WO2023188760A1 - Detection device and production method for same - Google Patents

Detection device and production method for same Download PDF

Info

Publication number
WO2023188760A1
WO2023188760A1 PCT/JP2023/002506 JP2023002506W WO2023188760A1 WO 2023188760 A1 WO2023188760 A1 WO 2023188760A1 JP 2023002506 W JP2023002506 W JP 2023002506W WO 2023188760 A1 WO2023188760 A1 WO 2023188760A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower electrode
region
thin film
piezoelectric thin
piezoelectric layer
Prior art date
Application number
PCT/JP2023/002506
Other languages
French (fr)
Japanese (ja)
Inventor
坂下武
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023188760A1 publication Critical patent/WO2023188760A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the present invention relates to a detection device and a method for manufacturing the same, and for example, to a detection device having a piezoelectric thin film resonator and a method for manufacturing the same.
  • a detection device in which a sensitive film is provided on the upper electrode of a piezoelectric thin film resonator and detects changes in the environment based on changes in the resonant frequency or anti-resonant frequency due to changes in the mass of the sensitive film (for example, Patent Documents 1 and 2). ). Detection devices having a detection element that detects changes in the environment and a temperature element that detects temperature are known (for example, Patent Documents 3 to 8).
  • Japanese Patent Application Publication No. 2018-115927 Japanese Patent Application Publication No. 2015-139167 JP2020-139788A Japanese Patent Application Publication No. 2004-294356 Japanese Patent Application Publication No. 7-300512 Japanese Patent Application Publication No. 2004-37224 JP2018-48930A Japanese Patent Application Publication No. 2021-196354
  • the present invention includes a substrate, a first lower electrode provided on the substrate, a first piezoelectric layer provided on the first lower electrode, and a first upper electrode provided on the first piezoelectric layer. a first resonant region in which the first lower electrode and the first upper electrode face each other with at least a portion of the first piezoelectric layer in between; and a first resonant region provided on the first upper electrode in the first resonant region.
  • a first piezoelectric thin film resonator comprising: a second piezoelectric thin film resonator comprising: a second lower electrode provided on the substrate; a second piezoelectric layer provided on the second lower electrode; a second piezoelectric thin film resonator comprising: a second upper electrode provided in the second piezoelectric layer; and a second resonance region in which the second lower electrode and the second upper electrode face each other with at least a portion of the second piezoelectric layer sandwiched therebetween. and a heater provided on the substrate and controlled based on the resonance frequency of the second piezoelectric thin film resonator.
  • the heater may be provided adjacently between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator.
  • the first resonant region is connected to the heater in a direction intersecting a direction in which the first lower electrode is drawn out from the first resonant region and a direction in which the first upper electrode is drawn out from the first resonant region.
  • the second resonance region is adjacent to the heater in a direction intersecting a direction in which the second lower electrode is drawn out from the second resonance region and a direction in which the second upper electrode is drawn out from the second resonance region. It can be configured so that it is adjacent to the .
  • a first gap is provided under the first lower electrode in the first resonance region
  • a second gap is provided below the second lower electrode in the second resonance region
  • a second gap is provided under the second lower electrode in the first resonance region.
  • a first portion of the electrode excluding a portion provided on the first substrate outside the first gap and connecting the first lower electrode to the outside, is located closest to the heater of the first piezoelectric thin film resonator.
  • a second portion of the second lower electrode other than a portion provided on the second substrate outside the second gap and connecting the second lower electrode with the outside is a second portion of the second piezoelectric thin film resonance.
  • the configuration may be the one closest to the heater.
  • the shortest distance between the first portion and the heater may be 0.5 times or more and twice or less the shortest distance between the second portion and the heater.
  • a third piezoelectric layer is provided on the substrate between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator, and is continuous with the first piezoelectric layer and the second piezoelectric layer.
  • the heater may be provided between the substrate and the third piezoelectric layer.
  • the heater is connected to the first lower electrode in a region where the first lower electrode is drawn out from the first resonance region, and the second lower electrode is drawn out from the second resonance region.
  • the structure may be such that it is joined to the second lower electrode in the region.
  • the heater is arranged such that the first upper electrode is connected to the first piezoelectric layer in a first region drawn out from the first resonant region or in a region opposite to the first resonant region with respect to the first region. and the second upper electrode is bonded to the second piezoelectric layer in a second region drawn out from the second resonant region or in a region opposite to the second resonant region with respect to the second region. be able to.
  • a first gap is provided under the first lower electrode in the first resonance region
  • a second gap is provided below the second lower electrode in the second resonance region
  • the heater may be provided within the first gap and the second gap.
  • first lower electrode and the second lower electrode are made of substantially the same material and have substantially the same thickness
  • first piezoelectric layer and the second piezoelectric layer are substantially
  • the first upper electrode and the second upper electrode may be made of substantially the same material and have substantially the same thickness. can.
  • the shortest distance between the first resonance region and the heater is at least 0.5 times and at most twice the shortest distance between the second resonance region and the heater. be able to.
  • the first piezoelectric thin film resonator includes a temperature compensation film between the first lower electrode and the first upper electrode in at least a central portion of the first resonance region
  • the second piezoelectric thin film resonator The device may be configured such that a temperature compensation film is not provided between the second lower electrode and the second upper electrode in a central portion of the second resonance region.
  • the heater may be a conductor line provided on the substrate.
  • the above configuration may include a detector that detects a change in the environment based on the resonant frequency of the first piezoelectric thin film resonator and controls the heater based on the resonant frequency of the second piezoelectric thin film resonator. I can do it.
  • the present invention includes a step of forming a first lower electrode and a second lower electrode from the same metal layer on a substrate, and forming a first piezoelectric layer and a second piezoelectric layer on the first lower electrode and the second lower electrode, respectively.
  • a first piezoelectric thin film resonator having a step of forming the same piezoelectric layer, and a first resonance region in which the first lower electrode and the first upper electrode face each other with at least a portion of the first piezoelectric layer sandwiched therebetween; the first piezoelectric layer and a second piezoelectric thin film resonator having a second resonance region in which the second lower electrode and the second upper electrode face each other with at least a portion of the two piezoelectric layers sandwiched therebetween.
  • a method of manufacturing a detection device comprising: forming on the substrate a heater that is controlled based on the resonance frequency of the second piezoelectric thin film resonator.
  • the method may include a step of leaving the temperature compensation film in at least a central portion and removing the temperature compensation film in at least a central portion of the second resonance region.
  • temperature can be controlled with high accuracy.
  • FIG. 1 is a block diagram of a detection device according to a first embodiment.
  • FIG. 2 is a plan view of the sensor according to the first embodiment.
  • 3(a) and 3(b) are a sectional view taken along the line AA and sectional view taken along the line BB in FIG. 2, respectively.
  • FIGS. 4(a) to 4(d) are cross-sectional views showing a method of manufacturing a sensor in Example 1.
  • FIG. 5(a) to 5(c) are cross-sectional views showing a method for manufacturing a sensor in Example 1.
  • FIG. 6(a) to 6(c) are cross-sectional views showing a method for manufacturing a sensor in Example 1.
  • FIG. 7(a) to 7(d) are cross-sectional views showing a method of forming an inserted film in Example 1.
  • FIG. 8 is a diagram showing the amount of change ⁇ f in the resonance frequency of the piezoelectric thin film resonator with respect to time in Experiment 1.
  • FIG. 9(a) is a diagram showing the resonant frequency of the piezoelectric thin film resonator with respect to time in Experiment 2
  • FIG. 9(b) is a diagram showing the temperature with respect to the current of the heating line in the simulation.
  • FIG. 10 is a plan view of a sensor in Example 2.
  • FIGS. 11(a) and 11(b) are a sectional view taken along line AA and taken along line BB in FIG. 10, respectively.
  • FIG. 12 is a plan view of a sensor in Modification 1 of Embodiment 2.
  • 13(a) and 13(b) are a sectional view taken along line AA and taken along line BB in FIG. 12, respectively.
  • FIG. 14 is a sectional view taken along the line CC in FIG. 12.
  • FIG. 15 is a cross-sectional view of a sensor in Example 3.
  • FIG. 16 is a cross section taken along the line AA in FIG. 15.
  • FIG. 17 is a plan view of a sensor in Example 4.
  • 18(a) is a cross-sectional view taken along the line AA in FIG. 17, and
  • FIG. 18(b) is a cross-sectional view of the sensor in Modification 1 of Example 4.
  • FIG. 19 is a plan view of a sensor in Example 5.
  • FIG. 20 is a plan view of a sensor in Example 6.
  • FIG. 21 is a sectional view taken along line AA in FIG. 20.
  • 22(a) and 22(b) are cross-
  • FIG. 1 is a block diagram of a detection device according to the first embodiment.
  • the detection device 100 includes a sensor 40 and a detector 42.
  • piezoelectric thin film resonators 11a, 11b and a heater 31 are provided on a substrate 10.
  • the piezoelectric thin film resonator 11a is a detection element that detects changes in the environment
  • the piezoelectric thin film resonator 11b is a temperature element that detects the temperature of the substrate 10.
  • the heater 31 heats the substrate 10.
  • the detector 42 includes oscillation circuits 44a, 44b, measuring devices 45a, 45b, a control section 46, and a calculation section 47.
  • Oscillation circuits 44a and 44b output oscillation signals having oscillation frequencies corresponding to the resonance frequencies of piezoelectric thin film resonators 11a and 11b, respectively.
  • the oscillation circuits 44a and 44b can also be said to include piezoelectric thin film resonators 11a and 11b, respectively, and constitute an oscillation circuit.
  • the oscillation frequency does not need to be the same as the resonant frequency, and it is sufficient that the oscillation frequency changes based on a change in the resonant frequency.
  • Measuring devices 45a and 45b measure the frequencies of oscillation signals output by oscillation circuits 44a and 44b, respectively.
  • the calculation unit 47 calculates the change in the environment based on the amount of change in the frequency of the oscillation signal measured by the measuring device 45a.
  • the control unit 46 detects the temperature based on the amount of change in the frequency of the oscillation signal measured by the measuring device 45b.
  • the control unit 46 controls the heater 31 based on the detected temperature. In this way, the detector 42 detects changes in the environment based on the resonance frequency of the piezoelectric thin film resonator 11a (first piezoelectric thin film resonator), and detects the resonance of the piezoelectric thin film resonator 11b (second piezoelectric thin film resonator).
  • the heater 31 is controlled based on the frequency.
  • control unit 46 controls the heater 31 based on the detected temperature, and sets the temperature of the piezoelectric thin film resonator 11a to a desired temperature. Thereafter, the control unit 46 causes the calculation unit 47 to detect a change in the environment based on a change in the resonance frequency of the piezoelectric thin film resonator 11a.
  • a change in the environment refers to a change in the concentration of a specific substance such as a specific atom or molecule in a gas or liquid, a change in humidity, etc., and includes, for example, detecting a specific substance in the gas or liquid.
  • FIG. 2 is a plan view of the sensor 40 according to the first embodiment.
  • 3(a) and 3(b) are a sectional view taken along the line AA and sectional view taken along the line BB in FIG. 2, respectively.
  • the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching
  • the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines
  • the voids 22a and 22b are indicated by broken lines.
  • the normal direction of the upper surface of the substrate 10 is the Z direction
  • the arrangement direction of the piezoelectric thin film resonators 11a and 11b is the X direction
  • the direction perpendicular to the X direction among the plane directions is the Y direction.
  • piezoelectric thin film resonators 11a and 11b are provided on a substrate 10 having a rectangular planar shape.
  • a heating line 30 is provided as a heater 31 between the piezoelectric thin film resonators 11a and 11b.
  • the heating line 30 has a structure in which a pair of electrodes such as the pads 24d and 24d are connected by a metal line, a voltage is applied to the pair of electrodes, and Joule heat is generated by a current flowing through the metal line.
  • a lower electrode 12a (first lower electrode) is provided on the substrate 10
  • a piezoelectric layer 14a (first piezoelectric layer) is provided on the lower electrode 12a
  • an upper electrode 16a is provided on the piezoelectric layer 14a.
  • first upper electrode is provided.
  • a gap 22a (first gap) having a dome-shaped bulge is formed between the flat upper surface of the substrate 10 and the lower electrode 12a.
  • the dome-shaped bulge is a bulge having a shape such that, for example, the height of the void 22a is small around the void 22a, and the height of the void 22a becomes larger toward the inside of the void 22a.
  • the resonance region 50a (first resonance region) is defined by a region where the lower electrode 12a and the upper electrode 16a face each other with at least a portion of the piezoelectric layer 14a in between.
  • the resonance region 50a has an elliptical shape, and is a region where elastic waves such as a thickness longitudinal vibration mode or a thickness shear vibration mode resonate.
  • the planar shape of the resonance region 50a may be other than an elliptical shape, and may be, for example, a polygonal shape such as a quadrangular shape or a pentagonal shape.
  • the air gap 22a is provided with the same size as the resonance region 50a or larger than the resonance region 50a. Thereby, the elastic wave is reflected by the air gap 22a.
  • the lower electrode 12a is provided larger than the gap 22a, and the peripheral edge of the lower electrode 12a is provided on the substrate 10 outside the gap 22a.
  • Holes 23a are provided in the lower electrode 12a located on both sides of the resonance region 50a in the X direction.
  • the hole 23a is connected to the void 22a.
  • the hole 23a is a hole through which an etching solution for etching the sacrificial layer passes when forming the void 22a.
  • a sensitive film 18 is provided on the upper electrode 16a.
  • a recess 19 corresponding to the insertion film 20a is provided on the upper surface of the upper electrode 16a, and the sensitive film 18 is provided within the recess 19. Thereby, when forming the sensitive film 18, the area where the sensitive film 18 is provided can be made constant.
  • the mass of the sensitive film 18 increases.
  • the humidity around the sensitive film 18 increases, moisture is adsorbed to the sensitive film 18 and the mass of the sensitive film 18 increases.
  • the temperature changes the mass of the sensitive film 18 changes.
  • the sensitive film 18 is irradiated with light such as ultraviolet rays, the mass of the sensitive film 18 changes.
  • the mass of the sensitive film 18 changes due to changes in the environment such as the concentration of a specific substance in the gas or liquid surrounding the sensitive film 18, humidity, temperature, or light intensity.
  • the resonant frequency of the piezoelectric thin film resonator 11a changes. In this way, the piezoelectric thin film resonator 11a can be used as a detection element for detecting changes in the environment.
  • the piezoelectric layer 14 includes a lower piezoelectric layer 15a provided on the substrate 10 and an upper piezoelectric layer 15b provided on the lower piezoelectric layer 15a.
  • An insertion film 20a is provided between the lower piezoelectric layer 15a and the upper piezoelectric layer 15b over the entire surface of the resonant region 50a.
  • the insertion film 20a at the periphery of the resonance region 50a is thicker than the insertion film 20a at the center.
  • the insertion film 20a at the center of the resonance region 50a functions as a temperature compensation film for reducing the temperature coefficient, and the insertion film 20a at the peripheral portion functions as a film for improving the Q value.
  • the thickness of the insertion film 20a at the peripheral portion may be the same as the thickness of the insertion film 20a at the center.
  • the temperature coefficient of the resonance frequency is reduced by providing the insertion film 20a that functions as a temperature compensation film.
  • the insertion film 20a may be provided between the lower electrode 12a and the upper electrode 16a.
  • the insertion film 20a may be provided between the lower electrode 12a and the piezoelectric layer 14, or may be provided between the piezoelectric layer 14 and the upper electrode 16a.
  • the lower electrode 12a is drawn out from the resonance region 50a in the ⁇ Y direction.
  • the region where the lower electrode 12a is drawn out from the resonance region 50a is a region 52a.
  • piezoelectric layer 14 and upper electrode 16a are not provided on lower electrode 12a, but pad 24a is provided on lower electrode 12a.
  • the upper electrode 16a is drawn out from the resonance region 50a in the +Y direction.
  • the region where the upper electrode 16a is drawn out from the resonance region 50a is a region 54a.
  • region 54a lower electrode 12a is not provided, piezoelectric layer 14 is provided on substrate 10, and upper electrode 16a is provided on piezoelectric layer 14.
  • a pad 25a is provided on the upper electrode 16a.
  • the piezoelectric layer 14 other than the area where the upper electrode 16a is provided has been removed. Thereby, it is possible to suppress the elastic waves from propagating through the piezoelectric layer 14 from the resonance regions 50a and 50b and leaking to the outside. Therefore, loss reduction due to leakage of elastic wave energy can be suppressed, and the Q value can be improved.
  • the piezoelectric thin film resonator 11b includes a lower electrode 12b (second lower electrode) on the substrate 10, a piezoelectric layer 14b (second piezoelectric layer) on the lower electrode 12b, and an upper electrode 16b (second upper electrode) on the piezoelectric layer 14b. is provided similarly to the piezoelectric thin film resonator 11a.
  • a gap 22b (second gap) is provided between the substrate 10 and the lower electrode 12b.
  • Pads 24b and 25b are provided similarly to pads 24a and 25a in piezoelectric thin film resonator 11a.
  • the resonance region 50b (second resonance region) is defined by a region where the lower electrode 12b and the upper electrode 16b face each other with at least a portion of the piezoelectric layer 14b interposed therebetween.
  • the region 52b is a region where the lower electrode 12b is drawn out from the resonance region 50b
  • the region 54b is a region where the upper electrode 16b is drawn out from the resonance region 50b.
  • the insertion film 20b is provided at the periphery of the resonant region 50b, and is not provided at the center of the resonant region 50b.
  • the insertion film 20b functions as a film for improving the Q value, but does not function as a temperature compensation film. If the Q value is not to be improved, the insertion film 20b may not be provided.
  • the piezoelectric thin film resonator 11b since a temperature compensation film is not provided, the resonant frequency changes depending on the temperature. Therefore, the piezoelectric thin film resonator 11b can be used as a temperature element.
  • a heating line 30 is provided on the substrate 10 between the piezoelectric thin film resonators 11a and 11b with an insulating layer 32 in between.
  • the heat generating line 30 is, for example, a metal layer, and has a meandering planar shape.
  • the insulating layer 32 is provided to insulate the heating line 30 and the substrate 10. If the insulation of the substrate 10 is high, the insulation layer 32 may not be provided.
  • Both ends of the heating line 30 are electrically connected to pads 24d and 25d.
  • the pads 24d and 25d are provided on both sides of the heat generating line 30 in the Y direction.
  • the portion closest to the heating line 30 is a portion 13a of the lower electrode 12a provided on the side of the heating line 30 of the substrate 10 outside the gap 22a. Portion 13a is located near hole 23a.
  • the shortest distance between the piezoelectric thin film resonator 11a and the heating line 30 in plan view is La.
  • the portion closest to the heating line 30 is a portion 13b (near the hole 23b) of the lower electrode 12b provided on the side of the heating line 30 of the substrate 10 outside the gap 22b.
  • the shortest distance between the piezoelectric thin film resonator 11b and the heating line 30 in plan view is Lb.
  • Portion 13b is located near hole 23b. The distances La and Lb are approximately equal.
  • the substrate 10 is, for example, a silicon substrate, a sapphire substrate, a quartz substrate, a glass substrate, a ceramic substrate, or a GaAs substrate.
  • the lower electrodes 12a, 12b and the upper electrodes 16a and 16b are made of, for example, ruthenium (Ru), chromium (Cr), aluminum (Al), titanium (Ti), copper (Cu), molybdenum (Mo), tungsten (W), tantalum. It is a single layer film of (Ta), platinum (Pt), rhodium (Rh), or iridium (Ir), or a laminated film selected from a plurality of these films.
  • the piezoelectric layer 14 is made of, for example, an aluminum nitride (AlN) film, a zinc oxide (ZnO) film, a gallium nitride (GaN) film, a lead zirconate titanate (PZT) film, a lead titanate (PbTiO 3 ) film, a lithium tantalate ( LiTaO 3 ) film or lithium niobate (LiNbO 3 ) film.
  • AlN aluminum nitride
  • ZnO zinc oxide
  • GaN gallium nitride
  • PZT lead zirconate titanate
  • PbTiO 3 lead titanate
  • LiTaO 3 lithium tantalate
  • LiNbO 3 lithium niobate
  • the center portion of the resonant region 50a of the insertion film 20a has a temperature coefficient of elastic constant with a sign opposite to that of the piezoelectric layer 14. Thereby, temperature coefficients such as resonance frequency can be brought close to zero.
  • the peripheral edges of the resonant regions 50a and 50b of the insertion films 20a and 20b include a film of a material having a smaller Young's modulus than the piezoelectric layer 14. As such a material, the insertion films 20a and 20b are, for example, a silicon oxide film.
  • the pads 24a, 24b, 24d, 25a, 25b, and 25d are, for example, a low resistance film such as a gold film, a copper film, or an aluminum film, and may have an adhesive film such as a titanium film. This is a gold film on a titanium film.
  • Insulating layer 32 is, for example, a silicon oxide layer or a silicon nitride layer.
  • the heating line 30 is a line-shaped metal layer that generates heat, and is made of platinum, for example, and is, for example, a chromium film and a platinum film on the chromium film.
  • the sensitive film 18 is, for example, an organic polymer film, an organic low molecular film, or an inorganic film.
  • organic polymer materials include polystyrene, polymethyl methacrylate, 6-nylon, cellulose acetate, poly-9,9-dioctylefluorene, polyvinyl alcohol, polyvinylcarbazole, polyethylene oxide, polyvinyl chloride, poly-p- Homopolymers consisting of a single structure such as phenylene ether sulfone, poly-1-butene, polybutadiene, polyphenylmethylsilane, polycaprolactone, polybisphenoxyphosphazene, polypropylene, etc.; copolymers that are copolymers of two or more homopolymers; Blend polymers made by mixing these can be used.
  • organic low-molecular materials include tris(8-quinolinolato)aluminum (Alq3), naphthyldiamine ( ⁇ -NPD), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), and CBP. (4,4'-N,N'-dicarbazole-biphenyl), copper phthalocyanine, fullerene, pentacene, anthracene, thiophene, Ir(ppy(2-phenylpyridinato)) 3 , triazinethiol derivative, dioctylfluorene derivative, tetratetracontane, Parylene or the like can be used.
  • inorganic materials include alumina, titania, vanadium pentoxide, tungsten oxide, lithium fluoride, magnesium fluoride, aluminum, gold, silver, tin, indium tin oxide (ITO), carbon nanotubes, sodium chloride, chloride Magnesium or the like can be used.
  • the sensitive membrane 18 is a metal-organic structure in which organic ligands and metal ions are bonded, and may be a porous body having pores.
  • the sensitive membrane 18 may be made of metal phthalocyanine such as copper phthalocyanine (CuPc), or may contain an antibody to which an antigen binds.
  • the lower electrodes 12a and 12b are a chromium film with a thickness of 70 nm and a ruthenium film with a thickness of 166 nm from the substrate 10 side.
  • the lower piezoelectric layer 15a is an aluminum nitride film with a thickness of 498 nm
  • the upper piezoelectric layer 15b is an aluminum nitride film with a thickness of 498 nm.
  • the thickness of the insertion film 20a at the center of the resonant region 50a is 73 nm.
  • the upper electrodes 16a and 16b are a ruthenium film with a thickness of 166 nm and a chromium film with a thickness of 55 nm from the piezoelectric layers 14a and 14b side.
  • the sensitive film 18 is, for example, a polymer resin with a thickness of 80 nm.
  • Insulating layer 32 is a silicon oxide layer with a thickness of 200 nm.
  • the heating line 30 is a chromium layer with a thickness of 10 nm and a platinum layer with a thickness of 300 ⁇ m from the insulating layer 32 side.
  • FIG. 4(a) to 6(c) are cross-sectional views showing a method of manufacturing the sensor 40 in Example 1.
  • FIG. 4(a) an insulating layer 32 is formed on the upper surface of the substrate 10.
  • the substrate 10 is, for example, a wafer.
  • the insulating layer 32 is formed using, for example, a CVD (Chemical Vapor Deposition) method, a sputtering method, or a vacuum evaporation method.
  • the insulating layer 32 is patterned into a desired shape using photolithography and etching.
  • sacrificial layers 38a and 38b are formed on the substrate 10 to form voids.
  • the sacrificial layers 38a and 38b are, for example, a magnesium oxide (MgO) film, a zinc oxide (ZnO) film, a germanium (Ge) film, a silicon oxide (SiO 2 ) film, or a phosphosilicate glass (PSG) film.
  • the thickness of the sacrificial layers 38a and 38b is, for example, 10 to 100 nm.
  • the sacrificial layers 38a and 38b are formed using a sputtering method, a vacuum evaporation method, or a CVD method.
  • the sacrificial layers 38a and 38b are patterned into a desired shape using photolithography and etching.
  • the shapes of the sacrificial layers 38a and 38b correspond to the planar shapes of the voids 22a and 22b.
  • lower electrodes 12a and 12b are formed on the sacrificial layers 38a and 38b and the substrate 10 using, for example, sputtering, vacuum evaporation, or CVD, and then formed using photolithography and etching. pattern into the desired shape.
  • the lower electrodes 12a and 12b may be formed by a lift-off method.
  • a lower piezoelectric layer 15a is formed on the lower electrodes 12a and 12b, the insulating layer 32, and the substrate 10 using, for example, a sputtering method, a vacuum evaporation method, or a CVD method.
  • insert films 20a and 20b are formed on the lower piezoelectric layer 15a using, for example, sputtering, vacuum evaporation, or CVD, and shaped into a desired shape using photolithography and etching. pattern.
  • the insertion films 20a and 20b may be formed by a lift-off method. By providing the insertion film 20a with a thick film portion and a thin film portion, a recess 19a is formed on the upper surface of the insertion film 20a.
  • an upper piezoelectric layer 15b is formed on the lower piezoelectric layer 15a and the insertion films 20a and 20b using, for example, a sputtering method, a vacuum evaporation method, or a CVD method.
  • Piezoelectric layer 14 is formed from lower piezoelectric layer 15a and upper piezoelectric layer 15b.
  • a recess 19b corresponding to the recess 19a on the upper surface of the insertion film 20a is formed on the upper surface of the upper piezoelectric layer 15b.
  • upper electrodes 16a and 16b are formed on the upper piezoelectric layer 15b using, for example, a sputtering method, a vacuum evaporation method, or a CVD method, and a desired shape is formed using, for example, a photolithography technique and a lift-off method. Pattern into a shape. Upper electrodes 16a and 16b may be formed by a lift-off method. A recess 19 is formed on the upper surface of the upper electrode 16a, corresponding to the recess 19a on the upper surface of the insertion film 20a and the recess 19b on the upper surface of the upper piezoelectric layer 15b.
  • the piezoelectric layer 14 is patterned into a desired shape using, for example, photolithography and etching. As a result, a piezoelectric layer 14a sandwiched between the lower electrode 12a and the upper electrode 16a and a piezoelectric layer 14b sandwiched between the lower electrode 12b and the upper electrode 16b are formed.
  • a heat generating line 30 is formed on the insulating layer 32 using, for example, a photolithography method, a vacuum evaporation method, and a lift-off method.
  • Pads 24a, 24b and 24d, 25a, 25b and 25d are formed using, for example, a photolithography method, a vacuum evaporation method, and a lift-off method.
  • the etching solution is introduced into the sacrificial layers 38a and 38b below the lower electrodes 12a and 12b through the holes 23a and 23b. As a result, sacrificial layers 38a and 38b are removed. It is preferable that the etching solution used to etch the sacrificial layers 38a and 38b does not etch the materials constituting the piezoelectric thin film resonators 11a and 11b other than the sacrificial layers 38a and 38b. In particular, it is preferable that the etching solution does not etch the lower electrodes 12a, 12b and the substrate 10.
  • the stress of the lower electrode 12a, the piezoelectric layer 14a, and the upper electrode 16a, and the stress of the lower electrode 12b, the piezoelectric layer 14b, and the upper electrode 16b are set to be compressive stress.
  • the lower electrodes 12a and 12b bulge away from the substrate 10 to the opposite side of the substrate 10.
  • gaps 22a and 22b having dome-shaped bulges are formed between the lower electrodes 12a and 12b and the substrate 10.
  • a sensitive film 18 is formed in the recess 19 on the upper surface of the upper electrode 16a.
  • the sensitive film 18 is formed, for example, by applying a solvent in which the material of the sensitive film 18 is dissolved, and then drying the solvent. Further, the sensitive film 18 may be formed into a desired pattern using a sputtering method or a vacuum evaporation method and a lift-off method. Thereafter, the sensor 40 in Example 1 is manufactured by cutting the wafer into individual pieces.
  • FIGS. 7(a) to 7(d) are cross-sectional views showing a method of forming an inserted film in Example 1. Note that, for ease of understanding, the type of hatching for the membranes 21a and 21b is different from the type of hatching for the inserted membranes 20a and 20b.
  • a film 21a is formed on the entire surface of the lower piezoelectric layer 15a using, for example, a sputtering method. The thickness of the film 21a is the same as the thickness of the inserted film 20b at the peripheral edge of the resonance region 50b (see FIG. 3(a)).
  • the film 21a other than the periphery of the resonance region 50a and the periphery of the resonance region 50b is removed using a photolithography method and an etching method.
  • a film 21b is formed on the entire surface of the lower piezoelectric layer 15a and the film 21a using, for example, a sputtering method.
  • the thickness of the film 21b is the same as the thickness of the inserted film 20a at the center of the resonance region 50a (see FIG. 3(a)).
  • the film 21b other than the resonance region 50a is removed using photolithography and etching.
  • the insertion film 20a is formed from the film 21b at the center of the resonance region 50a, and the insertion film 20a is formed from the films 21a and 21b at the peripheral portion of the resonance region 50a.
  • the insertion film 20b is not formed at the center of the resonance region 50b, and the insertion film 20b is formed from the film 21a at the periphery of the resonance region 50b.
  • Other methods may be used to form intercalated membranes 20a and 20b.
  • Example 1 Example of controlling the temperature of the sensitive film 18
  • Example 2 Example 2
  • Initialization of the sensitive film 18 involves heating the sensitive film 18 in order to remove moisture and specific substances adsorbed onto the sensitive film 18 from the sensitive film 18.
  • the temperature at which water and specific substances are desorbed depends on the material of the sensitive film 18 and the like.
  • the inventors measured the temperature at which water is desorbed from the polymer resin used as the sensitive film 18 using a simultaneous differential thermal and thermogravimetric measurement method. As a result, it was found that water was desorbed from the sensitive film 18 at a temperature of 50° C. to 80° C.
  • the sensitive film 18 may be oxidized and deteriorated at temperatures below 100°C.
  • the layers and materials of the piezoelectric thin film resonator 11a used in Experiment 1 are as follows.
  • Substrate 10 is a silicon substrate.
  • the lower electrode 12a is a chromium film with a thickness of 70 nm and a ruthenium film with a thickness of 166 nm from the substrate 10 side.
  • the lower piezoelectric layer 15a is a 498 nm thick aluminum nitride film oriented in the (002) direction, and the upper piezoelectric layer 15b is a 498 nm thick aluminum nitride film.
  • the thickness of the insertion film 20a at the center of the resonant region 50a is 73 nm.
  • the upper electrode 16a is a ruthenium film with a thickness of 166 nm and a chromium film with a thickness of 55 nm from the piezoelectric layers 14a and 14b side.
  • the sensitive film 18 is, for example, a polymer resin with a thickness of 80 nm.
  • the resonant frequency of the piezoelectric thin film resonator 11a is approximately 2.4 GHz.
  • the piezoelectric thin film resonator 11a was placed inside the chamber, and the temperature inside the chamber was kept constant.
  • the humidity in the chamber was set at 0% to 1.8% to reduce the influence of moisture adsorption. Dry air containing ethanol at a concentration of 90 ppm was introduced into the chamber, and changes in the resonant frequency of the piezoelectric thin film resonator 11a were examined.
  • FIG. 8 is a diagram showing the amount of change ⁇ f of the resonant frequency with respect to time of the piezoelectric thin film resonator in Experiment 1.
  • the temperature inside the chamber was raised to remove water and ethanol from the sensitive film 18, and then the inside of the chamber was stabilized at a desired temperature.
  • introduction of dry air containing ethanol was started.
  • introduction of dry air containing ethanol was stopped, and introduction of dry air not containing ethanol was started.
  • Period T is the period during which dry air containing ethanol is introduced into the chamber.
  • the vertical axis indicates the amount of change ⁇ f in the resonance frequency from the resonance frequency when time is 0 seconds. Experiments were conducted with the temperature in the chamber stabilized at 18°C, 26°C, 40°C, and 50°C.
  • the amount of change ⁇ f in the resonance frequency decreases with time, and after 1000 seconds, ⁇ f stabilizes at about -30 kHz.
  • ⁇ f stabilizes at about ⁇ 22 kHz after 500 seconds.
  • ⁇ f stabilizes at about ⁇ 11 kHz after 100 seconds, but gradually increases after 500 seconds.
  • ⁇ f decreases to about ⁇ 7 kHz after 0 seconds, but thereafter, ⁇ f gradually increases.
  • the magnitude of ⁇ f depends on temperature.
  • the time it takes for ⁇ f to stabilize depends on the temperature. In this manner, when detecting changes in the environment based on changes in the resonant frequency of the piezoelectric thin film resonator 11a, it is important to control the temperature of the piezoelectric thin film resonator 11a.
  • Experiment 2 Temperature dependence of resonance frequency of piezoelectric thin film resonator 11b]
  • Experiment 2 was conducted to investigate whether the resonant frequency of the piezoelectric thin film resonator 11b changes with temperature.
  • the materials and thicknesses of the lower electrode 12b, lower piezoelectric layer 15a, upper piezoelectric layer 15b, and upper electrode 16b in the piezoelectric thin film resonator 11b used in Experiment 2 are the same as the lower electrode 12a in the piezoelectric thin film resonator 11a used in Experiment 1,
  • the material and thickness of the lower piezoelectric layer 15a, the upper piezoelectric layer 15b, and the upper electrode 16a are the same.
  • No insertion membrane 20b is provided.
  • the resonant frequency is approximately 2.4 GHz.
  • FIG. 9(a) is a diagram showing the resonance frequency versus time of the piezoelectric thin film resonator in Experiment 2.
  • the horizontal axis represents the temperature inside the chamber in which the piezoelectric thin film resonator 11b is placed.
  • the vertical axis is the resonant frequency of the piezoelectric thin film resonator.
  • the black circles are measurement points, and the straight lines are points connecting the black circles.
  • the resonant frequency decreases linearly.
  • the amount of change in the resonance frequency with respect to temperature is proportional to the amount of change in the elastic constant of the piezoelectric layer 14b with respect to temperature. Since the elastic constant of the piezoelectric layer 14b changes approximately linearly with respect to temperature, the resonance frequency changes approximately linearly with temperature.
  • the amount of change in the resonant frequency with respect to temperature is -80 kHz/°C, and the amount of change in temperature when the resonant frequency changes is -0.0000125°C/Hz. Since the resonant frequency can be measured with high precision, temperature can be detected with high precision.
  • the temperature of the heat generating line 30 when a current was passed through the heat generating line 30 was analyzed using a thermal analysis simulation.
  • the simulated structure is shown below.
  • Substrate 10 is a silicon substrate.
  • Insulating layer 32 is a silicon oxide layer with a thickness of 285 nm.
  • the heat generating line 30 is a chromium layer with a thickness of 10 nm and a platinum layer with a thickness of 300 nm from the insulating layer 32 side.
  • the planar shape of the heating line 30 is meandering as shown in FIG. Six lines each having a length of 200 ⁇ m were arranged in the X direction, and the ends of the six lines were connected to form a meandering pattern. The width of the line is 20 ⁇ m, and the spacing between the lines is 20 ⁇ m.
  • FIG. 9(b) is a diagram showing the temperature with respect to the current of the heating line in the simulation.
  • the horizontal axis is the current value flowing through the heat generating line 30, and the vertical axis is the temperature of the heat generating line 30.
  • the temperature of the heating line 30 increases, but the slope of the temperature with respect to the current is gentle, and by controlling the current of the heating line 30 , the temperature of the piezoelectric thin film resonator 11a can be controlled. Even if the heating line 30 without a cooling mechanism is used as the heater 31, the sensor 40 is cooled by the atmosphere around the sensor 40.
  • the temperature of the piezoelectric thin film resonator 11a can be sufficiently controlled using the heating line 30.
  • a Peltier element or the like having a cooling function may be provided on the substrate 10 separately from the heater 31. Thereby, the accuracy of temperature control can be improved.
  • a piezoelectric thin film resonator 11a is used as a detection element for detecting changes in the environment, and a piezoelectric thin film resonator is used as a detection element for detecting temperature.
  • a heating line 30 is provided as a heater 31 that heats the container 11b and the substrate 10. Heat generated in heater 31 is transmitted to piezoelectric thin film resonators 11a and 11b via substrate 10. Piezoelectric thin film resonators 11a and 11b have substantially the same structure. Therefore, piezoelectric thin film resonators 11a and 11b are heated to approximately the same temperature.
  • the temperature of the piezoelectric thin film resonator 11a can be accurately controlled. Further, by providing the piezoelectric thin film resonators 11a, 11b and the heater 31 on the same substrate 10, the sensor 40 can be made smaller. Furthermore, temperature detection accuracy can be improved by using the piezoelectric thin film resonator 11b as a temperature element.
  • the heating line 30 is provided adjacently between the piezoelectric thin film resonators 11a and 11b. That is, no other elements are provided between the piezoelectric thin film resonators 11a and 11b and the heating line 30. As a result, heat is efficiently transferred from the heating line 30 to the piezoelectric thin film resonators 11a and 11b via the substrate 10, and the temperatures of the piezoelectric thin film resonators 11a and 11b become almost the same, so that the temperature of the piezoelectric thin film resonator 11a can be adjusted accurately. Can be well controlled.
  • the temperature of the sensitive film 18 affects the detection of changes in the environment
  • the temperature of the piezoelectric layer 14b in the resonance region 50b affects the resonance frequency. Therefore, it is preferable that the heating line 30 efficiently heats the piezoelectric layers 14a and 14b in the resonance regions 50a and 50b. Therefore, the resonant region 50a has a heating line in the direction (+X direction) that intersects the direction in which the lower electrode 12a is drawn out from the resonant region 50a (-Y direction) and the direction in which the upper electrode 16a is drawn out from the resonance region 50a (+Y direction). Adjacent to 30.
  • the resonance region 50b is connected to the heating line 30 in a direction (+X direction) that intersects the direction in which the lower electrode 12b is drawn out from the resonance region 50b (-Y direction) and the direction in which the upper electrode 16b is drawn out from the resonance region 50b (+Y direction). Adjacent.
  • regions 52a and 54a are not provided between the resonant region 50a and the heat generating line 30, and regions 52b and 54b are not provided between the resonant region 50b and the heat generating line 30. Therefore, the resonance regions 50a and 50b and the heat generating line 30 can be brought close to each other. Therefore, heat is efficiently transmitted from the heat generating line 30 to the resonance regions 50a and 50b via the substrate 10. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • a gap 22a is provided under the lower electrode 12a in the resonance region 50a
  • a gap 22b is provided under the lower electrode 12b in the resonance region 50b.
  • heat is difficult to be transferred from the substrate 10 to the piezoelectric layers 14a and 14b. Therefore, as shown in FIG. 3A, the first portion 13a of the lower electrode 12a provided on the substrate 10 outside the gap 22a is made to be closest to the heating line 30 among the piezoelectric thin film resonators 11a.
  • the second portion 13b of the lower electrode 12b provided on the substrate 10 outside the gap 22b is positioned closest to the heating line 30 of the piezoelectric thin film resonator 11b.
  • portions 13a and 13b are portions excluding portions that connect lower electrodes 12a and 12b with the outside (for example, portions where pads 24a and 24b are formed).
  • the heat generated in the heat generating line 30 is transmitted to the piezoelectric layer 14a via the substrate 10 and the portion 13a, and is transmitted to the piezoelectric layer 14b via the substrate 10 and the portion 13b. Therefore, the resonance regions 50a and 50b can be heated efficiently, so that the temperatures of the resonance regions 50a and 50b are almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the shortest distance La between the portion 13a and the heat generating line 30 is approximately the same as the shortest distance Lb between the portion 13b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the distance La is preferably 0.5 times or more and 2 times or less of the shortest distance Lb, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times. It is more preferable that it is the following.
  • the distances La and Lb are preferably equal to or less than 1 times the width of the resonance regions 50a and 50b in the X direction (the maximum width of the resonance regions 50a and 50b). , more preferably 1/2 times or less.
  • the shortest distance L4a between the resonant region 50a and the heat generating line 30 is approximately the same as the shortest distance L4b between the resonant region 50b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the distance L4a is preferably 0.5 times or more and 2 times or less, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less than the distance L4b. It is even more preferable that there be.
  • FIG. 10 is a plan view of the sensor in Example 2.
  • FIGS. 11(a) and 11(b) are a sectional view taken along line AA and taken along line BB in FIG. 10, respectively.
  • the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching
  • the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines
  • the voids 22a and 22b are indicated by broken lines.
  • the piezoelectric thin film resonators 11a and 11b are provided adjacent to each other in the X direction, and no heating line 30 is provided between the resonance regions 50a and 50b. .
  • the heating line 30a passes through the regions 52a and 52b and extends in the X direction.
  • Pads 24d are provided at both ends of the heat generating line 30a in the X direction.
  • an insulating layer 32 is provided on the substrate 10
  • a heating line 30a is provided on the insulating layer 32.
  • Lower electrodes 12a and 12b are provided on heating line 30a via insulating layers 28a and 28b, respectively.
  • the heating line 30b passes through the regions 54a and 54b and extends in the X direction.
  • the insulating layer 32 is provided on the substrate 10
  • the heating line 30b is provided on the insulating layer 32.
  • Piezoelectric layers 14a and 14b, upper electrodes 16a and 16b, and pads 25a and 25b are provided on heat generating line 30b, respectively.
  • the other configurations are the same as those in Example 1, and their explanation will be omitted.
  • Example 2 one heating line 30a is connected to the lower electrode 12a through the insulating layer 28a in the region 52a, and connected to the lower electrode 12b through the insulating layer 28b in the region 52b. Thereby, the heating line 30a efficiently heats the lower electrodes 12a and 12b. Heat is transferred to resonance regions 50a and 50b via lower electrodes 12a and 12b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the shortest distance L1a between the resonant region 50a and the heat generating line 30a is approximately the same as the shortest distance L1b between the resonant region 50b and the heat generating line 30a. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the distance L1a is preferably 0.5 times or more and 2 times or less, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less than the distance L1b. It is even more preferable that there be.
  • the insulating layers 28a and 28b are made of substantially the same material and have substantially the same thickness.
  • the heating line 30a can heat the lower electrodes 12a and 12b to the same extent.
  • the insulating layers 28a and 28b are thinner than the lower electrodes 12a and 12b.
  • One heating line 30b is joined to the piezoelectric layer 14a in a region 54a, and joined to the piezoelectric layer 14b in a region 54b. Thereby, the heating line 30b efficiently heats the piezoelectric layers 14a and 14b. Heat is transferred to resonance regions 50a and 50b via piezoelectric layers 14a and 14b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the heat generating lines 30a and 30b may be directly connected to the piezoelectric layers 14a and 14b, or may be connected via an insulating layer, a metal layer, or the like.
  • the distance L2a between the resonance region 50a and the heat generation line 30b is approximately the same as the distance L2b between the resonance region 50b and the heat generation line 30b. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • Distance L2a is preferably 0.5 times or more and 2 times or less of distance L2b, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less. It is even more preferable that there be.
  • FIG. 12 is a plan view of a sensor in Modification 1 of Embodiment 2.
  • 13(a) and 13(b) are a sectional view taken along line AA and sectional view taken along line BB in FIG. 12, respectively, and
  • FIG. 14 is a sectional view taken along line CC in FIG.
  • the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching
  • the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines
  • the voids 22a and 22b are indicated by broken lines.
  • pads 24a and 24b are provided on the lower electrodes 12a and 12b, respectively, in the +Y side region of the regions 52a and 52b. In the ⁇ Y side region of regions 52a and 52b, pads 24a and 24b are not provided on lower electrodes 12a and 12b, respectively, and heating line 30a is provided on lower electrodes 12a and 12b via insulating layers 28a and 28b. Each is provided.
  • the piezoelectric layers 14a and 14b are located on the +Y side of the lead-out regions 54a (first region) and 54b (second region) of the upper electrodes 16a and 16b (that is, on the opposite side of the resonant regions 50a and 50b with respect to the regions 54a and 54b).
  • 56a and 56b are provided, respectively.
  • heating line 30b is provided on piezoelectric layers 14a and 14b with insulating layer 32 interposed therebetween, respectively.
  • one heating line 30a is joined to the lower electrode 12a in the region 52a via the insulating layer 32, and is joined to the lower electrode 12b in the region 52b via the insulating layer 32. .
  • the heating line 30a can efficiently heat the lower electrodes 12a and 12b.
  • one heating line 30b is joined to the piezoelectric layer 14a in the region 56a, and joined to the piezoelectric layer 14b in the region 56b. Thereby, the heating line 30b can efficiently heat the piezoelectric layers 14a and 14b as in the second embodiment.
  • the heat generating lines 30a and 30b may be directly connected to the piezoelectric layers 14a and 14b, or may be connected via an insulating layer, a metal layer, or the like.
  • FIG. 15 is a cross-sectional view of the sensor in Example 3.
  • FIG. 16 is a cross section taken along the line AA in FIG. 15.
  • the resonance regions 50a, 50b and the heating line 30 are shown by cross hatching
  • the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines
  • the voids 22a and 22b are indicated by broken lines.
  • the heating line 30 is provided between the piezoelectric thin film resonators 11a and 11b.
  • the heating line 30 has a meandering planar shape.
  • the piezoelectric layer 14 has openings at the pads 24a, 24b, 24d, and 25d, and is continuously provided between the piezoelectric thin film resonators 11a and 11b.
  • a piezoelectric layer 14 is provided on the heat generating line 30.
  • the piezoelectric layer 14 between the piezoelectric thin film resonators 11a and 11b is a piezoelectric layer 14d. No insulating layer is provided between the substrate 10 and the heating line 30.
  • the other configurations are the same as those in Example 1, and their explanation will be omitted.
  • heat generated in the heat generating line 30 is transmitted from the substrate 10 to the resonance regions 50a and 50b via the lower electrodes 12a and 12b provided outside the gaps 22a and 22b.
  • a piezoelectric layer 14d (third piezoelectric layer) is provided on the substrate 10 between the piezoelectric thin film resonators 11a and 11b, and is provided continuously with the piezoelectric layers 14a and 14b. .
  • the heat generated in the heat generating line 30 is efficiently transferred to the resonance regions 50a and 50b via the piezoelectric layer 14. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the heat generating line 30 may be directly connected to the piezoelectric layer 14d, or may be connected to the piezoelectric layer 14d via an insulating layer or the like.
  • the distance L3a between the resonance region 50a and the heat generating line 30 is approximately the same as the distance L3b between the resonance region 50b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • Distance L3a is preferably 0.5 times or more and 2 times or less of distance L3b, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less. It is even more preferable that there be.
  • FIG. 17 is a plan view of the sensor in Example 4.
  • FIG. 18(a) is a sectional view taken along line AA in FIG. 17.
  • the heat generating line 30 is shown by cross hatching, and the resonance regions 50a and 50b are not shown by cross hatching.
  • the upper electrodes 16a, 16b, pads 24a, 24b, 25a, 25b, and 25d are shown by solid lines, and the lower electrodes 12a, 12b, sensitive film 18, and voids 22a and 22b are shown by broken lines.
  • the heating line 30 passes over the substrate 10 in the resonance regions 50a and 50b and extends in the X direction.
  • Insulating layers 28a and 28b are provided under the lower electrodes 12a and 12b, respectively, so that the heating line 30 and the lower electrodes 12a and 12b do not come into contact with each other.
  • Gaps 22a and 22b are provided between the insulating layers 28a and 28b and the heating line 30, respectively.
  • Insulating layers 28a and 28b are, for example, silicon oxide layers or silicon nitride layers. Thick insulating layers 28a and 28b impede vibration in resonant regions 50a and 50b. Therefore, it is preferable that the insulating layers 28a and 28b are thinner than the lower electrodes 12a and 12b, respectively.
  • the other configurations are the same as those in Example 1, and their explanation will be omitted.
  • FIG. 18(b) is a cross-sectional view of a sensor in Modification 1 of Example 4.
  • the gaps 22a and 22b are provided in the recessed portions of the upper surface of the lower electrode 12a and the substrate 10.
  • Lower electrodes 12a and 12b are provided inside gaps 22a and 22b. Therefore, insulating layers 28a and 28b are not provided under lower electrodes 12a and 12b.
  • the other configurations are the same as those of the fourth embodiment, and the explanation will be omitted.
  • the heat generated in the heat generating line 30 is conducted in the plane direction and reaches the resonance regions 50a and 50b.
  • the cross-sectional area through which heat is conducted is small.
  • the distance between the heat generating line 30 and the resonance regions 50a and 50b is 10 ⁇ m or more.
  • the heating line 30 is provided within the gap 22a provided below the lower electrode 12a and within the gap 22b provided below the lower electrode 12b.
  • the area of the heat generating line 30 within the resonance region 50a is preferably 1/3 or more, more preferably 1/2 or more of the area of the resonance region 50a
  • the area of the heating line 30 within the resonance region 50b is preferably 1/3 or more, more preferably 1/2 or more, of the area of the resonance region 50b.
  • the height of the gaps 22a and 22b is preferably 10 ⁇ m or less.
  • the area of the heat generating line 30 within the resonance region 50a and the area of the heat generating line 30 within the resonance region 50b are approximately the same. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • the area of the heat generating line 30 in the resonance region 50a is preferably 0.5 times or more and 2 times or less, and 0.67 times or more and 1.5 times or less, the area of the heat generating line 30 in the resonance region 50b. More preferably, it is 0.8 times or more and 1.2 times or less.
  • FIG. 19 is a plan view of the sensor in Example 5.
  • the heat generating line 30 is shown by cross hatching, and the resonance regions 50a and 50b are not shown by cross hatching.
  • the upper electrodes 16a, 16b, pads 24a, 24b, 24d, 25a, 25b, and 25d are shown by solid lines, and the lower electrodes 12a, 12b, sensitive film 18, and voids 22a and 22b are shown by broken lines.
  • the planar shape of the heating line 30 is positive, with a portion 31a extending in the Y direction between the piezoelectric thin film resonators 11a and 11b, and a portion 31a extending in the X direction between the gaps 22a and 22b.
  • a stretching portion 31b is provided.
  • the piezoelectric layer 14 has openings at the pads 24a, 24b, 24d, and 25d, and is continuously provided between the piezoelectric thin film resonators 11a and 11b.
  • a piezoelectric layer 14 is provided on a portion 31a of the heating line 30.
  • a portion 31b of the heating line 30 extends below the gaps 22a and 22b.
  • the lower electrodes 12a and 12b are provided to the outside of the gaps 22a and 22b, respectively. Therefore, in order to prevent the portion 31b of the heating line 30 from coming into contact with the lower electrodes 12a and 12b, insulation similar to that shown in FIG. Layers 28a and 28b are provided.
  • the portion 31b of the heating line 30 if the thermal conductivity of the heating line 30 is made higher than the thermal conductivity of the substrate 10, the heat generated in the portion 31a will be larger than the heat conducted through the substrate 10. 31b, and is transmitted to resonance regions 50a and 50b.
  • the portion 31a is joined to the piezoelectric layer 14d. Therefore, the heat generated in the portion 31a is conducted to the resonance regions 50a and 50b via the piezoelectric layer 14d, separately from the heat conducted through the portion 31b. Therefore, heat is efficiently transmitted from the heat generating line 30 to the resonance regions 50a and 50b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
  • FIG. 20 is a plan view of the sensor in Example 6.
  • FIG. 21 is a sectional view taken along line AA in FIG. 20.
  • the resonance regions 50a to 50c, the heat generating lines 30a and 30b are shown by cross hatching
  • the upper electrodes 16a to 16c, the pads 24a to 24d and 25a to 25d are shown by solid lines
  • the lower electrodes 12a to 12c, the sensitive film 18 and the air gap 22a are shown.
  • ⁇ 22c is indicated by a broken line.
  • the piezoelectric thin film resonators 11a to 11c are arranged on the substrate 10 in the X direction.
  • a heating line 30a is provided between the piezoelectric thin film resonators 11a and 11b, and a heating line 30b is provided between the piezoelectric thin film resonators 11b and 11c.
  • the piezoelectric thin film resonator 11c includes a lower electrode 12c, a piezoelectric layer 14c, an insertion film 20c, an upper electrode 16c, an insertion film 20c, a gap 22c, pads 24c and 25c, and does not include a sensitive film 18.
  • the resonance region 50c is a region where the lower electrode 12c and the upper electrode 16c face each other with the piezoelectric layer 14c in between.
  • the structure of the piezoelectric thin film resonator 11c is the same as the piezoelectric thin film resonator 11a except that the sensitive film 18 is not provided.
  • the piezoelectric thin film resonator 11c functions as a reference resonator without the sensitive film 18.
  • the detector 42 detects a change in the environment based on a change in the difference in resonance frequency between the piezoelectric thin film resonators 11a and 11c.
  • a piezoelectric thin film resonator 11c serving as a reference resonator is provided on a substrate 10 on which piezoelectric thin film resonators 11a, 11b and a heating line 30 are provided. Thereby, the temperature of the piezoelectric thin film resonators 11a and 11c can be controlled with high accuracy.
  • Example 7 and its modification 1 are examples in which the configuration of the voids is changed.
  • FIG. 22(a) is a cross-sectional view of the sensor in Example 7.
  • the piezoelectric thin film resonator 11a is provided with a gap 22a penetrating the substrate 10.
  • the lower electrode 12a within the resonant region 50a is provided on the air gap 22a.
  • a void 22b penetrating the substrate 10 is also provided in the piezoelectric thin film resonator 11b.
  • the lower electrode 12a within the resonant region 50b is provided above the air gap 22b.
  • the other configurations are the same as in Example 1, and the explanation will be omitted.
  • FIG. 22(b) is a cross-sectional view of a sensor in Modification 1 of Example 7.
  • an acoustic reflection film 27 is formed under the lower electrode 12a in the resonance region 50a.
  • the acoustic reflection film 27 includes films 27a with low acoustic impedance and films 27b with high acoustic impedance alternately provided.
  • the thickness of each of the films 27a and 27b is, for example, approximately ⁇ /4 ( ⁇ is the wavelength of the elastic wave).
  • the number of laminated films 27a and 27b can be set arbitrarily.
  • an acoustic reflection film 27 is provided below the lower electrode 12b in the resonance region 50b.
  • the other configurations are the same as those in Example 7, and their explanation will be omitted.
  • the piezoelectric thin film resonator used in the sensor may be an FBAR (Film Bulk Acoustic Resonator) in which air gaps 22a and 22b are formed under the lower electrodes 12a and 12b in the resonance regions 50a and 50b.
  • the piezoelectric thin film resonator includes an acoustic reflection film 27 that reflects elastic waves propagating through piezoelectric layers 14a and 14b below lower electrodes 12a and 12b in resonance regions 50a and 50b.
  • An SMR Solidly Mounted Resonator
  • lower electrodes 12a and 12b are made of substantially the same material and have substantially the same thickness
  • piezoelectric layers 14a and 14b are made of substantially the same material. and have substantially the same thickness
  • upper electrodes 16a and 16b are made of substantially the same material and have the same thickness.
  • the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the piezoelectric thin film resonator 11a can be controlled with high precision.
  • the planar shapes of the resonance regions 50a and 50b are also substantially the same. Note that the term "substantially the same material” allows for differences in materials due to manufacturing errors. "Substantially the same thickness” allows for a difference of approximately ⁇ 10%.
  • Substantially the same planar shape allows for a difference in area of approximately ⁇ 10%.
  • the resonance frequencies of the piezoelectric thin film resonators 11a and 11b are almost the same.
  • the piezoelectric layers 14a and 14b may have different thicknesses or materials, and the piezoelectric thin film resonators 11a and 11b may have different resonance frequencies.
  • the piezoelectric thin film resonator 11a includes an inserted film 20a as a temperature compensation film between the lower electrode 12a and the upper electrode 16a at least in the center of the resonance region 50a. This reduces the temperature dependence of the resonant frequency of the piezoelectric thin film resonator 11a. Therefore, the piezoelectric thin film resonator 11a can detect changes in the environment without depending on temperature.
  • the piezoelectric thin film resonator 11b does not include a temperature compensation film between the lower electrode 12b and the upper electrode 16b in the center of the resonance region 50b. This increases the temperature dependence of the resonant frequency of the piezoelectric thin film resonator 11b. Therefore, the accuracy of temperature detection in the piezoelectric thin film resonator 11b is improved.
  • lower electrodes 12a and 12b are formed from the same metal layer on the substrate 10, as shown in FIG. 4(c).
  • piezoelectric layers 14a and 14b are formed from the same piezoelectric layer 14 on lower electrodes 12a and 12b, respectively.
  • upper electrodes 16a and 16b are formed from the same metal layer on piezoelectric layers 14a and 14b, respectively.
  • a sensitive film 18 is formed on the upper electrode 16a within the resonance region 50a.
  • a heater 31 is formed on the substrate 10.
  • the temperatures of the resonance region 50a of the piezoelectric thin film resonator 11a and the resonance region 50b of the piezoelectric thin film resonator 11b become approximately the same. Therefore, by controlling the heater 31 based on the resonance frequency of the piezoelectric thin film resonator 11b, the temperature of the piezoelectric thin film resonator a can be controlled with high accuracy.
  • a film 21b serving as a temperature compensation film is formed in a region between the lower electrode 12a and the upper electrode 16a and a region between the lower electrode 12b and the upper electrode 16b. Thereafter, as shown in FIG. 7D, the film 21b is left at least in the center of the region that will become the resonance region 50a, and the film 21b in the region that will become the resonance region 50b is removed.
  • the heater 31 can be easily formed on the substrate 10.
  • the planar shape of the heating line 30 can be selected as appropriate, such as a meandering shape, a linear shape, or a curved shape.
  • the heater 31 may be a film-shaped heating element, a circuit that generates heat, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

According to the present invention, a detection device comprises: a substrate 10; a first piezoelectric thin film resonator 11a that comprises a first lower electrode 12a that is provided on the substrate, a first piezoelectric layer 14a that is provided on the first lower electrode, a first upper electrode 16a that is provided on the first piezoelectric layer, a first resonance region 50a at which the first lower electrode and the first upper electrode are opposite with at least a portion of the first piezoelectric layer therebetween, and a sensing film that is provided on the first upper electrode in the first resonance region; a second piezoelectric thin film resonator 11b that comprises a second lower electrode 12b that is provided on the substrate, a second piezoelectric layer 14b that is provided on the second lower electrode, a second upper electrode 16b that is provided on the second piezoelectric layer, and a second resonance region 50b at which the second lower electrode and the second upper electrode are opposite with at least a portion of the second piezoelectric layer therebetween; and a heater 31 that is provided on the substrate and controlled on the basis of the resonant frequency of the second piezoelectric thin film resonator.

Description

検出装置およびその製造方法Detection device and its manufacturing method
 本発明は、検出装置およびその製造方法に関し、例えば圧電薄膜共振器を有する検出装置およびその製造方法に関する。 The present invention relates to a detection device and a method for manufacturing the same, and for example, to a detection device having a piezoelectric thin film resonator and a method for manufacturing the same.
 圧電薄膜共振器の上部電極上に感応膜を設け、感応膜の質量変化による共振周波数または反共振周波数の変化に基づき環境の変化を検出する検出装置が知られている(例えば特許文献1、2)。環境の変化を検出する検出素子と温度を検出する温度素子を有する検出装置が知られている(例えば特許文献3~8)。 A detection device is known in which a sensitive film is provided on the upper electrode of a piezoelectric thin film resonator and detects changes in the environment based on changes in the resonant frequency or anti-resonant frequency due to changes in the mass of the sensitive film (for example, Patent Documents 1 and 2). ). Detection devices having a detection element that detects changes in the environment and a temperature element that detects temperature are known (for example, Patent Documents 3 to 8).
特開2018-115927号公報Japanese Patent Application Publication No. 2018-115927 特開2015-139167号公報Japanese Patent Application Publication No. 2015-139167 特開2020-139788号公報JP2020-139788A 特開2004-294356号公報Japanese Patent Application Publication No. 2004-294356 特開平7-300512号公報Japanese Patent Application Publication No. 7-300512 特開2004-37224号公報Japanese Patent Application Publication No. 2004-37224 特開2018-48930号公報JP2018-48930A 特開2021-196354号公報Japanese Patent Application Publication No. 2021-196354
 検出素子の温度を制御するため加熱器と温度素子を用いる場合、精度よく温度を制御することが求められている。 When using a heater and a temperature element to control the temperature of a detection element, it is required to control the temperature with high precision.
 本発明は、上記課題に鑑みなされたものであり、精度よく温度を制御することを目的とする。 The present invention was made in view of the above-mentioned problems, and an object thereof is to control temperature with high precision.
 本発明は、基板と、前記基板上に設けられた第1下部電極と、前記第1下部電極上に設けられた第1圧電層と、前記第1圧電層上に設けられた第1上部電極と、前記第1圧電層の少なくとも一部を挟み前記第1下部電極と前記第1上部電極とが対向する第1共振領域と、前記第1共振領域内の前記第1上部電極上に設けられた感応膜と、を備える第1圧電薄膜共振器と、前記基板上に設けられた第2下部電極と、前記第2下部電極上に設けられた第2圧電層と、前記第2圧電層上に設けられた第2上部電極と、前記第2圧電層の少なくとも一部を挟み前記第2下部電極と前記第2上部電極とが対向する第2共振領域と、を備える第2圧電薄膜共振器と、前記基板上に設けられ、前記第2圧電薄膜共振器の共振周波数に基づき制御される加熱器と、を備える検出装置である。 The present invention includes a substrate, a first lower electrode provided on the substrate, a first piezoelectric layer provided on the first lower electrode, and a first upper electrode provided on the first piezoelectric layer. a first resonant region in which the first lower electrode and the first upper electrode face each other with at least a portion of the first piezoelectric layer in between; and a first resonant region provided on the first upper electrode in the first resonant region. a first piezoelectric thin film resonator comprising: a second piezoelectric thin film resonator comprising: a second lower electrode provided on the substrate; a second piezoelectric layer provided on the second lower electrode; a second piezoelectric thin film resonator comprising: a second upper electrode provided in the second piezoelectric layer; and a second resonance region in which the second lower electrode and the second upper electrode face each other with at least a portion of the second piezoelectric layer sandwiched therebetween. and a heater provided on the substrate and controlled based on the resonance frequency of the second piezoelectric thin film resonator.
 上記構成において、前記加熱器は、前記第1圧電薄膜共振器と前記第2圧電薄膜共振器との間に隣接して設けられている構成とすることができる。 In the above configuration, the heater may be provided adjacently between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator.
 上記構成において、前記第1共振領域は、前記第1下部電極が前記第1共振領域から引き出される方向および前記第1上部電極が前記第1共振領域から引き出される方向に交差する方向において前記加熱器と隣接し、前記第2共振領域は、前記第2下部電極が前記第2共振領域から引き出される方向および前記第2上部電極が前記第2共振領域から引き出される方向に交差する方向において前記加熱器と隣接する構成とすることができる。 In the above configuration, the first resonant region is connected to the heater in a direction intersecting a direction in which the first lower electrode is drawn out from the first resonant region and a direction in which the first upper electrode is drawn out from the first resonant region. , the second resonance region is adjacent to the heater in a direction intersecting a direction in which the second lower electrode is drawn out from the second resonance region and a direction in which the second upper electrode is drawn out from the second resonance region. It can be configured so that it is adjacent to the .
 上記構成において、前記第1共振領域において、前記第1下部電極下に第1空隙が設けられ、前記第2共振領域において、前記第2下部電極下に第2空隙が設けられ、前記第1下部電極のうち前記第1空隙の外側において前記第1基板上に設けられ前記第1下部電極を外部と接続する部分を除いた第1部分は、前記第1圧電薄膜共振器のうち最も前記加熱器に近く、前記第2下部電極のうち前記第2空隙の外側において前記第2基板上に設けられ前記第2下部電極を外部と接続する部分を除いた第2部分は、前記第2圧電薄膜共振器のうち最も前記加熱器に近い構成とすることができる。 In the above configuration, a first gap is provided under the first lower electrode in the first resonance region, a second gap is provided below the second lower electrode in the second resonance region, and a second gap is provided under the second lower electrode in the first resonance region. A first portion of the electrode, excluding a portion provided on the first substrate outside the first gap and connecting the first lower electrode to the outside, is located closest to the heater of the first piezoelectric thin film resonator. , and a second portion of the second lower electrode other than a portion provided on the second substrate outside the second gap and connecting the second lower electrode with the outside is a second portion of the second piezoelectric thin film resonance. Among the devices, the configuration may be the one closest to the heater.
 上記構成において、前記第1部分と前記加熱器との最短の距離は前記第2部分と前記加熱器との最短の距離の0.5倍以上かつ2倍以下である構成とすることができる。 In the above configuration, the shortest distance between the first portion and the heater may be 0.5 times or more and twice or less the shortest distance between the second portion and the heater.
 上記構成において、前記第1圧電薄膜共振器と前記第2圧電薄膜共振器との間における前記基板上に、前記第1圧電層と前記第2圧電層と連続して設けられた第3圧電層を備え、前記加熱器は、前記基板と前記第3圧電層との間に設けられている構成とすることができる。 In the above configuration, a third piezoelectric layer is provided on the substrate between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator, and is continuous with the first piezoelectric layer and the second piezoelectric layer. The heater may be provided between the substrate and the third piezoelectric layer.
 上記構成において、前記加熱器は、前記第1下部電極が前記第1共振領域から引き出された領域において前記第1下部電極に接合され、前記第2下部電極が前記第2共振領域から引き出された領域において前記第2下部電極に接合される構成とすることができる。 In the above configuration, the heater is connected to the first lower electrode in a region where the first lower electrode is drawn out from the first resonance region, and the second lower electrode is drawn out from the second resonance region. The structure may be such that it is joined to the second lower electrode in the region.
 上記構成において、前記加熱器は、前記第1上部電極が前記第1共振領域から引き出された第1領域または前記第1領域に対し前記第1共振領域と反対の領域において前記第1圧電層に接合され、前記第2上部電極が前記第2共振領域から引き出された第2領域または前記第2領域に対し前記第2共振領域と反対の領域において前記第2圧電層に接合される構成とすることができる。 In the above configuration, the heater is arranged such that the first upper electrode is connected to the first piezoelectric layer in a first region drawn out from the first resonant region or in a region opposite to the first resonant region with respect to the first region. and the second upper electrode is bonded to the second piezoelectric layer in a second region drawn out from the second resonant region or in a region opposite to the second resonant region with respect to the second region. be able to.
 上記構成において、前記第1共振領域において、前記第1下部電極下に第1空隙が設けられ、前記第2共振領域において、前記第2下部電極下に第2空隙が設けられ、前記加熱器は、前記第1空隙および前記第2空隙内に設けられている構成とすることができる。 In the above configuration, a first gap is provided under the first lower electrode in the first resonance region, a second gap is provided below the second lower electrode in the second resonance region, and the heater is , may be provided within the first gap and the second gap.
 上記構成において、前記第1下部電極と前記第2下部電極とは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、前記第1圧電層と前記第2圧電層とは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、前記第1上部電極と前記第2上部電極とは実質的に同じ材料からなりかつ実質的に同じ厚さを有する構成とすることができる。 In the above configuration, the first lower electrode and the second lower electrode are made of substantially the same material and have substantially the same thickness, and the first piezoelectric layer and the second piezoelectric layer are substantially The first upper electrode and the second upper electrode may be made of substantially the same material and have substantially the same thickness. can.
 上記構成において、前記第1共振領域と前記加熱器との最短の距離は、前記第2共振領域と前記加熱器との最短の距離との0.5倍以上かつ2倍以下である構成とすることができる。 In the above configuration, the shortest distance between the first resonance region and the heater is at least 0.5 times and at most twice the shortest distance between the second resonance region and the heater. be able to.
 上記構成において、前記第1圧電薄膜共振器は、前記第1共振領域における少なくとも中央部における前記第1下部電極と前記第1上部電極との間に温度補償膜を備え、前記第2圧電薄膜共振器は、前記第2共振領域における中央部における前記第2下部電極と前記第2上部電極との間に温度補償膜を備えない構成とすることができる。 In the above configuration, the first piezoelectric thin film resonator includes a temperature compensation film between the first lower electrode and the first upper electrode in at least a central portion of the first resonance region, and the second piezoelectric thin film resonator The device may be configured such that a temperature compensation film is not provided between the second lower electrode and the second upper electrode in a central portion of the second resonance region.
 上記構成において、前記加熱器は、前記基板上に設けられた導電体線路である構成とすることができる。 In the above configuration, the heater may be a conductor line provided on the substrate.
 上記構成において、前記第1圧電薄膜共振器の共振周波数に基づき、環境の変化を検出し、前記第2圧電薄膜共振器の共振周波数に基づき前記加熱器を制御する検出器を備える構成とすることができる。 The above configuration may include a detector that detects a change in the environment based on the resonant frequency of the first piezoelectric thin film resonator and controls the heater based on the resonant frequency of the second piezoelectric thin film resonator. I can do it.
 本発明は、基板上に第1下部電極および第2下部電極を同じ金属層から形成する工程と、前記第1下部電極および前記第2下部電極上にそれぞれ第1圧電層および第2圧電層を同じ圧電層から形成する工程と、前記第1圧電層の少なくとも一部を挟み前記第1下部電極と第1上部電極とが対向する第1共振領域を有する第1圧電薄膜共振器と、前記第2圧電層の少なくとも一部を挟み前記第2下部電極と第2上部電極とが対向する第2共振領域を有する第2圧電薄膜共振器と、が形成されるように、前記第1圧電層および前記第2圧電層上にそれぞれ前記第1上部電極および前記第2上部電極を同じ金属層から形成する工程と、前記第1共振領域内の前記第1上部電極上に感応膜を形成する工程と、前記基板上に、前記第2圧電薄膜共振器の共振周波数に基づき制御される加熱器を形成する工程と、を含む検出装置の製造方法である。 The present invention includes a step of forming a first lower electrode and a second lower electrode from the same metal layer on a substrate, and forming a first piezoelectric layer and a second piezoelectric layer on the first lower electrode and the second lower electrode, respectively. a first piezoelectric thin film resonator having a step of forming the same piezoelectric layer, and a first resonance region in which the first lower electrode and the first upper electrode face each other with at least a portion of the first piezoelectric layer sandwiched therebetween; the first piezoelectric layer and a second piezoelectric thin film resonator having a second resonance region in which the second lower electrode and the second upper electrode face each other with at least a portion of the two piezoelectric layers sandwiched therebetween. forming the first upper electrode and the second upper electrode from the same metal layer on the second piezoelectric layer; and forming a sensitive film on the first upper electrode in the first resonance region. . A method of manufacturing a detection device, comprising: forming on the substrate a heater that is controlled based on the resonance frequency of the second piezoelectric thin film resonator.
 上記構成において、前記第1下部電極と前記第1上部電極との間と、前記第2下部電極と前記第2上部電極との間に温度補償膜を形成する工程と、前記第1共振領域の少なくとも中央部における前記温度補償膜を残存させ、前記第2共振領域の少なくとも中央部における前記温度補償膜を除去する工程と、を含む構成とすることができる。 In the above configuration, the step of forming a temperature compensation film between the first lower electrode and the first upper electrode and between the second lower electrode and the second upper electrode; The method may include a step of leaving the temperature compensation film in at least a central portion and removing the temperature compensation film in at least a central portion of the second resonance region.
 本発明によれば、精度よく温度を制御することができる。 According to the present invention, temperature can be controlled with high accuracy.
図1は、実施例1に係る検出装置のブロック図である。FIG. 1 is a block diagram of a detection device according to a first embodiment. 図2は、実施例1に係るセンサの平面図である。FIG. 2 is a plan view of the sensor according to the first embodiment. 図3(a)および図3(b)は、図2のそれぞれA-A断面図およびB-B断面図である。3(a) and 3(b) are a sectional view taken along the line AA and sectional view taken along the line BB in FIG. 2, respectively. 図4(a)から図4(d)は、実施例1におけるセンサの製造方法を示す断面図である。FIGS. 4(a) to 4(d) are cross-sectional views showing a method of manufacturing a sensor in Example 1. FIG. 図5(a)から図5(c)は、実施例1におけるセンサの製造方法を示す断面図である。5(a) to 5(c) are cross-sectional views showing a method for manufacturing a sensor in Example 1. FIG. 図6(a)から図6(c)は、実施例1におけるセンサの製造方法を示す断面図である。6(a) to 6(c) are cross-sectional views showing a method for manufacturing a sensor in Example 1. FIG. 図7(a)から図7(d)は、実施例1における挿入膜の形成方法を示す断面図である。FIGS. 7(a) to 7(d) are cross-sectional views showing a method of forming an inserted film in Example 1. 図8は、実験1における圧電薄膜共振器の時間に対する共振周波数の変化量Δfを示す図である。FIG. 8 is a diagram showing the amount of change Δf in the resonance frequency of the piezoelectric thin film resonator with respect to time in Experiment 1. 図9(a)は、実験2における圧電薄膜共振器の時間に対する共振周波数を示す図、図9(b)は、シミュレーションにおける発熱線路の電流に対する温度を示す図である。FIG. 9(a) is a diagram showing the resonant frequency of the piezoelectric thin film resonator with respect to time in Experiment 2, and FIG. 9(b) is a diagram showing the temperature with respect to the current of the heating line in the simulation. 図10は、実施例2におけるセンサの平面図である。FIG. 10 is a plan view of a sensor in Example 2. 図11(a)および図11(b)は、図10のそれぞれA-A断面図およびB-B断面図である。FIGS. 11(a) and 11(b) are a sectional view taken along line AA and taken along line BB in FIG. 10, respectively. 図12は、実施例2の変形例1におけるセンサの平面図である。FIG. 12 is a plan view of a sensor in Modification 1 of Embodiment 2. 図13(a)および図13(b)は、図12のそれぞれA-A断面図およびB-B断面図である。13(a) and 13(b) are a sectional view taken along line AA and taken along line BB in FIG. 12, respectively. 図14は、図12のC-C断面図である。FIG. 14 is a sectional view taken along the line CC in FIG. 12. 図15は、実施例3におけるセンサの断面図である。FIG. 15 is a cross-sectional view of a sensor in Example 3. 図16は、図15のA-A断面である。FIG. 16 is a cross section taken along the line AA in FIG. 15. 図17は、実施例4におけるセンサの平面図である。FIG. 17 is a plan view of a sensor in Example 4. 図18(a)は、図17のA-A断面図、図18(b)は、実施例4の変形例1におけるセンサの断面図である。18(a) is a cross-sectional view taken along the line AA in FIG. 17, and FIG. 18(b) is a cross-sectional view of the sensor in Modification 1 of Example 4. 図19は、実施例5におけるセンサの平面図である。FIG. 19 is a plan view of a sensor in Example 5. 図20は、実施例6におけるセンサの平面図である。FIG. 20 is a plan view of a sensor in Example 6. 図21は、図20のA-A断面図である。FIG. 21 is a sectional view taken along line AA in FIG. 20. 図22(a)および図22(b)は、それぞれ実施例7およびその変形例1におけるセンサの断面図である。22(a) and 22(b) are cross-sectional views of the sensor in Example 7 and Modification Example 1, respectively.
 以下、図面を参照し実施例について説明する。 Examples will be described below with reference to the drawings.
 図1は、実施例1に係る検出装置のブロック図である。図1に示すように、検出装置100は、センサ40および検出器42を備えている。センサ40では、基板10上に圧電薄膜共振器11a、11bおよび加熱器31が設けられている。圧電薄膜共振器11aは、環境の変化を検出する検出素子であり、圧電薄膜共振器11bは基板10の温度を検出する温度素子である。加熱器31は基板10を加熱する。 FIG. 1 is a block diagram of a detection device according to the first embodiment. As shown in FIG. 1, the detection device 100 includes a sensor 40 and a detector 42. In the sensor 40, piezoelectric thin film resonators 11a, 11b and a heater 31 are provided on a substrate 10. The piezoelectric thin film resonator 11a is a detection element that detects changes in the environment, and the piezoelectric thin film resonator 11b is a temperature element that detects the temperature of the substrate 10. The heater 31 heats the substrate 10.
 検出器42は、発振回路44a、44b、測定器45a、45b、制御部46および算出部47を備えている。発振回路44aおよび44bは、それぞれ圧電薄膜共振器11aおよび11bの共振周波数に対応する発振周波数を有する発振信号を出力する。なお、発振回路44aおよび44bは、圧電薄膜共振器11aおよび11bをそれぞれ含み、発振回路を構成しているということもできる。発振周波数は共振周波数と同じでなくともよく、共振周波数の変化に基づき発振周波数が変化すればよい。測定器45aおよび45bは、それぞれ発振回路44aおよび44bが出力する発振信号の周波数を測定する。算出部47は、測定器45aが測定した発振信号の周波数の変化量に基づき、環境の変化を算出する。制御部46は、測定器45bが測定した発振信号の周波数の変化量に基づき、温度を検出する。制御部46は、検出した温度に基づき、加熱器31を制御する。このように、検出器42は、圧電薄膜共振器11a(第1圧電薄膜共振器)の共振周波数に基づき、環境の変化を検出し、圧電薄膜共振器11b(第2圧電薄膜共振器)の共振周波数に基づき加熱器31を制御する。 The detector 42 includes oscillation circuits 44a, 44b, measuring devices 45a, 45b, a control section 46, and a calculation section 47. Oscillation circuits 44a and 44b output oscillation signals having oscillation frequencies corresponding to the resonance frequencies of piezoelectric thin film resonators 11a and 11b, respectively. Note that the oscillation circuits 44a and 44b can also be said to include piezoelectric thin film resonators 11a and 11b, respectively, and constitute an oscillation circuit. The oscillation frequency does not need to be the same as the resonant frequency, and it is sufficient that the oscillation frequency changes based on a change in the resonant frequency. Measuring devices 45a and 45b measure the frequencies of oscillation signals output by oscillation circuits 44a and 44b, respectively. The calculation unit 47 calculates the change in the environment based on the amount of change in the frequency of the oscillation signal measured by the measuring device 45a. The control unit 46 detects the temperature based on the amount of change in the frequency of the oscillation signal measured by the measuring device 45b. The control unit 46 controls the heater 31 based on the detected temperature. In this way, the detector 42 detects changes in the environment based on the resonance frequency of the piezoelectric thin film resonator 11a (first piezoelectric thin film resonator), and detects the resonance of the piezoelectric thin film resonator 11b (second piezoelectric thin film resonator). The heater 31 is controlled based on the frequency.
 例えば、制御部46は、検出した温度に基づき加熱器31を制御し、圧電薄膜共振器11aの温度を所望の温度に設定する。その後、制御部46は、算出部47に、圧電薄膜共振器11aの共振周波数の変化に基づき環境の変化を検出させる。なお、環境の変化とは、気体または液体中の特定の原子または分子等の特定物質の濃度の変化、湿度の変化などであり、例えば、気体または液体中の特定物質を検出することである。 For example, the control unit 46 controls the heater 31 based on the detected temperature, and sets the temperature of the piezoelectric thin film resonator 11a to a desired temperature. Thereafter, the control unit 46 causes the calculation unit 47 to detect a change in the environment based on a change in the resonance frequency of the piezoelectric thin film resonator 11a. Note that a change in the environment refers to a change in the concentration of a specific substance such as a specific atom or molecule in a gas or liquid, a change in humidity, etc., and includes, for example, detecting a specific substance in the gas or liquid.
 次に、実施例1のセンサ40について説明する。図2は、実施例1に係るセンサ40の平面図である。図3(a)および図3(b)は、図2のそれぞれA-A断面図およびB-B断面図である。図2では、共振領域50a、50bおよび発熱線路30をクロスハッチングで示し、上部電極16a、16b、パッド24a、24b、24d、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。基板10の上面の法線方向をZ方向、圧電薄膜共振器11aおよび11bの配列方向をX方向、平面方向のうちX方向に直行する方向をY方向とする。 Next, the sensor 40 of Example 1 will be explained. FIG. 2 is a plan view of the sensor 40 according to the first embodiment. 3(a) and 3(b) are a sectional view taken along the line AA and sectional view taken along the line BB in FIG. 2, respectively. In FIG. 2, the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching, the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines, the lower electrodes 12a, 12b, the sensitive film 18, The voids 22a and 22b are indicated by broken lines. The normal direction of the upper surface of the substrate 10 is the Z direction, the arrangement direction of the piezoelectric thin film resonators 11a and 11b is the X direction, and the direction perpendicular to the X direction among the plane directions is the Y direction.
 図2から図3(b)に示すように、平面形状が長方形状の基板10上に、圧電薄膜共振器11aおよび11bが設けられている。圧電薄膜共振器11aと11bとの間に加熱器31として、発熱線路30が設けられている。発熱線路30とは、パッド24dおよび24d等の一対の電極の間を金属線路で接続し、一対の電極に電圧を印加して、金属線路を流れる電流によりジュール熱を発生させる構造をいう。 As shown in FIGS. 2 to 3(b), piezoelectric thin film resonators 11a and 11b are provided on a substrate 10 having a rectangular planar shape. A heating line 30 is provided as a heater 31 between the piezoelectric thin film resonators 11a and 11b. The heating line 30 has a structure in which a pair of electrodes such as the pads 24d and 24d are connected by a metal line, a voltage is applied to the pair of electrodes, and Joule heat is generated by a current flowing through the metal line.
 圧電薄膜共振器11aでは、基板10上に下部電極12a(第1下部電極)が設けられ、下部電極12a上に圧電層14a(第1圧電層)が設けられ、圧電層14a上に上部電極16a(第1上部電極)が設けられている。基板10の平坦な上面と下部電極12aとの間に、ドーム状の膨らみを有する空隙22a(第1空隙)が形成されている。ドーム状の膨らみとは、例えば空隙22aの周辺では空隙22aの高さが小さく、空隙22aの内部ほど空隙22aの高さが大きくなるような形状の膨らみである。共振領域50a(第1共振領域)は圧電層14aの少なくとも一部を挟み下部電極12aと上部電極16aとが対向する領域により画定される。共振領域50aは、楕円形状を有し、厚み縦振動モードまたは厚みすべり振動モード等の弾性波が共振する領域である。共振領域50aの平面形状は、楕円形状以外でもよく、例えば四角形状または五角形状等の多角形状でもよい。 In the piezoelectric thin film resonator 11a, a lower electrode 12a (first lower electrode) is provided on the substrate 10, a piezoelectric layer 14a (first piezoelectric layer) is provided on the lower electrode 12a, and an upper electrode 16a is provided on the piezoelectric layer 14a. (first upper electrode) is provided. A gap 22a (first gap) having a dome-shaped bulge is formed between the flat upper surface of the substrate 10 and the lower electrode 12a. The dome-shaped bulge is a bulge having a shape such that, for example, the height of the void 22a is small around the void 22a, and the height of the void 22a becomes larger toward the inside of the void 22a. The resonance region 50a (first resonance region) is defined by a region where the lower electrode 12a and the upper electrode 16a face each other with at least a portion of the piezoelectric layer 14a in between. The resonance region 50a has an elliptical shape, and is a region where elastic waves such as a thickness longitudinal vibration mode or a thickness shear vibration mode resonate. The planar shape of the resonance region 50a may be other than an elliptical shape, and may be, for example, a polygonal shape such as a quadrangular shape or a pentagonal shape.
 平面視において、空隙22aは共振領域50aと同じ大きさまたは共振領域50aよりも大きく設けられている。これにより、弾性波は空隙22aにより反射される。下部電極12aは空隙22aより大きく設けられ、下部電極12aの周縁部は空隙22aの外側の基板10上に設けられている。X方向における共振領域50aの両側に位置する下部電極12aに孔23aが設けられている。孔23aは空隙22aにつながっている。後述するように、孔23aは空隙22aを形成するときに、犠牲層をエッチングするエッチング液が通る孔である。 In plan view, the air gap 22a is provided with the same size as the resonance region 50a or larger than the resonance region 50a. Thereby, the elastic wave is reflected by the air gap 22a. The lower electrode 12a is provided larger than the gap 22a, and the peripheral edge of the lower electrode 12a is provided on the substrate 10 outside the gap 22a. Holes 23a are provided in the lower electrode 12a located on both sides of the resonance region 50a in the X direction. The hole 23a is connected to the void 22a. As will be described later, the hole 23a is a hole through which an etching solution for etching the sacrificial layer passes when forming the void 22a.
 上部電極16a上に感応膜18が設けられている。上部電極16aの上面には挿入膜20aに対応する凹部19が設けられており、感応膜18は凹部19内に設けられている。これにより、感応膜18を形成するときに、感応膜18を設ける領域を一定にすることができる。 A sensitive film 18 is provided on the upper electrode 16a. A recess 19 corresponding to the insertion film 20a is provided on the upper surface of the upper electrode 16a, and the sensitive film 18 is provided within the recess 19. Thereby, when forming the sensitive film 18, the area where the sensitive film 18 is provided can be made constant.
 例えば、気体または液体中の特定の原子または分子等の物質が感応膜18に吸着すると感応膜18の質量が増加する。感応膜18の周囲の湿度が高くなると、水分が感応膜18に吸着し感応膜18の質量が増加する。温度が変化すると感応膜18の質量が変化する。紫外線等の光が感応膜18に照射されると感応膜18の質量が変化する。このように、感応膜18の周囲の気体または液体中の特定の物質の濃度、湿度、温度または光強度等の環境の変化により感応膜18の質量が変化する。感応膜18の質量が変化すると、圧電薄膜共振器11aの共振周波数が変化する。このように、圧電薄膜共振器11aを環境の変化を検出する検出素子として用いることができる。 For example, when a substance such as a specific atom or molecule in a gas or liquid is adsorbed to the sensitive film 18, the mass of the sensitive film 18 increases. When the humidity around the sensitive film 18 increases, moisture is adsorbed to the sensitive film 18 and the mass of the sensitive film 18 increases. When the temperature changes, the mass of the sensitive film 18 changes. When the sensitive film 18 is irradiated with light such as ultraviolet rays, the mass of the sensitive film 18 changes. In this way, the mass of the sensitive film 18 changes due to changes in the environment such as the concentration of a specific substance in the gas or liquid surrounding the sensitive film 18, humidity, temperature, or light intensity. When the mass of the sensitive film 18 changes, the resonant frequency of the piezoelectric thin film resonator 11a changes. In this way, the piezoelectric thin film resonator 11a can be used as a detection element for detecting changes in the environment.
 圧電層14は、基板10上に設けられた下部圧電層15aと、下部圧電層15a上に設けられた上部圧電層15bと、を備える。共振領域50aの全面に渡り、下部圧電層15aと上部圧電層15bとの間に挿入膜20aが設けられている。共振領域50aの周縁部の挿入膜20aは中央部の挿入膜20aより厚い。共振領域50aの中央部の挿入膜20aは温度係数を小さくする温度補償膜として機能し、周縁部の挿入膜20aはQ値を向上させるための膜として機能する。Q値を向上させない場合、周縁部の挿入膜20aの厚さは、中央部の挿入膜20aの厚さと同じでもよい。圧電薄膜共振器11aでは、温度補償膜として機能する挿入膜20aを設けることで、共振周波数の温度係数が小さくなる。挿入膜20aは、下部電極12aと上部電極16aとの間に設けられていればよい。例えば、挿入膜20aは、下部電極12aと圧電層14との間に設けられていてもよく、圧電層14と上部電極16aとの間に設けられていてもよい。挿入膜20aが上部圧電層15bと下部圧電層15aとの間に設けられることで、挿入膜20aは温度補償効果をより発揮することができる。 The piezoelectric layer 14 includes a lower piezoelectric layer 15a provided on the substrate 10 and an upper piezoelectric layer 15b provided on the lower piezoelectric layer 15a. An insertion film 20a is provided between the lower piezoelectric layer 15a and the upper piezoelectric layer 15b over the entire surface of the resonant region 50a. The insertion film 20a at the periphery of the resonance region 50a is thicker than the insertion film 20a at the center. The insertion film 20a at the center of the resonance region 50a functions as a temperature compensation film for reducing the temperature coefficient, and the insertion film 20a at the peripheral portion functions as a film for improving the Q value. When the Q value is not improved, the thickness of the insertion film 20a at the peripheral portion may be the same as the thickness of the insertion film 20a at the center. In the piezoelectric thin film resonator 11a, the temperature coefficient of the resonance frequency is reduced by providing the insertion film 20a that functions as a temperature compensation film. The insertion film 20a may be provided between the lower electrode 12a and the upper electrode 16a. For example, the insertion film 20a may be provided between the lower electrode 12a and the piezoelectric layer 14, or may be provided between the piezoelectric layer 14 and the upper electrode 16a. By providing the insertion film 20a between the upper piezoelectric layer 15b and the lower piezoelectric layer 15a, the insertion film 20a can exhibit a better temperature compensation effect.
 下部電極12aは、共振領域50aから-Y方向に引き出されている。共振領域50aから下部電極12aが引き出された領域は領域52aである。領域52aにおいて、下部電極12a上に圧電層14および上部電極16aは設けられておらず、下部電極12a上にパッド24aが設けられている。上部電極16aは、共振領域50aから+Y方向に引き出されている。共振領域50aから上部電極16aが引き出された領域は領域54aである。領域54aにおいて、下部電極12aは設けられておらず、基板10上に圧電層14が設けられ、圧電層14上に上部電極16aが設けられている。上部電極16a上にパッド25aが設けられている。 The lower electrode 12a is drawn out from the resonance region 50a in the −Y direction. The region where the lower electrode 12a is drawn out from the resonance region 50a is a region 52a. In region 52a, piezoelectric layer 14 and upper electrode 16a are not provided on lower electrode 12a, but pad 24a is provided on lower electrode 12a. The upper electrode 16a is drawn out from the resonance region 50a in the +Y direction. The region where the upper electrode 16a is drawn out from the resonance region 50a is a region 54a. In region 54a, lower electrode 12a is not provided, piezoelectric layer 14 is provided on substrate 10, and upper electrode 16a is provided on piezoelectric layer 14. A pad 25a is provided on the upper electrode 16a.
 上部電極16aが設けられた領域以外の圧電層14は除去されている。これにより、弾性波が共振領域50aおよび50bから圧電層14を伝搬し外側に漏洩することを抑制できる。よって、弾性波のエネルギーの漏洩による損失低下を抑制でき、Q値を向上できる。 The piezoelectric layer 14 other than the area where the upper electrode 16a is provided has been removed. Thereby, it is possible to suppress the elastic waves from propagating through the piezoelectric layer 14 from the resonance regions 50a and 50b and leaking to the outside. Therefore, loss reduction due to leakage of elastic wave energy can be suppressed, and the Q value can be improved.
 圧電薄膜共振器11bでは、基板10上に下部電極12b(第2下部電極)、下部電極12b上に圧電層14b(第2圧電層)、圧電層14b上に上部電極16b(第2上部電極)が圧電薄膜共振器11aと同様に設けられている。基板10と下部電極12bとの間に空隙22b(第2空隙)が設けられている。パッド24bおよび25bは、圧電薄膜共振器11aにおけるパッド24aおよび25aと同様に設けられている。共振領域50b(第2共振領域)は、圧電層14bの少なくとも一部を挟み下部電極12bと上部電極16bとが対向する領域により画定される。領域52bは下部電極12bが共振領域50bから引き出された領域であり、領域54bは上部電極16bが共振領域50bから引き出された領域である。 The piezoelectric thin film resonator 11b includes a lower electrode 12b (second lower electrode) on the substrate 10, a piezoelectric layer 14b (second piezoelectric layer) on the lower electrode 12b, and an upper electrode 16b (second upper electrode) on the piezoelectric layer 14b. is provided similarly to the piezoelectric thin film resonator 11a. A gap 22b (second gap) is provided between the substrate 10 and the lower electrode 12b. Pads 24b and 25b are provided similarly to pads 24a and 25a in piezoelectric thin film resonator 11a. The resonance region 50b (second resonance region) is defined by a region where the lower electrode 12b and the upper electrode 16b face each other with at least a portion of the piezoelectric layer 14b interposed therebetween. The region 52b is a region where the lower electrode 12b is drawn out from the resonance region 50b, and the region 54b is a region where the upper electrode 16b is drawn out from the resonance region 50b.
 圧電薄膜共振器11bでは、挿入膜20bは共振領域50bの周縁部に設けられ、共振領域50bの中央部に設けられていない。挿入膜20bはQ値を向上させるための膜として機能するが、温度補償膜としては機能しない。Q値を向上させない場合、挿入膜20bを設けなくてもよい。圧電薄膜共振器11bでは、温度補償膜が設けられていないため、共振周波数が温度により変化する。よって、圧電薄膜共振器11bを温度素子として用いることができる。 In the piezoelectric thin film resonator 11b, the insertion film 20b is provided at the periphery of the resonant region 50b, and is not provided at the center of the resonant region 50b. The insertion film 20b functions as a film for improving the Q value, but does not function as a temperature compensation film. If the Q value is not to be improved, the insertion film 20b may not be provided. In the piezoelectric thin film resonator 11b, since a temperature compensation film is not provided, the resonant frequency changes depending on the temperature. Therefore, the piezoelectric thin film resonator 11b can be used as a temperature element.
 圧電薄膜共振器11aと11bとの間における基板10上に、絶縁層32を介し発熱線路30が設けられている。発熱線路30は例えば金属層であり、平面形状はミアンダ状である。絶縁層32は、発熱線路30と基板10との絶縁のため設けられている。基板10の絶縁性が高ければ絶縁層32は設けなくてもよい。発熱線路30の両端はパッド24dおよび25dに電気的に接続されている。パッド24dおよび25dは、発熱線路30のY方向における両側に設けられている。制御部46がパッド24dと25dとの間に電圧を印加し、発熱線路30に電流を流すことにより、発熱線路30が発熱する。 A heating line 30 is provided on the substrate 10 between the piezoelectric thin film resonators 11a and 11b with an insulating layer 32 in between. The heat generating line 30 is, for example, a metal layer, and has a meandering planar shape. The insulating layer 32 is provided to insulate the heating line 30 and the substrate 10. If the insulation of the substrate 10 is high, the insulation layer 32 may not be provided. Both ends of the heating line 30 are electrically connected to pads 24d and 25d. The pads 24d and 25d are provided on both sides of the heat generating line 30 in the Y direction. When the control unit 46 applies a voltage between the pads 24d and 25d and causes a current to flow through the heat generating line 30, the heat generating line 30 generates heat.
 圧電薄膜共振器11aにおいて、発熱線路30に最も近い部分は、下部電極12aのうち空隙22aの外側において基板10の発熱線路30側に設けられた部分13aである。部分13aは、孔23aの近くに位置している。圧電薄膜共振器11aと発熱線路30との平面視における最短の距離はLaである。圧電薄膜共振器11bにおいて、発熱線路30に最も近い部分は、下部電極12bのうち空隙22bの外側において基板10の発熱線路30側に設けられた部分13b(孔23bの近くの部分)である。圧電薄膜共振器11bと発熱線路30との平面視における最短の距離はLbである。部分13bは、孔23bの近くに位置している。距離LaとLbとはほぼ等しい。 In the piezoelectric thin film resonator 11a, the portion closest to the heating line 30 is a portion 13a of the lower electrode 12a provided on the side of the heating line 30 of the substrate 10 outside the gap 22a. Portion 13a is located near hole 23a. The shortest distance between the piezoelectric thin film resonator 11a and the heating line 30 in plan view is La. In the piezoelectric thin film resonator 11b, the portion closest to the heating line 30 is a portion 13b (near the hole 23b) of the lower electrode 12b provided on the side of the heating line 30 of the substrate 10 outside the gap 22b. The shortest distance between the piezoelectric thin film resonator 11b and the heating line 30 in plan view is Lb. Portion 13b is located near hole 23b. The distances La and Lb are approximately equal.
 基板10は、例えばシリコン基板、サファイア基板、石英基板、ガラス基板、セラミック基板またはGaAs基板である。下部電極12a、12b、上部電極16aおよび16bは、例えばルテニウム(Ru)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、白金(Pt)、ロジウム(Rh)またはイリジウム(Ir)等の単層膜またはこれらの膜から複数種類を選択した積層膜である。 The substrate 10 is, for example, a silicon substrate, a sapphire substrate, a quartz substrate, a glass substrate, a ceramic substrate, or a GaAs substrate. The lower electrodes 12a, 12b and the upper electrodes 16a and 16b are made of, for example, ruthenium (Ru), chromium (Cr), aluminum (Al), titanium (Ti), copper (Cu), molybdenum (Mo), tungsten (W), tantalum. It is a single layer film of (Ta), platinum (Pt), rhodium (Rh), or iridium (Ir), or a laminated film selected from a plurality of these films.
 圧電層14は、例えば窒化アルミニウム(AlN)膜、酸化亜鉛(ZnO)膜、窒化ガリウム(GaN)膜、チタン酸ジルコン酸鉛(PZT)膜、チタン酸鉛(PbTiO3)膜、タンタル酸リチウム(LiTaO)膜またはニオブ酸リチウム(LiNbO)膜である。 The piezoelectric layer 14 is made of, for example, an aluminum nitride (AlN) film, a zinc oxide (ZnO) film, a gallium nitride (GaN) film, a lead zirconate titanate (PZT) film, a lead titanate (PbTiO 3 ) film, a lithium tantalate ( LiTaO 3 ) film or lithium niobate (LiNbO 3 ) film.
 挿入膜20aの共振領域50aにおける中央部は、圧電層14の弾性定数の温度係数とは逆符号の弾性定数の温度係数を有する。これにより、共振周波数等の温度係数を0に近づけることができる。挿入膜20aおよび20bの共振領域50aおよび50bの周縁部は、圧電層14よりヤング率の小さい材料の膜を含む。このような材料として、挿入膜20aおよび20bは例えば酸化シリコン膜である。 The center portion of the resonant region 50a of the insertion film 20a has a temperature coefficient of elastic constant with a sign opposite to that of the piezoelectric layer 14. Thereby, temperature coefficients such as resonance frequency can be brought close to zero. The peripheral edges of the resonant regions 50a and 50b of the insertion films 20a and 20b include a film of a material having a smaller Young's modulus than the piezoelectric layer 14. As such a material, the insertion films 20a and 20b are, for example, a silicon oxide film.
 パッド24a、24b、24d、25a、25bおよび25dは、例えば金膜、銅膜またはアルミニウム膜等の低抵抗膜であり、チタン膜等の密着膜を有してもよく、一例として、チタン膜とチタン膜上の金膜である。絶縁層32は、例えば酸化シリコン層または窒化シリコン層である。発熱線路30は、発熱する線路状の金属層であり、例えば、白金であり、一例として、クロム膜とクロム膜上の白金膜である。 The pads 24a, 24b, 24d, 25a, 25b, and 25d are, for example, a low resistance film such as a gold film, a copper film, or an aluminum film, and may have an adhesive film such as a titanium film. This is a gold film on a titanium film. Insulating layer 32 is, for example, a silicon oxide layer or a silicon nitride layer. The heating line 30 is a line-shaped metal layer that generates heat, and is made of platinum, for example, and is, for example, a chromium film and a platinum film on the chromium film.
 感応膜18は、例えば有機高分子膜、有機低分子膜、または無機膜である。有機高分子材料としては、例えばポリスチレン、ポリメタクリル酸メチル、6-ナイロン、セルロースアセテート、ポリ-9,9-ジオクチレフルオレン、ポリビニルアルコール、ポリビニルカルバゾール、ポリエチレンオキシド、ポリ塩化ビニル、ポリ-p-フェニレンエーテルスルホン、ポリ-1-ブテン、ポリブタジエン、ポリフェニルメチルシラン、ポリカプロラクトン、ポリビスフェノキシホスファゼン、ポリプロピレンなどの単一構造からなるホモポリマー、ホモポリマー2種以上の共重合体であるコポリマー、これらを混合したブレンドポリマーなどを用いることができる。 The sensitive film 18 is, for example, an organic polymer film, an organic low molecular film, or an inorganic film. Examples of organic polymer materials include polystyrene, polymethyl methacrylate, 6-nylon, cellulose acetate, poly-9,9-dioctylefluorene, polyvinyl alcohol, polyvinylcarbazole, polyethylene oxide, polyvinyl chloride, poly-p- Homopolymers consisting of a single structure such as phenylene ether sulfone, poly-1-butene, polybutadiene, polyphenylmethylsilane, polycaprolactone, polybisphenoxyphosphazene, polypropylene, etc.; copolymers that are copolymers of two or more homopolymers; Blend polymers made by mixing these can be used.
 例えば、有機低分子材料としては、トリス(8-キノリノラト)アルミニウム(Alq3)、ナフチルジアミン(α-NPD)、BCP(2,9 - dimethyl - 4,7 - diphenyl - 1,10 - phenanthroline)、CBP(4,4' - N,N' - dicarbazole - biphenyl)、銅フタロシアニン、フラーレン、ペンタセン、アントラセン、チオフェン、Ir(ppy(2 - phenylpyridinato))、トリアジンチオール誘導体、ジオクチルフルオレン誘導体、テトラテトラコンタン、パリレンなどを用いることができる。 For example, organic low-molecular materials include tris(8-quinolinolato)aluminum (Alq3), naphthyldiamine (α-NPD), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), and CBP. (4,4'-N,N'-dicarbazole-biphenyl), copper phthalocyanine, fullerene, pentacene, anthracene, thiophene, Ir(ppy(2-phenylpyridinato)) 3 , triazinethiol derivative, dioctylfluorene derivative, tetratetracontane, Parylene or the like can be used.
 例えば、無機材料としては、アルミナ、チタニア、五酸化バナジウム、酸化タングステン、フッ化リチウム、フッ化マグネシウム、アルミニウム、金、銀、スズ、インジウム・ティン・オキサイド(ITO)、カーボンナノチューブ、塩化ナトリウム、塩化マグネシウムなどを用いることができる。 For example, inorganic materials include alumina, titania, vanadium pentoxide, tungsten oxide, lithium fluoride, magnesium fluoride, aluminum, gold, silver, tin, indium tin oxide (ITO), carbon nanotubes, sodium chloride, chloride Magnesium or the like can be used.
 感応膜18は、有機配位子と金属イオンが結合した金属有機構造体であり、細孔を有する多孔質体でもよい。感応膜18は、銅フタロシアニン(CuPc)等の金属フタロシアニンでもよく、抗原が結合する抗体を含んでもよい。 The sensitive membrane 18 is a metal-organic structure in which organic ligands and metal ions are bonded, and may be a porous body having pores. The sensitive membrane 18 may be made of metal phthalocyanine such as copper phthalocyanine (CuPc), or may contain an antibody to which an antigen binds.
 2.4GHzの共振周波数を有する圧電薄膜共振器11aおよび11bを用いる場合、下部電極12aおよび12bは、基板10側から厚さが70nmのクロム膜および厚さが166nmのルテニウム膜である。下部圧電層15aは厚さが498nmの窒化アルミニウム膜であり、上部圧電層15bは厚さが498nmの窒化アルミニウム膜である。挿入膜20aの共振領域50aの中央部での厚さは73nmである。上部電極16aおよび16bは、圧電層14aおよび14b側から厚さが166nmのルテニウム膜および厚さが55nmのクロム膜である。感応膜18は、例えば厚さが80nmのポリマー系の樹脂である。絶縁層32は、厚さが200nmの酸化シリコン層である。発熱線路30は、絶縁層32側から厚さが10nmのクロム層および厚さが300μmの白金層である。 When using the piezoelectric thin film resonators 11a and 11b having a resonance frequency of 2.4 GHz, the lower electrodes 12a and 12b are a chromium film with a thickness of 70 nm and a ruthenium film with a thickness of 166 nm from the substrate 10 side. The lower piezoelectric layer 15a is an aluminum nitride film with a thickness of 498 nm, and the upper piezoelectric layer 15b is an aluminum nitride film with a thickness of 498 nm. The thickness of the insertion film 20a at the center of the resonant region 50a is 73 nm. The upper electrodes 16a and 16b are a ruthenium film with a thickness of 166 nm and a chromium film with a thickness of 55 nm from the piezoelectric layers 14a and 14b side. The sensitive film 18 is, for example, a polymer resin with a thickness of 80 nm. Insulating layer 32 is a silicon oxide layer with a thickness of 200 nm. The heating line 30 is a chromium layer with a thickness of 10 nm and a platinum layer with a thickness of 300 μm from the insulating layer 32 side.
[センサの製造方法]
 図4(a)から図6(c)は、実施例1におけるセンサ40の製造方法を示す断面図である。図4(a)に示すように、基板10の上面に絶縁層32を形成する。基板10は例えばウエハである。絶縁層32は、例えばCVD(Chemical Vapor Deposition)法、スパッタリング法または真空蒸着法を用い形成する。絶縁層32を、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。
[Sensor manufacturing method]
4(a) to 6(c) are cross-sectional views showing a method of manufacturing the sensor 40 in Example 1. FIG. As shown in FIG. 4(a), an insulating layer 32 is formed on the upper surface of the substrate 10. The substrate 10 is, for example, a wafer. The insulating layer 32 is formed using, for example, a CVD (Chemical Vapor Deposition) method, a sputtering method, or a vacuum evaporation method. The insulating layer 32 is patterned into a desired shape using photolithography and etching.
 図4(b)に示すように、基板10上に空隙を形成するための犠牲層38aおよび38bを形成する。犠牲層38aおよび38bは、例えば酸化マグネシウム(MgO)膜、酸化亜鉛(ZnO)膜、ゲルマニウム(Ge)膜、酸化シリコン(SiO)膜またはリンケイ酸ガラス(PSG:phosphosilicate glass)膜である。犠牲層38aおよび38bの厚さは、例えば10~100nmである。犠牲層38aおよび38bは、スパッタリング法、真空蒸着法またはCVD法を用い成膜される。その後、犠牲層38aおよび38bを、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。犠牲層38aおよび38bの形状は、空隙22aおよび22bの平面形状に相当する形状である。 As shown in FIG. 4(b), sacrificial layers 38a and 38b are formed on the substrate 10 to form voids. The sacrificial layers 38a and 38b are, for example, a magnesium oxide (MgO) film, a zinc oxide (ZnO) film, a germanium (Ge) film, a silicon oxide (SiO 2 ) film, or a phosphosilicate glass (PSG) film. The thickness of the sacrificial layers 38a and 38b is, for example, 10 to 100 nm. The sacrificial layers 38a and 38b are formed using a sputtering method, a vacuum evaporation method, or a CVD method. Thereafter, the sacrificial layers 38a and 38b are patterned into a desired shape using photolithography and etching. The shapes of the sacrificial layers 38a and 38b correspond to the planar shapes of the voids 22a and 22b.
 図4(c)に示すように、犠牲層38aおよび38bおよび基板10上に下部電極12aおよび12bを、例えば、スパッタリング法、真空蒸着法またはCVD法を用い成膜し、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。下部電極12aおよび12bは、リフトオフ法により形成してもよい。図4(d)に示すように、下部電極12a、12b、絶縁層32および基板10上に下部圧電層15aを、例えば、スパッタリング法、真空蒸着法またはCVD法を用い成膜する。 As shown in FIG. 4(c), lower electrodes 12a and 12b are formed on the sacrificial layers 38a and 38b and the substrate 10 using, for example, sputtering, vacuum evaporation, or CVD, and then formed using photolithography and etching. pattern into the desired shape. The lower electrodes 12a and 12b may be formed by a lift-off method. As shown in FIG. 4D, a lower piezoelectric layer 15a is formed on the lower electrodes 12a and 12b, the insulating layer 32, and the substrate 10 using, for example, a sputtering method, a vacuum evaporation method, or a CVD method.
 図5(a)に示すように、下部圧電層15a上に挿入膜20aおよび20bを、例えばスパッタリング法、真空蒸着法またはCVD法を用い形成し、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。挿入膜20aおよび20bは、リフトオフ法により形成してもよい。挿入膜20aに、厚膜部と薄膜部とを設けることで、挿入膜20aの上面には凹部19aが形成される。 As shown in FIG. 5(a), insert films 20a and 20b are formed on the lower piezoelectric layer 15a using, for example, sputtering, vacuum evaporation, or CVD, and shaped into a desired shape using photolithography and etching. pattern. The insertion films 20a and 20b may be formed by a lift-off method. By providing the insertion film 20a with a thick film portion and a thin film portion, a recess 19a is formed on the upper surface of the insertion film 20a.
 図5(b)に示すように、下部圧電層15a、挿入膜20aおよび20b上に上部圧電層15bを、例えばスパッタリング法、真空蒸着法またはCVD法を用い成膜する。下部圧電層15aおよび上部圧電層15bから圧電層14が形成される。上部圧電層15bの上面には、挿入膜20aの上面の凹部19aに対応する凹部19bが形成される。 As shown in FIG. 5(b), an upper piezoelectric layer 15b is formed on the lower piezoelectric layer 15a and the insertion films 20a and 20b using, for example, a sputtering method, a vacuum evaporation method, or a CVD method. Piezoelectric layer 14 is formed from lower piezoelectric layer 15a and upper piezoelectric layer 15b. A recess 19b corresponding to the recess 19a on the upper surface of the insertion film 20a is formed on the upper surface of the upper piezoelectric layer 15b.
 図5(c)に示すように、上部圧電層15b上に、上部電極16aおよび16bを、例えばスパッタリング法、真空蒸着法またはCVD法を用い形成し、例えばフォトリソグラフィ技術およびリフトオフ法を用い所望の形状にパターニングする。上部電極16aおよび16bは、リフトオフ法により形成してもよい。上部電極16aの上面には、挿入膜20aの上面の凹部19aおよび上部圧電層15bの上面の凹部19bに対応し、凹部19が形成される。 As shown in FIG. 5(c), upper electrodes 16a and 16b are formed on the upper piezoelectric layer 15b using, for example, a sputtering method, a vacuum evaporation method, or a CVD method, and a desired shape is formed using, for example, a photolithography technique and a lift-off method. Pattern into a shape. Upper electrodes 16a and 16b may be formed by a lift-off method. A recess 19 is formed on the upper surface of the upper electrode 16a, corresponding to the recess 19a on the upper surface of the insertion film 20a and the recess 19b on the upper surface of the upper piezoelectric layer 15b.
 図6(a)に示すように、圧電層14を例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。これにより、下部電極12aと上部電極16aとに挟まれた圧電層14aと下部電極12bと上部電極16bとに挟まれた圧電層14bとが形成される。 As shown in FIG. 6(a), the piezoelectric layer 14 is patterned into a desired shape using, for example, photolithography and etching. As a result, a piezoelectric layer 14a sandwiched between the lower electrode 12a and the upper electrode 16a and a piezoelectric layer 14b sandwiched between the lower electrode 12b and the upper electrode 16b are formed.
 図6(b)に示すように、絶縁層32上に、発熱線路30を、例えばフォトリソグラフィ法、真空蒸着法およびリフトオフ法を用い形成する。パッド24a、24bおよび24d、25a、25bおよび25d(図2および図3(b)を参照)を、例えばフォトリソグラフィ法、真空蒸着法およびリフトオフ法を用い形成する。 As shown in FIG. 6(b), a heat generating line 30 is formed on the insulating layer 32 using, for example, a photolithography method, a vacuum evaporation method, and a lift-off method. Pads 24a, 24b and 24d, 25a, 25b and 25d (see FIGS. 2 and 3(b)) are formed using, for example, a photolithography method, a vacuum evaporation method, and a lift-off method.
 図6(c)に示すように、孔23aおよび23bを介し、エッチング液を下部電極12aおよび12bの下の犠牲層38aおよび38bに導入する。これにより、犠牲層38aおよび38bが除去される。犠牲層38aおよび38bをエッチングするエッチング液は、犠牲層38aおよび38b以外の圧電薄膜共振器11aおよび11bを構成する材料をエッチングしないことが好ましい。特に、エッチング液は、下部電極12a、12bおよび基板10をエッチングしないことが好ましい。下部電極12a、圧電層14aおよび上部電極16aの応力、並びに下部電極12b、圧電層14bおよび上部電極16bの応力を圧縮応力となるように設定しておく。これにより、犠牲層38aおよび38bが除去されると、下部電極12aおよび12bが基板10の反対側に基板10から離れるように膨れる。これにより、下部電極12aおよび12bと基板10との間にドーム状の膨らみを有する空隙22aおよび22bが形成される。 As shown in FIG. 6(c), the etching solution is introduced into the sacrificial layers 38a and 38b below the lower electrodes 12a and 12b through the holes 23a and 23b. As a result, sacrificial layers 38a and 38b are removed. It is preferable that the etching solution used to etch the sacrificial layers 38a and 38b does not etch the materials constituting the piezoelectric thin film resonators 11a and 11b other than the sacrificial layers 38a and 38b. In particular, it is preferable that the etching solution does not etch the lower electrodes 12a, 12b and the substrate 10. The stress of the lower electrode 12a, the piezoelectric layer 14a, and the upper electrode 16a, and the stress of the lower electrode 12b, the piezoelectric layer 14b, and the upper electrode 16b are set to be compressive stress. As a result, when the sacrificial layers 38a and 38b are removed, the lower electrodes 12a and 12b bulge away from the substrate 10 to the opposite side of the substrate 10. As a result, gaps 22a and 22b having dome-shaped bulges are formed between the lower electrodes 12a and 12b and the substrate 10.
 図3(a)に示すように、上部電極16aの上面の凹部19内に感応膜18を形成する。感応膜18は、例えば感応膜18の材料が溶解された溶剤を塗布し、その後溶剤を乾燥させることにより形成する。また、感応膜18は、スパッタリング法または真空蒸着法とリフトオフ法を用い所望のパターンに形成してもよい。その後、ウエハを切断し個片化することにより、実施例1におけるセンサ40が製造される。 As shown in FIG. 3(a), a sensitive film 18 is formed in the recess 19 on the upper surface of the upper electrode 16a. The sensitive film 18 is formed, for example, by applying a solvent in which the material of the sensitive film 18 is dissolved, and then drying the solvent. Further, the sensitive film 18 may be formed into a desired pattern using a sputtering method or a vacuum evaporation method and a lift-off method. Thereafter, the sensor 40 in Example 1 is manufactured by cutting the wafer into individual pieces.
 図5(a)における挿入膜20aおよび20bの形成方法を説明する。図7(a)から図7(d)は、実施例1における挿入膜の形成方法を示す断面図である。なお、わかりやすくするため、膜21aおよび21bのハッチングの種類を挿入膜20aおよび20bのハッチングの種類と異ならせている。図7(a)に示すように、図4(d)の工程後に、例えばスパッタリング法を用い、下部圧電層15a上の全面に膜21aを形成する。膜21aの厚さは、共振領域50b(図3(a)参照)の周縁部における挿入膜20bの厚さと同じである。図7(b)に示すように、フォトリソグラフィ法およびエッチング法を用い、共振領域50aの周縁部および50bの周縁部以外の膜21aを除去する。 A method for forming the insertion films 20a and 20b in FIG. 5(a) will be explained. FIGS. 7(a) to 7(d) are cross-sectional views showing a method of forming an inserted film in Example 1. Note that, for ease of understanding, the type of hatching for the membranes 21a and 21b is different from the type of hatching for the inserted membranes 20a and 20b. As shown in FIG. 7A, after the step of FIG. 4D, a film 21a is formed on the entire surface of the lower piezoelectric layer 15a using, for example, a sputtering method. The thickness of the film 21a is the same as the thickness of the inserted film 20b at the peripheral edge of the resonance region 50b (see FIG. 3(a)). As shown in FIG. 7(b), the film 21a other than the periphery of the resonance region 50a and the periphery of the resonance region 50b is removed using a photolithography method and an etching method.
図7(c)に示すように、例えばスパッタリング法を用い、下部圧電層15aおよび膜21a上の全面に膜21bを形成する。膜21bの厚さは、共振領域50a(図3(a)参照)の中央部における挿入膜20aの厚さと同じである。図7(d)に示すように、フォトリソグラフィ法およびエッチング法を用い、共振領域50a以外の膜21bを除去する。これにより、共振領域50aの中央部では、膜21bから挿入膜20aが形成され、共振領域50aの周縁部では、膜21aと21bとから挿入膜20aが形成される。共振領域50bの中央部では、挿入膜20bは形成されず、共振領域50bの周縁部では、膜21aから挿入膜20bが形成される。他の方法を用い挿入膜20aおよび20bを形成してもよい。 As shown in FIG. 7C, a film 21b is formed on the entire surface of the lower piezoelectric layer 15a and the film 21a using, for example, a sputtering method. The thickness of the film 21b is the same as the thickness of the inserted film 20a at the center of the resonance region 50a (see FIG. 3(a)). As shown in FIG. 7D, the film 21b other than the resonance region 50a is removed using photolithography and etching. As a result, the insertion film 20a is formed from the film 21b at the center of the resonance region 50a, and the insertion film 20a is formed from the films 21a and 21b at the peripheral portion of the resonance region 50a. The insertion film 20b is not formed at the center of the resonance region 50b, and the insertion film 20b is formed from the film 21a at the periphery of the resonance region 50b. Other methods may be used to form intercalated membranes 20a and 20b.
[感応膜18の温度を制御する例]
 実施例1において、発熱線路30および圧電薄膜共振器11bを用い、圧電薄膜共振器11aの温度を制御する例として、例1)環境の変化を検出する前の感応膜18の初期化、例2)環境の変化を検出するときの温度制御、の2つがある。
[Example of controlling the temperature of the sensitive film 18]
In Example 1, as an example of controlling the temperature of the piezoelectric thin film resonator 11a using the heating line 30 and the piezoelectric thin film resonator 11b, Example 1) Initialization of the sensitive film 18 before detecting a change in the environment, Example 2 ) Temperature control when detecting changes in the environment.
[環境の変化を検出する前の感応膜18の初期化]
 感応膜18の初期化は、感応膜18に吸着した水分および特定物質を感応膜18から脱離させるために感応膜18を加熱することである。水分および特定物質が脱離する温度は、感応膜18の材料等に依存する。例えば発明者らは、感応膜18としての用いるポリマー系の樹脂から水分が脱離する温度を、示差熱-熱重量同時測定法を用い測定した。その結果、50℃~80℃において感応膜18から水分が脱離することが分かった。感応膜18の材料によっては100℃以下の温度で感応膜18が酸化し劣化する可能性がある。このように、感応膜18を劣化させず、感応膜18から水分および特定物質を脱離させるには感応膜18の温度をある範囲に制御することが重要である。環境の変化の検出を行う前に感応膜18を初期化するために、感応膜18の温度を所望温度とすることで、繰り返し安定して環境の変化を検出できる。
[Initialization of the sensitive membrane 18 before detecting a change in the environment]
Initialization of the sensitive film 18 involves heating the sensitive film 18 in order to remove moisture and specific substances adsorbed onto the sensitive film 18 from the sensitive film 18. The temperature at which water and specific substances are desorbed depends on the material of the sensitive film 18 and the like. For example, the inventors measured the temperature at which water is desorbed from the polymer resin used as the sensitive film 18 using a simultaneous differential thermal and thermogravimetric measurement method. As a result, it was found that water was desorbed from the sensitive film 18 at a temperature of 50° C. to 80° C. Depending on the material of the sensitive film 18, the sensitive film 18 may be oxidized and deteriorated at temperatures below 100°C. As described above, it is important to control the temperature of the sensitive film 18 within a certain range in order to remove moisture and specific substances from the sensitive film 18 without degrading the sensitive film 18. In order to initialize the sensitive film 18 before detecting changes in the environment, by setting the temperature of the sensitive film 18 to a desired temperature, changes in the environment can be repeatedly and stably detected.
[環境の変化を検出するときの感応膜18の温度制御:実験1]
 感応膜18の温度変化の重要性を調べるため、実験1を行った。実験1に用いた、圧電薄膜共振器11aの各層および材料は以下である。基板10はシリコン基板である。下部電極12aは、基板10側から厚さが70nmのクロム膜および厚さが166nmのルテニウム膜である。下部圧電層15aは厚さが498nmの(002)方向に配向する窒化アルミニウム膜であり、上部圧電層15bは厚さが498nmの窒化アルミニウム膜である。挿入膜20aの共振領域50aの中央部での厚さは73nmである。上部電極16aは、圧電層14aおよび14b側から厚さが166nmのルテニウム膜および厚さが55nmのクロム膜である。感応膜18は、例えば厚さが80nmのポリマー系の樹脂である。圧電薄膜共振器11aの共振周波数は約2.4GHzである。
[Temperature control of the sensitive membrane 18 when detecting environmental changes: Experiment 1]
Experiment 1 was conducted to investigate the importance of temperature changes in the sensitive film 18. The layers and materials of the piezoelectric thin film resonator 11a used in Experiment 1 are as follows. Substrate 10 is a silicon substrate. The lower electrode 12a is a chromium film with a thickness of 70 nm and a ruthenium film with a thickness of 166 nm from the substrate 10 side. The lower piezoelectric layer 15a is a 498 nm thick aluminum nitride film oriented in the (002) direction, and the upper piezoelectric layer 15b is a 498 nm thick aluminum nitride film. The thickness of the insertion film 20a at the center of the resonant region 50a is 73 nm. The upper electrode 16a is a ruthenium film with a thickness of 166 nm and a chromium film with a thickness of 55 nm from the piezoelectric layers 14a and 14b side. The sensitive film 18 is, for example, a polymer resin with a thickness of 80 nm. The resonant frequency of the piezoelectric thin film resonator 11a is approximately 2.4 GHz.
 圧電薄膜共振器11aをチャンバ内に配置し、チャンバ内の温度を一定にした。チャンバ内の湿度は0%~1.8%とし、水分の吸着の影響を小さくした。チャンバ内に濃度が90ppmのエタノールを含む乾燥空気を導入し、圧電薄膜共振器11aの共振周波数の変化を調べた。 The piezoelectric thin film resonator 11a was placed inside the chamber, and the temperature inside the chamber was kept constant. The humidity in the chamber was set at 0% to 1.8% to reduce the influence of moisture adsorption. Dry air containing ethanol at a concentration of 90 ppm was introduced into the chamber, and changes in the resonant frequency of the piezoelectric thin film resonator 11a were examined.
 図8は、実験1における圧電薄膜共振器の時間に対する共振周波数の変化量Δfを示す図である。横軸の時間が0秒より前に、チャンバ内の温度を上昇させ、感応膜18から水分おびエタノール離脱させた後、チャンバ内を所望の温度に安定させた。時間が0秒において、エタノールを含む乾燥空気の導入を開始した。時間が1750秒において、エタノールを含む乾燥空気の導入を停止し、エタノールを含まない乾燥空気の導入を開始した。期間Tは、エタノールを含む乾燥空気がチャンバに導入されている期間である。縦軸は、時間が0秒における共振周波数からの共振周波数の変化量Δfを示している。チャンバ内の温度を18℃、26℃、40℃および50℃に安定させて実験を行った。 FIG. 8 is a diagram showing the amount of change Δf of the resonant frequency with respect to time of the piezoelectric thin film resonator in Experiment 1. Before the time on the horizontal axis reached 0 seconds, the temperature inside the chamber was raised to remove water and ethanol from the sensitive film 18, and then the inside of the chamber was stabilized at a desired temperature. At time 0 seconds, introduction of dry air containing ethanol was started. At 1750 seconds, introduction of dry air containing ethanol was stopped, and introduction of dry air not containing ethanol was started. Period T is the period during which dry air containing ethanol is introduced into the chamber. The vertical axis indicates the amount of change Δf in the resonance frequency from the resonance frequency when time is 0 seconds. Experiments were conducted with the temperature in the chamber stabilized at 18°C, 26°C, 40°C, and 50°C.
 図8に示すように、温度が18℃では、時間とともに共振周波数の変化量Δfが低くなり、時間が1000秒以降においてΔfは約-30kHzで安定する。温度が26℃では、時間が500秒以降においてΔfは約-22kHzで安定する。温度が40℃では、時間が100秒以降においてΔfは約-11kHzで安定するが、時間が500秒以降においてΔfは徐々に高くなる。温度が50℃では、時間が0秒以降にΔfは約-7kHzまで低下するが、その後、Δfは徐々に高くなる。このように、Δfの大きさは温度に依存する。また、Δfが安定するまでの時間は温度に依存する。このように、圧電薄膜共振器11aの共振周波数の変化に基づき、環境の変化を検出する場合、圧電薄膜共振器11aの温度を制御することが重要である。 As shown in FIG. 8, when the temperature is 18° C., the amount of change Δf in the resonance frequency decreases with time, and after 1000 seconds, Δf stabilizes at about -30 kHz. At a temperature of 26° C., Δf stabilizes at about −22 kHz after 500 seconds. At a temperature of 40° C., Δf stabilizes at about −11 kHz after 100 seconds, but gradually increases after 500 seconds. At a temperature of 50° C., Δf decreases to about −7 kHz after 0 seconds, but thereafter, Δf gradually increases. Thus, the magnitude of Δf depends on temperature. Further, the time it takes for Δf to stabilize depends on the temperature. In this manner, when detecting changes in the environment based on changes in the resonant frequency of the piezoelectric thin film resonator 11a, it is important to control the temperature of the piezoelectric thin film resonator 11a.
[実験2:圧電薄膜共振器11bの共振周波数の温度依存性]
 次に、圧電薄膜共振器11bの共振周波数が温度により変化することを調べる実験2を行った。実験2に用いた圧電薄膜共振器11bにおける下部電極12b、下部圧電層15a、上部圧電層15bおよび上部電極16bの材料および厚さは、実験1に用いた圧電薄膜共振器11aにおける下部電極12a、下部圧電層15a、上部圧電層15bおよび上部電極16aの材料および厚さはそれぞれ同じである。挿入膜20bは設けていない。共振周波数は約2.4GHzである。
[Experiment 2: Temperature dependence of resonance frequency of piezoelectric thin film resonator 11b]
Next, Experiment 2 was conducted to investigate whether the resonant frequency of the piezoelectric thin film resonator 11b changes with temperature. The materials and thicknesses of the lower electrode 12b, lower piezoelectric layer 15a, upper piezoelectric layer 15b, and upper electrode 16b in the piezoelectric thin film resonator 11b used in Experiment 2 are the same as the lower electrode 12a in the piezoelectric thin film resonator 11a used in Experiment 1, The material and thickness of the lower piezoelectric layer 15a, the upper piezoelectric layer 15b, and the upper electrode 16a are the same. No insertion membrane 20b is provided. The resonant frequency is approximately 2.4 GHz.
 図9(a)は、実験2における圧電薄膜共振器の時間に対する共振周波数を示す図である。横軸は圧電薄膜共振器11bを配置したチャンバ内の温度である。縦軸は、圧電薄膜共振器の共振周波数である。黒丸は測定点、直線は黒丸をつなぐ点である。 FIG. 9(a) is a diagram showing the resonance frequency versus time of the piezoelectric thin film resonator in Experiment 2. The horizontal axis represents the temperature inside the chamber in which the piezoelectric thin film resonator 11b is placed. The vertical axis is the resonant frequency of the piezoelectric thin film resonator. The black circles are measurement points, and the straight lines are points connecting the black circles.
 図9(a)に示すように、温度が上昇すると共振周波数は直線的に低くなる。温度に対する共振周波数の変化量は、温度に対する圧電層14bの弾性定数の変化量に比例する。圧電層14bの弾性定数は温度に対しほぼ線形的に変化するため、共振周波数は温度に対しほぼ線形的に変化する。図9(a)の例では、温度に対する共振周波数の変化量は-80kHz/℃であり、共振周波数が変化した場合の温度の変化量は-0.0000125℃/Hzである。共振周波数は精度よく測定できるため、温度を精度よく検出できる。 As shown in FIG. 9(a), as the temperature rises, the resonant frequency decreases linearly. The amount of change in the resonance frequency with respect to temperature is proportional to the amount of change in the elastic constant of the piezoelectric layer 14b with respect to temperature. Since the elastic constant of the piezoelectric layer 14b changes approximately linearly with respect to temperature, the resonance frequency changes approximately linearly with temperature. In the example of FIG. 9(a), the amount of change in the resonant frequency with respect to temperature is -80 kHz/°C, and the amount of change in temperature when the resonant frequency changes is -0.0000125°C/Hz. Since the resonant frequency can be measured with high precision, temperature can be detected with high precision.
[シミュレーション:発熱線路を用いた温度制御]
 発熱線路30に電流を流したときの発熱線路30の温度を、熱解析シミュレーションを用い解析した。シミュレーションした構造は以下である。基板10はシリコン基板である。絶縁層32は厚さが285nmの酸化シリコン層である。発熱線路30は、絶縁層32側から厚さが10nmのクロム層および厚さが300nmの白金層である。発熱線路30の平面形状は図2のようにミアンダ状である。長さが200μmの6本の線路をX方向に並べ、6本の線路の端を接続し、ミアンダ状とした。線路の幅は20μmであり、線路の間隔は20μmである。
[Simulation: Temperature control using heat generating line]
The temperature of the heat generating line 30 when a current was passed through the heat generating line 30 was analyzed using a thermal analysis simulation. The simulated structure is shown below. Substrate 10 is a silicon substrate. Insulating layer 32 is a silicon oxide layer with a thickness of 285 nm. The heat generating line 30 is a chromium layer with a thickness of 10 nm and a platinum layer with a thickness of 300 nm from the insulating layer 32 side. The planar shape of the heating line 30 is meandering as shown in FIG. Six lines each having a length of 200 μm were arranged in the X direction, and the ends of the six lines were connected to form a meandering pattern. The width of the line is 20 μm, and the spacing between the lines is 20 μm.
 図9(b)は、シミュレーションにおける発熱線路の電流に対する温度を示す図である。横軸は発熱線路30に流す電流値であり、縦軸は発熱線路30の温度である。図9(b)に示すように、発熱線路30に流れる電流値が大きくなると発熱線路30の温度が高くなるものの、電流に対する温度の傾きは緩やかであり、発熱線路30の電流を制御することで、圧電薄膜共振器11aの温度を制御することができる。加熱器31として、冷却機構を有さない発熱線路30を用いても、センサ40の周りの雰囲気によりセンサ40が冷却される。このため、発熱線路30を用い圧電薄膜共振器11aの温度を十分制御することができる。冷却機能を有するペルチェ素子等を、加熱器31とは別に基板10に設けてもよい。これにより、温度制御の精度を向上させることができる。 FIG. 9(b) is a diagram showing the temperature with respect to the current of the heating line in the simulation. The horizontal axis is the current value flowing through the heat generating line 30, and the vertical axis is the temperature of the heat generating line 30. As shown in FIG. 9(b), as the current value flowing through the heating line 30 increases, the temperature of the heating line 30 increases, but the slope of the temperature with respect to the current is gentle, and by controlling the current of the heating line 30 , the temperature of the piezoelectric thin film resonator 11a can be controlled. Even if the heating line 30 without a cooling mechanism is used as the heater 31, the sensor 40 is cooled by the atmosphere around the sensor 40. Therefore, the temperature of the piezoelectric thin film resonator 11a can be sufficiently controlled using the heating line 30. A Peltier element or the like having a cooling function may be provided on the substrate 10 separately from the heater 31. Thereby, the accuracy of temperature control can be improved.
[実施例1の特徴]
 実施例1によれば、図2および図3(a)のように、同じ基板10上に、環境の変化を検出する検出素子として圧電薄膜共振器11a、温度を検出する検出素子として圧電薄膜共振器11b、および基板10を加熱する加熱器31として発熱線路30が設けられている。加熱器31において発生した熱は基板10を介し圧電薄膜共振器11aおよび11bに伝わる。圧電薄膜共振器11aおよび11bはほぼ同じ構造を有している。このため、圧電薄膜共振器11aおよび11bはほぼ同じ温度に加熱される。よって、圧電薄膜共振器11bの共振周波数に基づき温度を検出することで、圧電薄膜共振器11aの温度を精度よく制御することができる。また、同じ基板10上に圧電薄膜共振器11a、11bおよび加熱器31を設けることで、センサ40を小型化できる。さらに、圧電薄膜共振器11bを温度素子として用いることで温度の検出精度を向上できる。
[Features of Example 1]
According to the first embodiment, as shown in FIGS. 2 and 3(a), on the same substrate 10, a piezoelectric thin film resonator 11a is used as a detection element for detecting changes in the environment, and a piezoelectric thin film resonator is used as a detection element for detecting temperature. A heating line 30 is provided as a heater 31 that heats the container 11b and the substrate 10. Heat generated in heater 31 is transmitted to piezoelectric thin film resonators 11a and 11b via substrate 10. Piezoelectric thin film resonators 11a and 11b have substantially the same structure. Therefore, piezoelectric thin film resonators 11a and 11b are heated to approximately the same temperature. Therefore, by detecting the temperature based on the resonance frequency of the piezoelectric thin film resonator 11b, the temperature of the piezoelectric thin film resonator 11a can be accurately controlled. Further, by providing the piezoelectric thin film resonators 11a, 11b and the heater 31 on the same substrate 10, the sensor 40 can be made smaller. Furthermore, temperature detection accuracy can be improved by using the piezoelectric thin film resonator 11b as a temperature element.
 図2および図3(a)のように、発熱線路30は、圧電薄膜共振器11aと11bとの間に隣接して設けられている。すなわち、圧電薄膜共振器11aおよび11bと発熱線路30との間に他の素子は設けられていない。これにより、発熱線路30から基板10を介し圧電薄膜共振器11aと11bに効率的に熱が伝わり、圧電薄膜共振器11aと11bとの温度がほぼ同じとなり、圧電薄膜共振器11aの温度を精度よく制御することができる。 As shown in FIGS. 2 and 3(a), the heating line 30 is provided adjacently between the piezoelectric thin film resonators 11a and 11b. That is, no other elements are provided between the piezoelectric thin film resonators 11a and 11b and the heating line 30. As a result, heat is efficiently transferred from the heating line 30 to the piezoelectric thin film resonators 11a and 11b via the substrate 10, and the temperatures of the piezoelectric thin film resonators 11a and 11b become almost the same, so that the temperature of the piezoelectric thin film resonator 11a can be adjusted accurately. Can be well controlled.
 圧電薄膜共振器11aでは感応膜18の温度が環境の変化の検出に影響し、圧電薄膜共振器11bでは共振領域50bの圧電層14bの温度が共振周波数に影響する。このため、発熱線路30は、共振領域50aおよび50bにおける圧電層14aおよび14bを効率よく加熱することが好ましい。そこで、共振領域50aは、下部電極12aが共振領域50aから引き出される方向(-Y方向)および上部電極16aが共振領域50aから引き出される方向(+Y方向)に交差する方向(+X方向)において発熱線路30と隣接する。共振領域50bは、下部電極12bが共振領域50bから引き出される方向(-Y方向)および上部電極16bが共振領域50bから引き出される方向(+Y方向)に交差する方向(+X方向)において発熱線路30と隣接する。これにより、共振領域50aと発熱線路30との間に領域52aおよび54aが設けられておらず、共振領域50bと発熱線路30との間に領域52bおよび54bが設けられていない。よって、共振領域50aおよび50bと発熱線路30とを近づけることができる。このため、発熱線路30から基板10を介し共振領域50aおよび50bに効率的に熱が伝わる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。 In the piezoelectric thin film resonator 11a, the temperature of the sensitive film 18 affects the detection of changes in the environment, and in the piezoelectric thin film resonator 11b, the temperature of the piezoelectric layer 14b in the resonance region 50b affects the resonance frequency. Therefore, it is preferable that the heating line 30 efficiently heats the piezoelectric layers 14a and 14b in the resonance regions 50a and 50b. Therefore, the resonant region 50a has a heating line in the direction (+X direction) that intersects the direction in which the lower electrode 12a is drawn out from the resonant region 50a (-Y direction) and the direction in which the upper electrode 16a is drawn out from the resonance region 50a (+Y direction). Adjacent to 30. The resonance region 50b is connected to the heating line 30 in a direction (+X direction) that intersects the direction in which the lower electrode 12b is drawn out from the resonance region 50b (-Y direction) and the direction in which the upper electrode 16b is drawn out from the resonance region 50b (+Y direction). Adjacent. As a result, regions 52a and 54a are not provided between the resonant region 50a and the heat generating line 30, and regions 52b and 54b are not provided between the resonant region 50b and the heat generating line 30. Therefore, the resonance regions 50a and 50b and the heat generating line 30 can be brought close to each other. Therefore, heat is efficiently transmitted from the heat generating line 30 to the resonance regions 50a and 50b via the substrate 10. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
 圧電薄膜共振器11aでは、共振領域50aにおいて、下部電極12a下に空隙22aが設けられ、圧電薄膜共振器11bでは、共振領域50bにおいて、下部電極12b下に空隙22bが設けられている。このような構造では、基板10から圧電層14aおよび14bに熱が伝わりにくい。そこで、図3(a)のように、下部電極12aのうち空隙22aの外側において基板10上に設けられた第1部分13aを圧電薄膜共振器11aのうち最も発熱線路30に近くなるようにする。下部電極12bのうち空隙22bの外側において基板10上に設けられた第2部分13bを圧電薄膜共振器11bのうち最も発熱線路30に近くなるようにする。なお、部分13aおよび13bは、下部電極12aおよび12bを外部と接続する部分(例えばパッド24aおよび24bが形成される部分)を除いた部分である。これにより、発熱線路30において発生した熱は、基板10および部分13aを介し圧電層14aに伝わり、基板10および部分13bを介し圧電層14bに伝わる。よって、共振領域50aおよび50bを効率よく加熱することができるため、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。 In the piezoelectric thin film resonator 11a, a gap 22a is provided under the lower electrode 12a in the resonance region 50a, and in the piezoelectric thin film resonator 11b, a gap 22b is provided under the lower electrode 12b in the resonance region 50b. In such a structure, heat is difficult to be transferred from the substrate 10 to the piezoelectric layers 14a and 14b. Therefore, as shown in FIG. 3A, the first portion 13a of the lower electrode 12a provided on the substrate 10 outside the gap 22a is made to be closest to the heating line 30 among the piezoelectric thin film resonators 11a. . The second portion 13b of the lower electrode 12b provided on the substrate 10 outside the gap 22b is positioned closest to the heating line 30 of the piezoelectric thin film resonator 11b. Note that portions 13a and 13b are portions excluding portions that connect lower electrodes 12a and 12b with the outside (for example, portions where pads 24a and 24b are formed). Thereby, the heat generated in the heat generating line 30 is transmitted to the piezoelectric layer 14a via the substrate 10 and the portion 13a, and is transmitted to the piezoelectric layer 14b via the substrate 10 and the portion 13b. Therefore, the resonance regions 50a and 50b can be heated efficiently, so that the temperatures of the resonance regions 50a and 50b are almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
 部分13aと発熱線路30との最短の距離Laは、部分13bと発熱線路30との最短の距離Lbと略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。距離Laは最短の距離Lbの0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。また、共振領域50aおよび50bを効率よく加熱することができるため、距離LaおよびLbは、共振領域50aおよび50bのX方向における幅(共振領域50aおよび50bの最大の幅)の1倍以下が好ましく、1/2倍以下がより好ましい。 The shortest distance La between the portion 13a and the heat generating line 30 is approximately the same as the shortest distance Lb between the portion 13b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. The distance La is preferably 0.5 times or more and 2 times or less of the shortest distance Lb, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times. It is more preferable that it is the following. Further, since the resonance regions 50a and 50b can be heated efficiently, the distances La and Lb are preferably equal to or less than 1 times the width of the resonance regions 50a and 50b in the X direction (the maximum width of the resonance regions 50a and 50b). , more preferably 1/2 times or less.
 共振領域50aと発熱線路30との最短の距離L4aは、共振領域50bと発熱線路30との最短の距離L4bと略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。距離L4aは距離L4bの0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。 The shortest distance L4a between the resonant region 50a and the heat generating line 30 is approximately the same as the shortest distance L4b between the resonant region 50b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. The distance L4a is preferably 0.5 times or more and 2 times or less, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less than the distance L4b. It is even more preferable that there be.
 図10は、実施例2におけるセンサの平面図である。図11(a)および図11(b)は、図10のそれぞれA-A断面図およびB-B断面図である。図10では、共振領域50a、50bおよび発熱線路30をクロスハッチングで示し、上部電極16a、16b、パッド24a、24b、24d、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。 FIG. 10 is a plan view of the sensor in Example 2. FIGS. 11(a) and 11(b) are a sectional view taken along line AA and taken along line BB in FIG. 10, respectively. In FIG. 10, the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching, the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines, the lower electrodes 12a, 12b, the sensitive film 18, The voids 22a and 22b are indicated by broken lines.
 図10から図11(b)に示すように、圧電薄膜共振器11aと11bとはX方向において隣接して設けられており、共振領域50aと50bとの間に発熱線路30は設けられていない。発熱線路30aは領域52aおよび52bを通過しX方向に延伸する。発熱線路30aのX方向における両端にパッド24dが設けられている。領域52aおよび領域52bでは、基板10上に絶縁層32が設けられ、絶縁層32上に発熱線路30aが設けられている。発熱線路30a上に絶縁層28aおよび28bを介し下部電極12aおよび12bがそれぞれ設けられている。 As shown in FIGS. 10 to 11(b), the piezoelectric thin film resonators 11a and 11b are provided adjacent to each other in the X direction, and no heating line 30 is provided between the resonance regions 50a and 50b. . The heating line 30a passes through the regions 52a and 52b and extends in the X direction. Pads 24d are provided at both ends of the heat generating line 30a in the X direction. In the regions 52a and 52b, an insulating layer 32 is provided on the substrate 10, and a heating line 30a is provided on the insulating layer 32. Lower electrodes 12a and 12b are provided on heating line 30a via insulating layers 28a and 28b, respectively.
 発熱線路30bは領域54aおよび54bを通過しX方向に延伸する。領域54aおよび領域54bでは、基板10上に絶縁層32が設けられ、絶縁層32上に発熱線路30bが設けられている。発熱線路30b上に圧電層14aおよび14b、上部電極16aおよび16b並びにパッド25aおよび25bがそれぞれ設けられている。その他の構成は実施例1と同じであり説明を省略する。 The heating line 30b passes through the regions 54a and 54b and extends in the X direction. In the region 54a and the region 54b, the insulating layer 32 is provided on the substrate 10, and the heating line 30b is provided on the insulating layer 32. Piezoelectric layers 14a and 14b, upper electrodes 16a and 16b, and pads 25a and 25b are provided on heat generating line 30b, respectively. The other configurations are the same as those in Example 1, and their explanation will be omitted.
 実施例2では、1つの発熱線路30aは、領域52aにおいて絶縁層28aを介し下部電極12aに接合され、領域52bにおいて絶縁層28bを介し下部電極12bに接合される。これにより、発熱線路30aは、下部電極12aおよび12bを効率よく加熱する。下部電極12aおよび12bを介し共振領域50aおよび50bに熱が伝わる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。 In Example 2, one heating line 30a is connected to the lower electrode 12a through the insulating layer 28a in the region 52a, and connected to the lower electrode 12b through the insulating layer 28b in the region 52b. Thereby, the heating line 30a efficiently heats the lower electrodes 12a and 12b. Heat is transferred to resonance regions 50a and 50b via lower electrodes 12a and 12b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
 共振領域50aと発熱線路30aとの最短の距離L1aは共振領域50bと発熱線路30aとの最短の距離L1bと略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。距離L1aは距離L1bの0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。 The shortest distance L1a between the resonant region 50a and the heat generating line 30a is approximately the same as the shortest distance L1b between the resonant region 50b and the heat generating line 30a. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. The distance L1a is preferably 0.5 times or more and 2 times or less, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less than the distance L1b. It is even more preferable that there be.
 絶縁層28aと28bとは実質的に同じ材料からなりかつ実質的に同じ厚さを有することが好ましい。これにより、発熱線路30aは下部電極12aおよび12bを同程度に加熱することができる。下部電極12aおよび12bを効率よく加熱するため、絶縁層28aおよび28bの厚さは下部電極12aおよび12bより薄いことが好ましい。 Preferably, the insulating layers 28a and 28b are made of substantially the same material and have substantially the same thickness. Thereby, the heating line 30a can heat the lower electrodes 12a and 12b to the same extent. In order to efficiently heat the lower electrodes 12a and 12b, it is preferable that the insulating layers 28a and 28b are thinner than the lower electrodes 12a and 12b.
 1つの発熱線路30bは、領域54aにおいて圧電層14aに接合され、領域54bにおいて圧電層14bに接合される。これにより、発熱線路30bは、圧電層14aおよび14bを効率よく加熱する。圧電層14aおよび14bを介し共振領域50aおよび50bに熱が伝わる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。なお、発熱線路30aおよび30bは圧電層14aおよび14bに直接接合されていてもよく、絶縁体層または金属層等を介し接合されていてもよい。 One heating line 30b is joined to the piezoelectric layer 14a in a region 54a, and joined to the piezoelectric layer 14b in a region 54b. Thereby, the heating line 30b efficiently heats the piezoelectric layers 14a and 14b. Heat is transferred to resonance regions 50a and 50b via piezoelectric layers 14a and 14b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. The heat generating lines 30a and 30b may be directly connected to the piezoelectric layers 14a and 14b, or may be connected via an insulating layer, a metal layer, or the like.
 共振領域50aと発熱線路30bとの距離L2aは共振領域50bと発熱線路30bとの距離L2bと略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。距離L2aは距離L2bの0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。 The distance L2a between the resonance region 50a and the heat generation line 30b is approximately the same as the distance L2b between the resonance region 50b and the heat generation line 30b. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. Distance L2a is preferably 0.5 times or more and 2 times or less of distance L2b, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less. It is even more preferable that there be.
[実施例2の変形例1]
 図12は、実施例2の変形例1におけるセンサの平面図である。図13(a)および図13(b)は、図12のそれぞれA-A断面図およびB-B断面図、図14は、図12のC-C断面図である。図12では、共振領域50a、50bおよび発熱線路30をクロスハッチングで示し、上部電極16a、16b、パッド24a、24b、24d、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。
[Modification 1 of Example 2]
FIG. 12 is a plan view of a sensor in Modification 1 of Embodiment 2. 13(a) and 13(b) are a sectional view taken along line AA and sectional view taken along line BB in FIG. 12, respectively, and FIG. 14 is a sectional view taken along line CC in FIG. In FIG. 12, the resonance regions 50a, 50b and the heat generating line 30 are shown by cross hatching, the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines, the lower electrodes 12a, 12b, the sensitive film 18, The voids 22a and 22b are indicated by broken lines.
 図12から図13(b)に示すように、領域52aおよび52bのうち+Y側の領域において、下部電極12aおよび12b上にパッド24aおよび24bがそれぞれ設けられている。領域52aおよび52bのうち-Y側の領域において、下部電極12aおよび12b上にパッド24aおよび24bはそれぞれ設けられておらず、下部電極12aおよび12b上に絶縁層28aおよび28bを介し発熱線路30aがそれぞれ設けられている。 As shown in FIGS. 12 to 13(b), pads 24a and 24b are provided on the lower electrodes 12a and 12b, respectively, in the +Y side region of the regions 52a and 52b. In the −Y side region of regions 52a and 52b, pads 24a and 24b are not provided on lower electrodes 12a and 12b, respectively, and heating line 30a is provided on lower electrodes 12a and 12b via insulating layers 28a and 28b. Each is provided.
 圧電層14aおよび14bは、上部電極16aおよび16bの引き出し領域54a(第1領域)および54b(第2領域)より+Y側(すなわち領域54aおよび54bに対し共振領域50aおよび50bの反対側)の領域56aおよび56bまでそれぞれ設けられている。領域56aおよび領域56bにおいて、圧電層14aおよび14b上に絶縁層32を介し発熱線路30bがそれぞれ設けられている。 The piezoelectric layers 14a and 14b are located on the +Y side of the lead-out regions 54a (first region) and 54b (second region) of the upper electrodes 16a and 16b (that is, on the opposite side of the resonant regions 50a and 50b with respect to the regions 54a and 54b). 56a and 56b are provided, respectively. In region 56a and region 56b, heating line 30b is provided on piezoelectric layers 14a and 14b with insulating layer 32 interposed therebetween, respectively.
 実施例2の変形例1では、1つの発熱線路30aは、領域52aにおい下部電極12a上に絶縁層32を介して接合され、領域52bにおいて下部電極12b上に絶縁層32を介して接合される。これにより、実施例2と同様に、発熱線路30aは、下部電極12aおよび12bを効率よく加熱することができる。 In the first modification of the second embodiment, one heating line 30a is joined to the lower electrode 12a in the region 52a via the insulating layer 32, and is joined to the lower electrode 12b in the region 52b via the insulating layer 32. . Thereby, similarly to the second embodiment, the heating line 30a can efficiently heat the lower electrodes 12a and 12b.
 また、1つの発熱線路30bは、領域56aにおいて圧電層14aに接合され、領域56bにおいて圧電層14bに接合される。これにより、実施例2と同様に発熱線路30bは、圧電層14aおよび14bを効率よく加熱することができる。なお、発熱線路30aおよび30bは圧電層14aおよび14bに直接接合されていてもよく、絶縁体層または金属層等を介し接合されていてもよい。 Furthermore, one heating line 30b is joined to the piezoelectric layer 14a in the region 56a, and joined to the piezoelectric layer 14b in the region 56b. Thereby, the heating line 30b can efficiently heat the piezoelectric layers 14a and 14b as in the second embodiment. The heat generating lines 30a and 30b may be directly connected to the piezoelectric layers 14a and 14b, or may be connected via an insulating layer, a metal layer, or the like.
 図15は、実施例3におけるセンサの断面図である。図16は、図15のA-A断面である。図15では、共振領域50a、50bおよび発熱線路30をクロスハッチングで示し、上部電極16a、16b、パッド24a、24b、24d、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。 FIG. 15 is a cross-sectional view of the sensor in Example 3. FIG. 16 is a cross section taken along the line AA in FIG. 15. In FIG. 15, the resonance regions 50a, 50b and the heating line 30 are shown by cross hatching, the upper electrodes 16a, 16b, the pads 24a, 24b, 24d, 25a, 25b and 25d are shown by solid lines, the lower electrodes 12a, 12b, the sensitive film 18, The voids 22a and 22b are indicated by broken lines.
 図15および図16に示すように、発熱線路30は、圧電薄膜共振器11aと11bとの間に設けられている。発熱線路30の平面形状はミアンダ状である。圧電層14は、パッド24a、24b、24dおよび25dに開口を有し、圧電薄膜共振器11aと11bとの間に連続して設けられている。発熱線路30上に圧電層14が設けられている。圧電薄膜共振器11aと11bとの間における圧電層14は圧電層14dである。基板10と発熱線路30との間に絶縁層は設けられていない。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIGS. 15 and 16, the heating line 30 is provided between the piezoelectric thin film resonators 11a and 11b. The heating line 30 has a meandering planar shape. The piezoelectric layer 14 has openings at the pads 24a, 24b, 24d, and 25d, and is continuously provided between the piezoelectric thin film resonators 11a and 11b. A piezoelectric layer 14 is provided on the heat generating line 30. The piezoelectric layer 14 between the piezoelectric thin film resonators 11a and 11b is a piezoelectric layer 14d. No insulating layer is provided between the substrate 10 and the heating line 30. The other configurations are the same as those in Example 1, and their explanation will be omitted.
 実施例1の構造では、発熱線路30において発生した熱は、基板10から空隙22aおよび22bの外側に設けられた下部電極12aおよび12bを介し共振領域50aおよび50bに伝わる。これに対し、実施例3では、圧電薄膜共振器11aと11bとの間における基板10上に、圧電層14aと14bと連続して設けられた圧電層14d(第3圧電層)を備えている。これにより、発熱線路30において発生した熱は、圧電層14を介し共振領域50aおよび50bに効率的に熱が伝わる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。なお、発熱線路30は、圧電層14dと直接接合されていてもよいし、絶縁層等を介し圧電層14dに接合されていてもよい。 In the structure of Example 1, heat generated in the heat generating line 30 is transmitted from the substrate 10 to the resonance regions 50a and 50b via the lower electrodes 12a and 12b provided outside the gaps 22a and 22b. On the other hand, in the third embodiment, a piezoelectric layer 14d (third piezoelectric layer) is provided on the substrate 10 between the piezoelectric thin film resonators 11a and 11b, and is provided continuously with the piezoelectric layers 14a and 14b. . Thereby, the heat generated in the heat generating line 30 is efficiently transferred to the resonance regions 50a and 50b via the piezoelectric layer 14. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. Note that the heat generating line 30 may be directly connected to the piezoelectric layer 14d, or may be connected to the piezoelectric layer 14d via an insulating layer or the like.
 共振領域50aと発熱線路30との距離L3aは共振領域50bと発熱線路30との距離L3bと略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。距離L3aは距離L3bの0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。 The distance L3a between the resonance region 50a and the heat generating line 30 is approximately the same as the distance L3b between the resonance region 50b and the heat generating line 30. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. Distance L3a is preferably 0.5 times or more and 2 times or less of distance L3b, more preferably 0.67 times or more and 1.5 times or less, and more preferably 0.8 times or more and 1.2 times or less. It is even more preferable that there be.
 図17は、実施例4におけるセンサの平面図である。図18(a)は、図17のA-A断面図である。図17では、発熱線路30をクロスハッチングで示し、共振領域50aおよび50bをクロスハッチングで示していない。上部電極16a、16b、パッド24a、24b、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。 FIG. 17 is a plan view of the sensor in Example 4. FIG. 18(a) is a sectional view taken along line AA in FIG. 17. In FIG. 17, the heat generating line 30 is shown by cross hatching, and the resonance regions 50a and 50b are not shown by cross hatching. The upper electrodes 16a, 16b, pads 24a, 24b, 25a, 25b, and 25d are shown by solid lines, and the lower electrodes 12a, 12b, sensitive film 18, and voids 22a and 22b are shown by broken lines.
 図17および図18(a)に示すように、発熱線路30は共振領域50aおよび50bにおける基板10上を通過してX方向に延伸している。発熱線路30と下部電極12aおよび12bとが接触しないように、下部電極12aおよび12bの下には絶縁層28aおよび28bがそれぞれ設けられている。絶縁層28aおよび28bと発熱線路30との間には空隙22aおよび22bがそれぞれ設けられている。絶縁層28aおよび28bは、例えば酸化シリコン層または窒化シリコン層である。絶縁層28aおよび28bが厚いと、共振領域50aおよび50bの振動を妨げる。よって、絶縁層28aおよび28bはそれぞれ下部電極12aおよび12bより薄いことが好ましい。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIGS. 17 and 18(a), the heating line 30 passes over the substrate 10 in the resonance regions 50a and 50b and extends in the X direction. Insulating layers 28a and 28b are provided under the lower electrodes 12a and 12b, respectively, so that the heating line 30 and the lower electrodes 12a and 12b do not come into contact with each other. Gaps 22a and 22b are provided between the insulating layers 28a and 28b and the heating line 30, respectively. Insulating layers 28a and 28b are, for example, silicon oxide layers or silicon nitride layers. Thick insulating layers 28a and 28b impede vibration in resonant regions 50a and 50b. Therefore, it is preferable that the insulating layers 28a and 28b are thinner than the lower electrodes 12a and 12b, respectively. The other configurations are the same as those in Example 1, and their explanation will be omitted.
[実施例4の変形例1]
 図18(b)は、実施例4の変形例1におけるセンサの断面図である。図18(b)に示すように、空隙22aおよび22bは下部電極12aおよび基板10の上面の凹部に設けられている。下部電極12aおよび12bは空隙22aおよび22bの内側に設けられている。このため、下部電極12aおよび12bの下に絶縁層28aおよび28bは設けられていない。その他の構成は実施例4と同じであり説明を省略する。
[Modification 1 of Example 4]
FIG. 18(b) is a cross-sectional view of a sensor in Modification 1 of Example 4. As shown in FIG. 18(b), the gaps 22a and 22b are provided in the recessed portions of the upper surface of the lower electrode 12a and the substrate 10. Lower electrodes 12a and 12b are provided inside gaps 22a and 22b. Therefore, insulating layers 28a and 28b are not provided under lower electrodes 12a and 12b. The other configurations are the same as those of the fourth embodiment, and the explanation will be omitted.
 実施例1から3では、発熱線路30において発生した熱は、平面方向に伝導し共振領域50aおよび50bに至る。この場合、熱が伝導する断面積が小さい。また、発熱線路30と共振領域50aおよび50bの距離は10μm以上である。これに対し、実施例4の変形例1および2では、発熱線路30は、下部電極12a下に設けられた空隙22a内および下部電極12b下に設けられた空隙22b内に設けられている。これにより、空隙22aおよび22b内の発熱線路30の面積が大きければ、発熱線路30の熱を効率的に下部電極12aおよび12bに伝えることができる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。 In Examples 1 to 3, the heat generated in the heat generating line 30 is conducted in the plane direction and reaches the resonance regions 50a and 50b. In this case, the cross-sectional area through which heat is conducted is small. Further, the distance between the heat generating line 30 and the resonance regions 50a and 50b is 10 μm or more. In contrast, in Modifications 1 and 2 of Example 4, the heating line 30 is provided within the gap 22a provided below the lower electrode 12a and within the gap 22b provided below the lower electrode 12b. Thereby, if the area of the heat generating line 30 within the gaps 22a and 22b is large, the heat of the heat generating line 30 can be efficiently transmitted to the lower electrodes 12a and 12b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
 発熱線路30の熱を効率よく下部電極12aおよび12bに伝えるため、共振領域50a内の発熱線路30の面積は、共振領域50aの面積の1/3以上が好ましく、1/2以上がより好ましく、共振領域50b内の発熱線路30の面積は、共振領域50bの面積の1/3以上が好ましく、1/2以上がより好ましい。また、発熱線路30の熱を効率よく下部電極12aおよび12bに伝えるため、空隙22aおよび22bの高さは10μm以下が好ましい。 In order to efficiently transfer the heat of the heat generating line 30 to the lower electrodes 12a and 12b, the area of the heat generating line 30 within the resonance region 50a is preferably 1/3 or more, more preferably 1/2 or more of the area of the resonance region 50a, The area of the heating line 30 within the resonance region 50b is preferably 1/3 or more, more preferably 1/2 or more, of the area of the resonance region 50b. Furthermore, in order to efficiently transfer the heat of the heat generation line 30 to the lower electrodes 12a and 12b, the height of the gaps 22a and 22b is preferably 10 μm or less.
 共振領域50a内の発熱線路30の面積と共振領域50b内の発熱線路30の面積は略同じである。これにより、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。共振領域50a内の発熱線路30の面積は、共振領域50b内の発熱線路30の面積の0.5倍以上かつ2倍以下であることが好ましく、0.67倍以上かつ1.5倍以下であることがより好ましく0.8倍以上かつ1.2倍以下であることがさらに好ましい。 The area of the heat generating line 30 within the resonance region 50a and the area of the heat generating line 30 within the resonance region 50b are approximately the same. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy. The area of the heat generating line 30 in the resonance region 50a is preferably 0.5 times or more and 2 times or less, and 0.67 times or more and 1.5 times or less, the area of the heat generating line 30 in the resonance region 50b. More preferably, it is 0.8 times or more and 1.2 times or less.
 図19は、実施例5におけるセンサの平面図である。図19では、発熱線路30をクロスハッチングで示し、共振領域50aおよび50bをクロスハッチングで示していない。上部電極16a、16b、パッド24a、24b、24d、25a、25bおよび25dを実線、下部電極12a、12b、感応膜18、空隙22aおよび22bを破線で示している。 FIG. 19 is a plan view of the sensor in Example 5. In FIG. 19, the heat generating line 30 is shown by cross hatching, and the resonance regions 50a and 50b are not shown by cross hatching. The upper electrodes 16a, 16b, pads 24a, 24b, 24d, 25a, 25b, and 25d are shown by solid lines, and the lower electrodes 12a, 12b, sensitive film 18, and voids 22a and 22b are shown by broken lines.
 図19に示すように、発熱線路30の平面形状は+状であり、圧電薄膜共振器11aと11bとの間をY方向に延伸する部分31aと、空隙22aと22bとの間をX方向に延伸する部分31bと、を備えている。圧電層14は、パッド24a、24b、24dおよび25dに開口を有し、圧電薄膜共振器11aと11bとの間に連続して設けられている。発熱線路30の部分31a上に圧電層14が設けられている。 As shown in FIG. 19, the planar shape of the heating line 30 is positive, with a portion 31a extending in the Y direction between the piezoelectric thin film resonators 11a and 11b, and a portion 31a extending in the X direction between the gaps 22a and 22b. A stretching portion 31b is provided. The piezoelectric layer 14 has openings at the pads 24a, 24b, 24d, and 25d, and is continuously provided between the piezoelectric thin film resonators 11a and 11b. A piezoelectric layer 14 is provided on a portion 31a of the heating line 30.
 発熱線路30の部分31bは、空隙22aおよび22bの下まで延伸している。下部電極12aおよび12bは空隙22aおよび22bの外側までそれぞれ設けられている。このため、発熱線路30の部分31bが下部電極12aおよび12bに接触しないように、下部電極12aおよび12bと、空隙22a、22bおよび発熱線路30と、の間に図18(a)と同様の絶縁層28aおよび28bが設けられている。発熱線路30の部分31bには電流が流れないものの、発熱線路30の熱伝導率を基板10の熱伝導率より高くすれば、部分31aにおいて発生した熱は、基板10を伝導する熱より多く部分31bに伝導し、共振領域50aおよび50bに伝わる。 A portion 31b of the heating line 30 extends below the gaps 22a and 22b. The lower electrodes 12a and 12b are provided to the outside of the gaps 22a and 22b, respectively. Therefore, in order to prevent the portion 31b of the heating line 30 from coming into contact with the lower electrodes 12a and 12b, insulation similar to that shown in FIG. Layers 28a and 28b are provided. Although no current flows through the portion 31b of the heating line 30, if the thermal conductivity of the heating line 30 is made higher than the thermal conductivity of the substrate 10, the heat generated in the portion 31a will be larger than the heat conducted through the substrate 10. 31b, and is transmitted to resonance regions 50a and 50b.
 さらに、部分31aが圧電層14dに接合されている。このため、部分31aにおいて発生した熱は、部分31bを伝導する熱とは別に圧電層14dを介し共振領域50aおよび50bに伝導する。よって、発熱線路30から共振領域50aおよび50bに効率的に熱が伝わる。よって、共振領域50aと50bとの温度がほぼ同じとなり、共振領域50aの温度を精度よく制御することができる。 Further, the portion 31a is joined to the piezoelectric layer 14d. Therefore, the heat generated in the portion 31a is conducted to the resonance regions 50a and 50b via the piezoelectric layer 14d, separately from the heat conducted through the portion 31b. Therefore, heat is efficiently transmitted from the heat generating line 30 to the resonance regions 50a and 50b. Therefore, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the resonance region 50a can be controlled with high accuracy.
 図20は、実施例6におけるセンサの平面図である。図21は、図20のA-A断面図である。図20では、共振領域50a~50c、発熱線路30aおよび30bをクロスハッチングで示し、上部電極16a~16c、パッド24a~24dおよび25a~25dを実線、下部電極12a~12c、感応膜18および空隙22a~22cを破線で示している。 FIG. 20 is a plan view of the sensor in Example 6. FIG. 21 is a sectional view taken along line AA in FIG. 20. In FIG. 20, the resonance regions 50a to 50c, the heat generating lines 30a and 30b are shown by cross hatching, the upper electrodes 16a to 16c, the pads 24a to 24d and 25a to 25d are shown by solid lines, and the lower electrodes 12a to 12c, the sensitive film 18 and the air gap 22a are shown. ~22c is indicated by a broken line.
 図20および図21に示すように、実施例6では、圧電薄膜共振器11a~11cは、基板10上にX方向に配列して設けられている。圧電薄膜共振器11aと11bの間に発熱線路30aが設けられ、圧電薄膜共振器11bと11cとの間に発熱線路30bが設けられている。圧電薄膜共振器11cは、下部電極12c、圧電層14c、挿入膜20c、上部電極16c、挿入膜20c、空隙22c、パッド24cおよび25cを備え、感応膜18を備えていない。共振領域50cは圧電層14cを挟み下部電極12cと上部電極16cとが対向する領域である。圧電薄膜共振器11cの構造は、感応膜18を備えていない以外は圧電薄膜共振器11aと同じである。 As shown in FIGS. 20 and 21, in Example 6, the piezoelectric thin film resonators 11a to 11c are arranged on the substrate 10 in the X direction. A heating line 30a is provided between the piezoelectric thin film resonators 11a and 11b, and a heating line 30b is provided between the piezoelectric thin film resonators 11b and 11c. The piezoelectric thin film resonator 11c includes a lower electrode 12c, a piezoelectric layer 14c, an insertion film 20c, an upper electrode 16c, an insertion film 20c, a gap 22c, pads 24c and 25c, and does not include a sensitive film 18. The resonance region 50c is a region where the lower electrode 12c and the upper electrode 16c face each other with the piezoelectric layer 14c in between. The structure of the piezoelectric thin film resonator 11c is the same as the piezoelectric thin film resonator 11a except that the sensitive film 18 is not provided.
 圧電薄膜共振器11cは、感応膜18を有さない基準共振器とし機能する。検出器42は、圧電薄膜共振器11aと11cとの共振周波数の差の変化に基づき環境の変化を検出する。 The piezoelectric thin film resonator 11c functions as a reference resonator without the sensitive film 18. The detector 42 detects a change in the environment based on a change in the difference in resonance frequency between the piezoelectric thin film resonators 11a and 11c.
 実施例6のように、基準共振器となる圧電薄膜共振器11cを、圧電薄膜共振器11a、11bおよび発熱線路30を設けた基板10上に設ける。これにより、圧電薄膜共振器11aおよび11cの温度を精度よく制御することができる。 As in Example 6, a piezoelectric thin film resonator 11c serving as a reference resonator is provided on a substrate 10 on which piezoelectric thin film resonators 11a, 11b and a heating line 30 are provided. Thereby, the temperature of the piezoelectric thin film resonators 11a and 11c can be controlled with high accuracy.
 実施例7およびその変形例1は、空隙の構成を変えた例である。図22(a)は、実施例7におけるセンサの断面図である。図22(a)に示すように、圧電薄膜共振器11aでは、基板10を貫通する空隙22aが設けられている。共振領域50a内の下部電極12aは空隙22a上に設けられている。図示していないが、圧電薄膜共振器11bにおいても、基板10を貫通する空隙22bが設けられている。共振領域50b内の下部電極12aは空隙22b上に設けられている。その他の構成は、実施例1と同じであり説明を省略する。 Example 7 and its modification 1 are examples in which the configuration of the voids is changed. FIG. 22(a) is a cross-sectional view of the sensor in Example 7. As shown in FIG. 22(a), the piezoelectric thin film resonator 11a is provided with a gap 22a penetrating the substrate 10. As shown in FIG. The lower electrode 12a within the resonant region 50a is provided on the air gap 22a. Although not shown, a void 22b penetrating the substrate 10 is also provided in the piezoelectric thin film resonator 11b. The lower electrode 12a within the resonant region 50b is provided above the air gap 22b. The other configurations are the same as in Example 1, and the explanation will be omitted.
[実施例7の変形例1]
 図22(b)は、実施例7の変形例1におけるセンサの断面図である。図22(b)に示すように、圧電薄膜共振器11aでは、共振領域50aにおける下部電極12a下に音響反射膜27が形成されている。音響反射膜27は、音響インピーダンスの低い膜27aと音響インピーダンスの高い膜27bとが交互に設けられている。膜27aおよび27bの膜厚は例えばそれぞれほぼλ/4(λは弾性波の波長)である。膜27aと膜27bの積層数は任意に設定できる。図示していないが、圧電薄膜共振器11bにおいても、共振領域50bにおける下部電極12b下に音響反射膜27が設けられている。その他の構成は、実施例7と同じであり説明を省略する。
[Modification 1 of Example 7]
FIG. 22(b) is a cross-sectional view of a sensor in Modification 1 of Example 7. As shown in FIG. 22(b), in the piezoelectric thin film resonator 11a, an acoustic reflection film 27 is formed under the lower electrode 12a in the resonance region 50a. The acoustic reflection film 27 includes films 27a with low acoustic impedance and films 27b with high acoustic impedance alternately provided. The thickness of each of the films 27a and 27b is, for example, approximately λ/4 (λ is the wavelength of the elastic wave). The number of laminated films 27a and 27b can be set arbitrarily. Although not shown, in the piezoelectric thin film resonator 11b as well, an acoustic reflection film 27 is provided below the lower electrode 12b in the resonance region 50b. The other configurations are the same as those in Example 7, and their explanation will be omitted.
 実施例1から7のように、センサに用いる圧電薄膜共振器は、共振領域50aおよび50bにおいて空隙22aおよび22bが下部電極12aおよび12b下に形成されているFBAR(Film Bulk Acoustic Resonator)でもよい。また、実施例7の変形例1のように、圧電薄膜共振器は、共振領域50aおよび50bにおいて下部電極12aおよび12b下に圧電層14aおよび14bを伝搬する弾性波を反射する音響反射膜27を備えるSMR(Solidly Mounted Resonator)でもよい。 As in Examples 1 to 7, the piezoelectric thin film resonator used in the sensor may be an FBAR (Film Bulk Acoustic Resonator) in which air gaps 22a and 22b are formed under the lower electrodes 12a and 12b in the resonance regions 50a and 50b. Further, as in Modification 1 of Embodiment 7, the piezoelectric thin film resonator includes an acoustic reflection film 27 that reflects elastic waves propagating through piezoelectric layers 14a and 14b below lower electrodes 12a and 12b in resonance regions 50a and 50b. An SMR (Solidly Mounted Resonator) may be used.
 実施例1から7およびその変形例のように、下部電極12aと12bとは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、圧電層14aと14bとは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、上部電極16aと16bとは実質的に同じ材料からなりかつ同じ厚さを有する。これにより、共振領域50aと50bとの温度がほぼ同じとなり、圧電薄膜共振器11aの温度を精度よく制御することができる。共振領域50aと50bとの平面形状も実質的に同じであることが好ましい。なお、実質的に同じ材料からなるとは材料が製造誤差程度異なることを許容する。厚さが実質的に同じとは、±10%程度の違いを許容する。平面形状が実質的に同じとは、±10%程度の面積の違いを許容する。この場合、圧電薄膜共振器11aと11bとの共振周波数はほぼ同じとなる。圧電層14aと14bとで厚さまたは材料を異ならせ、圧電薄膜共振器11aと11bとの共振周波数を異ならせてもよい。 As in Examples 1 to 7 and variations thereof, lower electrodes 12a and 12b are made of substantially the same material and have substantially the same thickness, and piezoelectric layers 14a and 14b are made of substantially the same material. and have substantially the same thickness, and upper electrodes 16a and 16b are made of substantially the same material and have the same thickness. Thereby, the temperatures of the resonance regions 50a and 50b become almost the same, and the temperature of the piezoelectric thin film resonator 11a can be controlled with high precision. Preferably, the planar shapes of the resonance regions 50a and 50b are also substantially the same. Note that the term "substantially the same material" allows for differences in materials due to manufacturing errors. "Substantially the same thickness" allows for a difference of approximately ±10%. Substantially the same planar shape allows for a difference in area of approximately ±10%. In this case, the resonance frequencies of the piezoelectric thin film resonators 11a and 11b are almost the same. The piezoelectric layers 14a and 14b may have different thicknesses or materials, and the piezoelectric thin film resonators 11a and 11b may have different resonance frequencies.
 圧電薄膜共振器11aは、共振領域50aの少なくとも中央部における下部電極12aと上部電極16aとの間に温度補償膜として挿入膜20aを備える。これにより、圧電薄膜共振器11aの共振周波数の温度依存性が小さくなる。よって、圧電薄膜共振器11aは、温度に依存せず、環境の変化を検出することができる。圧電薄膜共振器11bは、共振領域50bの中央部における下部電極12bと上部電極16bとの間に温度補償膜を備えない。これにより、圧電薄膜共振器11bの共振周波数の温度依存性が大きくなる。よって、圧電薄膜共振器11bにおける温度の検出精度が向上する。 The piezoelectric thin film resonator 11a includes an inserted film 20a as a temperature compensation film between the lower electrode 12a and the upper electrode 16a at least in the center of the resonance region 50a. This reduces the temperature dependence of the resonant frequency of the piezoelectric thin film resonator 11a. Therefore, the piezoelectric thin film resonator 11a can detect changes in the environment without depending on temperature. The piezoelectric thin film resonator 11b does not include a temperature compensation film between the lower electrode 12b and the upper electrode 16b in the center of the resonance region 50b. This increases the temperature dependence of the resonant frequency of the piezoelectric thin film resonator 11b. Therefore, the accuracy of temperature detection in the piezoelectric thin film resonator 11b is improved.
 実施例1から7およびその変形例では、図4(c)のように、基板10上に下部電極12aおよび12bを同じ金属層から形成する。図4(d)および図5(b)のように、下部電極12aおよび12b上にそれぞれ圧電層14aおよび14bを同じ圧電層14から形成する。図5(c)のように、圧電層14aおよび14b上にそれぞれ上部電極16aおよび16bを同じ金属層から形成する。図3(a)のように、共振領域50a内の上部電極16a上に感応膜18を形成する。図6(b)のように、加熱器31を基板10上に形成する。このように、同じ基板10上に、下部電極12aおよび12bを同時に形成し、圧電層14aおよび14bを同時に形成し、上部電極16aおよび16bを同時に形成する。これにより、圧電薄膜共振器11aと11bにおける共振領域50aと50bとの温度がほぼ同じとなり、圧電薄膜共振器11aの温度を、圧電薄膜共振器11bを用い精度よく制御することができる。さらに、圧電薄膜共振器11a、11bおよび加熱器31を同一ウエハから形成すれば、1つの基板10上に、圧電薄膜共振器11a、11bおよび加熱器31を形成できる。このため、基板10を介して、加熱器31から圧電薄膜共振器11aおよび11bに熱を効率よく伝えることができる。これにより、圧電薄膜共振器11aの共振領域50aと圧電薄膜共振器11bの共振領域50bとの温度がほぼ同じとなる。よって、圧電薄膜共振器11bの共振周波数に基づき加熱器31を制御することで、圧電薄膜共振器aの温度を精度よく制御することができる。 In Examples 1 to 7 and their modifications, lower electrodes 12a and 12b are formed from the same metal layer on the substrate 10, as shown in FIG. 4(c). As shown in FIGS. 4(d) and 5(b), piezoelectric layers 14a and 14b are formed from the same piezoelectric layer 14 on lower electrodes 12a and 12b, respectively. As shown in FIG. 5(c), upper electrodes 16a and 16b are formed from the same metal layer on piezoelectric layers 14a and 14b, respectively. As shown in FIG. 3(a), a sensitive film 18 is formed on the upper electrode 16a within the resonance region 50a. As shown in FIG. 6(b), a heater 31 is formed on the substrate 10. In this way, on the same substrate 10, lower electrodes 12a and 12b are formed simultaneously, piezoelectric layers 14a and 14b are formed simultaneously, and upper electrodes 16a and 16b are formed simultaneously. As a result, the temperatures of the resonance regions 50a and 50b in the piezoelectric thin film resonators 11a and 11b are approximately the same, and the temperature of the piezoelectric thin film resonator 11a can be controlled with high precision using the piezoelectric thin film resonator 11b. Furthermore, if the piezoelectric thin film resonators 11a, 11b and the heater 31 are formed from the same wafer, the piezoelectric thin film resonators 11a, 11b and the heater 31 can be formed on one substrate 10. Therefore, heat can be efficiently transferred from the heater 31 to the piezoelectric thin film resonators 11a and 11b via the substrate 10. As a result, the temperatures of the resonance region 50a of the piezoelectric thin film resonator 11a and the resonance region 50b of the piezoelectric thin film resonator 11b become approximately the same. Therefore, by controlling the heater 31 based on the resonance frequency of the piezoelectric thin film resonator 11b, the temperature of the piezoelectric thin film resonator a can be controlled with high accuracy.
 図7(c)のように、下部電極12aと上部電極16aとの間となる領域と、下部電極12bと上部電極16bとの間となる領域に温度補償膜となる膜21bを形成する。その後、図7(d)のように、共振領域50aとなる領域の少なくとも中央部に膜21bを残存させ、共振領域50bの少なくとも中央部となる領域の膜21bを除去する。これにより、共振領域50aの少なくとも中央部に温度補償膜となる挿入膜20aを形成し、共振領域50bの少なくとも中央部に挿入膜20bを形成しないことができる。 As shown in FIG. 7C, a film 21b serving as a temperature compensation film is formed in a region between the lower electrode 12a and the upper electrode 16a and a region between the lower electrode 12b and the upper electrode 16b. Thereafter, as shown in FIG. 7D, the film 21b is left at least in the center of the region that will become the resonance region 50a, and the film 21b in the region that will become the resonance region 50b is removed. This allows the insertion film 20a serving as a temperature compensation film to be formed at least in the center of the resonance region 50a, and the insertion film 20b not to be formed in at least the center of the resonance region 50b.
 加熱器31として導電体線路である発熱線路30を用いることで、基板10に簡単に加熱器31を形成することができる。発熱線路30の平面形状は、ミアンダ状、直線状または曲線状等適宜選択できる。加熱器31は、発熱線路30以外にも、フィルム状の発熱体または発熱する回路等でもよい。 By using the heating line 30, which is a conductor line, as the heater 31, the heater 31 can be easily formed on the substrate 10. The planar shape of the heating line 30 can be selected as appropriate, such as a meandering shape, a linear shape, or a curved shape. In addition to the heating line 30, the heater 31 may be a film-shaped heating element, a circuit that generates heat, or the like.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention as described in the claims. Changes are possible.
 10 基板
 12a~12c 下部電極
 14a~14d 圧電層
 15a 下部圧電層
 15b 上部圧電層
 16a~16c 上部電極
 18 感応膜
 20a~20c 挿入膜
 21a、21b 膜
 22a~22c 空隙
 24a~24d、25a、25d パッド
 27 音響反射膜
 28a、28b、32 絶縁層
 30、30a、30b 発熱線路
 31 加熱器
 40 センサ
 42 検出器
 44a、44b 発振回路
 45a、45b 測定器
 46 制御部
 47 算出部
 50a~50c 共振領域
 52a、52b、54a、54b、56a、56b 領域
 
10 Substrate 12a-12c Lower electrode 14a-14d Piezoelectric layer 15a Lower piezoelectric layer 15b Upper piezoelectric layer 16a-16c Upper electrode 18 Sensitive film 20a- 20c Insert film 21a, 21b Film 22a-22c Gap 24a-24d, 25a, 25d Pad 27 Acoustic reflective film 28a, 28b, 32 Insulating layer 30, 30a, 30b Heat generating line 31 Heater 40 Sensor 42 Detector 44a, 44b Oscillator circuit 45a, 45b Measuring device 46 Control section 47 Calculation section 50a to 50c Resonance region 52a, 52b, 54a, 54b, 56a, 56b area

Claims (16)

  1.  基板と、
     前記基板上に設けられた第1下部電極と、前記第1下部電極上に設けられた第1圧電層と、前記第1圧電層上に設けられた第1上部電極と、前記第1圧電層の少なくとも一部を挟み前記第1下部電極と前記第1上部電極とが対向する第1共振領域と、前記第1共振領域内の前記第1上部電極上に設けられた感応膜と、を備える第1圧電薄膜共振器と、
     前記基板上に設けられた第2下部電極と、前記第2下部電極上に設けられた第2圧電層と、前記第2圧電層上に設けられた第2上部電極と、前記第2圧電層の少なくとも一部を挟み前記第2下部電極と前記第2上部電極とが対向する第2共振領域と、を備える第2圧電薄膜共振器と、
     前記基板上に設けられ、前記第2圧電薄膜共振器の共振周波数に基づき制御される加熱器と、
    を備える検出装置。
    A substrate and
    a first lower electrode provided on the substrate; a first piezoelectric layer provided on the first lower electrode; a first upper electrode provided on the first piezoelectric layer; and a first piezoelectric layer. a first resonant region in which the first lower electrode and the first upper electrode face each other with at least a portion thereof sandwiched therebetween; and a sensitive film provided on the first upper electrode in the first resonant region. a first piezoelectric thin film resonator;
    a second lower electrode provided on the substrate; a second piezoelectric layer provided on the second lower electrode; a second upper electrode provided on the second piezoelectric layer; and a second piezoelectric layer. a second piezoelectric thin film resonator comprising: a second resonance region in which the second lower electrode and the second upper electrode face each other with at least a portion of the piezoelectric thin film resonator in between;
    a heater provided on the substrate and controlled based on the resonant frequency of the second piezoelectric thin film resonator;
    A detection device comprising:
  2.  前記加熱器は、前記第1圧電薄膜共振器と前記第2圧電薄膜共振器との間に隣接して設けられている請求項1に記載の検出装置。 The detection device according to claim 1, wherein the heater is provided adjacently between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator.
  3.  前記第1共振領域は、前記第1下部電極が前記第1共振領域から引き出される方向および前記第1上部電極が前記第1共振領域から引き出される方向に交差する方向において前記加熱器と隣接し、
     前記第2共振領域は、前記第2下部電極が前記第2共振領域から引き出される方向および前記第2上部電極が前記第2共振領域から引き出される方向に交差する方向において前記加熱器と隣接する請求項2に記載の検出装置。
    The first resonance region is adjacent to the heater in a direction intersecting a direction in which the first lower electrode is drawn out from the first resonance region and a direction in which the first upper electrode is drawn out from the first resonance region,
    The second resonance region is adjacent to the heater in a direction intersecting a direction in which the second lower electrode is drawn out from the second resonance region and a direction in which the second upper electrode is drawn out from the second resonance region. Detection device according to item 2.
  4.  前記第1共振領域において、前記第1下部電極下に第1空隙が設けられ、
     前記第2共振領域において、前記第2下部電極下に第2空隙が設けられ、
     前記第1下部電極のうち前記第1空隙の外側において前記第1基板上に設けられ前記第1下部電極を外部と接続する部分を除いた第1部分は、前記第1圧電薄膜共振器のうち最も前記加熱器に近く、
     前記第2下部電極のうち前記第2空隙の外側において前記第2基板上に設けられ前記第2下部電極を外部と接続する部分を除いた第2部分は、前記第2圧電薄膜共振器のうち最も前記加熱器に近い請求項3に記載の検出装置。
    In the first resonance region, a first gap is provided under the first lower electrode,
    In the second resonance region, a second gap is provided under the second lower electrode,
    A first portion of the first lower electrode excluding a portion provided on the first substrate outside the first gap and connecting the first lower electrode with the outside is a portion of the first piezoelectric thin film resonator. closest to the heater,
    A second portion of the second lower electrode excluding a portion provided on the second substrate outside the second gap and connecting the second lower electrode to the outside is a portion of the second piezoelectric thin film resonator. The detection device according to claim 3, which is closest to the heater.
  5.  前記第1部分と前記加熱器との最短の距離は前記第2部分と前記加熱器との最短の距離の0.5倍以上かつ2倍以下である請求項4に記載の検出装置。 The detection device according to claim 4, wherein the shortest distance between the first part and the heater is 0.5 times or more and twice or less the shortest distance between the second part and the heater.
  6.  前記第1圧電薄膜共振器と前記第2圧電薄膜共振器との間における前記基板上に、前記第1圧電層と前記第2圧電層と連続して設けられた第3圧電層を備え、
     前記加熱器は、前記基板と前記第3圧電層との間に設けられている請求項2に記載の検出装置。
    a third piezoelectric layer provided continuously with the first piezoelectric layer and the second piezoelectric layer on the substrate between the first piezoelectric thin film resonator and the second piezoelectric thin film resonator;
    The detection device according to claim 2, wherein the heater is provided between the substrate and the third piezoelectric layer.
  7.  前記加熱器は、前記第1下部電極が前記第1共振領域から引き出された領域において前記第1下部電極に接合され、前記第2下部電極が前記第2共振領域から引き出された領域において前記第2下部電極に接合される請求項1に記載の検出装置。 The heater is connected to the first lower electrode in a region where the first lower electrode is drawn out from the first resonance region, and the second lower electrode is joined to the first lower electrode in a region where the second lower electrode is drawn out from the second resonance region. 2. The detection device according to claim 1, wherein the detection device is connected to two lower electrodes.
  8.  前記加熱器は、前記第1上部電極が前記第1共振領域から引き出された第1領域または前記第1領域に対し前記第1共振領域と反対の領域において前記第1圧電層に接合され、前記第2上部電極が前記第2共振領域から引き出された第2領域または前記第2領域に対し前記第2共振領域と反対の領域において前記第2圧電層に接合される請求項1に記載の検出装置。 The heater is configured such that the first upper electrode is joined to the first piezoelectric layer in a first region drawn out from the first resonant region or in a region opposite to the first resonant region with respect to the first region, and Detection according to claim 1, wherein a second upper electrode is joined to the second piezoelectric layer in a second region drawn out from the second resonant region or in a region opposite to the second resonant region with respect to the second region. Device.
  9.  前記第1共振領域において、前記第1下部電極下に第1空隙が設けられ、
     前記第2共振領域において、前記第2下部電極下に第2空隙が設けられ、
     前記加熱器は、前記第1空隙および前記第2空隙内に設けられている請求項1に記載の検出装置。
    In the first resonance region, a first gap is provided under the first lower electrode,
    In the second resonance region, a second gap is provided under the second lower electrode,
    The detection device according to claim 1, wherein the heater is provided within the first gap and the second gap.
  10.  前記第1下部電極と前記第2下部電極とは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、前記第1圧電層と前記第2圧電層とは実質的に同じ材料からなりかつ実質的に同じ厚さを有し、前記第1上部電極と前記第2上部電極とは実質的に同じ材料からなりかつ実質的に同じ厚さを有する請求項1から9のいずれか一項に記載の検出装置。 The first lower electrode and the second lower electrode are made of substantially the same material and have substantially the same thickness, and the first piezoelectric layer and the second piezoelectric layer are made of substantially the same material. and having substantially the same thickness, and wherein the first upper electrode and the second upper electrode are made of substantially the same material and have substantially the same thickness. Detection device described in Section.
  11.  前記第1共振領域と前記加熱器との最短の距離は、前記第2共振領域と前記加熱器との最短の距離との0.5倍以上かつ2倍以下である請求項1から9のいずれか一項に記載の検出装置。 Any one of claims 1 to 9, wherein the shortest distance between the first resonance region and the heater is at least 0.5 times and at most twice the shortest distance between the second resonance region and the heater. The detection device according to item (1).
  12.  前記第1圧電薄膜共振器は、前記第1共振領域における少なくとも中央部における前記第1下部電極と前記第1上部電極との間に温度補償膜を備え、
     前記第2圧電薄膜共振器は、前記第2共振領域における中央部における前記第2下部電極と前記第2上部電極との間に温度補償膜を備えない請求項1から9のいずれか一項に記載の検出装置。
    The first piezoelectric thin film resonator includes a temperature compensation film between the first lower electrode and the first upper electrode in at least a central portion of the first resonance region,
    10. The second piezoelectric thin film resonator does not include a temperature compensation film between the second lower electrode and the second upper electrode in a central portion of the second resonance region. The detection device described.
  13.  前記加熱器は、前記基板上に設けられた導電体線路である請求項1から9のいずれか一項に記載の検出装置。 The detection device according to any one of claims 1 to 9, wherein the heater is a conductor line provided on the substrate.
  14.  前記第1圧電薄膜共振器の共振周波数に基づき、環境の変化を検出し、前記第2圧電薄膜共振器の共振周波数に基づき前記加熱器を制御する検出器を備える請求項1から9のいずれか一項に記載の検出装置。 Any one of claims 1 to 9, further comprising a detector that detects changes in the environment based on the resonant frequency of the first piezoelectric thin film resonator and controls the heater based on the resonant frequency of the second piezoelectric thin film resonator. Detection device according to item 1.
  15.  基板上に第1下部電極および第2下部電極を同じ金属層から形成する工程と、
     前記第1下部電極および前記第2下部電極上にそれぞれ第1圧電層および第2圧電層を同じ圧電層から形成する工程と、
     前記第1圧電層の少なくとも一部を挟み前記第1下部電極と第1上部電極とが対向する第1共振領域を有する第1圧電薄膜共振器と、前記第2圧電層の少なくとも一部を挟み前記第2下部電極と第2上部電極とが対向する第2共振領域を有する第2圧電薄膜共振器と、が形成されるように、前記第1圧電層および前記第2圧電層上にそれぞれ前記第1上部電極および前記第2上部電極を同じ金属層から形成する工程と、
     前記第1共振領域内の前記第1上部電極上に感応膜を形成する工程と、
     前記基板上に、前記第2圧電薄膜共振器の共振周波数に基づき制御される加熱器を形成する工程と、を含む検出装置の製造方法。
    forming a first lower electrode and a second lower electrode from the same metal layer on the substrate;
    forming a first piezoelectric layer and a second piezoelectric layer from the same piezoelectric layer on the first lower electrode and the second lower electrode, respectively;
    a first piezoelectric thin film resonator having a first resonance region in which the first lower electrode and the first upper electrode face each other with at least a portion of the first piezoelectric layer sandwiched therebetween; on the first piezoelectric layer and the second piezoelectric layer, respectively, so that a second piezoelectric thin film resonator having a second resonance region in which the second lower electrode and the second upper electrode face each other is formed. forming a first upper electrode and the second upper electrode from the same metal layer;
    forming a sensitive film on the first upper electrode in the first resonance region;
    A method for manufacturing a detection device, comprising the step of forming, on the substrate, a heater that is controlled based on the resonance frequency of the second piezoelectric thin film resonator.
  16.  前記第1下部電極と前記第1上部電極との間と、前記第2下部電極と前記第2上部電極との間に温度補償膜を形成する工程と、
     前記第1共振領域の少なくとも中央部における前記温度補償膜を残存させ、前記第2共振領域の少なくとも中央部における前記温度補償膜を除去する工程と、
    を含む請求項15に記載の検出装置の製造方法。
     
    forming a temperature compensation film between the first lower electrode and the first upper electrode and between the second lower electrode and the second upper electrode;
    leaving the temperature compensation film at least in the center of the first resonance region and removing the temperature compensation film at least in the center of the second resonance region;
    16. The method for manufacturing a detection device according to claim 15.
PCT/JP2023/002506 2022-03-31 2023-01-26 Detection device and production method for same WO2023188760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060817 2022-03-31
JP2022060817 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188760A1 true WO2023188760A1 (en) 2023-10-05

Family

ID=88200805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002506 WO2023188760A1 (en) 2022-03-31 2023-01-26 Detection device and production method for same

Country Status (1)

Country Link
WO (1) WO2023188760A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298427A1 (en) * 2005-09-09 2008-12-04 Siemens Aktiengesellschaft Device Comprising a Piezoelectric Resonator Element, Method for Producing the Same and Method for Outputting a Signal Depending on a Resonant Frequency
US20100134209A1 (en) * 2005-09-09 2010-06-03 Reinhard Gabl Device comprising a piezoacoustic resonator element and integrated heating element, method for producing the same and method for outputting a signal depending on a resonant frequency
US20100170324A1 (en) * 2008-12-30 2010-07-08 ST Microeletronics S.r.l. Integrated electronic microbalance plus chemical sensor
KR101363269B1 (en) * 2013-07-17 2014-02-12 주식회사 위즈맥 Quarts crystal microbalance system minimizing frequency variation along temperature variation
WO2019107446A1 (en) * 2017-11-30 2019-06-06 Koa株式会社 Heater temperature control circuit and sensor device using same
US20200011827A1 (en) * 2017-09-12 2020-01-09 South China Normal University Capacitive sensor and preparation method thereof
WO2021172588A1 (en) * 2020-02-28 2021-09-02 太陽誘電株式会社 Sensor device and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298427A1 (en) * 2005-09-09 2008-12-04 Siemens Aktiengesellschaft Device Comprising a Piezoelectric Resonator Element, Method for Producing the Same and Method for Outputting a Signal Depending on a Resonant Frequency
US20100134209A1 (en) * 2005-09-09 2010-06-03 Reinhard Gabl Device comprising a piezoacoustic resonator element and integrated heating element, method for producing the same and method for outputting a signal depending on a resonant frequency
US20100170324A1 (en) * 2008-12-30 2010-07-08 ST Microeletronics S.r.l. Integrated electronic microbalance plus chemical sensor
KR101363269B1 (en) * 2013-07-17 2014-02-12 주식회사 위즈맥 Quarts crystal microbalance system minimizing frequency variation along temperature variation
US20200011827A1 (en) * 2017-09-12 2020-01-09 South China Normal University Capacitive sensor and preparation method thereof
WO2019107446A1 (en) * 2017-11-30 2019-06-06 Koa株式会社 Heater temperature control circuit and sensor device using same
WO2021172588A1 (en) * 2020-02-28 2021-09-02 太陽誘電株式会社 Sensor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US7965019B2 (en) Device comprising a piezoacoustic resonator element and integrated heating element, method for producing the same and method for outputting a signal depending on a resonant frequency
CN101258676B (en) Device comprising a piezoacoustic resonator element, method for producing the same and method for outputting a signal depending on a resonant frequency
US9255912B2 (en) Monolithic FBAR-CMOS structure such as for mass sensing
WO2000026636A1 (en) Qcm sensor
US9134276B2 (en) Bulk acoustic wave resonator sensor
JP6469736B2 (en) Sensor circuit and sensing method
JP2012506549A (en) Apparatus and method for detecting materials using a thin film resonator (FBAR) with an insulating layer
JP2010117184A (en) Detection sensor
US8536764B2 (en) Arrangement of a piezoacoustic resonator on an acoustic mirror of a substrate, method for producing the arrangement and use of the arrangement
WO2023188760A1 (en) Detection device and production method for same
WO2010127122A1 (en) Monolithic fbar-cmos structure such as for mass sensing
EP3755999A1 (en) Resonator for the detection of a mass analyte and method for operation of the resonator
US11716070B2 (en) Film bulk acoustic sensors using thin LN-LT layer
WO2021172588A1 (en) Sensor device and method for manufacturing same
KR100510887B1 (en) Mass-sensitive sensor, and its method for manufacturing
WO2023145434A1 (en) Detection device
JP2008180668A (en) Lamb wave type high-frequency sensor device
US20230327637A1 (en) Transversely-excited film bulk acoustic resonator with thick dielectric layer for improved coupling
WO2022203057A1 (en) Detecting element and method for manufacturing same, and detecting system
WO2022137565A1 (en) Detection element, gas detection system, and method for manufacturing detection element
Wang et al. Pseudo-LFE study in AT-cut quartz for sensing applications
WO2023189334A1 (en) Elastic wave sensor and method for manufacturing same
Ramotti Optimization of shear mode Solidly Mounted Resonators based on fully-dielectric acoustic reflectors for biosensing applications
JP2023111668A (en) Detection device
JP2021132264A (en) Elastic wave device, filter, and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778798

Country of ref document: EP

Kind code of ref document: A1