edge of the communication hole 65h. The cylindrical portion 11 has a cylindrical shape centered on the central axis J1. The cylindrical portion 11 surrounds and holds the first bearing 5A and the second bearing 5B. In this specification, the inner circumferential surface of the cylindrical portion 11 is the inner circumferential surface of the communication hole 65h. By providing the cylindrical portion 11 on the partition wall 65a, the inner peripheral surface of the communication hole 65h can be extended along the axial direction. Thereby, a plurality of bearings can be stably held on the inner peripheral surface of the communication hole 65h.
 連通孔65hの内周面は、第1内周面66aと第2内周面66bと第3内周面66cと第4内周面66dと第1段差面66eと第2段差面66fと第3段差面66gとを有する。第1内周面66a、第2内周面66b、第3内周面66c、および第4内周面66dは、軸方向他方側(+Y側)から軸方向一方側(-Y側)に向かってこの順で並ぶ。 The inner circumferential surface of the communication hole 65h includes a first inner circumferential surface 66a, a second inner circumferential surface 66b, a third inner circumferential surface 66c, a fourth inner circumferential surface 66d, a first stepped surface 66e, a second stepped surface 66f, and a third inner circumferential surface 66c. It has a three-step surface 66g. The first inner circumferential surface 66a, the second inner circumferential surface 66b, the third inner circumferential surface 66c, and the fourth inner circumferential surface 66d extend from the other axial side (+Y side) to the one axial side (-Y side). Line up in the order of levers.
 第1内周面66aは、第1ベアリング5Aの外周面を囲む。第1内周面66aは、第1ベアリング5Aを保持する。第1内周面66aの直径は、第2内周面66bの直径より大きい。第1内周面66aと第2内周面66bとの間には、軸方向他方側(+Y側)を向く第1段差面66eが設けられる。第1ベアリング5Aの外輪5Aaは、第1段差面66eに押し当てられる。第1ベアリング5Aは、第1シャフト21を支持する。 The first inner peripheral surface 66a surrounds the outer peripheral surface of the first bearing 5A. The first inner peripheral surface 66a holds the first bearing 5A. The diameter of the first inner peripheral surface 66a is larger than the diameter of the second inner peripheral surface 66b. A first step surface 66e facing the other axial side (+Y side) is provided between the first inner circumferential surface 66a and the second inner circumferential surface 66b. The outer ring 5Aa of the first bearing 5A is pressed against the first step surface 66e. The first bearing 5A supports the first shaft 21.
 第2内周面66bには、シール部材5Sが保持される。第2内周面66bは、シール部材5Sを保持する。第2内周面66bの直径は、第3内周面66cの直径より大きい、このため、第2内周面66bと第3内周面66cとの間には、軸方向他方側(+Y側)を向く第2段差面66fが設けられる。シール部材5Sは、第2段差面66fに接触して位置合わせされる。 A seal member 5S is held on the second inner circumferential surface 66b. The second inner peripheral surface 66b holds the seal member 5S. The diameter of the second inner circumferential surface 66b is larger than the diameter of the third inner circumferential surface 66c. Therefore, there is a gap between the second inner circumferential surface 66b and the third inner circumferential surface 66c on the other side in the axial direction (+Y side). ) is provided. The seal member 5S contacts and is aligned with the second step surface 66f.
 第3内周面66cは、連通孔65hの内周面において最も直径が小さい。第3内周面66cは、後述する連結空間Aを径方向外側から囲む。 The third inner peripheral surface 66c has the smallest diameter on the inner peripheral surface of the communication hole 65h. The third inner circumferential surface 66c surrounds a connection space A, which will be described later, from the outside in the radial direction.
 第4内周面66dは、第2ベアリング5Bの外周面を囲む。第4内周面66dは、第2ベアリング5Bを保持する。第4内周面66dの直径は、第3内周面66cの直径より大きい。第4内周面66dと第3内周面66cとの間には、軸方向一方側(-Y側)を向く第3段差面66gが設けられる。第2ベアリング5Bの外輪5Baは、第3段差面66gに押し当てられる。第2ベアリング5Bは、第2シャフト44を支持する。 The fourth inner peripheral surface 66d surrounds the outer peripheral surface of the second bearing 5B. The fourth inner peripheral surface 66d holds the second bearing 5B. The diameter of the fourth inner peripheral surface 66d is larger than the diameter of the third inner peripheral surface 66c. A third step surface 66g facing one side in the axial direction (-Y side) is provided between the fourth inner circumferential surface 66d and the third inner circumferential surface 66c. The outer ring 5Ba of the second bearing 5B is pressed against the third step surface 66g. The second bearing 5B supports the second shaft 44.
 第1シャフト21の軸方向一方側(-Y側)の端部は、凹部21aを有する。凹部21aは、軸方向から見て中心軸線J1を中心とする円形である。凹部21aは、軸方向一方側(-Y側)を向く底面21bと、径方向内側を向く内周面とを有する。凹部21aの内周面には、複数のスプライン溝21sが設けられる。複数のスプライン溝21sは、軸方向に延びる。複数のスプライン溝21sは、周方向に沿って並ぶ。 The end of the first shaft 21 on one axial side (-Y side) has a recess 21a. The recess 21a has a circular shape centered on the central axis J1 when viewed from the axial direction. The recess 21a has a bottom surface 21b facing one side in the axial direction (-Y side) and an inner circumferential surface facing inward in the radial direction. A plurality of spline grooves 21s are provided on the inner peripheral surface of the recess 21a. The plurality of spline grooves 21s extend in the axial direction. The plurality of spline grooves 21s are arranged along the circumferential direction.
 第2シャフト44の軸方向他方側(+Y側)の端部は、凸部44aを有する。凸部44aは、中心軸線J1を中心とする円柱状である。凸部44aは、軸方向他方側(+Y側)を向く先端面44bと、径方向外側を向く外周面とを有する。凸部44aの外周面には、複数のスプライン突起44sが設けられる。複数のスプライン突起44sは、軸方向に延びる。複数のスプライン突起44sは、周方向に沿って並ぶ。 The end of the second shaft 44 on the other axial side (+Y side) has a convex portion 44a. The convex portion 44a has a cylindrical shape centered on the central axis J1. The convex portion 44a has a distal end surface 44b facing the other side in the axial direction (+Y side) and an outer circumferential surface facing outward in the radial direction. A plurality of spline protrusions 44s are provided on the outer peripheral surface of the convex portion 44a. The plurality of spline protrusions 44s extend in the axial direction. The plurality of spline protrusions 44s are arranged along the circumferential direction.
 図5は、凹部21aと凸部44aとの連結部を示す断面図である。
 第1シャフト21と第2シャフト44とは、凹部21aのスプライン溝21sと凸部44aのスプライン突起44sとの噛み合いにより互いに連結される。以下の説明において、スプライン溝21sとスプライン突起44sとが噛み合って連結される部分を連結部3とする。
FIG. 5 is a cross-sectional view showing a connecting portion between the concave portion 21a and the convex portion 44a.
The first shaft 21 and the second shaft 44 are connected to each other by engagement between the spline groove 21s of the recess 21a and the spline protrusion 44s of the convex portion 44a. In the following description, the portion where the spline groove 21s and the spline protrusion 44s engage and are connected will be referred to as a connecting portion 3.
 スプライン溝21sは、一様な断面形状で軸方向に沿って延びる。同様に、スプライン突起44sは、一様な断面形状で軸方向に沿って延びる。1つのスプライン溝21sには、1つのスプライン突起44sが挿入される。スプライン溝21sの径方向内側を向く底面の径は、スプライン突起44sの径方向外側を向く先端面の径より大きい。また、スプライン溝21sの幅寸法は、スプライン突起44sの幅寸法よりも大きい。このため、スプライン溝21sの内側面とスプライン突起44sの外側面との間には、隙間3aが設けられる。流体Oは、隙間3aを通って連結部3の軸方向一方側の端部と他方側の端部との間で相互に移動する。 The spline groove 21s has a uniform cross-sectional shape and extends along the axial direction. Similarly, the spline protrusion 44s has a uniform cross-sectional shape and extends in the axial direction. One spline projection 44s is inserted into one spline groove 21s. The diameter of the bottom surface of the spline groove 21s facing radially inward is larger than the diameter of the tip surface facing radially outside of the spline protrusion 44s. Moreover, the width dimension of the spline groove 21s is larger than the width dimension of the spline protrusion 44s. Therefore, a gap 3a is provided between the inner surface of the spline groove 21s and the outer surface of the spline projection 44s. The fluid O mutually moves between one end and the other end of the connecting portion 3 in the axial direction through the gap 3a.
 図4に示すように、本実施形態において、凹部21aの底面21bと、凸部44aの先端面44bとの間には、軸方向の隙間が設けられる。以下の説明において、底面21bと先端面44bとの間の隙間を第3貯留部Bとする。すなわち、底面21bと先端面44bとの間には、第3貯留部Bが設けられる。第3貯留部Bは、凹部21aの内周面によって径方向外側から囲まれ、底面21bと先端面44bとによって軸方向に挟まれる空間である。第3貯留部Bには、流体Oが留まる。 As shown in FIG. 4, in this embodiment, an axial gap is provided between the bottom surface 21b of the recess 21a and the tip surface 44b of the convex portion 44a. In the following description, the gap between the bottom surface 21b and the tip surface 44b will be referred to as a third storage section B. That is, the third reservoir B is provided between the bottom surface 21b and the tip surface 44b. The third storage portion B is a space surrounded from the outside in the radial direction by the inner circumferential surface of the recess 21a and sandwiched in the axial direction by the bottom surface 21b and the tip surface 44b. The fluid O remains in the third reservoir B.
 第1シャフト21と第2シャフト44とは、連結部3において周方向の相対的な移動が制限される。このため、第1シャフト21と第2シャフト44とは、中心軸線J1周りを同期回転する。また、第1シャフト21と第2シャフト44とは、連結部3において、軸方向の相対的な移動を許容する。 Relative movement of the first shaft 21 and the second shaft 44 in the circumferential direction is restricted at the connecting portion 3. Therefore, the first shaft 21 and the second shaft 44 rotate synchronously around the central axis J1. Further, the first shaft 21 and the second shaft 44 allow relative movement in the axial direction in the connecting portion 3.
 本実施形態では、第1ギヤ41および第2ギヤ42としてヘリカルギヤを採用できる。このため、第1ギヤ41は、駆動時に第2ギヤ42から軸方向を向く反力を受ける。本実施形態によれば、第1シャフト21と第2シャフト44とが、連結部3において軸方向に相対的に移動可能であるため、第1ギヤ41に付与される軸方向の力が、連結部3を介して第1シャフト21に伝わることを抑制できる。このため、第2シャフト44を支持するベアリング5A、5Cに大きなスラスト荷重が付与されることを抑制できる。 In this embodiment, helical gears can be employed as the first gear 41 and the second gear 42. Therefore, the first gear 41 receives a reaction force directed in the axial direction from the second gear 42 during driving. According to the present embodiment, since the first shaft 21 and the second shaft 44 are relatively movable in the axial direction in the connecting portion 3, the axial force applied to the first gear 41 is It is possible to suppress the transmission of the heat to the first shaft 21 via the portion 3 . Therefore, it is possible to suppress a large thrust load from being applied to the bearings 5A, 5C that support the second shaft 44.
 第1シャフト21の軸方向一方側(-Y側)の端部は、先端に向かうに従い細くなる段差形状を有する。第1シャフト21は、第1外周面21dと第2外周面21eと第3外周面21fとを有する。第1外周面21d、第2外周面21e、および第3外周面21fは、は、軸方向他方側(+Y側)から一方側に向かってこの順で並ぶ。第1外周面21d、第2外周面21e、および第3外周面21fは、この順で直径が小さくなる。 The end of the first shaft 21 on one axial side (−Y side) has a stepped shape that becomes narrower toward the tip. The first shaft 21 has a first outer peripheral surface 21d, a second outer peripheral surface 21e, and a third outer peripheral surface 21f. The first outer circumferential surface 21d, the second outer circumferential surface 21e, and the third outer circumferential surface 21f are arranged in this order from the other axial side (+Y side) to the one side. The diameters of the first outer circumferential surface 21d, the second outer circumferential surface 21e, and the third outer circumferential surface 21f decrease in this order.
 第2外周面21eは、連通孔65hの第1内周面66aと径方向に対向する。第2外周面21eには、第1ベアリング5Aが装着される。すなわち、第2外周面21eは、第1ベアリング5Aによって囲まれる。第2外周面21eと第1外周面21dと間には、軸方向一方側(-Y側)を向く第4段差面21gが設けられる。第1ベアリング5Aの内輪5Acは、第4段差面21gに押し当てられる。 The second outer peripheral surface 21e faces the first inner peripheral surface 66a of the communication hole 65h in the radial direction. The first bearing 5A is mounted on the second outer peripheral surface 21e. That is, the second outer peripheral surface 21e is surrounded by the first bearing 5A. A fourth step surface 21g facing one side in the axial direction (-Y side) is provided between the second outer peripheral surface 21e and the first outer peripheral surface 21d. The inner ring 5Ac of the first bearing 5A is pressed against the fourth step surface 21g.
 第3外周面21fは、第1シャフト21の軸方向一方側(-Y側)の端部に位置する。第3外周面21fは、連通孔65hの第2内周面66bと径方向に対向する。第3外周面21fには、シール部材5Sの内端が接触する。第1シャフト21の回転に伴い、第3外周面21fは、シール部材5Sと摺動する。 The third outer circumferential surface 21f is located at one end of the first shaft 21 in the axial direction (-Y side). The third outer peripheral surface 21f faces the second inner peripheral surface 66b of the communication hole 65h in the radial direction. The inner end of the seal member 5S contacts the third outer peripheral surface 21f. As the first shaft 21 rotates, the third outer peripheral surface 21f slides on the seal member 5S.
 連通孔65hにおける第1ベアリング5Aと第2ベアリング5Bの軸方向の間には、連結空間Aが設けられる。本実施形態において、第1ベアリング5Aと第2ベアリング5Bとの軸方向の間の空間は、シール部材5Sによって2つに区画される。本実施形態の連結空間Aはシール部材5Sで区間される2つの空間のうち凹部21aが開口する軸方向一方側(-Y側)の一方である。すなわち、連結空間Aには、凹部21aが開口する。本実施形態の連結空間Aは、径方向において連通孔65hの第3内周面66cと第2シャフト44の外周面とに挟まれ、軸方向において第2ベアリング5Bとシール部材5Sとに挟まれる。連結空間Aには、後述する第2供給流路52の第1流路52aを通って流体Oが供給される。 A connection space A is provided between the first bearing 5A and the second bearing 5B in the axial direction in the communication hole 65h. In this embodiment, the space between the first bearing 5A and the second bearing 5B in the axial direction is divided into two by the seal member 5S. The connecting space A of this embodiment is one of the two spaces defined by the seal member 5S on one side in the axial direction (-Y side) where the recess 21a opens. That is, the recess 21a opens in the connection space A. The connection space A of this embodiment is sandwiched between the third inner circumferential surface 66c of the communication hole 65h and the outer circumferential surface of the second shaft 44 in the radial direction, and between the second bearing 5B and the seal member 5S in the axial direction. . A fluid O is supplied to the connection space A through a first flow path 52a of a second supply flow path 52, which will be described later.
 なお、本明細書において連結空間Aは、第1シャフト21および第2シャフト44の内部を含まない。連結空間Aは、径方向において、連通孔65hの内周面の径方向内側、かつ第1シャフト21の外周面および第2シャフト44の外周面の径方向外側の空間である。すなわち、連結空間Aは、連通孔65hにおける第1ベアリング5Aと第2ベアリング5Bの軸方向の間、かつ、連通孔65hの内周面と第1シャフト21の外周面および第2シャフト44の外周面との径方向の間に設けられる。 Note that in this specification, the connection space A does not include the insides of the first shaft 21 and the second shaft 44. The connection space A is a space radially inside the inner peripheral surface of the communication hole 65h and radially outside the outer peripheral surfaces of the first shaft 21 and the second shaft 44. That is, the connection space A is located between the first bearing 5A and the second bearing 5B in the communication hole 65h in the axial direction, and between the inner peripheral surface of the communication hole 65h, the outer peripheral surface of the first shaft 21, and the outer peripheral surface of the second shaft 44. It is provided between the surface and the surface in the radial direction.
 本実施形態の連通孔65hには、シール部材5Sが設けられる。シール部材5Sは、連通孔65hの内周面と第1シャフト21の外周面との間の隙間を封止する。本実施形態によれば、モータ室R1とギヤ室R2との間を封止することができ、モータ室R1に流体Oが浸入することを抑制することができる。これにより、モータ室R1のシール構造を簡素化できる。また、シール部材5Sが連結空間Aに流体Oを留めることで、多くの流体Oを連結部3および第2ベアリング5Bに供給できる。 A seal member 5S is provided in the communication hole 65h of this embodiment. The seal member 5S seals the gap between the inner peripheral surface of the communication hole 65h and the outer peripheral surface of the first shaft 21. According to this embodiment, it is possible to seal between the motor chamber R1 and the gear chamber R2, and it is possible to suppress the fluid O from entering the motor chamber R1. Thereby, the seal structure of the motor chamber R1 can be simplified. Moreover, since the seal member 5S retains the fluid O in the connection space A, a large amount of fluid O can be supplied to the connection portion 3 and the second bearing 5B.
 本実施形態によれば、シール部材5Sは、第1ベアリング5Aと第2ベアリング5Bとの間に位置する。また、本実施形態において、連結空間Aは、シール部材5Sと第2ベアリング5Bとの間に設けられる。連結空間Aには、流体Oが供給されるため、シール部材5Sには、流体Oが接触する。本実施形態によれば、シール部材5Sと第1シャフト21の第3外周面21fとの間を潤滑することができ、シール部材5Sの摺動抵抗を抑制できる。 According to this embodiment, the seal member 5S is located between the first bearing 5A and the second bearing 5B. Moreover, in this embodiment, the connection space A is provided between the seal member 5S and the second bearing 5B. Since the fluid O is supplied to the connection space A, the fluid O comes into contact with the sealing member 5S. According to this embodiment, it is possible to lubricate the space between the seal member 5S and the third outer circumferential surface 21f of the first shaft 21, and the sliding resistance of the seal member 5S can be suppressed.
 図6に変形例として示すように、シール部材105Sは、第1ベアリング5A、および第2ベアリング5Bよりも軸方向他方側(+Y側)に配置されていてもよい。この場合、連結空間Aに流入する流体Oが、第2ベアリング5Bのみならず第1ベアリング5Aに触れて、第1ベアリング5Aを潤滑できる。 As shown as a modification in FIG. 6, the seal member 105S may be arranged on the other axial side (+Y side) of the first bearing 5A and the second bearing 5B. In this case, the fluid O flowing into the connection space A touches not only the second bearing 5B but also the first bearing 5A, and can lubricate the first bearing 5A.
 図4に示すように、本実施形態によれば、シール部材5Sは、連通孔65hの内周面に保持され、第1シャフト21の外周面に接触する。また、第1シャフト21は、シール部材5Sの接触する部分(第3外周面21f)の外径が、第1ベアリング5Aに支持される部分(第2外周面21e)の外径より小さい。第1シャフト21が回転すると、シール部材5Sと第3外周面21fとが摺動する。第3外周面21fの直径を小さくすることで、シール部材5Sと第3外周面21fとの摺動速度を小さくすることができ、摺動に伴う発熱を抑制できる。また、第3外周面21fの直径を小さくすることで、摺動時の動摩擦力に起因して第1シャフト21に付与されるトルクを小さくすることができ、第1シャフト21の回転効率を高めることができる。一方で、第2外周面21eの外形を第3外周面21fより大きくすることで、第2外周面21eの内側で第1シャフト21の厚さを十分に確保できる。これにより、第1シャフト21の第1ベアリング5Aで支持される部分の剛性を高め、第1シャフト21を第1ベアリング5Aで安定して保持させることができる。 As shown in FIG. 4, according to the present embodiment, the seal member 5S is held on the inner peripheral surface of the communication hole 65h and contacts the outer peripheral surface of the first shaft 21. Further, in the first shaft 21, the outer diameter of the portion (third outer circumferential surface 21f) in contact with the seal member 5S is smaller than the outer diameter of the portion (second outer circumferential surface 21e) supported by the first bearing 5A. When the first shaft 21 rotates, the seal member 5S and the third outer peripheral surface 21f slide. By reducing the diameter of the third outer circumferential surface 21f, the sliding speed between the seal member 5S and the third outer circumferential surface 21f can be reduced, and heat generation due to sliding can be suppressed. Furthermore, by reducing the diameter of the third outer circumferential surface 21f, it is possible to reduce the torque applied to the first shaft 21 due to the dynamic friction force during sliding, thereby increasing the rotational efficiency of the first shaft 21. be able to. On the other hand, by making the outer shape of the second outer circumferential surface 21e larger than the third outer circumferential surface 21f, a sufficient thickness of the first shaft 21 can be ensured inside the second outer circumferential surface 21e. Thereby, the rigidity of the portion of the first shaft 21 supported by the first bearing 5A can be increased, and the first shaft 21 can be stably held by the first bearing 5A.
 <第2供給流路(流路)>
 第2供給流路52は、第1流路52aと第2流路52eと第3流路52dとを有する。第2供給流路52は、第1貯留部84から連結部3を通って第2貯留部82に達する流路である。第1流路52aは、第1貯留部84と連結空間Aとを繋ぐ。第2流路52eは、連結空間Aと凹部21aの内部とを繋ぐ。第3流路52dは、連結空間Aと第2貯留部82とを繋ぐ。流体Oは、第1流路52a、第2流路52e、および第3流路52dに流れる。
<Second supply flow path (flow path)>
The second supply channel 52 has a first channel 52a, a second channel 52e, and a third channel 52d. The second supply channel 52 is a channel that extends from the first storage section 84 through the connecting section 3 and reaches the second storage section 82 . The first flow path 52a connects the first storage section 84 and the connection space A. The second flow path 52e connects the connection space A and the inside of the recess 21a. The third flow path 52d connects the connection space A and the second storage section 82. The fluid O flows into the first flow path 52a, the second flow path 52e, and the third flow path 52d.
 図2に示すように、第1流路52aは、孔部84aと、第1凹溝(凹溝)11aと第2凹溝11bとを有する。
 孔部84aは、ハウジング6の隔壁65aに設けられる。孔部84aは、ドリル加工によって形成される。孔部84aの上端部は、第1貯留部84に繋がる。孔部84aの上端部は、第1貯留部84の底面に開口する。孔部84aの下端部は、筒部11の内周面に繋がる。すなわち、孔部84aは、筒部11を径方向に貫通する。また、孔部84aは、第1貯留部84から筒部11の内周面に延びる。
As shown in FIG. 2, the first flow path 52a has a hole 84a, a first groove (groove) 11a, and a second groove 11b.
The hole 84a is provided in the partition wall 65a of the housing 6. The hole 84a is formed by drilling. The upper end of the hole 84 a is connected to the first storage section 84 . The upper end of the hole 84a opens to the bottom surface of the first storage section 84. The lower end of the hole 84a is connected to the inner circumferential surface of the cylindrical portion 11. That is, the hole portion 84a penetrates the cylindrical portion 11 in the radial direction. Further, the hole 84a extends from the first storage portion 84 to the inner circumferential surface of the cylindrical portion 11.
 図4に示すように、本実施形態によれば、筒部11には、径方向に沿って延びて第1流路52aの一部を構成する孔部84aが設けられる。第1流路52aの一部を孔部84aとすることで、第1貯留部84から連結空間Aに安定的に流体Oを供給することができる。 As shown in FIG. 4, according to the present embodiment, the cylindrical portion 11 is provided with a hole 84a that extends along the radial direction and constitutes a part of the first flow path 52a. By forming a part of the first flow path 52a as the hole 84a, the fluid O can be stably supplied from the first storage section 84 to the connection space A.
 なお、本実施形態では、第1流路52aが孔部84aにおいて筒部11の内外を貫通する場合について説明した。しかしながら、第1流路52aは、筒部11に設けられる切欠部によって筒部11の内外を貫通してもよい。すなわち、筒部11には、径方向に沿って延びて第1流路52aの一部を構成する切欠部が設けられていてもよい。また、本実施形態において、第1流路52aは、孔部84aにおいて隔壁65aの内部を貫通する。しかしながら、第1流路52aは、孔部84aに替えて、隔壁65aの表面に設けられる溝部又はリブを有していてもよい。すなわち、隔壁65aには、第1貯留部84から筒部11に向かって延びて第1流路52aの一部を構成する溝部又はリブを有していてもよい。 In addition, in this embodiment, the case where the first flow path 52a penetrates the inside and outside of the cylindrical part 11 at the hole 84a has been described. However, the first flow path 52a may penetrate inside and outside of the cylindrical portion 11 by a notch provided in the cylindrical portion 11. That is, the cylindrical portion 11 may be provided with a notch that extends along the radial direction and constitutes a part of the first flow path 52a. Further, in this embodiment, the first flow path 52a penetrates the inside of the partition wall 65a at the hole 84a. However, the first flow path 52a may have a groove or a rib provided on the surface of the partition wall 65a instead of the hole 84a. That is, the partition wall 65a may have a groove or a rib that extends from the first storage section 84 toward the cylindrical section 11 and constitutes a part of the first flow path 52a.
 第1凹溝11aは、筒部11の内周面設けられる。本実施形態の第1凹溝11aは、連通孔65hの第4内周面66dに設けられる。第1凹溝11aは、軸方向に沿って延びる。第1凹溝11aは、第4内周面66dの軸方向の全長に亘って設けられる。 The first groove 11a is provided on the inner peripheral surface of the cylindrical portion 11. The first groove 11a of this embodiment is provided on the fourth inner peripheral surface 66d of the communication hole 65h. The first groove 11a extends along the axial direction. The first groove 11a is provided over the entire length of the fourth inner peripheral surface 66d in the axial direction.
 上述したように、第4内周面66dは、第2ベアリング5Bを径方向外側から囲む。このため、第1凹溝11aは、第2ベアリング5Bの外周面によって覆われる。第1凹溝11aに達する流体Oは、第1凹溝11aの内側面と第2ベアリング5Bの外周面とで囲まれる空間を流れる。 As described above, the fourth inner peripheral surface 66d surrounds the second bearing 5B from the outside in the radial direction. Therefore, the first groove 11a is covered by the outer peripheral surface of the second bearing 5B. The fluid O that reaches the first groove 11a flows through a space surrounded by the inner surface of the first groove 11a and the outer peripheral surface of the second bearing 5B.
 第1凹溝11aは、径方向内側を向く底面11cを有する。底面11cには、孔部84aが開口する。すなわち、孔部84aは、第1凹溝11aの底面11cに開口する。孔部84aを第4内周面66dに直接的に開口させると、孔部84aの開口が第2ベアリング5Bの外周面によって覆われて、孔部84aから連結空間Aへの流体Oの供給が円滑に行われない。本実施形態によれば、第4内周面66dに第1凹溝11aを設け、孔部84aを第1凹溝11aの底面11cに開口させることで、孔部84aの開口から流体Oを円滑に供給することができる。 The first groove 11a has a bottom surface 11c facing radially inward. A hole 84a is opened in the bottom surface 11c. That is, the hole 84a opens to the bottom surface 11c of the first groove 11a. When the hole 84a is opened directly into the fourth inner peripheral surface 66d, the opening of the hole 84a is covered by the outer peripheral surface of the second bearing 5B, and the fluid O is not supplied from the hole 84a to the connection space A. It's not done smoothly. According to the present embodiment, the first groove 11a is provided in the fourth inner circumferential surface 66d, and the hole 84a is opened at the bottom surface 11c of the first groove 11a, thereby allowing fluid O to flow smoothly from the opening of the hole 84a. can be supplied to
 第2凹溝11bは、連通孔65hの内周面であって第3段差面66gに設けられる。第2凹溝11bは、径方向に沿って延びる。第2凹溝11bの径方向外側の端部は、第1凹溝11aの軸方向他方側(+Y側)の端部に繋がる。第2凹溝11bの径方向内側の端部は、連結空間Aに繋がる。 The second groove 11b is provided on the third step surface 66g, which is the inner peripheral surface of the communication hole 65h. The second groove 11b extends in the radial direction. The radially outer end of the second groove 11b is connected to the end of the first groove 11a on the other axial side (+Y side). A radially inner end of the second groove 11b is connected to the connection space A.
 上述したように、第3段差面66gは、第2ベアリング5Bの外輪5Baと接触する。このため、第2凹溝11bは、第2ベアリング5Bの外輪5Baによって覆われる。第2凹溝11bに達する流体Oは、第2凹溝11bの内側面と第2ベアリング5Bの外輪5Baとで囲まれる空間を流れる。 As described above, the third step surface 66g contacts the outer ring 5Ba of the second bearing 5B. Therefore, the second groove 11b is covered by the outer ring 5Ba of the second bearing 5B. The fluid O reaching the second groove 11b flows through a space surrounded by the inner surface of the second groove 11b and the outer ring 5Ba of the second bearing 5B.
 第2流路52eは、流入流路52bと流出流路52cとを有する。流入流路52b、および流出流路52cは、ともに連結空間Aと第3貯留部Bとを繋ぐ流路である。流入流路52bは、連結空間Aから第3貯留部Bに向かって流体Oを流す経路である。一方で、流出流路52cは、第3貯留部Bから連結空間Aに向かって流体Oを流す経路である。流入流路52b、および流出流路52cは、ともにスプライン溝21sとスプライン突起44sとの間を通る。 The second channel 52e has an inflow channel 52b and an outflow channel 52c. Both the inflow channel 52b and the outflow channel 52c are channels that connect the connection space A and the third storage section B. The inflow channel 52b is a path through which the fluid O flows from the connection space A toward the third storage section B. On the other hand, the outflow channel 52c is a path through which the fluid O flows from the third storage section B toward the connection space A. Both the inflow channel 52b and the outflow channel 52c pass between the spline groove 21s and the spline protrusion 44s.
 第2流路52eにおいて、流体Oは、流入流路52bと流出流路52cとを同時に流れ得る。連結空間Aに溜る流体Oが比較的多く、第3貯留部Bに留まる流体Oが比較的少ない場合、流入流路52bにより多くの流体Oが流れる。反対に、連結空間Aに溜る流体Oが比較的少なく、第3貯留部Bに留まる流体Oが比較的多い場合、流出流路52cにより多くの流体Oが流れる。 In the second channel 52e, the fluid O can flow through the inflow channel 52b and the outflow channel 52c simultaneously. When a relatively large amount of fluid O remains in the connection space A and a relatively small amount of fluid O remains in the third storage section B, more fluid O flows into the inflow channel 52b. On the other hand, when the amount of fluid O accumulated in the connection space A is relatively small and the amount of fluid O remaining in the third storage section B is relatively large, more fluid O flows through the outflow channel 52c.
 本実施形態によれば、流体Oが第2流路52eを流れることで、連結部3に流体Oを供給することができる。これにより、スプライン溝21sとスプライン突起44sとの焼き付きを抑制するとともに、スプライン溝21sとスプライン突起44sとの軸方向の滑りを促すことができる。これにより、第2シャフト44に軸方向の力が付与される場合でも、この力が第1シャフト21に伝わることを抑制できる。さらに、スプライン溝21sとスプライン突起44sとの間に流体Oを充填することができ、第1シャフト21の回転方向が切り替わる場合などの連結部3の衝撃を緩和できる。 According to this embodiment, the fluid O can be supplied to the connecting portion 3 by flowing through the second flow path 52e. Thereby, it is possible to suppress seizure between the spline groove 21s and the spline protrusion 44s, and to promote sliding between the spline groove 21s and the spline protrusion 44s in the axial direction. Thereby, even if an axial force is applied to the second shaft 44, this force can be suppressed from being transmitted to the first shaft 21. Furthermore, the fluid O can be filled between the spline groove 21s and the spline protrusion 44s, and the impact on the connecting portion 3 when the rotation direction of the first shaft 21 is switched can be alleviated.
 本実施形態によれば、凹部21a内には、第3貯留部Bが設けられる。第3貯留部Bには、流体Oが留まる。このため、第1貯留部84から連結部3への流体Oの供給が滞った場合に、第3貯留部Bの流体Oは、流出流路52cを流れて連結空間Aに達する。すなわち、第3貯留部Bに留まる流体Oが、スプライン溝21sとスプライン突起44sとの隙間を徐々に伝わり、連結部3を潤滑することができる。 According to the present embodiment, the third reservoir B is provided within the recess 21a. The fluid O remains in the third reservoir B. Therefore, when the supply of fluid O from the first storage section 84 to the connection section 3 is delayed, the fluid O in the third storage section B flows through the outflow channel 52c and reaches the connection space A. In other words, the fluid O remaining in the third reservoir B gradually travels through the gap between the spline groove 21s and the spline protrusion 44s, and can lubricate the connecting portion 3.
 本実施形態の第1シャフト21、および第2シャフト44は、中実のシャフトである。このため、第3貯留部Bに留まる流体Oが、第1シャフト21、および第2シャフト44の内部に流入することがない。このため、第3貯留部Bに留まる流体Oをより多く連結部3に供給することができる。 The first shaft 21 and the second shaft 44 of this embodiment are solid shafts. Therefore, the fluid O remaining in the third reservoir B does not flow into the first shaft 21 and the second shaft 44. Therefore, more fluid O remaining in the third reservoir B can be supplied to the connecting part 3.
 第3流路52dは、第2ベアリング5Bの内輪5Bcと外輪5Baとの間に設けられる流路である。すなわち、第3流路52dは、第2ベアリング5Bを含む流路である。本実施形態によれば、第3流路52dに流体Oが流れることで、第2ベアリング5Bが潤滑される。 The third flow path 52d is a flow path provided between the inner ring 5Bc and outer ring 5Ba of the second bearing 5B. That is, the third flow path 52d is a flow path that includes the second bearing 5B. According to this embodiment, the second bearing 5B is lubricated by the fluid O flowing through the third flow path 52d.
 本実施形態の連結空間Aは、第1流路52aを介して第1貯留部84に繋がる。連結空間Aには、第1貯留部84から安定的に流体Oが供給される。本実施形態によれば、連結空間Aが、第2流路52e、および第3流路52dに流体Oを安定的に供給することができ、第2流路52eにおいて連結部3を潤滑させ、第3流路52dにおいて第2ベアリング5Bを潤滑させることができる。 The connection space A of this embodiment is connected to the first storage section 84 via the first flow path 52a. The fluid O is stably supplied to the connection space A from the first storage section 84. According to this embodiment, the connection space A can stably supply the fluid O to the second flow path 52e and the third flow path 52d, and lubricate the connection portion 3 in the second flow path 52e. The second bearing 5B can be lubricated in the third flow path 52d.
 図4に二点鎖線の矢印で示すように、第2供給流路52は、実施形態の第1流路52aの代わりに、又は第1流路52aと共に、変形例の第1流路152aを有していてもよい。変形例の第1流路152aは、第1貯留部84と連結空間Aとを繋ぐ。変形例の第1流路152aは、例えば、隔壁65aに設けた凹溝を伝って第2ベアリング5Bの軸方向一方側(-Y側)の端面に達する経路である。また、変形例の第1流路152aは、第2ベアリング5Bの内輪5Bcと外輪5Baとの間に設けられる。すなわち、第1流路152aは、第2ベアリング5Bを含む流路である。本実施形態によれば、第1流路152aに流体Oが流れることで、第2ベアリング5Bを潤滑できる。 As shown by the two-dot chain arrow in FIG. 4, the second supply flow path 52 includes a first flow path 152a of the modified example instead of the first flow path 52a of the embodiment, or together with the first flow path 52a. may have. The first flow path 152a of the modified example connects the first storage section 84 and the connection space A. The first flow path 152a of the modified example is, for example, a path that passes through a groove provided in the partition wall 65a and reaches the end surface of the second bearing 5B on one axial side (-Y side). Moreover, the first flow path 152a of the modified example is provided between the inner ring 5Bc and the outer ring 5Ba of the second bearing 5B. That is, the first flow path 152a is a flow path that includes the second bearing 5B. According to this embodiment, the second bearing 5B can be lubricated by the fluid O flowing through the first flow path 152a.
 本実施形態では、第1貯留部84、および第2貯留部82は、ともにギヤ室R2に設けられる。すなわち、第2供給流路52は、ギヤ室R2から連結空間A、および第3貯留部Bに流入し、再びギヤ室R2に戻る流路である。本実施形態によれば、モータ室R1に流体Oを浸入させることなく、連結部3を潤滑させることができる。本実施形態によれば、モータ2をウォータジャケット6Dで冷却する場合において、モータ室R1に流体Oを浸入させることがないため、モータ室R1のシール構造を簡素化できる。 In this embodiment, the first storage section 84 and the second storage section 82 are both provided in the gear chamber R2. That is, the second supply flow path 52 is a flow path that flows from the gear chamber R2 into the connection space A and the third storage section B, and returns to the gear chamber R2 again. According to this embodiment, the connecting portion 3 can be lubricated without allowing the fluid O to enter the motor chamber R1. According to this embodiment, when the motor 2 is cooled by the water jacket 6D, the fluid O is not allowed to enter the motor chamber R1, so that the sealing structure of the motor chamber R1 can be simplified.
 図4に二点鎖線の矢印で示すように、第2供給流路52は、変形例の第3流路152dを有していてもよい。変形例の第3流路152dは、連結空間Aとモータ室R1とを繋ぐ。変形例の第3流路152dは、経路中の第1ベアリング5Aを潤滑できる。このように、第1貯留部84がギヤ室に設けられ、第2貯留部82がギヤ室R2、又はモータ室R1に設けられていれば、第3流路52d、152dにおいて、第1ベアリング5A、又は第2ベアリング5Bの何れか一方を潤滑できる。 As shown by the two-dot chain arrow in FIG. 4, the second supply flow path 52 may include a third flow path 152d of a modified example. The third flow path 152d of the modified example connects the connection space A and the motor chamber R1. The third flow path 152d of the modified example can lubricate the first bearing 5A in the path. In this way, if the first storage section 84 is provided in the gear chamber and the second storage section 82 is provided in the gear chamber R2 or the motor chamber R1, the first bearing 5A is , or the second bearing 5B.
 本実施形態の第2ベアリング5Bは、動力伝達部4の第2シャフト44を支持する。このため、第2ベアリング5Bは、第1ベアリング5Aと比較して、ギヤ同士の噛み合いに起因する振動が伝わり易い。本実施形態によれば、第2ベアリング5Bの外輪5Baと内輪5Bcとの間に第3流路52dを設けて第2ベアリング5Bを潤滑することで、第2ベアリング5Bの動作を安定させることができる。 The second bearing 5B of this embodiment supports the second shaft 44 of the power transmission section 4. Therefore, vibrations caused by the meshing of the gears are more easily transmitted to the second bearing 5B than to the first bearing 5A. According to this embodiment, the operation of the second bearing 5B can be stabilized by providing the third flow path 52d between the outer ring 5Ba and the inner ring 5Bc of the second bearing 5B to lubricate the second bearing 5B. can.
 本実施形態において、第1ベアリング5A、および第2ベアリング5Bは、ボールベアリングである。第1ベアリング5A、および第2ベアリング5Bは、それぞれ球状の転動体5Ab、5Bbを有する。本実施形態において、第2ベアリング5Bの転動体5Bbの直径は、第1ベアリング5Aの転動体5Abの直径より大きい。本実施形態によれば、動力伝達部4からの振動を受け易い第2ベアリング5Bの強度および剛性を高めて、動力伝達部4の動作を円滑にすることができる。また、第1ギヤ41および第2ギヤ42としてヘリカルギヤを採用する場合、動力伝達部4の駆動時に第2ベアリング5Bには、軸方向の力が付与される。第2ベアリング5Bは、転動体5Bbを大きくすることで第2シャフト44に付与される軸方向の力に対し第2シャフト44を安定して支持できる。 In this embodiment, the first bearing 5A and the second bearing 5B are ball bearings. The first bearing 5A and the second bearing 5B have spherical rolling elements 5Ab and 5Bb, respectively. In this embodiment, the diameter of the rolling elements 5Bb of the second bearing 5B is larger than the diameter of the rolling elements 5Ab of the first bearing 5A. According to this embodiment, the strength and rigidity of the second bearing 5B, which is susceptible to vibrations from the power transmission section 4, can be increased, and the operation of the power transmission section 4 can be made smooth. Further, when helical gears are used as the first gear 41 and the second gear 42, an axial force is applied to the second bearing 5B when the power transmission section 4 is driven. The second bearing 5B can stably support the second shaft 44 against the axial force applied to the second shaft 44 by increasing the size of the rolling elements 5Bb.
 なお、第1ベアリング5A、および第2ベアリング5Bは、円柱状の転動体5Ab、5Bbを有するころ軸受であってもよい。この場合においても、球状又は円柱状の転動体5Ab、5Bbの直径を比較して、第1ベアリング5Aの方が大きければ上述の効果得ることができる。 Note that the first bearing 5A and the second bearing 5B may be roller bearings having cylindrical rolling elements 5Ab and 5Bb. Even in this case, the above-mentioned effect can be obtained if the diameters of the spherical or cylindrical rolling elements 5Ab and 5Bb are compared and the first bearing 5A is larger.
 本実施形態では、凹部21aが第1シャフト21の軸方向一方側(-Y側)の端部に設けられ、凸部44aが第2シャフト44の軸方向他方側(+Y側)の端部に設けられる場合について説明した。しかしながら、第1シャフト21の軸方向一方側(-Y側)の端部、および第2シャフト44の軸方向他方側(+Y側)の端部のうち、一方が凹部21aを有し、他方が凸部(44a)を有していればよい。 In this embodiment, the recess 21a is provided at the end of the first shaft 21 on one axial side (-Y side), and the protrusion 44a is provided on the end of the second shaft 44 on the other axial side (+Y side). The case where it is provided has been explained. However, among the end of the first shaft 21 on one axial side (-Y side) and the end of the second shaft 44 on the other axial side (+Y side), one has the recess 21a, and the other has the recess 21a. It is sufficient if it has a convex portion (44a).
 ただし、本実施形態のように、凹部21aが第1シャフト21に設けられ、凸部44aが第2シャフト44に設けることがより好ましい。凸部44aと凹部21aとは互いに嵌合するため、凸部44aが設けられるシャフトは、凹部が設けられるシャフトと比較して直径が大きくなる。本実施形態によれば、第1シャフト21に凹部21aを設け第2シャフト44に凸部44aを設けることで、第2シャフト44を第1シャフト21よりも小径にすることができる。このため、第2シャフト44を支持する第2ベアリング5Bの転動体5Bbを大型化しても、第2ベアリング5Bの外径が大きくなりすぎることを抑制できる。結果的に、第2ベアリング5Bによってギヤ室R2の空間を圧迫することを抑制できる。 However, it is more preferable that the recess 21a be provided on the first shaft 21 and the protrusion 44a be provided on the second shaft 44 as in this embodiment. Since the protrusion 44a and the recess 21a fit into each other, the shaft provided with the protrusion 44a has a larger diameter than the shaft provided with the recess. According to this embodiment, the second shaft 44 can be made smaller in diameter than the first shaft 21 by providing the first shaft 21 with the recess 21a and the second shaft 44 with the protrusion 44a. Therefore, even if the rolling elements 5Bb of the second bearing 5B that supports the second shaft 44 are increased in size, the outer diameter of the second bearing 5B can be prevented from becoming too large. As a result, it is possible to suppress the space in the gear chamber R2 from being compressed by the second bearing 5B.
 以上に、本発明の様々な実施形態および変形例を説明したが、各実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Various embodiments and modifications of the present invention have been described above, but each configuration and combination thereof in each embodiment and modification is merely an example, and the configurations may be changed without departing from the spirit of the present invention. Additions, omissions, substitutions, and other changes are possible. Moreover, the present invention is not limited by the embodiments.
 1…駆動装置、2…モータ、4…動力伝達部、5A…第1ベアリング、5Ab,5Bb…転動体、5B…第2ベアリング、5S,105S…シール部材、6…ハウジング、11…筒部、11a…第1凹溝(凹溝)、11c,21b…底面、20…ロータ、21…第1シャフト、21a…凹部、21s…スプライン溝、25…ファン、30…ステータ、41…ギヤ、44…シャフト、44…第2シャフト、44a…凸部、44b…先端面、44s…スプライン突起、52…第2供給流路(流路)、52a…第1流路、52d,152d…第3流路、52e…第2流路、65a…隔壁、65h…連通孔、82…第2貯留部、84…第1貯留部、84a…孔部、93…第3水路(水路)、A…連結空間、B…第3貯留部、J1…中心軸線、O…流体、R1…モータ室、R2…ギヤ室 DESCRIPTION OF SYMBOLS 1... Drive device, 2... Motor, 4... Power transmission part, 5A... First bearing, 5Ab, 5Bb... Rolling element, 5B... Second bearing, 5S, 105S... Seal member, 6... Housing, 11... Cylindrical part, 11a...first groove (concave groove), 11c, 21b...bottom surface, 20...rotor, 21...first shaft, 21a...recess, 21s...spline groove, 25...fan, 30...stator, 41...gear, 44... Shaft, 44...Second shaft, 44a...Protrusion, 44b...Top surface, 44s...Spline protrusion, 52...Second supply flow path (flow path), 52a...First flow path, 52d, 152d...Third flow path , 52e... Second channel, 65a... Partition wall, 65h... Communication hole, 82... Second storage part, 84... First storage part, 84a... Hole part, 93... Third waterway (water channel), A... Connection space, B...Third reservoir, J1...Center axis, O...Fluid, R1...Motor chamber, R2...Gear chamber

Claims (15)

  1.  中心軸線を中心として回転する第1シャフトを有するロータ、および前記ロータを囲むステータを有するモータと、
     複数のギヤ、および前記中心軸線を中心として回転する第2シャフトを有し、前記モータの動力を伝達する動力伝達部と、
     前記モータを収容するモータ室と前記動力伝達部を収容するギヤ室とが内部に設けられるハウジングと、
     前記第1シャフトを支持する第1ベアリングと、
     前記第2シャフトを支持する第2ベアリングと、
     流体が流れる流路と、
     前記流体が溜まる第1貯留部、および第2貯留部と、を備え、
     前記第1シャフトの軸方向一方側の端部、および前記第2シャフトの軸方向他方側の端部のうち、
      一方は内周面に軸方向に延びる複数のスプライン溝が設けられる凹部を有し、
      他方は外周面に軸方向に延びる複数のスプライン突起が設けられ前記凹部に挿入される凸部を有し、
     前記第1シャフトと前記第2シャフトとは、前記凹部の前記スプライン溝と前記凸部の前記スプライン突起との噛み合いにより互いに連結され、
     前記ハウジングは、前記モータ室と前記ギヤ室とを区画する隔壁を有し、
     前記隔壁には、前記モータ室と前記ギヤ室とを連通する連通孔が設けられ、
     前記連通孔の内周面は、前記第1ベアリングおよび前記第2ベアリングを保持し、
     前記連通孔における前記第1ベアリングと前記第2ベアリングの軸方向の間には、前記凹部が開口する連結空間が設けられ、
     前記流路は、
      前記第1貯留部と前記連結空間とを繋ぐ第1流路と、
      前記連結空間と前記凹部の内部とを繋ぐ第2流路と、
      前記連結空間と前記第2貯留部とを繋ぐ第3流路と、を有し、
      前記流体は、前記第1流路、前記第2流路、および前記第3流路に流れる、駆動装置。
    a motor having a rotor having a first shaft rotating about a central axis and a stator surrounding the rotor;
    a power transmission section that has a plurality of gears and a second shaft that rotates around the central axis, and that transmits the power of the motor;
    a housing in which a motor chamber for accommodating the motor and a gear chamber for accommodating the power transmission section;
    a first bearing that supports the first shaft;
    a second bearing that supports the second shaft;
    A channel through which fluid flows;
    comprising a first storage section in which the fluid accumulates, and a second storage section,
    An end portion on one axial side of the first shaft and an end portion on the other axial side of the second shaft,
    One has a recess in which a plurality of spline grooves extending in the axial direction are provided on the inner peripheral surface,
    The other has a convex portion provided with a plurality of spline protrusions extending in the axial direction on the outer peripheral surface and inserted into the concave portion,
    The first shaft and the second shaft are connected to each other by engagement between the spline groove of the recess and the spline protrusion of the convex part,
    The housing has a partition wall that partitions the motor chamber and the gear chamber,
    The partition wall is provided with a communication hole that communicates the motor chamber and the gear chamber,
    The inner peripheral surface of the communication hole holds the first bearing and the second bearing,
    A connection space in which the recess opens is provided between the first bearing and the second bearing in the communication hole in the axial direction,
    The flow path is
    a first flow path connecting the first storage section and the connection space;
    a second flow path connecting the connection space and the inside of the recess;
    a third flow path connecting the connection space and the second storage section;
    A drive device in which the fluid flows through the first flow path, the second flow path, and the third flow path.
  2.  前記第1貯留部は、前記ギヤ室に設けられ、
     前記第2貯留部は、前記ギヤ室、又は前記モータ室に設けられる、請求項1に記載の駆動装置。
    The first storage section is provided in the gear chamber,
    The drive device according to claim 1, wherein the second storage section is provided in the gear chamber or the motor chamber.
  3.  前記凹部の底面と前記凸部の先端面との間には、前記流体が留まる第3貯留部が設けられる、請求項1又は2に記載の駆動装置。 The drive device according to claim 1 or 2, wherein a third storage portion in which the fluid remains is provided between the bottom surface of the recess and the tip surface of the convex portion.
  4.  前記凹部は、前記第1シャフトの軸方向一方側の端部に設けられ、
     前記凸部は、前記第2シャフトの軸方向他方側の端部に設けられる、請求項1~3の何れか一項に記載の駆動装置。
    The recess is provided at one end of the first shaft in the axial direction,
    The drive device according to any one of claims 1 to 3, wherein the convex portion is provided at the other end of the second shaft in the axial direction.
  5.  前記第2ベアリングの転動体の直径は、前記第1ベアリングの転動体の直径より大きい、
    請求項4の駆動装置。
    The diameter of the rolling elements of the second bearing is larger than the diameter of the rolling elements of the first bearing.
    The drive device according to claim 4.
  6.  前記第1貯留部、および前記第2貯留部は、前記ギヤ室に設けられる、請求項1~5の何れか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 5, wherein the first storage section and the second storage section are provided in the gear chamber.
  7.  前記連通孔には、前記連通孔の内周面と前記第1シャフトの外周面との間の隙間を封止するシール部材が設けられる、請求項6に記載の駆動装置。 The drive device according to claim 6, wherein the communication hole is provided with a seal member that seals a gap between the inner peripheral surface of the communication hole and the outer peripheral surface of the first shaft.
  8.  前記シール部材は、前記第1ベアリングと前記第2ベアリングとの間に位置し、
     前記連結空間は、前記シール部材と前記第2ベアリングとの間に設けられる、請求項7に記載の駆動装置。
    The sealing member is located between the first bearing and the second bearing,
    The drive device according to claim 7, wherein the connection space is provided between the seal member and the second bearing.
  9.  前記シール部材は、前記第1ベアリング、および前記第2ベアリングよりも軸方向他方側に配置される、請求項7に記載の駆動装置。 The drive device according to claim 7, wherein the seal member is arranged on the other axial side of the first bearing and the second bearing.
  10.  前記シール部材は、前記連通孔の内周面に保持され、前記第1シャフトの外周面に接触し、
     前記第1シャフトは、前記シール部材と接触する部分の外径が、前記第1ベアリングに支持される部分の外径より小さい、請求項7~9の何れか一項に記載の駆動装置。
    The sealing member is held on the inner circumferential surface of the communication hole and contacts the outer circumferential surface of the first shaft,
    The drive device according to any one of claims 7 to 9, wherein the first shaft has an outer diameter of a portion that contacts the seal member and is smaller than an outer diameter of a portion that is supported by the first bearing.
  11.  前記隔壁は、前記連通孔の内縁に沿って前記ギヤ室側に突出し前記第2ベアリングを囲み保持する筒部を有し、
     筒部には、径方向に沿って延びて前記第1流路の一部を構成する孔部が設けられる、請求項1~10の何れか一項に記載の駆動装置。
    The partition wall has a cylindrical portion that protrudes toward the gear chamber along an inner edge of the communication hole and surrounds and holds the second bearing,
    The drive device according to any one of claims 1 to 10, wherein the cylindrical portion is provided with a hole extending along the radial direction and forming a part of the first flow path.
  12.  前記筒部の内周面には、軸方向に沿って延びる凹溝が設けられ、
     前記孔部は、前記凹溝の底面に開口する、請求項11に記載の駆動装置。
    A concave groove extending along the axial direction is provided on the inner circumferential surface of the cylindrical portion,
    The drive device according to claim 11, wherein the hole opens at a bottom surface of the groove.
  13.  前記第1貯留部は、前記ギヤ室内に配置され上側に開口するキャッチタンクである、請求項1~12の何れか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 12, wherein the first storage portion is a catch tank that is disposed within the gear chamber and opens upward.
  14.  前記ハウジングには、前記ステータの外周面に沿って延びる水路が設けられる、請求項1~13の何れか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 13, wherein the housing is provided with a water channel extending along the outer peripheral surface of the stator.
  15.  前記ロータには、前記モータ室内で空気を循環させるファンが固定される、請求項1~14の何れか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 14, wherein a fan that circulates air within the motor chamber is fixed to the rotor.
PCT/JP2023/006404 2022-03-31 2023-02-22 Drive device WO2023189034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061134 2022-03-31
JP2022-061134 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189034A1 true WO2023189034A1 (en) 2023-10-05

Family

ID=88200520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006404 WO2023189034A1 (en) 2022-03-31 2023-02-22 Drive device

Country Status (1)

Country Link
WO (1) WO2023189034A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190042A (en) * 1999-12-28 2001-07-10 Honda Motor Co Ltd Lubricating structure for rotor bearing of electric motor
JP2007205467A (en) * 2006-02-01 2007-08-16 Honda Motor Co Ltd Power transmission device for vehicle
JP2017171252A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Cooling structure of in-wheel motor unit
JP2019108932A (en) * 2017-12-18 2019-07-04 トヨタ自動車株式会社 Vehicle drive device
JP2021148194A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 Oil supply device
JP2021162079A (en) * 2020-03-31 2021-10-11 日本電産株式会社 Driving device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190042A (en) * 1999-12-28 2001-07-10 Honda Motor Co Ltd Lubricating structure for rotor bearing of electric motor
JP2007205467A (en) * 2006-02-01 2007-08-16 Honda Motor Co Ltd Power transmission device for vehicle
JP2017171252A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Cooling structure of in-wheel motor unit
JP2019108932A (en) * 2017-12-18 2019-07-04 トヨタ自動車株式会社 Vehicle drive device
JP2021148194A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 Oil supply device
JP2021162079A (en) * 2020-03-31 2021-10-11 日本電産株式会社 Driving device

Similar Documents

Publication Publication Date Title
WO2019098166A1 (en) Motor unit
JP2016151347A (en) Twin-motor vehicle driving device
CN113472137B (en) Driving device
JP7424106B2 (en) drive device
US11598410B2 (en) Drive device
TWI810716B (en) Motors, Drives
JP7439673B2 (en) Seal structure of drive unit
JP2017047732A (en) Power transmission mechanism
US20230067898A1 (en) Drive apparatus
JP7351167B2 (en) drive device
JP4701587B2 (en) Electric drive
US20220205529A1 (en) Drive device
CN113098191B (en) Driving device
WO2023189034A1 (en) Drive device
WO2021166299A1 (en) Motor unit
WO2023188621A1 (en) Drive device
US20230136544A1 (en) Drive apparatus
US11735975B2 (en) Drive device
US11863052B2 (en) Drive device
WO2023188618A1 (en) Drive device
WO2024004435A1 (en) Drive device
WO2024004434A1 (en) Drive device, and method for manufacturing drive device
WO2024042796A1 (en) Drive device
US20230137429A1 (en) Drive apparatus
JP7326830B2 (en) Drive and piping connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779064

Country of ref document: EP

Kind code of ref document: A1