WO2023188872A1 - Composite porous body and method for producing composite porous body - Google Patents

Composite porous body and method for producing composite porous body Download PDF

Info

Publication number
WO2023188872A1
WO2023188872A1 PCT/JP2023/004704 JP2023004704W WO2023188872A1 WO 2023188872 A1 WO2023188872 A1 WO 2023188872A1 JP 2023004704 W JP2023004704 W JP 2023004704W WO 2023188872 A1 WO2023188872 A1 WO 2023188872A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
base material
composite porous
inorganic layer
less
Prior art date
Application number
PCT/JP2023/004704
Other languages
French (fr)
Japanese (ja)
Inventor
和也 野々村
博香 青山
美紀 宮永
徹 森田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023188872A1 publication Critical patent/WO2023188872A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer

Definitions

  • the present disclosure relates to a composite porous body and a method for manufacturing the composite porous body.
  • This application claims priority based on Japanese Patent Application No. 2022-052170, which is a Japanese patent application filed on March 28, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses an alumina composite separation membrane that includes a support made of a porous material and a porous thin film layer. Porous materials are typically composed of inorganic oxides such as alumina. The porous thin film layer is constructed by laminating a plurality of fibrous alumina particles.
  • the alumina composite separation membrane will be referred to as a composite porous body.
  • the composite porous body disclosed in the example of Patent Document 1 includes a support whose main component is alumina.
  • a composite porous body comprising a support made of alumina and a porous thin film layer has excellent strength, heat resistance, and chemical resistance.
  • the composite porous body of the present disclosure includes: a base material having a first surface; an inorganic layer covering at least a portion of the first surface,
  • the base material is a porous body made of a resin material
  • the inorganic layer is a laminate of multiple nanofibers, Each of the plurality of nanofibers is made of an inorganic material containing aluminum, oxygen, and hydrogen,
  • the average pore diameter on the first surface is 5 nm or more and 500 nm or less
  • the average thickness of the inorganic layer is 10 nm or more and 1000 nm or less
  • the average pore diameter of the inorganic layer is 1 nm or more and 50 nm or less.
  • the method for manufacturing a composite porous body of the present disclosure includes: Step A of preparing a base material made of a porous body made of a resin material; Step B of hydrophilizing the first surface of the base material; Step C of preparing a dispersion containing a plurality of nanofibers; a step D of applying the dispersion liquid to the first surface; A step E of heat-treating the base material coated with the dispersion liquid in a heating atmosphere of 80° C. or more and 200° C.
  • the average pore diameter of the first surface in the step A is 5 nm or more and 500 nm or less
  • Each of the plurality of nanofibers in the step C is made of an inorganic material containing aluminum, oxygen and hydrogen,
  • the average length of the plurality of nanofibers in the step C is 10 times or more the average pore diameter.
  • FIG. 1 is a schematic configuration diagram of a sheet-shaped composite porous body according to Embodiment 1.
  • FIG. 2 is an explanatory diagram schematically showing the structure of the composite porous body of FIG. 1.
  • FIG. 3 is an explanatory diagram schematically showing the surface of the inorganic layer of the composite porous body of FIG. 2.
  • FIG. 4 is a schematic configuration diagram of a cylindrical composite porous body according to a second embodiment.
  • FIG. 5 is a schematic diagram of a test device used in the liquid passage test shown in the test example.
  • FIG. 6 is a schematic explanatory diagram of the bending test shown in the test example.
  • a composite porous body having a support mainly composed of alumina has poor flexibility. Depending on how the composite porous body is used, the composite porous body may be bent. A composite porous body with poor flexibility is easily damaged by bending.
  • One of the objects of the present disclosure is to provide a composite porous body with excellent flexibility and a method for manufacturing the composite porous body with excellent flexibility.
  • the composite porous body of the present disclosure has excellent flexibility.
  • the method for producing a composite porous body of the present disclosure is suitable for producing the composite porous body of the present disclosure.
  • the composite porous body according to the embodiment is a base material having a first surface; an inorganic layer covering at least a portion of the first surface,
  • the base material is a porous body made of a resin material
  • the inorganic layer is a laminate of multiple nanofibers, Each of the plurality of nanofibers is made of an inorganic material containing aluminum, oxygen, and hydrogen,
  • the average pore diameter on the first surface is 5 nm or more and 500 nm or less,
  • the average thickness of the inorganic layer is 10 nm or more and 1000 nm or less,
  • the average pore diameter of the inorganic layer is 1 nm or more and 50 nm or less.
  • the composite porous body according to the embodiment has excellent flexibility.
  • the base material is made of a porous body made of a flexible resin material.
  • the inorganic layer is composed of a laminate of multiple nanofibers made of an inorganic material containing aluminum, oxygen, and hydrogen.
  • the composite porous body according to the embodiment has excellent heat resistance and chemical resistance. This is because the inorganic layer that the fluid to be filtered comes into contact with is composed of nanofibers of inorganic material.
  • the fluid may be a liquid, a gas, a liquid mixed with a solid, or a gas mixed with a solid.
  • a composite porous body having a first surface with an average pore diameter of 5 nm or more has excellent liquid permeability.
  • Liquid permeability refers to the ease with which fluid can pass through.
  • a composite porous body with high liquid permeability can shorten filtration time. If the average pore diameter of the first surface is 500 nm or less, an inorganic layer is likely to be formed during production of the composite porous body.
  • a composite porous body comprising an inorganic layer with an average thickness of 10 nm has excellent filtration performance.
  • a composite porous body including an inorganic layer with an average thickness of 1000 nm or less has excellent liquid permeability and flexibility.
  • a composite porous body comprising an inorganic layer with an average pore diameter of 1 nm or more has excellent liquid permeability.
  • a composite porous body including an inorganic layer with an average pore diameter of 50 nm or less has excellent filtration performance.
  • the composite porous body according to the embodiment can remove nano-order impurities from the fluid to be filtered. This is because in an inorganic layer formed by stacking a plurality of nanofibers, gaps between adjacent nanofibers become pores through which fluid passes. Since the gaps between adjacent nanofibers are very small, the inorganic layer removes nano-order impurities from the fluid.
  • the resin material may be a hydrophobic polymer.
  • hydrophobic polymers have excellent strength, heat resistance, or chemical resistance. Therefore, the strength, heat resistance, or chemical resistance of the composite porous body is improved.
  • the hydrophobic polymer may be polytetrafluoroethylene.
  • Polytetrafluoroethylene has excellent heat resistance and chemical resistance. Therefore, the heat resistance and chemical resistance of the composite porous body are improved.
  • At least a portion of the first surface may include a hydrophilic material.
  • the hydrophilic material improves the adhesion between the first surface of the base material made of resin material and the inorganic layer. Therefore, even a thin inorganic layer is difficult to peel off from the first surface of the base material.
  • the first surface of the base material is made hydrophilic with a hydrophilic material.
  • at least a portion of the hydrophilic material may be decomposed by heat treatment during production of the composite porous body. It is possible that all of the hydrophilic material is decomposed by the above heat treatment.
  • the presence of a hydrophilic material in the base material can be confirmed by, for example, XPS (X-ray Photoelectron Spectroscopy).
  • the hydrophilic material may be a hydrophilic polymer coated on at least a portion of the surface of the base material including the first surface.
  • the surface of the base material also includes the inner peripheral surface of the pores of the base material. That is, the hydrophilic material may enter the pores of the base material and coat the inner circumferential surfaces of the pores. The hydrophilic material coated on the surface of the base material improves the adhesion between the base material and the inorganic layer.
  • the hydrophilic polymer may be polyvinyl alcohol.
  • Polyvinyl alcohol (PVA) easily adheres to the base material. PVA particularly tends to adhere to a base material made of polytetrafluoroethylene (PTFE). The hydrophilic resin made of PVA firmly adheres the base material and the inorganic layer during production of the composite porous body.
  • PTFE polytetrafluoroethylene
  • the resin material is polytetrafluoroethylene
  • the first surface containing the hydrophilic polymer includes a plurality of chemical structures derived from the polyvinyl alcohol and the polytetrafluoroethylene, Among the plurality of chemical structures, the content of CH 2 -O-R bonds in the chemical structure detected by the C1s spectrum obtained by XPS may be 3% or more and 15% or less.
  • a hydrophilic polymer containing a CH 2 -O-R bond in the above range improves the adhesion between the base material and the inorganic layer.
  • the shape of the base material may be a sheet.
  • the overall shape of the composite porous body including a sheet-like base material is a sheet shape.
  • a sheet-shaped composite porous body can be easily processed into various shapes and can be applied to various types of filtration devices. Since the composite porous body according to the embodiment has excellent flexibility, it is not easily damaged even when subjected to processing such as bending.
  • the average thickness of the base material may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the average thickness of the sheet-like base material is 1 ⁇ m or more, the strength of the composite porous body including the base material is ensured.
  • the average thickness of the base material is 100 ⁇ m or less, the flexibility of the composite porous body including the base material is ensured, and the filtration time using the composite porous body does not become too long.
  • the shape of the base material is a tube
  • the first surface may be an outer peripheral surface of the tube.
  • the overall shape of the composite porous body including a tubular base material is a tube shape.
  • the tubular substrate also includes hollow fiber membranes.
  • a fluid containing impurities is passed to the outside of the tube-shaped composite porous body.
  • the fluid that has passed through the composite porous body is circulated inside the tube-shaped composite porous body.
  • the fluid flow path can be configured by the composite porous body itself.
  • a module of a purification device can be constructed by bundling a plurality of these composite porous bodies.
  • the average thickness of the base material may be 50 ⁇ m or more and 1000 ⁇ m or less.
  • the average thickness of the tubular base material is 50 ⁇ m or more, the strength of the composite porous body including the base material is ensured.
  • the average thickness of the base material is 1000 ⁇ m or less, the flexibility of the composite porous body including the base material is ensured, and the filtration time using the composite porous body does not become too long.
  • the base material includes a first layer including the first surface and a second layer adjacent to the first layer,
  • the average pore size of the second layer may be larger than the average pore size of the first layer.
  • the liquid permeability of the base material ie, the liquid permeability of the composite porous body, decreases.
  • the liquid permeability of the base material X which includes the second layer with a large average pore diameter, is superior to the liquid permeability of the base material Y, which has the same thickness as the base material X and is composed of only the first layer. Therefore, since the base material is composed of the first layer and the second layer, even if the base material is made thicker, the filtration time of the composite porous body is not easily increased.
  • the inorganic layer includes an Al-OH bond and an Al-O-Al bond
  • the ratio X/Y between the content X of the Al--OH bonds and the content Y of the Al-O-Al bonds may be 0.3 or more and 1.0 or less.
  • Boehmite containing Al-OH bonds is softer than alumina containing Al-O-Al bonds.
  • the inorganic layer with high boehmite content is resistant to bending stress. Therefore, the composite porous body described in ⁇ 13> above is easy to bend.
  • the average short diameter of the pores on the first surface may be 4 nm or more and 400 nm or less.
  • the first surface having pores with an average minor axis of 4 nm or more improves the liquid permeability of the composite porous body. If the average short diameter of the pores on the first surface is 400 nm or less, nanofibers can be easily formed on the first surface during production of the composite porous body. Therefore, a thin inorganic layer is likely to be formed.
  • the inorganic layer has an opening opening on the surface of the inorganic layer,
  • the average pore diameter of the open pores is 2 nm or more and 200 nm or less,
  • the average short diameter of the opening pores may be 1 nm or more and 100 nm or less.
  • a composite porous body comprising an inorganic layer with an average pore diameter and an average short diameter within the above range has excellent filtration performance and liquid permeability.
  • the average pore diameter of the first surface in the step A is 5 nm or more and 500 nm or less
  • Each of the plurality of nanofibers in the step C is made of an inorganic material containing aluminum, oxygen and hydrogen,
  • the average length of the plurality of nanofibers in the step C is 10 times or more the average pore diameter.
  • the method for manufacturing a composite porous body according to the embodiment is suitable for manufacturing the composite porous body according to the embodiment.
  • Nanofibers made of an inorganic material containing aluminum are difficult to adhere to, for example, a base material made of a resin material. Therefore, in order to form an inorganic layer consisting of a laminate of a plurality of nanofibers on a substrate, a dispersion containing a large amount of nanofibers must be applied onto the substrate. In that case, since the thickness of the inorganic layer is several tens of micrometers or more, a composite porous body with excellent flexibility cannot be obtained.
  • the first surface of the base material is hydrophilized in step B, and the nanofibers are attached to the first surface in step D. It becomes easier. Furthermore, since the average length of the nanofibers is 10 times or more the average pore diameter of the first surface, the nanofibers are unlikely to fall into the pores of the first surface in step D. As described above, since nanofibers are difficult to fall into the pores of the first surface and easily adhere to the first surface, according to the method for manufacturing a composite porous body according to the embodiment, the inorganic layer having an average thickness of 1000 nm or less A composite porous body can be manufactured.
  • the composite porous body 1 of the embodiment has a sheet shape shown in FIG. 1, for example.
  • the composite porous body 1 includes a base material 2 and an inorganic layer 3.
  • the shape of the base material 2 is a sheet.
  • the base material 2 includes a first surface 21 and a second surface 22, as shown in FIGS. 1 and 2.
  • the inorganic layer 3 is arranged on the first surface 21 of the base material 2.
  • the average pore diameter of the inorganic layer 3 is smaller than the average pore diameter of the base material 2.
  • the composite porous body 1 may be required to have resistance to bending.
  • the composite porous body 1 constitutes a filter of a module of a purification device when rolled into a cylindrical shape.
  • the inorganic layer 3 is arranged on the outer peripheral side of the cylinder.
  • the base material 2 is a porous body. As shown in FIG. 2, the base material 2 includes a plurality of holes 2h. Since FIG. 2 is a cross-sectional view, each hole 2h of the base material 2 appears to be independent, but each hole 2h is connected to other holes 2h. Numerous channels are formed in the base material 2 from the first surface 21 to the second surface 22.
  • the base material 2 is made of a resin material.
  • the resin material is appropriately selected depending on the use of the composite porous body 1.
  • the resin material is, for example, a hydrophobic polymer.
  • Many hydrophobic polymers have excellent strength, heat resistance, or chemical resistance.
  • Examples of hydrophobic polymers include polypropylene (PP), polyethylene (PE), polyvinylidene difluoride (PVDF), and polyethylene terephthalate.
  • thalate PET) or polytetrafluoroethylene (PTFE).
  • PTFE has excellent heat resistance and chemical resistance.
  • the thickness of the base material 2 is the length between the first surface 21 and the second surface 22.
  • the average thickness of the base material 2 in this example is 1 ⁇ m or more and 100 ⁇ m or less.
  • the composite porous body 1 including the base material 2 having an average thickness of 1 ⁇ m or more has excellent strength.
  • the composite porous body 1 including the base material 2 having an average thickness of 100 ⁇ m or less has excellent flexibility. Moreover, the filtration time using the composite porous body 1 does not become too long.
  • the lower limit of the average thickness may be 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, or 20 ⁇ m.
  • the upper limit of the average thickness may be 90 ⁇ m, 80 ⁇ m, or 50 ⁇ m.
  • the range of the average thickness of the base material 2 may be, for example, 10 ⁇ m or more and 90 ⁇ m or less, or 20 ⁇ m or more and 50 ⁇ m or less.
  • the average thickness of the base material 2 is determined by SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy).
  • the boundary between the base material 2 and the inorganic layer 3 is determined by line analysis of the detected intensity of aluminum (Al) in the depth direction from the surface 30 of the base material 2 using EDX.
  • Al aluminum
  • the distance from this boundary to the second surface 22 of the base material 2 is the thickness of the base material 2.
  • the average thickness of the base material 2 is, for example, the average of the thicknesses at five different points on the base material 2.
  • the average pore diameter on the first surface 21 of the base material 2 is 5 nm or more and 500 nm or less.
  • the composite porous body 1 including the base material 2 having an average pore diameter of 5 nm or more has excellent liquid permeability.
  • the composite porous body 1 with high liquid permeability can shorten the filtration time.
  • the base material 2 having an average pore diameter of 500 nm or less has excellent strength.
  • the lower limit of the average pore diameter may be 50 nm, 100 nm, or 200 nm.
  • the upper limit of the average pore diameter may be 450 nm, 400 nm, or 350 nm.
  • the range of the average pore diameter of the base material 2 may be, for example, 50 nm or more and 450 nm or less, or 200 nm or more and 350 nm or less.
  • a plurality of holes 2h are formed in the first surface 21.
  • the average pore diameter of the first surface 21 in this specification is determined from an SEM image of a cross section of the base material 2 along the thickness direction. Specifically, a SEM image of a cross section along the thickness direction of the base material 2 is subjected to a binarization process, and each hole 2h in the SEM image is extracted. The equivalent circle diameter of each hole 2h is determined, and the average of the equivalent circle diameters of all the holes 2h is determined.
  • the equivalent circle diameter is the diameter of a perfect circle having the same size as the area of the hole 2h. In this specification, this average equivalent circle diameter is regarded as the average pore diameter of the first surface 21.
  • the average short diameter of the pores 2h on the first surface 21 is, for example, 4 nm or more and 400 nm or less.
  • the average short diameter of the pores 2h is determined from an SEM image of a cross section of the base material 2 along the thickness direction. The smallest rectangle circumscribing each hole 2h in the SEM image is determined. The average of the short axes of all the rectangles is the average short axis of the holes 2h.
  • the first surface 21 having the pores 2h having an average minor axis of 4 nm or more improves the liquid permeability of the composite porous body 1.
  • the average short diameter of the pores 2h on the first surface 21 is 400 nm or less, the nanofibers 4 are easily formed on the first surface 21 during production of the composite porous body 1. Therefore, a thin inorganic layer 3 is easily formed.
  • the average short diameter of the holes 2h on the first surface 21 may be, for example, 10 nm or more and 300 nm or less.
  • the base material 2 may include multiple layers, as shown in FIG. 2.
  • the base material 2 includes, for example, a first layer 2A and a second layer 2B.
  • the first layer 2A includes a first surface 21.
  • the second layer 2B is adjacent to the first layer 2A.
  • the average pore size of the second layer 2B is larger than the average pore size of the first layer 2A.
  • the average pore diameter of the second layer 2B is 2 times or more and 2000 times or less, more preferably 10 times or more and 1000 times or less, than the average pore diameter of the first layer 2A.
  • the base material 2 may be composed only of the first layer 2A.
  • the average pore diameter of the first layer 2A and the average pore diameter of the second layer 2B are determined from the SEM image of the cross section of the base material 2 along the thickness direction.
  • the first layer 2A and the second layer 2B are thermally fused together when the base material 2 is produced. Therefore, the boundary between the first layer 2A and the second layer 2B can be confirmed in the SEM image.
  • the average of the circular equivalent diameters of the pores 2h existing in the region including the first surface 21 across the boundary is the average pore diameter of the first layer 2A.
  • the average of the equivalent circular diameters of the pores 2h existing in the region adjacent to the first layer 2A across the boundary is the average pore diameter of the second layer 2B.
  • At least a portion of the first surface 21 of the base material 2 may contain the hydrophilic material 5.
  • the hydrophilic material 5 may be present on at least a portion of the surface of the porous body.
  • the hydrophilic material 5 in FIG. 2 is shown exaggerated.
  • the hydrophilic material 5 improves the adhesion between the first surface 21 of the base material 2 and the nanofibers 4 made of an inorganic material in the method for manufacturing the composite porous body 1 described later. It is difficult to confirm the hydrophilic material 5 in the SEM image.
  • the presence of the hydrophilic material 5 can be confirmed by, for example, XPS.
  • the hydrophilic material 5 may disappear due to heat treatment during the manufacturing process of the composite porous body 1. Therefore, the hydrophilic material 5 may not be detected by XPS.
  • the hydrophilic material 5 is, for example, a hydrophilic polymer that coats at least a portion of the surface of the base material 2 including the first surface 21.
  • the hydrophilic polymer is a layered body formed on the surface of the base material 2.
  • the surface of the base material 2 also includes the inner peripheral surface of the pores of the base material 2.
  • the hydrophilic polymer has entered the pores of the base material 2. That is, the hydrophilic polymer covers not only the first surface 21 but also at least a portion of the inner peripheral surface of the hole. Since the hydrophilic polymer layer is extremely thin, the pore size of the base material 2 hardly changes depending on the presence or absence of the hydrophilic polymer.
  • Hydrophilic polymers are, for example, polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer, polyvinylpyrrolidone, polyethyleneimine, or carboxylic acid. It is a polyacrylic acid containing a boxyl group. In particular, PVA improves the adhesion between the base material 2 and the inorganic layer 3.
  • PVA polyvinyl alcohol
  • ethylene vinyl alcohol copolymer polyvinylpyrrolidone
  • polyethyleneimine polyethyleneimine
  • carboxylic acid carboxylic acid
  • PVA polyacrylic acid containing a boxyl group.
  • PVA improves the adhesion between the base material 2 and the inorganic layer 3.
  • the first surface 21 containing the hydrophilic polymer includes a plurality of chemical structures derived from PVA and PTFE.
  • the CH 2 -O-R bond which is a type of chemical structure, improves the adhesion between the base material 2 and the inorganic layer 3.
  • the content of CH 2 -O-R bonds in the chemical structure detected by the C1s spectrum obtained by XPS is, for example, 3% or more and 15% or less.
  • the content of CH 2 -O-R bonds is determined by XPS. Details of the XPS conditions are shown in Test Example 3 described later.
  • the inorganic layer 3 is a layer facing the fluid filtered by the composite porous body 1.
  • the inorganic layer 3 is a laminate of a plurality of nanofibers 4. In FIG. 2, some nanofibers 4 are illustrated. These nanofibers 4 are arranged generally along the plane direction of the inorganic layer 3.
  • Each nanofiber 4 is made of an inorganic material containing aluminum (Al), oxygen (O), and hydrogen (H). Nanofiber 4 is mainly composed of boehmite and alumina. Boehmite is softer than alumina. Therefore, when the proportion of boehmite in the nanofibers 4, that is, the proportion of boehmite in the inorganic layer 3 is high, the inorganic layer 3 is less likely to crack or chip.
  • Boehmite contains Al-OH bonds.
  • the presence of boehmite in the inorganic layer 3 can be confirmed by detecting Al--OH bonds on the surface 30 of the inorganic layer 3 using XPS.
  • Alumina contains Al-O-Al bonds.
  • the presence of alumina in the inorganic layer 3 can be confirmed by detecting Al-O-Al bonds on the surface 30 of the inorganic layer 3 by XPS.
  • the ratio X/Y of content X of Al-OH bonds to content Y of Al-O-Al bonds is, for example, 0.3 or more and 1.0 or less.
  • the integrated intensity of the Al(OH) 3 peak in the spectrum obtained by XPS is regarded as the Al--OH bond content X.
  • the average thickness of the inorganic layer 3 is 10 nm or more and 1000 nm or less. If the average thickness of the inorganic layer 3 is 10 nm or more, impurities can be efficiently separated by the inorganic layer 3. If the average thickness of the inorganic layer 3 is 1000 nm or less, the flexibility of the inorganic layer 3 can be easily ensured. Moreover, the filtration time using the composite porous body 1 does not become too long.
  • the lower limit of the average thickness may be 15 nm, 50 nm, 100 nm, or 200 nm.
  • the upper limit of the average thickness may be 900 nm, 800 nm, or 500 nm.
  • the range of the average thickness of the inorganic layer 3 may be, for example, 15 nm or more and 900 nm or less, or 200 nm or more and 500 nm or less.
  • the average thickness of the inorganic layer 3 is determined by SEM-EDX.
  • the boundary between the base material 2 and the inorganic layer 3 is determined by measuring the detected intensity of Al using EDX.
  • the location where the detection intensity of Al sharply decreases is the boundary between the base material 2 and the inorganic layer 3.
  • the distance from this boundary to the surface of the inorganic layer 3 is the thickness of the inorganic layer 3.
  • the average thickness of the inorganic layer 3 is, for example, the average of the thicknesses at five different points in the inorganic layer 3.
  • the inorganic layer 3 formed by laminating a plurality of nanofibers 4 is a porous body.
  • gaps between adjacent nanofibers 4 become pores through which fluid passes.
  • the average pore diameter of the pores in the inorganic layer 3 is 1 nm or more and 100 nm or less. If the average pore diameter of the inorganic layer 3 is 1 nm or more, the flexibility of the inorganic layer 3 is ensured. Moreover, the filtration time using the composite porous body 1 does not become too long. If the average pore diameter of the inorganic layer 3 is 100 nm or less, impurities can be efficiently separated by the inorganic layer 3.
  • the lower limit of the average pore diameter may be 2 nm, 5 nm, 10 nm, or 20 nm.
  • the upper limit of the average pore diameter may be 45 nm, 40 nm, or 30 nm.
  • the range of the average pore diameter of the inorganic layer 3 may be, for example, 2 nm or more and 45 nm or less, or 20 nm or more and 30 nm or less.
  • FIG. 5 shows the test device 7 used for the liquid passage test.
  • the test device 7 includes a flask 70 that can be evacuated and a cylindrical chamber 71 with both ends open.
  • the composite porous body 1 is sandwiched between the lower end opening 71D of the chamber 71 and the upper end opening 70U of the flask 70.
  • the inorganic layer 3 of the composite porous body 1 faces the chamber 71 .
  • the procedure for determining the average particle size of the inorganic layer 3 is as follows. First, a test liquid containing a plurality of particles having a known average particle size is prepared, and the test liquid is placed in the chamber 71. The concentration of particles in the test solution (g/cm 3 ) is known. By evacuating the inside of the flask 70, the filtrate that has passed through the composite porous body 1 is stored in the flask 70. The degree of vacuum is 80 Pa or less. The concentration (g/cm 3 ) of particles contained in the filtrate is measured. The concentration of the particles is calculated from the measured volume of the filtrate and the mass of the particles remaining after the filtrate is evaporated. When the concentration of particles in the filtrate is 10% or less of the concentration of particles in the test liquid, the average particle size of the particles contained in the test liquid is regarded as the average pore size of the inorganic layer 3.
  • FIG. 3 is a schematic diagram schematically showing a SEM image of the surface 30.
  • the average pore diameter of the open pores 3h is, for example, 2 nm or more and 200 nm or less.
  • the average diameter of the open holes 3h may be 5 nm or more and 100 nm or less.
  • the average short diameter of the opening hole 3h is, for example, 1 nm or more and 100 nm or less.
  • the average short diameter of the opening hole 3h may be 2 nm or more and 50 nm or less.
  • the average pore diameter and average minor axis of the opening holes 3h are determined by image analysis, similarly to the average pore diameter and average minor axis of the first surface 21. Specifically, a SEM image of the surface 30 is acquired, and the apertures 3h are identified by binarization processing.
  • the average circular equivalent diameter of the opening hole 3h is the average hole diameter of the opening hole 3h.
  • the average minor axis of the smallest rectangle circumscribing the opening hole 3h is the average minor axis of the opening hole 3h.
  • the inorganic layer 3 that comes into contact with the fluid to be filtered first is made of an inorganic material containing aluminum. Inorganic materials are difficult to be denatured by heat and also by chemicals. Therefore, the composite porous body 1 of this example has excellent heat resistance and chemical resistance. Since the base material 2 is made of PTFE which has excellent heat resistance and chemical resistance, the heat resistance and chemical resistance of the composite porous body 1 are further improved.
  • the base material 2 is made of a resin material with excellent flexibility.
  • the inorganic layer 3 is constituted by a laminate of a plurality of nanofibers 4. When the inorganic layer 3 is bent, each nanofiber 4 deforms minutely and absorbs the stress acting on the inorganic layer 3. Therefore, the inorganic layer 3 of this example has a predetermined flexibility.
  • the composite porous body 1 including such a base material 2 and an inorganic layer 3 has excellent flexibility and is difficult to break when bent.
  • the flexibility of the composite porous body 1 is evaluated, for example, by the bending test shown in FIG. 6.
  • the composite porous body 1 is placed along the curved surface of the approximately semi-cylindrical test stand 8, and it is examined whether the inorganic layer 3 of the composite porous body 1 breaks.
  • the bending test will be explained in detail in Test Example 2 below.
  • the composite porous body 1 of Embodiment 1 is obtained, for example, by a manufacturing method including the following steps.
  • -Step A A base material 2 made of a porous body made of a resin material is prepared.
  • Step B The first surface 21 of the base material 2 is subjected to a hydrophilic treatment.
  • -Step C A dispersion containing a plurality of nanofibers 4 is prepared.
  • Step D ...Apply the dispersion liquid to the first surface 21.
  • Step E The base material 2 coated with the dispersion liquid is heat-treated in an atmosphere of 80° C. or higher and 200° C. or lower.
  • the order of process B and process C can be interchanged. Each step will be explained in detail below.
  • the base material 2 is the same as the base material 2 provided in the composite porous body 1 described above. That is, the average pore diameter of the first surface 21 of the base material 2 is 50 nm or more and 500 nm or less. The average pore diameter of the first surface 21 can be determined from the SEM image of the first surface 21.
  • the method for producing the base material 2 is not particularly limited.
  • the base material 2 made of a porous body made of PTFE may be manufactured by a manufacturing method disclosed in JP-A No. 2010-94579. Specifically, by stretching a thin film made of PTFE, the thin film becomes porous. As a result, a base material 2 made of a porous PTFE material is obtained. The average pore diameter of the base material 2 changes depending on the stretching conditions.
  • step B at least the first surface 21 of the base material 2 is subjected to a hydrophilic treatment.
  • the first surface 21 of the porous base material 2 is composited with a hydrophilic polymer.
  • the hydrophilic polymer is preferably one that undergoes dehydration condensation or hydrogen bonding with the hydroxyl group of alumina.
  • Hydrophilic polymers include, for example, polyvinyl alcohol (PVA) and ethylene vinyl alcohol copolymers having many hydroxyl groups.
  • the hydrophilic polymer may be polyvinylpyrrolidone containing an amide group, polyethyleneimine containing an imino group, polyacrylic acid containing a carboxyl group, or the like.
  • PVA has a hydrophobic group, and the hydrophobic group tends to adhere to the surface of the porous PTFE body. Therefore, PVA is easily composited into the base material 2.
  • the surface of the porous PTFE body can be made hydrophilic, for example, by the following procedure. First, a porous PTFE body is immersed in IPA, and then immersed in a PVA aqueous solution adjusted to an appropriate concentration. The PVA is then gelled by chemical crosslinking or electron beam crosslinking. In chemical crosslinking, a crosslinking agent is added to the PVA aqueous solution. An acid catalyst may be added to the PVA aqueous solution if necessary. After crosslinking the PVA, the porous body is washed with pure water and dried. The PVA concentration in the PVA aqueous solution changes depending on the porosity of the base material 2 and the like.
  • the PVA concentration in the PVA aqueous solution is 0.8% by mass or more and 10% by mass or less.
  • the immersion time of the porous body in the PVA aqueous solution varies depending on the porosity of the base material 2 and the like.
  • the immersion time of the porous body in the PVA aqueous solution is 2 minutes or more and 24 hours or less.
  • Crosslinking agents include, for example, glutaraldehyde or terephthalaldehyde, which form acetal bonds.
  • the dose of the electron beam is, for example, about 6 megarad.
  • the dispersion liquid is a liquid in which a plurality of nanofibers 4 are dispersed in a dispersion medium.
  • the dispersion medium is mainly water.
  • the dispersion medium may contain isopropyl alcohol (IPA) in addition to water, and may further contain a surfactant.
  • IPA improves the wettability of the dispersion medium to the surface of the base material 2.
  • the concentration of IPA is preferably 5% by mass or less when the mass of the dispersion liquid is 100.
  • the concentration of nanofibers 4 in the dispersion medium is preferably 0.1% by mass or more and 5% by mass or less. If the concentration of the nanofibers 4 is 0.1% by mass or more, the concentration of the nanofibers 4 in the dispersion medium is sufficient, so that the nanofibers 4 are easily stacked on the first surface 21 in step D. If the concentration of nanofibers 4 is 5% by mass or less, the concentration of the dispersion liquid will not become too high. If the concentration of the dispersion liquid is too high, it is difficult to apply the dispersion liquid thinly and uniformly onto the first surface 21.
  • the average length of the nanofibers 4 is 10 times or more the average pore diameter of the first surface 21 of the base material 2.
  • the average length is, for example, 100 nm or more and 10000 nm or less.
  • the lower limit of the average length may be 500 nm, or even 1000 nm.
  • the upper limit of the average length may be 7000 nm, or even 5000 nm.
  • the range of the average length may be, for example, 500 nm or more and 7000 nm or less, or 1000 nm or more and 5000 nm or less.
  • the average width of the nanofibers 4 is, for example, 1 nm or more and 10 nm or less.
  • the width and length of the nanofibers 4 are orthogonal to each other.
  • the lower limit of the average width may be 2 nm, and further may be 3 nm.
  • the upper limit of the average width may be 7 nm, or even 5 nm.
  • the range of the average width may be, for example, 2 nm or more and 7 nm or less.
  • the average aspect ratio which is the average length divided by the average width, is, for example, 30 or more and 5000 or less.
  • the average aspect ratio may be, for example, 100 or more and 500 or less, or 100 or more and 300 or less.
  • the size of the nanofibers 4 does not change even in the inorganic layer 3 of the composite porous body 1.
  • the method of applying the dispersion liquid onto the first surface 21 is not particularly limited.
  • the coating method is, for example, spin coating, bar coating, dip coating, or die coating.
  • the tube-shaped or sheet-shaped base material 2 may be fixed to a rotating shaft, and the dispersion liquid may be applied by spraying or the like while rotating the base material 2.
  • the inorganic layer 3 of the composite porous body 1 according to the embodiment is very thin. In order to form the thin inorganic layer 3, spin coating is preferable.
  • Spin coating in which the dispersion liquid is dropped onto the base material 2 while rotating the base material 2, allows the thickness of the dispersion liquid to be thin and uniform.
  • the peripheral speed of spin coating is, for example, 10,000 mm/min or more.
  • the temperature of the heating atmosphere is preferably 80°C or more and 200°C or less.
  • the heating atmosphere is not particularly limited, and is, for example, an air atmosphere, an inert gas atmosphere, a steam atmosphere, or a reduced pressure atmosphere.
  • the dispersion medium is evaporated by the heating atmosphere, and a stack of nanofibers 4 is formed on the first surface 21.
  • the evaporation time of the dispersion medium becomes faster, and the productivity of the composite porous body 1 improves.
  • the nanofibers 4 are more likely to bond with each other, and the nanofibers 4 are less likely to fall off from the composite porous body 1.
  • the boehmite contained in the nanofibers 4 tends to change to alumina. If the proportion of alumina in the inorganic layer 3 increases, the inorganic layer 3 may become brittle. For example, if the temperature of the heating atmosphere is less than 130° C., the proportion of alumina will not become too large.
  • the film-forming cycle consisting of Step D and Step E is repeated multiple times. It is preferable that the repeat number k of the film forming cycle is 2 or more and 5 or less. In this case, in the kth step D, the dispersion liquid is applied onto the laminate formed in the k-1st step E. By performing the film formation cycle twice or more, it is possible to suppress the formation of a region on the first surface 21 where the inorganic layer 3 is not formed.
  • Embodiment 2 a tube-shaped composite porous body 1 will be described based on FIG. 4.
  • the shape of the base material 2 of this composite porous body 1 is a tube.
  • the first surface 21 of the tube-shaped base material 2 constitutes the outer peripheral surface of the base material 2 .
  • the inorganic layer 3 formed on the first surface 21 constitutes the outer peripheral surface of the tube-shaped composite porous body 1.
  • the tube-shaped composite porous body 1 may be placed in a bent state, for example, in a module of a purification device. Therefore, the tube-shaped composite porous body 1 may also be required to have resistance to bending.
  • the bending resistance of the tube-shaped composite porous body 1 can be evaluated, for example, by wrapping the composite porous body 1 around the outer peripheral surface of a cylinder having a predetermined radius.
  • the average thickness of the tube-shaped base material 2 is, for example, 50 ⁇ m or more and 1000 ⁇ m or less. If the average thickness of the tubular base material 2 is 50 ⁇ m or more, the strength of the composite porous body 1 including the base material 2 is ensured. If the average thickness of the base material 2 is 1000 ⁇ m or less, the flexibility of the composite porous body 1 including the base material 2 is ensured, and the filtration time by the composite porous body 1 does not become too long.
  • the average thickness of the tube-shaped base material 2 may be, for example, 100 ⁇ m or more and 500 ⁇ m or less.
  • Test Example 1 the influence of the relationship between the average pore diameter of the first surface 21 of the base material 2 and the average length of the nanofibers 4 on the formation of the inorganic layer 3 was investigated. Specifically, the following Sample A, Sample B, and Sample C were produced.
  • a base material 2 made of PTFE was prepared.
  • the average thickness of the base material 2 was 30 ⁇ m, and the average pore diameter was 130 nm.
  • the average pore diameter was determined by cutting the base material 2 using a focused ion beam (FIB) and observing the cross section of the base material 2 using an SEM.
  • the magnification of the SEM image was 5000 times, and the image processing software was "ImageJ".
  • the average pore diameter of the base material 2 was determined by binarizing the SEM image and averaging the equivalent circular diameters of the pores 2h.
  • the threshold value for the binarization process was 127.
  • the average pore diameter of the base material 2 is considered to be the average pore diameter of the first surface 21 of the base material 2.
  • the base material 2 was immersed in IPA for 90 minutes, and then in a PVA solution for 150 minutes. The PVA concentration in the PVA solution was 0.6% by mass. Next, the base material 2 was immersed in pure water for 1 minute, and then the PVA was crosslinked by electron beam irradiation. Finally, the base material 2 was dried in an atmosphere at 25° C. to make the surface of the base material 2 hydrophilic.
  • a dispersion containing nanofibers 4 was prepared.
  • the dispersion medium was water containing 4% by weight IPA.
  • the concentration of nanofibers 4 in the dispersion was 5% by mass.
  • the average length of the nanofibers 4 was 1400 nm, the average width was 4 nm, and the average aspect ratio was 350.
  • the average length of the nanofibers 4 was 10 times or more the average pore diameter of the first surface 21 of the base material 2.
  • the dispersion liquid was dropped onto the first surface 21 of the substrate 2 by spin coating.
  • the peripheral speed of spin coating was 10,000 mm/min.
  • the base material 2 coated with the dispersion liquid was left in a heated atmosphere at 100° C. for 30 minutes. Dropping of this dispersion liquid and heating were repeated once again to complete sample A.
  • sample B The method for producing sample B was the same as sample A except that the average length of nanofibers 4 was 3000 nm.
  • the average width of the nanofibers 4 was 4 nm, and the average aspect ratio of the nanofibers 4 was 750.
  • the average length of the nanofibers 4 was about 23 times the average pore diameter of the first surface 21 of the base material 2.
  • an inorganic layer 3 made of a laminate of a plurality of nanofibers 4 was formed on the surface of sample B.
  • the average pore diameter of the inorganic layer 3 of Sample B was measured by the same liquid passage test as Sample A. As a result, the average pore diameter of the inorganic layer 3 of sample B was 20 nm.
  • sample C The method for producing sample C was the same as sample A except that the average pore diameter of base material 2 was 260 nm.
  • the average length of the nanofibers 4 was 1400 nm, which was about 5.4 times the average pore diameter of the first surface 21 of the base material 2.
  • Test Example 2 a bending test was conducted to examine the flexibility of Sample A and Sample B.
  • Figure 6 shows an overview of the bending test.
  • the bending test procedure is as follows.
  • a test stand 8 having a substantially semi-cylindrical shape was prepared.
  • the radius of curvature of the curved surface of test stand 8 was 10 cm.
  • the composite porous body 1 of Sample A and the composite porous body 1 of Sample B were placed along the curved surface of the test table 8, fixed with tape 80, and left for a predetermined period of time.
  • the inorganic layer 3 of the composite porous body 1 was arranged radially outward of the test stand 8.
  • Test Example 3 it was investigated whether the composite porous body 1 of this example could withstand the pressure of practical desalination treatment. Specifically, Sample A, Sample B, Sample D, and Sample E were produced.
  • Sample A is the same as Sample A of Test Examples 1 and 2.
  • the average thickness of the inorganic layer 3 of sample A was 100 nm.
  • Sample B is the same as Sample B in Test Examples 1 and 2.
  • the average thickness of the inorganic layer 3 of sample B was 100 nm.
  • sample D The method for producing sample D was based on the method described in JP-A-2010-105846. A dispersion containing nanofibers 4 was poured into a container coated with polytetrafluoroethylene and heated in an oven to obtain a self-supporting film. The average thickness of the obtained free-standing membrane was 0.1 ⁇ m.
  • sample E The method for preparing sample E was the same as sample D except that the amount of the dispersion containing nanofibers 4 was 1000 times larger.
  • the average thickness of the obtained free-standing membrane was 100 ⁇ m.
  • Sample A, Sample B, Sample D, and Sample E were each subjected to a pressure filtration test.
  • water at a pressure of 7 MPa which is the pressure for practical desalination treatment, was supplied to each sample.
  • a pressure of 7 MPa which is the pressure for practical desalination treatment
  • Samples D and E were supplied to each sample.
  • the reason why cracks did not occur in Samples A and B, in which the average thickness of the inorganic layer 3 is thin, is that the inorganic layer 3 is formed on the base material 2 made of a flexible resin material, and the resin material is It is assumed that this is because it played the role of a cushion.
  • Test Example 4 Sample 4-14 was prepared from Sample 4-1 with different average pore diameters on the first surface 21, etc. Table 1 shows data on the physical properties of each sample. Performance data for each sample is shown in Table 2. The physical property data and performance data are as follows.
  • the material of the base material 2 was PP or PTFE. All materials have been treated to make them hydrophilic.
  • PTFE* shown in Table 1 is PTFE in which only a portion, specifically 50% of the surface of PTFE, has been made hydrophilic.
  • the shape of the base material 2 is a round bar, a sheet, or a tube.
  • the outer peripheral surface of the base material 2 is the first surface 21, and the inorganic layer 3 is provided on the outer peripheral surface.
  • the average thickness of the sheet-shaped base material 2 was determined from an SEM image of a cross section of the sheet-shaped composite porous body 1 cut in the thickness direction.
  • the average thickness of the tube-shaped base material 2 was determined from an SEM image taken of a cross section of the composite porous body 1 cut in a direction perpendicular to the stretching direction of the tube-shaped composite porous body 1.
  • the average thickness was the average of 5 points.
  • the average thickness of a round bar is the diameter of the round bar.
  • the average pore diameter of the first surface 21 was determined by image analysis of a SEM image of a cross section of the composite porous body 1. The conditions for image analysis are the same as in Test Example 1.
  • the average short axis of the first surface 21 was measured from image data acquired when measuring the average pore diameter.
  • the average short axis of the smallest rectangle circumscribing each hole in the image data is the average short axis of the first surface 21 .
  • the average thickness of the inorganic layer 3 was measured from a SEM image of the cross section of the composite porous body 1. The average thickness was the average of 5 points.
  • the average pore diameter of the open pores 3h of the inorganic layer 3 was measured from a SEM image taken of the surface 30 of the inorganic layer 3.
  • the average hole diameter is the average value of the equivalent circular diameters of the opening holes 3h.
  • the magnification of the SEM image was 100,000 times.
  • the average short axis of the openings 3h of the inorganic layer 3 was measured from a SEM image of the surface 30 of the inorganic layer 3.
  • the average short axis is the average short axis of the smallest rectangle circumscribing the opening hole 3h.
  • Al-OH ratio in inorganic layer is the ratio X/Y between the content X of Al-OH bonds and the content Y of Al-O-Al bonds.
  • Content X and content Y were determined by XPS.
  • the measuring instrument was a QuanteraSXM manufactured by ULVAC PHI. The measurement conditions were as follows. ⁇ X-ray source: MONO Al K ⁇ ⁇ Beam conditions: 100 ⁇ m, ⁇ 100W, 25kV HP ⁇ Transmission energy: 55eV (narrow), 280eV (wide) ⁇ Analysis elements: C, O, F, Al, Si, S ⁇ Charge correction: All element charge correction with F1s as 689.67eV
  • Al2O3 and Al(OH) 3 were present in the Al2p3 peak of the spectrum obtained by XPS.
  • the difference between the binding energy of Al 2 O 3 and that of Al(OH) 3 is defined as 0.6 eV, and the above peak is separated into the peak of Al 2 O 3 and the peak of Al(OH) 3 . did.
  • the integrated intensity of the Al 2 O 3 peak is the Al-OH bond content X
  • the integrated intensity of the Al(OH) 3 peak is the Al-O-Al bond content Y.
  • Each of the hydrophilic materials 5 is a layer of a hydrophilic polymer that covers at least a portion of the surface of the base material 2.
  • CH 2 —O-R content is the content of CH 2 —O—R bonds in the plurality of chemical structures derived from PVA and PTFE contained in the first surface 21 expressed as a percentage.
  • the CH 2 -O-R bond is a type of chemical structure derived from PVA and PTFE.
  • the CH 2 -O-R content was determined by XPS.
  • the measuring instrument was a QuanteraSXM manufactured by ULVAC PHI. The measurement conditions were as follows.
  • ⁇ X-ray source MONO Al K ⁇ ⁇ Beam conditions: 100 ⁇ m, 100W, 20kV HP ⁇ Transmission energy: 55eV (narrow), 280eV (wide) ⁇ Analysis elements: C, O, F ⁇ Photoelectron extraction angle: 45°
  • the binding energies of the 12 components are 284.0eV, 285.0eV, 285.8eV, 286.6eV, 287.5eV, 288.4eV, 289.1eV, 289.9eV, 290.7eV, 291.8eV, 292. 6 eV, and 293.6 eV.
  • the chemical structure containing the CH 2 -O-R bond is assigned to the peak at 286.6 eV.
  • the above peak was separated into 12 component peaks, and the integrated intensity of each component peak was determined.
  • the CH 2 -O-R content is ⁇ (integrated intensity of peak with binding energy of 286.6 eV)/(sum of integrated intensities of peaks of 12 components) ⁇ 100.
  • the flow rate ratio is the flow rate of each sample when the flow rate of sample 4-1 is set to 1.
  • the flow rate is the flow rate of the filtrate passing through the sample.
  • the stock solution flow rate is the same for all samples.
  • the filtrate flows from the surface 30 of the inorganic layer 3 toward the second surface 22.
  • the tube-shaped composite porous body 1 the filtrate flows from the outer peripheral surface of the tube toward the inner space of the tube.
  • the filtrate that has flowed into the internal space is discharged to the outside of the tube along the extending direction of the tube.
  • the round rod-shaped composite porous body 1 the filtrate flows inward from the outer peripheral surface of the round rod.
  • the filtrate that has flowed into the round bar moves along the extending direction of the round bar and is discharged from the end face of the round bar to the outside of the round bar.
  • the higher the flow rate ratio the higher the liquid permeability of the composite porous body 1.
  • Separatation rate of 20 nm particles indicates the ability to separate particles contained in the stock solution.
  • the dispersion medium was water, and the average particle size of the particles was 20 nm.
  • the particle concentration X (mass %) in the stock solution and the particle concentration Y (mass %) in the filtrate are measured.
  • a sample in which (1-Y/X) ⁇ 100 is 10% or more is rated A.
  • the separation rate of PEG1000 indicates the ability to separate PEG1000 particles contained in the stock solution.
  • PEG1000 is polyethylene glycol with an average molecular weight of around 1000.
  • the dispersion medium is ethanol.
  • concentration X (mass%) of PEG1000 in the stock solution and the concentration Y (mass%) of PEG1000 in the filtrate are measured.
  • a sample in which (1-Y/X) ⁇ 100 is 10% or more is rated A.
  • the IPA separation rate indicates the ability to separate IPA from a stock solution that is a mixed solution of water and IPA.
  • concentration X mass % of IPA in the stock solution
  • concentration Y mass % of IPA in the filtrate are measured.
  • the NaCl separation rate indicates the ability to separate NaCl from a stock solution of NaCl dissolved in water.
  • concentration X mass % of NaCl in the stock solution
  • concentration Y mass % of NaCl in the filtrate are measured. Samples in which (1-Y/X) ⁇ 100 is 10% or more are rated A, and samples in which it is less than 10% are rated B.

Abstract

The present invention provides a composite porous body which comprises a base material that has a first surface and an inorganic layer that covers at least a part of the first surface, wherein: the base material is a porous body that is configured from a resin material; the inorganic layer is a multilayer body of a plurality of nanofibers; each one of the plurality of nanofibers is formed of an inorganic material that contains aluminum, oxygen and hydrogen; the average pore diameter of the first surface is 5 nm to 500 nm; the average thickness of the inorganic layer is 10 nm to 1,000 nm; and the average pore diameter of the inorganic layer is 1 nm to 50 nm.

Description

複合多孔質体、及び複合多孔質体の製造方法Composite porous body and method for manufacturing the composite porous body
 本開示は、複合多孔質体、及び複合多孔質体の製造方法に関するものである。本出願は、2022年3月28日に出願した日本特許出願である特願2022-052170号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a composite porous body and a method for manufacturing the composite porous body. This application claims priority based on Japanese Patent Application No. 2022-052170, which is a Japanese patent application filed on March 28, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
 特許文献1は、多孔質材料からなる支持体と多孔質薄膜層とを含むアルミナ複合分離膜を開示する。多孔質材料は代表的にはアルミナなどの無機酸化物によって構成されている。多孔質薄膜層は、複数の繊維状アルミナ粒子を積層することによって構成されている。以下、アルミナ複合分離膜を複合多孔質体と呼ぶ。 Patent Document 1 discloses an alumina composite separation membrane that includes a support made of a porous material and a porous thin film layer. Porous materials are typically composed of inorganic oxides such as alumina. The porous thin film layer is constructed by laminating a plurality of fibrous alumina particles. Hereinafter, the alumina composite separation membrane will be referred to as a composite porous body.
 特許文献1の実施例に開示される複合多孔質体は、アルミナを主成分とする支持体を備える。アルミナによって構成される支持体及び多孔質薄膜層を備える複合多孔質体は、強度、耐熱性、及び耐薬品性に優れる。 The composite porous body disclosed in the example of Patent Document 1 includes a support whose main component is alumina. A composite porous body comprising a support made of alumina and a porous thin film layer has excellent strength, heat resistance, and chemical resistance.
特開2011-255303号公報Japanese Patent Application Publication No. 2011-255303
 本開示の複合多孔質体は、
 第一面を有する基材と、
 前記第一面の少なくとも一部を覆う無機層と、を備え、
 前記基材は、樹脂材料によって構成された多孔質体であり、
 前記無機層は、複数のナノファイバーの積層体であり、
 前記複数のナノファイバーのそれぞれは、アルミニウムと酸素と水素とを含む無機材料からなり、
 前記第一面における平均孔径が5nm以上500nm以下であり、
 前記無機層の平均厚さが10nm以上1000nm以下であり、
 前記無機層の平均孔径が1nm以上50nm以下である。
The composite porous body of the present disclosure includes:
a base material having a first surface;
an inorganic layer covering at least a portion of the first surface,
The base material is a porous body made of a resin material,
The inorganic layer is a laminate of multiple nanofibers,
Each of the plurality of nanofibers is made of an inorganic material containing aluminum, oxygen, and hydrogen,
The average pore diameter on the first surface is 5 nm or more and 500 nm or less,
The average thickness of the inorganic layer is 10 nm or more and 1000 nm or less,
The average pore diameter of the inorganic layer is 1 nm or more and 50 nm or less.
 本開示の複合多孔質体の製造方法は、
 樹脂材料によって構成された多孔質体からなる基材を用意する工程Aと、
 前記基材の第一面を親水化処理する工程Bと、
 複数のナノファイバーを含む分散液を用意する工程Cと、
 前記第一面に前記分散液を塗布する工程Dと、
 前記分散液が塗布された前記基材を80℃以上200℃以下の加熱雰囲気下で熱処理する工程Eと、を備え、
 前記工程Aにおける前記第一面の平均孔径が5nm以上500nm以下であり、
 前記工程Cにおける前記複数のナノファイバーのそれぞれはアルミニウムと酸素と水素とを含む無機材料からなり、
 前記工程Cにおける前記複数のナノファイバーの平均長さは、前記平均孔径の10倍以上である。
The method for manufacturing a composite porous body of the present disclosure includes:
Step A of preparing a base material made of a porous body made of a resin material;
Step B of hydrophilizing the first surface of the base material;
Step C of preparing a dispersion containing a plurality of nanofibers;
a step D of applying the dispersion liquid to the first surface;
A step E of heat-treating the base material coated with the dispersion liquid in a heating atmosphere of 80° C. or more and 200° C. or less,
The average pore diameter of the first surface in the step A is 5 nm or more and 500 nm or less,
Each of the plurality of nanofibers in the step C is made of an inorganic material containing aluminum, oxygen and hydrogen,
The average length of the plurality of nanofibers in the step C is 10 times or more the average pore diameter.
図1は、実施形態1に係るシート形状の複合多孔質体の概略構成図である。FIG. 1 is a schematic configuration diagram of a sheet-shaped composite porous body according to Embodiment 1. 図2は、図1の複合多孔質体の構造を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the structure of the composite porous body of FIG. 1. 図3は、図2の複合多孔質体の無機層の表面を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing the surface of the inorganic layer of the composite porous body of FIG. 2. 図4は、実施形態2に係る筒形状の複合多孔質体の概略構成図である。FIG. 4 is a schematic configuration diagram of a cylindrical composite porous body according to a second embodiment. 図5は、試験例に示される通液試験に用いられる試験装置の概略図である。FIG. 5 is a schematic diagram of a test device used in the liquid passage test shown in the test example. 図6は、試験例に示される曲げ試験の概略説明図である。FIG. 6 is a schematic explanatory diagram of the bending test shown in the test example.
 [本開示が解決しようとする課題]
 アルミナを主成分とする支持体を備える複合多孔質体は可とう性(flexibility)に乏しい。複合多孔質体の使用態様によっては、複合多孔質体が曲げられることがある。可とう性に乏しい複合多孔質体は、曲げによって損傷し易い。
[Problems to be solved by this disclosure]
A composite porous body having a support mainly composed of alumina has poor flexibility. Depending on how the composite porous body is used, the composite porous body may be bent. A composite porous body with poor flexibility is easily damaged by bending.
 本開示は、可とう性に優れる複合多孔質体、及び可とう性に優れる複合多孔質体の製造方法を提供することを目的の一つとする。 One of the objects of the present disclosure is to provide a composite porous body with excellent flexibility and a method for manufacturing the composite porous body with excellent flexibility.
 [本開示の効果]
 本開示の複合多孔質体は可とう性に優れる。
[Effects of this disclosure]
The composite porous body of the present disclosure has excellent flexibility.
 本開示の複合多孔質体の製造方法は、本開示の複合多孔質体の作製に好適である。 The method for producing a composite porous body of the present disclosure is suitable for producing the composite porous body of the present disclosure.
 [本開示の実施形態の説明]
 以下、本開示の実施態様を列記して説明する。
[Description of embodiments of the present disclosure]
Hereinafter, embodiments of the present disclosure will be listed and described.
<1>実施形態に係る複合多孔質体は、
 第一面を有する基材と、
 前記第一面の少なくとも一部を覆う無機層と、を備え、
 前記基材は、樹脂材料によって構成された多孔質体であり、
 前記無機層は、複数のナノファイバーの積層体であり、
 前記複数のナノファイバーのそれぞれは、アルミニウムと酸素と水素とを含む無機材料からなり、
 前記第一面における平均孔径が5nm以上500nm以下であり、
 前記無機層の平均厚さが10nm以上1000nm以下であり、
 前記無機層の平均孔径が1nm以上50nm以下である。
<1> The composite porous body according to the embodiment is
a base material having a first surface;
an inorganic layer covering at least a portion of the first surface,
The base material is a porous body made of a resin material,
The inorganic layer is a laminate of multiple nanofibers,
Each of the plurality of nanofibers is made of an inorganic material containing aluminum, oxygen, and hydrogen,
The average pore diameter on the first surface is 5 nm or more and 500 nm or less,
The average thickness of the inorganic layer is 10 nm or more and 1000 nm or less,
The average pore diameter of the inorganic layer is 1 nm or more and 50 nm or less.
 実施形態に係る複合多孔質体は可とう性に優れる。その理由の一つは、基材が可とう性を有する樹脂材料の多孔質体によって構成されることである。別の理由は、無機層がアルミニウムと酸素と水素とを含む無機材料からなる複数のナノファイバーの積層体によって構成されることである。 The composite porous body according to the embodiment has excellent flexibility. One of the reasons for this is that the base material is made of a porous body made of a flexible resin material. Another reason is that the inorganic layer is composed of a laminate of multiple nanofibers made of an inorganic material containing aluminum, oxygen, and hydrogen.
 実施形態に係る複合多孔質体は耐熱性及び耐薬品性に優れる。なぜなら、ろ過対象の流体が接触する無機層が、無機材料のナノファイバーによって構成されるからである。流体は液体でも良いし、気体でも良いし、固体が混合された液体又は固体が混合された気体でもよい。 The composite porous body according to the embodiment has excellent heat resistance and chemical resistance. This is because the inorganic layer that the fluid to be filtered comes into contact with is composed of nanofibers of inorganic material. The fluid may be a liquid, a gas, a liquid mixed with a solid, or a gas mixed with a solid.
 平均孔径が5nm以上の第一面を備える複合多孔質体は、優れた通液性を有する。通液性とは、流体の通し易さのことである。通液性が高い複合多孔質体は、ろ過時間を短縮できる。第一面の平均孔径が500nm以下であれば、複合多孔質体の製造時に無機層が形成され易い。 A composite porous body having a first surface with an average pore diameter of 5 nm or more has excellent liquid permeability. Liquid permeability refers to the ease with which fluid can pass through. A composite porous body with high liquid permeability can shorten filtration time. If the average pore diameter of the first surface is 500 nm or less, an inorganic layer is likely to be formed during production of the composite porous body.
 平均厚さが10nmの無機層を備える複合多孔質体は、優れたろ過性能を有する。平均厚さが1000nm以下の無機層を備える複合多孔質体は、優れた通液性と可とう性を有する。 A composite porous body comprising an inorganic layer with an average thickness of 10 nm has excellent filtration performance. A composite porous body including an inorganic layer with an average thickness of 1000 nm or less has excellent liquid permeability and flexibility.
 平均孔径が1nm以上の無機層を備える複合多孔質体は、優れた通液性を有する。平均孔径が50nm以下の無機層を備える複合多孔質体は、優れたろ過性能を有する。 A composite porous body comprising an inorganic layer with an average pore diameter of 1 nm or more has excellent liquid permeability. A composite porous body including an inorganic layer with an average pore diameter of 50 nm or less has excellent filtration performance.
 実施形態に係る複合多孔質体はナノオーダーの不純物をろ過対象の流体から除去できる。なぜなら、複数のナノファイバーが積層することによって構成された無機層では、隣接するナノファイバーの隙間が、流体が通過する空孔となる。隣接するナノファイバーの隙間は非常に小さいため、無機層によってナノオーダーの不純物が流体から除去される。 The composite porous body according to the embodiment can remove nano-order impurities from the fluid to be filtered. This is because in an inorganic layer formed by stacking a plurality of nanofibers, gaps between adjacent nanofibers become pores through which fluid passes. Since the gaps between adjacent nanofibers are very small, the inorganic layer removes nano-order impurities from the fluid.
<2>実施形態に係る複合多孔質体において、
 前記樹脂材料は疎水性ポリマーであっても良い。
<2> In the composite porous body according to the embodiment,
The resin material may be a hydrophobic polymer.
 疎水性ポリマーには、強度、耐熱性、又は耐薬品性に優れるものが多い。従って、複合多孔質体の強度、耐熱性、又は耐薬品性が向上する。 Many hydrophobic polymers have excellent strength, heat resistance, or chemical resistance. Therefore, the strength, heat resistance, or chemical resistance of the composite porous body is improved.
<3>上記<2>に記載される複合多孔質体において、
 前記疎水性ポリマーはポリテトラフルオロエチレンであっても良い。
<3> In the composite porous body described in <2> above,
The hydrophobic polymer may be polytetrafluoroethylene.
 ポリテトラフルオロエチレンは耐熱性及び耐薬品性に優れる。従って、複合多孔質体の耐熱性及び耐薬品性が向上する。 Polytetrafluoroethylene has excellent heat resistance and chemical resistance. Therefore, the heat resistance and chemical resistance of the composite porous body are improved.
<4>実施形態に係る複合多孔質体において、
 前記第一面の少なくとも一部は親水性素材を含んでいても良い。
<4> In the composite porous body according to the embodiment,
At least a portion of the first surface may include a hydrophilic material.
 親水性素材は、樹脂材料によって構成される基材の第一面と無機層との密着性を向上させる。従って、薄い無機層であっても基材の第一面から剥がれ難い。後述する複合多孔質体の製造方法に記載されるように、複合多孔質体の作製時、基材の第一面が親水性素材によって親水化される。ここで、親水性素材の少なくとも一部は、複合多孔質体の作製時の熱処理によって分解される場合がある。親水性素材の全部が上記熱処理によって分解されることもあり得る。基材における親水性素材の存在は、例えばXPS(X-ray Photoelectron Spectroscopy)によって確認可能である。 The hydrophilic material improves the adhesion between the first surface of the base material made of resin material and the inorganic layer. Therefore, even a thin inorganic layer is difficult to peel off from the first surface of the base material. As described in the method for producing a composite porous body described below, when producing a composite porous body, the first surface of the base material is made hydrophilic with a hydrophilic material. Here, at least a portion of the hydrophilic material may be decomposed by heat treatment during production of the composite porous body. It is possible that all of the hydrophilic material is decomposed by the above heat treatment. The presence of a hydrophilic material in the base material can be confirmed by, for example, XPS (X-ray Photoelectron Spectroscopy).
<5>上記<4>に記載される複合多孔質体において、
 前記親水性素材が、前記第一面を含む前記基材の表面の少なくとも一部に被覆された親水性ポリマーであっても良い。
<5> In the composite porous body described in <4> above,
The hydrophilic material may be a hydrophilic polymer coated on at least a portion of the surface of the base material including the first surface.
 基材の表面には、基材の空孔の内周面も含まれる。つまり、親水性素材は、基材の空孔に入り込み、空孔の内周面に被覆されていても良い。基材の表面に被覆された親水性素材によって、基材と無機層との密着性が向上する。 The surface of the base material also includes the inner peripheral surface of the pores of the base material. That is, the hydrophilic material may enter the pores of the base material and coat the inner circumferential surfaces of the pores. The hydrophilic material coated on the surface of the base material improves the adhesion between the base material and the inorganic layer.
<6>上記<5>に記載される複合多孔質体において、
 前記親水性ポリマーはポリビニルアルコールであっても良い。
<6> In the composite porous body described in <5> above,
The hydrophilic polymer may be polyvinyl alcohol.
 ポリビニルアルコール(polyvinyl alcohol:PVA)は基材に密着し易い。PVAは特に、ポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE)からなる基材に密着し易い。PVAからなる親水性樹脂は、複合多孔質体の作製時に基材と無機層とを強固に密着させる。 Polyvinyl alcohol (PVA) easily adheres to the base material. PVA particularly tends to adhere to a base material made of polytetrafluoroethylene (PTFE). The hydrophilic resin made of PVA firmly adheres the base material and the inorganic layer during production of the composite porous body.
<7>上記<6>に記載される複合多孔質体において、
 前記樹脂材料は、ポリテトラフルオロエチレンであり、
 前記親水性ポリマーを含む前記第一面は、前記ポリビニルアルコール及び前記ポリテトラフルオロエチレンに由来する複数の化学構造を含み、
 前記複数の化学構造のうち、XPSによって得られたC1sスペクトルによって検出される化学構造におけるCH-O-R結合の含有量が3%以上15%以下であっても良い。
<7> In the composite porous body described in <6> above,
The resin material is polytetrafluoroethylene,
The first surface containing the hydrophilic polymer includes a plurality of chemical structures derived from the polyvinyl alcohol and the polytetrafluoroethylene,
Among the plurality of chemical structures, the content of CH 2 -O-R bonds in the chemical structure detected by the C1s spectrum obtained by XPS may be 3% or more and 15% or less.
 上記範囲のCH-O-R結合を含む親水性ポリマーは、基材と無機層との密着性を向上させる。 A hydrophilic polymer containing a CH 2 -O-R bond in the above range improves the adhesion between the base material and the inorganic layer.
<8>実施形態に係る複合多孔質体において、
 前記基材の形状はシートであっても良い。
<8> In the composite porous body according to the embodiment,
The shape of the base material may be a sheet.
 シート状の基材を備える複合多孔質体の全体形状はシート形状である。シート形状の複合多孔質体は、様々な形状に加工し易く、種々の形態のろ過装置に適用可能である。実施形態に係る複合多孔質体は可とう性に優れるため、曲げなどの加工に供されても損傷し難い。 The overall shape of the composite porous body including a sheet-like base material is a sheet shape. A sheet-shaped composite porous body can be easily processed into various shapes and can be applied to various types of filtration devices. Since the composite porous body according to the embodiment has excellent flexibility, it is not easily damaged even when subjected to processing such as bending.
<9>上記<8>に記載される複合多孔質体において、
 前記基材の平均厚さが1μm以上100μm以下であっても良い。
<9> In the composite porous body described in <8> above,
The average thickness of the base material may be 1 μm or more and 100 μm or less.
 シート状の基材の平均厚さが1μm以上であれば、基材を含む複合多孔質体の強度が確保される。基材の平均厚さが100μm以下であれば、基材を含む複合多孔質体の可とう性が確保される共に、複合多孔質体によるろ過時間が長くなり過ぎない。 If the average thickness of the sheet-like base material is 1 μm or more, the strength of the composite porous body including the base material is ensured. When the average thickness of the base material is 100 μm or less, the flexibility of the composite porous body including the base material is ensured, and the filtration time using the composite porous body does not become too long.
<10>上記<1>から<7>のいずれかに記載される複合多孔質体において、
 前記基材の形状はチューブであり、
 前記第一面は、前記チューブの外周面であっても良い。
<10> In the composite porous body described in any one of <1> to <7> above,
The shape of the base material is a tube,
The first surface may be an outer peripheral surface of the tube.
 チューブ状の基材を備える複合多孔質体の全体形状はチューブ形状である。チューブ状の基材には、中空糸膜も含まれる。チューブ形状の複合多孔質体では、不純物を含む流体はチューブ形状の複合多孔質体の外部に流通される。複合多孔質体を透過した流体はチューブ形状の複合多孔質体の内部に流通される。上記<10>に記載の構成であれば、複合多孔質体自体で流体の流路を構成できる。この複合多孔質体を複数本束ねることで浄化装置のモジュールを構成することができる。 The overall shape of the composite porous body including a tubular base material is a tube shape. The tubular substrate also includes hollow fiber membranes. In the tube-shaped composite porous body, a fluid containing impurities is passed to the outside of the tube-shaped composite porous body. The fluid that has passed through the composite porous body is circulated inside the tube-shaped composite porous body. With the configuration described in <10> above, the fluid flow path can be configured by the composite porous body itself. A module of a purification device can be constructed by bundling a plurality of these composite porous bodies.
<11>上記<10>に記載される複合多孔質体において、
 前記基材の平均厚さが50μm以上1000μm以下であっても良い。
<11> In the composite porous body described in <10> above,
The average thickness of the base material may be 50 μm or more and 1000 μm or less.
 チューブ状の基材の平均厚さが50μm以上であれば、基材を含む複合多孔質体の強度が確保される。基材の平均厚さが1000μm以下であれば、基材を含む複合多孔質体の可とう性が確保される共に、複合多孔質体によるろ過時間が長くなり過ぎない。 If the average thickness of the tubular base material is 50 μm or more, the strength of the composite porous body including the base material is ensured. When the average thickness of the base material is 1000 μm or less, the flexibility of the composite porous body including the base material is ensured, and the filtration time using the composite porous body does not become too long.
<12>実施形態に係る複合多孔質体において、
 前記基材は、前記第一面を含む第一層と、前記第一層に隣接する第二層と、を備え、
 前記第二層の平均孔径は、前記第一層の平均孔径よりも大きくても良い。
<12> In the composite porous body according to the embodiment,
The base material includes a first layer including the first surface and a second layer adjacent to the first layer,
The average pore size of the second layer may be larger than the average pore size of the first layer.
 基材の厚さが厚くなるほど、基材の強度、即ち複合多孔質体の強度が高くなる。反面、基材の通液性、即ち複合多孔質体の通液性は低下する。平均孔径が大きい第二層を備える基材Xの通液性は、基材Xと同じ厚さを有し、かつ第一層のみからなる基材Yの通液性よりも優れる。従って、基材が第一層と第二層とで構成されることで、基材を厚くしても複合多孔質体のろ過時間が長くなり難い。 The thicker the base material, the higher the strength of the base material, that is, the strength of the composite porous body. On the other hand, the liquid permeability of the base material, ie, the liquid permeability of the composite porous body, decreases. The liquid permeability of the base material X, which includes the second layer with a large average pore diameter, is superior to the liquid permeability of the base material Y, which has the same thickness as the base material X and is composed of only the first layer. Therefore, since the base material is composed of the first layer and the second layer, even if the base material is made thicker, the filtration time of the composite porous body is not easily increased.
<13>実施形態に係る複合多孔質体において、
 前記無機層は、Al-OH結合、及びAl-O-Al結合を含み、
 前記Al-OH結合の含有量Xと前記Al-O-Al結合の含有量Yとの比X/Yが0.3以上1.0以下でも良い。
<13> In the composite porous body according to the embodiment,
The inorganic layer includes an Al-OH bond and an Al-O-Al bond,
The ratio X/Y between the content X of the Al--OH bonds and the content Y of the Al-O-Al bonds may be 0.3 or more and 1.0 or less.
 Al-OH結合を含むベーマイトは、Al-O-Al結合を含むアルミナよりも柔らかい。ベーマイトの含有量が多い無機層は曲げ応力に耐性を持つ。従って、上記<13>に記載の複合多孔質体は曲げ易い。 Boehmite containing Al-OH bonds is softer than alumina containing Al-O-Al bonds. The inorganic layer with high boehmite content is resistant to bending stress. Therefore, the composite porous body described in <13> above is easy to bend.
<14>実施形態に係る複合多孔質体において、
 前記第一面における空孔の平均短径が4nm以上400nm以下であっても良い。
<14> In the composite porous body according to the embodiment,
The average short diameter of the pores on the first surface may be 4 nm or more and 400 nm or less.
 平均短径が4nm以上の空孔を有する第一面は、複合多孔質体の通液性を向上させる。第一面の空孔の平均短径が400nm以下であれば、複合多孔質体の製造時にナノファイバーが第一面に成膜され易い。そのため、薄い無機層が形成され易い。 The first surface having pores with an average minor axis of 4 nm or more improves the liquid permeability of the composite porous body. If the average short diameter of the pores on the first surface is 400 nm or less, nanofibers can be easily formed on the first surface during production of the composite porous body. Therefore, a thin inorganic layer is likely to be formed.
<15>実施形態に係る複合多孔質体において、
 前記無機層は、前記無機層の表面に開口する開口孔を備え、
 前記開口孔の平均孔径が2nm以上200nm以下であり、
 前記開口孔の平均短径が1nm以上100nm以下であっても良い。
<15> In the composite porous body according to the embodiment,
The inorganic layer has an opening opening on the surface of the inorganic layer,
The average pore diameter of the open pores is 2 nm or more and 200 nm or less,
The average short diameter of the opening pores may be 1 nm or more and 100 nm or less.
 平均孔径と平均短径が上記範囲に収まる無機層を備える複合多孔質体は、ろ過性能と通液性に優れる。 A composite porous body comprising an inorganic layer with an average pore diameter and an average short diameter within the above range has excellent filtration performance and liquid permeability.
<16>実施形態に係る複合多孔質体の製造方法は、
 樹脂材料によって構成された多孔質体からなる基材を用意する工程Aと、
 前記基材の第一面を親水化処理する工程Bと、
 複数のナノファイバーを含む分散液を用意する工程Cと、
 前記第一面に前記分散液を塗布する工程Dと、
 前記分散液が塗布された前記基材を80℃以上200℃以下の加熱雰囲気下で熱処理する工程Eと、を備え、
 前記工程Aにおける前記第一面の平均孔径が5nm以上500nm以下であり、
 前記工程Cにおける前記複数のナノファイバーのそれぞれはアルミニウムと酸素と水素とを含む無機材料からなり、
 前記工程Cにおける前記複数のナノファイバーの平均長さは、前記平均孔径の10倍以上である。
<16> A method for manufacturing a composite porous body according to an embodiment,
Step A of preparing a base material made of a porous body made of a resin material;
Step B of hydrophilizing the first surface of the base material;
Step C of preparing a dispersion containing a plurality of nanofibers;
a step D of applying the dispersion liquid to the first surface;
A step E of heat-treating the base material coated with the dispersion liquid in a heating atmosphere of 80° C. or more and 200° C. or less,
The average pore diameter of the first surface in the step A is 5 nm or more and 500 nm or less,
Each of the plurality of nanofibers in the step C is made of an inorganic material containing aluminum, oxygen and hydrogen,
The average length of the plurality of nanofibers in the step C is 10 times or more the average pore diameter.
 実施形態に係る複合多孔質体の製造方法は、実施形態に係る複合多孔質体の製造に好適である。
 アルミニウムを含む無機材料からなるナノファイバーは、例えば樹脂材料によって構成された基材に付着し難い。従って、複数のナノファイバーの積層体からなる無機層を基材上に形成するには、基材上に大量のナノファイバーを含む分散液を塗布しなければならない。その場合、無機層の厚さが数十μm以上となるため、可とう性に優れる複合多孔質体が得られない。このような問題に対して、実施形態に係る複合多孔質体の製造方法では、工程Bにおいて基材の第一面を親水化処理することで、工程Dにおいて第一面にナノファイバーが付着し易くなる。また、ナノファイバーの平均長さが、第一面の平均孔径の10倍以上であるため、工程Dにおいてナノファイバーが第一面の孔に落ち難い。このように、ナノファイバーが第一面の孔に落ち難く、第一面に付着し易いため、実施形態に係る複合多孔質体の製造方法によれば、1000nm以下の平均厚さを有する無機層を備える複合多孔質体を製造できる。
The method for manufacturing a composite porous body according to the embodiment is suitable for manufacturing the composite porous body according to the embodiment.
Nanofibers made of an inorganic material containing aluminum are difficult to adhere to, for example, a base material made of a resin material. Therefore, in order to form an inorganic layer consisting of a laminate of a plurality of nanofibers on a substrate, a dispersion containing a large amount of nanofibers must be applied onto the substrate. In that case, since the thickness of the inorganic layer is several tens of micrometers or more, a composite porous body with excellent flexibility cannot be obtained. To address this problem, in the method for manufacturing a composite porous body according to the embodiment, the first surface of the base material is hydrophilized in step B, and the nanofibers are attached to the first surface in step D. It becomes easier. Furthermore, since the average length of the nanofibers is 10 times or more the average pore diameter of the first surface, the nanofibers are unlikely to fall into the pores of the first surface in step D. As described above, since nanofibers are difficult to fall into the pores of the first surface and easily adhere to the first surface, according to the method for manufacturing a composite porous body according to the embodiment, the inorganic layer having an average thickness of 1000 nm or less A composite porous body can be manufactured.
[本開示の実施形態の詳細]
 以下、本開示の複合多孔質体、及び複合多孔質体の製造方法の具体例を図面に基づいて説明する。以下、図中の同一符号は同一又は相当部分を示す。各図面が示す部材の大きさは、説明を明確にする目的で表現されており、必ずしも実際の寸法を表すものではない。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of embodiments of the present disclosure]
Hereinafter, specific examples of the composite porous body and the method for manufacturing the composite porous body of the present disclosure will be described based on the drawings. Hereinafter, the same reference numerals in the figures indicate the same or corresponding parts. The sizes of parts shown in each drawing are shown for clarity of explanation and do not necessarily represent actual dimensions. Note that the present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
<実施形態1>
 ≪全体構成≫
 実施形態の複合多孔質体1は、例えば図1に示されるシート形状を備える。複合多孔質体1は、基材2と無機層3とを備える。基材2の形状はシートである。基材2は、図1,2に示されるように、第一面21と第二面22とを備える。無機層3は、基材2の第一面21に配置されている。後述するように、無機層3の平均孔径は基材2の平均孔径よりも小さい。複合多孔質体1には曲げに対する耐性が求められる場合がある。例えば複合多孔質体1は、円筒状に丸められた状態で浄化装置のモジュールのフィルターを構成する。円筒状のモジュールにおいて無機層3は円筒の外周側に配置される。以下、複合多孔質体1の各構成を詳細に説明する。
<Embodiment 1>
≪Overall composition≫
The composite porous body 1 of the embodiment has a sheet shape shown in FIG. 1, for example. The composite porous body 1 includes a base material 2 and an inorganic layer 3. The shape of the base material 2 is a sheet. The base material 2 includes a first surface 21 and a second surface 22, as shown in FIGS. 1 and 2. The inorganic layer 3 is arranged on the first surface 21 of the base material 2. As described later, the average pore diameter of the inorganic layer 3 is smaller than the average pore diameter of the base material 2. The composite porous body 1 may be required to have resistance to bending. For example, the composite porous body 1 constitutes a filter of a module of a purification device when rolled into a cylindrical shape. In a cylindrical module, the inorganic layer 3 is arranged on the outer peripheral side of the cylinder. Hereinafter, each structure of the composite porous body 1 will be explained in detail.
 [基材]
 基材2は多孔質体である。図2に示されるように、基材2は複数の空孔2hを備える。図2は断面図であるため、基材2の各空孔2hは独立しているように見えるが、各空孔2hは他の空孔2hにつながっている。基材2には、第一面21から第二面22に至る無数の流路が形成されている。
[Base material]
The base material 2 is a porous body. As shown in FIG. 2, the base material 2 includes a plurality of holes 2h. Since FIG. 2 is a cross-sectional view, each hole 2h of the base material 2 appears to be independent, but each hole 2h is connected to other holes 2h. Numerous channels are formed in the base material 2 from the first surface 21 to the second surface 22.
 基材2は樹脂材料によって構成されている。樹脂材料は、複合多孔質体1の用途に応じて適宜選択される。樹脂材料は例えば、疎水性ポリマーである。疎水性ポリマーには、強度、耐熱性、又は耐薬品性に優れるものが多い。疎水性ポリマーは例えば、ポリプロピレン(polypropylene:PP)、ポリエチレン(polyethylene:PE)、ポリフッ化ビニリデン(polyvinylidene difluoride:PVDF)、ポリエチレンテレフタレート(polyethylene terephthalate:PET)、又はポリテトラフルオロエチレン(PTFE)である。特にPTFEは耐熱性及び耐薬品性に優れる。 The base material 2 is made of a resin material. The resin material is appropriately selected depending on the use of the composite porous body 1. The resin material is, for example, a hydrophobic polymer. Many hydrophobic polymers have excellent strength, heat resistance, or chemical resistance. Examples of hydrophobic polymers include polypropylene (PP), polyethylene (PE), polyvinylidene difluoride (PVDF), and polyethylene terephthalate. thalate: PET) or polytetrafluoroethylene (PTFE). In particular, PTFE has excellent heat resistance and chemical resistance.
 基材2の厚さは、第一面21と第二面22との間の長さである。本例の基材2の平均厚さは1μm以上100μm以下である。平均厚さが1μm以上の基材2を備える複合多孔質体1は優れた強度を有する。平均厚さが100μm以下の基材2を備える複合多孔質体1は可とう性に優れる。また、複合多孔質体1によるろ過時間が長くなり過ぎない。平均厚さの下限値は5μm、10μm、15μm、あるいは20μmであっても良い。平均厚さの上限値は90μm、80μm、あるいは50μmであっても良い。基材2の平均厚さの範囲は、例えば10μm以上90μm以下でも良いし、20μm以上50μm以下でも良い。 The thickness of the base material 2 is the length between the first surface 21 and the second surface 22. The average thickness of the base material 2 in this example is 1 μm or more and 100 μm or less. The composite porous body 1 including the base material 2 having an average thickness of 1 μm or more has excellent strength. The composite porous body 1 including the base material 2 having an average thickness of 100 μm or less has excellent flexibility. Moreover, the filtration time using the composite porous body 1 does not become too long. The lower limit of the average thickness may be 5 μm, 10 μm, 15 μm, or 20 μm. The upper limit of the average thickness may be 90 μm, 80 μm, or 50 μm. The range of the average thickness of the base material 2 may be, for example, 10 μm or more and 90 μm or less, or 20 μm or more and 50 μm or less.
 基材2の平均厚さはSEM-EDX(Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy)によって求められる。基材2と無機層3との境界は、EDXによって基材2の表面30から深さ方向にアルミニウム(Al)の検出強度をライン分析することで求められる。SEM画像においてAlの検出強度が急激に低下する箇所が、基材2と無機層3との境界である。この境界から基材2の第二面22までの距離が基材2の厚さである。基材2の平均厚さは、例えば基材2における異なる5点の厚さを平均したものである。 The average thickness of the base material 2 is determined by SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy). The boundary between the base material 2 and the inorganic layer 3 is determined by line analysis of the detected intensity of aluminum (Al) in the depth direction from the surface 30 of the base material 2 using EDX. In the SEM image, the location where the detection intensity of Al sharply decreases is the boundary between the base material 2 and the inorganic layer 3. The distance from this boundary to the second surface 22 of the base material 2 is the thickness of the base material 2. The average thickness of the base material 2 is, for example, the average of the thicknesses at five different points on the base material 2.
 基材2の第一面21における平均孔径は5nm以上500nm以下である。平均孔径が5nm以上の基材2を備える複合多孔質体1は、優れた通液性を有する。通液性が高い複合多孔質体1は、ろ過時間を短縮できる。平均孔径が500nm以下の基材2は、強度に優れる。平均孔径の下限値は50nm、100nm、あるいは200nmであっても良い。平均孔径の上限値は450nm、400nm、あるいは350nmであっても良い。基材2の平均孔径の範囲は、例えば50nm以上450nm以下でも良いし、200nm以上350nm以下でも良い。 The average pore diameter on the first surface 21 of the base material 2 is 5 nm or more and 500 nm or less. The composite porous body 1 including the base material 2 having an average pore diameter of 5 nm or more has excellent liquid permeability. The composite porous body 1 with high liquid permeability can shorten the filtration time. The base material 2 having an average pore diameter of 500 nm or less has excellent strength. The lower limit of the average pore diameter may be 50 nm, 100 nm, or 200 nm. The upper limit of the average pore diameter may be 450 nm, 400 nm, or 350 nm. The range of the average pore diameter of the base material 2 may be, for example, 50 nm or more and 450 nm or less, or 200 nm or more and 350 nm or less.
 第一面21には複数の空孔2hが形成されている。第一面21の上に無機層3が形成されていると、第一面21の空孔2hの平均孔径を測定することは難しい。本明細書における第一面21の平均孔径は、基材2の厚さ方向に沿った断面のSEM画像から求められる。具体的には、基材2の厚さ方向に沿った断面のSEM画像を二値化処理し、SEM画像における各空孔2hを抽出する。各空孔2hの円相当径を求め、全ての空孔2hの円相当径の平均を求める。円相当径は、空孔2hの面積と同じ大きさの真円の直径のことである。本明細書では、この平均円相当径を第一面21の平均孔径とみなす。 A plurality of holes 2h are formed in the first surface 21. When the inorganic layer 3 is formed on the first surface 21, it is difficult to measure the average pore diameter of the pores 2h on the first surface 21. The average pore diameter of the first surface 21 in this specification is determined from an SEM image of a cross section of the base material 2 along the thickness direction. Specifically, a SEM image of a cross section along the thickness direction of the base material 2 is subjected to a binarization process, and each hole 2h in the SEM image is extracted. The equivalent circle diameter of each hole 2h is determined, and the average of the equivalent circle diameters of all the holes 2h is determined. The equivalent circle diameter is the diameter of a perfect circle having the same size as the area of the hole 2h. In this specification, this average equivalent circle diameter is regarded as the average pore diameter of the first surface 21.
 第一面21における空孔2hの平均短径は例えば、4nm以上400nm以下である。空孔2h平均短径は、基材2の厚さ方向に沿った断面のSEM画像から求められる。SEM画像における各空孔2hに外接する最小の長方形を求める。全ての長方形の短径の平均が、空孔2hの平均短径である。平均短径が4nm以上の空孔2hを有する第一面21は、複合多孔質体1の通液性を向上させる。第一面21の空孔2hの平均短径が400nm以下であれば、複合多孔質体1の製造時にナノファイバー4が第一面21に成膜され易い。そのため、薄い無機層3が形成され易い。第一面21における空孔2hの平均短径は例えば10nm以上300nm以下でも良い。 The average short diameter of the pores 2h on the first surface 21 is, for example, 4 nm or more and 400 nm or less. The average short diameter of the pores 2h is determined from an SEM image of a cross section of the base material 2 along the thickness direction. The smallest rectangle circumscribing each hole 2h in the SEM image is determined. The average of the short axes of all the rectangles is the average short axis of the holes 2h. The first surface 21 having the pores 2h having an average minor axis of 4 nm or more improves the liquid permeability of the composite porous body 1. If the average short diameter of the pores 2h on the first surface 21 is 400 nm or less, the nanofibers 4 are easily formed on the first surface 21 during production of the composite porous body 1. Therefore, a thin inorganic layer 3 is easily formed. The average short diameter of the holes 2h on the first surface 21 may be, for example, 10 nm or more and 300 nm or less.
 基材2は、図2に示されるように、複数の層を備えていても良い。基材2は例えば、第一層2Aと第二層2Bとを備える。第一層2Aは、第一面21面を含む。第二層2Bは、第一層2Aに隣接する。第二層2Bの平均孔径は、第一層2Aの平均孔径よりも大きい。例えば、第二層2Bの平均孔径は、第一層2Aの平均孔径の2倍以上2000倍以下、更には10倍以上1000倍以下である。ここで、基材2が3層以上の層からなる場合、第一面21から遠い層ほど平均孔径が大きい。もちろん、基材2は第一層2Aのみから構成されていても良い。 The base material 2 may include multiple layers, as shown in FIG. 2. The base material 2 includes, for example, a first layer 2A and a second layer 2B. The first layer 2A includes a first surface 21. The second layer 2B is adjacent to the first layer 2A. The average pore size of the second layer 2B is larger than the average pore size of the first layer 2A. For example, the average pore diameter of the second layer 2B is 2 times or more and 2000 times or less, more preferably 10 times or more and 1000 times or less, than the average pore diameter of the first layer 2A. Here, when the base material 2 is composed of three or more layers, the layers farther from the first surface 21 have a larger average pore diameter. Of course, the base material 2 may be composed only of the first layer 2A.
 第一層2Aの平均孔径と、第二層2Bの平均孔径は、基材2の厚さ方向に沿った断面のSEM画像から求められる。第一層2Aと第二層2Bとは、基材2の作製時に熱融着される。そのため、第一層2Aと第二層2Bとの境界はSEM画像において確認することができる。SEM画像において、境界を挟んで第一面21を含む領域に存在する各空孔2hの円相当径の平均が、第一層2Aの平均孔径である。同様に、SEM画像において、境界を挟んで第一層2Aに隣接する領域に存在する各空孔2hの円相当径の平均が、第二層2Bの平均孔径である。 The average pore diameter of the first layer 2A and the average pore diameter of the second layer 2B are determined from the SEM image of the cross section of the base material 2 along the thickness direction. The first layer 2A and the second layer 2B are thermally fused together when the base material 2 is produced. Therefore, the boundary between the first layer 2A and the second layer 2B can be confirmed in the SEM image. In the SEM image, the average of the circular equivalent diameters of the pores 2h existing in the region including the first surface 21 across the boundary is the average pore diameter of the first layer 2A. Similarly, in the SEM image, the average of the equivalent circular diameters of the pores 2h existing in the region adjacent to the first layer 2A across the boundary is the average pore diameter of the second layer 2B.
 基材2の第一面21の少なくとも一部は親水性素材5を含んでいても良い。言い換えれば、多孔質体の表面の少なくとも一部に親水性素材5が存在しても良い。図2における親水性素材5は誇張して示されている。親水性素材5は、後述する複合多孔質体1の製造方法において、基材2の第一面21と、無機材料からなるナノファイバー4との密着性を向上させる。SEM画像において親水性素材5を確認することは難しい。親水性素材5の存在は、例えばXPSによって確認可能である。親水性素材5は、複合多孔質体1の作製過程における熱処理によって消失する可能性がある。従って、親水性素材5はXPSによって検出されないこともあり得る。 At least a portion of the first surface 21 of the base material 2 may contain the hydrophilic material 5. In other words, the hydrophilic material 5 may be present on at least a portion of the surface of the porous body. The hydrophilic material 5 in FIG. 2 is shown exaggerated. The hydrophilic material 5 improves the adhesion between the first surface 21 of the base material 2 and the nanofibers 4 made of an inorganic material in the method for manufacturing the composite porous body 1 described later. It is difficult to confirm the hydrophilic material 5 in the SEM image. The presence of the hydrophilic material 5 can be confirmed by, for example, XPS. The hydrophilic material 5 may disappear due to heat treatment during the manufacturing process of the composite porous body 1. Therefore, the hydrophilic material 5 may not be detected by XPS.
 親水性素材5は例えば、第一面21を含む基材2の表面の少なくとも一部に被覆された親水性ポリマーである。親水性ポリマーは、基材2の表面に形成された層状体である。基材2の表面には、基材2の空孔の内周面も含まれる。本例では、親水性ポリマーは基材2の空孔に入り込んでいる。即ち、親水性ポリマーは、第一面21だけでなく、空孔の内周面の少なくとも一部を覆う。親水性ポリマーの層は極めて薄いため、親水性ポリマーの有無によって基材2の孔径はほとんど変化しない。 The hydrophilic material 5 is, for example, a hydrophilic polymer that coats at least a portion of the surface of the base material 2 including the first surface 21. The hydrophilic polymer is a layered body formed on the surface of the base material 2. The surface of the base material 2 also includes the inner peripheral surface of the pores of the base material 2. In this example, the hydrophilic polymer has entered the pores of the base material 2. That is, the hydrophilic polymer covers not only the first surface 21 but also at least a portion of the inner peripheral surface of the hole. Since the hydrophilic polymer layer is extremely thin, the pore size of the base material 2 hardly changes depending on the presence or absence of the hydrophilic polymer.
 親水性ポリマーは例えば、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(ethylene vinylalcohol copolymer)、ポリビニルピロリドン(Polyvinylpyrrolidone)、ポリエチレンイミン(Polyethylenimine)、又はカルボキシル基を含むポリアクリル酸である。特に、PVAは、基材2と無機層3との密着性を向上させる。 Hydrophilic polymers are, for example, polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer, polyvinylpyrrolidone, polyethyleneimine, or carboxylic acid. It is a polyacrylic acid containing a boxyl group. In particular, PVA improves the adhesion between the base material 2 and the inorganic layer 3.
 基材2がPTFEであり、親水性ポリマーがPVAである場合、親水性ポリマーを含む第一面21はPVAおよびPTFEに由来する複数の化学構造を含む。化学構造の一種であるCH-O-R結合は、基材2と無機層3との密着性を向上させる。上記複数の化学構造のうち、XPSによって得られたC1sスペクトルによって検出される化学構造におけるCH-O-R結合の含有量は例えば、3%以上15%以下である。CH-O-R結合の含有量はXPSによって求められる。XPSの条件の詳細は、後述する試験例3に示す。 When the base material 2 is PTFE and the hydrophilic polymer is PVA, the first surface 21 containing the hydrophilic polymer includes a plurality of chemical structures derived from PVA and PTFE. The CH 2 -O-R bond, which is a type of chemical structure, improves the adhesion between the base material 2 and the inorganic layer 3. Among the plurality of chemical structures, the content of CH 2 -O-R bonds in the chemical structure detected by the C1s spectrum obtained by XPS is, for example, 3% or more and 15% or less. The content of CH 2 -O-R bonds is determined by XPS. Details of the XPS conditions are shown in Test Example 3 described later.
 [無機層]
 無機層3は、複合多孔質体1によってろ過される流体に面する層である。無機層3は、複数のナノファイバー4の積層体である。図2では一部のナノファイバー4が図示されている。これらのナノファイバー4はおおむね無機層3の平面方向に沿って配置されている。
[Inorganic layer]
The inorganic layer 3 is a layer facing the fluid filtered by the composite porous body 1. The inorganic layer 3 is a laminate of a plurality of nanofibers 4. In FIG. 2, some nanofibers 4 are illustrated. These nanofibers 4 are arranged generally along the plane direction of the inorganic layer 3.
 各ナノファイバー4は、アルミニウム(Al)と酸素(O)と水素(H)とを含む無機材料からなる。ナノファイバー4は、主にベーマイトとアルミナとで構成されている。ベーマイトはアルミナに比べて柔らかい。従って、ナノファイバー4に占めるベーマイトの割合、即ち無機層3に占めるベーマイトの割合が高いと、無機層3が割れたり欠けたりし難い。 Each nanofiber 4 is made of an inorganic material containing aluminum (Al), oxygen (O), and hydrogen (H). Nanofiber 4 is mainly composed of boehmite and alumina. Boehmite is softer than alumina. Therefore, when the proportion of boehmite in the nanofibers 4, that is, the proportion of boehmite in the inorganic layer 3 is high, the inorganic layer 3 is less likely to crack or chip.
 ベーマイトはAl-OH結合を含む。無機層3におけるベーマイトの存在は、XPSによって無機層3の表面30におけるAl-OH結合を検知することで確認できる。アルミナはAl-O-Al結合を含む。無機層3におけるアルミナの存在は、XPSによって無機層3の表面30におけるAl-O-Al結合を検出することで確認できる。Al-OH結合の含有量XとAl-O-Al結合の含有量Yとの比X/Yは例えば、0.3以上1.0以下である。本明細書において、XPSによって得られたスペクトルにおけるAl(OH)のピークの積分強度を、Al-OH結合の含有量Xとみなす。また、前記スペクトルにおけるAlのピークの積分強度を、Al-O-Al結合の含有量Yとみなす。
XPSの条件の詳細は、後述する試験例3に示す。
Boehmite contains Al-OH bonds. The presence of boehmite in the inorganic layer 3 can be confirmed by detecting Al--OH bonds on the surface 30 of the inorganic layer 3 using XPS. Alumina contains Al-O-Al bonds. The presence of alumina in the inorganic layer 3 can be confirmed by detecting Al-O-Al bonds on the surface 30 of the inorganic layer 3 by XPS. The ratio X/Y of content X of Al-OH bonds to content Y of Al-O-Al bonds is, for example, 0.3 or more and 1.0 or less. In this specification, the integrated intensity of the Al(OH) 3 peak in the spectrum obtained by XPS is regarded as the Al--OH bond content X. Further, the integrated intensity of the Al 2 O 3 peak in the spectrum is regarded as the content Y of Al--O--Al bonds.
Details of the XPS conditions are shown in Test Example 3 described later.
 無機層3の平均厚さは10nm以上1000nm以下である。無機層3の平均厚さが10nm以上であれば、無機層3によって効率的に不純物を分離できる。無機層3の平均厚さが1000nm以下であれば、無機層3の可とう性が確保され易い。また、複合多孔質体1によるろ過時間が長くなり過ぎない。平均厚さの下限値は15nm、50nm、100nm、あるいは200nmであっても良い。平均厚さの上限値は900nm、800nm、あるいは500nmであっても良い。無機層3の平均厚さの範囲は、例えば15nm以上900nm以下でも良いし、200nm以上500nm以下でも良い。 The average thickness of the inorganic layer 3 is 10 nm or more and 1000 nm or less. If the average thickness of the inorganic layer 3 is 10 nm or more, impurities can be efficiently separated by the inorganic layer 3. If the average thickness of the inorganic layer 3 is 1000 nm or less, the flexibility of the inorganic layer 3 can be easily ensured. Moreover, the filtration time using the composite porous body 1 does not become too long. The lower limit of the average thickness may be 15 nm, 50 nm, 100 nm, or 200 nm. The upper limit of the average thickness may be 900 nm, 800 nm, or 500 nm. The range of the average thickness of the inorganic layer 3 may be, for example, 15 nm or more and 900 nm or less, or 200 nm or more and 500 nm or less.
 無機層3の平均厚さはSEM-EDXによって求められる。基材2と無機層3との境界は、EDXによってAlの検出強度を測定することで求められる。SEM画像においてAlの検出強度が急激に低下する箇所が、基材2と無機層3との境界である。この境界から無機層3の表面までの距離が無機層3の厚さである。無機層3の平均厚さは、例えば無機層3における異なる5点の厚さを平均したものである。 The average thickness of the inorganic layer 3 is determined by SEM-EDX. The boundary between the base material 2 and the inorganic layer 3 is determined by measuring the detected intensity of Al using EDX. In the SEM image, the location where the detection intensity of Al sharply decreases is the boundary between the base material 2 and the inorganic layer 3. The distance from this boundary to the surface of the inorganic layer 3 is the thickness of the inorganic layer 3. The average thickness of the inorganic layer 3 is, for example, the average of the thicknesses at five different points in the inorganic layer 3.
 複数のナノファイバー4が積層することによって構成された無機層3は多孔質体である。この無機層3では、隣接するナノファイバー4の隙間が、流体が通過する空孔となる。無機層3の空孔の平均孔径は1nm以上100nm以下である。無機層3の平均孔径が1nm以上であれば、無機層3の可とう性が確保される。また、複合多孔質体1によるろ過時間が長くなり過ぎない。無機層3の平均孔径が100nm以下であれば、無機層3によって効率的に不純物を分離できる。平均孔径の下限値は2nm、5nm、10nm、あるいは20nmであっても良い。平均孔径の上限値は45nm、40nm、あるいは30nmであっても良い。無機層3の平均孔径の範囲は、例えば2nm以上45nm以下でも良いし、20nm以上30nm以下でも良い。 The inorganic layer 3 formed by laminating a plurality of nanofibers 4 is a porous body. In this inorganic layer 3, gaps between adjacent nanofibers 4 become pores through which fluid passes. The average pore diameter of the pores in the inorganic layer 3 is 1 nm or more and 100 nm or less. If the average pore diameter of the inorganic layer 3 is 1 nm or more, the flexibility of the inorganic layer 3 is ensured. Moreover, the filtration time using the composite porous body 1 does not become too long. If the average pore diameter of the inorganic layer 3 is 100 nm or less, impurities can be efficiently separated by the inorganic layer 3. The lower limit of the average pore diameter may be 2 nm, 5 nm, 10 nm, or 20 nm. The upper limit of the average pore diameter may be 45 nm, 40 nm, or 30 nm. The range of the average pore diameter of the inorganic layer 3 may be, for example, 2 nm or more and 45 nm or less, or 20 nm or more and 30 nm or less.
 無機層3における平均孔径は非常に小さいため、無機層3の断面のSEM画像から求めることが難しい。本例における無機層3の平均孔径は、通液試験によって求められる。図5は通液試験に使用される試験装置7である。試験装置7は、真空引き可能なフラスコ70と、両端が開口した筒状のチャンバー71とを備える。チャンバー71の下端開口部71Dとフラスコ70の上端開口部70Uとの間に複合多孔質体1が挟まれている。複合多孔質体1の無機層3は、チャンバー71を向いている。 Since the average pore diameter in the inorganic layer 3 is very small, it is difficult to obtain it from a SEM image of the cross section of the inorganic layer 3. The average pore diameter of the inorganic layer 3 in this example is determined by a liquid passage test. FIG. 5 shows the test device 7 used for the liquid passage test. The test device 7 includes a flask 70 that can be evacuated and a cylindrical chamber 71 with both ends open. The composite porous body 1 is sandwiched between the lower end opening 71D of the chamber 71 and the upper end opening 70U of the flask 70. The inorganic layer 3 of the composite porous body 1 faces the chamber 71 .
 無機層3の平均粒径を求める手順は以下のとおりである。まず、既知の平均粒径を有する複数の粒子を含む試験液を作製し、試験液をチャンバー71に入れる。試験液における粒子の濃度(g/cm)は既知である。フラスコ70内を真空引きすることで、複合多孔質体1を透過したろ液がフラスコ70に貯まる。真空度は、80Pa以下である。ろ液に含まれる粒子の濃度(g/cm)を測定する。粒子の濃度は、測定したろ液の体積と、ろ液を蒸発させた後に残る粒子の質量とから計算によって求められる。ろ液における粒子の濃度が、試験液における粒子の濃度の10%以下になれば、試験液に含まれる粒子の平均粒径を無機層3の平均孔径とみなす。 The procedure for determining the average particle size of the inorganic layer 3 is as follows. First, a test liquid containing a plurality of particles having a known average particle size is prepared, and the test liquid is placed in the chamber 71. The concentration of particles in the test solution (g/cm 3 ) is known. By evacuating the inside of the flask 70, the filtrate that has passed through the composite porous body 1 is stored in the flask 70. The degree of vacuum is 80 Pa or less. The concentration (g/cm 3 ) of particles contained in the filtrate is measured. The concentration of the particles is calculated from the measured volume of the filtrate and the mass of the particles remaining after the filtrate is evaporated. When the concentration of particles in the filtrate is 10% or less of the concentration of particles in the test liquid, the average particle size of the particles contained in the test liquid is regarded as the average pore size of the inorganic layer 3.
 無機層3全体の空孔の平均孔径を測定することは難しいが、無機層3の表面30に開口した開口孔3hの大きさを測定することはできる。開口孔3hは隣接するナノファイバー4の隙間によって構成されており、比較的大きい。図3は、表面30のSEM画像を模式的に示す模式図である。開口孔3hの平均孔径は例えば、2nm以上200nm以下である。開口孔3hの平均孔径は5nm以上100nm以下でも良い。開口孔3hの平均短径は例えば1nm以上100nm以下である。開口孔3hの平均短径は2nm以上50nm以下でも良い。開口孔3hの平均孔径と平均短径は、第一面21の平均孔径と平均短径と同様に、画像解析によって求められる。具体的には、表面30のSEM画像を取得し、二値化処理によって開口孔3hを特定する。開口孔3hの平均円相当径が、開口孔3hの平均孔径である。開口孔3hに外接する最小の長方形の平均短径が、開口孔3hの平均短径である。 Although it is difficult to measure the average pore diameter of the pores in the entire inorganic layer 3, it is possible to measure the size of the openings 3h opened in the surface 30 of the inorganic layer 3. The opening hole 3h is formed by a gap between adjacent nanofibers 4, and is relatively large. FIG. 3 is a schematic diagram schematically showing a SEM image of the surface 30. The average pore diameter of the open pores 3h is, for example, 2 nm or more and 200 nm or less. The average diameter of the open holes 3h may be 5 nm or more and 100 nm or less. The average short diameter of the opening hole 3h is, for example, 1 nm or more and 100 nm or less. The average short diameter of the opening hole 3h may be 2 nm or more and 50 nm or less. The average pore diameter and average minor axis of the opening holes 3h are determined by image analysis, similarly to the average pore diameter and average minor axis of the first surface 21. Specifically, a SEM image of the surface 30 is acquired, and the apertures 3h are identified by binarization processing. The average circular equivalent diameter of the opening hole 3h is the average hole diameter of the opening hole 3h. The average minor axis of the smallest rectangle circumscribing the opening hole 3h is the average minor axis of the opening hole 3h.
 ≪複合多孔質体の特性≫
 本例の複合多孔質体1において、ろ過される流体に最初に接触する無機層3は、アルミニウムを含む無機材料によって構成される。無機材料は熱によって変性し難いし、薬品によっても変性し難い。従って、本例の複合多孔質体1は、耐熱性及び耐薬品性に優れる。耐熱性及び耐薬品性に優れるPTFEによって基材2が構成されることで、複合多孔質体1の耐熱性及び耐薬品性がより向上する。
≪Characteristics of composite porous material≫
In the composite porous body 1 of this example, the inorganic layer 3 that comes into contact with the fluid to be filtered first is made of an inorganic material containing aluminum. Inorganic materials are difficult to be denatured by heat and also by chemicals. Therefore, the composite porous body 1 of this example has excellent heat resistance and chemical resistance. Since the base material 2 is made of PTFE which has excellent heat resistance and chemical resistance, the heat resistance and chemical resistance of the composite porous body 1 are further improved.
 本例の複合多孔質体1において、基材2は可とう性に優れる樹脂材料によって構成されている。また、無機層3は複数のナノファイバー4の積層体によって構成されている。無機層3が曲げられたときに、各ナノファイバー4が微小に変形し、無機層3に作用する応力を吸収する。そのため、本例の無機層3は所定の可とう性を有している。このような基材2と無機層3とを備える複合多孔質体1は、可とう性に優れ、曲げられたときに割れたりし難い。 In the composite porous body 1 of this example, the base material 2 is made of a resin material with excellent flexibility. Further, the inorganic layer 3 is constituted by a laminate of a plurality of nanofibers 4. When the inorganic layer 3 is bent, each nanofiber 4 deforms minutely and absorbs the stress acting on the inorganic layer 3. Therefore, the inorganic layer 3 of this example has a predetermined flexibility. The composite porous body 1 including such a base material 2 and an inorganic layer 3 has excellent flexibility and is difficult to break when bent.
 複合多孔質体1の可とう性は例えば、図6に示される曲げ試験によって評価される。図6の曲げ試験では、略半円筒状の試験台8の湾曲面に複合多孔質体1を沿わせて、複合多孔質体1の無機層3が割れるか否かを調べる。曲げ試験については後述する試験例2にて詳しく説明する。 The flexibility of the composite porous body 1 is evaluated, for example, by the bending test shown in FIG. 6. In the bending test shown in FIG. 6, the composite porous body 1 is placed along the curved surface of the approximately semi-cylindrical test stand 8, and it is examined whether the inorganic layer 3 of the composite porous body 1 breaks. The bending test will be explained in detail in Test Example 2 below.
 ≪複合多孔質体の製造方法≫
 実施形態1の複合多孔質体1は例えば以下の工程を備える製造方法によって得られる。
・工程A…樹脂材料によって構成された多孔質体からなる基材2を用意する。
・工程B…基材2の第一面21を親水化処理する。
・工程C…複数のナノファイバー4を含む分散液を用意する。
・工程D…第一面21に分散液を塗布する。
・工程E…分散液が塗布された基材2を80℃以上200℃以下の雰囲気下で熱処理する。
 工程Bと工程Cの順序は入替可能である。以下、各工程を詳細に説明する。
≪Method for producing composite porous body≫
The composite porous body 1 of Embodiment 1 is obtained, for example, by a manufacturing method including the following steps.
-Step A: A base material 2 made of a porous body made of a resin material is prepared.
- Step B...The first surface 21 of the base material 2 is subjected to a hydrophilic treatment.
-Step C... A dispersion containing a plurality of nanofibers 4 is prepared.
- Step D...Apply the dispersion liquid to the first surface 21.
- Step E: The base material 2 coated with the dispersion liquid is heat-treated in an atmosphere of 80° C. or higher and 200° C. or lower.
The order of process B and process C can be interchanged. Each step will be explained in detail below.
 [工程A]
 基材2は、上述した複合多孔質体1に備わる基材2と同じである。即ち、基材2の第一面21の平均孔径は50nm以上500nm以下である。第一面21の平均孔径は、第一面21のSEM画像から求めることができる。
[Process A]
The base material 2 is the same as the base material 2 provided in the composite porous body 1 described above. That is, the average pore diameter of the first surface 21 of the base material 2 is 50 nm or more and 500 nm or less. The average pore diameter of the first surface 21 can be determined from the SEM image of the first surface 21.
 基材2の作製方法は特に限定されない。例えば、PTFEによって構成された多孔質体からなる基材2は、特開2010-94579号公報に開示される製造方法によって作製されても良い。具体的には、PTFEからなる薄膜が延伸されることで、薄膜が多孔質化する。その結果、PTFEの多孔質体からなる基材2が得られる。基材2の平均孔径は、延伸の条件によって変化する。 The method for producing the base material 2 is not particularly limited. For example, the base material 2 made of a porous body made of PTFE may be manufactured by a manufacturing method disclosed in JP-A No. 2010-94579. Specifically, by stretching a thin film made of PTFE, the thin film becomes porous. As a result, a base material 2 made of a porous PTFE material is obtained. The average pore diameter of the base material 2 changes depending on the stretching conditions.
 [工程B]
 工程Bでは、基材2の少なくとも第一面21を親水化処理する。具体的には、多孔質の基材2の第一面21に親水性ポリマーを複合化させる。親水性ポリマーは、アルミナに備わる水酸基と脱水縮合するもの、あるいは水素結合するものが好ましい。親水性ポリマーは例えば、多くの水酸基を有するポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体である。親水性ポリマーは、アミド基を含むポリビニルピロリドン、イミノ基を含むポリエチレンイミン、カルボキシル基を含むポリアクリル酸等でも良い。特に、PVAは疎水基を有し、その疎水基がPTFEの多孔質体の表面に付着し易い。そのため、PVAは、基材2に複合化し易い。
[Process B]
In step B, at least the first surface 21 of the base material 2 is subjected to a hydrophilic treatment. Specifically, the first surface 21 of the porous base material 2 is composited with a hydrophilic polymer. The hydrophilic polymer is preferably one that undergoes dehydration condensation or hydrogen bonding with the hydroxyl group of alumina. Hydrophilic polymers include, for example, polyvinyl alcohol (PVA) and ethylene vinyl alcohol copolymers having many hydroxyl groups. The hydrophilic polymer may be polyvinylpyrrolidone containing an amide group, polyethyleneimine containing an imino group, polyacrylic acid containing a carboxyl group, or the like. In particular, PVA has a hydrophobic group, and the hydrophobic group tends to adhere to the surface of the porous PTFE body. Therefore, PVA is easily composited into the base material 2.
 PTFEの多孔質体の表面の親水化は例えば次の手順で行うことができる。まず、PTFEの多孔質体をIPAに浸漬した後、適切な濃度に調整されたPVA水溶液に浸漬する。次いで、化学架橋又は電子線架橋によってPVAをゲル化させる。化学架橋では、PVA水溶液に架橋剤が添加される。必要に応じてPVA水溶液に酸触媒が添加されても良い。PVAの架橋後、多孔質体を純水で洗浄し、乾燥させる。PVA水溶液におけるPVA濃度は、基材2の気孔率などによって変化する。例えば、PVA水溶液におけるPVA濃度は0.8質量%以上10質量%以下である。PVA水溶液への多孔質体の浸漬時間は、基材2の気孔率などによって変化する。例えば、PVA水溶液への多孔質体の浸漬時間は2分以上24時間以下である。架橋剤は例えば、アセタール結合を生成するグルタルアルデヒドあるいはテレフタルアルデヒドなどである。電子線の線量は例えば、6メガrad程度である。 The surface of the porous PTFE body can be made hydrophilic, for example, by the following procedure. First, a porous PTFE body is immersed in IPA, and then immersed in a PVA aqueous solution adjusted to an appropriate concentration. The PVA is then gelled by chemical crosslinking or electron beam crosslinking. In chemical crosslinking, a crosslinking agent is added to the PVA aqueous solution. An acid catalyst may be added to the PVA aqueous solution if necessary. After crosslinking the PVA, the porous body is washed with pure water and dried. The PVA concentration in the PVA aqueous solution changes depending on the porosity of the base material 2 and the like. For example, the PVA concentration in the PVA aqueous solution is 0.8% by mass or more and 10% by mass or less. The immersion time of the porous body in the PVA aqueous solution varies depending on the porosity of the base material 2 and the like. For example, the immersion time of the porous body in the PVA aqueous solution is 2 minutes or more and 24 hours or less. Crosslinking agents include, for example, glutaraldehyde or terephthalaldehyde, which form acetal bonds. The dose of the electron beam is, for example, about 6 megarad.
 [工程C]
 分散液は、分散媒中に複数のナノファイバー4が分散した液体である。分散媒は主に水である。分散媒は、水の他にイソプロピルアルコール(isopropyl alcohol:IPA)を含んでいても良いし、更に界面活性剤を含んでいても良い。IPAは、基材2の表面に対する分散媒の濡れ性を向上させる。IPAの濃度は、分散液の質量を100としたとき、5質量%以下であることが好ましい。
[Process C]
The dispersion liquid is a liquid in which a plurality of nanofibers 4 are dispersed in a dispersion medium. The dispersion medium is mainly water. The dispersion medium may contain isopropyl alcohol (IPA) in addition to water, and may further contain a surfactant. IPA improves the wettability of the dispersion medium to the surface of the base material 2. The concentration of IPA is preferably 5% by mass or less when the mass of the dispersion liquid is 100.
 分散媒におけるナノファイバー4の濃度は、0.1質量%以上5質量%以下であることが好ましい。ナノファイバー4の濃度が0.1質量%以上であれば、分散媒におけるナノファイバー4の濃度が十分であるため、工程Dにおいて第一面21にナノファイバー4が積層され易い。ナノファイバー4の濃度が5質量%以下であれば、分散液の濃度が高くなり過ぎない。濃度が高過ぎる分散液は、第一面21上に薄く均一に塗布することが難しい。 The concentration of nanofibers 4 in the dispersion medium is preferably 0.1% by mass or more and 5% by mass or less. If the concentration of the nanofibers 4 is 0.1% by mass or more, the concentration of the nanofibers 4 in the dispersion medium is sufficient, so that the nanofibers 4 are easily stacked on the first surface 21 in step D. If the concentration of nanofibers 4 is 5% by mass or less, the concentration of the dispersion liquid will not become too high. If the concentration of the dispersion liquid is too high, it is difficult to apply the dispersion liquid thinly and uniformly onto the first surface 21.
 ナノファイバー4の平均長さは、基材2の第一面21の平均孔径の10倍以上である。平均長さは例えば、100nm以上10000nm以下である。平均長さの下限値は500nm、更には1000nmでも良い。平均長さの上限値は7000nm、更には5000nmでも良い。平均長さの範囲は例えば500nm以上7000nm以下でも良いし、1000nm以上5000nm以下でも良い。ナノファイバー4の平均幅は例えば、1nm以上10nm以下である。ナノファイバー4の幅と長さは互いに直交する。平均幅の下限値は2nm、更に3nmであっても良い。平均幅の上限値は7nm、更には5nmであっても良い。平均幅の範囲は例えば、2nm以上7nm以下でも良い。平均長さを平均幅で割った平均アスペクト比は例えば、30以上5000以下である。平均アスペクト比は例えば、100以上500以下でも良いし、100以上300以下でも良い。ナノファイバー4のサイズは、複合多孔質体1の無機層3においても変化しない。 The average length of the nanofibers 4 is 10 times or more the average pore diameter of the first surface 21 of the base material 2. The average length is, for example, 100 nm or more and 10000 nm or less. The lower limit of the average length may be 500 nm, or even 1000 nm. The upper limit of the average length may be 7000 nm, or even 5000 nm. The range of the average length may be, for example, 500 nm or more and 7000 nm or less, or 1000 nm or more and 5000 nm or less. The average width of the nanofibers 4 is, for example, 1 nm or more and 10 nm or less. The width and length of the nanofibers 4 are orthogonal to each other. The lower limit of the average width may be 2 nm, and further may be 3 nm. The upper limit of the average width may be 7 nm, or even 5 nm. The range of the average width may be, for example, 2 nm or more and 7 nm or less. The average aspect ratio, which is the average length divided by the average width, is, for example, 30 or more and 5000 or less. The average aspect ratio may be, for example, 100 or more and 500 or less, or 100 or more and 300 or less. The size of the nanofibers 4 does not change even in the inorganic layer 3 of the composite porous body 1.
 [工程D]
 第一面21上に分散液を塗布する方法は特に限定されない。塗布方法は、例えばスピンコート、バーコート、ディップコート、又はダイコートである。また、チューブ状やシート状の基材2を回転軸に固定し、基材2を回転させながら分散液をスプレー等で塗布してもよい。実施形態に係る複合多孔質体1の無機層3は非常に薄い。薄い無機層3を成膜するためには、スピンコートが好ましい。基材2を回転させながら、基材2上に分散液を滴下するスピンコートは、分散液の厚みを薄く、均一にできる。スピンコートの周速は、例えば10000mm/分以上である。
[Process D]
The method of applying the dispersion liquid onto the first surface 21 is not particularly limited. The coating method is, for example, spin coating, bar coating, dip coating, or die coating. Alternatively, the tube-shaped or sheet-shaped base material 2 may be fixed to a rotating shaft, and the dispersion liquid may be applied by spraying or the like while rotating the base material 2. The inorganic layer 3 of the composite porous body 1 according to the embodiment is very thin. In order to form the thin inorganic layer 3, spin coating is preferable. Spin coating, in which the dispersion liquid is dropped onto the base material 2 while rotating the base material 2, allows the thickness of the dispersion liquid to be thin and uniform. The peripheral speed of spin coating is, for example, 10,000 mm/min or more.
 [工程E]
 加熱雰囲気の温度は80℃以上200℃以下であることが好ましい。加熱雰囲気は特に限定されず、例えば大気雰囲気、不活性ガス雰囲気、水蒸気雰囲気、又は減圧雰囲気である。加熱雰囲気によって分散媒が蒸発し、第一面21上にナノファイバー4の積層体が形成される。加熱雰囲気の温度が高くなるほど、分散媒の蒸発時間が速くなり、複合多孔質体1の生産性が向上する。また、加熱雰囲気の温度が高くなるほど、ナノファイバー4同士が結合し易く、複合多孔質体1からナノファイバー4が脱落し難くなる。しかし、加熱雰囲気の温度が高すぎると、ナノファイバー4に含まれるベーマイトがアルミナに変化し易い。無機層3におけるアルミナの割合が多くなると、無機層3がもろくなる恐れがある。例えば、加熱雰囲気の温度が130℃未満であれば、アルミナの割合が多くなり過ぎない。
[Process E]
The temperature of the heating atmosphere is preferably 80°C or more and 200°C or less. The heating atmosphere is not particularly limited, and is, for example, an air atmosphere, an inert gas atmosphere, a steam atmosphere, or a reduced pressure atmosphere. The dispersion medium is evaporated by the heating atmosphere, and a stack of nanofibers 4 is formed on the first surface 21. As the temperature of the heating atmosphere becomes higher, the evaporation time of the dispersion medium becomes faster, and the productivity of the composite porous body 1 improves. Further, as the temperature of the heating atmosphere increases, the nanofibers 4 are more likely to bond with each other, and the nanofibers 4 are less likely to fall off from the composite porous body 1. However, if the temperature of the heating atmosphere is too high, the boehmite contained in the nanofibers 4 tends to change to alumina. If the proportion of alumina in the inorganic layer 3 increases, the inorganic layer 3 may become brittle. For example, if the temperature of the heating atmosphere is less than 130° C., the proportion of alumina will not become too large.
 [その他]
 工程Dと工程Eとからなる成膜サイクルは複数回繰り返すことが好ましい。成膜サイクルのリピート数kは2以上5以下であることが好ましい。この場合、k回目の工程Dでは、k-1回目の工程Eによって形成された積層体の上に分散液を塗布する。成膜サイクルを2回以上とすることで、第一面21に無機層3が成膜されない領域が形成されることを抑制できる。
[others]
It is preferable that the film-forming cycle consisting of Step D and Step E is repeated multiple times. It is preferable that the repeat number k of the film forming cycle is 2 or more and 5 or less. In this case, in the kth step D, the dispersion liquid is applied onto the laminate formed in the k-1st step E. By performing the film formation cycle twice or more, it is possible to suppress the formation of a region on the first surface 21 where the inorganic layer 3 is not formed.
<実施形態2>
 実施形態2では、チューブ形状の複合多孔質体1を図4に基づいて説明する。この複合多孔質体1の基材2の形状はチューブである。チューブ形状の基材2の第一面21は基材2の外周面を構成する。第一面21上に形成される無機層3は、チューブ形状の複合多孔質体1の外周面を構成する。
<Embodiment 2>
In Embodiment 2, a tube-shaped composite porous body 1 will be described based on FIG. 4. The shape of the base material 2 of this composite porous body 1 is a tube. The first surface 21 of the tube-shaped base material 2 constitutes the outer peripheral surface of the base material 2 . The inorganic layer 3 formed on the first surface 21 constitutes the outer peripheral surface of the tube-shaped composite porous body 1.
 チューブ形状の複合多孔質体1は、例えば浄化装置のモジュールにおいて曲げられた状態で配置される場合がある。従って、チューブ形状の複合多孔質体1においても曲げに対する耐性が求められる場合がある。チューブ形状の複合多孔質体1の曲げ耐性は例えば、所定の半径を有する円柱の外周面に複合多孔質体1を巻き付けることによって評価できる。 The tube-shaped composite porous body 1 may be placed in a bent state, for example, in a module of a purification device. Therefore, the tube-shaped composite porous body 1 may also be required to have resistance to bending. The bending resistance of the tube-shaped composite porous body 1 can be evaluated, for example, by wrapping the composite porous body 1 around the outer peripheral surface of a cylinder having a predetermined radius.
 チューブ形状の基材2の平均厚さは例えば50μm以上1000μm以下である。チューブ状の基材2の平均厚さが50μm以上であれば、基材2を含む複合多孔質体1の強度が確保される。基材2の平均厚さが1000μm以下であれば、基材2を含む複合多孔質体1の可とう性が確保される共に、複合多孔質体1によるろ過時間が長くなり過ぎない。チューブ形状の基材2の平均厚さは例えば、100μm以上500μm以下であっても良い。 The average thickness of the tube-shaped base material 2 is, for example, 50 μm or more and 1000 μm or less. If the average thickness of the tubular base material 2 is 50 μm or more, the strength of the composite porous body 1 including the base material 2 is ensured. If the average thickness of the base material 2 is 1000 μm or less, the flexibility of the composite porous body 1 including the base material 2 is ensured, and the filtration time by the composite porous body 1 does not become too long. The average thickness of the tube-shaped base material 2 may be, for example, 100 μm or more and 500 μm or less.
<試験例1>
 試験例1では、基材2の第一面21の平均孔径と、ナノファイバー4の平均長さとの関係が、無機層3の形成に及ぼす影響を調べた。具体的には、以下の試料A、試料B、及び試料Cを作製した。
<Test Example 1>
In Test Example 1, the influence of the relationship between the average pore diameter of the first surface 21 of the base material 2 and the average length of the nanofibers 4 on the formation of the inorganic layer 3 was investigated. Specifically, the following Sample A, Sample B, and Sample C were produced.
 ≪試料A≫
 PTFEからなる基材2を用意した。基材2の平均厚さは30μm、平均孔径は130nmであった。平均孔径は、基材2を集束イオンビーム(Focused Ion Beam:FIB)によって切断し、基材2の断面をSEMによって観察することで求めた。SEM画像の倍率は5000倍、画像処理ソフトは『ImageJ』であった。SEM画像を二値化処理し、各空孔2hの円相当径を平均することで、基材2の平均孔径を求めた。二値化処理の閾値は127であった。本明細書では、基材2の平均孔径を、基材2の第一面21の平均孔径とみなす。
≪Sample A≫
A base material 2 made of PTFE was prepared. The average thickness of the base material 2 was 30 μm, and the average pore diameter was 130 nm. The average pore diameter was determined by cutting the base material 2 using a focused ion beam (FIB) and observing the cross section of the base material 2 using an SEM. The magnification of the SEM image was 5000 times, and the image processing software was "ImageJ". The average pore diameter of the base material 2 was determined by binarizing the SEM image and averaging the equivalent circular diameters of the pores 2h. The threshold value for the binarization process was 127. In this specification, the average pore diameter of the base material 2 is considered to be the average pore diameter of the first surface 21 of the base material 2.
 基材2をIPAに90分浸漬した後、PVA溶液に150分浸漬した。PVA溶液におけるPVA濃度は0.6質量%であった。次いで、基材2を純水に1分浸漬した後、電子線の照射によってPVAを架橋した。最後に、基材2を25℃の雰囲気下で乾燥し、基材2の表面を親水化させた。 The base material 2 was immersed in IPA for 90 minutes, and then in a PVA solution for 150 minutes. The PVA concentration in the PVA solution was 0.6% by mass. Next, the base material 2 was immersed in pure water for 1 minute, and then the PVA was crosslinked by electron beam irradiation. Finally, the base material 2 was dried in an atmosphere at 25° C. to make the surface of the base material 2 hydrophilic.
 ナノファイバー4を含む分散液を用意した。分散媒は、4質量%のIPAを含む水であった。分散液におけるナノファイバー4の濃度は、5質量%であった。ナノファイバー4の平均長さは1400nm、平均幅は4nm、平均アスペクト比は350であった。ナノファイバー4の平均長さは、基材2の第一面21の平均孔径の10倍以上であった。 A dispersion containing nanofibers 4 was prepared. The dispersion medium was water containing 4% by weight IPA. The concentration of nanofibers 4 in the dispersion was 5% by mass. The average length of the nanofibers 4 was 1400 nm, the average width was 4 nm, and the average aspect ratio was 350. The average length of the nanofibers 4 was 10 times or more the average pore diameter of the first surface 21 of the base material 2.
 スピンコートによって基材2の第一面21に分散液を滴下した。スピンコートの周速は10000mm/分であった。分散液が塗布された基材2を100℃の加熱雰囲気に30分、放置した。この分散液の滴下と加熱とをもう一度繰り返し、試料Aを完成させた。 The dispersion liquid was dropped onto the first surface 21 of the substrate 2 by spin coating. The peripheral speed of spin coating was 10,000 mm/min. The base material 2 coated with the dispersion liquid was left in a heated atmosphere at 100° C. for 30 minutes. Dropping of this dispersion liquid and heating were repeated once again to complete sample A.
 試料Aの表面をSEMによって観察したところ、基材2の第一面21には複数のナノファイバー4の積層体からなる無機層3が形成されていた。 When the surface of sample A was observed by SEM, it was found that an inorganic layer 3 made of a laminate of a plurality of nanofibers 4 was formed on the first surface 21 of the base material 2.
 試料Aの無機層3の平均孔径を測定するために、図5の試験装置7を用いた通液試験を実施した。通液試験では、複数の試験液を用意した。各試験液に含まれる粒子の平均粒径は既知である。通液試験の結果、試料Aの無機層3の平均孔径は20nmであった。 In order to measure the average pore diameter of the inorganic layer 3 of Sample A, a liquid flow test was conducted using the testing device 7 of FIG. 5. In the liquid flow test, multiple test liquids were prepared. The average particle size of particles contained in each test liquid is known. As a result of the liquid passage test, the average pore diameter of the inorganic layer 3 of Sample A was 20 nm.
 ≪試料B≫
 試料Bの作製方法は、ナノファイバー4の平均長さが3000nmであること以外、試料Aと同じである。ナノファイバー4の平均幅は4nmであり、ナノファイバー4の平均アスペクト比は750であった。ナノファイバー4の平均長さは、基材2の第一面21の平均孔径の約23倍であった。本明細書においてSEM画像は示さないが、試料Bの表面には複数のナノファイバー4の積層体からなる無機層3が形成されていた。
≪Sample B≫
The method for producing sample B was the same as sample A except that the average length of nanofibers 4 was 3000 nm. The average width of the nanofibers 4 was 4 nm, and the average aspect ratio of the nanofibers 4 was 750. The average length of the nanofibers 4 was about 23 times the average pore diameter of the first surface 21 of the base material 2. Although no SEM image is shown in this specification, an inorganic layer 3 made of a laminate of a plurality of nanofibers 4 was formed on the surface of sample B.
 試料Bの無機層3の平均孔径を、試料Aと同様の通液試験によって測定した。その結果、試料Bの無機層3の平均孔径は20nmであった。 The average pore diameter of the inorganic layer 3 of Sample B was measured by the same liquid passage test as Sample A. As a result, the average pore diameter of the inorganic layer 3 of sample B was 20 nm.
 ≪試料C≫
 試料Cの作製方法は、基材2の平均孔径が260nmであること以外、試料Aと同じである。ナノファイバー4の平均長さは1400nmであり、基材2の第一面21の平均孔径の約5.4倍であった。
≪Sample C≫
The method for producing sample C was the same as sample A except that the average pore diameter of base material 2 was 260 nm. The average length of the nanofibers 4 was 1400 nm, which was about 5.4 times the average pore diameter of the first surface 21 of the base material 2.
 試料Cの表面をSEMによって観察したところ、ナノファイバー4は多孔質の基材2の表面に付着しており、基材2の第一面21の空孔をふさぐことはできなかった。空孔がふさがれなかったのは、ナノファイバー4の平均長さが短かったためと推察される。 When the surface of Sample C was observed by SEM, it was found that the nanofibers 4 were attached to the surface of the porous base material 2 and were unable to close the pores on the first surface 21 of the base material 2. It is presumed that the reason why the pores were not filled was because the average length of the nanofibers 4 was short.
<試験例2>
 試験例2では、試料A及び試料Bの可とう性を調べるために曲げ試験を行った。曲げ試験の概要を図6に示す。図6に示されるように、曲げ試験の手順は以下の通りである。略半円筒状の試験台8を用意した。試験台8の湾曲面の曲率半径は10cmであった。試験台8の湾曲面に試料Aの複合多孔質体1及び試料Bの複合多孔質体1を沿わせてテープ80で固定し、所定時間放置した。複合多孔質体1の無機層3は、試験台8の径方向の外方に向けて配置されていた。曲げ試験の結果、試料Aの複合多孔質体1においても試料Bの複合多孔質体1においても、無機層3に割れなどの不具合は確認されなかった。試験例2の結果から、実施形態1の構成を備える複合多孔質体1は十分な曲げ特性を有することが分かった。
<Test Example 2>
In Test Example 2, a bending test was conducted to examine the flexibility of Sample A and Sample B. Figure 6 shows an overview of the bending test. As shown in FIG. 6, the bending test procedure is as follows. A test stand 8 having a substantially semi-cylindrical shape was prepared. The radius of curvature of the curved surface of test stand 8 was 10 cm. The composite porous body 1 of Sample A and the composite porous body 1 of Sample B were placed along the curved surface of the test table 8, fixed with tape 80, and left for a predetermined period of time. The inorganic layer 3 of the composite porous body 1 was arranged radially outward of the test stand 8. As a result of the bending test, no defects such as cracks were observed in the inorganic layer 3 in either the composite porous body 1 of Sample A or the composite porous body 1 of Sample B. From the results of Test Example 2, it was found that the composite porous body 1 having the configuration of Embodiment 1 had sufficient bending properties.
<試験例3>
 試験例3では、本例の複合多孔質体1が、実用的な脱塩処理の圧力に耐えられるかを調べた。具体的には、試料A、試料B、試料D、及び試料Eを作製した。
<Test Example 3>
In Test Example 3, it was investigated whether the composite porous body 1 of this example could withstand the pressure of practical desalination treatment. Specifically, Sample A, Sample B, Sample D, and Sample E were produced.
 ≪試料A≫
 試料Aは、試験例1,2の試料Aと同じである。試料Aの無機層3の平均厚さは100nmであった。
≪Sample A≫
Sample A is the same as Sample A of Test Examples 1 and 2. The average thickness of the inorganic layer 3 of sample A was 100 nm.
 ≪試料B≫
 試料Bは、試験例1,2の試料Bと同じである。試料Bの無機層3の平均厚さは100nmであった。
≪Sample B≫
Sample B is the same as Sample B in Test Examples 1 and 2. The average thickness of the inorganic layer 3 of sample B was 100 nm.
 ≪試料D≫
 試料Dの作製方法は、特開2010-105846号公報に記載の方法に準じた。ナノファイバー4を含む分散液を、ポリテトラフルオロエチレンをコートした容器に流し込み、オーブン内で加熱して自立膜を得た。得られた自立膜の平均厚さは0.1μmであった。
≪Sample D≫
The method for producing sample D was based on the method described in JP-A-2010-105846. A dispersion containing nanofibers 4 was poured into a container coated with polytetrafluoroethylene and heated in an oven to obtain a self-supporting film. The average thickness of the obtained free-standing membrane was 0.1 μm.
 ≪試料E≫
 試料Eの作製方法は、ナノファイバー4を含む分散液の量が1000倍である以外、試料Dと同じである。得られた自立膜の平均厚さは100μmであった。
≪Sample E≫
The method for preparing sample E was the same as sample D except that the amount of the dispersion containing nanofibers 4 was 1000 times larger. The average thickness of the obtained free-standing membrane was 100 μm.
 試料A、試料B、試料D、及び試料Eをそれぞれ加圧ろ過試験に供した。加圧ろ過試験では、実用的な脱塩処理の圧力である7MPaの圧力の水を各試料に供給した。その結果、試料D及び試料Eでは割れが発生した。一方、試料A及び試料Bでは割れが発生しなかった。無機層3の平均厚さが薄い試料A及び試料Bにおいて割れが発生しなかったのは、柔軟な樹脂材料によって構成される基材2の上に無機層3が形成されており、樹脂材料がクッションの役割を果たしたためと推察される。 Sample A, Sample B, Sample D, and Sample E were each subjected to a pressure filtration test. In the pressure filtration test, water at a pressure of 7 MPa, which is the pressure for practical desalination treatment, was supplied to each sample. As a result, cracks occurred in Samples D and E. On the other hand, no cracking occurred in Sample A and Sample B. The reason why cracks did not occur in Samples A and B, in which the average thickness of the inorganic layer 3 is thin, is that the inorganic layer 3 is formed on the base material 2 made of a flexible resin material, and the resin material is It is assumed that this is because it played the role of a cushion.
<試験例4>
 試験例4では、第一面21の平均孔径などが異なる試料4-1から試料4-14を作製した。各試料の物理特性のデータを表1に示す。各試料の性能のデータを表2に示す。物理特性のデータ、及び性能のデータは以下の通りである。
<Test Example 4>
In Test Example 4, Sample 4-14 was prepared from Sample 4-1 with different average pore diameters on the first surface 21, etc. Table 1 shows data on the physical properties of each sample. Performance data for each sample is shown in Table 2. The physical property data and performance data are as follows.
 [材質]
 基材2の材質は、PP、又はPTFEであった。材料は全て、親水化処理されている。表1に示される『PTFE※』は、PTFEの一部、具体的にはPTFEにおける表面の50%のみが親水化されたものである。
[Material]
The material of the base material 2 was PP or PTFE. All materials have been treated to make them hydrophilic. "PTFE*" shown in Table 1 is PTFE in which only a portion, specifically 50% of the surface of PTFE, has been made hydrophilic.
 [形状]
 基材2の形状は、丸棒、シート、又はチューブである。丸棒形状及びチューブ形状の基材2では、基材2の外周面が第一面21であり、その外周面に無機層3が設けられている。
[shape]
The shape of the base material 2 is a round bar, a sheet, or a tube. In the round bar-shaped and tube-shaped base materials 2, the outer peripheral surface of the base material 2 is the first surface 21, and the inorganic layer 3 is provided on the outer peripheral surface.
 [平均厚さ]
 シート形状の基材2の平均厚さは、シート形状の複合多孔質体1の厚み方向に複合多孔質体1を切断した断面を撮影したSEM画像から求めた。チューブ形状の基材2の平均厚さは、チューブ形状の複合多孔質体1の延伸方向に直交する方向に複合多孔質体1を切断した断面を撮影したSEM画像から求めた。平均厚さは5点平均であった。丸棒の平均厚さは、丸棒の直径である。
[Average thickness]
The average thickness of the sheet-shaped base material 2 was determined from an SEM image of a cross section of the sheet-shaped composite porous body 1 cut in the thickness direction. The average thickness of the tube-shaped base material 2 was determined from an SEM image taken of a cross section of the composite porous body 1 cut in a direction perpendicular to the stretching direction of the tube-shaped composite porous body 1. The average thickness was the average of 5 points. The average thickness of a round bar is the diameter of the round bar.
 [基材の第一面の平均孔径]
 第一面21の平均孔径は、複合多孔質体1の断面のSEM画像を画像解析することによって求めた。画像解析の条件は試験例1と同じである。
[Average pore diameter on the first surface of the base material]
The average pore diameter of the first surface 21 was determined by image analysis of a SEM image of a cross section of the composite porous body 1. The conditions for image analysis are the same as in Test Example 1.
 [基材の第一面の平均短径]
 第一面21の平均短径は、平均孔径を測定する際に取得した画像データから測定した。画像データにおける各空孔に外接する最小の長方形の平均短径が、第一面21の平均短径である。
[Average short axis of first surface of base material]
The average short axis of the first surface 21 was measured from image data acquired when measuring the average pore diameter. The average short axis of the smallest rectangle circumscribing each hole in the image data is the average short axis of the first surface 21 .
 [第二層の平均孔径]
 表1において『なし』と記載されている試料は、図2に示される第二層2Bを備えない。表1において数値が記載されている試料は、第二層2Bを備える。第二層2Bの平均孔径は、基材2の断面のSEM画像から求めた。画像解析の条件は試験例1と同じである。
[Average pore diameter of second layer]
Samples listed as "none" in Table 1 do not include the second layer 2B shown in FIG. 2. The samples whose numerical values are listed in Table 1 are provided with the second layer 2B. The average pore diameter of the second layer 2B was determined from the SEM image of the cross section of the base material 2. The conditions for image analysis are the same as in Test Example 1.
 [無機層の平均厚さ]
 無機層3の平均厚さは、複合多孔質体1の断面のSEM画像から測定した。平均厚さは5点平均であった。
[Average thickness of inorganic layer]
The average thickness of the inorganic layer 3 was measured from a SEM image of the cross section of the composite porous body 1. The average thickness was the average of 5 points.
 [無機層の平均孔径]
 無機層3の平均孔径は、試験例1に示す通液試験によって求めた。
[Average pore diameter of inorganic layer]
The average pore diameter of the inorganic layer 3 was determined by the liquid passage test shown in Test Example 1.
 [無機層の開口孔の平均孔径]
 無機層3の開口孔3hの平均孔径は、無機層3の表面30を撮影したSEM画像から測定した。平均孔径は、開口孔3hの円相当径の平均値である。SEM画像の倍率は10万倍であった。
[Average pore diameter of open pores in inorganic layer]
The average pore diameter of the open pores 3h of the inorganic layer 3 was measured from a SEM image taken of the surface 30 of the inorganic layer 3. The average hole diameter is the average value of the equivalent circular diameters of the opening holes 3h. The magnification of the SEM image was 100,000 times.
 [無機層の平均孔径]
 無機層3の開口孔3hの平均短径は、無機層3の表面30を撮影したSEM画像から測定した。平均短径は、開口孔3hに外接する最小の長方形の平均短径である。
[Average pore diameter of inorganic layer]
The average short axis of the openings 3h of the inorganic layer 3 was measured from a SEM image of the surface 30 of the inorganic layer 3. The average short axis is the average short axis of the smallest rectangle circumscribing the opening hole 3h.
 [無機層におけるAl-OH比率]
 『Al-OH比率』は、Al-OH結合の含有量Xと、Al-O-Al結合の含有量Yとの比X/Yである。含有量Xと含有量Yとは、XPSによって求めた。測定機器は、ULVAC PHI製のQuanteraSXMであった。測定の条件は以下の通りであった。
・X線源:MONO Al Kα
・ビーム条件:100μm,φ100W,25kV HP
・透過エネルギー:55eV(ナロー)、280eV(ワイド)
・分析元素:C,O,F,Al,Si,S
・帯電補正:F1sを689.67eVとして全元素帯電補正
[Al-OH ratio in inorganic layer]
The "Al-OH ratio" is the ratio X/Y between the content X of Al-OH bonds and the content Y of Al-O-Al bonds. Content X and content Y were determined by XPS. The measuring instrument was a QuanteraSXM manufactured by ULVAC PHI. The measurement conditions were as follows.
・X-ray source: MONO Al Kα
・Beam conditions: 100μm, φ100W, 25kV HP
・Transmission energy: 55eV (narrow), 280eV (wide)
・Analysis elements: C, O, F, Al, Si, S
・Charge correction: All element charge correction with F1s as 689.67eV
 XPSによって得られたスペクトルのAl2p3のピークに、AlとAl(OH)の2成分が存在すると仮定した。Alの結合エネルギーと、Al(OH)の結合エネルギーとの差を0.6eVと規定し、上記ピークを、Alのピークと、Al(OH)のピークとに分離した。Alのピークの積分強度がAl-OH結合の含有量X、Al(OH)のピークの積分強度がAl-O-Al結合の含有量Yである。 It was assumed that two components, Al2O3 and Al(OH) 3 , were present in the Al2p3 peak of the spectrum obtained by XPS. The difference between the binding energy of Al 2 O 3 and that of Al(OH) 3 is defined as 0.6 eV, and the above peak is separated into the peak of Al 2 O 3 and the peak of Al(OH) 3 . did. The integrated intensity of the Al 2 O 3 peak is the Al-OH bond content X, and the integrated intensity of the Al(OH) 3 peak is the Al-O-Al bond content Y.
 [親水性素材の材質]
 親水性素材5はいずれも、基材2の表面の少なくとも一部を覆う親水性ポリマーの層である。
[Material of hydrophilic material]
Each of the hydrophilic materials 5 is a layer of a hydrophilic polymer that covers at least a portion of the surface of the base material 2.
 [疎水性素材におけるCH-O-R含有量]
 『CH-O-R含有量』は、第一面21に含まれるPVAおよびPTFEに由来する複数の化学構造におけるCH-O-R結合の含有量をパーセンテージで表したものである。CH-O-R結合は、PVAおよびPTFEに由来する化学構造の一種である。CH-O-R含有量はXPSによって求めた。測定機器は、ULVAC PHI製のQuanteraSXMであった。測定の条件は以下の通りであった。
・X線源:MONO Al Kα
・ビーム条件:100μm,100W,20kV HP
・透過エネルギー:55eV(ナロー)、280eV(ワイド)
・分析元素:C,O,F
・光電子取り出し角:45°
[CH 2 -O-R content in hydrophobic material]
“CH 2 —O—R content” is the content of CH 2 —O—R bonds in the plurality of chemical structures derived from PVA and PTFE contained in the first surface 21 expressed as a percentage. The CH 2 -O-R bond is a type of chemical structure derived from PVA and PTFE. The CH 2 -O-R content was determined by XPS. The measuring instrument was a QuanteraSXM manufactured by ULVAC PHI. The measurement conditions were as follows.
・X-ray source: MONO Al Kα
・Beam conditions: 100μm, 100W, 20kV HP
・Transmission energy: 55eV (narrow), 280eV (wide)
・Analysis elements: C, O, F
・Photoelectron extraction angle: 45°
 XPSによって得られたC1sスペクトルのピークに、12成分が存在すると仮定してピーク分離し、各成分のピークの積分強度を求めた。12成分の結合エネルギーはそれぞれ、284.0eV、285.0eV、285.8eV、286.6eV、287.5eV、288.4eV、289.1eV、289.9eV、290.7eV、291.8eV、292.6eV、及び293.6eVである。CH-O-R結合を含む化学構造は、286.6eVのピークに帰属される。上記ピークを12成分のピークに分離し、各成分のピークの積分強度を求めた。CH-O-R含有量は、{(286.6eVの結合エネルギーのピークの積分強度)/(12成分のピークの積分強度の合計)}×100である。 Assuming that 12 components were present in the peak of the C1s spectrum obtained by XPS, the peaks were separated, and the integrated intensity of the peak of each component was determined. The binding energies of the 12 components are 284.0eV, 285.0eV, 285.8eV, 286.6eV, 287.5eV, 288.4eV, 289.1eV, 289.9eV, 290.7eV, 291.8eV, 292. 6 eV, and 293.6 eV. The chemical structure containing the CH 2 -O-R bond is assigned to the peak at 286.6 eV. The above peak was separated into 12 component peaks, and the integrated intensity of each component peak was determined. The CH 2 -O-R content is {(integrated intensity of peak with binding energy of 286.6 eV)/(sum of integrated intensities of peaks of 12 components)}×100.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、表2に示される各試料の性能を説明する。 Next, the performance of each sample shown in Table 2 will be explained.
 [可とう性]
 各試料の可とう性は、図6に示す曲げ試験によって求めた。試験台8の湾曲面の曲率半径は5cmであった。丸棒形状の試料、及びチューブ形状の試料は、試験台8の湾曲面に沿わせた。無機層3に割れが生じなかった試料を評価Aとした。
[Flexibility]
The flexibility of each sample was determined by the bending test shown in FIG. The radius of curvature of the curved surface of test stand 8 was 5 cm. The round bar-shaped sample and the tube-shaped sample were placed along the curved surface of the test stand 8. A sample in which no cracks occurred in the inorganic layer 3 was rated A.
 [耐薬品性]
 各試料をエタノールに浸漬した後、各試料の表面をSEMによって観察した。観察視野において無機層3の剥離面積が10%以下である試料を評価A、10%超である試料を評価Bとした。
[chemical resistance]
After each sample was immersed in ethanol, the surface of each sample was observed by SEM. A sample in which the peeled area of the inorganic layer 3 was 10% or less in the observation field was evaluated as A, and a sample in which the peeled area exceeded 10% was evaluated as B.
 [流速比]
 流速比は、試料4-1の流速を1としたときの各試料の流速である。流速は、試料を透過したろ液の流速である。全ての試料において、原液の流速は同じである。シート形状の複合多孔質体1では、無機層3の表面30から第二面22に向かって、ろ液が流れる。チューブ形状の複合多孔質体1では、チューブの外周面からチューブの内部空間に向かって、ろ液が流れる。内部空間に流れ込んだろ液は、チューブの延伸方向に沿ってチューブの外部に排出される。丸棒形状の複合多孔質体1では、丸棒の外周面から内部に向かってろ液が流れる。丸棒の内部に流れ込んだろ液は、丸棒の延伸方向に沿って移動し、丸棒の端面から丸棒の外部に排出される。流速比が高いほど、複合多孔質体1の通液性が高い。
[Flow velocity ratio]
The flow rate ratio is the flow rate of each sample when the flow rate of sample 4-1 is set to 1. The flow rate is the flow rate of the filtrate passing through the sample. The stock solution flow rate is the same for all samples. In the sheet-shaped composite porous body 1, the filtrate flows from the surface 30 of the inorganic layer 3 toward the second surface 22. In the tube-shaped composite porous body 1, the filtrate flows from the outer peripheral surface of the tube toward the inner space of the tube. The filtrate that has flowed into the internal space is discharged to the outside of the tube along the extending direction of the tube. In the round rod-shaped composite porous body 1, the filtrate flows inward from the outer peripheral surface of the round rod. The filtrate that has flowed into the round bar moves along the extending direction of the round bar and is discharged from the end face of the round bar to the outside of the round bar. The higher the flow rate ratio, the higher the liquid permeability of the composite porous body 1.
 [20nm粒子の分離率]
 20nm粒子の分離率は、原液に含まれる粒子を分離する性能を示す。分散媒は水、粒子の平均粒径は20nmである。原液における粒子の濃度X(質量%)と、ろ液における粒子の濃度Y(質量%)とを測定する。(1-Y/X)×100が10%以上である試料は評価Aである。
[Separation rate of 20 nm particles]
The separation rate of 20 nm particles indicates the ability to separate particles contained in the stock solution. The dispersion medium was water, and the average particle size of the particles was 20 nm. The particle concentration X (mass %) in the stock solution and the particle concentration Y (mass %) in the filtrate are measured. A sample in which (1-Y/X)×100 is 10% or more is rated A.
 [PEG1000の分離率]
 PEG1000の分離率は、原液に含まれるPEG1000粒子を分離する性能を示す。PEG1000は、平均分子量が1000前後のポリエチレングリコールである。分散媒はエタノールである。原液におけるPEG1000の濃度X(質量%)と、ろ液におけるPEG1000の濃度Y(質量%)とを測定する。(1-Y/X)×100が10%以上である試料は評価Aである。
[Separation rate of PEG1000]
The separation rate of PEG1000 indicates the ability to separate PEG1000 particles contained in the stock solution. PEG1000 is polyethylene glycol with an average molecular weight of around 1000. The dispersion medium is ethanol. The concentration X (mass%) of PEG1000 in the stock solution and the concentration Y (mass%) of PEG1000 in the filtrate are measured. A sample in which (1-Y/X)×100 is 10% or more is rated A.
 [IPAの分離率]
 IPAの分離率は、水とIPAとの混合液である原液からIPAを分離する性能を示す。原液におけるIPAの濃度X(質量%)と、ろ液におけるIPAの濃度Y(質量%)とを測定する。(1-Y/X)×100が10%以上である試料は評価Aである。
[IPA separation rate]
The IPA separation rate indicates the ability to separate IPA from a stock solution that is a mixed solution of water and IPA. The concentration X (mass %) of IPA in the stock solution and the concentration Y (mass %) of IPA in the filtrate are measured. A sample in which (1-Y/X)×100 is 10% or more is rated A.
 [NaClの分離率]
 NaClの分離率は、水にNaClを溶かした原液からNaClを分離する性能を示す。原液におけるNaClの濃度X(質量%)と、ろ液におけるNaClの濃度Y(質量%)とを測定する。(1-Y/X)×100が10%以上である試料は評価A、10%未満である試料は評価Bである。
[Separation rate of NaCl]
The NaCl separation rate indicates the ability to separate NaCl from a stock solution of NaCl dissolved in water. The concentration X (mass %) of NaCl in the stock solution and the concentration Y (mass %) of NaCl in the filtrate are measured. Samples in which (1-Y/X)×100 is 10% or more are rated A, and samples in which it is less than 10% are rated B.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2の結果から、いずれの試料も優れた可とう性を有することが分かった。また、いずれの試料も、20nm粒子を分離する性能、PEG1000を分離する性能、及びIPAを分離する性能に優れていることが分かった。更に、平均孔径が5nmの無機層3を備える試料4-14のみ、NaClを分離する性能を有していることがわかった。 From the results in Tables 1 and 2, it was found that all samples had excellent flexibility. Furthermore, it was found that all the samples were excellent in the performance of separating 20 nm particles, the performance of separating PEG1000, and the performance of separating IPA. Furthermore, it was found that only sample 4-14, which included the inorganic layer 3 with an average pore diameter of 5 nm, had the ability to separate NaCl.
 表1,2の結果から、PTFEからなる基材2を備える試料4-4から試料4-14は、優れた耐薬品性を有することが分かった。 From the results in Tables 1 and 2, it was found that Samples 4-4 to 4-14, which included the base material 2 made of PTFE, had excellent chemical resistance.
 表1,2の結果から、無機層3の平均厚さが薄いほど、流速比が高いことが分かった。各試料の分離能に大きな差はないため、ろ過時間を短縮するためには、無機層3の平均厚さを薄くすれば良い。 From the results in Tables 1 and 2, it was found that the thinner the average thickness of the inorganic layer 3, the higher the flow velocity ratio. Since there is no large difference in the separation ability of each sample, the average thickness of the inorganic layer 3 may be reduced in order to shorten the filtration time.
 1 複合多孔質体、2 基材、2h 空孔、2A 第一層、2B 第二層、21 第一面、22 第二面、3 無機層、3h 開口孔、30 表面、4 ナノファイバー、5 親水性樹脂、7 試験装置、70 フラスコ、70U 上端開口部、71 チャンバー、71D 下端開口部、8 試験台、 80 テープ。 1 Composite porous body, 2 Base material, 2h Holes, 2A First layer, 2B Second layer, 21 First surface, 22 Second surface, 3 Inorganic layer, 3h Open pores, 30 Surface, 4 Nanofiber, 5 Hydrophilic resin, 7 test device, 70 flask, 70U top opening, 71 chamber, 71D bottom opening, 8 test stand, 80 tape.

Claims (16)

  1.  第一面を有する基材と、
     前記第一面の少なくとも一部を覆う無機層と、を備え、
     前記基材は、樹脂材料によって構成された多孔質体であり、
     前記無機層は、複数のナノファイバーの積層体であり、
     前記複数のナノファイバーのそれぞれは、アルミニウムと酸素と水素とを含む無機材料からなり、
     前記第一面における平均孔径が5nm以上500nm以下であり、
     前記無機層の平均厚さが10nm以上1000nm以下であり、
     前記無機層の平均孔径が1nm以上50nm以下である、
     複合多孔質体。
    a base material having a first surface;
    an inorganic layer covering at least a portion of the first surface,
    The base material is a porous body made of a resin material,
    The inorganic layer is a laminate of multiple nanofibers,
    Each of the plurality of nanofibers is made of an inorganic material containing aluminum, oxygen, and hydrogen,
    The average pore diameter on the first surface is 5 nm or more and 500 nm or less,
    The average thickness of the inorganic layer is 10 nm or more and 1000 nm or less,
    The average pore diameter of the inorganic layer is 1 nm or more and 50 nm or less,
    Composite porous material.
  2.  前記樹脂材料は疎水性ポリマーである、請求項1に記載の複合多孔質体。 The composite porous body according to claim 1, wherein the resin material is a hydrophobic polymer.
  3.  前記疎水性ポリマーはポリテトラフルオロエチレンである、請求項2に記載の複合多孔質体。 The composite porous body according to claim 2, wherein the hydrophobic polymer is polytetrafluoroethylene.
  4.  前記第一面の少なくとも一部は親水性素材を含む、請求項1から請求項3のいずれか1項に記載の複合多孔質体。 The composite porous body according to any one of claims 1 to 3, wherein at least a portion of the first surface contains a hydrophilic material.
  5.  前記親水性素材が、前記第一面を含む前記基材の表面の少なくとも一部に被覆された親水性ポリマーである、請求項4に記載の複合多孔質体。 The composite porous body according to claim 4, wherein the hydrophilic material is a hydrophilic polymer coated on at least a portion of the surface of the base material including the first surface.
  6.  前記親水性ポリマーはポリビニルアルコールである、請求項5に記載の複合多孔質体。 The composite porous body according to claim 5, wherein the hydrophilic polymer is polyvinyl alcohol.
  7.  前記樹脂材料は、ポリテトラフルオロエチレンであり、
     前記親水性ポリマーを含む前記第一面は、前記ポリビニルアルコール及び前記ポリテトラフルオロエチレンに由来する複数の化学構造を含み、
     前記複数の化学構造のうち、XPSによって得られたC1sスペクトルによって検出される化学構造におけるCH-O-R結合の含有量が3%以上15%以下である、請求項6に記載の複合多孔質体。
    The resin material is polytetrafluoroethylene,
    The first surface containing the hydrophilic polymer includes a plurality of chemical structures derived from the polyvinyl alcohol and the polytetrafluoroethylene,
    The composite pore according to claim 6, wherein the content of CH 2 -O-R bonds in the chemical structure detected by the C1s spectrum obtained by XPS among the plurality of chemical structures is 3% or more and 15% or less. Substantive body.
  8.  前記基材の形状はシートである、請求項1から請求項7のいずれか1項に記載の複合多孔質体。 The composite porous body according to any one of claims 1 to 7, wherein the base material has a sheet shape.
  9.  前記基材の平均厚さが1μm以上100μm以下である、請求項8に記載の複合多孔質体。 The composite porous body according to claim 8, wherein the average thickness of the base material is 1 μm or more and 100 μm or less.
  10.  前記基材の形状はチューブであり、
     前記第一面は、前記チューブの外周面である、請求項1から請求項7のいずれか1項に記載の複合多孔質体。
    The shape of the base material is a tube,
    The composite porous body according to any one of claims 1 to 7, wherein the first surface is an outer peripheral surface of the tube.
  11.  前記基材の平均厚さが50μm以上1000μm以下である、請求項10に記載の複合多孔質体。 The composite porous body according to claim 10, wherein the average thickness of the base material is 50 μm or more and 1000 μm or less.
  12.  前記基材は、前記第一面を含む第一層と、前記第一層に隣接する第二層と、を備え、
     前記第二層の平均孔径は、前記第一層の平均孔径よりも大きい、請求項1から請求項11のいずれか1項に記載の複合多孔質体。
    The base material includes a first layer including the first surface and a second layer adjacent to the first layer,
    The composite porous body according to any one of claims 1 to 11, wherein the average pore size of the second layer is larger than the average pore size of the first layer.
  13.  前記無機層は、Al-OH結合、及びAl-O-Al結合を含み、
     前記Al-OH結合の含有量Xと前記Al-O-Al結合の含有量Yとの比X/Yが0.3以上1.0以下である、請求項1から請求項12のいずれか1項に記載の複合多孔質体。
    The inorganic layer includes an Al-OH bond and an Al-O-Al bond,
    Any one of claims 1 to 12, wherein the ratio X/Y of the content X of the Al-OH bond and the content Y of the Al-O-Al bond is 0.3 or more and 1.0 or less. Composite porous body described in section.
  14.  前記第一面における空孔の平均短径が4nm以上400nm以下である、請求項1から請求項13のいずれか1項に記載の複合多孔質体。 The composite porous body according to any one of claims 1 to 13, wherein the average short diameter of the pores on the first surface is 4 nm or more and 400 nm or less.
  15.  前記無機層は、前記無機層の表面に開口する開口孔を備え、
     前記開口孔の平均孔径が2nm以上200nm以下であり、
     前記開口孔の平均短径が1nm以上100nm以下である、請求項1から請求項14のいずれか1項に記載の複合多孔質体。
    The inorganic layer has an opening opening on the surface of the inorganic layer,
    The average pore diameter of the open pores is 2 nm or more and 200 nm or less,
    The composite porous body according to any one of claims 1 to 14, wherein the average short diameter of the open pores is 1 nm or more and 100 nm or less.
  16.  樹脂材料によって構成された多孔質体からなる基材を用意する工程Aと、
     前記基材の第一面を親水化処理する工程Bと、
     複数のナノファイバーを含む分散液を用意する工程Cと、
     前記第一面に前記分散液を塗布する工程Dと、
     前記分散液が塗布された前記基材を80℃以上200℃以下の加熱雰囲気下で熱処理する工程Eと、を備え、
     前記工程Aにおける前記第一面の平均孔径が5nm以上500nm以下であり、
     前記工程Cにおける前記複数のナノファイバーのそれぞれはアルミニウムと酸素と水素とを含む無機材料からなり、
     前記工程Cにおける前記複数のナノファイバーの平均長さは、前記平均孔径の10倍以上である、
     複合多孔質体の製造方法。
    Step A of preparing a base material made of a porous body made of a resin material;
    Step B of hydrophilizing the first surface of the base material;
    Step C of preparing a dispersion containing a plurality of nanofibers;
    a step D of applying the dispersion liquid to the first surface;
    A step E of heat-treating the base material coated with the dispersion liquid in a heating atmosphere of 80° C. or more and 200° C. or less,
    The average pore diameter of the first surface in the step A is 5 nm or more and 500 nm or less,
    Each of the plurality of nanofibers in the step C is made of an inorganic material containing aluminum, oxygen and hydrogen,
    The average length of the plurality of nanofibers in the step C is 10 times or more the average pore diameter.
    Method for manufacturing a composite porous body.
PCT/JP2023/004704 2022-03-28 2023-02-13 Composite porous body and method for producing composite porous body WO2023188872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052170 2022-03-28
JP2022-052170 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188872A1 true WO2023188872A1 (en) 2023-10-05

Family

ID=88201016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004704 WO2023188872A1 (en) 2022-03-28 2023-02-13 Composite porous body and method for producing composite porous body

Country Status (2)

Country Link
TW (1) TW202402380A (en)
WO (1) WO2023188872A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034190A1 (en) * 2006-09-21 2008-03-27 Queensland University Of Technology Metal oxide nanofibre filter
JP2010105846A (en) * 2008-10-29 2010-05-13 Kawaken Fine Chem Co Ltd Alumina porous self-supported film and method for manufacturing the same
WO2011016478A1 (en) * 2009-08-04 2011-02-10 独立行政法人物質・材料研究機構 Filter and method for producing the same
WO2018079612A1 (en) * 2016-10-26 2018-05-03 昭和電工株式会社 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane
JP2019042654A (en) * 2017-08-31 2019-03-22 株式会社東芝 Gas separation body and gas separator
WO2021053803A1 (en) * 2019-09-19 2021-03-25 株式会社ナフィアス Composite sheet and method for producing composite sheet
JP2021062352A (en) * 2019-10-17 2021-04-22 日産自動車株式会社 Coating liquid for gas separation membrane and production method of gas separation membrane using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034190A1 (en) * 2006-09-21 2008-03-27 Queensland University Of Technology Metal oxide nanofibre filter
JP2010105846A (en) * 2008-10-29 2010-05-13 Kawaken Fine Chem Co Ltd Alumina porous self-supported film and method for manufacturing the same
WO2011016478A1 (en) * 2009-08-04 2011-02-10 独立行政法人物質・材料研究機構 Filter and method for producing the same
WO2018079612A1 (en) * 2016-10-26 2018-05-03 昭和電工株式会社 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane
JP2019042654A (en) * 2017-08-31 2019-03-22 株式会社東芝 Gas separation body and gas separator
WO2021053803A1 (en) * 2019-09-19 2021-03-25 株式会社ナフィアス Composite sheet and method for producing composite sheet
JP2021062352A (en) * 2019-10-17 2021-04-22 日産自動車株式会社 Coating liquid for gas separation membrane and production method of gas separation membrane using the same

Also Published As

Publication number Publication date
TW202402380A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5158522B2 (en) Method for producing fluororesin thin film
KR101819090B1 (en) Separation membrane, separation membrane element and separation membrane production method
CN106102883B (en) Stannic oxide/graphene nano composite membrane, the stannic oxide/graphene nano composite membrane of reduction and preparation method thereof for gas separation
EP2025390B1 (en) Gas separation membrane on microporous polyolefin support
JP4939124B2 (en) Fluororesin porous membrane
JPWO2014021167A1 (en) Hydrophilized sheet and method for producing the same
US20100143611A1 (en) Methods for making an asymmetric composite membrane
EP3733269A1 (en) Composite hollow fiber membrane, and method for producing composite hollow fiber membrane
JPWO2015016253A1 (en) Separation membrane element
KR101561503B1 (en) Manufacturing method of porous thin film and filter membrane for water treatment thereby
WO2013066932A1 (en) Composite ptfe membrane hydrophilised using un- cross - linked ethylene - vinyl - alcohol - copolymer
JP2006272067A (en) Separation membrane and water treatment apparatus
JP6979612B2 (en) Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
CN111644080A (en) High-hydrophilicity nanofiber coating-based nanofiltration membrane and preparation method thereof
WO2023188872A1 (en) Composite porous body and method for producing composite porous body
KR20170023144A (en) Asymmetric articles with a porous substrate and a polymeric coating extending into the substrate and methods of making the same
WO2024042792A1 (en) Composite porous body, and method for producing composite porous body
JP2010253412A (en) Method of extracting solute in solution and method of concentrating aqueous solution
WO2023139868A1 (en) Porous membrane, porous membrane laminate, and production method for porous membrane
CN113544203A (en) Hydrophilic composite porous membrane
WO2021079283A2 (en) A method for preparing a composite filter medium and the composite filter medium obtained with this method
WO2023139869A1 (en) Porous membrane and porous membrane laminate
WO2021235118A1 (en) Porous film laminate, filter element, and production method for porous film laminate
WO2017159457A1 (en) Method for manufacturing laminate, and laminate
JP2019177343A (en) Separation membrane element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778906

Country of ref document: EP

Kind code of ref document: A1