WO2022137565A1 - Detection element, gas detection system, and method for manufacturing detection element - Google Patents

Detection element, gas detection system, and method for manufacturing detection element Download PDF

Info

Publication number
WO2022137565A1
WO2022137565A1 PCT/JP2020/048957 JP2020048957W WO2022137565A1 WO 2022137565 A1 WO2022137565 A1 WO 2022137565A1 JP 2020048957 W JP2020048957 W JP 2020048957W WO 2022137565 A1 WO2022137565 A1 WO 2022137565A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
detection element
region
needle
electrode
Prior art date
Application number
PCT/JP2020/048957
Other languages
French (fr)
Japanese (ja)
Inventor
武 坂下
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to PCT/JP2020/048957 priority Critical patent/WO2022137565A1/en
Priority to JP2022571000A priority patent/JPWO2022137565A1/ja
Publication of WO2022137565A1 publication Critical patent/WO2022137565A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a detection element using an FBAR (Film Bulk Acoustic Resonator, hereinafter referred to as a piezoelectric thin film resonator) or the like, a gas detection system, and a method for manufacturing the detection element.
  • FBAR Flexible Bulk Acoustic Resonator
  • the piezoelectric thin film resonator is a resonator in the GHz band used for filters, duplexers, etc. of mobile communication equipment.
  • There is a gas detection device that applies a sensitive film to which a specific gas is adsorbed on a crystal oscillator, a surface acoustic wave resonator, and a piezoelectric thin film resonator, and detects a frequency change corresponding to the mass change.
  • Patent Document 1 a gas molecule detection element provided with a gas molecule selection material having gas discrimination as a sensitive film on a surface elastic wave resonator is used, and an anti-resonance frequency or a resonance frequency is used by using a mass change due to gas molecule adsorption. It is described that the substance is detected by the displacement difference of.
  • Patent Document 2 describes a stress sensor in which a sensitive film is provided on a diaphragm having an uneven shape and a sensitive film having an uneven shape is formed. It is described that the sensitivity is improved by providing unevenness on the sensitive film.
  • Japanese Unexamined Patent Publication No. 2005-331326 Japanese Unexamined Patent Publication No. 2017-181435
  • the sensitivity can be improved by increasing the surface area of the sensitive film.
  • a detection element using a surface acoustic wave resonator it is conceivable to provide an uneven shape on the surface of any one of the upper electrode, the lower electrode, and the piezoelectric film, which is the interface of the sensitive film.
  • the Q value deteriorates due to the influence on the crystal growth direction of the piezoelectric film, and the thickness of the electrode film becomes non-uniform in the plane, so that it is unnecessary other than resonance and antiresonance. Peaks occur and sensitivity deteriorates.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a detection element capable of high-sensitivity detection, a gas detection system, and a method for manufacturing the detection element.
  • the detection element includes a vibrator, a base layer, and a sensitive film.
  • the base layer is provided on the vibrator and has a needle-shaped protrusion on the surface.
  • the sensitive membrane covers at least a part of the needle-shaped protrusion and adsorbs gas molecules.
  • the surface area of the sensitive film can be increased, and the detection sensitivity of the detection element can be improved.
  • the needle-shaped protrusion may be formed by crystal growth.
  • the underlayer includes a first region having a thin film and a second region having the needle-shaped protrusions located on the first region, the first region and the second region. It may be composed of the same material as the main component. The first region and the second region may be integrated.
  • the material may be aluminum oxide.
  • the vibrator has a piezoelectric film and a first electrode and a second electrode facing each other with at least a part of the piezoelectric film interposed therebetween, and the sensitive film is the first electrode of the first electrode.
  • the electrode and the second electrode may be provided at least in a part of the resonance region facing the piezoelectric film with the piezoelectric film interposed therebetween, via the base layer.
  • the oscillator has a substrate, a piezoelectric film provided on the substrate, and a laminated film including the first electrode and the second electrode, and the substrate and the laminated film are in contact with each other.
  • a protective layer covering the site may be further provided. According to such a configuration, the invasion of moisture between the substrate and the laminated film can be suppressed by the protective layer, and the moisture resistance of the detection element is improved.
  • the oscillator may be a piezoelectric thin film resonator, a surface acoustic wave resonator, or a crystal oscillator.
  • the gas detection system includes a detection element and a detection circuit.
  • the detection element is a sensitive film that covers at least a part of the oscillator, the base layer provided on the oscillator and having needle-shaped protrusions on the surface, and the needle-shaped protrusions, and adsorbs gas molecules.
  • the detection circuit detects the gas based on the fluctuation amount of the resonance frequency output by the detection element.
  • a vibrator on which a base film is formed is heat-treated under conditions of a relative humidity of 95% RH or higher and a temperature of 95 ° C. or higher, and the base film is applied to the surface thereof. Change to a base layer with needle-shaped protrusions.
  • a cross-sectional view schematically showing a cross section of a base layer constituting a part of the detection element according to the first and second embodiments, and a state in which a sensitive film is formed in a second region of the base layer are schematically shown. It is sectional drawing which shows. It is a schematic schematic diagram which shows the structure of the gas detection system which includes the detection element which concerns on 1st or 2nd Embodiment.
  • the piezoelectric thin film resonator is a resonator using a bulk wave propagating in the piezoelectric film in the thickness direction, and a vibrating portion forming a resonance region described later in the resonator constitutes a resonator.
  • a plan view when the detection element and each component of the detection element are viewed from the thickness direction of the substrate, it is referred to as a plan view.
  • the detection element 10 includes a substrate 1, a piezoelectric film 4, an upper electrode 3 as a first electrode, a lower electrode 2 as a second electrode, and a base layer 6. It has a sensitive film 5, metal layers 7a and 7b, and an insertion film 8.
  • the lower electrode 2 and the upper electrode 3 are arranged so as to face each other with at least a part of the piezoelectric film 4 interposed therebetween.
  • a laminated film 70 in which the lower electrode 2, the piezoelectric film 4, and the upper electrode 3 are laminated is provided on the substrate 1.
  • the detection element 10 has a piezoelectric thin film resonator 11 as an oscillator, and a base layer 6 and a sensitive film 5 provided on the piezoelectric thin film resonator 11.
  • the piezoelectric thin film resonator 11 has a substrate 1 and a laminated film 70.
  • a silicon (Si) substrate can be used as the substrate 1, for example, a silicon (Si) substrate can be used.
  • the lower electrode 2 is formed on the substrate 1 in a predetermined shape.
  • the lower electrode 2 has aluminum (Al), copper (Cu), chromium (Cr), molybdenum (Mo), tungsten (W), tantalum (Ta), platinum (Pt), ruthenium (Ru), rhodium (Rh), and the like.
  • it is composed of a metal monolayer film of iridium (Ir) or a laminated film selected from these.
  • Ir iridium
  • the piezoelectric film 4 is formed on the substrate 1 in a predetermined shape so as to cover a part of the lower electrode 2.
  • the piezoelectric film 4 is composed of, for example, a piezoelectric body containing aluminum nitride (AlN) having an axis in the (002) direction as a main component.
  • AlN aluminum nitride
  • zinc oxide (ZnO), lead zirconate titanate (PZT), lead titanate (PbTiO 3 ), and the like can be used for the piezoelectric film 4.
  • the piezoelectric film 4 may contain aluminum nitride as a main component and may contain other elements for improving resonance characteristics or piezoelectricity. For example, by using scandium (Sc) as an additive element, the effective electromechanical coupling coefficient can be improved.
  • the upper electrode 3 is formed on the piezoelectric film 4 in a predetermined shape so as to cover at least a part of the piezoelectric film 4.
  • the upper electrode 3 is composed of a single-layer film of the metal material listed in the lower electrode 2 or a laminated film thereof.
  • a laminated film in which a lower layer using Ru and an upper layer using Cr are laminated on the upper electrode 3 will be given.
  • the detection element 10 has a resonance region 30.
  • the resonance region 30 refers to a region where the lower electrode 2 and the upper electrode 3 face each other with the piezoelectric film 4 interposed therebetween.
  • a gap 32 is provided between the substrate 1 and the lower electrode 2.
  • the piezoelectric film 4, the lower electrode 2, and the upper electrode 3 are convex curved surface portions that form a gap 32 between the substrate 1 and the lower electrode 2.
  • the planar shape of the convex curved surface of the upper electrode 3 corresponding to the resonance region 30 is, for example, an elliptical shape having a major axis of 270 ⁇ m and a minor axis of 180 ⁇ m.
  • the resonance region 30 is a region that resonates in the thickness longitudinal vibration mode when a voltage signal having a predetermined frequency is input between the lower electrode 2 and the upper electrode 3.
  • the vibrating portion forming the resonance region 30 constitutes the oscillator.
  • the resonance frequency of the resonance region 30 is not particularly limited, and is typically a frequency in the GHz band.
  • the planar shape of the resonance region 30 may be formed into another shape such as a circular shape or a polygonal shape.
  • a circular shape or a polygonal shape In particular, by making the planar shape of the resonance region 30 an ellipse or a polygonal shape, it is possible to suppress the occurrence of a vibration mode propagating in the lateral direction as compared with the case where the planar shape of the resonance region 30 is a quadrangle (square or rectangular). It is possible to prevent deterioration of the resonance characteristics.
  • the void 32 is a dome-shaped bulge formed between the flat upper surface of the substrate 1 and the lower electrode 2.
  • the dome-shaped bulge is, for example, a bulge having a shape in which the height of the void 32 is low around the void 32 and the height of the void 32 is higher toward the inside of the void 32.
  • the lower electrode 2 is formed with an introduction path (not shown) for etching the sacrificial layer 9 described later.
  • the sacrificial layer is a layer for forming the void 32.
  • the vicinity of the tip of the introduction path is not covered with the piezoelectric film 4, and the lower electrode has a hole 31 at the tip of the introduction path.
  • the hole 31 is an introduction port for introducing an etchant when forming the void 32.
  • the formation position of the hole portion 31 is not particularly limited, but is preferably provided in the vicinity of the resonance region 30.
  • the hole 31 is closed with an appropriate material.
  • the material that closes the hole 31 is not particularly limited, and the hole 31 may be closed by a part of the sensitive film 5.
  • an acoustic reflection layer that reflects elastic waves propagating in the longitudinal direction of the piezoelectric film may be used.
  • the sensitive film 5 adsorbs gas molecules. When the gas contains an odorant, the sensitive membrane adsorbs the odorant contained in the gas.
  • the sensitive film 5 is made of a material capable of adsorbing gas molecules to be detected.
  • the material constituting the sensitive film can be arbitrarily selected depending on the type of gas to be detected, and typically, an organic polymer film, an organic small molecule film, an organic dye film, an inorganic film or the like can be used. More specifically, the sensitive film 5 includes, but is not limited to, a cellulosic resin, a fluororesin, an acrylic resin, or a conductive polymer.
  • organic polymer material examples include polystyrene, polymethyl methacrylate, 6-nylon, cellulose acetate, poly-9,9-dioctirefluorene, polyvinyl alcohol, polyvinylcarbazole, polyethylene oxide, polyvinyl chloride, and poly-p-.
  • Homopolymers having a single structure such as phenylene ether sulfone, poly-1-butene, polybutadiene, polyphenylmethylsilane, polycaprolactone, polybisphenoxyphosphazene, polypropylene, and copolymers that are copolymers of two or more homopolymers. Can be used as a blended polymer or the like in which the above is mixed.
  • organic low molecular weight materials tris (8-quinolinolato) aluminum (Alq3), naphthyldiamine ( ⁇ -NPD), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), CBP (4,4'-N, N'-dicarbazole-biphenyl), copper phthalocyanine, fullerene, pentacene, anthracene, thiophene, Ir (ppy (2-phenylpyridinato)) 3, triazinethiol derivative, dioctylfluorene derivative, tetracontane, parylene Etc. can be used.
  • Alq3 8-quinolinolato aluminum
  • ⁇ -NPD naphthyldiamine
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • CBP 4,4'-N, N'-dicarbazole-biphenyl
  • examples of the inorganic material include aluminum oxide, titania, vanadium pentoxide, tungsten oxide, lithium fluoride, magnesium fluoride, aluminum, gold, silver, tin, indium-thin oxide (ITO), sodium chloride, magnesium chloride and the like. Can be used.
  • the sensitive film 5 is selectively provided in the resonance region 30.
  • the sensitive film 5 is provided in the resonance region 30 of the upper electrode 3, and is provided on the upper electrode 3 at a portion corresponding to the resonance region 30 via the base layer 6.
  • the portion corresponding to the resonance region 30 refers to the surface of the elliptical dome portion of the upper electrode 3, and the sensitive film 5 is provided on the convex curved surface portion of the upper electrode 3 via the base layer 6.
  • the resonance region 30 is formed in an elliptical shape having the same major axis and minor axis as the dome portion.
  • the thickness of the sensitive film 5 is not particularly limited, and is, for example, 250 ⁇ m.
  • the sensitive film 5 is formed on the upper electrode 2 via the base layer 6.
  • the base layer 6 is a layer having needle-shaped protrusions on its surface, and the sensitive film 5 is formed in a state of substantially following the shape of the needle-shaped protrusions of the base layer 6. Therefore, the sensitive film 5 has a plurality of irregularities due to the needle-shaped protrusions 621 of the base layer 6.
  • the base layer 6 and the sensitive film 5 will be described later.
  • a method for forming the sensitive film 5 a method of dissolving the material of the sensitive film in a solvent and applying it by a spray coat, a vapor deposition method, a sputtering method or a CVD (Chemical Vapor Deposition) method can be used.
  • the metal layer 7a is provided on the lower electrode 2.
  • the metal layer 7b is provided on the upper electrode 3.
  • Each of the metal layers 7a and 7b is in contact with the lower electrode 2 and the upper electrode 3, respectively, and functions as wiring and / or a pad.
  • the metal layers 7a and 7b are, for example, Au layers.
  • An underlayer such as a Ti layer or a W layer may be provided under the Au layer.
  • the insertion membrane 8 is inserted into the piezoelectric membrane 4.
  • the insertion film 8 is provided, for example, substantially in the center of the piezoelectric film 4 in the film thickness direction.
  • the insertion film 8 may be provided in the outer peripheral region in the resonance region 30 where the lower electrode 2 and the upper electrode 3 face each other with the piezoelectric film 4 interposed therebetween, or may be provided in the region surrounding the resonance region 30.
  • FIG. 14A is an enlarged schematic view of the base layer 6.
  • the base layer 106 of the second embodiment which will be described later, has the same configuration.
  • the base layer 6 is provided on the upper electrode 3.
  • the base layer 6 includes a thin film-shaped first region 61 located on the upper electrode 3 side and a needle-shaped second region 62 located on the surface side of the base layer 6.
  • the first region 61 has a thin film 611.
  • the second region 62 is located on the first region 61 and has a plurality of needle-shaped protrusions 621.
  • the plurality of needle-shaped protrusions 621 are formed irregularly in length and direction.
  • the base layer 6 having the needle-shaped protrusions 621 on the surface can be formed by heat-treating an alumina (Al 2 O 3 ) film having a uniform film thickness under high humidity.
  • alumina Al 2 O 3
  • needle-shaped protrusions 621 grow crystals from the surface of the base film 60 using alumina.
  • the base film 60 changes into the base layer 6 in which the thin film-shaped first region 61 and the second region 62 having the needle-shaped protrusions 621 are integrated, and the base film 60 changes to the first region 61.
  • the needle-shaped protrusion 621 is firmly fixed and held by the thin film 611.
  • both the first region 61 and the second region 62 contain alumina as a main component, and the crystal structure of alumina is different.
  • the crystal structure of the first region 61 is ⁇ -Al 2 O 3
  • the crystal structure of the second region 62 is ⁇ -Al 2 O 3 .
  • the main component means the component having the largest amount.
  • the main component of the first or second region allows impurities other than the main component to be intentionally or unintentionally contained in the first or second region.
  • the first or second region contains oxygen and aluminum in a total of 50 atomic% or more, more preferably 80 atomic% or more, respectively.
  • the sensitive film 5 is formed on the base layer 6. More specifically, it is formed so as to cover at least a part of the second region 62 of the base layer 6. A morphological example of the sensitive film 5 formed on the base layer 6 will be described with reference to FIGS. 14 (b) and 14 (c).
  • the sensitive membrane 5 has a first sensitive membrane region 51 and a second sensitive membrane region 52.
  • the first sensitive film region 51 is formed on the thin film 611 of the first region 61.
  • the second sensitive membrane region 52 is formed on the needle-shaped protrusion 621 of the second region 62.
  • 14 (b) and 14 (c) schematically show a state in which the first sensitive film region 51 is formed on the thin film 611 and the second sensitive film region 52 is formed on the needle-shaped protrusion 621.
  • the sensitive film 5 is schematically formed so as to cover the entire surface of the needle-shaped protrusions 621, but the plurality of needle-shaped protrusions 621 are formed in irregular directions. Therefore, the needle-shaped protrusion 621 may have a portion where the sensitive film 5 is not formed. The same applies to the base layer 106 of the second embodiment described later.
  • the first sensitive film region 51 constituting a part of the sensitive film 5 is formed on the thin film 611.
  • the second sensitive film region 52 which constitutes a part of the sensitive film 5, has a needle-shaped protrusion 621 so that the needle-shaped protrusion 621 is buried in the sensitive film 5 and the surface of the sensitive film 5 is not flat. It is formed to cover at least a part of.
  • the formed second sensitive film region 52 has a shape substantially following the needle-like shape of the protrusion 621 of the second region 62, and the sensitive film 5 has irregularities.
  • the surface area of the sensitive film 5 can be increased as compared with the case where the sensitive film 5 is a flat film.
  • the sensitive film may be infiltrated and formed so as to fill the root portion of the needle-shaped protrusion 621 of the second region 62 of the base layer 6. Therefore, the thickness of the first sensitive film region 51 formed on the thin film 611 is thicker than that of the form shown in FIG. 14 (b).
  • the second sensitive film region 52 includes at least one of the tip portions of the needle-shaped protrusions 621 so that the tip portion of the needle-shaped protrusions 621 is buried in the sensitive membrane 5 and the surface of the sensitive membrane 5 is not flat. It suffices if it is formed so as to cover the portion.
  • the formed second sensitive film region 52 has a shape that substantially resembles a part or most of the needle-like shape of the second region 62, and the sensitive film 5 has irregularities.
  • the surface area of the sensitive film 5 can be increased as compared with the case where the sensitive film 5 is a flat film.
  • the surface area of the sensitive film 5 can be increased, and the detection element with improved detection sensitivity can be obtained.
  • the upper electrode 3 is not provided with irregularities, and an underlayer 6 having a needle-shaped protrusion 621 on the surface is provided between the upper electrode 3 and the sensitive film 5, and the underlayer is provided.
  • the surface area of the sensitive film 5 is increased.
  • the detection element 10 has a high value.
  • a frequency adjustment film may be provided on the upper electrode 2.
  • the resonance frequency may be adjusted by adjusting the film thickness of the frequency adjusting film.
  • the frequency adjusting film may be made of silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum nitride (AlN), Cr or the like.
  • the frequency adjusting film may function as a passivation film.
  • the piezoelectric thin film resonator is applied to the detection element for detecting gas. In the gas detection system using the detection element, the gas is detected by using the change in the resonance frequency, so that the resonance frequency can be adjusted by the detection circuit. Therefore, the frequency adjustment film is not always necessary.
  • the film thickness of each configuration can be appropriately set in order to obtain desired resonance characteristics.
  • the lower electrode 2 is configured by laminating, for example, a lower layer using Cr and an upper layer using Ru.
  • the film thickness of the lower layer is 70 nm.
  • the film thickness of the upper layer is 166 nm.
  • the film thickness of the piezoelectric film using AlN is 996 nm.
  • the film thickness of the insertion film 8 using SiO 2 is 107 nm.
  • the upper electrode 3 is configured by laminating a lower layer using Ru and an upper layer using Cr.
  • the film thickness of the lower layer is 166 nm.
  • the film thickness of the upper layer is 55 nm.
  • the film thickness of the thin film 611 of the first region 61 of the base layer 6 containing Al 2 O 3 as a main component is, for example, 10 nm to 100 nm, and here, as an example, it is 50 nm.
  • the length of the needle-shaped protrusion 621 of the second region 62 of the base layer 6 containing Al 2 O 3 as a main component is, for example, 1 nm to 300 nm, and here, as an example, 100 nm.
  • the width of the protrusion 621 is, for example, 1 nm to 500 nm, and here, as an example, 5 nm.
  • the aspect ratio of the protrusion 621 is 2: 1 to 10: 1.
  • the length and width of the protrusion 621 show average values.
  • the average value of each of the length and width of 20 protrusions 621 arbitrarily selected in one visual field is calculated as the protrusion. Let it be the average length and the average width in 621.
  • the maximum ferret diameter is adopted as the length of the protrusion 621, and the minimum ferret diameter is adopted as the width of the protrusion 621.
  • the aspect ratio is a value obtained by dividing the average length by the average width.
  • the surface of the first region 61 on the side where the protrusion 621 of the thin film 611 is located is not a flat surface.
  • the average value of the film thicknesses at 20 points arbitrarily set in one visual field is set as the film thickness of the first region 61. ..
  • the sensitive film 5 is formed with a film thickness of, for example, 100 nm or less, for example, 10 nm to 100 nm, and here, as an example, it is 20 nm.
  • the film thickness of the sensitive film 5 can be measured by preparing a film thickness monitor at the time of film formation of the actual device and measuring the film thickness monitor by a stylus type, a non-contact type, or an electric resistance type. The same applies to cross-section analysis.
  • the sacrificial layer 9 for forming the void 32 is formed on the substrate 1 having the flat main surface.
  • the thickness of the sacrificial layer 9 is, for example, 10 to 100 nm, and is selected from materials that can be easily dissolved in an etching solution or an etching gas such as MgO, ZnO, Ge, or SiO 2 .
  • the sacrificial layer 9 is formed by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method.
  • the sacrificial layer 9 may be formed by a lift-off method.
  • the planar shape of the sacrificial layer 9 is a shape corresponding to the planar shape of the void 32, and includes, for example, a region that becomes a resonance region 30.
  • the lower electrode 2 is formed on the sacrificial layer 9 and the substrate 1.
  • the lower electrode 2 has a laminated structure in which, for example, a lower layer using Cr and an upper layer using Ru are laminated.
  • the lower electrode 2 is formed by patterning a film formed by, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique.
  • the lower electrode 2 may be formed by a lift-off method.
  • the piezoelectric film 4a is formed on the lower electrode 2 and the substrate 1.
  • the piezoelectric film 4a is formed into a film by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method.
  • an insertion film 8 using SiO 2 patterned in a desired shape is formed on the piezoelectric film 4.
  • the insertion film 8 is formed by patterning a film formed by a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique.
  • the piezoelectric film 4b is formed on the insertion film 8 and the piezoelectric film 4a.
  • the piezoelectric film 4b is formed into a film by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method.
  • the piezoelectric film 4 is composed of the piezoelectric film 4a and the piezoelectric film 4b.
  • the upper electrode 3 is formed on the piezoelectric film 4.
  • the upper electrode 3 has a laminated structure in which, for example, a lower layer using Ru and an upper layer using Cr are laminated.
  • the upper electrode 3 is formed by patterning a film formed by, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique.
  • the upper electrode 3 may be formed by a lift-off method.
  • a mask layer (not shown) having a desired shape is formed on the upper electrode 3 and the piezoelectric film 4.
  • the mask layer is, for example, a photoresist, and is formed by using a photolithography method.
  • a part of the piezoelectric film 4 is removed by using an etching method.
  • the mask layer is removed by an organic cleaning method or an ashing method.
  • a part of the lower electrode 2 is exposed.
  • a base film 60 using alumina patterned in a desired shape is formed on the upper electrode 3.
  • the undercoat film 60 is formed by patterning a film formed by, for example, a sputtering method, a CVD method, or an ALD (Atomic Layer Deposition) method into a desired shape using a photolithography technique and an etching technique.
  • the base film 60 may be formed by a lift-off method.
  • the undercoat film 60 is formed with a film thickness of, for example, 100 nm. From the viewpoint of maintaining good resonance characteristics of the manufactured detection element 10, the undercoat film 60 is preferably formed with a film thickness of, for example, 30 nm or less. From the viewpoint of efficiently performing needle-like crystallization of the outermost surface of the undercoat film 60 by heat treatment under high humidity, which will be described later, the undercoat film 60 is preferably formed with a film thickness of, for example, 100 nm or less.
  • the metal layers 7a and 7b patterned in a desired shape are formed in contact with the lower electrode 2 and the upper electrode 3, respectively.
  • the metal layers 7a and 7b are formed by patterning a film formed by a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique.
  • the metal layers 7a and 7b may be formed by a lift-off method.
  • the etchant of the sacrificial layer 9 is introduced into the sacrificial layer 9 under the lower electrode 2 via the hole 31 (see FIG. 1) and the introduction path (not shown). ..
  • the sacrificial layer 9 is removed and the void 32 is formed.
  • the medium for etching the sacrificial layer 9 is preferably a medium that does not etch the material constituting the resonator other than the sacrificial layer 9.
  • the etching medium is preferably a medium in which the lower electrode 2 with which the etching medium is in contact is not etched.
  • the pressure of the laminated film 70 is set so as to be a compressive stress.
  • the laminated film 70 swells on the opposite side of the substrate 1 so as to be separated from the substrate 1.
  • a void 32 having a dome-shaped bulge is formed between the lower electrode 2 and the substrate 1.
  • the surface of the undercoat film 60 is needle-shaped crystallized by heat treatment under high humidity.
  • the base film 60 is formed on the base layer 6 including the first region 61 having the thin film 611 and the second region 62 having the needle-shaped protrusions 621. Change.
  • the surface of the undercoat film 60 using alumina can be needle-like crystallized by treating under the following conditions.
  • the heat treatment under high humidity can be performed in the chamber (treatment chamber). It is preferable that the treatment chamber temperature is 95 ° C. or higher and the relative humidity is 95% RH or higher.
  • the surface of the undercoat film 60 using alumina can be crystallized in a needle shape.
  • alumina is needle-shaped crystallized by performing the treatment under the above conditions, there is a possibility of needle-like crystallization under different conditions, and the treatment is not limited to the above treatment conditions. Under conditions where the relative humidity is 95% RH or higher, needle-like crystallization does not occur at temperatures below 95 ° C.
  • Needle-like crystallization tends to proceed when the temperature is raised, and the upper limit of the temperature is not particularly limited.
  • the temperature is preferably 150 ° C. or lower. If the relative humidity is less than 95% RH under the condition that the temperature is 95 ° C. or higher, needle-like crystallization does not occur. Needle-like crystallization tends to proceed when the humidity is increased, and the upper limit of the humidity is not particularly limited.
  • the treatment time varies depending on the film thickness of the base film 60.
  • the base film 60 having a film thickness of 100 nm, it takes 60 minutes. With time, the length of the needle-shaped protrusion 621 can be adjusted, in other words, the degree of growth of the needle-shaped crystal can be adjusted.
  • the film thickness of the base film 60 before the treatment and the film thickness of the base layer 6 after the treatment are substantially the same. From the viewpoint of fixing and holding the needle-shaped protrusion 621 by the thin film 611, the film thickness of the thin film 611 is preferably about 30 to 90% of the film thickness of the base layer 6.
  • the gauge pressure is set to 0 MPa or more here, the gauge pressure is not particularly limited. When the gauge pressure is increased, the formation of needle-shaped protrusions tends to proceed. The length, thickness, and orientation (extending direction) of the needle-shaped protrusion 621 formed are irregular.
  • the crystal structure of the base film 60 using alumina before the heat treatment under high humidity is ⁇ -Al 2 O 3 . Due to the heat treatment under high humidity, only the surface of the base film 60 changes its crystal structure from ⁇ -Al 2 O 3 to ⁇ -Al 2 O 3 and becomes needle-like crystals.
  • the crystal structure of the first region 61 having the thin film 611 is ⁇ -Al 2 O 3
  • the crystal structure of the second region 62 having the needle-shaped protrusions 621 is ⁇ -Al 2 O 3 . Is.
  • a sensitive film 5 is formed on the base layer 6.
  • a film forming method of the sensitive film 5 for example, a method of spray-applying a sensitive film material dissolved in a solvent, a vacuum vapor deposition method, a sputtering method, or a CVD method can be used. Since the sensitive film 5 is provided on the base layer 6 whose surface has a needle-like shape, the surface area of the sensitive film 5 can be increased as compared with the case where a flat sensitive film is formed. This improves the detection sensitivity of the detection element 10.
  • the process of manufacturing one detection element has been described for convenience.
  • the substrate is cut into individual detection elements. Manufactured by separation.
  • alumina instead of alumina, it is conceivable to use carbon nanotubes, which are needle-shaped crystals having a diameter of nanometer size and are composed of only carbon, for example, as the base layer of the sensitive film.
  • carbon nanotubes since the formation of carbon nanotubes is generally performed under high temperature conditions of about 600 ° C., the lower electrode and the upper electrode tend to deteriorate.
  • the underlayer layer containing alumina as a main component mentioned in the above-described embodiment can be formed under a temperature condition of about 95 ° C. to 150 ° C., deterioration of the lower electrode and the upper electrode due to high temperature treatment Can be maintained, and the performance of the detection element can be maintained satisfactorily.
  • the detection element according to the second embodiment is different from the detection element according to the first embodiment in that it has a stepped portion on the peripheral edge of the substrate and a protective layer is formed.
  • configurations different from those of the first embodiment will be mainly described, and similar configurations may be designated by the same reference numerals and description thereof may be omitted.
  • the manufacturing method will be mainly described with respect to the steps different from the manufacturing method of the detection element 10 of the first embodiment, and the description of the same steps will be simplified.
  • the detection element 110 includes a substrate 101, a piezoelectric film 4, an upper electrode 3 as a first electrode, a lower electrode 2 as a second electrode, and a base layer 106. It has a sensitive film 5, electrode layers 7a and 7b, an insertion film 8, and a protective layer 20.
  • the lower electrode 2 and the upper electrode 3 are arranged so as to face each other with at least a part of the piezoelectric film 4 interposed therebetween.
  • the laminated film 70 in which the lower electrode 2, the piezoelectric film 4, and the upper electrode 3 are laminated is provided on the substrate 101.
  • the detection element 110 has a piezoelectric thin film resonator 111 as an oscillator, an underlayer 106 provided on the piezoelectric thin film resonator 111, and a sensitive film 5.
  • the piezoelectric thin film resonator 111 has a substrate 101 and a laminated film 70.
  • the detection element 110 of the present embodiment has a stepped portion 210 on the peripheral edge of the main surface 110a of the substrate as compared with the detection element 10 of the first embodiment, and is protected.
  • the main difference is that it has a layer 20.
  • a silicon (Si) substrate can be used as the substrate 101.
  • a quartz substrate, a glass substrate, a ceramic substrate, lithium tantalate (LiTaO 3 (LT)), lithium niobate (LiNbO 3 (LN)), a gallium arsenide (GaAs) substrate, or the like can be used.
  • LT lithium tantalate
  • GaAs gallium arsenide
  • the peripheral edge of the main surface 101a on the side of the substrate 101 on which the laminated film 70 is formed is relatively thin and has a stepped portion 210.
  • the protective layer 20 is formed so as to cover a portion where the substrate 101 and the laminated film 70 are in contact with each other. More specifically, as shown in the portion surrounded by the broken line ellipse A in FIG. 7, the protective layer 20 is formed on the side surface of the laminated film 70 near the portion where the substrate 101 and the laminated film 70 are in contact, and the main surface 101a of the substrate 101. The side surface 101b of the substrate 1 is covered with a continuous shape.
  • the protective layer 20 so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other in this way, it is possible to suppress the intrusion of moisture into the interface between the substrate 101 and the laminated film 70, and the detection element 110 can be prevented. Moisture resistance can be improved.
  • the piezoelectric thin-film resonator when used as a filter for distinguishing and passing electrical signals in a required frequency band, the piezoelectric thin-film resonator is packaged, but when used as a detection element for detecting gas as in the present embodiment. Is not packaged. Therefore, for example, moisture easily penetrates between the substrate 101 and the laminated film 70 due to a capillary phenomenon.
  • the protective layer 20 by providing the protective layer 20 so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other, it is possible to suppress the intrusion of moisture into the interface between the substrate 101 and the laminated film 70. can.
  • the water When water penetrates between the substrate 101 and the laminated film 70, the water is adsorbed on the laminated film 70. More specifically, water is adsorbed on the piezoelectric film 4, the upper electrode 3, and the lower electrode 2 constituting the laminated film 70. As a result, the mass of the laminated film 70 increases by the mass of the water molecules, the resonance frequency decreases, and the Q value decreases. On the other hand, in the present embodiment, the Q value can be prevented from decreasing by providing the protective layer 20.
  • the protective layer 20 of the present embodiment is formed so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other, and also to cover the side surface of the laminated film 70. As shown in FIGS. 6 and 7, the protective layer 20 is formed so as to cover the entire laminated film 70 other than the region where the electrode layers 7a and 7b are formed, and covers the side surface of the laminated film 70.
  • the protective layer 20 so as to cover the side surface of the laminated film 70 in this way, the invasion of water from the side surface of the laminated film 70 to the interface where two different configurations such as the piezoelectric film and the electrode are in contact is suppressed. Will be done. Thereby, the moisture resistance of the detection element 110 can be further improved.
  • the protective layer 20 is made of, for example, alumina.
  • Alumina is moisture resistant and, for example, exhibits higher moisture resistance than silicon oxide.
  • various insulating films (aluminum oxide, silicon oxide, silicon nitride, silicon oxide, DLC (diamond-like carbon)) are formed on a silicon substrate, and high temperature using D2O (heavy water) is used.
  • D2O diamond-like carbon
  • a moist environment 85 ° C., 95% RH
  • D-SIMS Dynamic mode Secondary Ion Mass Spectrometry
  • the D concentration in the depth direction is fitted using Fick's law, and the diffusion coefficient is obtained from the fitting line. It was judged that the smaller the diffusion coefficient, the more difficult it is for moisture to diffuse, and the higher the moisture resistance is.
  • alumina which is a humidity resistant film, for the protective layer 20
  • the moisture resistance of the detection element 1110 can be improved.
  • the protective layer 20 can be formed, for example, in the same process as the film formation of the undercoat film 160 using alumina, which will be described later.
  • the protective layer 20 may be formed by forming a film in a process different from the film forming step of the undercoat film 160, and the material is not limited to alumina, and for example, silicon nitride, silicon oxide, DLC and the like are the main components.
  • An inorganic insulator film or the like may be used.
  • the protective layer 20 it is possible to suppress the intrusion of moisture from the side surface of the laminated film 70 constituting the piezoelectric thin film resonator and the intrusion of moisture into the interface between the substrate 101 and the laminated film 70.
  • the moisture resistance of the detection element 110 can be improved.
  • Example of manufacturing method of detection element An example of a manufacturing method of the detection element 110 will be described with reference to the manufacturing flow charts of FIGS. 8 to 13. In the following description, an example will be given in which each configuration corresponding to a plurality of detection elements is formed on one substrate, and then the substrate is cut and separated into a plurality of detection elements.
  • a sacrificial layer 9 for forming the void 32 is formed on the substrate 101 ′ having a flat main surface.
  • the lower electrode 2 is formed on the sacrificial layer 9 and the substrate 101'.
  • the piezoelectric film 4a is formed on the lower electrode 2 and the substrate 101'.
  • an insertion film 8 using SiO 2 patterned in a predetermined shape is formed on the piezoelectric film 4.
  • the piezoelectric film 4b is formed on the insertion film 8 and the piezoelectric film 4a.
  • the piezoelectric film 4 is composed of the piezoelectric film 4a and the piezoelectric film 4b.
  • the upper electrode 3 is formed on the piezoelectric film 4.
  • a mask layer (not shown) having a desired shape is formed on the upper electrode 3 and the piezoelectric film 4.
  • a part of the piezoelectric film 4 is removed by using an etching method. After that, the mask layer is removed. As a result, a part of the lower electrode 2 is exposed.
  • the metal layers 7a and 7b patterned in a desired shape are formed in contact with the lower electrode 2 and the upper electrode 3, respectively.
  • the recess 21 is formed by half-dicing the substrate 101'using, for example, a dicing plate.
  • Reference numeral 101 is attached to the substrate on which the recess 21 is formed.
  • the recess 21 is formed in a groove shape on the substrate 101 so as to partition each detection element.
  • the recess 21 may be formed by an etching method or a blast method in addition to the half dicing treatment using a dicing plate.
  • the undercoat film 160 and the protective layer 20 using alumina patterned in a desired shape are formed.
  • the undercoat film 160 which is needle-like crystallized by heat treatment under high humidity in a subsequent step and changes to the underlayer layer 6, and the protective layer 20 which is not acicularly crystallized will be described separately.
  • the protective layer 20 is a film formed in the same film forming process.
  • the undercoat film 160 and the protective layer 20 are formed in a region other than the regions where the electrode layers 7a and 7b are formed in a plan view.
  • the base film 160 is formed on the upper electrode 3 on which the electrode layer 7b is not formed.
  • the protective layer 20 is formed on the side surface of the laminated film 70 and the surface of the substrate 101 where the substrate 101 is exposed.
  • the exposed surface of the substrate 110 includes not only the main surface 101a of the substrate 101 but also the inner surface of the recess 21, and the protective layer 20 is also formed on the side surface 101b corresponding to the inner surface of the recess 21 of the substrate 101. ..
  • the undercoat film 160 and the protective layer 20 using alumina are formed by patterning a film formed by, for example, a sputtering method, a CVD method or an ALD (Atomic Layer Deposition) method into a desired shape by using a photolithography technique and an etching technique. It is formed by etching.
  • the base film 160 and the protective layer 20 may be formed by a lift-off method. From the viewpoint of maintaining good resonance characteristics of the manufactured detection element 110, the undercoat film 160 is preferably formed with a film thickness of, for example, 30 nm or less.
  • the base film 160 is preferably formed with a film thickness of, for example, 100 nm or less.
  • the protective layer 20 is preferably formed with a film thickness of, for example, 20 nm or more.
  • the undercoat film 160 and the protective layer 20 are simultaneously formed into a film, for example, to have a film thickness of 100 nm.
  • the etchant of the sacrificial layer 9 is introduced into the sacrificial layer 9 under the lower electrode 2 via the hole 31 (see FIG. 6) and the introduction path (not shown). .. As a result, the sacrificial layer 9 is removed and the void 32 is formed.
  • the protective film 24 is formed on the entire surface of the substrate 101 including the laminated film 70, the electrode layers 7a and 7b, excluding the region where the undercoat film 160 is formed.
  • the surface of the base film 160 exposed by heat treatment under high humidity is crystallized in a needle shape, and then the protective film 24 is removed.
  • the base film 160 includes a first region 61 having a thin film 611 and a second region 62 having a needle-shaped protrusion 621. It becomes the stratum 106.
  • the protective layer 20 covered with the protective film 24 is not needle-shaped crystallized.
  • the heat treatment conditions under high humidity are the same as those in the first embodiment.
  • a groove penetrating the substrate 101 is formed in the recess 21.
  • the groove is formed by, for example, full dicing using a dicing blade.
  • the substrate 101 is divided and separated into a plurality of detection elements 110. Since the sensitive film 5 is provided on the base layer 106 having the needle-shaped protrusions 621 on the surface, the surface area of the sensitive film 5 can be increased. This improves the detection sensitivity of the detection element 110.
  • FIG. 15 is a diagram schematically showing the configuration of a gas detection system using the above-mentioned detection element 10 or detection element 110.
  • the gas detection system 100 includes a gas sensor device (hereinafter referred to as a sensor device) 50 and an information processing unit 40.
  • the sensor device 50 and the information processing unit 40 are connected to each other so as to be able to communicate with each other wirelessly or by wire.
  • the sensor device 50 and the information processing unit 40 are connected to each other so as to be capable of wireless communication using, for example, a communication standard of BLE (Bluetooth (registered trademark) Low Energy).
  • BLE Bluetooth (registered trademark) Low Energy
  • the sensor device 50 has one or more, typically a plurality of detection elements 10 (or detection elements 110), and an oscillation circuit 53.
  • the correspondence between the detection element 10 (or the detection element 110) and the oscillation circuit 53 may be one-to-one or one-to-many such as one-to-two.
  • the resonance frequency of the detection element 10 fluctuates due to the sensitive film adsorbing gas molecules.
  • the detection element 10 When the oscillation circuit 53 inputs a voltage signal having a predetermined frequency between the upper electrode and the lower electrode, the detection element 10 (or the detection element 110) resonates at a predetermined resonance frequency.
  • the resonance frequency of the detection element 10 (or the detection element 110) is not particularly limited, and for example, the sensor device 50 in the several GHz band detects the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110).
  • the sensor device 50 wirelessly transmits the fluctuation amount of the resonance frequency to the information processing unit 40.
  • the sensor device 50 detects the gas and further measures the composition and concentration of the gas.
  • the sensor device 50 detects the odor and further measures the composition and concentration of the gas.
  • An odor is an aggregate of multiple types of odorous substances. That is, the odor substance corresponds to a constituent component (odor component) of the odor. Based on the detection result of the sensor device 50, the type of odor, which is an aggregate of each odorous substance, can be determined.
  • the sensor device 50 includes a plurality of detection elements 10 (or detection elements 110)
  • the sensitive film of each detection element 10 (or detection element 110) is manufactured of different materials having the selectivity of the gas molecule to be adsorbed. ..
  • the sensitive films of the plurality of detection elements 10 (or detection elements 110) mainly adsorb different types of gas molecules.
  • the information processing unit 40 has a detection circuit 41.
  • the information processing unit 40 receives the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110) from the sensor device 50.
  • the detection circuit 41 detects gas based on the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110), measures the component and concentration of the gas, and generates a measured value.
  • the information processing unit 40 is typically a personal computer, a tablet computer, or the like.
  • the information processing unit 40 may include a cloud server or the like.
  • the gas detection system 100 of the present embodiment includes the detection element 10 or 110 having a large surface area of the sensitive film and improved sensitivity, the gas detection accuracy can be improved.
  • the present invention can be applied to a detection element using a crystal oscillator or a surface acoustic wave resonator.
  • a QCM (Quartz Crystal Microbalance) detection element using a crystal oscillator has a sensitive film and a quartz crystal oscillator.
  • the crystal oscillator is, for example, an oscillator cut at a cut angle called AT cut, and has a thin plate shape.
  • a first electrode and a second electrode in which a metal thin film is patterned into a predetermined shape are formed on one main surface of the crystal oscillator and the other main surface facing the main surface, respectively.
  • the sensitive film is formed (coated) on one of the electrodes via the base layer.
  • the base layer has the same structure as the base layer shown in the first and second embodiments described above, and has a first region having a thin film and a needle-shaped protrusion located on the first region. Has a second region and has.
  • the surface area of the sensitive film can be increased as compared with the case where the sensitive film is formed on the flat film.
  • the crystal oscillator when the oscillation circuit inputs a voltage signal of a predetermined frequency between the first electrode and the second electrode, the crystal oscillator resonates at a predetermined resonance frequency. Gas is detected by the fluctuation of the resonance frequency due to the adsorption of gas molecules on the sensitive membrane.
  • a detection element using a surface acoustic wave resonator is configured by, for example, providing two sets of comb-shaped electrodes (first and second electrodes) on the surface of a piezoelectric substrate.
  • first and second electrodes When a high-frequency AC voltage is applied to this comb-shaped electrode, the piezoelectric substrate is distorted due to the piezoelectric effect, and surface waves are excited. This excited part constitutes the oscillator.
  • a protective film is formed on the comb-shaped electrode so as to cover the comb-shaped electrode, and a sensitive film is formed (coated) on the base layer formed on the protective film.
  • the base layer has the same structure as the base layer shown in the first and second embodiments described above, and has a first region having a thin film and needle-shaped protrusions located in the first region. It has a second region having. Since the sensitive film is formed on the base layer having a needle-like surface shape, the surface area of the sensitive film can be increased as compared with the case where the sensitive film is formed on the flat film.
  • a detection element using a surface acoustic wave resonator when a voltage signal having a predetermined frequency is input between the first electrode and the second electrode, the surface wave is excited. Gas is detected by utilizing the fluctuation of the frequency (resonance frequency) of the surface acoustic wave due to the adsorption of gas molecules on the sensitive membrane.

Abstract

This detection element comprises: a vibrator; a substrate layer; and a sensitive film. The substrate layer has, on the surface thereof, needle-like projections that are provided above the vibrator. The sensitive film covers at least a portion of the needle-like projections, and adsorbs gas molecules.

Description

検出素子、ガス検出システム及び検出素子の製造方法Detection element, gas detection system and manufacturing method of detection element
 本発明は、FBAR(Film Bulk Acoustic Resonator、以下圧電薄膜共振器という。)等を利用した検出素子、ガス検出システム及び検出素子の製造方法に関する。 The present invention relates to a detection element using an FBAR (Film Bulk Acoustic Resonator, hereinafter referred to as a piezoelectric thin film resonator) or the like, a gas detection system, and a method for manufacturing the detection element.
 圧電薄膜共振器は、移動通信機器のフィルタやデュプレクサ等に使われるGHz帯域の共振子である。水晶振動子、表面弾性波共振器、圧電薄膜共振器に、特定のガスが吸着する感応膜を塗布し、その質量変化に対応する周波数変化を検出するガス検出装置がある。 The piezoelectric thin film resonator is a resonator in the GHz band used for filters, duplexers, etc. of mobile communication equipment. There is a gas detection device that applies a sensitive film to which a specific gas is adsorbed on a crystal oscillator, a surface acoustic wave resonator, and a piezoelectric thin film resonator, and detects a frequency change corresponding to the mass change.
 特許文献1には、表面弾性波共振器にガス識別性をもつガス分子選択材料を感応膜として設けたガス分子検知素子を用い、ガス分子吸着による質量変化を用いて、反共振周波数又は共振周波数の変位差で物質を検出することが記載されている。 In Patent Document 1, a gas molecule detection element provided with a gas molecule selection material having gas discrimination as a sensitive film on a surface elastic wave resonator is used, and an anti-resonance frequency or a resonance frequency is used by using a mass change due to gas molecule adsorption. It is described that the substance is detected by the displacement difference of.
 特許文献2には、凹凸形状を有するダイヤフラム上に感応膜を設け、凹凸を有する感応膜が成膜された応力センサが記載されている。感応膜に凹凸を設けることにより、感度を向上させることが記載されている。 Patent Document 2 describes a stress sensor in which a sensitive film is provided on a diaphragm having an uneven shape and a sensitive film having an uneven shape is formed. It is described that the sensitivity is improved by providing unevenness on the sensitive film.
特開2005-331326号公報Japanese Unexamined Patent Publication No. 2005-331326. 特開2017-181435号公報Japanese Unexamined Patent Publication No. 2017-181435
 検出素子において、感応膜の表面積を大きくすることにより感度を向上することができる。例えば表面弾性波共振器を用いた検出素子においては、感応膜の界面となる上部電極、下部電極及び圧電膜のいずれかの膜表面に凹凸形状を設けることが考えられる。しかしながら、このような構成においては、圧電膜の結晶成長方向に影響してQ値が劣化したり、電極膜の厚みが面内で不均一になったりすることにより共振と反共振以外の不要なピークが発生し、感度が劣化する。 In the detection element, the sensitivity can be improved by increasing the surface area of the sensitive film. For example, in a detection element using a surface acoustic wave resonator, it is conceivable to provide an uneven shape on the surface of any one of the upper electrode, the lower electrode, and the piezoelectric film, which is the interface of the sensitive film. However, in such a configuration, the Q value deteriorates due to the influence on the crystal growth direction of the piezoelectric film, and the thickness of the electrode film becomes non-uniform in the plane, so that it is unnecessary other than resonance and antiresonance. Peaks occur and sensitivity deteriorates.
 本発明は、上記課題に鑑みなされたものであり、高感度の検出が可能な検出素子、ガス検出システム及び検出素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a detection element capable of high-sensitivity detection, a gas detection system, and a method for manufacturing the detection element.
 本発明の一形態に係る検出素子は、振動子と、下地層と、感応膜を具備する。
 前記下地層は、前記振動子上に設けられ、表面に針状の突起部を有する。
 前記感応膜は、前記針状の突起部の少なくとも一部を覆い、ガス分子を吸着する。
The detection element according to one embodiment of the present invention includes a vibrator, a base layer, and a sensitive film.
The base layer is provided on the vibrator and has a needle-shaped protrusion on the surface.
The sensitive membrane covers at least a part of the needle-shaped protrusion and adsorbs gas molecules.
 このような構成によれば、感応膜の表面積を大きくすることができ、検出素子の検出感度を向上させることができる。 According to such a configuration, the surface area of the sensitive film can be increased, and the detection sensitivity of the detection element can be improved.
 前記針状の突起部は結晶成長により形成されていてもよい。
 前記下地層は、薄膜を有する第1の領域と、前記第1の領域上に位置する前記針状の突起部を有する第2の領域とを含み、前記第1の領域と前記第2の領域とは同じ材料を主成分として構成されてもよい。
 前記第1の領域と前記第2の領域とは一体化していてもよい。
 前記材料は酸化アルミニウムであってもよい。
The needle-shaped protrusion may be formed by crystal growth.
The underlayer includes a first region having a thin film and a second region having the needle-shaped protrusions located on the first region, the first region and the second region. It may be composed of the same material as the main component.
The first region and the second region may be integrated.
The material may be aluminum oxide.
 前記振動子は、圧電膜と、前記圧電膜の少なくとも一部を挟んで対向する第1の電極及び第2の電極とを有し、前記感応膜は、前記第1の電極の、前記第1の電極及び前記第2の電極が前記圧電膜を挟んで対向する共振領域の少なくとも一部に、前記下地層を介して設けられていてもよい。 The vibrator has a piezoelectric film and a first electrode and a second electrode facing each other with at least a part of the piezoelectric film interposed therebetween, and the sensitive film is the first electrode of the first electrode. The electrode and the second electrode may be provided at least in a part of the resonance region facing the piezoelectric film with the piezoelectric film interposed therebetween, via the base layer.
 前記振動子は、基板と、前記基板上に設けられた、前記圧電膜、前記第1の電極及び前記第2の電極を含む積層膜と、を有し、前記基板と前記積層膜とが接する部位を覆う保護層を更に具備してもよい。
 このような構成によれば、基板と積層膜との間の水分の侵入を保護層により抑制することができ、検出素子の耐湿性が向上する。
The oscillator has a substrate, a piezoelectric film provided on the substrate, and a laminated film including the first electrode and the second electrode, and the substrate and the laminated film are in contact with each other. A protective layer covering the site may be further provided.
According to such a configuration, the invasion of moisture between the substrate and the laminated film can be suppressed by the protective layer, and the moisture resistance of the detection element is improved.
 前記振動子は、圧電薄膜共振器、表面弾性波共振器、又は、水晶振動子であってもよい。 The oscillator may be a piezoelectric thin film resonator, a surface acoustic wave resonator, or a crystal oscillator.
 本発明の一形態に係るガス検出システムは、検出素子と、検出回路とを具備する。
 前記検出素子は、振動子と、前記振動子上に設けられ、表面に針状の突起部を有する下地層と、前記針状の突起部の少なくとも一部を覆い、ガス分子を吸着する感応膜と、を備える。
 前記検出回路は、検出素子が出力する共振周波数の変動量に基づき前記ガスを検出する。
The gas detection system according to one embodiment of the present invention includes a detection element and a detection circuit.
The detection element is a sensitive film that covers at least a part of the oscillator, the base layer provided on the oscillator and having needle-shaped protrusions on the surface, and the needle-shaped protrusions, and adsorbs gas molecules. And.
The detection circuit detects the gas based on the fluctuation amount of the resonance frequency output by the detection element.
 本発明の一形態に係る検出素子の製造方法は、下地膜が成膜された振動子を、相対湿度95%RH以上、温度95℃以上の条件で加熱処理し、前記下地膜を、表面に針状の突起部を有する下地層に変化させる。 In the method for manufacturing a detection element according to one embodiment of the present invention, a vibrator on which a base film is formed is heat-treated under conditions of a relative humidity of 95% RH or higher and a temperature of 95 ° C. or higher, and the base film is applied to the surface thereof. Change to a base layer with needle-shaped protrusions.
 本発明によれば、高感度の検出が可能である。 According to the present invention, high-sensitivity detection is possible.
本発明の第1の実施形態に係る検出素子の構成を示す平面図である。It is a top view which shows the structure of the detection element which concerns on 1st Embodiment of this invention. 図1のII-II線で切断した断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section cut by the line II-II of FIG. 第1の実施形態に係る検出素子の製造方法を示すフロー図(その1)である。It is a flow chart (the 1) which shows the manufacturing method of the detection element which concerns on 1st Embodiment. 第1の実施形態に係る検出素子の製造方法を示すフロー図(その2)である。It is a flow chart (the 2) which shows the manufacturing method of the detection element which concerns on 1st Embodiment. 第1の実施形態に係る検出素子の製造方法を示すフロー図(その3)である。It is a flow chart (No. 3) which shows the manufacturing method of the detection element which concerns on 1st Embodiment. 本発明の第2の実施形態に係る検出素子の構成を示す平面図である。It is a top view which shows the structure of the detection element which concerns on 2nd Embodiment of this invention. 図6のVII-VII線で切断した断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section cut by the VII-VII line of FIG. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その1)である。It is a flow chart (the 1) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その2)である。It is a flow chart (the 2) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その3)である。It is a flow chart (No. 3) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その4)である。It is a flow chart (the 4) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その5)である。It is a flow chart (No. 5) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第2の実施形態に係る検出素子の製造方法を示すフロー図(その6)である。It is a flow chart (No. 6) which shows the manufacturing method of the detection element which concerns on 2nd Embodiment. 第1及び第2の実施形態に係る検出素子の一部を構成する下地層の断面を模式的に示す断面図、及び、該下地層の第2の領域に感応膜が形成された状態を模式的に示す断面図である。A cross-sectional view schematically showing a cross section of a base layer constituting a part of the detection element according to the first and second embodiments, and a state in which a sensitive film is formed in a second region of the base layer are schematically shown. It is sectional drawing which shows. 第1又は第2の実施形態に係る検出素子を含むガス検出システムの構成を示す概略模式図である。It is a schematic schematic diagram which shows the structure of the gas detection system which includes the detection element which concerns on 1st or 2nd Embodiment.
 以下、図面を参照しながら、本発明の実施形態を説明する。第1及び第2の実施形態において、振動子として圧電薄膜共振器を用いる例をあげる。圧電薄膜共振器は、圧電膜中を厚さ方向に伝播するバルク波を利用した共振器であり、該共振器の後述する共振領域を形成する振動する部分が振動子を構成する。
 明細書中、基板の厚み方向から検出素子や検出素子の各構成要素をみたときを平面視という。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the first and second embodiments, an example in which a piezoelectric thin film resonator is used as the vibrator will be given. The piezoelectric thin film resonator is a resonator using a bulk wave propagating in the piezoelectric film in the thickness direction, and a vibrating portion forming a resonance region described later in the resonator constitutes a resonator.
In the specification, when the detection element and each component of the detection element are viewed from the thickness direction of the substrate, it is referred to as a plan view.
<検出素子>
[第1の実施形態]
 (検出素子の全体構成)
 図1及び2は本実施形態の検出素子の構成を示す図である。図1は平面図、図2は図1におけるII-II線断面図である。
 図1及び2に示すように、検出素子10は、基板1と、圧電膜4と、第1の電極としての上部電極3と、第2の電極としての下部電極2と、下地層6と、感応膜5と、金属層7a及び7bと、挿入膜8とを有する。下部電極2及び上部電極3は、圧電膜4の少なくとも一部を挟んで対向配置される。下部電極2、圧電膜4、上部電極3が積層されてなる積層膜70が基板1上に設けられる。検出素子10は、振動子としての圧電薄膜共振器11と、該圧電薄膜共振器11上に設けられた下地層6及び感応膜5を有する。圧電薄膜共振器11は、基板1と積層膜70を有する。
<Detection element>
[First Embodiment]
(Overall configuration of detection element)
1 and 2 are diagrams showing the configuration of the detection element of the present embodiment. 1 is a plan view, and FIG. 2 is a sectional view taken along line II-II in FIG.
As shown in FIGS. 1 and 2, the detection element 10 includes a substrate 1, a piezoelectric film 4, an upper electrode 3 as a first electrode, a lower electrode 2 as a second electrode, and a base layer 6. It has a sensitive film 5, metal layers 7a and 7b, and an insertion film 8. The lower electrode 2 and the upper electrode 3 are arranged so as to face each other with at least a part of the piezoelectric film 4 interposed therebetween. A laminated film 70 in which the lower electrode 2, the piezoelectric film 4, and the upper electrode 3 are laminated is provided on the substrate 1. The detection element 10 has a piezoelectric thin film resonator 11 as an oscillator, and a base layer 6 and a sensitive film 5 provided on the piezoelectric thin film resonator 11. The piezoelectric thin film resonator 11 has a substrate 1 and a laminated film 70.
 (各構成の説明)
 ((基板))
 基板1は、例えばシリコン(Si)基板を用いることができる。基板1として、シリコン基板以外に、石英基板、ガラス基板、セラミック基板、タンタル酸リチウム(LiTaO(LT))基板、ニオブ酸リチウム(LiNbO(LN))基板、又は、ガリウム砒素(GaAs)基板等を用いることができる。
(Explanation of each configuration)
((substrate))
As the substrate 1, for example, a silicon (Si) substrate can be used. As the substrate 1, in addition to the silicon substrate, a quartz substrate, a glass substrate, a ceramic substrate, a lithium tantalate (LiTaO 3 (LT)) substrate, a lithium niobate (LiNbO 3 (LN)) substrate, or a gallium arsenide (GaAs) substrate. Etc. can be used.
 ((下部電極))
 例えば、図1のように、下部電極2は、基板1上に所定の形状で形成される。下部電極2は、アルミニウム(Al)、銅(Cu)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、又はイリジウム(Ir)の金属単層膜、あるいは、これらから複数選択された積層膜で構成される。ここでは、下部電極2にCrを用いた下層とRuを用いた上層とが積層された積層膜を用いる例を挙げる。
((Lower electrode))
For example, as shown in FIG. 1, the lower electrode 2 is formed on the substrate 1 in a predetermined shape. The lower electrode 2 has aluminum (Al), copper (Cu), chromium (Cr), molybdenum (Mo), tungsten (W), tantalum (Ta), platinum (Pt), ruthenium (Ru), rhodium (Rh), and the like. Alternatively, it is composed of a metal monolayer film of iridium (Ir) or a laminated film selected from these. Here, an example of using a laminated film in which a lower layer using Cr and an upper layer using Ru are laminated on the lower electrode 2 will be given.
 ((圧電膜))
 圧電膜4は、下部電極2の一部を被覆するように基板1上に所定の形状で形成される。る。圧電膜4は、例えば、(002)方向を主軸とする窒化アルミニウム(AlN)を主成分とする圧電体で構成される。圧電膜4には、窒化アルミニウム以外にも、例えば、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)、チタン酸鉛(PbTiO)等を用いることができる。また、例えば、圧電膜4は、窒化アルミニウムを主成分とし、共振特性の向上または圧電性の改善のため他の元素を含んでもよい。例えば、添加元素としてスカンジウム(Sc)を用いることにより、実効的電気機械結合係数を向上できる。
((Piezoelectric membrane))
The piezoelectric film 4 is formed on the substrate 1 in a predetermined shape so as to cover a part of the lower electrode 2. To. The piezoelectric film 4 is composed of, for example, a piezoelectric body containing aluminum nitride (AlN) having an axis in the (002) direction as a main component. In addition to aluminum nitride, zinc oxide (ZnO), lead zirconate titanate (PZT), lead titanate (PbTiO 3 ), and the like can be used for the piezoelectric film 4. Further, for example, the piezoelectric film 4 may contain aluminum nitride as a main component and may contain other elements for improving resonance characteristics or piezoelectricity. For example, by using scandium (Sc) as an additive element, the effective electromechanical coupling coefficient can be improved.
 ((上部電極))
 上部電極3は、圧電膜4の少なくとも一部を被覆するように圧電膜4上に所定の形状で形成される。上部電極3は、下部電極2で列挙した金属材料の単層膜、あるいは、これらの積層膜で構成される。ここでは、上部電極3にRuを用いた下層とCrを用いた上層とが積層された積層膜を用いる例を挙げる。
((Upper electrode))
The upper electrode 3 is formed on the piezoelectric film 4 in a predetermined shape so as to cover at least a part of the piezoelectric film 4. The upper electrode 3 is composed of a single-layer film of the metal material listed in the lower electrode 2 or a laminated film thereof. Here, an example of using a laminated film in which a lower layer using Ru and an upper layer using Cr are laminated on the upper electrode 3 will be given.
 ((共振領域))
 検出素子10は、共振領域30を有する。共振領域30は、下部電極2および上部電極3が圧電膜4を挟んで対向する領域をいう。共振領域30において、基板1と下部電極2との間には空隙32が設けられる。本実施形態では、共振領域30において、圧電膜4と下部電極2と上部電極3とは、基板1と下部電極2との間に空隙32を形成する凸曲面部である。共振領域30に対応する上部電極3の凸曲面の平面形状は、例えば、長軸が270μm、短軸が180μmの楕円形状である。共振領域30は、下部電極2と上部電極3との間に所定周波数の電圧信号が入力されたときに厚み縦振動モードで共振する領域である。共振領域30を形成する、振動する部分が振動子を構成する。共振領域30の共振周波数は特に限定されず、典型的には、GHz帯域の周波数である。
((Resonance region))
The detection element 10 has a resonance region 30. The resonance region 30 refers to a region where the lower electrode 2 and the upper electrode 3 face each other with the piezoelectric film 4 interposed therebetween. In the resonance region 30, a gap 32 is provided between the substrate 1 and the lower electrode 2. In the present embodiment, in the resonance region 30, the piezoelectric film 4, the lower electrode 2, and the upper electrode 3 are convex curved surface portions that form a gap 32 between the substrate 1 and the lower electrode 2. The planar shape of the convex curved surface of the upper electrode 3 corresponding to the resonance region 30 is, for example, an elliptical shape having a major axis of 270 μm and a minor axis of 180 μm. The resonance region 30 is a region that resonates in the thickness longitudinal vibration mode when a voltage signal having a predetermined frequency is input between the lower electrode 2 and the upper electrode 3. The vibrating portion forming the resonance region 30 constitutes the oscillator. The resonance frequency of the resonance region 30 is not particularly limited, and is typically a frequency in the GHz band.
 なお、共振領域30の平面形状は、円形状、多角形状などの他の形状に形成されてもよい。特に、共振領域30の平面形状を楕円や多角形状とすることで、共振領域30の平面形状が四角形(正方形あるいは長方形)の場合よりも、横方向に伝播する振動モードの発生を抑制できるため、共振特性の劣化を防ぐことができる。 The planar shape of the resonance region 30 may be formed into another shape such as a circular shape or a polygonal shape. In particular, by making the planar shape of the resonance region 30 an ellipse or a polygonal shape, it is possible to suppress the occurrence of a vibration mode propagating in the lateral direction as compared with the case where the planar shape of the resonance region 30 is a quadrangle (square or rectangular). It is possible to prevent deterioration of the resonance characteristics.
 共振領域30において、空隙32は、基板1の平坦な上面と下部電極2との間に形成されたドーム状の膨らみである。ドーム状の膨らみとは、例えば、空隙32の周辺では空隙32の高さが低く、空隙32の内部ほど空隙32の高さが高くなるような形状の膨らみである。下部電極2には、後述する犠牲層9をエッチングするための導入路(図示せず)が形成されている。犠牲層は空隙32を形成するための層である。導入路の先端付近は圧電膜4で覆われておらず、下部電極は導入路の先端に孔部31を有する。孔部31は、空隙32を形成する際のエッチャントを導入する導入口である。 In the resonance region 30, the void 32 is a dome-shaped bulge formed between the flat upper surface of the substrate 1 and the lower electrode 2. The dome-shaped bulge is, for example, a bulge having a shape in which the height of the void 32 is low around the void 32 and the height of the void 32 is higher toward the inside of the void 32. The lower electrode 2 is formed with an introduction path (not shown) for etching the sacrificial layer 9 described later. The sacrificial layer is a layer for forming the void 32. The vicinity of the tip of the introduction path is not covered with the piezoelectric film 4, and the lower electrode has a hole 31 at the tip of the introduction path. The hole 31 is an introduction port for introducing an etchant when forming the void 32.
 孔部31の形成位置は特に限定されないが、好ましくは、共振領域30の近傍に設けられる。孔部31は、空隙32の形成後、適宜の材料を用いて閉塞される。これにより、空隙32の外気との連通を遮断できるため、空隙32への侵入ガスによる共振特性の劣化を阻止することができる。孔部31を閉塞する材料は特に限定されず、感応膜5の一部で孔部31が閉塞されてもよい。
 また、空隙32の代わりに圧電膜を縦方向に伝播する弾性波を反射する音響反射層を用いても良い。
The formation position of the hole portion 31 is not particularly limited, but is preferably provided in the vicinity of the resonance region 30. After the void 32 is formed, the hole 31 is closed with an appropriate material. As a result, the communication of the void 32 with the outside air can be cut off, so that deterioration of the resonance characteristic due to the invading gas into the void 32 can be prevented. The material that closes the hole 31 is not particularly limited, and the hole 31 may be closed by a part of the sensitive film 5.
Further, instead of the void 32, an acoustic reflection layer that reflects elastic waves propagating in the longitudinal direction of the piezoelectric film may be used.
 ((感応膜))
 感応膜5は、ガス分子を吸着する。ガスが匂い物質を含む場合、感応膜は、ガスに含まれる匂い物質を吸着する。
 感応膜5は、検出対象のガス分子を吸着可能な材料で構成される。感応膜を構成する材料は、検出対象のガスの種類によって任意に選択でき、典型的には、有機高分子膜、有機低分子膜、有機色素膜または無機膜等を用いることができる。より具体的には、感応膜5は、セルロース系の樹脂、フッ素系樹脂、アクリル系樹脂または導電性高分子が挙げられるが、勿論これに限られない。
((Sensitive membrane))
The sensitive film 5 adsorbs gas molecules. When the gas contains an odorant, the sensitive membrane adsorbs the odorant contained in the gas.
The sensitive film 5 is made of a material capable of adsorbing gas molecules to be detected. The material constituting the sensitive film can be arbitrarily selected depending on the type of gas to be detected, and typically, an organic polymer film, an organic small molecule film, an organic dye film, an inorganic film or the like can be used. More specifically, the sensitive film 5 includes, but is not limited to, a cellulosic resin, a fluororesin, an acrylic resin, or a conductive polymer.
 有機高分子材料としては、例えばポリスチレン、ポリメタクリル酸メチル、6-ナイロン、セルロースアセテート、ポリ-9,9-ジオクチレフルオレン、ポリビニルアルコール、ポリビニルカルバゾール、ポリエチレンオキシド、ポリ塩化ビニル、ポリ-p-フェニレンエーテルスルホン、ポリ-1-ブテン、ポリブタジエン、ポリフェニルメチルシラン、ポリカプロラクトン、ポリビスフェノキシホスファゼン、ポリプロピレンなどの単一構造からなるホモポリマー、ホモポリマー2種以上の共重合体であるコポリマー、これらを混合したブレンドポリマーなどを用いることができる。 Examples of the organic polymer material include polystyrene, polymethyl methacrylate, 6-nylon, cellulose acetate, poly-9,9-dioctirefluorene, polyvinyl alcohol, polyvinylcarbazole, polyethylene oxide, polyvinyl chloride, and poly-p-. Homopolymers having a single structure such as phenylene ether sulfone, poly-1-butene, polybutadiene, polyphenylmethylsilane, polycaprolactone, polybisphenoxyphosphazene, polypropylene, and copolymers that are copolymers of two or more homopolymers. Can be used as a blended polymer or the like in which the above is mixed.
 例えば、有機低分子材料としては、トリス(8-キノリノラト)アルミニウム(Alq3)、ナフチルジアミン(α-NPD)、BCP(2,9 - dimethyl - 4,7 - diphenyl -1,10 - phenanthroline)、CBP(4,4' - N,N' - dicarbazole - biphenyl)、銅フタロシアニン、フラーレン、ペンタセン、アントラセン、チオフェン、Ir(ppy(2 - phenylpyridinato))3、トリアジンチオール誘導体、ジオクチルフルオレン誘導体、テトラコンタン、パリレンなどを用いることができる。 For example, as organic low molecular weight materials, tris (8-quinolinolato) aluminum (Alq3), naphthyldiamine (α-NPD), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), CBP (4,4'-N, N'-dicarbazole-biphenyl), copper phthalocyanine, fullerene, pentacene, anthracene, thiophene, Ir (ppy (2-phenylpyridinato)) 3, triazinethiol derivative, dioctylfluorene derivative, tetracontane, parylene Etc. can be used.
 例えば、無機材料としては、酸化アルミニウム、チタニア、五酸化バナジウム、酸化タングステン、フッ化リチウム、フッ化マグネシウム、アルミニウム、金、銀、スズ、インジウム・シン・オキサイド(ITO)、塩化ナトリウム、塩化マグネシウムなどを用いることができる。 For example, examples of the inorganic material include aluminum oxide, titania, vanadium pentoxide, tungsten oxide, lithium fluoride, magnesium fluoride, aluminum, gold, silver, tin, indium-thin oxide (ITO), sodium chloride, magnesium chloride and the like. Can be used.
 感応膜5は、共振領域30に選択的に設けられる。本実施形態では、感応膜5は、上部電極3の共振領域30内に設けられ、上部電極3上に下地層6を介して共振領域30に対応する部位に設けられる。共振領域30に対応する部位とは、上部電極3の楕円のドーム部表面をいい、感応膜5は、上部電極3の凸曲面部に下地層6を介して設けられる。共振領域30は、当該ドーム部分と同一の長軸および短軸を有する楕円形状に形成される。感応膜5の厚みは特に限定されず、例えば250μmである。 The sensitive film 5 is selectively provided in the resonance region 30. In the present embodiment, the sensitive film 5 is provided in the resonance region 30 of the upper electrode 3, and is provided on the upper electrode 3 at a portion corresponding to the resonance region 30 via the base layer 6. The portion corresponding to the resonance region 30 refers to the surface of the elliptical dome portion of the upper electrode 3, and the sensitive film 5 is provided on the convex curved surface portion of the upper electrode 3 via the base layer 6. The resonance region 30 is formed in an elliptical shape having the same major axis and minor axis as the dome portion. The thickness of the sensitive film 5 is not particularly limited, and is, for example, 250 μm.
 感応膜5は、下地層6を介して上部電極2上に形成される。下地層6はその表面に針状の突起部を有する層であり、該下地層6の針状の突起部の形状にほぼ倣った状態で感応膜5は形成される。このため、感応膜5は下地層6の針状の突起部621に起因する複数の凹凸を有する。下地層6及び感応膜5については後述する。
 感応膜5の形成方法としては、感応膜の材料を溶媒に溶解させスプレーコートにより塗布する方法のほか、蒸着法、スパッタリング法またはCVD(Chemical Vapor Deposition)法を用いることができる。
The sensitive film 5 is formed on the upper electrode 2 via the base layer 6. The base layer 6 is a layer having needle-shaped protrusions on its surface, and the sensitive film 5 is formed in a state of substantially following the shape of the needle-shaped protrusions of the base layer 6. Therefore, the sensitive film 5 has a plurality of irregularities due to the needle-shaped protrusions 621 of the base layer 6. The base layer 6 and the sensitive film 5 will be described later.
As a method for forming the sensitive film 5, a method of dissolving the material of the sensitive film in a solvent and applying it by a spray coat, a vapor deposition method, a sputtering method or a CVD (Chemical Vapor Deposition) method can be used.
 ((金属層))
 金属層7aは、下部電極2上に設けられる。金属層7bは、上部電極3上に設けられる。金属層7a及び7bそれぞれは、下部電極2及び上部電極3それぞれと接し、配線及び/又はパッドとして機能する。金属層7a及び7bは例えばAu層である。Au層下にTi層又はW層等の下地膜が設けられていてよい。
((Metal layer))
The metal layer 7a is provided on the lower electrode 2. The metal layer 7b is provided on the upper electrode 3. Each of the metal layers 7a and 7b is in contact with the lower electrode 2 and the upper electrode 3, respectively, and functions as wiring and / or a pad. The metal layers 7a and 7b are, for example, Au layers. An underlayer such as a Ti layer or a W layer may be provided under the Au layer.
 ((挿入膜))
 挿入膜8は、圧電膜4中に挿入される。挿入膜8は、例えば圧電膜4の膜厚方向のほぼ中央に設けられている。挿入膜8は、圧電膜4を挟み下部電極2と上部電極3とが対向する共振領域30内の外周領域に設けられてもよいし、共振領域30を囲む領域に設けられても良い。
 挿入膜8としては、Al、Au、Cu、Ti、Pt、Ta、Cr又は酸化シリコン(SiO)等の、圧電膜4よりもヤング率が小さい材料を用いることが好ましい。これにより検出素子10のQ値を向上させることができる。
((Insert membrane))
The insertion membrane 8 is inserted into the piezoelectric membrane 4. The insertion film 8 is provided, for example, substantially in the center of the piezoelectric film 4 in the film thickness direction. The insertion film 8 may be provided in the outer peripheral region in the resonance region 30 where the lower electrode 2 and the upper electrode 3 face each other with the piezoelectric film 4 interposed therebetween, or may be provided in the region surrounding the resonance region 30.
As the insertion film 8, it is preferable to use a material having a Young's modulus smaller than that of the piezoelectric film 4, such as Al, Au, Cu, Ti, Pt, Ta, Cr or silicon oxide (SiO 2 ). This makes it possible to improve the Q value of the detection element 10.
 ((下地層))
 図14(a)は下地層6の拡大模式図である。尚、後述する第2の実施形態の下地層106も同様の構成である。
 下地層6は、上部電極3上に設けられる。図14(a)に示すように、下地層6は、上部電極3側に位置する薄膜状の第1の領域61と、下地層6の表面側に位置する針状の第2の領域62とを有する。
 第1の領域61は薄膜611を有する。第2の領域62は、第1の領域61上に位置し、複数の針状の突起部621を有する。複数の針状の突起部621は、長さ、向きは不規則に形成される。
((Underground layer))
FIG. 14A is an enlarged schematic view of the base layer 6. The base layer 106 of the second embodiment, which will be described later, has the same configuration.
The base layer 6 is provided on the upper electrode 3. As shown in FIG. 14A, the base layer 6 includes a thin film-shaped first region 61 located on the upper electrode 3 side and a needle-shaped second region 62 located on the surface side of the base layer 6. Have.
The first region 61 has a thin film 611. The second region 62 is located on the first region 61 and has a plurality of needle-shaped protrusions 621. The plurality of needle-shaped protrusions 621 are formed irregularly in length and direction.
 このような表面に針状の突起部621を有する下地層6は、膜厚が均一なアルミナ(Al)膜を高湿度下で加熱処理することにより形成することができる。高湿度下での加熱処理により、アルミナを用いた下地膜60の表面から針状の突起部621が結晶成長する。これにより、下地膜60は、薄膜状の第1の領域61と針状の突起部621を有する第2の領域62とが一体化した状態の下地層6に変化し、第1の領域61の薄膜611によって針状の突起部621が強固に固定保持される。 The base layer 6 having the needle-shaped protrusions 621 on the surface can be formed by heat-treating an alumina (Al 2 O 3 ) film having a uniform film thickness under high humidity. By heat treatment under high humidity, needle-shaped protrusions 621 grow crystals from the surface of the base film 60 using alumina. As a result, the base film 60 changes into the base layer 6 in which the thin film-shaped first region 61 and the second region 62 having the needle-shaped protrusions 621 are integrated, and the base film 60 changes to the first region 61. The needle-shaped protrusion 621 is firmly fixed and held by the thin film 611.
 下地層6において、第1の領域61と第2の領域62はいずれもアルミナを主成分とし、アルミナの結晶構造が異なっている。第1の領域61の結晶構造はα‐Alであり、第2の領域62の結晶構造はγ‐Alである。
 なお、主成分とは最も量が多い成分をいう。第1又は第2の領域の主成分とは、第1又は第2の領域に主成分以外に意図的または意図せず不純物が含まれることを許容する。例えば、第1又は第2の領域は、それぞれ、酸素及びアルミニウムを合計で50原子%以上、より好ましくは80原子%以上含む。
 下地層6の製造における、下地膜60の処理条件については後述の検出素子の製造方法で説明する。
In the base layer 6, both the first region 61 and the second region 62 contain alumina as a main component, and the crystal structure of alumina is different. The crystal structure of the first region 61 is α-Al 2 O 3 , and the crystal structure of the second region 62 is γ-Al 2 O 3 .
The main component means the component having the largest amount. The main component of the first or second region allows impurities other than the main component to be intentionally or unintentionally contained in the first or second region. For example, the first or second region contains oxygen and aluminum in a total of 50 atomic% or more, more preferably 80 atomic% or more, respectively.
The processing conditions of the base film 60 in the manufacture of the base layer 6 will be described in the method of manufacturing the detection element described later.
 感応膜5は、下地層6上に形成される。より詳細には、下地層6の第2の領域62の少なくとも一部を覆うように形成される。
 図14(b)及び(c)を用いて、下地層6上に形成される感応膜5の形態例を説明する。
 感応膜5は、第1の感応膜領域51と第2の感応膜領域52とを有する。第1の感応膜領域51は、第1の領域61の薄膜611上に形成される。第2の感応膜領域52は、第2の領域62の針状の突起部621上に形成される。
 図14(b)及び(c)は、薄膜611上に第1の感応膜領域51が形成され、針状の突起部621上に第2の感応膜領域52が形成された状態を模式的に示した図である。尚、図では、模式的に針状の突起部621の表面全てを覆って感応膜5が形成されるように図示したが、複数の針状の突起部621は向きが不規則に形成されるため、針状の突起部621は感応膜5が形成されない部分を有する場合がある。また、後述する第2の実施形態の下地層106についても同様である。
The sensitive film 5 is formed on the base layer 6. More specifically, it is formed so as to cover at least a part of the second region 62 of the base layer 6.
A morphological example of the sensitive film 5 formed on the base layer 6 will be described with reference to FIGS. 14 (b) and 14 (c).
The sensitive membrane 5 has a first sensitive membrane region 51 and a second sensitive membrane region 52. The first sensitive film region 51 is formed on the thin film 611 of the first region 61. The second sensitive membrane region 52 is formed on the needle-shaped protrusion 621 of the second region 62.
14 (b) and 14 (c) schematically show a state in which the first sensitive film region 51 is formed on the thin film 611 and the second sensitive film region 52 is formed on the needle-shaped protrusion 621. It is a figure shown. In the figure, the sensitive film 5 is schematically formed so as to cover the entire surface of the needle-shaped protrusions 621, but the plurality of needle-shaped protrusions 621 are formed in irregular directions. Therefore, the needle-shaped protrusion 621 may have a portion where the sensitive film 5 is not formed. The same applies to the base layer 106 of the second embodiment described later.
 図14(b)に示す例では、感応膜5の一部を構成する第1の感応膜領域51は、薄膜611上に形成される。感応膜5の一部を構成する第2の感応膜領域52は、針状の突起部621が感応膜5に埋没して感応膜5の表面が平坦とならないように、針状の突起部621の少なくとも一部を覆うように形成される。
 これにより、成膜された第2の感応膜領域52は、第2の領域62の突起部621の針状形状の一部又はほとんどにほぼ倣った形状となり、感応膜5は凹凸を有する。これにより、感応膜5を平坦膜とする場合と比較して感応膜5の表面積を大きくすることができる。
In the example shown in FIG. 14B, the first sensitive film region 51 constituting a part of the sensitive film 5 is formed on the thin film 611. The second sensitive film region 52, which constitutes a part of the sensitive film 5, has a needle-shaped protrusion 621 so that the needle-shaped protrusion 621 is buried in the sensitive film 5 and the surface of the sensitive film 5 is not flat. It is formed to cover at least a part of.
As a result, the formed second sensitive film region 52 has a shape substantially following the needle-like shape of the protrusion 621 of the second region 62, and the sensitive film 5 has irregularities. As a result, the surface area of the sensitive film 5 can be increased as compared with the case where the sensitive film 5 is a flat film.
 図14(c)に示すように、下地層6の第2の領域62の針状の突起部621の根元部分を埋めるように感応膜が浸透して形成されていてもよい。このため、図14(b)に示す形態と比較して、薄膜611上に形成される第1の感応膜領域51の厚みが厚くなっている。第2の感応膜領域52は、針状の突起部621の先端部分が感応膜5に埋没して感応膜5の表面が平坦とならないように、針状の突起部621の先端部分の少なくとも一部を覆うように形成されていればよい。
 これにより、成膜された第2の感応膜領域52は、第2の領域62の針状形状の一部又はほとんどにほぼ倣った形状となり、感応膜5は凹凸を有する。これにより、感応膜5を平坦膜とする場合と比較して感応膜5の表面積を大きくすることができる。
As shown in FIG. 14 (c), the sensitive film may be infiltrated and formed so as to fill the root portion of the needle-shaped protrusion 621 of the second region 62 of the base layer 6. Therefore, the thickness of the first sensitive film region 51 formed on the thin film 611 is thicker than that of the form shown in FIG. 14 (b). The second sensitive film region 52 includes at least one of the tip portions of the needle-shaped protrusions 621 so that the tip portion of the needle-shaped protrusions 621 is buried in the sensitive membrane 5 and the surface of the sensitive membrane 5 is not flat. It suffices if it is formed so as to cover the portion.
As a result, the formed second sensitive film region 52 has a shape that substantially resembles a part or most of the needle-like shape of the second region 62, and the sensitive film 5 has irregularities. As a result, the surface area of the sensitive film 5 can be increased as compared with the case where the sensitive film 5 is a flat film.
 このように、本実施形態の検出素子10では、感応膜5の表面積を大きくすることができ、検出感度が向上した検出素子とすることができる。
 また、本実施形態の検出素子10では、上部電極3に凹凸を設けず、上部電極3と感応膜5との間に表面に針状の突起部621を有する下地層6を設け、該下地層6上に感応膜5を形成することによって、感応膜5の表面積を大きくしている。これにより、電極に凹凸を設けることにより生じるQ値の劣化や電極の厚みが不均一になることによる共振と反共振以外の不要なピークの発生といったことがなく、Q値が良好な、検出感度の高い検出素子10とすることができる。
As described above, in the detection element 10 of the present embodiment, the surface area of the sensitive film 5 can be increased, and the detection element with improved detection sensitivity can be obtained.
Further, in the detection element 10 of the present embodiment, the upper electrode 3 is not provided with irregularities, and an underlayer 6 having a needle-shaped protrusion 621 on the surface is provided between the upper electrode 3 and the sensitive film 5, and the underlayer is provided. By forming the sensitive film 5 on the 6, the surface area of the sensitive film 5 is increased. As a result, there is no deterioration of the Q value caused by the unevenness of the electrode or unnecessary peaks other than resonance and antiresonance due to the non-uniform thickness of the electrode, and the Q value is good and the detection sensitivity. The detection element 10 has a high value.
 ((その他の構成))
 検出素子1を構成する他の構成として、上部電極2上に周波数調整膜が設けられていてもよい。周波数調整膜の膜厚を調整することにより共振周波数の調整を行ってもよい。周波数調整膜は、酸化シリコン(SiO)、窒化シリコン(SiN)、窒化アルミニウム(AlN)、Cr等から構成されてよい。周波数調整膜はパッシベーション膜として機能してもよい。
 尚、本実施形態では、圧電薄膜共振器を、ガスを検出する検出素子に適用している。検出素子を用いたガス検出システムでは、共振周波数の変化を用いてガスの検出を行うため、検出回路で共振周波数を調整することができる。このため、周波数調整膜は必ずしも必要ではない。
((Other configurations))
As another configuration constituting the detection element 1, a frequency adjustment film may be provided on the upper electrode 2. The resonance frequency may be adjusted by adjusting the film thickness of the frequency adjusting film. The frequency adjusting film may be made of silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum nitride (AlN), Cr or the like. The frequency adjusting film may function as a passivation film.
In this embodiment, the piezoelectric thin film resonator is applied to the detection element for detecting gas. In the gas detection system using the detection element, the gas is detected by using the change in the resonance frequency, so that the resonance frequency can be adjusted by the detection circuit. Therefore, the frequency adjustment film is not always necessary.
 (各構成の寸法例)
 2.4GHzの共振周波数を有する圧電薄膜共振器の場合の寸法例をあげるが、ここに記載される材料及び寸法に限定されない。各構成の膜厚は、所望の共振特性を得るため適宜設定することができる。
 下部電極2は例えばCrを用いた下層とRuを用いた上層が積層されて構成される。下層の膜厚は70nmである。上層の膜厚は166nmである。
 AlNを用いた圧電膜の膜厚は996nmである。
 SiOを用いた挿入膜8の膜厚は107nmである。
 上部電極3はRuを用いた下層とCrを用いた上層が積層されて構成される。下層の膜厚は166nmである。上層の膜厚は55nmである。
(Dimensional example of each configuration)
A dimensional example in the case of a piezoelectric thin film resonator having a resonance frequency of 2.4 GHz is given, but the material and dimensions are not limited to those described here. The film thickness of each configuration can be appropriately set in order to obtain desired resonance characteristics.
The lower electrode 2 is configured by laminating, for example, a lower layer using Cr and an upper layer using Ru. The film thickness of the lower layer is 70 nm. The film thickness of the upper layer is 166 nm.
The film thickness of the piezoelectric film using AlN is 996 nm.
The film thickness of the insertion film 8 using SiO 2 is 107 nm.
The upper electrode 3 is configured by laminating a lower layer using Ru and an upper layer using Cr. The film thickness of the lower layer is 166 nm. The film thickness of the upper layer is 55 nm.
 Alを主成分とする下地層6の第1の領域61の薄膜611の膜厚は例えば10nm~100nmであり、ここでは一例として50nmである。
 Alを主成分とする下地層6の第2の領域62の針状の突起部621の長さは例えば1nm~300nmであり、ここでは一例として100nmである。突起部621の幅は、例えば1nm~500nmであり、ここでは一例として5nmである。突起部621のアスペクト比は2:1~10:1である。
 突起部621における長さ、幅は、それぞれ平均値を示す。走査型電子顕微鏡等で下地層6の断面の観察を行った際の観察画像に基づいて、1視野内において任意に選択した20個の突起部621の長さ、幅それぞれの平均値を突起部621における平均長さ、平均幅とする。突起部621の長さとして最大フェレ径を採用し、突起部621の幅として最小フェレ径を採用する。アスペクト比は、平均長さを平均幅で除した値とする。
 また、第1の領域61の薄膜611の突起部621が位置する側の面は平坦面ではない。走査型電子顕微鏡等で下地層6の断面の観察を行った際の観察画像に基づいて、1視野内において任意に設定した20箇所の膜厚平均値を第1の領域61の膜厚とする。
The film thickness of the thin film 611 of the first region 61 of the base layer 6 containing Al 2 O 3 as a main component is, for example, 10 nm to 100 nm, and here, as an example, it is 50 nm.
The length of the needle-shaped protrusion 621 of the second region 62 of the base layer 6 containing Al 2 O 3 as a main component is, for example, 1 nm to 300 nm, and here, as an example, 100 nm. The width of the protrusion 621 is, for example, 1 nm to 500 nm, and here, as an example, 5 nm. The aspect ratio of the protrusion 621 is 2: 1 to 10: 1.
The length and width of the protrusion 621 show average values. Based on the observation image when observing the cross section of the base layer 6 with a scanning electron microscope or the like, the average value of each of the length and width of 20 protrusions 621 arbitrarily selected in one visual field is calculated as the protrusion. Let it be the average length and the average width in 621. The maximum ferret diameter is adopted as the length of the protrusion 621, and the minimum ferret diameter is adopted as the width of the protrusion 621. The aspect ratio is a value obtained by dividing the average length by the average width.
Further, the surface of the first region 61 on the side where the protrusion 621 of the thin film 611 is located is not a flat surface. Based on the observation image when observing the cross section of the base layer 6 with a scanning electron microscope or the like, the average value of the film thicknesses at 20 points arbitrarily set in one visual field is set as the film thickness of the first region 61. ..
 感応膜5は、例えば100nm以下の膜厚、例えば10nm~100nmで成膜され、ここでは一例として20nmである。
 感応膜5の膜厚は、実デバイスの成膜時に膜厚用モニタを準備し、膜厚用モニタを触針式および非接触式、または電気抵抗式により測定できる。また、断面分析でも同様である。
The sensitive film 5 is formed with a film thickness of, for example, 100 nm or less, for example, 10 nm to 100 nm, and here, as an example, it is 20 nm.
The film thickness of the sensitive film 5 can be measured by preparing a film thickness monitor at the time of film formation of the actual device and measuring the film thickness monitor by a stylus type, a non-contact type, or an electric resistance type. The same applies to cross-section analysis.
 (検出素子の製造方法例)
 図3~図5の製造フロー図を用いて検出素子10の製造方法例について説明する。
 図3(a)に示すように、平坦主面を有する基板1上に空隙32を形成するための犠牲層9を形成する。犠牲層9の膜厚は、例えば10~100nmであり、MgO、ZnO、GeまたはSiO等のエッチング液またはエッチングガスに容易に溶解できる材料から選択される。犠牲層9は、例えばスパッタリング法、真空蒸着法またはCVD法を用い成膜される。犠牲層9は、リフトオフ法により形成してもよい。
 平面視において、犠牲層9の平面形状は、空隙32の平面形状に相当する形状であり、例えば共振領域30となる領域を含む。
(Example of manufacturing method of detection element)
An example of a manufacturing method of the detection element 10 will be described with reference to the manufacturing flow charts of FIGS. 3 to 5.
As shown in FIG. 3A, the sacrificial layer 9 for forming the void 32 is formed on the substrate 1 having the flat main surface. The thickness of the sacrificial layer 9 is, for example, 10 to 100 nm, and is selected from materials that can be easily dissolved in an etching solution or an etching gas such as MgO, ZnO, Ge, or SiO 2 . The sacrificial layer 9 is formed by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method. The sacrificial layer 9 may be formed by a lift-off method.
In a plan view, the planar shape of the sacrificial layer 9 is a shape corresponding to the planar shape of the void 32, and includes, for example, a region that becomes a resonance region 30.
 次に図3(b)に示すように、犠牲層9及び基板1上に、下部電極2を形成する。該下部電極2は、例えばCrを用いた下層とRuを用いた上層とが積層された積層構造を有する。下部電極2は、例えばスパッタリング法、真空蒸着法またはCVD法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。下部電極2は、リフトオフ法により形成してもよい。 Next, as shown in FIG. 3B, the lower electrode 2 is formed on the sacrificial layer 9 and the substrate 1. The lower electrode 2 has a laminated structure in which, for example, a lower layer using Cr and an upper layer using Ru are laminated. The lower electrode 2 is formed by patterning a film formed by, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique. The lower electrode 2 may be formed by a lift-off method.
 次に、図3(c)に示すように、下部電極2及び基板1上に圧電膜4aを形成する。圧電膜4aは、例えばスパッタリング法、真空蒸着法またはCVD法を用いて成膜される。
 次に、図3(d)に示すように、圧電膜4上に所望形状にパターニングされたSiOを用いた挿入膜8を形成する。例えば、挿入膜8は、スパッタリング法、真空蒸着法またはCVD法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。
Next, as shown in FIG. 3C, the piezoelectric film 4a is formed on the lower electrode 2 and the substrate 1. The piezoelectric film 4a is formed into a film by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method.
Next, as shown in FIG. 3D, an insertion film 8 using SiO 2 patterned in a desired shape is formed on the piezoelectric film 4. For example, the insertion film 8 is formed by patterning a film formed by a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique.
 次に図3(e)に示すように、挿入膜8及び圧電膜4a上に圧電膜4bを形成する。圧電膜4bは、例えばスパッタリング法、真空蒸着法またはCVD法を用いて成膜される。圧電膜4a及び圧電膜4bにより圧電膜4が構成される。 Next, as shown in FIG. 3 (e), the piezoelectric film 4b is formed on the insertion film 8 and the piezoelectric film 4a. The piezoelectric film 4b is formed into a film by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method. The piezoelectric film 4 is composed of the piezoelectric film 4a and the piezoelectric film 4b.
 次に、図4(a)に示すように、圧電膜4上に、上部電極3を形成する。該上部電極3は、例えばRuを用いた下層とCrを用いた上層とが積層された積層構造を有する。上部電極3は、例えばスパッタリング法、真空蒸着法またはCVD法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。上部電極3は、リフトオフ法により形成してもよい。 Next, as shown in FIG. 4A, the upper electrode 3 is formed on the piezoelectric film 4. The upper electrode 3 has a laminated structure in which, for example, a lower layer using Ru and an upper layer using Cr are laminated. The upper electrode 3 is formed by patterning a film formed by, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique. The upper electrode 3 may be formed by a lift-off method.
 次に、上部電極3及び圧電膜4上に所望形状のマスク層(図示せず)を形成する。マスク層は例えばフォトレジストであり、フォトリソグラフィ法を用い形成する。マスク層をマスクにして、エッチング法を用い、圧電膜4の一部を除去する。その後、マスク層を有機洗浄法またはアッシング法を用い除去する。これにより、図4(b)に示すように、下部電極2の一部が露出する。
 周波数調整膜を形成する場合は、例えば、マスク層除去後に形成する。
Next, a mask layer (not shown) having a desired shape is formed on the upper electrode 3 and the piezoelectric film 4. The mask layer is, for example, a photoresist, and is formed by using a photolithography method. Using the mask layer as a mask, a part of the piezoelectric film 4 is removed by using an etching method. Then, the mask layer is removed by an organic cleaning method or an ashing method. As a result, as shown in FIG. 4B, a part of the lower electrode 2 is exposed.
When forming the frequency adjusting film, for example, it is formed after removing the mask layer.
 次に、図4(c)に示すように、上部電極3上に、所望の形状にパターニングされたアルミナを用いた下地膜60を形成する。下地膜60は、例えばスパッタリング法、CVD法又はALD(Atomic Layer Deposition)法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。下地膜60は、リフトオフ法に形成してもよい。
 下地膜60は例えば100nmの膜厚で成膜される。
 製造される検出素子10の共振特性を良好に維持する観点から、下地膜60は、例えば30nm以下の膜厚で成膜されることが好ましい。後述する高湿度下の加熱処理による下地膜60の最表面の針状結晶化を効率よく行う観点から、下地膜60は、例えば100nm以下の膜厚で成膜されることが好ましい。
Next, as shown in FIG. 4C, a base film 60 using alumina patterned in a desired shape is formed on the upper electrode 3. The undercoat film 60 is formed by patterning a film formed by, for example, a sputtering method, a CVD method, or an ALD (Atomic Layer Deposition) method into a desired shape using a photolithography technique and an etching technique. The base film 60 may be formed by a lift-off method.
The undercoat film 60 is formed with a film thickness of, for example, 100 nm.
From the viewpoint of maintaining good resonance characteristics of the manufactured detection element 10, the undercoat film 60 is preferably formed with a film thickness of, for example, 30 nm or less. From the viewpoint of efficiently performing needle-like crystallization of the outermost surface of the undercoat film 60 by heat treatment under high humidity, which will be described later, the undercoat film 60 is preferably formed with a film thickness of, for example, 100 nm or less.
 次に、図4(d)に示すように、下部電極2及び上部電極3それぞれに接して、所望の形状にパターニングされた金属層7a及び7bを形成する。金属層7a及び7bは、スパッタリング法、真空蒸着法またはCVD法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。金属層7a及び7bを、リフトオフ法により形成してもよい。 Next, as shown in FIG. 4D, the metal layers 7a and 7b patterned in a desired shape are formed in contact with the lower electrode 2 and the upper electrode 3, respectively. The metal layers 7a and 7b are formed by patterning a film formed by a sputtering method, a vacuum vapor deposition method, or a CVD method into a desired shape using a photolithography technique and an etching technique. The metal layers 7a and 7b may be formed by a lift-off method.
 次に、図5(a)に示すように、孔部31(図1参照)及び導入路(図示せず)を介し、犠牲層9のエッチャントを下部電極2の下の犠牲層9に導入する。これにより、犠牲層9が除去され、空隙32が形成される。
 犠牲層9をエッチングする媒体としては、犠牲層9以外の共振器を構成する材料をエッチングしない媒体であることが好ましい。特に、エッチング媒体は、エッチング媒体が接触する下部電極2がエッチングされない媒体であることが好ましい。積層膜70の圧力を圧縮応力となるように設定しておく。これにより、犠牲層9が除去されると、積層膜70が基板1の反対側に基板1から離れるように膨れる。下部電極2と基板1との間にドーム状の膨らみを有する空隙32が形成される。
Next, as shown in FIG. 5A, the etchant of the sacrificial layer 9 is introduced into the sacrificial layer 9 under the lower electrode 2 via the hole 31 (see FIG. 1) and the introduction path (not shown). .. As a result, the sacrificial layer 9 is removed and the void 32 is formed.
The medium for etching the sacrificial layer 9 is preferably a medium that does not etch the material constituting the resonator other than the sacrificial layer 9. In particular, the etching medium is preferably a medium in which the lower electrode 2 with which the etching medium is in contact is not etched. The pressure of the laminated film 70 is set so as to be a compressive stress. As a result, when the sacrificial layer 9 is removed, the laminated film 70 swells on the opposite side of the substrate 1 so as to be separated from the substrate 1. A void 32 having a dome-shaped bulge is formed between the lower electrode 2 and the substrate 1.
 次に、高湿度下で加熱処理することにより、下地膜60の表面を針状結晶化させる。これにより、図14(a)に示すように、下地膜60は、薄膜611を有する第1の領域61と、針状の突起部621を有する第2の領域62と、を備える下地層6に変化する。 Next, the surface of the undercoat film 60 is needle-shaped crystallized by heat treatment under high humidity. As a result, as shown in FIG. 14A, the base film 60 is formed on the base layer 6 including the first region 61 having the thin film 611 and the second region 62 having the needle-shaped protrusions 621. Change.
 下記の条件で処理することにより、アルミナを用いた下地膜60の表面を針状結晶化することができることが確認された。
 高湿度下の加熱処理は、チャンバ(処理室)内で行うことができる。
 処理室内温度を95℃以上とし、相対湿度を95%RH以上とすることが好ましい。これにより、アルミナを用いた下地膜60の表面を針状結晶化することができる。尚、上記条件下で処理を行うことによりアルミナを針状結晶化することを確認したが、異なる条件下で針状結晶化する可能性もあり、上記処理条件に限定されない。
 相対湿度が95%RH以上の条件下では、温度が95℃未満では、針状結晶化が生じない。温度をあげると針状結晶化が進む傾向にあり、温度の上限値は特に限定されない。但し、温度が150℃より高いと処理室内の湿度の制御が困難であるため、処理湿内の相対湿度を95%RH以上に制御する観点から、150℃以下とすることが好ましい。
 温度が95℃以上の条件下では、相対湿度が95%RH未満であると、針状結晶化が生じない。湿度をあげると針状結晶化が進む傾向にあり、湿度の上限値は特に限定されない。
 また、処理時間は、下地膜60の膜厚によって適した時間が異なる。例えば100nmの膜厚の下地膜60の場合、60分である。時間によって、針状の突起部621の長さを調整、言い換えると針状結晶の成長の度合いを調整することができる。処理前の下地膜60の膜厚と処理後の下地層6の膜厚はほぼ同じである。針状の突起部621を薄膜611によって固定保持する観点から、薄膜611の膜厚は、下地層6の膜厚の30~90%程度の厚みがあることが好ましい。
 また、ここではゲージ圧を0MPa以上としたが、ゲージ圧は特に限定されない。尚、ゲージ圧をあげると針状の突起部形成が進む傾向にある。
 形成される針状の突起部621の長さ、太さ、向き(延びる方向)は不規則である。
It was confirmed that the surface of the undercoat film 60 using alumina can be needle-like crystallized by treating under the following conditions.
The heat treatment under high humidity can be performed in the chamber (treatment chamber).
It is preferable that the treatment chamber temperature is 95 ° C. or higher and the relative humidity is 95% RH or higher. As a result, the surface of the undercoat film 60 using alumina can be crystallized in a needle shape. Although it has been confirmed that alumina is needle-shaped crystallized by performing the treatment under the above conditions, there is a possibility of needle-like crystallization under different conditions, and the treatment is not limited to the above treatment conditions.
Under conditions where the relative humidity is 95% RH or higher, needle-like crystallization does not occur at temperatures below 95 ° C. Needle-like crystallization tends to proceed when the temperature is raised, and the upper limit of the temperature is not particularly limited. However, if the temperature is higher than 150 ° C., it is difficult to control the humidity in the treatment chamber. Therefore, from the viewpoint of controlling the relative humidity in the treatment humidity to 95% RH or more, the temperature is preferably 150 ° C. or lower.
If the relative humidity is less than 95% RH under the condition that the temperature is 95 ° C. or higher, needle-like crystallization does not occur. Needle-like crystallization tends to proceed when the humidity is increased, and the upper limit of the humidity is not particularly limited.
Further, the treatment time varies depending on the film thickness of the base film 60. For example, in the case of the base film 60 having a film thickness of 100 nm, it takes 60 minutes. With time, the length of the needle-shaped protrusion 621 can be adjusted, in other words, the degree of growth of the needle-shaped crystal can be adjusted. The film thickness of the base film 60 before the treatment and the film thickness of the base layer 6 after the treatment are substantially the same. From the viewpoint of fixing and holding the needle-shaped protrusion 621 by the thin film 611, the film thickness of the thin film 611 is preferably about 30 to 90% of the film thickness of the base layer 6.
Further, although the gauge pressure is set to 0 MPa or more here, the gauge pressure is not particularly limited. When the gauge pressure is increased, the formation of needle-shaped protrusions tends to proceed.
The length, thickness, and orientation (extending direction) of the needle-shaped protrusion 621 formed are irregular.
 高湿度下の加熱処理前のアルミナを用いた下地膜60の結晶構造はα‐Alである。高湿度下の加熱処理によって、下地膜60の表面だけが、α‐Alからγ‐Alに結晶構造が変化し、針状結晶となる。下地層6において、薄膜611を有する第1の領域61の結晶構造はα‐Alであり、針状の突起部621を有する第2の領域62の結晶構造はγ‐Alである。 The crystal structure of the base film 60 using alumina before the heat treatment under high humidity is α-Al 2 O 3 . Due to the heat treatment under high humidity, only the surface of the base film 60 changes its crystal structure from α-Al 2 O 3 to γ-Al 2 O 3 and becomes needle-like crystals. In the base layer 6, the crystal structure of the first region 61 having the thin film 611 is α-Al 2 O 3 , and the crystal structure of the second region 62 having the needle-shaped protrusions 621 is γ-Al 2 O 3 . Is.
 次に、図5(c)に示すように、下地層6上に感応膜5を成膜する。感応膜5の成膜方法としては、例えば感応膜の材料を溶剤に溶解させたものをスプレー塗布する方法、真空蒸着法、スパッタリング法、又はCVD法を用いることができる。感応膜5は、表面が針状形状を有する下地層6上に設けられるため、平坦な感応膜を成膜する場合と比較して、感応膜5の表面積を大きくすることができる。これにより、検出素子10の検出感度が向上する。 Next, as shown in FIG. 5C, a sensitive film 5 is formed on the base layer 6. As a film forming method of the sensitive film 5, for example, a method of spray-applying a sensitive film material dissolved in a solvent, a vacuum vapor deposition method, a sputtering method, or a CVD method can be used. Since the sensitive film 5 is provided on the base layer 6 whose surface has a needle-like shape, the surface area of the sensitive film 5 can be increased as compared with the case where a flat sensitive film is formed. This improves the detection sensitivity of the detection element 10.
 上述の検出素子10の製造方法の説明では、便宜的に、1つの検出素子を製造する工程を記載した。典型的には、1枚の基板上に複数の検出素子に対応する下部電極、圧電膜、上部電極、下地層、金属層、感応膜を形成した後、基板を切断し、個々の検出素子に分離することによって製造される。 In the above description of the method for manufacturing the detection element 10, the process of manufacturing one detection element has been described for convenience. Typically, after forming a lower electrode, a piezoelectric film, an upper electrode, an underlayer, a metal layer, and a sensitive film corresponding to a plurality of detection elements on one substrate, the substrate is cut into individual detection elements. Manufactured by separation.
 ここで、感応膜の下地層としてアルミナの代わりに、例えば炭素のみで構成されている直径がナノメータサイズの円筒(チューブ)状の針状結晶であるカーボンナノチューブを用いることが考えられる。
 しかしながら、カーボンナノチューブの成膜は一般に600℃程度の高温条件下で行われるため、下部電極や上部電極が劣化を引き起こしやすい。これに対し、上述の実施形態にあげたアルミナを主成分とする下地層は95℃~150℃程度の温度条件下で形成することが可能であるため、高温処理による下部電極や上部電極の劣化が生じることがなく、検出素子の性能を良好に維持することができる。このように、下地層としてアルミナを用いることが特に好ましい。
Here, instead of alumina, it is conceivable to use carbon nanotubes, which are needle-shaped crystals having a diameter of nanometer size and are composed of only carbon, for example, as the base layer of the sensitive film.
However, since the formation of carbon nanotubes is generally performed under high temperature conditions of about 600 ° C., the lower electrode and the upper electrode tend to deteriorate. On the other hand, since the underlayer layer containing alumina as a main component mentioned in the above-described embodiment can be formed under a temperature condition of about 95 ° C. to 150 ° C., deterioration of the lower electrode and the upper electrode due to high temperature treatment Can be maintained, and the performance of the detection element can be maintained satisfactorily. As described above, it is particularly preferable to use alumina as the base layer.
[第2の実施形態]
 第2の実施形態に係る検出素子は、第1の実施形態の検出素子と比較して、基板周縁部に段差部を有する点、保護層が形成される点で相違する。以下、第1の実施形態と相違する構成を中心に説明し、同様の構成については同様の符号を付し、説明を省略する場合がある。また、製造方法についても、第1の実施形態の検出素子10の製造方法と相違する工程を中心に説明し、同様の工程については説明を簡略化する。
[Second Embodiment]
The detection element according to the second embodiment is different from the detection element according to the first embodiment in that it has a stepped portion on the peripheral edge of the substrate and a protective layer is formed. Hereinafter, configurations different from those of the first embodiment will be mainly described, and similar configurations may be designated by the same reference numerals and description thereof may be omitted. Further, the manufacturing method will be mainly described with respect to the steps different from the manufacturing method of the detection element 10 of the first embodiment, and the description of the same steps will be simplified.
 (検出素子の全体構成)
 図6及び7は本実施形態の検出素子の構成を示す図である。図6は平面図、図7は図6におけるVII-VII線断面図である。
 図6及び7に示すように、検出素子110は、基板101と、圧電膜4と、第1の電極としての上部電極3と、第2の電極としての下部電極2と、下地層106と、感応膜5と、電極層7a及び7bと、挿入膜8と、保護層20を有する。下部電極2及び上部電極3は、圧電膜4の少なくとも一部を挟んで対向配置される。下部電極2、圧電膜4、上部電極3が積層されてなる積層膜70は基板101上に設けられる。検出素子110は、振動子としての圧電薄膜共振器111と、該圧電薄膜共振器111上に設けられた下地層106及び感応膜5を有する。圧電薄膜共振器111は、基板101と積層膜70を有する。
(Overall configuration of detection element)
6 and 7 are diagrams showing the configuration of the detection element of the present embodiment. 6 is a plan view, and FIG. 7 is a sectional view taken along line VII-VII in FIG.
As shown in FIGS. 6 and 7, the detection element 110 includes a substrate 101, a piezoelectric film 4, an upper electrode 3 as a first electrode, a lower electrode 2 as a second electrode, and a base layer 106. It has a sensitive film 5, electrode layers 7a and 7b, an insertion film 8, and a protective layer 20. The lower electrode 2 and the upper electrode 3 are arranged so as to face each other with at least a part of the piezoelectric film 4 interposed therebetween. The laminated film 70 in which the lower electrode 2, the piezoelectric film 4, and the upper electrode 3 are laminated is provided on the substrate 101. The detection element 110 has a piezoelectric thin film resonator 111 as an oscillator, an underlayer 106 provided on the piezoelectric thin film resonator 111, and a sensitive film 5. The piezoelectric thin film resonator 111 has a substrate 101 and a laminated film 70.
 図6及び7に示すように、第1の実施形態の検出素子10と比較して、本実施形態の検出素子110では、基板の主面110aの周縁部に段差部210を有する点と、保護層20を有する点で主に相違する。 As shown in FIGS. 6 and 7, the detection element 110 of the present embodiment has a stepped portion 210 on the peripheral edge of the main surface 110a of the substrate as compared with the detection element 10 of the first embodiment, and is protected. The main difference is that it has a layer 20.
 ((基板))
 基板101は、例えばシリコン(Si)基板を用いることができる。基板101として、シリコン基板以外に、石英基板、ガラス基板、セラミック基板、タンタル酸リチウム(LiTaO(LT))、ニオブ酸リチウム(LiNbO(LN))、又は、ガリウム砒素(GaAs)基板等を用いることができる。
 基板101の、積層膜70が形成される側の主面101aの周縁部は、相対的に厚みが薄くなっており、段差部210を有する。
((substrate))
As the substrate 101, for example, a silicon (Si) substrate can be used. As the substrate 101, in addition to the silicon substrate, a quartz substrate, a glass substrate, a ceramic substrate, lithium tantalate (LiTaO 3 (LT)), lithium niobate (LiNbO 3 (LN)), a gallium arsenide (GaAs) substrate, or the like can be used. Can be used.
The peripheral edge of the main surface 101a on the side of the substrate 101 on which the laminated film 70 is formed is relatively thin and has a stepped portion 210.
 ((保護層))
 保護層20は、図7に示すように、基板101と積層膜70とが接する部位を覆うように形成される。より詳細には、図7の破線の楕円Aで囲んだ部分のように、保護層20は、基板101と積層膜70とが接する部位付近の積層膜70の側面、基板101の主面101a、基板1の側面101bを、連続した形状で覆っている。
 このように、基板101と積層膜70とが接する部位を覆うように保護層20を設けることにより、基板101と積層膜70との界面への水分の侵入を抑制することができ、検出素子110の耐湿性を向上させることができる。
((Protective layer))
As shown in FIG. 7, the protective layer 20 is formed so as to cover a portion where the substrate 101 and the laminated film 70 are in contact with each other. More specifically, as shown in the portion surrounded by the broken line ellipse A in FIG. 7, the protective layer 20 is formed on the side surface of the laminated film 70 near the portion where the substrate 101 and the laminated film 70 are in contact, and the main surface 101a of the substrate 101. The side surface 101b of the substrate 1 is covered with a continuous shape.
By providing the protective layer 20 so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other in this way, it is possible to suppress the intrusion of moisture into the interface between the substrate 101 and the laminated film 70, and the detection element 110 can be prevented. Moisture resistance can be improved.
 ここで、圧電薄膜共振器を必要な周波数帯域の電気信号を区別して通過させるフィルタに用いる場合、圧電薄膜共振器はパッケージされるが、本実施形態のようにガスを検出する検出素子に用いる場合は、パッケージされない。このため、例えば基板101と積層膜70との間に、毛細管現象で水分が浸入しやすい。
 これに対し、本実施形態では、基板101と積層膜70とが接する部位を覆うように保護層20を設けることにより、基板101と積層膜70との界面への水分の侵入を抑制することができる。
 基板101と積層膜70との間に水分が浸入すると、積層膜70に水分が吸着する。より詳細には、積層膜70を構成する圧電膜4、上部電極3、下部電極2に水分が吸着する。これにより、水分子の質量分だけ積層膜70の質量が増加し、共振周波数が低下してQ値が低下する。これに対し、本実施形態では、保護層20を設けることにより、Q値の低下を防止することができる。
Here, when the piezoelectric thin-film resonator is used as a filter for distinguishing and passing electrical signals in a required frequency band, the piezoelectric thin-film resonator is packaged, but when used as a detection element for detecting gas as in the present embodiment. Is not packaged. Therefore, for example, moisture easily penetrates between the substrate 101 and the laminated film 70 due to a capillary phenomenon.
On the other hand, in the present embodiment, by providing the protective layer 20 so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other, it is possible to suppress the intrusion of moisture into the interface between the substrate 101 and the laminated film 70. can.
When water penetrates between the substrate 101 and the laminated film 70, the water is adsorbed on the laminated film 70. More specifically, water is adsorbed on the piezoelectric film 4, the upper electrode 3, and the lower electrode 2 constituting the laminated film 70. As a result, the mass of the laminated film 70 increases by the mass of the water molecules, the resonance frequency decreases, and the Q value decreases. On the other hand, in the present embodiment, the Q value can be prevented from decreasing by providing the protective layer 20.
 更に、本実施形態の保護層20は、基板101と積層膜70とが接する部位を覆うように形成されるのに加え、積層膜70の側面を覆うように形成される。図6及び7に示すように、保護層20は、電極層7a及び7bが形成される領域以外の積層膜70全体を覆うように形成され、積層膜70の側面を覆っている。
 このように、積層膜70の側面を覆うように保護層20が形成されることにより、積層膜70の側面から、圧電膜と電極といった互いに異なる2つの構成が接する界面への水分の侵入が抑制される。これにより、検出素子110の耐湿性をより向上させることができる。
Further, the protective layer 20 of the present embodiment is formed so as to cover the portion where the substrate 101 and the laminated film 70 are in contact with each other, and also to cover the side surface of the laminated film 70. As shown in FIGS. 6 and 7, the protective layer 20 is formed so as to cover the entire laminated film 70 other than the region where the electrode layers 7a and 7b are formed, and covers the side surface of the laminated film 70.
By forming the protective layer 20 so as to cover the side surface of the laminated film 70 in this way, the invasion of water from the side surface of the laminated film 70 to the interface where two different configurations such as the piezoelectric film and the electrode are in contact is suppressed. Will be done. Thereby, the moisture resistance of the detection element 110 can be further improved.
 保護層20は、例えばアルミナから構成される。アルミナは耐湿性があり、例えば、酸化シリコンと比較して高い耐湿性を示す。尚、耐湿性の評価は、シリコン基板上にさまざまな絶縁膜(酸化アルミニウム、酸化シリコン、窒化シリコン、酸化窒素シリコン、DLC(ダイヤモンドライクカーボン))を成膜し、D2O(重水)を用いた高温湿環境(85℃、95%RH)に於いて、27時間放置した後に膜中のD2Oの侵入量をD-SIMS(Dynamic mode Secondary Ion Mass Spectrometry)を用い、深さ方向のD原子濃度を評価した。そして、深さ方向のD濃度をフィックの法則を用いフィッティングし、フィッティング線から拡散係数を求める。拡散係数が小さいほうが水分の拡散しにくく、高い耐湿性を示すと判断した。
 このように、湿度耐性膜であるアルミナを保護層20に用いることにより、検出素子1110の耐湿性を良好なものとすることができる。
The protective layer 20 is made of, for example, alumina. Alumina is moisture resistant and, for example, exhibits higher moisture resistance than silicon oxide. For the evaluation of moisture resistance, various insulating films (aluminum oxide, silicon oxide, silicon nitride, silicon oxide, DLC (diamond-like carbon)) are formed on a silicon substrate, and high temperature using D2O (heavy water) is used. In a moist environment (85 ° C., 95% RH), the amount of D2O invaded into the membrane after being left for 27 hours is evaluated by using D-SIMS (Dynamic mode Secondary Ion Mass Spectrometry) to evaluate the D atom concentration in the depth direction. did. Then, the D concentration in the depth direction is fitted using Fick's law, and the diffusion coefficient is obtained from the fitting line. It was judged that the smaller the diffusion coefficient, the more difficult it is for moisture to diffuse, and the higher the moisture resistance is.
As described above, by using alumina, which is a humidity resistant film, for the protective layer 20, the moisture resistance of the detection element 1110 can be improved.
 保護層20は、例えば、後述するアルミナを用いた下地膜160の成膜と同じ工程で形成することができる。尚、保護層20を下地膜160の成膜工程と別の工程で成膜して形成してもよく、材料もアルミナに限定されず、例えば窒化シリコン、酸化窒化シリコン、及びDLC等を主成分とする無機絶縁体膜等を用いてもよい。
 以上のように、保護層20を設けることにより、圧電薄膜共振器を構成する積層膜70の側面からの水分の侵入や基板101と積層膜70との界面への水分の侵入を抑制することができ、検出素子110の耐湿性を向上させることができる。
The protective layer 20 can be formed, for example, in the same process as the film formation of the undercoat film 160 using alumina, which will be described later. The protective layer 20 may be formed by forming a film in a process different from the film forming step of the undercoat film 160, and the material is not limited to alumina, and for example, silicon nitride, silicon oxide, DLC and the like are the main components. An inorganic insulator film or the like may be used.
As described above, by providing the protective layer 20, it is possible to suppress the intrusion of moisture from the side surface of the laminated film 70 constituting the piezoelectric thin film resonator and the intrusion of moisture into the interface between the substrate 101 and the laminated film 70. The moisture resistance of the detection element 110 can be improved.
 (検出素子の製造方法例)
 図8~図13の製造フロー図を用いて検出素子110の製造方法例について説明する。
 以下の説明では、1枚の基板上に、複数の検出素子に対応する各構成を形成した後、基板を切断して複数の検出素子に分離する例をあげる。
(Example of manufacturing method of detection element)
An example of a manufacturing method of the detection element 110 will be described with reference to the manufacturing flow charts of FIGS. 8 to 13.
In the following description, an example will be given in which each configuration corresponding to a plurality of detection elements is formed on one substrate, and then the substrate is cut and separated into a plurality of detection elements.
 図8(a)に示すように、平坦主面を有する基板101´上に空隙32を形成するための犠牲層9を形成する。
 次に図8(b)に示すように、犠牲層9及び基板101´上に、下部電極2を形成する。
 次に、図8(c)に示すように、下部電極2及び基板101´上に圧電膜4aを形成する。
 次に、図9(a)に示すように、圧電膜4上に所定形状にパターニングされたSiOを用いた挿入膜8を形成する。
 次に図9(b)に示すように、挿入膜8及び圧電膜4a上に圧電膜4bを形成する。圧電膜4a及び圧電膜4bにより圧電膜4が構成される。
As shown in FIG. 8A, a sacrificial layer 9 for forming the void 32 is formed on the substrate 101 ′ having a flat main surface.
Next, as shown in FIG. 8B, the lower electrode 2 is formed on the sacrificial layer 9 and the substrate 101'.
Next, as shown in FIG. 8C, the piezoelectric film 4a is formed on the lower electrode 2 and the substrate 101'.
Next, as shown in FIG. 9A, an insertion film 8 using SiO 2 patterned in a predetermined shape is formed on the piezoelectric film 4.
Next, as shown in FIG. 9B, the piezoelectric film 4b is formed on the insertion film 8 and the piezoelectric film 4a. The piezoelectric film 4 is composed of the piezoelectric film 4a and the piezoelectric film 4b.
 次に、図10(a)に示すように、圧電膜4上に上部電極3を形成する。
 次に、上部電極3及び圧電膜4上に所望形状のマスク層(図示せず)を形成する。マスク層をマスクにして、エッチング法を用い、圧電膜4の一部を除去する。その後、マスク層を除去する。これにより、下部電極2の一部が露出する。
 次に、図10(b)に示すように、下部電極2及び上部電極3それぞれに接して、所望の形状にパターニングされた金属層7a及び7bを形成する。
Next, as shown in FIG. 10A, the upper electrode 3 is formed on the piezoelectric film 4.
Next, a mask layer (not shown) having a desired shape is formed on the upper electrode 3 and the piezoelectric film 4. Using the mask layer as a mask, a part of the piezoelectric film 4 is removed by using an etching method. After that, the mask layer is removed. As a result, a part of the lower electrode 2 is exposed.
Next, as shown in FIG. 10B, the metal layers 7a and 7b patterned in a desired shape are formed in contact with the lower electrode 2 and the upper electrode 3, respectively.
 次に、図11(a)に示すように、基板101´を、例えばダイシングプレートを用いたハーフダイシング処理することによって凹部21を形成する。凹部21が形成された基板に符号101を付す。凹部21は、個々の検出素子を区画するように基板101上に溝状に形成される。
 凹部21は、ダイシングプレートを用いたハーフダイシング処理の他、エッチング法またはブラスト法を用いて形成してもよい。
Next, as shown in FIG. 11A, the recess 21 is formed by half-dicing the substrate 101'using, for example, a dicing plate. Reference numeral 101 is attached to the substrate on which the recess 21 is formed. The recess 21 is formed in a groove shape on the substrate 101 so as to partition each detection element.
The recess 21 may be formed by an etching method or a blast method in addition to the half dicing treatment using a dicing plate.
 次に、図11(b)に示すように、所望の形状にパターニングされたアルミナを用いた下地膜160及び保護層20を形成する。ここでは、後工程で高湿度下の加熱処理により針状結晶化されて下地層6に変化する下地膜160と、針状結晶化されない保護層20とを区別して説明するが、下地膜160と保護層20とは同じ成膜工程で形成される膜である。
 図11(b)に示すように、下地膜160及び保護層20は、平面視で、電極層7a及び7bが形成される領域以外に形成される。
 下地膜160は電極層7bが形成されていない上部電極3上に形成される。
 保護層20は、積層膜70の側面、及び、基板101の基板101が露出している面に形成される。基板110が露出している面には、基板101の主面101aの他、凹部21の内面も含まれ、保護層20は基板101の凹部21の内側面に対応する側面101bにも形成される。
Next, as shown in FIG. 11B, the undercoat film 160 and the protective layer 20 using alumina patterned in a desired shape are formed. Here, the undercoat film 160, which is needle-like crystallized by heat treatment under high humidity in a subsequent step and changes to the underlayer layer 6, and the protective layer 20 which is not acicularly crystallized will be described separately. The protective layer 20 is a film formed in the same film forming process.
As shown in FIG. 11B, the undercoat film 160 and the protective layer 20 are formed in a region other than the regions where the electrode layers 7a and 7b are formed in a plan view.
The base film 160 is formed on the upper electrode 3 on which the electrode layer 7b is not formed.
The protective layer 20 is formed on the side surface of the laminated film 70 and the surface of the substrate 101 where the substrate 101 is exposed. The exposed surface of the substrate 110 includes not only the main surface 101a of the substrate 101 but also the inner surface of the recess 21, and the protective layer 20 is also formed on the side surface 101b corresponding to the inner surface of the recess 21 of the substrate 101. ..
 アルミナを用いた下地膜160及び保護層20は、例えばスパッタリング法、CVD法又はALD(Atomic Layer Deposition)法を用いて成膜された膜を、フォトリソグラフィ技術及びエッチング技術を用い所望の形状にパターニングすることにより形成される。下地膜160及び保護層20は、リフトオフ法に形成してもよい。
 製造される検出素子110の共振特性を良好に維持する観点から、下地膜160は、例えば30nm以下の膜厚で成膜されることが好ましい。後述する高温高湿処理による下地膜60の最表面の針状結晶化を効率よく行う観点から、下地膜160は、例えば100nm以下の膜厚で成膜されることが好ましい。
 保護層20は、耐湿性の観点から例えば20nm以上の膜厚で成膜されることが好ましい。
 本実施形態では、下地膜160及び保護層20は同時に成膜され、たとえば100nmの膜厚に成膜される。
The undercoat film 160 and the protective layer 20 using alumina are formed by patterning a film formed by, for example, a sputtering method, a CVD method or an ALD (Atomic Layer Deposition) method into a desired shape by using a photolithography technique and an etching technique. It is formed by etching. The base film 160 and the protective layer 20 may be formed by a lift-off method.
From the viewpoint of maintaining good resonance characteristics of the manufactured detection element 110, the undercoat film 160 is preferably formed with a film thickness of, for example, 30 nm or less. From the viewpoint of efficiently performing needle-like crystallization of the outermost surface of the base film 60 by the high temperature and high humidity treatment described later, the base film 160 is preferably formed with a film thickness of, for example, 100 nm or less.
From the viewpoint of moisture resistance, the protective layer 20 is preferably formed with a film thickness of, for example, 20 nm or more.
In the present embodiment, the undercoat film 160 and the protective layer 20 are simultaneously formed into a film, for example, to have a film thickness of 100 nm.
 次に、図12(a)に示すように、孔部31(図6参照)及び導入路(図示せず)を介し、犠牲層9のエッチャントを下部電極2の下の犠牲層9に導入する。これにより、犠牲層9が除去され、空隙32が形成される。 Next, as shown in FIG. 12 (a), the etchant of the sacrificial layer 9 is introduced into the sacrificial layer 9 under the lower electrode 2 via the hole 31 (see FIG. 6) and the introduction path (not shown). .. As a result, the sacrificial layer 9 is removed and the void 32 is formed.
 次に、図12(b)に示すように、下地膜160が形成される領域を除く、積層膜70、電極層7a及び7bを含む基板101全面に保護膜24を形成する。
 次に、高湿度下で加熱処理することによって露出した下地膜160の表面を針状に結晶化させた後、保護膜24を除去する。これにより、図13(a)及び図14(a)に示すように、下地膜160は、薄膜611を有する第1の領域61と針状の突起部621を有する第2の領域62を備える下地層106となる。一方、保護膜24によって覆われていた保護層20は、針状結晶化されない。
 高湿度下の加熱処理条件は、第1の実施形態と同様である。
Next, as shown in FIG. 12B, the protective film 24 is formed on the entire surface of the substrate 101 including the laminated film 70, the electrode layers 7a and 7b, excluding the region where the undercoat film 160 is formed.
Next, the surface of the base film 160 exposed by heat treatment under high humidity is crystallized in a needle shape, and then the protective film 24 is removed. As a result, as shown in FIGS. 13 (a) and 14 (a), the base film 160 includes a first region 61 having a thin film 611 and a second region 62 having a needle-shaped protrusion 621. It becomes the stratum 106. On the other hand, the protective layer 20 covered with the protective film 24 is not needle-shaped crystallized.
The heat treatment conditions under high humidity are the same as those in the first embodiment.
 次に、図13(b)に示すように、下地層106上に感応膜5を成膜した後、凹部21内に基板101を貫通する溝を形成する。該溝は、例えばダイシングブレードを用いたフルダイシングにより形成する。これにより、基板101が複数の検出素子110に分割、分離される。
 感応膜5は、表面に針状の突起部621を有する下地層106上に設けられるため、感応膜5の表面積を大きくすることができる。これにより、検出素子110の検出感度が向上する。
Next, as shown in FIG. 13B, after the sensitive film 5 is formed on the base layer 106, a groove penetrating the substrate 101 is formed in the recess 21. The groove is formed by, for example, full dicing using a dicing blade. As a result, the substrate 101 is divided and separated into a plurality of detection elements 110.
Since the sensitive film 5 is provided on the base layer 106 having the needle-shaped protrusions 621 on the surface, the surface area of the sensitive film 5 can be increased. This improves the detection sensitivity of the detection element 110.
<ガス検出システムの構成>
 図15は、上述の検出素子10又は検出素子110を用いたガス検出システムの構成を模式的に示す図である。
 図15に示すように、ガス検出システム100は、ガスセンサデバイス(以下、センサデバイスという。)50と、情報処理部40とを有する。センサデバイス50と、情報処理部40とは、無線又は有線で相互に通信可能に接続される。センサデバイス50と、情報処理部40とは、例えば、BLE(Bluetooth(登録商標) Low Energy)の通信規格を利用して無線通信可能に接続される。
<Configuration of gas detection system>
FIG. 15 is a diagram schematically showing the configuration of a gas detection system using the above-mentioned detection element 10 or detection element 110.
As shown in FIG. 15, the gas detection system 100 includes a gas sensor device (hereinafter referred to as a sensor device) 50 and an information processing unit 40. The sensor device 50 and the information processing unit 40 are connected to each other so as to be able to communicate with each other wirelessly or by wire. The sensor device 50 and the information processing unit 40 are connected to each other so as to be capable of wireless communication using, for example, a communication standard of BLE (Bluetooth (registered trademark) Low Energy).
 センサデバイス50は、1以上、典型的には複数の検出素子10(又は検出素子110)と、発振回路53を有する。検出素子10(又は検出素子110)と発振回路53との対応関係は1対1でもよいし、1対2等の1対多でもよい。 The sensor device 50 has one or more, typically a plurality of detection elements 10 (or detection elements 110), and an oscillation circuit 53. The correspondence between the detection element 10 (or the detection element 110) and the oscillation circuit 53 may be one-to-one or one-to-many such as one-to-two.
 検出素子10(又は検出素子110)は、感応膜がガス分子を吸着することにより共振周波数が変動する。発振回路53が、上部電極及び下部電極の間に所定周波数の電圧信号を入力すると、検出素子10(又は検出素子110)が所定の共振周波数で共振する。検出素子10(又は検出素子110)の共振周波数は特に限定されず、例えば、数GHz帯域である
 センサデバイス50は、検出素子10(又は検出素子110)の共振周波数の変動量を検出する。センサデバイス50は、共振周波数の変動量を情報処理部40に無線送信する。
 センサデバイス50は、ガスを検出し、さらに、ガスの成分や濃度を測定する。ガスが匂いを含む場合、センサデバイス50は、匂いを検出し、さらに、ガスの成分や濃度を測定する。匂いとは、複数種の匂い物質の集合体をいう。つまり、匂い物質とは、匂いの構成成分(匂い成分)に相当する。センサデバイス50の検出結果に基づき、各匂い物質の集合体である匂いの種類が判定可能である。
 センサデバイス50が複数の検出素子10(又は検出素子110)を備える場合、各検出素子10(又は検出素子110)の感応膜は、吸着するガス分子の選択性を有する異なる材料でそれぞれ製造される。複数の検出素子10(又は検出素子110)の感応膜は、それぞれ、異なる種類のガス分子を主に吸着する。
The resonance frequency of the detection element 10 (or the detection element 110) fluctuates due to the sensitive film adsorbing gas molecules. When the oscillation circuit 53 inputs a voltage signal having a predetermined frequency between the upper electrode and the lower electrode, the detection element 10 (or the detection element 110) resonates at a predetermined resonance frequency. The resonance frequency of the detection element 10 (or the detection element 110) is not particularly limited, and for example, the sensor device 50 in the several GHz band detects the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110). The sensor device 50 wirelessly transmits the fluctuation amount of the resonance frequency to the information processing unit 40.
The sensor device 50 detects the gas and further measures the composition and concentration of the gas. When the gas contains an odor, the sensor device 50 detects the odor and further measures the composition and concentration of the gas. An odor is an aggregate of multiple types of odorous substances. That is, the odor substance corresponds to a constituent component (odor component) of the odor. Based on the detection result of the sensor device 50, the type of odor, which is an aggregate of each odorous substance, can be determined.
When the sensor device 50 includes a plurality of detection elements 10 (or detection elements 110), the sensitive film of each detection element 10 (or detection element 110) is manufactured of different materials having the selectivity of the gas molecule to be adsorbed. .. The sensitive films of the plurality of detection elements 10 (or detection elements 110) mainly adsorb different types of gas molecules.
 情報処理部40は検出回路41を有する。
 情報処理部40は、検出素子10(又は検出素子110)の共振周波数の変動量をセンサデバイス50から受信する。
 検出回路41は、検出素子10(又は検出素子110)の共振周波数の変動量に基づき、ガスを検出し、ガスの成分や濃度を測定して測定値を生成する。
 情報処理部40は、典型的には、パーソナルコンピュータ、タブレットコンピュータ等である。情報処理部40は、クラウドサーバ等を含んでもよい。
The information processing unit 40 has a detection circuit 41.
The information processing unit 40 receives the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110) from the sensor device 50.
The detection circuit 41 detects gas based on the fluctuation amount of the resonance frequency of the detection element 10 (or the detection element 110), measures the component and concentration of the gas, and generates a measured value.
The information processing unit 40 is typically a personal computer, a tablet computer, or the like. The information processing unit 40 may include a cloud server or the like.
 本実施形態のガス検出システム100は、感応膜の表面積が大きくなり、感度が向上した検出素子10又は110を備えているので、ガス検出精度を向上させることができる。 Since the gas detection system 100 of the present embodiment includes the detection element 10 or 110 having a large surface area of the sensitive film and improved sensitivity, the gas detection accuracy can be improved.
<他の実施形態>
 以上、本発明の各実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 例えば、上述の検出素子の実施形態では、挿入膜を有する検出素子を例にあげたが、挿入膜を有していなくてもよい。
<Other embodiments>
Although each embodiment of the present invention has been described above, the present technique is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present technique.
For example, in the above-described embodiment of the detection element, the detection element having an insertion film is given as an example, but the detection element may not have the insertion film.
 また、上述の実施形態では、振動子として圧電薄膜共振器を用いる例をあげたが、水晶振動子や表面弾性波共振器を用いた検出素子に本発明を適用することができる。 Further, in the above-described embodiment, an example in which a piezoelectric thin film resonator is used as the vibrator is given, but the present invention can be applied to a detection element using a crystal oscillator or a surface acoustic wave resonator.
 水晶振動子を用いたQCM(Quartz Crystal Microbalance)検出素子は、感応膜と水晶振動子を有する。
 水晶振動子は、例えばATカットと呼ばれるカット角で切断された振動子であり、薄い板状である。水晶振動子の一方の主面と、該主面と対向する他方の主面それぞれに、金属薄膜を所定の形状にパターニングした第1の電極及び第2の電極が形成される。感応膜は、一方の電極上に下地層を介して形成(塗布)される。該下地層は、上述の第1及び第2の実施形態に示した下地層と同様の構成を有し、薄膜を有する第1の領域と該第1の領域上に位置する針状の突起部を有する第2の領域とを有する。表面形状が針状の下地層上に感応膜が形成されるため、平坦膜上に感応膜を形成する場合と比較して、感応膜の表面積を大きくすることができる。
 QCM検出素子において、発振回路が、第1の電極及び第2の電極の間に所定周波数の電圧信号を入力すると、水晶振動子が所定の共振周波数で共振する。感応膜にガス分子が吸着することによる共振周波数の変動によりガスが検出される。
A QCM (Quartz Crystal Microbalance) detection element using a crystal oscillator has a sensitive film and a quartz crystal oscillator.
The crystal oscillator is, for example, an oscillator cut at a cut angle called AT cut, and has a thin plate shape. A first electrode and a second electrode in which a metal thin film is patterned into a predetermined shape are formed on one main surface of the crystal oscillator and the other main surface facing the main surface, respectively. The sensitive film is formed (coated) on one of the electrodes via the base layer. The base layer has the same structure as the base layer shown in the first and second embodiments described above, and has a first region having a thin film and a needle-shaped protrusion located on the first region. Has a second region and has. Since the sensitive film is formed on the base layer having a needle-like surface shape, the surface area of the sensitive film can be increased as compared with the case where the sensitive film is formed on the flat film.
In the QCM detection element, when the oscillation circuit inputs a voltage signal of a predetermined frequency between the first electrode and the second electrode, the crystal oscillator resonates at a predetermined resonance frequency. Gas is detected by the fluctuation of the resonance frequency due to the adsorption of gas molecules on the sensitive membrane.
 表面弾性波共振器を用いた検出素子は、例えば、圧電体基板の表面に、2組の櫛状電極(第1及び第2の電極)が設けられて構成される。この櫛状電極に高周波交流電圧を印加すると、圧電効果により圧電基板にひずみが生じ表面波が励振される。この励振される部分が振動子を構成する。
 表面弾性波共振器を用いた検出素子において、櫛状電極を覆うように櫛状電極上に保護膜が形成され、該保護膜上に形成された下地層上に感応膜が形成(塗布)される。該下地層は、上述の第1及び第2の実施形態に示した下地層と同様の構成を有し、薄膜を有する第1の領域と該第1の領域に位置する針状の突起部を有する第2の領域とを有する。表面形状が針状の下地層上に感応膜が形成されるため、平坦膜上に感応膜を形成する場合と比較して、感応膜の表面積を大きくすることができる。
 表面弾性波共振器を用いた検出素子において、第1の電極及び第2の電極の間に所定周波数の電圧信号を入力すると、表面波が励振する。感応膜にガス分子が吸着することによる表面弾性波の周波数(共振周波数)の変動を利用して、ガスが検出される。
A detection element using a surface acoustic wave resonator is configured by, for example, providing two sets of comb-shaped electrodes (first and second electrodes) on the surface of a piezoelectric substrate. When a high-frequency AC voltage is applied to this comb-shaped electrode, the piezoelectric substrate is distorted due to the piezoelectric effect, and surface waves are excited. This excited part constitutes the oscillator.
In a detection element using a surface acoustic wave resonator, a protective film is formed on the comb-shaped electrode so as to cover the comb-shaped electrode, and a sensitive film is formed (coated) on the base layer formed on the protective film. To. The base layer has the same structure as the base layer shown in the first and second embodiments described above, and has a first region having a thin film and needle-shaped protrusions located in the first region. It has a second region having. Since the sensitive film is formed on the base layer having a needle-like surface shape, the surface area of the sensitive film can be increased as compared with the case where the sensitive film is formed on the flat film.
In a detection element using a surface acoustic wave resonator, when a voltage signal having a predetermined frequency is input between the first electrode and the second electrode, the surface wave is excited. Gas is detected by utilizing the fluctuation of the frequency (resonance frequency) of the surface acoustic wave due to the adsorption of gas molecules on the sensitive membrane.
1、101…基板
2…下部電極(第2の電極)
3…上部電極(第1の電極)
4…圧電膜
5…感応膜
6、106…下地層
 61…第1の領域
 611…薄膜
 62…第2の領域
 621…針状の突起部
10、110…検出素子
11、111…圧電薄膜共振器(振動子)
41…検出回路
60、160…下地膜
70…積層膜
100…ガス検出システム
1, 101 ... Substrate 2 ... Lower electrode (second electrode)
3 ... Upper electrode (first electrode)
4 ... Piezoelectric film 5 ... Sensitive film 6, 106 ... Underlayer 61 ... First region 611 ... Thin film 62 ... Second region 621 ... Needle-shaped protrusions 10, 110 ... Detection element 11, 111 ... Piezoelectric thin film resonator (Vibrator)
41 ... Detection circuits 60, 160 ... Undercoat film 70 ... Laminated film 100 ... Gas detection system

Claims (10)

  1.  振動子と、
     前記振動子上に設けられ、表面に針状の突起部を有する下地層と、
     前記針状の突起部の少なくとも一部を覆い、ガス分子を吸着する感応膜
     を具備する検出素子。
    Oscillator and
    A base layer provided on the oscillator and having needle-shaped protrusions on the surface, and
    A detection element provided with a sensitive film that covers at least a part of the needle-shaped protrusion and adsorbs gas molecules.
  2.  請求項1に記載の検出素子であって、
     前記針状の突起部は結晶成長により形成される
     検出素子。
    The detection element according to claim 1.
    The needle-shaped protrusion is a detection element formed by crystal growth.
  3.  請求項1又は2に記載の検出素子であって、
     前記下地層は、薄膜を有する第1の領域と、前記第1の領域上に位置する前記針状の突起部を有する第2の領域とを含み、
     前記第1の領域と前記第2の領域とは同じ材料を主成分として構成される
     検出素子。
    The detection element according to claim 1 or 2.
    The underlayer includes a first region having a thin film and a second region having the needle-like protrusions located on the first region.
    A detection element having the same material as the main component of the first region and the second region.
  4.  請求項3に記載の検出素子であって、
     前記第1の領域と前記第2の領域とは一体化している
     検出素子。
    The detection element according to claim 3.
    A detection element in which the first region and the second region are integrated.
  5.  請求項3又は4に記載の検出素子であって、
     前記材料は酸化アルミニウムである
     検出素子。
    The detection element according to claim 3 or 4.
    The material is aluminum oxide.
  6.  請求項1~5のいずれか1項に記載の検出素子であって、
     前記振動子は、圧電膜と、前記圧電膜の少なくとも一部を挟んで対向する第1の電極及び第2の電極とを有し、
     前記感応膜は、前記第1の電極の、前記第1の電極及び前記第2の電極が前記圧電膜を挟んで対向する共振領域の少なくとも一部に、前記下地層を介して設けられる
     検出素子。
    The detection element according to any one of claims 1 to 5.
    The oscillator has a piezoelectric film and a first electrode and a second electrode facing each other with at least a part of the piezoelectric film interposed therebetween.
    The sensitive film is a detection element provided in at least a part of the resonance region of the first electrode, in which the first electrode and the second electrode face each other with the piezoelectric film interposed therebetween, via the base layer. ..
  7.  請求項6に記載の検出素子であって、
     前記振動子は、基板と、前記基板上に設けられた、前記圧電膜、前記第1の電極及び前記第2の電極を含む積層膜と、を有し、
     前記基板と前記積層膜とが接する部位を覆う保護層を更に具備する
     検出素子。
    The detection element according to claim 6.
    The oscillator has a substrate and a piezoelectric film provided on the substrate, a laminated film including the first electrode and the second electrode.
    A detection element further comprising a protective layer that covers a portion where the substrate and the laminated film are in contact with each other.
  8.  請求項1~7のいずれか1項に記載の検出素子であって、
     前記振動子は、圧電薄膜共振器、表面弾性波共振器、又は、水晶振動子である
     検出素子。
    The detection element according to any one of claims 1 to 7.
    The oscillator is a piezoelectric thin film resonator, a surface acoustic wave resonator, or a detection element that is a crystal oscillator.
  9.   振動子と、
      前記振動子上に設けられ、表面に針状の突起部を有する下地層と、
      前記針状の突起部の少なくとも一部を覆い、ガス分子を吸着する感応膜と、を備える
     検出素子と、
     前記検出素子が出力する共振周波数の変動量に基づき前記ガスを検出する検出回路と
     を具備するガス検出システム。
    Oscillator and
    A base layer provided on the oscillator and having needle-shaped protrusions on the surface, and
    A detection element comprising a sensitive film that covers at least a part of the needle-shaped protrusion and adsorbs gas molecules.
    A gas detection system including a detection circuit that detects the gas based on the fluctuation amount of the resonance frequency output by the detection element.
  10.  下地膜が成膜された振動子を、相対湿度95%RH以上、温度95℃以上の条件で加熱処理し、前記下地膜を、表面に針状の突起部を有する下地層に変化させる
     検出素子の製造方法。
    A detection element that heat-treats an oscillator on which a base film is formed under conditions of a relative humidity of 95% RH or higher and a temperature of 95 ° C. or higher to change the base film into a base layer having needle-shaped protrusions on the surface. Manufacturing method.
PCT/JP2020/048957 2020-12-25 2020-12-25 Detection element, gas detection system, and method for manufacturing detection element WO2022137565A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/048957 WO2022137565A1 (en) 2020-12-25 2020-12-25 Detection element, gas detection system, and method for manufacturing detection element
JP2022571000A JPWO2022137565A1 (en) 2020-12-25 2020-12-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048957 WO2022137565A1 (en) 2020-12-25 2020-12-25 Detection element, gas detection system, and method for manufacturing detection element

Publications (1)

Publication Number Publication Date
WO2022137565A1 true WO2022137565A1 (en) 2022-06-30

Family

ID=82157949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048957 WO2022137565A1 (en) 2020-12-25 2020-12-25 Detection element, gas detection system, and method for manufacturing detection element

Country Status (2)

Country Link
JP (1) JPWO2022137565A1 (en)
WO (1) WO2022137565A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137491A (en) * 1986-11-29 1988-06-09 Shimadzu Corp Piezoelectric element type sensor
JPH05296907A (en) * 1992-04-17 1993-11-12 Yokogawa Electric Corp Odor sensor
JP2001358348A (en) * 2000-06-16 2001-12-26 Canon Inc Photoelectric conversion device and its manufacturing method
JP2008128772A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor and its manufacturing method
JP2015055521A (en) * 2013-09-11 2015-03-23 アズビル株式会社 Atmosphere sensor and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137491A (en) * 1986-11-29 1988-06-09 Shimadzu Corp Piezoelectric element type sensor
JPH05296907A (en) * 1992-04-17 1993-11-12 Yokogawa Electric Corp Odor sensor
JP2001358348A (en) * 2000-06-16 2001-12-26 Canon Inc Photoelectric conversion device and its manufacturing method
JP2008128772A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor and its manufacturing method
JP2015055521A (en) * 2013-09-11 2015-03-23 アズビル株式会社 Atmosphere sensor and production method thereof

Also Published As

Publication number Publication date
JPWO2022137565A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US20110304412A1 (en) Acoustic Wave Resonators and Methods of Manufacturing Same
US10263598B2 (en) Acoustic resonator and method of manufacturing the same
US10965271B2 (en) Acoustic resonator and method for fabricating the same
CN104242862B (en) Acoustic wave device
JP5319491B2 (en) Piezoelectric thin film resonator
JP5242347B2 (en) Detection sensor
JP6635908B2 (en) Piezoelectric thin film resonators, filters and multiplexers
US11418168B2 (en) Acoustic resonator and method for manufacturing the same
JP2006140271A (en) Semiconductor apparatus
CN102066919B (en) Arrangement of a piezoacoustic resonator on an acoustic mirror of a substrate, method for the manufacture of the arrangement and use of the arrangement
KR20160001369A (en) Array of sensors for gas/voc detection and use thereof
JP6899238B2 (en) Piezoelectric element and its manufacturing method
US11631800B2 (en) Piezoelectric MEMS devices and methods of forming thereof
JP7033846B2 (en) Piezoelectric element
WO2022137565A1 (en) Detection element, gas detection system, and method for manufacturing detection element
US10892736B2 (en) Fine dust concentration sensor
US20100190270A1 (en) System and methods for detecting a gaseous analyte in a gas
KR20190004627A (en) Acoustic resonator and method of manufacturing thereof
CN103825574B (en) Acoustic wave device and its manufacture method
KR20200064864A (en) Acoustic resonator
JP2007288504A (en) Piezoelectric thin film resonator
US10763818B2 (en) Acoustic wave device
JP2018125725A (en) Acoustic wave device
WO2022203057A1 (en) Detecting element and method for manufacturing same, and detecting system
WO2023188760A1 (en) Detection device and production method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967050

Country of ref document: EP

Kind code of ref document: A1