WO2023188602A1 - External skin preparation - Google Patents

External skin preparation Download PDF

Info

Publication number
WO2023188602A1
WO2023188602A1 PCT/JP2022/046781 JP2022046781W WO2023188602A1 WO 2023188602 A1 WO2023188602 A1 WO 2023188602A1 JP 2022046781 W JP2022046781 W JP 2022046781W WO 2023188602 A1 WO2023188602 A1 WO 2023188602A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose powder
fine fibrous
powder
external preparation
Prior art date
Application number
PCT/JP2022/046781
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 佐々木
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Publication of WO2023188602A1 publication Critical patent/WO2023188602A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up

Definitions

  • the present invention relates to a skin external preparation.
  • Patent Document 1 proposes a topical skin preparation that emulsifies petrolatum, an example of petrolatum, using polycondensation polymer particles or closed endoplasmic reticulum. It is disclosed that stickiness can be suppressed.
  • Patent Document 2 proposes blending powdered hydrophobized modified alkylcellulose with white petrolatum to reduce the sticky feeling.
  • Patent Document 3 proposes an external skin preparation that combines petrolatum, ultrafine particles of metal oxide as an ultraviolet scattering agent, and a volatile oil (volatile silicone oil), and this external skin preparation suppresses spread and stickiness. It is said that it can be done.
  • Patent Documents 1 to 3 aim to suppress stickiness, but on the other hand, they result in a decrease in viscosity, impairing the high viscosity characteristic of petrolatum. Furthermore, in the case of external preparations for skin, the inventors of the present invention believe that in addition to stickiness, shine is also an important property, but this point is not considered in the above-mentioned patent documents.
  • an object of the present invention is to provide a skin preparation for external use that reduces not only stickiness but also shine when applied to the skin.
  • the above problem is solved by the following aspect.
  • (First aspect) Contains petrolatum and cellulose powder,
  • the cellulose powder is made by agglomerating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 ⁇ m, and has a loose bulk density of 0.1 to 300 mg/cm 3 ,
  • Type B viscosity is 50,000 to 200,000 mPa ⁇ s under measurement conditions of 35°C and rotation speed of 3 rpm.
  • a skin external preparation characterized by:
  • Patent Document 1 attempts to reduce stickiness by adding polycondensation polymer particles or closed vesicles as an emulsifier.
  • Patent Document 2 attempts to reduce stickiness by adding hydrophobically modified alkylcellulose
  • Patent Document 3 attempts to reduce stickiness by adding a volatile oil agent and ultrafine particles of hydrophobically treated metal oxide.
  • the skin external preparation contains vaseline and cellulose powder to reduce stickiness.
  • Cellulose powder increases the viscosity of the medium when added to the medium by itself. Although the exact mechanism for this has not been clarified, it is presumed that it is probably due to the influence of hydrogen bonds between hydroxyl groups and hydrogen groups in cellulose.
  • cellulose forms a static and three-dimensional network structure with each other through hydrogen bonding, resulting in high viscosity.
  • the inventors' measurements have shown that cellulose powder has thixotropic properties, and its viscosity is relatively high in a static state and becomes low in a moving state. Since the skin external preparation of this embodiment contains cellulose powder, the B-type viscosity is high at low rotational speeds as in the above embodiment, but as the rotational speed increases, the B-type viscosity decreases.
  • the viscosity decreases due to the application of external force, such as by hands, and the product spreads better, so the user can freely stretch the product while applying it. be able to. Note that the measurement condition of 35° C. for type B viscosity assumes a temperature close to body temperature.
  • the cellulose powder of this form is made by aggregating fine fibrous cellulose and has the above-mentioned average particle diameter and bulk density, so it has relatively excellent porosity and is lightweight. It is presumed that this porosity causes diffuse reflection, resulting in less shine.
  • the cellulose powder is made by aggregating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 ⁇ m, and has a loose bulk density of 300 mg/cm 3 or less.
  • the loose bulk density is small compared to the average particle size, so although it is bulky, it is soft, and when applying the topical preparation to the skin, it is difficult to feel a lumpy sensation (feeling like a foreign body). There is.
  • Vaseline feels sticky when applied to the skin, but the inventors have found that when cellulose powder is included along with petrolatum, the stickiness is reduced. This is probably due to the thixotropic properties of cellulose powder.
  • the action of touching the external skin preparation applied to the skin applies a dynamic external force to the cellulose powder, reducing its viscosity and making it feel slippery.
  • the solidifying temperature is 36°C or less,
  • the skin external preparation according to the first aspect is 36°C or less.
  • the petrolatum is white petrolatum;
  • the cellulose powder is contained in an amount of 0.1 to 10% by mass.
  • the moisture content of the cellulose powder is 0.1 to 30%, The skin external preparation according to the first aspect.
  • the cellulose powder has a specific surface area of 0.1 to 1000 m 2 /g, The skin external preparation according to the first aspect.
  • the cellulose powder is one in which inorganic fine particles are supported.
  • the cellulose powder is white or pale yellow;
  • the cellulose powder is porous;
  • an external preparation for skin can be obtained which has a relatively high viscosity but does not have a relatively worsened stickiness or shine, or is hard to feel that it has improved.
  • FIG. 6 is a side view of another embodiment of the dryer.
  • FIG. 9 is a view of the dryer in FIG. 8 viewed in the Y direction.
  • FIG. 3 is a diagram showing the results of a skin application test.
  • the skin external preparation according to the present embodiment contains petrolatum and cellulose powder, and the cellulose powder is made by agglomerating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 ⁇ m, and has a loose bulk. It is characterized by having a density of 100 g/cm 3 or less, and a type B viscosity of 50,000 to 200,000 mPa ⁇ s under measurement conditions of 35° C. and 3 rpm.
  • the fine fibrous cellulose that is the raw material for cellulose powder will be explained.
  • Stickiness is a sensation felt by humans, and for example, based on the stickiness of Vaseline, cases in which the stickiness of the skin external preparation according to the present embodiment is felt to be equivalent to or improved from the stickiness of Vaseline are compared to cases in which the stickiness is relatively worsened. It can be said that there is no improvement or it is difficult to feel that it has improved.
  • shine is a feeling that humans feel, and for example, based on the shine of Vaseline, the shine of the external skin preparation according to the present embodiment is equivalent to or improved upon the shine of Vaseline, and the shine is relatively It can be said that it is difficult to feel that it has not worsened or has improved.
  • Fine fibrous cellulose can be obtained by defibrating (refining) raw material pulp, and can be produced by known processing methods such as chemical processing and mechanical processing.
  • Raw material pulp for fine fibrous cellulose includes, for example, wood pulp made from hardwoods, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, bark fibers, etc., used tea paper, used envelope paper, and magazines.
  • DIP waste paper pulp
  • waste paper pulp DIP
  • the above various raw materials may be in the form of, for example, pulverized products.
  • wood pulp made from plant-derived hardwoods and conifers other than waste paper is particularly suitable.
  • wood pulp for example, one of chemical pulps such as hardwood kraft pulp (LKP), softwood kraft pulp (NKP), sulfite pulp (SP), dissolving pulp (DP), and mechanical pulp (TMP) or Two or more types can be selected and used.
  • chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), which are wood pulps with increased cellulose content, are preferred, and bleached pulp (BKP) is preferred.
  • Mechanical pulps include, for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemical ground pulp (CGP), thermoground pulp (TGP), ground pulp (GP),
  • SGP stone ground pulp
  • PGW pressurized stone ground pulp
  • RGP refiner ground pulp
  • CGP chemical ground pulp
  • TGP thermoground pulp
  • GGP ground pulp
  • TMP ground pulp
  • TMP thermomechanical pulp
  • CMP chemi-thermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • kraft pulp that is easy to defibrate and has high dispersibility.
  • white or pale yellow products e.g. external preparations for skin
  • LBKP and NBKP are used. It is more preferable to use
  • the fine fibrous cellulose may be pretreated before being defibrated.
  • the raw material pulp may be prebeated mechanically or the raw material pulp may be chemically modified.
  • the preliminary beating method is not particularly limited, and any known method can be used.
  • Pretreatment of raw material pulp by chemical methods includes, for example, hydrolysis of polysaccharides with acids (e.g., sulfuric acid, etc.) (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkali (alkaline treatment), etc. ), oxidation of polysaccharides (oxidation treatment) with oxidizing agents (e.g. ozone, etc.), reduction of polysaccharides with reducing agents (reduction treatment), oxidation (oxidation treatment) with TEMPO catalyst, anionization by phosphoric acid esterification, carbamate formation, etc. (anion treatment), cationization (cation treatment), etc.
  • acids e.g., sulfuric acid, etc.
  • enzymes enzymes
  • swelling of polysaccharides with alkali alkali
  • alkali alkali
  • oxidizing agents e.g. ozone, etc.
  • reduction of polysaccharides with reducing agents e.
  • alkali used in the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia aqueous solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc.
  • examples include organic alkalis. From the viewpoint of manufacturing costs, it is preferable to use sodium hydroxide.
  • the water retention degree of fine fibrous cellulose can be lowered, the degree of crystallinity can be increased, and the homogeneity can be increased. If the water retention level of fine fibrous cellulose is low, it will be easier to dehydrate and dry, so it is preferable to promote the aggregation of fine fibrous cellulose in producing cellulose powder by freezing and drying under reduced pressure.
  • the hemicellulose and amorphous regions of cellulose in the pulp are decomposed, and as a result, the energy required for micronization processing can be reduced, and the uniformity and dispersibility of cellulose fibers can be improved. can be improved.
  • the dispersibility of cellulose fibers contributes to, for example, improving the homogeneity of the average particle diameter of cellulose powder.
  • pretreatment reduces the axial ratio of the fine fibrous cellulose, it is preferable to avoid excessive pretreatment.
  • Fine fibrous cellulose modified by introducing anionic functional groups through anionization includes fine fibrous cellulose esterified with phosphorus oxoacid, fine fibrous cellulose carbamate-formed, and hydroxyl groups of pyranose rings directly forming carboxyl groups. Examples include fine fibrous cellulose oxidized to a base.
  • Fine fibrous cellulose modified by introducing anionic functional groups has relatively high dispersibility. This is presumed to be because the anionic functional group causes a local charge imbalance, and the anionic functional group easily forms a hydrogen bond with water or an organic solvent in the dispersion.
  • esterification with phosphorus oxoacid which is an example of anionization
  • the fiber raw material can be made finer, and the produced fine fibrous cellulose has a large axial ratio, excellent strength, and high light transmittance and viscosity. Become something.
  • Esterification with phosphorus oxo acid can be performed by the method described in JP 2019-199671 A.
  • modified fine fibrous cellulose in which phosphorous acid ester groups are introduced by modifying the hydroxyl groups of cellulose fibers.
  • Defibration of cellulose fibers can be performed using the defibration apparatus and method shown below.
  • the defibration may be carried out using one or more types of homogenizers such as a high-pressure homogenizer, a high-pressure homogenizer, a grinder, a millstone friction machine such as a grinder, a refiner such as a conical refiner or a disc refiner, various types of bacteria, etc. This can be done using selected means.
  • the fibrillation of cellulose fibers is preferably carried out using an apparatus and method that uses a water stream, particularly a high-pressure water stream, to make the fibers fine. According to this apparatus and method, the resulting fine fibrous cellulose has extremely high dimensional uniformity and dispersion uniformity.
  • Examples of the grinder used to defibrate cellulose fibers include Mascolloider manufactured by Masuko Sangyo Co., Ltd. Furthermore, examples of devices for micronization using a high-pressure water stream include Starburst (registered trademark) manufactured by Sugino Machine Co., Ltd. and Nanovater (registered trademark) manufactured by Yoshida Kikai Kogyo Co., Ltd., and the like. Further, as a high-speed rotary homogenizer used for defibrating cellulose fibers, there may be mentioned Clearmix-11S manufactured by M Techniques.
  • the present inventors defibrated cellulose fibers by grinding between rotating grindstones and by using high-pressure water jets, and observed the resulting fibers under a microscope. It has been found that fibers obtained by a method of making the fibers finer have a more uniform fiber width.
  • Defibration by high-pressure water flow is performed by pressurizing the dispersion of cellulose fibers with a pressure intensifier to, for example, 30 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, particularly preferably 220 MPa or more (high pressure condition), and the pore diameter is 50 ⁇ m or more. It is preferable to eject from a nozzle and reduce the pressure so that the pressure difference becomes, for example, 30 MPa or more, preferably 80 MPa or more, more preferably 90 MPa or more (reduced pressure condition). The pulp fibers are defibrated by the cleavage phenomenon caused by this pressure difference.
  • the fibrillation efficiency will decrease and it will be necessary to repeatedly fibrillate (spray from the nozzle) to obtain the desired fiber width. .
  • the high-pressure homogenizer refers to a homogenizer that has the ability to eject cellulose fiber slurry at a pressure of, for example, 10 MPa or higher, preferably 100 MPa or higher.
  • a high-pressure homogenizer collisions between the cellulose fibers, pressure differences, microcavitation, etc. act, and the cellulose fibers are effectively defibrated. Therefore, the number of times of defibration processing can be reduced, and the production efficiency of fine fibrous cellulose can be increased.
  • the high-pressure homogenizer it is preferable to use one that allows the slurry of cellulose fibers to collide in opposite directions in a straight line.
  • a counter-impingement type high-pressure homogenizer microwavefluidizer/MICROFLUIDIZER (registered trademark), wet jet mill
  • two upstream channels are formed so that pressurized slurry of cellulose fibers collide with each other in opposite directions at the confluence section. Further, the cellulose fiber slurry collides at the confluence section, and the collided cellulose fiber slurry flows out from the downstream channel.
  • the downstream flow path is provided perpendicularly to the upstream flow path, and the upstream flow path and the downstream flow path form a T-shaped flow path.
  • the energy given from the high-pressure homogenizer is converted into collision energy to the maximum extent, so that cellulose fibers can be defibrated more efficiently.
  • the fine fibrous cellulose obtained by defibration can be dispersed in an aqueous medium and stored as a dispersion until used as a raw material for cellulose powder.
  • the aqueous medium consists entirely of water (aqueous dispersion).
  • the aqueous medium may be another liquid that is partially compatible with water.
  • other liquids for example, lower alcohols having 3 or less carbon atoms can be used.
  • the fine fibrous cellulose forming the cellulose powder of this embodiment may consist only of unmodified fine fibrous cellulose, only modified fine fibrous cellulose, or It may contain fine fibrous cellulose and unmodified fine fibrous cellulose.
  • modified fine fibrous cellulose include those that have been oxidized with TEMPO, those that have been converted to phosphite esters, and those that have been converted to carbamate.
  • a dispersion liquid in which the cellulose powder is dispersed in a dispersion medium exhibits a transparent color.
  • a dispersion liquid in which the cellulose powder is dispersed in a dispersion medium exhibits a white color.
  • Cellulose powder is white or pale yellow regardless of whether the raw material is modified or unmodified fine fibrous cellulose.
  • Modified fine fibrous cellulose has a smaller average fiber diameter than unmodified fine fibrous cellulose, so when comparing cellulose powders of the same mass, cellulose powder formed from fine fibrous cellulose containing modified fine fibrous cellulose has a smaller average fiber diameter than unmodified fine fibrous cellulose.
  • the specific surface area tends to be larger than that of cellulose powder formed only from unmodified fine fibrous cellulose.
  • the upper limit of the average fiber diameter (average fiber width; average diameter of single fibers) of the fine fibrous cellulose is 1000 nm, preferably 500 nm or less, more preferably 100 nm or less, particularly preferably 50 nm or less.
  • the lower limit of the average fiber diameter of the fine fibrous cellulose is 1 nm, preferably 2 nm or more, more preferably 3 nm or more. If the average fiber diameter of the fine fibrous cellulose is less than 1 nm, the dispersion will have a high viscosity, which may make it difficult to produce cellulose powder.
  • the average fiber diameter of the fine fibrous cellulose can be adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the method for measuring the average fiber diameter of fine fibrous cellulose is as follows. First, 100 ml of an aqueous dispersion of fine fibrous cellulose with a solid content concentration of 0.01 to 0.1% by mass was filtered through a Teflon (registered trademark) membrane filter, once with 100 ml of ethanol, and 3 times with 20 ml of t-butanol. Replace the solvent. Next, it is freeze-dried, coated with osmium, and used as a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers.
  • Teflon registered trademark
  • the average fiber length (average length of single fibers) of the fine fibrous cellulose is, for example, preferably 0.01 to 1000 ⁇ m, more preferably 0.03 to 500 ⁇ m.
  • the average fiber length exceeds 1000 ⁇ m, the fibers tend to become entangled with each other when the fine fibrous cellulose is dried, and become difficult to unravel when dispersed in an oil-based dispersion medium.
  • other substances are easily supported on the fine fibrous cellulose, resulting in a cellulose powder that has the functionality of the other substances. If the average fiber length is less than 0.01 ⁇ m, the resulting cellulose powder will have poor entanglement.
  • the average fiber length can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the average fiber length of the fine fibrous cellulose is measured by visually measuring the length of each fiber in the same manner as the average fiber diameter. The median length of the measured value is taken as the average fiber length.
  • the axial ratio of the fine fibrous cellulose is preferably 10 to 1,000,000, more preferably 30 to 5,000,000.
  • the axial ratio is less than 10, although the cellulose powder contained in vaseline is easily dispersed, the short axial ratio makes it difficult to form a network, making it difficult to suppress shine.
  • the axial ratio exceeds 1,000,000, the cellulose powder will have an extremely large average particle size, and there is a possibility that a rumbling sensation (foreign body sensation) may be felt when applying the external skin preparation to the skin.
  • the lower limit of the crystallinity of the fine fibrous cellulose is preferably 50 or more, more preferably 60 or more, particularly preferably 70 or more, and the upper limit is preferably 100 or less, more preferably 95 or less, particularly preferably is 90 or less. If the crystallinity is less than 50, the entanglement of fibers becomes weak due to the influence of temperature changes during drying, the ability to hold other substances becomes weak, and it is difficult to form cellulose powder with a desired particle size.
  • the crystallinity is a value measured by an X-ray diffraction method in accordance with the "General rules for X-ray diffraction analysis" of JIS-K0131 (1996).
  • the fine fibrous cellulose has an amorphous portion and a crystalline portion, and the degree of crystallinity means the ratio of the crystalline portion in the entire fine fibrous cellulose.
  • the peak value in the pseudo particle size distribution curve of the fine fibrous cellulose is preferably one peak. If there is one peak, the fiber length and fiber diameter of the fine fibrous cellulose are highly uniform, and the fine fibrous cellulose easily becomes entangled with each other when producing cellulose powder, so the cellulose powder will not unravel in petrolatum. It becomes difficult. In addition, the cellulose powder has small statistical variations in particle size. If it is in the form of cellulose powder supporting inorganic fine particles, the cellulose powder will be sufficiently dispersed in petrolatum and will diffusely reflect incident light, so the skin to which the external skin preparation is applied will have less shine.
  • the peak value in the pseudo particle size distribution curve of fine fibrous cellulose is measured in accordance with ISO-13320 (2009). More specifically, the volume-based particle size distribution in the aqueous dispersion of fine fibrous cellulose is examined using a particle size distribution measuring device (laser diffraction/scattering type particle size distribution measuring device manufactured by Seishin Enterprise Co., Ltd.). Then, the most frequent diameter of the fine fibrous cellulose is measured from this distribution. This most frequent diameter is taken as the peak value.
  • the fine fibrous cellulose preferably has a single peak in a pseudo particle size distribution curve measured by laser diffraction in a water-dispersed state.
  • the fine fibrous cellulose having one peak is preferable because it has been sufficiently refined and can exhibit good physical properties as a fine fibrous cellulose.
  • the peak value of the pseudo particle size distribution of the particle size of the fine fibrous cellulose that becomes the single peak is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly 100 ⁇ m or less. preferable.
  • the peak value exceeds 300 ⁇ m there are many relatively large fibers, the particle size of the cellulose powder tends to vary widely, and the shape of the cellulose powder tends to become non-uniform.
  • the peak value and median diameter in the pseudo particle size distribution curve of fine fibrous cellulose can be adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the water retention degree of fine fibrous cellulose is not particularly limited, but for example, if it is unmodified fine fibrous cellulose, it is 500% or less, more preferably 100 to 500%. If the water retention degree exceeds 500%, the fine fibrous cellulose itself has a high water retention capacity and poor dehydration properties, so even if it is produced through a drying process, the drying time will be long and productivity will be poor.
  • the lower limit of the water retention degree of the fine fibrous cellulose is not particularly limited, but if it is 100% or more, the binding force between the fine fibrous cellulose works and the shape of the cellulose powder is easily maintained.
  • the water retention degree of fine fibrous cellulose can be adjusted arbitrarily, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the water retention degree of fine fibrous cellulose is JAPAN TAPPI No. 26 (2000).
  • the pulp viscosity of the defibrated fine fibrous cellulose is 1 to 10 mPa ⁇ s, more preferably 2 to 9 mPa ⁇ s, particularly preferably 3 to 8 mPa ⁇ s.
  • Pulp viscosity is the viscosity of a solution after dissolving cellulose in a copper ethylene diamine solution, and the higher the pulp viscosity, the higher the degree of polymerization of cellulose, and it also affects the strength of the fiber itself.
  • additives can be added for the purpose of improving the dispersibility of cellulose powder produced through the drying process in petrolatum. This is because cellulose powder has a smaller bulk specific gravity than petrolatum, so it may be unevenly distributed in the upper part of petrolatum. Adding additives to cellulose powder masks the polarity of cellulose molecules in cellulose powder, making it easier to disperse cellulose powder in petrolatum. In addition, since the cellulose powder of this form is hydrophilic, adding the additive, which is a hydrophilic material, to the skin external preparation improves the dispersibility of the cellulose powder, prevents stickiness from worsening, and suppresses shine.
  • additive one or more selected from the group consisting of polyhydric alcohols, polysaccharides, and water-retentive polymers can be used.
  • the blending ratio of additives is preferably 1:99 to 50:50, preferably 50:50, based on solid content. If the blending ratio of additives to fine fibrous cellulose is high, the dry product (cellulose powder) will be sticky, the cellulose powder of the present invention will lose its lightweight feel, and its handling properties will deteriorate. On the other hand, if the blending ratio is too low, the above-mentioned dispersion effect may deteriorate.
  • polyhydric alcohols used as additives include polyhydric alcohols having 2 to 6 carbon atoms and 2 to 3 oxygen atoms.
  • polyhydric alcohols having 2 to 6 carbon atoms and 2 to 3 oxygen atoms.
  • glycerin propylene glycol, butylene glycol, pentanediol, dipropylene glycol, hexanediol, heptanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 3-methyl-1,3-butanediol, etc.
  • the present invention is not limited to these.
  • Glycerin is particularly preferred from the viewpoint of thickening properties and dispersibility of composite particles.
  • the polysaccharide quince seed, vegum, xanthan gum, hyaluronate, etc. can be used, but the polysaccharide is not limited to these.
  • hyaluronate and the like are preferred from the viewpoint of thickening properties and dispersibility of cellulose powder.
  • Water-soluble polymers include polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, polyethylene glycol, homopolymers or copolymers whose constituent monomers are monomers having a phosphorylcholine group, and homopolymers or copolymers whose constituent monomers are monomers having sugar residues. , homopolymers or copolymers whose constituent monomers are monomers having amino acid residues.
  • copolymers consisting of alkyl (meth)acrylates and polymethacryloyloxyethylphosphorylcholine, copolymers consisting of alkyl (meth)acrylates and methacryloyloxyethyl glucoside, alkyl (meth)acrylates and methacryloyl-L-lysine.
  • copolymers consisting of, but are not limited to.
  • Particularly preferred is polyvinylpyrrolidone from the viewpoint of thickening properties and dispersibility of cellulose powder.
  • the additive also has the effect of moisturizing the skin.
  • the cellulose powder may contain inorganic fine particles.
  • Inorganic fine particles can impart various functions to cellulose powder. For example, by adding metal-based inorganic fine particles, an effect of diffusing and reflecting incident light can be expected. External skin preparations containing cellulose powder containing inorganic fine particles diffusely reflect incident light, thereby suppressing shine on the applied area.
  • the content of inorganic fine particles in the cellulose powder may have an upper limit of 50% by mass, preferably 45% by mass or less, and a lower limit of 0% by mass, preferably 5% by mass or more.
  • the content exceeds 50% by mass the specific gravity of the cellulose powder increases due to the inorganic fine particles contained therein, and there is a risk that the dispersibility in the external skin preparation may be impaired.
  • the content is 5% by mass or more, the effect of diffuse reflection of incident light will be sufficiently exhibited.
  • the upper limit of the primary particle diameter of the inorganic fine particles is preferably 10 ⁇ m, preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the lower limit of the inorganic fine particles is not particularly limited, but may be 1 nm, preferably 2 nm or more, and more preferably 3 nm or more.
  • the primary particle diameter of the inorganic fine particles is 1 nm or more, when the inorganic fine particles are mixed into a raw material slurry for producing cellulose powder, the inorganic fine particles tend to disperse and stick to the fine fibrous cellulose.
  • the primary particle diameter of the inorganic fine particles can be measured by electron microscopic observation, and the average value of the obtained particle diameters is taken as the measured value.
  • the inorganic fine particles can of course be used as they are, but it is preferable to hydrophilize them because they become more compatible with the raw material slurry for producing cellulose powder.
  • the surface treatment agent used in the hydrophilic treatment has the effect of suppressing the surface activity of the inorganic fine particles, improving the dispersibility of the inorganic fine particles, and improving transparency and squeaking.
  • the surface treatment agent for inorganic fine particles is not particularly limited as long as it can be dispersed in the raw material slurry, but those containing anhydrous silicic acid and hydrated silicic acid are preferred.
  • the inorganic fine particles are not particularly limited and any known inorganic fine particles can be used, but examples include barium titanate, lead zirconate titanate, silicon carbide, silicon nitride, aluminum nitride, alumina, zirconia, zircon, titanium oxide, and titanium oxide. Zinc, iron oxide, cerium oxide, etc. can be mentioned.
  • a cellulose powder containing these powders and fine fibrous cellulose is preferable because it has excellent redispersibility in a liquid.
  • one type or a combination of two or more types selected from the group consisting of titanium oxide, zinc oxide, iron oxide, and cerium oxide can be used.
  • the inorganic fine particles are titanium oxide
  • the rutile type is preferable because it improves the suppression of sunlight transmission in the skin external preparation.
  • the shape of the inorganic fine particles that can be included in the cellulose powder is not particularly limited, but can be, for example, spherical, rod-like, needle-like, spindle-like, plate-like, polygonal, etc.
  • the inorganic fine particles may be attached to the surface of the fine fibrous cellulose in the cellulose powder, or may be encapsulated in the fine fibrous cellulose. It is preferable that the inorganic fine particles are encapsulated in the fine fibrous cellulose because the inorganic fine particles can be carried not only on the surface of the cellulose powder but also inside the cellulose powder, and even if incident light is irradiated from various angles, it will be diffusely reflected.
  • inclusion refers to the state in which part of the surface of an inorganic fine particle is covered with fine fibrous cellulose, or the state in which the inorganic fine particle is covered with fine fibrous cellulose when observing cellulose powder from the outside. It can be said that it is not possible.
  • Inorganic fine particles can be added to fine fibrous cellulose before drying, and should be mixed until uniform.
  • the cellulose powder of this embodiment is formed by drying fine fibrous cellulose, but when viewed microscopically, the fine fibrous cellulose dries as a single substance and aggregates (for example, in one piece). Some are formed by the intertwining of book threads within the threads, while others are formed by agglomeration of multiple fine fibrous celluloses during drying.
  • Fine fibrous cellulose is manufactured from raw material pulp, and when dried, the fibers wrinkle and shrink, so the cellulose powder that is formed has an uneven shape, although it is difficult to describe.
  • dried fine fibrous cellulose It has a shape that looks like an agglomeration of paper, a shape that looks like confetti, or a shape that looks like one or more sheets of paper, such as hanshi paper, that have been crumpled and rolled up.
  • the cellulose powder is white, pale yellow, cream colored, pale orange, or a mixture of these colors. In particular, white or pale yellow cellulose powder is preferred because it is inconspicuous even when mixed with vaseline.
  • cellulose powder containing fine fibrous cellulose also has hydroxy groups and hydrogen groups. Hydroxy groups and hydrogen groups form hydrogen bonds with other hydroxy groups and hydrogen groups, thereby hydrogen bonding the fine fibrous cellulose within the cellulose or with each other, forming a three-dimensional network structure of cellulose powder.
  • Hydroxy groups and hydrogen groups form hydrogen bonds with other hydroxy groups and hydrogen groups, thereby hydrogen bonding the fine fibrous cellulose within the cellulose or with each other, forming a three-dimensional network structure of cellulose powder.
  • cellulose powder is mixed with an oil-based medium instead of an aqueous medium, the following will occur. Since the oil-based medium is hydrophobic, the cellulose powder does not unravel as easily as under an aqueous medium. The cellulose powder is dispersed in an oil-based medium while maintaining its shape. In this case, the cellulose powder is difficult to settle and maintains a dispersed state.
  • the cellulose powder according to the present embodiment preferably contains fine fibrous cellulose in an amount of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, with an upper limit of 100% by mass. It's fine.
  • mass percentage of fine fibrous cellulose in the cellulose powder is less than 50 mass%, there is a possibility that the desired bulk density and specific surface area of the cellulose powder of the present invention cannot be obtained.
  • the cellulose powder according to this embodiment preferably has an average particle size in the range of 0.1 to 1000 ⁇ m, more preferably in the range of 0.1 to 700 ⁇ m, and still more preferably in the range of 0.1 to 500 ⁇ m. This is the range of Although the effects of the present invention can be exerted even if the average particle diameter is less than the above range, from the viewpoint of ease of handling, it is desirable that the average particle diameter is at least the lower limit of the above range. On the other hand, if the average particle diameter exceeds the above range, when the cellulose powder is filled or dispersed in a dispersion medium, the voids formed between the particles become large, making it difficult to adjust the concentration to the desired concentration.
  • the standard deviation of the particle diameter of the cellulose powder is preferably 1 to 400 ⁇ m, more preferably 1 to 300 ⁇ m, particularly preferably 2 to 200 ⁇ m.
  • the cellulose powder of this form is characterized by having particle sizes of various sizes. Specifically, the dispersion coefficient of particle diameter is statistically large. Note that the cellulose powder does not have excellent sphericity, and has individual irregularities, a porous shape, and different shapes.
  • the cellulose powder of this form has a porous shape as seen in FIG.
  • the individual pores constituting the porous shape have, for example, a pore diameter of 0.001 to 5 ⁇ m.
  • the inorganic fine particles may be stuck in the pores or may be attached to the surface of the cellulose powder. Therefore, the inorganic fine particles can be supported on the cellulose powder regardless of the size of the pores. Note that not only inorganic fine particles but also vaseline, surfactants, and additives can be supported on the cellulose powder.
  • the skin external preparation containing the cellulose powder has the effect of suppressing shine.
  • the cellulose powder of this embodiment can be manufactured by drying, for example, so that multiple dried and wrinkled fine fibrous celluloses are entangled to form porous pores. Sometimes. Since fine fibrous cellulose dries in various ways, the cellulose powder that is formed does not consist of particles of a single shape, but of particles of various shapes.
  • the average particle diameter, median diameter, cumulative 10% diameter, and cumulative 90% of cellulose powder are measured using a measuring device compliant with ISO-13320 (2009), specifically a laser diffraction/scattering particle size distribution measuring device (particle size distribution ) The values were measured using a dry method using "LA-960V2" without removing the moisture attached to the cellulose powder.
  • the specific surface area of the cellulose powder is preferably 0.1 m 2 /g or more, more preferably 1 m 2 /g or more, even more preferably 10 m 2 /g or more, and the upper limit of the specific surface area is not particularly limited, but it is 1000 m 2 /g. Good to have.
  • the specific surface area is less than 0.1 m 2 /g, it becomes difficult to obtain porous particles without unevenness on the particle surface, which is important in terms of suppressing stickiness and shine.
  • those having a specific surface area of more than 1000 m 2 /g are preferable in terms of particle weight reduction and redispersibility, but are extremely difficult to manufacture.
  • the specific surface area of the cellulose powder was measured by the BET method. Specifically, NOVA4200e manufactured by Quantachrome Instruments was used as a measuring device, and the measurement was carried out by an adsorption method using nitrogen gas. The compliant test method is JIS Z8830:2013.
  • the moisture content of the cellulose powder is preferably 30% or less, more preferably 20%, even more preferably 10% or less.
  • Cellulose powder with a moisture content of more than 30% contains a large amount of water, and when the external skin preparation is left for a long time, there is a risk that it will separate into a cellulose powder phase and a vaseline phase.
  • the cellulose powder according to the present embodiment preferably has a consolidated bulk density of 0.1 to 400 mg/cm 3 , more preferably a consolidated bulk density of 0.1 to 380 mg/cm 3 , and still more preferably a consolidated bulk density of 0.1. ⁇ 350 mg/cm 3 .
  • Cellulose powder with a solidified bulk density of more than 400 mg/cm 3 is an aggregate in which fibers are tightly intertwined with each other and has poor dispersibility. Moreover, even if it is dispersed in a dispersion medium, a portion of it may gradually start to settle due to its own weight, and it cannot be said that it has excellent dispersibility. Cellulose powders with a solidified bulk density of less than 0.1 mg/cm 3 tend to disintegrate in the air and have poor handling properties.
  • the cellulose powder according to the present embodiment preferably has a loose bulk density of 0.1 to 300 mg/cm 3 , more preferably a loose bulk density of 0.1 to 280 mg/cm 3 , and still more preferably a loose bulk density of 0.1. ⁇ 250 mg/cm 3 . Similar to the aforementioned bulk density, cellulose powder with a loose bulk density of more than 300 mg/cm 3 is an aggregate in which the fibers are tightly intertwined, and on the other hand, the loose bulk density is 0.1 mg/cm 3 Cellulose powder of less than 100% is easily disintegrated in the air and has poor handling properties.
  • the hardened bulk density and the loosened bulk density are one of the items used to calculate Carr's fluidity index, and were measured in accordance with ASTM D6393-99 compressibility measuring method.
  • the measurement was carried out using a "multi-functional powder physical property measuring device Multitester MT-02" (manufactured by Seishin Enterprise Co., Ltd.).
  • the degree of compression is preferably 50% or less, more preferably 40% or less, and still more preferably 30%.
  • the voids formed between the cellulose powders are eliminated (i.e., the voids formed between the cellulose powders are eliminated, causing the inside of the container to cellulose powders are tightly packed together), and some particles may collapse.
  • the voids are only eliminated during the compression operation process, and the change in the density of the cellulose powder itself is small, making it difficult for particles to collapse.
  • the cellulose powder of this form is not a spherical shape with excellent sphericity, but (although it is difficult to express) it is a granular material with irregularities and porous material, so when it is poured into a container and filled, it will have a shape of various sizes. Many shaped voids occur. If the degree of compaction exceeds 50%, the particles may lose their light weight feel, since it is suggested that the cellulose powder will collapse in addition to filling the voids between the particles.
  • cellulose powder manufactured by the hot dry drying method shown in Figure 7 is a solid particle formed by tightly agglomerating the fibers, so the compression operation in measuring the degree of compaction , the cellulose powder only fills the voids between particles, and there is little collapse of the particles themselves.
  • the voids formed between cellulose powders can be conceptually understood by imagining voids formed between atoms filled in a unit cell.
  • the lower limit of the degree of compaction of the cellulose powder is not particularly limited (ie, 0%), but may be, for example, 1% or more, considering that the above-mentioned voids are slightly generated.
  • the average particle size is preferably in the range of 1 to 1000 ⁇ m, more preferably 1 to 1000 ⁇ m.
  • the average particle diameter is in the range of 800 ⁇ m, more preferably in the range of 1 to 500 ⁇ m.
  • the loosened bulk density of the freeze-dried powder is preferably 0.01 to 100 mg/cm 3 , more preferably 0.01 to 50 mg/cm 3 .
  • the specific surface area of the freeze-dried powder is preferably 10 to 1000 m 2 /g, more preferably 20 to 1000 m 2 /g.
  • the average particle size is preferably in the range of 50 to 500 ⁇ m, more preferably 50 to 500 ⁇ m.
  • the average particle diameter is in the range of 400 ⁇ m, more preferably in the range of 50 to 300 ⁇ m.
  • the loose bulk density of the heat-dried powder is preferably 50 to 1000 mg/cm 3 , more preferably 100 to 800 mg/cm 3 .
  • the specific surface area of the heat-dried powder is preferably 0.1 to 5 m 2 /g, more preferably 0.2 to 5 m 2 /g.
  • the average particle size is preferably in the range of 0.1 to 30 ⁇ m, more preferably The average particle diameter is in the range of 0.1 to 25 ⁇ m, more preferably in the range of 0.1 to 20 ⁇ m.
  • the loose bulk density of the spray-dried powder is preferably 50 to 1000 mg/cm 3 , more preferably 100 to 800 mg/cm 3 .
  • the specific surface area of the heat-dried powder is preferably 0.5 to 10 m 2 /g, more preferably 1 to 10 m 2 /g.
  • Cellulose powder can be dried as a raw material for cellulose nanofibers by freeze-drying, vacuum drying, heat-drying (for example, hot dry drying), spray-drying, or other methods of drying the cellulose powder of this embodiment. It can be produced by spray freezing/vacuum drying, but it is particularly preferable to use spray freezing/vacuum drying as it allows the production of porous cellulose powder. If the cellulose powder is porous, it is possible to support another substance in the large number of pores formed in the cellulose powder, or to utilize a large surface area. By doing so, properties not found in cellulose can be imparted to cellulose powder.
  • the spray-type freeze granulation device 1 includes a freeze granulation tank 8, a spray mechanism section 7 that sprays raw material M onto the upper part of the freeze granulation tank 8, and a spray mechanism section 7 provided below the freeze granulation tank 8 to spray frozen cellulose powder. and a drying section 6 for drying.
  • the raw material M sprayed into the freeze granulation tank 8 is instantaneously frozen in the freeze granulation tank 8 and becomes a frozen body P.
  • the frozen body P naturally falls into the drying section 6 and is stored therein.
  • the drying section 6 is separably connected to the freeze granulation tank 8, and is separated from the freeze granulation tank 8 when the frozen body P is stored, and is sealed to dry the frozen body P to obtain cellulose powder. It is possible.
  • the fine fibrous cellulose used as the raw material M may be a fine fibrous cellulose from one group, or may be a combination of fine fibrous cellulose from two groups.
  • the fine fibrous cellulose group C1 has an average particle diameter R of more than 10 nm to 1000 nm or less, and the fine fibers have an average particle diameter R of 1 nm or more to 10 nm or less.
  • the cellulose group C2 may be mixed at a mixing ratio of 1:99 to 99:1.
  • the spraying mechanism section 7 has a raw material flow path to which the raw material M is supplied, a compressed gas flow path to which the compressed gas A is supplied, and a freezing granulation tank for a mixed fluid in which the supplied raw material M and compressed gas A are mixed.
  • 8 has a nozzle 5 (also referred to as a two-fluid nozzle) that sprays water into the air. Examples of the form of the nozzle 5 include a three-fluid type, a four-fluid type, a pressurized type, an ultrasonic type, and a centrifugal spray type.
  • the raw material flow path has a mechanism in which the base end is connected to a raw material tank that stores the raw material M, and the raw material M flows from the raw material tank to the nozzle 5 by a pump provided in the raw material flow path.
  • the compressed gas flow path has a mechanism in which the base end is connected to a compressed gas supply device such as a compressor or a cylinder, and the compressed gas flows into the nozzle 5 by activating the compressed gas supply device. Examples of the compressed gas include air, nitrogen, and rare gases.
  • the raw material M may contain additives and inorganic fine particles, and may also contain a plasticizer.
  • plasticizers include phthalic acid esters and citric acid esters.
  • the freeze granulation tank 8 is composed of three tanks, and specifically includes three cylinders with different diameters, which are arranged in concentric circles with the same axis, with the axis extending in the vertical direction. These three cylinders become the inner tank wall 2, the middle tank wall 3, and the outer tank wall 4 in order from the inside, and the inner tank surrounded by the inner tank wall 2 becomes the freezing tank 12 for freezing the raw material M, the inner tank wall 2, and the inner tank wall 2.
  • a cooling medium filling tank 13 in which a bottomed middle layer surrounded by a tank wall 3 is filled with a cooling medium, and a bottomed outer tank surrounded by an outer tank wall 4 and an inner tank wall 3 keep the temperature inside the tank constant. It serves as a vacuum insulation tank 14 for holding.
  • the freezing tank 12 is preferably configured such that the lower end of the inner tank wall 2 is removably connected to a flange portion 4a formed at the upper end of the drying section 6.
  • the freezing tank 12 forms a frozen body P by freezing the raw material M sprayed from the nozzle 5 provided near the top surface.
  • the freezing tank 12 preferably has a temperature of -10°C to -200°C by the cooling medium supplied from the cooling medium filling tank 13.
  • the cooling medium filling tank 13 is filled with a cooling medium for cooling the freezing tank 12.
  • a cooling medium for cooling the freezing tank 12.
  • the cooling medium for example, liquid nitrogen, liquid argon, liquid helium, dry ice, etc. can be used.
  • the vacuum insulation tank 14 is surrounded by an inner tank wall 3 and an outer tank wall 4, the upper end of the inner tank wall 3 and the upper end of the outer tank wall 4 are closed, and the lower end of the inner tank wall 3 and the lower end of the outer tank wall 4 are closed. is closed and has a structure that prevents fluid from flowing into the vacuum insulation tank 14 from the outside, so that it is maintained in a vacuum state and heat transfer between the cooling medium filled in the cooling medium filling tank 13 and the outside air is difficult to occur. It has become.
  • the cooling medium filling tank 13 has a cooling medium supply pipe 15 extending from the outside into the cooling medium filling tank, and is configured so that the cooling medium N is supplied into the cooling medium filling tank 13. It has a cooling medium introduction pipe 16 that introduces the cooling medium gas obtained by vaporizing the cooling medium N in the tank 13 into the freezing tank 12, and is configured so that the cooling medium gas is introduced into the freezing tank 12.
  • the frozen body P formed in the freeze granulation tank 8 is stored in a drying section 6 that is detachably provided with respect to the freeze granulation tank 8. After a predetermined amount of frozen material P is stored in the drying section 6, the drying section 6 is separated from the freeze granulation tank 8, sealed, and freeze-dried to obtain cellulose powder.
  • the configuration of the dryer 100 according to this embodiment will be described below.
  • the dryer 100 has a drying section 6 and a vacuum mechanism.
  • the drying section 6 may have a cylindrical wall whose axis is in the vertical direction and a bottom continuous with the wall.
  • the cylindrical wall can be provided with an exhaust part (not shown) that can be opened and closed, and the gas in the drying part 6 can be exhausted as exhaust gas D from the exhaust part.
  • the upper end edge of the cylindrical wall is a flange portion 4a, which is detachably connected to the lower end edge of the freezing granulation tank 8. After the frozen body P generated in the freeze granulation tank 8 falls into the drying section 6, the drying section 6 is removed from the freeze granulation tank 8, and the flange section 4a is covered with an upper lid and hermetically sealed to freeze-dry the frozen body P.
  • the drying process of the frozen body P can be performed as follows.
  • the drying section 6 is configured to be able to connect the base end of a gas pipe 21 for evacuation, and the gas sucked into the gas pipe 21 is guided to a cooling trap 22 connected to the tip of the gas pipe 21. A portion of the gas is concentrated and separated as a concentrated liquid or solid, and the remaining gas is sucked by a vacuum pump 24 provided at the other end of the gas pipe 23 connected to the cooling trap 22.
  • the vacuum pump 24 is started with the drying section 6 sealed, the air pressure inside the drying section 6 decreases, and the sublimable or vaporizable substances contained in the frozen body P (for example, the raw material M is mixed with water and fine fibers).
  • the drying section 6 In the case of a dispersion made of cellulose, the water sublimes or vaporizes and is sucked into the vacuum pump 24, and the remainder becomes cellulose powder. In the process of performing the drying process, it is preferable to rock or vibrate the drying section 6 so that the frozen bodies P do not aggregate with each other and in order to dry each frozen body P evenly.
  • the drying section 6 may be vibrated or rocked manually, or may be vibrated or rocked by a vibrating mechanism or a rocking mechanism. When vibrating, for example, the flange portion formed in a substantially circular shape may be gripped at both ends of the diameter (portions 4a and 4a in FIG. 1) and shaken from side to side.
  • a method may be adopted in which the diameter is used as a rotation axis and the rotation is repeated alternately clockwise and counterclockwise.
  • the pivot angle to the clockwise or counterclockwise direction is not particularly limited, but it is preferable to set it to 30° to 100° because the frozen body P in the drying section 6 is shaken. In the drying process, it is not essential to rock or vibrate, and the frozen body P may be vacuum-dried in a stationary state. Although it cannot be said in general, the bulk density of the cellulose powder produced may be relatively higher if the drying process is rocked or vibrated.
  • FIGS. 8 and 9 Another embodiment of the dryer 200 will be described with reference to FIGS. 8 and 9.
  • the difference from the dryer 100 of FIG. 1 described above is that it includes a shaft 30 for swinging the drying section 6.
  • the drying section 6 can be rotated, for example, by 100 degrees clockwise or counterclockwise toward the paper surface of FIG. 9 about the axis 30.
  • FIGS. 2 to 5 Cellulose powders 11 and 11' produced by the above production method are shown in FIGS. 2 to 5.
  • the cellulose powder 11 shown in FIGS. 2 and 3 was produced using a spray freeze granulation device 1 using a 2% by mass aqueous dispersion of unmodified fine fibrous cellulose (ELEX (registered trademark)-S) as a raw material. It is. A large number of pores 11a are confirmed in the cellulose powder 11, indicating that the cellulose powder 11 has a porous structure.
  • the cellulose powder 11' shown in FIGS. 4 and 5 was produced using a spray freeze granulation device 1 using a 2% by mass aqueous dispersion of modified fine fibrous cellulose (ELLEX (registered trademark)-STAR) as a raw material. It is.
  • the drying process was performed by placing the sample in a vacuum dryer ("EYELA FDU-2110" manufactured by Tokyo Rikakikai Co., Ltd.) and vacuum drying it while standing still.
  • the freeze granulation tank 8 can be exemplified by "Freeze Granulation Chamber CS30" manufactured by Priss Corporation, and the dryer 200 can be exemplified by the barrel freeze drying unit "TFD-10" manufactured by Priss Corporation.
  • Cellulose powder can be produced by the freeze-drying method described above, but it can also be produced by a heat-drying method or a spray-drying method. According to the method for manufacturing cellulose powder using the drum drying method among heat drying methods, even if the cellulose is in the form of fine fibers with relatively high concentration or poor fluidity, it is possible to produce a dried product that is difficult to aggregate and easily dispersed. Obtainable.
  • An example of manufacturing cellulose powder using the drum dry method is as follows.
  • the fine fibrous cellulose can be supplied, for example, in the form of a slurry (aqueous dispersion) to a drum dryer that performs a drying process, but in this case, the content of the fine fibrous cellulose (absolutely dry mass %) is 1 mass %.
  • the content is preferably 1.5% by mass, more preferably 2.0% by mass.
  • the content is 10% by mass or less, preferably 7% by mass, and more preferably 5% by mass.
  • the content exceeds 10% by mass, the viscosity of the slurry is too high and the handling properties are poor.
  • the content is less than 1% by mass, a lot of energy and time are consumed to remove water, which is not economical.
  • the drum dryer used in the drum drying method may be a known drum dryer.
  • "John Milder JM-T” manufactured by Johnson Boiler Company can be used.
  • an internal rotary drum dryer can be suitably used.
  • An internal rotary drum dryer performs a gentle drying process, resulting in a dried product with a relatively small specific surface area. The drying process can be performed under normal pressure.
  • the surface temperature of the inner surface of the drum is 80 to 200°C, preferably 90 to 190°C. At this surface temperature, a dried product with strong cohesive force can be obtained. When the surface temperature exceeds 200° C., there is a risk that some of the fibers of the fine fibrous cellulose will undergo thermal denaturation. On the other hand, if the surface temperature is less than 80° C., not only will it take a lot of time to remove moisture, but the particles will have a very high moisture content. Further, the rotational speed of the drum dryer can be, for example, 1 rpm or more and 2 rpm or less, although it depends on the inner diameter of the drum and the amount of slurry input. The time required for drying with a drum dryer is from 1 second to 60 seconds, depending on the amount of slurry input, for sufficient drying, and even if the drying time is longer than that, the moisture content of the dried product will not decrease any further.
  • a spray drying device (“TR160” manufactured by Pris Co., Ltd.) can be exemplified.
  • Spray-dried powder can be obtained by feeding a slurry of fine fibrous cellulose to a spray-drying device.
  • the device was a two-fluid nozzle system and used two 90-type nozzles.
  • the spray drying conditions are, for example, a slurry of fine fibrous cellulose (for example, a supply rate of 0.1 to 3.0% of fine fibrous cellulose): 20 kg/h, an inlet temperature of drying air of 200°C, and an outlet temperature of 200°C.
  • the temperature can be 100° C. and the atomizing air pressure can be 0.6 MPa, but this is not the only option.
  • petrolatum examples include yellow petrolatum, white petrolatum, propeto, sun white, balms (e.g., moisturizing balm, cleansing balm), creams, especially lip balms, and white petrolatum is preferred, but not limited thereto.
  • Vaseline has a melting point of 36 to 60°C, preferably 40 to 55°C. If the melting point is less than 36°C, it may melt during storage at room temperature (for example, 15 to 30°C), and if it exceeds 60°C, it may remain hard and difficult to spread when applied.
  • the content of cellulose powder in the external skin preparation of this form is not particularly limited as long as the type B viscosity of the external skin preparation is within a predetermined range, but if there is too much or not enough cellulose powder, it may be necessary to apply it to the skin. There is a possibility that you may feel discomfort or strong stickiness. Therefore, the skin external preparation preferably contains cellulose powder in an amount of 0.1 to 10% by mass, more preferably 0.2 to 9% by mass, and still more preferably 0.3 to 8% by mass.
  • the type B viscosity of the skin external preparation (measurement conditions are rotation speed: 3 rpm, 35° C.) is preferably 50,000 to 200,000 mPa ⁇ s, more preferably 555,000 to 190,000 mPa ⁇ s, and even more preferably 60,000 to 18,000 mPa ⁇ s.
  • the type B viscosity of the external skin preparation exceeds 200,000 mPa ⁇ s, it becomes difficult to apply and spread the external skin preparation of this embodiment on the skin.
  • the type B viscosity of the external skin preparation is less than 50,000 mPa ⁇ s, petrolatum and cellulose powder are likely to undergo phase separation, and a foreign body sensation may be felt when the external skin preparation is applied to the skin.
  • the skin external preparation of the present invention is characterized in that the hydrophilic cellulose powder can be maintained dispersed in the hydrophobic vaseline without adding a surfactant in principle. This is presumed to be based on the relatively low bulk density and large average particle diameter that are unique to the cellulose powder of this form. If the moisture content of the cellulose powder is within the above range, phase separation into an oil phase and an aqueous phase will be less likely to occur.
  • the solidification temperature of the external skin preparation of this form is preferably 35°C or lower, more preferably 34°C or lower. If the temperature at which the external skin preparation solidifies is 35° C. or higher, depending on the outside temperature (or indoor temperature), the external skin preparation may liquefy and become difficult to use. Furthermore, if the cellulose powder easily solidifies or liquefies depending on the outside temperature (or room temperature), the distribution of the cellulose powder in the skin external preparation may become uneven, depending on the storage state.
  • the temperature at which the external skin preparation solidifies can be adjusted by adjusting the blending ratio of vaseline, the surfactant and additives described below.
  • the skin external preparation contains vaseline and cellulose powder, and may also contain surfactants (emulsifiers), additives, etc. to impart functionality.
  • the percentage of vaseline contained in the skin external preparation is preferably 50 to 99% by weight, more preferably 60 to 95% by weight. If the percentage exceeds 99% by mass, the content of cellulose powder will be relatively low, and the shine-preventing effect of the external skin preparation will be poor. On the other hand, if the percentage is less than 50% by mass, the viscosity will be too low and there is a risk that the film will not feel as good on the skin.
  • the skin external preparation of this embodiment does not need to contain a surfactant since the cellulose powder is well dispersed in petrolatum. However, if left for a long time, the cellulose powder may become unbalanced, so a surfactant can be added to the extent that the viscosity of the external skin preparation is not impaired to emulsify it. When emulsifying, it can be dispersed and emulsified using a known disperser (homogenizer, etc.). When external skin preparations contain surfactants, it is thought that the electrical repulsion between cellulose powder and petrolatum is reduced, and as a result, cellulose powder remains dispersed in petrolatum for a long period of time. .
  • the percentage of the surfactant in the external skin preparation is preferably 0.1 to 5% by weight, preferably 0.2 to 4% by weight.
  • nonionic surfactants for example, nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, phospholipids, etc.
  • ester type or ester/ether type nonionic surfactants such as glycerin fatty acid ester, polyglycerin, fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, and sorbitol fatty acid ester
  • examples thereof include alkylene glycol adducts, polyalkylene glycol fatty acid esters, sucrose fatty acid esters, polysorbate 20, polysorbate 60, polysorbate 80, polyoxyalkylene alkyl ethers, polyoxyethylene alkylphenyl ethers, and the like.
  • Test Examples 1 and 2 were manufactured as follows. A dispersion in which fine fibrous cellulose (product "ELLEX (registered trademark)-S” manufactured by Daio Paper Co., Ltd.) is dispersed in water to a concentration of 2% by mass is supplied as a raw material to a spray freeze granulation device. Cellulose powder A was obtained. The average fiber diameter of the fine fibrous cellulose is 50 nm. The raw material is sprayed into a spray-type freezing granulator and subjected to freezing treatment to obtain a frozen intermediate, which is then vacuum-dried to obtain cellulose powder A.
  • fine fibrous cellulose product "ELLEX (registered trademark)-S” manufactured by Daio Paper Co., Ltd.
  • a barrel freeze-drying unit "TFD-10" manufactured by Priss Co., Ltd. was used until the frozen mass was completely dried. , the frozen body was dried with rocking.
  • Test Example 3 used a cellulose powder obtained by heating and drying fine fibrous cellulose, and was produced as follows. An aqueous dispersion of fine fibrous cellulose (“ELLEX (registered trademark)-S” manufactured by Daio Paper Co., Ltd.) with a concentration of 2% by mass was dried in a double drum dryer (“John Milder JM-T” manufactured by Johnson Boiler Co., Ltd.). A dried body was obtained by drying at a rotation speed of 3 rpm and a drum surface temperature of 135° C., and the dried body was pulverized to obtain cellulose powder B. The average particle diameter of the cellulose powder was 238.8 ⁇ m.
  • Example 3 was obtained.
  • Test Example 4 was produced as follows. An aqueous dispersion of fine fibrous cellulose ("ELLEX (registered trademark)-S” manufactured by Daio Paper Co., Ltd.) with a concentration of 2% by mass was spray-dried using a spray dryer ("TR-160” by Pris Co., Ltd.). , cellulose powder C was obtained. The average particle diameter of cellulose powder C was 10.1 ⁇ m.
  • ELLEX registered trademark
  • TR-160 by Pris Co., Ltd.
  • each cellulose powder was manufactured using the same fine fibrous cellulose as a raw material, it had different physical properties in terms of bulk density, specific surface area, and average particle diameter.
  • Test 1 Type B viscosity measurement
  • Table 2 shows the mixing ratio of cellulose powder and white petrolatum and the measurement results of type B viscosity.
  • the measurement conditions for type B viscosity were a rotational speed of 3 rpm and a temperature of 35°C.
  • Type B viscosity is the resistance torque when stirring a liquid, and the higher the viscosity, the more energy is required for stirring.
  • Test 2 Sensory test
  • the contents of the sensory test are as follows.
  • the test subjects applied the test example and the reference example to their own skin, and evaluated each item at that time. Specifically, the foreign body feeling, stickiness, and shine were evaluated with either 1, 2, or 3 points.
  • the usability was evaluated by ranking Test Examples 1 to 4 from 1st to 4th. The subjects were 13 men and 31 women.
  • Evaluation was performed as follows, and the average value was calculated for each item.
  • 3 points were given if there was no difference from Reference Example 1, 2 points were given if it was a little bothersome, and 1 point was given if it was painful or bothersome.
  • stickiness the students were given 3 points if it was less sticky than Reference Example 1, 2 points if it was the same as Reference Example, and 1 point if it was stickier or worse than Reference Example.
  • shine the participants were given 3 points if it was less shiny than Reference Example 1, 2 points if it was the same as Reference Example, and 1 point if it was more shiny or worse than Reference Example.
  • Test Examples 1 to 4 were ranked 1st to 4th (with 1st place being the best in use feeling and 4th place being the worst in use feeling) and evaluated. 1st place gets 1 point, 2nd place gets 2 points, 3rd place gets 3 points, and 4th place gets 4 points.
  • the evaluation results are shown in Table 3.
  • the scores shown in Table 3 are average scores obtained by averaging the evaluations of all subjects.
  • Test Examples 1 to 4 gave results that seemed to be equivalent to or improved from Reference Example 1.
  • Test Examples 1 to 4 gave results that seemed to be equivalent to or improved from Reference Example 1.
  • Test 3 Skin application test
  • Test 3 Skin application test
  • one of Test Examples 1 to 4 and Reference Example 1 was applied to artificial skin (Beaulux product "Bio Skin Plate H077-002 296 mm x 213 mm x 5 mm" cut into 10 cm long and 5 cm wide). 1 g was taken and applied evenly to the same area, and observed after 5 minutes. The results are shown in FIG.
  • test example 1 suppressed shine the most.
  • JIS, TAPPI, and other tests and measurement methods shown in the above specification are performed at room temperature, especially 25° C., and atmospheric pressure, especially 1 atm.
  • the present invention can be used for external preparations for the skin.
  • Spray type freeze granulation device 2 Inner tank wall 3 Inner tank wall 4 Outer tank wall 4a Flange part 5 Nozzle 6 Drying part 7 Spraying mechanism part 8 Freeze granulation tank 11 Cellulose powder 11a Cellulose powder hole 11' Cellulose powder 11' a Cellulose powder holes 12 Freezing tank 13 Cooling medium filling tank 14 Vacuum insulation tank 15 Cooling medium supply pipe 16 Cooling medium introduction pipe 21 Gas pipe 22 Cooling trap 23 Gas pipe 24 Vacuum pump 100 Dryer

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

[Problem] To provide: a lightweight cellulose powder that has favorable dispersibility in oil-based liquids and is formed from particles that do not readily clump; and a cellulose powder dispersion. [Solution] The present invention provides an external skin preparation that is characterized by including petroleum jelly and a cellulose powder that is formed from clumps of microfibrous cellulose that has an average fiber diameter of 1–1000 nm, the cellulose powder having an average particle diameter of 1–500 μm, a loose bulk density of 0.1–300 mg/cm3, and a B-type viscosity of 50000–200000 mPa·s as measured at 35°C and a rotational speed of 3 rpm.

Description

皮膚外用剤Skin external preparations
 本発明は、皮膚外用剤に関するものである。 The present invention relates to a skin external preparation.
 従来より常温で固形状(ペースト状)の皮膚外用剤、特にワセリンやリップクリーム、口紅等は、例えば高粘度の炭化水素が含まれるので、いわゆるエモリエント効果(保湿効果)により、肌への密着感や持続性に優れたものとなっている。他方で、これら皮膚外用剤は肌へ塗布した際にベタツキが発生しやすいものでもある。ベタツキを低減するための様々な検討が従来よりなされており、ワセリンと水系の保湿成分との混合(乳化)や、ワセリンと液状の油分との混合、ワセリンへの無機超微粒子パウダーの配合等を例示することができる。 Traditionally, external skin preparations that are solid (paste-like) at room temperature, especially Vaseline, lip balm, lipstick, etc., contain high viscosity hydrocarbons, so they have a so-called emollient effect (moisturizing effect), which makes them feel close to the skin. It has excellent durability. On the other hand, these external skin preparations tend to become sticky when applied to the skin. Various studies have been conducted to reduce stickiness, including mixing petrolatum with water-based moisturizing ingredients (emulsification), mixing petrolatum with liquid oil, and adding inorganic ultrafine particle powder to petrolatum. I can give an example.
 ワセリンが含まれた皮膚外用剤に関する技術としては次に掲げる文献を例示することができる。特許文献1は、重縮合ポリマー粒子又は閉鎖小胞体を用いてワセリンの一例であるワセリンを乳化させた皮膚外用剤を提案しており、この皮膚外用剤によれば使用感に優れ、かつ粘性やベタツキを抑えることができることを開示している。特許文献2は、白色ワセリンに粉末状の疎水化変性アルキルセルロースを配合し、ベタツキ感が低減されることを提案している。特許文献3は、ワセリンと紫外線散乱剤である酸化金属の超微粒子及び揮発性油剤(揮発性シリコーン油)を複合させた皮膚外用剤を提案し、当該皮膚外用剤によれば伸び、ベタツキを抑えることができるとしている。 The following documents can be cited as examples of techniques related to external skin preparations containing petrolatum. Patent Document 1 proposes a topical skin preparation that emulsifies petrolatum, an example of petrolatum, using polycondensation polymer particles or closed endoplasmic reticulum. It is disclosed that stickiness can be suppressed. Patent Document 2 proposes blending powdered hydrophobized modified alkylcellulose with white petrolatum to reduce the sticky feeling. Patent Document 3 proposes an external skin preparation that combines petrolatum, ultrafine particles of metal oxide as an ultraviolet scattering agent, and a volatile oil (volatile silicone oil), and this external skin preparation suppresses spread and stickiness. It is said that it can be done.
国際公開WO2019/021801号International publication WO2019/021801 特開2014-141424号公報Japanese Patent Application Publication No. 2014-141424 特開2015-229643号公報Japanese Patent Application Publication No. 2015-229643
 このように特許文献1~3は、ベタツキの抑制を目的とするものであるが、他方で粘性の低下をもたらし、ワセリンの特徴である高粘度性を損なった発明となっている。また、皮膚外用剤であれば、ベタツキ以外にもテカリ具合も重要な性質であると本発明の発明者等は考えているが、この点については、前述の特許文献には考慮されていない。 As described above, Patent Documents 1 to 3 aim to suppress stickiness, but on the other hand, they result in a decrease in viscosity, impairing the high viscosity characteristic of petrolatum. Furthermore, in the case of external preparations for skin, the inventors of the present invention believe that in addition to stickiness, shine is also an important property, but this point is not considered in the above-mentioned patent documents.
 そこで本発明は、上記実情を鑑みて検討がなされたものであり、肌に塗布した際にベタツキだけでなくテカリも低減された皮膚外用剤を提供することを課題とする。 Therefore, the present invention has been studied in view of the above circumstances, and an object of the present invention is to provide a skin preparation for external use that reduces not only stickiness but also shine when applied to the skin.
 前記課題は、次記の態様により解決される。
 (第1の態様)
 ワセリンとセルロースパウダーを含み、
 前記セルロースパウダーは、平均繊維径1~1000nmの微細繊維状セルロースが凝集されてなり、平均粒子径が1~500μmであり、ゆるめ嵩密度が0.1~300mg/cmとなるものであり、
 B型粘度が35℃、回転数3rpmの測定条件で50000~200000mPa・sである、
 ことを特徴とする皮膚外用剤。
The above problem is solved by the following aspect.
(First aspect)
Contains petrolatum and cellulose powder,
The cellulose powder is made by agglomerating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 μm, and has a loose bulk density of 0.1 to 300 mg/cm 3 ,
Type B viscosity is 50,000 to 200,000 mPa·s under measurement conditions of 35°C and rotation speed of 3 rpm.
A skin external preparation characterized by:
 特許文献1は重縮合ポリマー粒子又は閉鎖小胞体を乳化剤として添加することでベタツキの低減化を図っている。同様に特許文献2は疎水変性したアルキルセルロースを添加することで、特許文献3は揮発性油剤と疎水化処理された酸化金属の超微粒子を添加することでベタツキの低減化を図っている。これに対して本態様は、皮膚外用剤にワセリンとセルロースパウダーを含有させることでベタツキの低減化を図るものである。セルロースパウダーは、それ自体を媒体に添加すると媒体の粘度が高まる。このメカニズムについては厳密には明らかにされていないが、おそらくセルロースに備わるヒドロキシ基と水素基による水素結合の影響によるものと推測される。水素結合することでセルロースが相互に静的かつ立体的なネットワーク構造を構築して、高粘度となるのではないかと考えられる。セルロースパウダーはチキソトロピー性を備え、静止状態では粘度が相対的に高く、運動状態では低くなることが発明者等の測定により分かっている。本形態の皮膚外用剤は、セルロースパウダーが含まれるので、前述の態様のような低回転数ではB型粘度が高いものの、回転数を高めるにつれてB型粘度が低下するものとなっている。このようにチキソトロピー性が備わった皮膚外用剤であれば、肌への塗布時には手等による外力が加わって粘度が下がり、伸びが良くなるので、使用者は自由に当該外用剤を伸ばしつつ塗布することができる。なお、B型粘度の35℃という測定条件は、体温に近い温度を想定したものである。 Patent Document 1 attempts to reduce stickiness by adding polycondensation polymer particles or closed vesicles as an emulsifier. Similarly, Patent Document 2 attempts to reduce stickiness by adding hydrophobically modified alkylcellulose, and Patent Document 3 attempts to reduce stickiness by adding a volatile oil agent and ultrafine particles of hydrophobically treated metal oxide. On the other hand, in this embodiment, the skin external preparation contains vaseline and cellulose powder to reduce stickiness. Cellulose powder increases the viscosity of the medium when added to the medium by itself. Although the exact mechanism for this has not been clarified, it is presumed that it is probably due to the influence of hydrogen bonds between hydroxyl groups and hydrogen groups in cellulose. It is thought that cellulose forms a static and three-dimensional network structure with each other through hydrogen bonding, resulting in high viscosity. The inventors' measurements have shown that cellulose powder has thixotropic properties, and its viscosity is relatively high in a static state and becomes low in a moving state. Since the skin external preparation of this embodiment contains cellulose powder, the B-type viscosity is high at low rotational speeds as in the above embodiment, but as the rotational speed increases, the B-type viscosity decreases. When applying a topical skin preparation with thixotropic properties to the skin, the viscosity decreases due to the application of external force, such as by hands, and the product spreads better, so the user can freely stretch the product while applying it. be able to. Note that the measurement condition of 35° C. for type B viscosity assumes a temperature close to body temperature.
 本形態のセルロースパウダーは、微細繊維状セルロースが凝集されてなり、前述の平均粒子径及び嵩密度であるので、相対的に多孔質性に優れ軽量なものとなっている。この多孔質性ゆえに拡散反射が生じて結果としてテカリが軽減されると推測される。 The cellulose powder of this form is made by aggregating fine fibrous cellulose and has the above-mentioned average particle diameter and bulk density, so it has relatively excellent porosity and is lightweight. It is presumed that this porosity causes diffuse reflection, resulting in less shine.
 本態様は、セルロースパウダーが、平均繊維径1~1000nmの微細繊維状セルロースが凝集されてなり、平均粒子径が1~500μmであり、ゆるめ嵩密度が300mg/cm以下となるものである。平均粒子径の割りにゆるめ嵩密度が小さいので、嵩張ってはいるものの、柔らかなものとなっており、皮膚外用剤を皮膚に塗布する際、ゴロゴロした感覚(異物感)を覚えにくいという特徴がある。 In this embodiment, the cellulose powder is made by aggregating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 μm, and has a loose bulk density of 300 mg/cm 3 or less. The loose bulk density is small compared to the average particle size, so although it is bulky, it is soft, and when applying the topical preparation to the skin, it is difficult to feel a lumpy sensation (feeling like a foreign body). There is.
 ワセリンは皮膚に塗布するとベタツキを感じるものであるが、ワセリンとともにセルロースパウダーが含まれていると、ベタツキが軽減されることを本発明者等は知見している。これは、おそらく、セルロースパウダーのもつチキソトロピー性の性質によるものと思われる。皮膚に塗布された皮膚外用剤を触る動作によって、セルロースパウダーに動的な外力が加わり、粘度が軽減され滑りがよいように感じられる。 Vaseline feels sticky when applied to the skin, but the inventors have found that when cellulose powder is included along with petrolatum, the stickiness is reduced. This is probably due to the thixotropic properties of cellulose powder. The action of touching the external skin preparation applied to the skin applies a dynamic external force to the cellulose powder, reducing its viscosity and making it feel slippery.
 上記態様の他、次の態様も好ましい。
 (第2の態様)
 固化する温度が36℃以下である、
 第1の態様の皮膚外用剤。
In addition to the above embodiments, the following embodiments are also preferred.
(Second aspect)
The solidifying temperature is 36°C or less,
The skin external preparation according to the first aspect.
 (第3の形態)
 前記ワセリンが白色ワセリンである、
 第1の態様の皮膚外用剤。
(Third form)
the petrolatum is white petrolatum;
The skin external preparation according to the first aspect.
 (第4の形態)
 前記セルロースパウダーが0.1~10質量%含まれる、
 第1の態様の皮膚外用剤。
(Fourth form)
The cellulose powder is contained in an amount of 0.1 to 10% by mass.
The skin external preparation according to the first aspect.
 (第5の形態)
 前記セルロースパウダーの水分率が0.1~30%である、
 第1の態様の皮膚外用剤。
(Fifth form)
The moisture content of the cellulose powder is 0.1 to 30%,
The skin external preparation according to the first aspect.
 (第6の形態)
 前記セルロースパウダーは、比表面積が0.1~1000m/gとなるものである、
 第1の態様の皮膚外用剤。
(Sixth form)
The cellulose powder has a specific surface area of 0.1 to 1000 m 2 /g,
The skin external preparation according to the first aspect.
 (第7の形態)
 前記セルロースパウダーは、無機微粒子が担持されたものである、
 第1の態様の皮膚外用剤。
(Seventh form)
The cellulose powder is one in which inorganic fine particles are supported.
The skin external preparation according to the first aspect.
 (第8の形態)
 前記セルロースパウダーが白色又は淡黄色である、
 第1の態様の皮膚外用剤。
(Eighth form)
the cellulose powder is white or pale yellow;
The skin external preparation according to the first aspect.
 (第9の形態)
 添加剤が含まれ、
 前記添加剤が保水性高分子又は多価アルコールである、
 第1の態様の皮膚外用剤。
(Ninth form)
Contains additives
the additive is a water-retaining polymer or a polyhydric alcohol;
The skin external preparation according to the first aspect.
 (第10の形態)
 前記セルロースパウダーが多孔質である、
 第1の態様の皮膚外用剤。
(10th form)
the cellulose powder is porous;
The skin external preparation according to the first aspect.
 本発明によると、セルロースパウダーが含有されていることによって、相対的に高い粘度を有するものでありながら、ベタツキやテカリが相対的に悪化していない又は改善したと感じにくい皮膚外用剤となる。 According to the present invention, by containing cellulose powder, an external preparation for skin can be obtained which has a relatively high viscosity but does not have a relatively worsened stickiness or shine, or is hard to feel that it has improved.
噴霧式凍結造粒装置の説明図である。It is an explanatory view of a spray-type freezing granulation device. セルロースパウダーのSEM画像である。This is a SEM image of cellulose powder. セルロースパウダーのSEM画像である。This is a SEM image of cellulose powder. セルロースパウダーのSEM画像である。This is a SEM image of cellulose powder. セルロースパウダーのSEM画像である。This is a SEM image of cellulose powder. 図1のZ-Z断面図である。2 is a sectional view taken along the Z-Z line in FIG. 1. FIG. ホットドライによる乾燥方式によって製造されたセルロースパウダーのSEM画像である。This is a SEM image of cellulose powder manufactured by hot drying. 別の実施形態の乾燥器の側面図である。FIG. 6 is a side view of another embodiment of the dryer. 図8の乾燥器をY方向に見た図である。FIG. 9 is a view of the dryer in FIG. 8 viewed in the Y direction. 皮膚塗布試験の結果を表す図である。FIG. 3 is a diagram showing the results of a skin application test.
 本発明を実施するための形態を次記に説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 A mode for carrying out the present invention will be described below. Note that this embodiment is an example of the present invention. The scope of the present invention is not limited to the scope of this embodiment.
 本形態に係る皮膚外用剤は、ワセリンとセルロースパウダーを含み、前記セルロースパウダーは、平均繊維径1~1000nmの微細繊維状セルロースが凝集されてなり、平均粒子径が1~500μmであり、ゆるめ嵩密度が100g/cm以下となるものであり、B型粘度が35℃、回転数3rpmの測定条件で50000~200000mPa・sである、ことを特徴とする。皮膚外用剤を説明する前にセルロースパウダーの原料である微細繊維状セルロースについて説明する。 The skin external preparation according to the present embodiment contains petrolatum and cellulose powder, and the cellulose powder is made by agglomerating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 μm, and has a loose bulk. It is characterized by having a density of 100 g/cm 3 or less, and a type B viscosity of 50,000 to 200,000 mPa·s under measurement conditions of 35° C. and 3 rpm. Before explaining the skin external preparation, the fine fibrous cellulose that is the raw material for cellulose powder will be explained.
 ベタツキは人間が感じる感覚であり、例えばワセリンのベタツキを基準として、本形態に係る皮膚外用剤のベタツキがワセリンのベタツキと同等である又は改善したと感じられる場合を、ベタツキが相対的に悪化していない又は改善したと感じにくいということができる。また、テカリは人間が感じる感覚であり、例えばワセリンのテカリを基準として、本形態に係る皮膚外用剤のテカリがワセリンのテカリと同等である又は改善したと感じられる場合を、テカリが相対的に悪化していない又は改善したと感じにくいということができる。 Stickiness is a sensation felt by humans, and for example, based on the stickiness of Vaseline, cases in which the stickiness of the skin external preparation according to the present embodiment is felt to be equivalent to or improved from the stickiness of Vaseline are compared to cases in which the stickiness is relatively worsened. It can be said that there is no improvement or it is difficult to feel that it has improved. In addition, shine is a feeling that humans feel, and for example, based on the shine of Vaseline, the shine of the external skin preparation according to the present embodiment is equivalent to or improved upon the shine of Vaseline, and the shine is relatively It can be said that it is difficult to feel that it has not worsened or has improved.
 (微細繊維状セルロース)
 微細繊維状セルロースは、原料パルプを解繊(微細化)することで得ることができ、化学処理、機械処理等公知の処理手法で製造することができる。
(Fine fibrous cellulose)
Fine fibrous cellulose can be obtained by defibrating (refining) raw material pulp, and can be produced by known processing methods such as chemical processing and mechanical processing.
 微細繊維状セルロースの原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、茶古紙、封筒古紙、雑誌古紙、チラシ古紙、段ボール古紙、上白古紙、模造古紙、更上古紙、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、粉砕物の状態等であってもよい。近年、環境負荷低減に配慮したオーガニック成分含有製品の需要が増加傾向にあるため、特に、古紙以外の植物由来の広葉樹や針葉樹を原料とする木材パルプが好適である。 Raw material pulp for fine fibrous cellulose includes, for example, wood pulp made from hardwoods, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, bark fibers, etc., used tea paper, used envelope paper, and magazines. Select and use one or more types of waste paper pulp (DIP) made from waste paper, used leaflet paper, used cardboard, white paper, imitation waste paper, refinished waste paper, recovered waste paper, waste paper, etc. be able to. Note that the above various raw materials may be in the form of, for example, pulverized products. In recent years, there has been an increasing demand for products containing organic ingredients that reduce environmental impact, so wood pulp made from plant-derived hardwoods and conifers other than waste paper is particularly suitable.
 木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)、サルファイトパルプ(SP)、溶解パルプ等(DP)等の化学パルプ、機械パルプ(TMP)の中から1種又は2種以上を選択して使用することができる。特に、セルロース成分を高める木材パルプである、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプが好ましく、晒パルプ(BKP)が好適である。 As the wood pulp, for example, one of chemical pulps such as hardwood kraft pulp (LKP), softwood kraft pulp (NKP), sulfite pulp (SP), dissolving pulp (DP), and mechanical pulp (TMP) or Two or more types can be selected and used. In particular, chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), which are wood pulps with increased cellulose content, are preferred, and bleached pulp (BKP) is preferred.
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、晒サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。 Mechanical pulps include, for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemical ground pulp (CGP), thermoground pulp (TGP), ground pulp (GP), One or more types can be selected and used from thermomechanical pulp (TMP), chemi-thermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP), and the like.
 平均繊維径が相対的に小さい微細繊維状セルロースを製造する観点からは、解繊が容易であり、高い分散性を備えたクラフトパルプを使用するのが好ましい。特に、白色や淡黄色系統の製品(例えば皮膚外用剤)に応用する場合には、微細繊維状セルロース自体が白色であると都合がよく、白色性の高さを向上させる観点からLBKP及びNBKPを使用するのがより好ましい。 From the viewpoint of producing fine fibrous cellulose with a relatively small average fiber diameter, it is preferable to use kraft pulp that is easy to defibrate and has high dispersibility. In particular, when applied to white or pale yellow products (e.g. external preparations for skin), it is convenient for the fine fibrous cellulose itself to be white, and from the viewpoint of improving whiteness, LBKP and NBKP are used. It is more preferable to use
 微細繊維状セルロースは、解繊するに先立って、前処理を施してもよい。例えば、前処理として、原料パルプを機械的に予備叩解したり、原料パルプを化学的に変性処理したりしてもよい。予備叩解の手法は特に限定されず、公知の手法を用いることができる。 The fine fibrous cellulose may be pretreated before being defibrated. For example, as a pretreatment, the raw material pulp may be prebeated mechanically or the raw material pulp may be chemically modified. The preliminary beating method is not particularly limited, and any known method can be used.
 化学的手法による原料パルプの前処理としては、例えば、酸(例えば、硫酸等)による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤(例えば、オゾン等)による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)、TEMPO触媒による酸化(酸化処理)、リン酸エステル化やカルバメート化等によるアニオン化(アニオン処理)、カチオン化(カチオン処理)等を例示することができる。 Pretreatment of raw material pulp by chemical methods includes, for example, hydrolysis of polysaccharides with acids (e.g., sulfuric acid, etc.) (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkali (alkaline treatment), etc. ), oxidation of polysaccharides (oxidation treatment) with oxidizing agents (e.g. ozone, etc.), reduction of polysaccharides with reducing agents (reduction treatment), oxidation (oxidation treatment) with TEMPO catalyst, anionization by phosphoric acid esterification, carbamate formation, etc. (anion treatment), cationization (cation treatment), etc.
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を例示できる。製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。 Examples of the alkali used in the alkali treatment include sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia aqueous solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc. Examples include organic alkalis. From the viewpoint of manufacturing costs, it is preferable to use sodium hydroxide.
 酵素処理や酸処理、酸化処理を施すと、微細繊維状セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。微細繊維状セルロースの保水度が低いと脱水し易くなり、乾燥させやすくなるので、凍結・減圧乾燥による手法によってセルロースパウダーを製造する上で微細繊維状セルロースの凝集が促進され好ましい。 If enzyme treatment, acid treatment, or oxidation treatment is performed, the water retention degree of fine fibrous cellulose can be lowered, the degree of crystallinity can be increased, and the homogeneity can be increased. If the water retention level of fine fibrous cellulose is low, it will be easier to dehydrate and dry, so it is preferable to promote the aggregation of fine fibrous cellulose in producing cellulose powder by freezing and drying under reduced pressure.
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解され、結果、微細化処理のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。セルロース繊維の分散性は、例えば、セルロースパウダーの平均粒子径の均質性向上に資する。ただし、前処理は、微細繊維状セルロースの軸比を低下させるため、過度の前処理は避けるのが好ましい。 When raw pulp is treated with enzymes, acid, or oxidation, the hemicellulose and amorphous regions of cellulose in the pulp are decomposed, and as a result, the energy required for micronization processing can be reduced, and the uniformity and dispersibility of cellulose fibers can be improved. can be improved. The dispersibility of cellulose fibers contributes to, for example, improving the homogeneity of the average particle diameter of cellulose powder. However, since pretreatment reduces the axial ratio of the fine fibrous cellulose, it is preferable to avoid excessive pretreatment.
 アニオン化により、アニオン性官能基が導入されて変性された微細繊維状セルロースとしては、リンオキソ酸によりエステル化された微細繊維状セルロースやカルバメート化された微細繊維状セルロース、ピラノース環の水酸基が直接カルボキシル基に酸化された微細繊維状セルロース等を例示できる。 Fine fibrous cellulose modified by introducing anionic functional groups through anionization includes fine fibrous cellulose esterified with phosphorus oxoacid, fine fibrous cellulose carbamate-formed, and hydroxyl groups of pyranose rings directly forming carboxyl groups. Examples include fine fibrous cellulose oxidized to a base.
 アニオン性官能基が導入されて変性された微細繊維状セルロースは、相対的に高い分散性を有する。これは、アニオン性官能基により電荷の偏りが局所的に発生し、このアニオン性官能基が分散液中の水や有機溶剤と水素結合を容易に形成することによるものと推測される。 Fine fibrous cellulose modified by introducing anionic functional groups has relatively high dispersibility. This is presumed to be because the anionic functional group causes a local charge imbalance, and the anionic functional group easily forms a hydrogen bond with water or an organic solvent in the dispersion.
 アニオン化の一例である、リンオキソ酸によるエステル化をセルロース繊維に施すと、繊維原料を微細化でき、製造される微細繊維状セルロースは、軸比が大きく強度に優れ、光透過度及び粘度が高いものとなる。リンオキソ酸によるエステル化は、特開2019-199671号公報に掲げる手法で行うことができる。例えば、セルロース繊維のヒドロキシ基を変性処理して亜リン酸エステル基が導入された変性微細繊維状セルロースを挙げることができる。 When cellulose fibers are subjected to esterification with phosphorus oxoacid, which is an example of anionization, the fiber raw material can be made finer, and the produced fine fibrous cellulose has a large axial ratio, excellent strength, and high light transmittance and viscosity. Become something. Esterification with phosphorus oxo acid can be performed by the method described in JP 2019-199671 A. For example, there may be mentioned modified fine fibrous cellulose in which phosphorous acid ester groups are introduced by modifying the hydroxyl groups of cellulose fibers.
 セルロース繊維の解繊は、以下に示す解繊装置・方法により行うことができる。当該解繊は、例えば、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、コニカルリファイナー、ディスクリファイナー等のリファイナー、各種バクテリア等の中から1種又は2種以上の手段を選択使用して行うことができる。ただし、セルロース繊維の解繊は、水流、特に高圧水流で微細化する装置・方法を使用して行うのが好ましい。この装置・方法によると、得られる微細繊維状セルロースの寸法均一性、分散均一性が非常に高いものとなる。これに対し、例えば、回転する砥石間で磨砕するグラインダーを使用すると、セルロース繊維を均一に微細化するのが難しく、場合によっては、一部に解れない繊維塊が残ってしまうおそれがある。 Defibration of cellulose fibers can be performed using the defibration apparatus and method shown below. The defibration may be carried out using one or more types of homogenizers such as a high-pressure homogenizer, a high-pressure homogenizer, a grinder, a millstone friction machine such as a grinder, a refiner such as a conical refiner or a disc refiner, various types of bacteria, etc. This can be done using selected means. However, the fibrillation of cellulose fibers is preferably carried out using an apparatus and method that uses a water stream, particularly a high-pressure water stream, to make the fibers fine. According to this apparatus and method, the resulting fine fibrous cellulose has extremely high dimensional uniformity and dispersion uniformity. On the other hand, for example, if a grinder is used that grinds the cellulose fibers between rotating grindstones, it is difficult to uniformly refine the cellulose fibers, and in some cases, there is a risk that undisintegrated fiber lumps may remain in some parts.
 セルロース繊維の解繊に使用するグラインダーとしては、例えば、増幸産業株式会社のマスコロイダー等を挙げることができる。また、高圧水流で微細化する装置としては、例えば、株式会社スギノマシンのスターバースト(登録商標)や、吉田機械興業株式会社のナノヴェイタ\Nanovater(登録商標)等を挙げることができる。また、セルロース繊維の解繊に使用する高速回転式ホモジナイザーとしては、エムテクニック社製のクレアミックス-11S等を挙げることができる。 Examples of the grinder used to defibrate cellulose fibers include Mascolloider manufactured by Masuko Sangyo Co., Ltd. Furthermore, examples of devices for micronization using a high-pressure water stream include Starburst (registered trademark) manufactured by Sugino Machine Co., Ltd. and Nanovater (registered trademark) manufactured by Yoshida Kikai Kogyo Co., Ltd., and the like. Further, as a high-speed rotary homogenizer used for defibrating cellulose fibers, there may be mentioned Clearmix-11S manufactured by M Techniques.
 本発明者等は、回転する砥石間で磨砕する方法と、高圧水流で微細化する方法とで、それぞれセルロース繊維を解繊し、得られた各繊維を顕微鏡観察した場合に、高圧水流で微細化する方法で得られた繊維の方が、繊維幅が均一であることを知見している。 The present inventors defibrated cellulose fibers by grinding between rotating grindstones and by using high-pressure water jets, and observed the resulting fibers under a microscope. It has been found that fibers obtained by a method of making the fibers finer have a more uniform fiber width.
 高圧水流による解繊は、セルロース繊維の分散液を増圧機で、例えば30MPa以上、好ましくは100MPa以上、より好ましくは150MPa以上、特に好ましくは220MPa以上に加圧し(高圧条件)、細孔直径50μm以上のノズルから噴出させ、圧力差が、例えば30MPa以上、好ましくは80MPa以上、より好ましくは90MPa以上となるように減圧する(減圧条件)方式で行うと好適である。この圧力差で生じるへき開現象によって、パルプ繊維が解繊される。高圧条件の圧力が低い場合や、高圧条件から減圧条件への圧力差が小さい場合には、解繊効率が下がり、所望の繊維幅とするために繰り返し解繊(ノズルから噴出)する必要が生じる。 Defibration by high-pressure water flow is performed by pressurizing the dispersion of cellulose fibers with a pressure intensifier to, for example, 30 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, particularly preferably 220 MPa or more (high pressure condition), and the pore diameter is 50 μm or more. It is preferable to eject from a nozzle and reduce the pressure so that the pressure difference becomes, for example, 30 MPa or more, preferably 80 MPa or more, more preferably 90 MPa or more (reduced pressure condition). The pulp fibers are defibrated by the cleavage phenomenon caused by this pressure difference. If the pressure in the high pressure condition is low, or if the pressure difference from the high pressure condition to the reduced pressure condition is small, the fibrillation efficiency will decrease and it will be necessary to repeatedly fibrillate (spray from the nozzle) to obtain the desired fiber width. .
 高圧水流によって解繊する装置としては、高圧ホモジナイザーを使用するのが好ましい。高圧ホモジナイザーとは、例えば10MPa以上、好ましくは100MPa以上の圧力でセルロース繊維のスラリーを噴出する能力を有するホモジナイザーをいう。セルロース繊維を高圧ホモジナイザーで処理すると、セルロース繊維同士の衝突、圧力差、マイクロキャビテーションなどが作用し、セルロース繊維の解繊が効果的に生じる。したがって、解繊の処理回数を減らすことができ、微細繊維状セルロースの製造効率を高めることができる。 It is preferable to use a high-pressure homogenizer as the device for defibrating with a high-pressure water stream. The high-pressure homogenizer refers to a homogenizer that has the ability to eject cellulose fiber slurry at a pressure of, for example, 10 MPa or higher, preferably 100 MPa or higher. When cellulose fibers are treated with a high-pressure homogenizer, collisions between the cellulose fibers, pressure differences, microcavitation, etc. act, and the cellulose fibers are effectively defibrated. Therefore, the number of times of defibration processing can be reduced, and the production efficiency of fine fibrous cellulose can be increased.
 高圧ホモジナイザーとしては、セルロース繊維のスラリーを一直線上で対向衝突させるものを使用するのが好ましい。具体的には、例えば、対向衝突型高圧ホモジナイザー(マイクロフルイダイザー/MICROFLUIDIZER(登録商標)、湿式ジェットミル)である。この装置においては、加圧されたセルロース繊維のスラリーが合流部で対向衝突するように2本の上流側流路が形成されている。また、セルロース繊維のスラリーは合流部で衝突し、衝突したセルロース繊維のスラリーは下流側流路から流出する。上流側流路に対して下流側流路は垂直に設けられており、上流側流路と下流側流路とでT字型の流路が形成されている。このような対向衝突型の高圧ホモジナイザーを用いると高圧ホモジナイザーから与えられるエネルギーが衝突エネルギーに最大限に変換されるため、より効率的にセルロース繊維を解繊することができる。 As the high-pressure homogenizer, it is preferable to use one that allows the slurry of cellulose fibers to collide in opposite directions in a straight line. Specifically, for example, a counter-impingement type high-pressure homogenizer (microfluidizer/MICROFLUIDIZER (registered trademark), wet jet mill) is used. In this device, two upstream channels are formed so that pressurized slurry of cellulose fibers collide with each other in opposite directions at the confluence section. Further, the cellulose fiber slurry collides at the confluence section, and the collided cellulose fiber slurry flows out from the downstream channel. The downstream flow path is provided perpendicularly to the upstream flow path, and the upstream flow path and the downstream flow path form a T-shaped flow path. When such a high-pressure homogenizer of opposing collision type is used, the energy given from the high-pressure homogenizer is converted into collision energy to the maximum extent, so that cellulose fibers can be defibrated more efficiently.
 解繊して得られた微細繊維状セルロースは、セルロースパウダーの原料に用いるまで水系媒体中に分散して分散液として保存しておくことができる。水系媒体は、全量が水であるのが特に好ましい(水分散液)。ただし、水系媒体は、一部が水と相溶性を有する他の液体であってもよい。他の液体としては、例えば、炭素数3以下の低級アルコール類等を使用することができる。 The fine fibrous cellulose obtained by defibration can be dispersed in an aqueous medium and stored as a dispersion until used as a raw material for cellulose powder. It is particularly preferable that the aqueous medium consists entirely of water (aqueous dispersion). However, the aqueous medium may be another liquid that is partially compatible with water. As other liquids, for example, lower alcohols having 3 or less carbon atoms can be used.
 本実施形態のセルロースパウダーを形成する微細繊維状セルロースは、未変性微細繊維状セルロースのみからなるものであってもよいし、変性微細繊維状セルロースのみからなるものであってもよいし、未変性微細繊維状セルロースと未変性微細繊維状セルロースを含むものであってもよい。変性微細繊維状セルロースとしては、TEMPO酸化されたものや亜リン酸エステル化されたもの、カルバメート化されたものを例示できる。 The fine fibrous cellulose forming the cellulose powder of this embodiment may consist only of unmodified fine fibrous cellulose, only modified fine fibrous cellulose, or It may contain fine fibrous cellulose and unmodified fine fibrous cellulose. Examples of modified fine fibrous cellulose include those that have been oxidized with TEMPO, those that have been converted to phosphite esters, and those that have been converted to carbamate.
 セルロースパウダーが変性微細繊維状セルロースから形成されたものである場合は、当該セルロースパウダーを分散媒に分散させた分散液が透明色を呈する。他方、セルロースパウダーが未変性微細繊維状セルロースから形成されたものである場合は、当該セルロースパウダーを分散媒に分散させた分散液が白色を呈する。セルロースパウダーを形成する微細繊維状セルロースにおける変性微細繊維状セルロースと未変性微細繊維状セルロースの比を調製することで白色と透明色の間の中間色をした分散液を製造することができる。 When the cellulose powder is formed from modified fine fibrous cellulose, a dispersion liquid in which the cellulose powder is dispersed in a dispersion medium exhibits a transparent color. On the other hand, when the cellulose powder is formed from unmodified fine fibrous cellulose, a dispersion liquid in which the cellulose powder is dispersed in a dispersion medium exhibits a white color. By adjusting the ratio of modified fine fibrous cellulose and unmodified fine fibrous cellulose in the fine fibrous cellulose forming the cellulose powder, a dispersion liquid having an intermediate color between white and transparent can be produced.
 セルロースパウダーは、原料が微細繊維状セルロースが変性されたものであっても未変性のものであっても白色又は淡黄色となる。変性微細繊維状セルロースは、未変性微細繊維状セルロースよりも平均繊維径が小さいので、同じ質量のセルロースパウダーで対比すると、変性微細繊維状セルロースを含む微細繊維状セルロースで形成されたセルロースパウダーの方が、未変性微細繊維状セルロースのみで形成されたセルロースパウダーよりも比表面積が大きいものとなる傾向にある。 Cellulose powder is white or pale yellow regardless of whether the raw material is modified or unmodified fine fibrous cellulose. Modified fine fibrous cellulose has a smaller average fiber diameter than unmodified fine fibrous cellulose, so when comparing cellulose powders of the same mass, cellulose powder formed from fine fibrous cellulose containing modified fine fibrous cellulose has a smaller average fiber diameter than unmodified fine fibrous cellulose. However, the specific surface area tends to be larger than that of cellulose powder formed only from unmodified fine fibrous cellulose.
 原料パルプの解繊は、得られる微細繊維状セルロースの物性等が、以下に示すような所望の値又は評価となるように行うのが好ましい。 It is preferable to defibrate the raw material pulp so that the physical properties of the resulting fine fibrous cellulose reach desired values or evaluations as shown below.
 <平均繊維径>
 微細繊維状セルロースの平均繊維径(平均繊維幅。単繊維の直径平均。)の上限は1000nmであり、好ましくは500nm以下、より好ましくは100nm以下、特に好ましくは50nm以下である。微細繊維状セルロースの平均繊維径が1000nmを超えると、形成されたセルロースパウダーが比表面積の相対的に小さいもの、すなわち多孔質形状に乏しいものとなる。微細繊維状セルロースの平均繊維径の下限は1nmであり、好ましくは2nm以上、より好ましくは3nm以上である。微細繊維状セルロースの平均繊維径が1nm未満だと、分散液としたときに高粘度となるので、セルロースパウダーの製造が困難になるおそれがある。
<Average fiber diameter>
The upper limit of the average fiber diameter (average fiber width; average diameter of single fibers) of the fine fibrous cellulose is 1000 nm, preferably 500 nm or less, more preferably 100 nm or less, particularly preferably 50 nm or less. When the average fiber diameter of the fine fibrous cellulose exceeds 1000 nm, the formed cellulose powder will have a relatively small specific surface area, that is, it will have a poor porous shape. The lower limit of the average fiber diameter of the fine fibrous cellulose is 1 nm, preferably 2 nm or more, more preferably 3 nm or more. If the average fiber diameter of the fine fibrous cellulose is less than 1 nm, the dispersion will have a high viscosity, which may make it difficult to produce cellulose powder.
 微細繊維状セルロースの平均繊維径は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。 The average fiber diameter of the fine fibrous cellulose can be adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 微細繊維状セルロースの平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維状セルロースの水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
The method for measuring the average fiber diameter of fine fibrous cellulose is as follows.
First, 100 ml of an aqueous dispersion of fine fibrous cellulose with a solid content concentration of 0.01 to 0.1% by mass was filtered through a Teflon (registered trademark) membrane filter, once with 100 ml of ethanol, and 3 times with 20 ml of t-butanol. Replace the solvent. Next, it is freeze-dried, coated with osmium, and used as a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers. Specifically, two diagonal lines are drawn on the observed image, and three straight lines passing through the intersections of the diagonals are arbitrarily drawn. Furthermore, the widths of a total of 100 fibers that intersect with these three straight lines are visually measured. Then, the median diameter of the measured value is taken as the average fiber diameter.
 <平均繊維長>
 微細繊維状セルロースの平均繊維長(単繊維の長さの平均)は、例えば、好ましくは0.01~1000μm、より好ましくは0.03~500μmとするとよい。当該平均繊維長が1000μmを超えると、微細繊維状セルロースの乾燥時に繊維同士が絡み合い易く、油系分散媒に分散させたときにほどけにくくなる。また、微細繊維状セルロースに他の物質を担持させ易くなり、当該他の物質の機能性が備わったセルロースパウダーとなる。当該平均繊維長が0.01μm未満だと、絡み合いの乏しいセルロースパウダーとなる。
<Average fiber length>
The average fiber length (average length of single fibers) of the fine fibrous cellulose is, for example, preferably 0.01 to 1000 μm, more preferably 0.03 to 500 μm. When the average fiber length exceeds 1000 μm, the fibers tend to become entangled with each other when the fine fibrous cellulose is dried, and become difficult to unravel when dispersed in an oil-based dispersion medium. In addition, other substances are easily supported on the fine fibrous cellulose, resulting in a cellulose powder that has the functionality of the other substances. If the average fiber length is less than 0.01 μm, the resulting cellulose powder will have poor entanglement.
 平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The average fiber length can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 微細繊維状セルロースの平均繊維長の測定方法は、平均繊維径の場合と同様にして、各繊維の長さを目視で計測する。計測値の中位長を平均繊維長とする。 The average fiber length of the fine fibrous cellulose is measured by visually measuring the length of each fiber in the same manner as the average fiber diameter. The median length of the measured value is taken as the average fiber length.
 <軸比>
 微細繊維状セルロースの軸比は、好ましくは10~1000000、より好ましくは30~5000000である。軸比が10を下回ると、ワセリンに含有させたセルロースパウダーが分散しやすくなるものの、軸比が短いためにネットワークが形成しにくく、テカリの抑制が困難になる。他方、軸比が1000000を上回ると、平均粒子径が極端に大きなセルロースパウダーとなってしまい、皮膚外用剤を皮膚に塗布する際、ゴロゴロする感覚(異物感)を覚えるおそれがある。
<Axle ratio>
The axial ratio of the fine fibrous cellulose is preferably 10 to 1,000,000, more preferably 30 to 5,000,000. When the axial ratio is less than 10, although the cellulose powder contained in vaseline is easily dispersed, the short axial ratio makes it difficult to form a network, making it difficult to suppress shine. On the other hand, if the axial ratio exceeds 1,000,000, the cellulose powder will have an extremely large average particle size, and there is a possibility that a rumbling sensation (foreign body sensation) may be felt when applying the external skin preparation to the skin.
 <結晶化度>
 微細繊維状セルロースの結晶化度は、下限が50以上であるとよく、より好ましくは60以上、特に好ましくは70以上であり、上限が100以下であるとよく、より好ましくは95以下、特に好ましくは90以下である。同結晶化度が50未満であると、乾燥時の温度変化などの影響により、繊維の絡み合いが弱くなり、他の物質の保持力が弱くなり、所望の粒子径のセルロースパウダーを形成し難い。
<Crystallinity>
The lower limit of the crystallinity of the fine fibrous cellulose is preferably 50 or more, more preferably 60 or more, particularly preferably 70 or more, and the upper limit is preferably 100 or less, more preferably 95 or less, particularly preferably is 90 or less. If the crystallinity is less than 50, the entanglement of fibers becomes weak due to the influence of temperature changes during drying, the ability to hold other substances becomes weak, and it is difficult to form cellulose powder with a desired particle size.
 結晶化度は、JIS-K0131(1996)の「X線回折分析通則」に準拠して、X線回折法により測定した値である。なお、微細繊維状セルロースは、非晶質部分と結晶質部分とを有しており、結晶化度は微細繊維状セルロース全体における結晶質部分の割合を意味する。 The crystallinity is a value measured by an X-ray diffraction method in accordance with the "General rules for X-ray diffraction analysis" of JIS-K0131 (1996). Note that the fine fibrous cellulose has an amorphous portion and a crystalline portion, and the degree of crystallinity means the ratio of the crystalline portion in the entire fine fibrous cellulose.
 <疑似粒度分布>
 微細繊維状セルロースの擬似粒度分布曲線におけるピーク値は、1つのピークであるのが好ましい。1つのピークである場合、微細繊維状セルロースの繊維長及び繊維径の均一性が高く、セルロースパウダーを製造する際に微細繊維状セルロース相互の絡み合いが容易に生じるので、セルロースパウダーがワセリン中でほどけにくいものとなる。また、粒子径の統計的ばらつきが小さいセルロースパウダーとなる。無機微粒子が担持されたセルロースパウダーの形態であれば、セルロースパウダーがワセリン中において十分に分散され、かつ入射光を拡散反射するので、皮膚外用剤を塗布した皮膚がテカリの少ないものとなる。
<Pseudo particle size distribution>
The peak value in the pseudo particle size distribution curve of the fine fibrous cellulose is preferably one peak. If there is one peak, the fiber length and fiber diameter of the fine fibrous cellulose are highly uniform, and the fine fibrous cellulose easily becomes entangled with each other when producing cellulose powder, so the cellulose powder will not unravel in petrolatum. It becomes difficult. In addition, the cellulose powder has small statistical variations in particle size. If it is in the form of cellulose powder supporting inorganic fine particles, the cellulose powder will be sufficiently dispersed in petrolatum and will diffusely reflect incident light, so the skin to which the external skin preparation is applied will have less shine.
 微細繊維状セルロースの擬似粒度分布曲線におけるピーク値はISO-13320(2009)に準拠して測定する。より詳細には、粒度分布測定装置(株式会社セイシン企業のレーザー回折・散乱式粒度分布測定器)を使用して微細繊維状セルロースの水分散液における体積基準粒度分布を調べる。そして、この分布から微細繊維状セルロースの最頻径を測定する。この最頻径をピーク値とする。微細繊維状セルロースは、水分散状態でレーザー回折法により測定される擬似粒度分布曲線において単一のピークを有することが好ましい。このように、一つのピークを有する微細繊維状セルロースは、十分な微細化が進行しており、微細繊維状セルロースとしての良好な物性を発揮することができ、好ましい。なお、上記単一のピークとなる微細繊維状セルロースの粒径の擬似粒度分布のピーク値は、例えば300μm以下であるのが好ましく、200μm以下であるのがより好ましく、100μm以下であるのが特に好ましい。ピーク値が300μmを超えると、相対的に大きな繊維が多く、セルロースパウダーの粒子径のばらつきが大きく、セルロースパウダー形状が不均一になりやすい。 The peak value in the pseudo particle size distribution curve of fine fibrous cellulose is measured in accordance with ISO-13320 (2009). More specifically, the volume-based particle size distribution in the aqueous dispersion of fine fibrous cellulose is examined using a particle size distribution measuring device (laser diffraction/scattering type particle size distribution measuring device manufactured by Seishin Enterprise Co., Ltd.). Then, the most frequent diameter of the fine fibrous cellulose is measured from this distribution. This most frequent diameter is taken as the peak value. The fine fibrous cellulose preferably has a single peak in a pseudo particle size distribution curve measured by laser diffraction in a water-dispersed state. As described above, the fine fibrous cellulose having one peak is preferable because it has been sufficiently refined and can exhibit good physical properties as a fine fibrous cellulose. In addition, the peak value of the pseudo particle size distribution of the particle size of the fine fibrous cellulose that becomes the single peak is preferably 300 μm or less, more preferably 200 μm or less, and particularly 100 μm or less. preferable. When the peak value exceeds 300 μm, there are many relatively large fibers, the particle size of the cellulose powder tends to vary widely, and the shape of the cellulose powder tends to become non-uniform.
 微細繊維状セルロースの擬似粒度分布曲線におけるピーク値、及び中位径は、例えば、原料パルプの選定、前処理、解繊等によって調整することができる。 The peak value and median diameter in the pseudo particle size distribution curve of fine fibrous cellulose can be adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 <保水度>
 微細繊維状セルロースの保水度は、特に限定されないが、例えば未変性の微細繊維状セルロースであれば、500%以下、より好ましくは100~500%である。同保水度が500%を上回ると、微細繊維状セルロース自体の保水力が高く脱水性に乏しいので、乾燥過程を経て製造したとしても、乾燥時間が長くなり生産性が悪くなる。微細繊維状セルロースの保水度の下限は特に限定されないが、100%以上だと、微細繊維状セルロース同士の結合力が働き、セルロースパウダーの形状を保持しやすい。
<Water retention>
The water retention degree of fine fibrous cellulose is not particularly limited, but for example, if it is unmodified fine fibrous cellulose, it is 500% or less, more preferably 100 to 500%. If the water retention degree exceeds 500%, the fine fibrous cellulose itself has a high water retention capacity and poor dehydration properties, so even if it is produced through a drying process, the drying time will be long and productivity will be poor. The lower limit of the water retention degree of the fine fibrous cellulose is not particularly limited, but if it is 100% or more, the binding force between the fine fibrous cellulose works and the shape of the cellulose powder is easily maintained.
 微細繊維状セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The water retention degree of fine fibrous cellulose can be adjusted arbitrarily, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 微細繊維状セルロースの保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。 The water retention degree of fine fibrous cellulose is JAPAN TAPPI No. 26 (2000).
 <パルプ粘度>
 解繊した微細繊維状セルロースのパルプ粘度は、1~10mPa・s、より好ましくは2~9mPa・s、特に好ましくは3~8mPa・sである。パルプ粘度は、セルロースを銅エチレンジアミン液に溶解させた後の溶解液の粘度であり、パルプ粘度が大きいほどセルロースの重合度が大きいことを示しており、繊維そのものの強さにも影響する。
<Pulp viscosity>
The pulp viscosity of the defibrated fine fibrous cellulose is 1 to 10 mPa·s, more preferably 2 to 9 mPa·s, particularly preferably 3 to 8 mPa·s. Pulp viscosity is the viscosity of a solution after dissolving cellulose in a copper ethylene diamine solution, and the higher the pulp viscosity, the higher the degree of polymerization of cellulose, and it also affects the strength of the fiber itself.
 <添加剤>
 ワセリンによる皮膚乾燥を防ぐ効果(エモリエント効果)以外にも、乾燥過程を経て製造したセルロースパウダーのワセリンへの分散性を向上させる目的で、添加剤を加えることができる。というのも、セルロースパウダーは、嵩比重がワセリンと比較して小さいため、ワセリン中の上部に偏在してしまう場合がある。セルロースパウダーに添加剤を加えておけば、セルロースパウダーにおけるセルロース分子の極性がマスキングされ、セルロースパウダーがワセリン中に分散し易くなる。また、本形態のセルロースパウダーは親水性であるので、親水性材料である当該添加剤を皮膚外用剤に加えることでセルロースパウダーの分散性が向上し、ベタツキ具合が悪化することはなくテカリの抑制効果は維持される。添加剤としては、多価アルコール、多糖類、保水性高分子からなる群から1種又は2種以上選択したものを用いることができる。添加剤の配合比(=添加剤:微細繊維状セルロース)は、固形分基準で1:99~50:50、好ましくは50:50にするとよい。微細繊維状セルロースに対する添加剤の配合比が多いと、ベタツキのある乾燥物(セルロースパウダー)となり、本発明のセルロースパウダーの軽量感が失われ、ハンドリング性が悪化する。一方で同配合比が少なすぎると、上記分散効果が悪化する可能性がある。
<Additives>
In addition to the effect of preventing skin dryness caused by petrolatum (emollient effect), additives can be added for the purpose of improving the dispersibility of cellulose powder produced through the drying process in petrolatum. This is because cellulose powder has a smaller bulk specific gravity than petrolatum, so it may be unevenly distributed in the upper part of petrolatum. Adding additives to cellulose powder masks the polarity of cellulose molecules in cellulose powder, making it easier to disperse cellulose powder in petrolatum. In addition, since the cellulose powder of this form is hydrophilic, adding the additive, which is a hydrophilic material, to the skin external preparation improves the dispersibility of the cellulose powder, prevents stickiness from worsening, and suppresses shine. The effect is maintained. As the additive, one or more selected from the group consisting of polyhydric alcohols, polysaccharides, and water-retentive polymers can be used. The blending ratio of additives (=additive: fine fibrous cellulose) is preferably 1:99 to 50:50, preferably 50:50, based on solid content. If the blending ratio of additives to fine fibrous cellulose is high, the dry product (cellulose powder) will be sticky, the cellulose powder of the present invention will lose its lightweight feel, and its handling properties will deteriorate. On the other hand, if the blending ratio is too low, the above-mentioned dispersion effect may deteriorate.
 添加剤として、多価アルコールとしては、炭素数2~6で酸素数2~3の多価アルコールを挙げることができる。具体的には、グリセリン、プロピレングリコール、ブチレングリコール、ペンタンジオール、ジプロピレングリコール、ヘキサンジオール、ヘプタンジオール、エチレングリコール、ジエチレングリコール、1,3‐プロパンジオール、3‐メチル‐1,3‐ブタンジオール等を用いることができるが、これらに限るものではない。特にグリセリンが増粘性、複合粒子の分散性の観点で好ましい。 Examples of polyhydric alcohols used as additives include polyhydric alcohols having 2 to 6 carbon atoms and 2 to 3 oxygen atoms. Specifically, glycerin, propylene glycol, butylene glycol, pentanediol, dipropylene glycol, hexanediol, heptanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 3-methyl-1,3-butanediol, etc. However, the present invention is not limited to these. Glycerin is particularly preferred from the viewpoint of thickening properties and dispersibility of composite particles.
 多糖類としては、クインスシード、ビーガム、キサンタンガム、ヒアルロン酸塩等を用いることができるが、これらに限るものではない。特にヒアルロン酸塩等が増粘性、セルロースパウダーの分散性の観点で好ましい。 As the polysaccharide, quince seed, vegum, xanthan gum, hyaluronate, etc. can be used, but the polysaccharide is not limited to these. In particular, hyaluronate and the like are preferred from the viewpoint of thickening properties and dispersibility of cellulose powder.
 水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、ポリエチレングリコール、ホスホリルコリン基を有するモノマーを構成モノマーとするホモポリマー又はコポリマー、糖残基を有するモノマーを構成モノマーとするホモポリマー又はコポリマー、アミノ酸残基を有するモノマーを構成モノマーとするホモポリマー又はコポリマーを挙げることができる。具体的には、(メタ)アクリル酸アルキルとポリメタクリロイルオキシエチルホスホリルコリンとからなるコポリマー、(メタ)アクリル酸アルキルとメタクリロイルオキシエチルグルコシドとからなるコポリマー、(メタ)アクリル酸アルキルとメタクリロイル-L-リジンとからなるコポリマー等を例示できるが、これらに限るものではない。特にポリビニルピロリドンが増粘性、セルロースパウダーの分散性の観点で好ましい。 Water-soluble polymers include polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, polyethylene glycol, homopolymers or copolymers whose constituent monomers are monomers having a phosphorylcholine group, and homopolymers or copolymers whose constituent monomers are monomers having sugar residues. , homopolymers or copolymers whose constituent monomers are monomers having amino acid residues. Specifically, copolymers consisting of alkyl (meth)acrylates and polymethacryloyloxyethylphosphorylcholine, copolymers consisting of alkyl (meth)acrylates and methacryloyloxyethyl glucoside, alkyl (meth)acrylates and methacryloyl-L-lysine. Examples include copolymers consisting of, but are not limited to. Particularly preferred is polyvinylpyrrolidone from the viewpoint of thickening properties and dispersibility of cellulose powder.
 なお、添加剤は皮膚にうるおいを与える効果も有する。 Note that the additive also has the effect of moisturizing the skin.
 <無機微粒子>
 セルロースパウダーには無機微粒子が含有されていてもよい。無機微粒子はさまざまな機能をセルロースパウダーに付与することができるが、例えば金属系の無機微粒子を付与することで入射光を拡散反射する効果が期待できる。無機微粒子を含むセルロースパウダーを有する皮膚外用剤は、入射光を拡散反射するので塗布部のテカリが抑制される。
<Inorganic fine particles>
The cellulose powder may contain inorganic fine particles. Inorganic fine particles can impart various functions to cellulose powder. For example, by adding metal-based inorganic fine particles, an effect of diffusing and reflecting incident light can be expected. External skin preparations containing cellulose powder containing inorganic fine particles diffusely reflect incident light, thereby suppressing shine on the applied area.
 セルロースパウダーに占める無機微粒子の含有率は、上限を50質量%とするとよく、好ましくは45質量%以下であり、下限を0質量%とするとよく、好ましくは5質量%以上である。同含率量が50質量%を超えると、無機微粒子が含まれている分セルロースパウダーの比重が大きくなってしまい、皮膚外用剤中における分散性が損なわれるおそれがある。他方、同含有率が5質量%以上であれば、入射光の拡散反射の効果が十分に発揮される。 The content of inorganic fine particles in the cellulose powder may have an upper limit of 50% by mass, preferably 45% by mass or less, and a lower limit of 0% by mass, preferably 5% by mass or more. When the content exceeds 50% by mass, the specific gravity of the cellulose powder increases due to the inorganic fine particles contained therein, and there is a risk that the dispersibility in the external skin preparation may be impaired. On the other hand, if the content is 5% by mass or more, the effect of diffuse reflection of incident light will be sufficiently exhibited.
 無機微粒子の一次粒子径は、上限を10μmとするとよく、好ましくは5μm以下、さらに好ましくは1μm以下であればよい。無機微粒子の一次粒子径が10μmを上回ると、無機微粒子が微細繊維状セルロースによって担持されにくくなる。また、セルロースパウダーとしての表面積が十分に大きいものとならない。無機微粒子は、下限については特に限定されないが、1nmであるとよく、好ましくは2nm以上、さらに好ましくは3nm以上であればよい。無機微粒子の一次粒子径が1nm以上だと、無機微粒子をセルロースパウダーを製造する原料スラリーに混ぜたときに、無機微粒子が微細繊維状セルロースに分散して纏わりつき易い。 The upper limit of the primary particle diameter of the inorganic fine particles is preferably 10 μm, preferably 5 μm or less, and more preferably 1 μm or less. When the primary particle diameter of the inorganic fine particles exceeds 10 μm, it becomes difficult for the inorganic fine particles to be supported by the fine fibrous cellulose. Moreover, the surface area as a cellulose powder is not large enough. The lower limit of the inorganic fine particles is not particularly limited, but may be 1 nm, preferably 2 nm or more, and more preferably 3 nm or more. If the primary particle diameter of the inorganic fine particles is 1 nm or more, when the inorganic fine particles are mixed into a raw material slurry for producing cellulose powder, the inorganic fine particles tend to disperse and stick to the fine fibrous cellulose.
 無機微粒子の一次粒子径の測定方法は電子顕微鏡観察により行うことができ、得られた粒子径の平均値を測定値とする。 The primary particle diameter of the inorganic fine particles can be measured by electron microscopic observation, and the average value of the obtained particle diameters is taken as the measured value.
 無機微粒子は、そのままでももちろん用いることができるが、親水処理すると、セルロースパウダーを製造する原料スラリーに馴致し易くなるので好ましい。親水処理に用いる表面処理剤は、無機微粒子の表面活性を抑制させ、無機微粒子の分散性を向上させ、また透明性やきしみを向上させる効果を有する。無機微粒子の表面処理剤としては、原料スラリーに分散可能な処理剤であれば特に限定されないが、無水ケイ酸、含水ケイ酸を含むものが好ましい。 The inorganic fine particles can of course be used as they are, but it is preferable to hydrophilize them because they become more compatible with the raw material slurry for producing cellulose powder. The surface treatment agent used in the hydrophilic treatment has the effect of suppressing the surface activity of the inorganic fine particles, improving the dispersibility of the inorganic fine particles, and improving transparency and squeaking. The surface treatment agent for inorganic fine particles is not particularly limited as long as it can be dispersed in the raw material slurry, but those containing anhydrous silicic acid and hydrated silicic acid are preferred.
 無機微粒子は、特に限定されず公知の無機微粒子を用いることができるが、例えば、チタン酸バリウム、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、窒化アルミニウム、アルミナ、ジルコニア、ジルコン、酸化チタン、酸化亜鉛、酸化鉄、酸化セリウム等を挙げることができる。これらの粉末と微細繊維状セルロースを有するセルロースパウダーは、液体への再分散性に優れたものとなり好ましい。太陽光の透過抑制の観点からは、例えば、酸化チタン、酸化亜鉛、酸化鉄、酸化セリウムからなる群から選択される1種又は2種以上の組み合わせを用いることができる。特に無機微粒子が酸化チタンである場合は、ルチル型だと皮膚外用剤における太陽光の透過抑制が向上するので好ましい。 The inorganic fine particles are not particularly limited and any known inorganic fine particles can be used, but examples include barium titanate, lead zirconate titanate, silicon carbide, silicon nitride, aluminum nitride, alumina, zirconia, zircon, titanium oxide, and titanium oxide. Zinc, iron oxide, cerium oxide, etc. can be mentioned. A cellulose powder containing these powders and fine fibrous cellulose is preferable because it has excellent redispersibility in a liquid. From the viewpoint of suppressing the transmission of sunlight, for example, one type or a combination of two or more types selected from the group consisting of titanium oxide, zinc oxide, iron oxide, and cerium oxide can be used. In particular, when the inorganic fine particles are titanium oxide, the rutile type is preferable because it improves the suppression of sunlight transmission in the skin external preparation.
 セルロースパウダーに含めることができる無機微粒子の形状は、特に限定されないが、例えば、球状、棒状、針状、紡錘状、板状、多角形状等とすることができる。 The shape of the inorganic fine particles that can be included in the cellulose powder is not particularly limited, but can be, for example, spherical, rod-like, needle-like, spindle-like, plate-like, polygonal, etc.
 無機微粒子は、セルロースパウダーにおける微細繊維状セルロースの表面に付着されていてもよいし、微細繊維状セルロースに内包されていてもよい。無機微粒子が微細繊維状セルロースに内包されていると、セルロースパウダーの表面だけでなく内部にも無機微粒子を担持でき、入射光が多様な角度から照射されても拡散反射するので好ましい。ここで、内包とは、無機微粒子の表面の一部が微細繊維状セルロースで覆われている状態や、外方からセルロースパウダーを観察したときに、無機微粒子が微細繊維状セルロースによって覆われて観察できない状態、ということができる。 The inorganic fine particles may be attached to the surface of the fine fibrous cellulose in the cellulose powder, or may be encapsulated in the fine fibrous cellulose. It is preferable that the inorganic fine particles are encapsulated in the fine fibrous cellulose because the inorganic fine particles can be carried not only on the surface of the cellulose powder but also inside the cellulose powder, and even if incident light is irradiated from various angles, it will be diffusely reflected. Here, inclusion refers to the state in which part of the surface of an inorganic fine particle is covered with fine fibrous cellulose, or the state in which the inorganic fine particle is covered with fine fibrous cellulose when observing cellulose powder from the outside. It can be said that it is not possible.
 無機微粒子は乾燥前の微細繊維状セルロースに加えることができ、均一になるように混ぜ合わせるとよい。 Inorganic fine particles can be added to fine fibrous cellulose before drying, and should be mixed until uniform.
 (セルロースパウダー)
 本実施形態のセルロースパウダーは、微細繊維状セルロースが乾燥して形成されたものであるが、微視的に見ると、微細繊維状セルロースが単体のまま乾燥して凝集(たとえて言うと、一本の糸が糸内で絡み合うこと)し形成されたものもあれば、微細繊維状セルロースが複数、乾燥時に凝集して凝集塊となったものもある。微細繊維状セルロースは原料パルプから製造されるものであり、乾燥すると繊維に皺が入り縮まるので、形成されるセルロースパウダーは、表現し難いが凹凸のある形状であり、例えば干からびた微細繊維状セルロースが凝集したような形状、金平糖の形状、1枚又は2枚以上の半紙等の用紙をくしゃくしゃにして丸めて形成したような形状となっている。また、セルロースパウダーは、白色、淡黄色、クリーム色、薄橙色又はこれらの色の混合色を呈している。特に白色又は淡黄色のセルロースパウダーであれば、ワセリンに混ぜても、目立たず好ましい。
(cellulose powder)
The cellulose powder of this embodiment is formed by drying fine fibrous cellulose, but when viewed microscopically, the fine fibrous cellulose dries as a single substance and aggregates (for example, in one piece). Some are formed by the intertwining of book threads within the threads, while others are formed by agglomeration of multiple fine fibrous celluloses during drying. Fine fibrous cellulose is manufactured from raw material pulp, and when dried, the fibers wrinkle and shrink, so the cellulose powder that is formed has an uneven shape, although it is difficult to describe.For example, dried fine fibrous cellulose It has a shape that looks like an agglomeration of paper, a shape that looks like confetti, or a shape that looks like one or more sheets of paper, such as hanshi paper, that have been crumpled and rolled up. Furthermore, the cellulose powder is white, pale yellow, cream colored, pale orange, or a mixture of these colors. In particular, white or pale yellow cellulose powder is preferred because it is inconspicuous even when mixed with vaseline.
 微細繊維状セルロースの構成単位であるセルロースはヒドロキシ基(OH基)及び水素基(H基)を有するので、微細繊維状セルロースを有するセルロースパウダーもヒドロキシ基及び水素基を有する。ヒドロキシ基や水素基が他のヒドロキシ基や水素基と水素結合することで、微細繊維状セルロースが同セルロース内部で又は相互に水素結合して、セルロースパウダーの三次元ネットワーク構造が形成される。セルロースパウダーを水系媒体に混ぜると、加水分解等して水素結合がほどけ、セルロースの凝集が弱まってセルロースパウダーやほどけた微細繊維状セルロースが水系媒体に分散することになる。他方、水系媒体ではなく油系媒体にセルロースパウダーを混ぜた場合は次のようになると推測される。油系媒体が疎水性であるので、セルロースパウダーは、水系媒体下ほど、ほどけ易くはない。セルロースパウダーの形状が保たれたまま油系媒体内に分散する。この場合、セルロースパウダーは、沈降し難く、分散された状態を持続する。 Since cellulose, which is a constituent unit of fine fibrous cellulose, has hydroxy groups (OH groups) and hydrogen groups (H groups), cellulose powder containing fine fibrous cellulose also has hydroxy groups and hydrogen groups. Hydroxy groups and hydrogen groups form hydrogen bonds with other hydroxy groups and hydrogen groups, thereby hydrogen bonding the fine fibrous cellulose within the cellulose or with each other, forming a three-dimensional network structure of cellulose powder. When cellulose powder is mixed with an aqueous medium, hydrogen bonds are loosened by hydrolysis, etc., and the aggregation of cellulose is weakened, causing the cellulose powder and the loosened fine fibrous cellulose to be dispersed in the aqueous medium. On the other hand, if cellulose powder is mixed with an oil-based medium instead of an aqueous medium, the following will occur. Since the oil-based medium is hydrophobic, the cellulose powder does not unravel as easily as under an aqueous medium. The cellulose powder is dispersed in an oil-based medium while maintaining its shape. In this case, the cellulose powder is difficult to settle and maintains a dispersed state.
 本実施形態に係るセルロースパウダーは、微細繊維状セルロースを好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上有するものであり、上限は100質量%有するものであってよい。セルロースパウダーに占める微細繊維状セルロースの質量百分率が50質量%を下回ると、本発明のセルロースパウダーの所望の嵩密度、比表面積が得られなくなるおそれがある。 The cellulose powder according to the present embodiment preferably contains fine fibrous cellulose in an amount of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, with an upper limit of 100% by mass. It's fine. When the mass percentage of fine fibrous cellulose in the cellulose powder is less than 50 mass%, there is a possibility that the desired bulk density and specific surface area of the cellulose powder of the present invention cannot be obtained.
 <平均粒子径>
 本実施形態に係るセルロースパウダーは、好ましくは平均粒子径が0.1~1000μmの範囲、より好ましくは平均粒子径が0.1~700μmの範囲、さらに好ましくは平均粒子径が0.1~500μmの範囲となるものである。当該平均粒子径が上記範囲未満でも本発明の効果を発揮するが、取り扱い易さの点では上記範囲の下限以上の平均粒子径であることが望ましい。他方、当該平均粒子径が上記範囲を超えると、セルロースパウダーを充填させたり、分散媒に分散させたりしたときに、粒子間に形成される空隙が大きくなり、所望の濃度に調整しづらくなる。
<Average particle diameter>
The cellulose powder according to this embodiment preferably has an average particle size in the range of 0.1 to 1000 μm, more preferably in the range of 0.1 to 700 μm, and still more preferably in the range of 0.1 to 500 μm. This is the range of Although the effects of the present invention can be exerted even if the average particle diameter is less than the above range, from the viewpoint of ease of handling, it is desirable that the average particle diameter is at least the lower limit of the above range. On the other hand, if the average particle diameter exceeds the above range, when the cellulose powder is filled or dispersed in a dispersion medium, the voids formed between the particles become large, making it difficult to adjust the concentration to the desired concentration.
 セルロースパウダーは、粒子径の標準偏差が好ましくは1~400μm、より好ましくは1~300μm、特に好ましくは2~200μmである。 The standard deviation of the particle diameter of the cellulose powder is preferably 1 to 400 μm, more preferably 1 to 300 μm, particularly preferably 2 to 200 μm.
 本形態のセルロースパウダーは、大小様々な粒子径を有することが特徴的である。具体的には、統計的に粒子径の分散係数が大きいものとなっている。なお、当該セルロースパウダーは、真球度に優れるものではなく、個々が凹凸を有し、多孔質形状であり、異なる形状をしている。 The cellulose powder of this form is characterized by having particle sizes of various sizes. Specifically, the dispersion coefficient of particle diameter is statistically large. Note that the cellulose powder does not have excellent sphericity, and has individual irregularities, a porous shape, and different shapes.
 本形態のセルロースパウダーは、図5に見られるように多孔質形状となっている。多孔質形状を構成する個々の孔は、例えば、孔径が0.001~5μmである。セルロースパウダーが無機微粒子を担持する場合は、無機微粒子がこの孔にはまっていることもあるし、セルロースパウダーの表面に付着していることもある。したがって、無機微粒子は、当該孔の径の大小にかかわらず、セルロースパウダーに担持され得る。なお、無機微粒子に限らずワセリンや界面活性剤、添加剤もセルロースパウダーに担持され得る。 The cellulose powder of this form has a porous shape as seen in FIG. The individual pores constituting the porous shape have, for example, a pore diameter of 0.001 to 5 μm. When cellulose powder supports inorganic fine particles, the inorganic fine particles may be stuck in the pores or may be attached to the surface of the cellulose powder. Therefore, the inorganic fine particles can be supported on the cellulose powder regardless of the size of the pores. Note that not only inorganic fine particles but also vaseline, surfactants, and additives can be supported on the cellulose powder.
 また、セルロースパウダーは、多孔質形状となっているので、外部からの入射光が孔によってさまざまな角度に反射する。したがって、当該セルロースパウダーを有する皮膚外用剤はテカリを抑制する効果がある。 Furthermore, since cellulose powder has a porous shape, incident light from the outside is reflected at various angles by the pores. Therefore, the skin external preparation containing the cellulose powder has the effect of suppressing shine.
 さらに、図示していないが、本形態のセルロースパウダーは、例えば、乾燥させて製造することができるので、干からびて皺が寄った微細繊維状セルロースが複数絡まって多孔質形状の孔が形成されることもある。微細繊維状セルロースの干からび方は様々なので、形成されるセルロースパウダーは、単一の形状からなる粒子ではなく、様々な形状の粒子からなる。 Furthermore, although not shown, the cellulose powder of this embodiment can be manufactured by drying, for example, so that multiple dried and wrinkled fine fibrous celluloses are entangled to form porous pores. Sometimes. Since fine fibrous cellulose dries in various ways, the cellulose powder that is formed does not consist of particles of a single shape, but of particles of various shapes.
 セルロースパウダーの平均粒子径、メディアン径、累計10%径、及び累計90%は、ISO-13320(2009)に準拠した測定装置、具体的にはレーザ回折/散乱式粒子径分布測定装置(粒度分布)「LA-960V2」を用いて、セルロースパウダーに付着した水分を飛ばさずに乾式方法にて測定をした数値である。 The average particle diameter, median diameter, cumulative 10% diameter, and cumulative 90% of cellulose powder are measured using a measuring device compliant with ISO-13320 (2009), specifically a laser diffraction/scattering particle size distribution measuring device (particle size distribution ) The values were measured using a dry method using "LA-960V2" without removing the moisture attached to the cellulose powder.
 <比表面積>
 セルロースパウダーの比表面積は好ましくは0.1m/g以上、より好ましくは1m/g以上、さらに好ましくは10m/g以上であり、同比表面積の上限は特に制限されないが1000m/gであるとよい。同比表面積が0.1m/gを下回ると、粒子表面の凹凸がなく、ベタツキやテカリの抑制の点で重要な多孔質上の粒子を得ることが困難となる。他方同比表面積が1000m/gを上回るものは、粒子の軽量化の点、また再分散性の上では好ましいがその製造が非常に困難である。
<Specific surface area>
The specific surface area of the cellulose powder is preferably 0.1 m 2 /g or more, more preferably 1 m 2 /g or more, even more preferably 10 m 2 /g or more, and the upper limit of the specific surface area is not particularly limited, but it is 1000 m 2 /g. Good to have. When the specific surface area is less than 0.1 m 2 /g, it becomes difficult to obtain porous particles without unevenness on the particle surface, which is important in terms of suppressing stickiness and shine. On the other hand, those having a specific surface area of more than 1000 m 2 /g are preferable in terms of particle weight reduction and redispersibility, but are extremely difficult to manufacture.
 セルロースパウダーの比表面積は、BET法により測定した。具体的には、測定器にカンタクローム・インスツルメンツ社製NOVA4200eを用い、窒素ガスによる吸着法により測定した。準拠する試験方法は、JISZ8830:2013である。 The specific surface area of the cellulose powder was measured by the BET method. Specifically, NOVA4200e manufactured by Quantachrome Instruments was used as a measuring device, and the measurement was carried out by an adsorption method using nitrogen gas. The compliant test method is JIS Z8830:2013.
 <水分率>
 セルロースパウダーの水分率は好ましくは30%以下、より好ましくは20%、さらに好ましくは10%以下である。同水分率が30%を超えるセルロースパウダーは、多くの水分が含まれ、皮膚外用剤を長時間放置したときにセルロースパウダーの相とワセリンの相とに分離してしまうおそれがある。
<Moisture percentage>
The moisture content of the cellulose powder is preferably 30% or less, more preferably 20%, even more preferably 10% or less. Cellulose powder with a moisture content of more than 30% contains a large amount of water, and when the external skin preparation is left for a long time, there is a risk that it will separate into a cellulose powder phase and a vaseline phase.
 <嵩密度>
 本実施形態に係るセルロースパウダーは、好ましくは固め嵩密度が0.1~400mg/cm、より好ましくは固め嵩密度が0.1~380mg/cm、さらに好ましくは固め嵩密度が0.1~350mg/cmの範囲となるものである。当該固め嵩密度が400mg/cmを超えるセルロースパウダーは、繊維同士が強固に絡み合った凝集体となっており、分散性に乏しいものとなる。また、分散媒に分散させたとしても、一部自重により次第に沈降し始めることがあり分散性に優れるものとはいえない。当該固め嵩密度が0.1mg/cm未満のセルロースパウダーは、空気中で粉体が崩壊しやすくハンドリング性に乏しい。
<Bulk density>
The cellulose powder according to the present embodiment preferably has a consolidated bulk density of 0.1 to 400 mg/cm 3 , more preferably a consolidated bulk density of 0.1 to 380 mg/cm 3 , and still more preferably a consolidated bulk density of 0.1. ~350 mg/cm 3 . Cellulose powder with a solidified bulk density of more than 400 mg/cm 3 is an aggregate in which fibers are tightly intertwined with each other and has poor dispersibility. Moreover, even if it is dispersed in a dispersion medium, a portion of it may gradually start to settle due to its own weight, and it cannot be said that it has excellent dispersibility. Cellulose powders with a solidified bulk density of less than 0.1 mg/cm 3 tend to disintegrate in the air and have poor handling properties.
 本実施形態に係るセルロースパウダーは、好ましくはゆるめ嵩密度が0.1~300mg/cm、より好ましくはゆるめ嵩密度が0.1~280mg/cm、さらに好ましくはゆるめ嵩密度が0.1~250mg/cmの範囲となるものである。当該ゆるめ嵩密度は、前述したさ密度と同様に、300mg/cmを超えるセルロースパウダーは、繊維同士が強固に絡み合った凝集体となっており
他方、当該ゆるめ高密度が0.1mg/cm未満のセルロースパウダーは、空気中で粉体が崩壊しやすくハンドリング性に乏しい。
The cellulose powder according to the present embodiment preferably has a loose bulk density of 0.1 to 300 mg/cm 3 , more preferably a loose bulk density of 0.1 to 280 mg/cm 3 , and still more preferably a loose bulk density of 0.1. ~250 mg/cm 3 . Similar to the aforementioned bulk density, cellulose powder with a loose bulk density of more than 300 mg/cm 3 is an aggregate in which the fibers are tightly intertwined, and on the other hand, the loose bulk density is 0.1 mg/cm 3 Cellulose powder of less than 100% is easily disintegrated in the air and has poor handling properties.
 本実施形態に係るセルロースパウダーのゆるめ嵩密度と固め嵩密度、圧縮度の間には、次の関係式[数1]が成り立つ。
[数1]
(圧縮度(%))=((固め嵩密度)-(ゆるめ嵩密度))/(固め嵩密度)×100
The following relational expression [Equation 1] holds true between the loose bulk density, hardened bulk density, and degree of compaction of the cellulose powder according to the present embodiment.
[Number 1]
(Compaction degree (%)) = ((Hardened bulk density) - (Loosened bulk density)) / (Hardened bulk density) x 100
 固め嵩密度及びゆるめ嵩密度はCarrの流動性指数の算出に用いられる項目の一つであり、ASTM D6393-99 圧縮度測定方法に準拠して測定した。測定は、「多機能型粉体物性測定器マルチテスターMT-02」(株式会社セイシン企業製)である。 The hardened bulk density and the loosened bulk density are one of the items used to calculate Carr's fluidity index, and were measured in accordance with ASTM D6393-99 compressibility measuring method. The measurement was carried out using a "multi-functional powder physical property measuring device Multitester MT-02" (manufactured by Seishin Enterprise Co., Ltd.).
 <圧縮度>
 セルロースパウダーの圧縮度については、圧縮度が好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%であるとよい。ゆるめ嵩密度の測定後に固め嵩密度を測定するために行う圧縮操作を行う過程では、セルロースパウダー間で形成された空隙が解消される(すなわち、セルロースパウダー間に形成される空隙の解消によって容器内でセルロースパウダーが相互に密に充填される)とともに、一部の粒子の崩壊が生じる場合がある。この点、本形態のセルロースパウダーは、圧縮操作過程では、空隙が解消されるのみであり、セルロースパウダー自体の密度の変化が小さく、粒子の崩壊が起こりにくい。本形態のセルロースパウダーが真球度に優れる球状ではなく、(表現をするのが難しいが)凹凸のある粒体、多孔質である粒体であるので、容器に投入して充填すると大小様々な形状の空隙が多数生じる。当該圧縮度が50%を超えるものだと、粒子間の空隙を埋める他、セルロースパウダーの崩壊が示唆されるため、粒子の軽量感が失われるおそれがある。なお、図7に示す、ホットドライによる乾燥方式によって製造されたセルロースパウダーだと、繊維同士が強固に凝集して形成された中実な粒子となっているため、圧縮度の測定における圧縮操作によって、セルロースパウダーが粒子間の空隙を埋めるのみであり、粒子の崩壊そのものが少ない。なお、セルロースパウダー間に形成される空隙とは、概念的には、単位格子に充填された原子間に形成される空隙をイメージすればわかりよい。他方、セルロースパウダーの圧縮度の下限は、特段制限されない(すなわち0%)が、上記の空隙が僅かに発生することを考慮すると例えば1%以上であってもよい。
<Compression degree>
Regarding the degree of compression of the cellulose powder, the degree of compression is preferably 50% or less, more preferably 40% or less, and still more preferably 30%. In the process of performing the compression operation to measure the compacted bulk density after measuring the loose bulk density, the voids formed between the cellulose powders are eliminated (i.e., the voids formed between the cellulose powders are eliminated, causing the inside of the container to cellulose powders are tightly packed together), and some particles may collapse. In this respect, in the cellulose powder of this embodiment, the voids are only eliminated during the compression operation process, and the change in the density of the cellulose powder itself is small, making it difficult for particles to collapse. The cellulose powder of this form is not a spherical shape with excellent sphericity, but (although it is difficult to express) it is a granular material with irregularities and porous material, so when it is poured into a container and filled, it will have a shape of various sizes. Many shaped voids occur. If the degree of compaction exceeds 50%, the particles may lose their light weight feel, since it is suggested that the cellulose powder will collapse in addition to filling the voids between the particles. In addition, cellulose powder manufactured by the hot dry drying method shown in Figure 7 is a solid particle formed by tightly agglomerating the fibers, so the compression operation in measuring the degree of compaction , the cellulose powder only fills the voids between particles, and there is little collapse of the particles themselves. Note that the voids formed between cellulose powders can be conceptually understood by imagining voids formed between atoms filled in a unit cell. On the other hand, the lower limit of the degree of compaction of the cellulose powder is not particularly limited (ie, 0%), but may be, for example, 1% or more, considering that the above-mentioned voids are slightly generated.
 本実施形態に係るセルロースパウダーが凍結乾燥処理によって製造されたセルロースパウダー(「フリーズドライパウダー」ともいう。)である場合には、平均粒子径が好ましくは1~1000μmの範囲、より好ましくは1~800μmの範囲、さらに好ましくは平均粒子径が1~500μmの範囲となるものである。フリーズドライパウダーのゆるめ嵩密度は、好ましくは0.01~100mg/cm、より好ましくは0.01~50mg/cmである。フリーズドライパウダーの比表面積は、好ましくは10~1000m/g、より好ましくは20~1000m/gである。 When the cellulose powder according to the present embodiment is a cellulose powder produced by freeze-drying (also referred to as "freeze-dried powder"), the average particle size is preferably in the range of 1 to 1000 μm, more preferably 1 to 1000 μm. The average particle diameter is in the range of 800 μm, more preferably in the range of 1 to 500 μm. The loosened bulk density of the freeze-dried powder is preferably 0.01 to 100 mg/cm 3 , more preferably 0.01 to 50 mg/cm 3 . The specific surface area of the freeze-dried powder is preferably 10 to 1000 m 2 /g, more preferably 20 to 1000 m 2 /g.
 本実施形態に係るセルロースパウダーが加熱乾燥処理によって製造されたセルロースパウダー(「ヒートドライパウダー」ともいう。)である場合には、平均粒子径が好ましくは50~500μmの範囲、より好ましくは50~400μmの範囲、さらに好ましくは平均粒子径が50~300μmの範囲となるものである。ヒートドライパウダーのゆるめ嵩密度は、好ましくは50~1000mg/cm、より好ましくは100~800mg/cmである。ヒートドライパウダーの比表面積は、好ましくは0.1~5m/g、より好ましくは0.2~5m/gである。 When the cellulose powder according to the present embodiment is a cellulose powder produced by heat drying treatment (also referred to as "heat dry powder"), the average particle size is preferably in the range of 50 to 500 μm, more preferably 50 to 500 μm. The average particle diameter is in the range of 400 μm, more preferably in the range of 50 to 300 μm. The loose bulk density of the heat-dried powder is preferably 50 to 1000 mg/cm 3 , more preferably 100 to 800 mg/cm 3 . The specific surface area of the heat-dried powder is preferably 0.1 to 5 m 2 /g, more preferably 0.2 to 5 m 2 /g.
 本実施形態に係るセルロースパウダーが噴霧乾燥処理によって製造されたセルロースパウダー(「スプレードライパウダー」ともいう。)である場合には、平均粒子径が好ましくは0.1~30μmの範囲、より好ましくは0.1~25μmの範囲、さらに好ましくは平均粒子径が0.1~20μmの範囲となるものである。スプレードライパウダーのゆるめ嵩密度は、好ましくは50~1000mg/cm、より好ましくは100~800mg/cmである。ヒートドライパウダーの比表面積は、好ましくは0.5~10m/g、より好ましくは1~10m/gである。 When the cellulose powder according to the present embodiment is a cellulose powder produced by spray drying (also referred to as "spray dried powder"), the average particle size is preferably in the range of 0.1 to 30 μm, more preferably The average particle diameter is in the range of 0.1 to 25 μm, more preferably in the range of 0.1 to 20 μm. The loose bulk density of the spray-dried powder is preferably 50 to 1000 mg/cm 3 , more preferably 100 to 800 mg/cm 3 . The specific surface area of the heat-dried powder is preferably 0.5 to 10 m 2 /g, more preferably 1 to 10 m 2 /g.
 (製造)
 セルロースパウダーは、セルロースナノファイバー原料として凍結乾燥する手法や減圧乾燥する手法、加熱乾燥する手法(例えば、ホットドライによる乾燥方式)、噴霧乾燥する手法、その他本実施形態のセルロースパウダーの乾燥方法である噴霧式凍結・減圧乾燥による手法によって製造することができるが、特に噴霧式凍結・減圧乾燥による手法を用いると、多孔質のセルロースパウダーを製造することができ好ましい。多孔質であれば、セルロースパウダーに形成される多数の孔に別の物質を担持させる、又は大きな表面積を利用することができる。そうすることで、セルロースにはない性質をセルロースパウダーに付与することができる。
(Manufacturing)
Cellulose powder can be dried as a raw material for cellulose nanofibers by freeze-drying, vacuum drying, heat-drying (for example, hot dry drying), spray-drying, or other methods of drying the cellulose powder of this embodiment. It can be produced by spray freezing/vacuum drying, but it is particularly preferable to use spray freezing/vacuum drying as it allows the production of porous cellulose powder. If the cellulose powder is porous, it is possible to support another substance in the large number of pores formed in the cellulose powder, or to utilize a large surface area. By doing so, properties not found in cellulose can be imparted to cellulose powder.
 本発明に係るセルロースパウダーは、凍結乾燥処理で製造することができるが、例えば図1に示される噴霧式凍結造粒装置1であれば相対的に比重の小さい粒子を製造でき好ましい。噴霧式凍結造粒装置1は、凍結造粒槽8と、当該凍結造粒槽8の上部に原料Mを噴霧する噴霧機構部7と、当該凍結造粒槽8の下方に備わり凍結したセルロースパウダーを乾燥する乾燥部6とを備える。凍結造粒槽8に噴霧された原料Mは、凍結造粒槽8で瞬時に凍結され、凍結体Pとなる。凍結体Pは、乾燥部6に自然落下し貯留される。乾燥部6は、凍結造粒槽8と分離可能に接続され、凍結体Pが貯留された段階で凍結造粒槽8から分離され、密閉され凍結体Pを乾燥してセルロースパウダーを得ることができるものである。 Although the cellulose powder according to the present invention can be produced by freeze-drying, it is preferable to use the spray-type freeze granulation apparatus 1 shown in FIG. 1, for example, because particles with relatively small specific gravity can be produced. The spray-type freeze granulation device 1 includes a freeze granulation tank 8, a spray mechanism section 7 that sprays raw material M onto the upper part of the freeze granulation tank 8, and a spray mechanism section 7 provided below the freeze granulation tank 8 to spray frozen cellulose powder. and a drying section 6 for drying. The raw material M sprayed into the freeze granulation tank 8 is instantaneously frozen in the freeze granulation tank 8 and becomes a frozen body P. The frozen body P naturally falls into the drying section 6 and is stored therein. The drying section 6 is separably connected to the freeze granulation tank 8, and is separated from the freeze granulation tank 8 when the frozen body P is stored, and is sealed to dry the frozen body P to obtain cellulose powder. It is possible.
 原料Mとしては、微細繊維状セルロースのスラリーや分散液を例示できる。原料Mに用いられる微細繊維状セルロースとしては、1つの群からなる微細繊維状セルロースであってもよいが、2つの群からなる微細繊維状セルロースを組み合わせたものとしてもよい。2つの群からなる微細繊維状セルロースを組み合わせたものとする場合は、平均粒子径Rが10nm超~1000nm以下の微細繊維状セルロース群C1と、平均粒子径Rが1nm以上~10nm以下の微細繊維状セルロース群C2を1:99~99:1の混合比で混ぜ合わせたものとしてもよい。 As the raw material M, a slurry or dispersion of fine fibrous cellulose can be exemplified. The fine fibrous cellulose used as the raw material M may be a fine fibrous cellulose from one group, or may be a combination of fine fibrous cellulose from two groups. In the case of a combination of two groups of fine fibrous cellulose, the fine fibrous cellulose group C1 has an average particle diameter R of more than 10 nm to 1000 nm or less, and the fine fibers have an average particle diameter R of 1 nm or more to 10 nm or less. The cellulose group C2 may be mixed at a mixing ratio of 1:99 to 99:1.
 噴霧機構部7は、原料Mが供給される原料流路と、圧縮ガスAが供給される圧縮ガス流路と、供給された原料Mと圧縮ガスAが混ざり合った混合流体を凍結造粒槽8内に噴霧するノズル5(二流体ノズルともいう。)を有するものである。ノズル5の形態としては、三流体式、四流体式、加圧式、超音波式、遠心噴霧式を例示できる。 The spraying mechanism section 7 has a raw material flow path to which the raw material M is supplied, a compressed gas flow path to which the compressed gas A is supplied, and a freezing granulation tank for a mixed fluid in which the supplied raw material M and compressed gas A are mixed. 8 has a nozzle 5 (also referred to as a two-fluid nozzle) that sprays water into the air. Examples of the form of the nozzle 5 include a three-fluid type, a four-fluid type, a pressurized type, an ultrasonic type, and a centrifugal spray type.
 原料流路は、基端が原料Mを貯留する原料タンクに接続され、原料流路に備わるポンプによって原料Mが原料タンクからノズル5に流れる機構となっている。圧縮ガス流路は、基端がコンプレッサー、ボンベ等の圧縮ガス供給装置に接続され、圧縮ガス供給装置を起動させることで、圧縮ガスがノズル5に流れ込む機構となっている。圧縮ガスとしては、空気、窒素、希ガスを例示できる。 The raw material flow path has a mechanism in which the base end is connected to a raw material tank that stores the raw material M, and the raw material M flows from the raw material tank to the nozzle 5 by a pump provided in the raw material flow path. The compressed gas flow path has a mechanism in which the base end is connected to a compressed gas supply device such as a compressor or a cylinder, and the compressed gas flows into the nozzle 5 by activating the compressed gas supply device. Examples of the compressed gas include air, nitrogen, and rare gases.
 原料Mには、微細繊維状セルロースのほか、添加剤、無機微粒子が含まれていてもよく、このほか、可塑剤が含まれていてもよい。可塑剤としては、フタル酸エステル、クエン酸エステル等を挙げることができる。 In addition to fine fibrous cellulose, the raw material M may contain additives and inorganic fine particles, and may also contain a plasticizer. Examples of plasticizers include phthalic acid esters and citric acid esters.
 凍結造粒槽8は、3槽で構成され、具体的には上下方向を軸芯とし、軸芯を同じくして同心円状に配される、径の異なる3つの円筒を備えるものである。これら3つの円筒が内側から順に内槽壁2、中槽壁3、外槽壁4となり、内槽壁2で囲まれた内槽が原料Mを凍結する凍結槽12、内槽壁2と中槽壁3で囲まれた有底の中層が冷却媒体が充填された冷却媒体充填槽13、外槽壁4と中槽壁3で囲まれた有底の外槽が槽内の温度を一定に保持するための真空断熱槽14となっている。凍結槽12は、内槽壁2の下端が乾燥部6の上端に形成されるフランジ部4aと着脱可能に接続される形態とするとよい。 The freeze granulation tank 8 is composed of three tanks, and specifically includes three cylinders with different diameters, which are arranged in concentric circles with the same axis, with the axis extending in the vertical direction. These three cylinders become the inner tank wall 2, the middle tank wall 3, and the outer tank wall 4 in order from the inside, and the inner tank surrounded by the inner tank wall 2 becomes the freezing tank 12 for freezing the raw material M, the inner tank wall 2, and the inner tank wall 2. A cooling medium filling tank 13 in which a bottomed middle layer surrounded by a tank wall 3 is filled with a cooling medium, and a bottomed outer tank surrounded by an outer tank wall 4 and an inner tank wall 3 keep the temperature inside the tank constant. It serves as a vacuum insulation tank 14 for holding. The freezing tank 12 is preferably configured such that the lower end of the inner tank wall 2 is removably connected to a flange portion 4a formed at the upper end of the drying section 6.
 凍結槽12は、天面近傍に設けられたノズル5から噴霧された原料Mを凍結して凍結体Pを形成するものである。凍結槽12は、冷却媒体充填槽13から供給される冷却媒体によって温度が-10℃~-200℃になっているとよい。 The freezing tank 12 forms a frozen body P by freezing the raw material M sprayed from the nozzle 5 provided near the top surface. The freezing tank 12 preferably has a temperature of -10°C to -200°C by the cooling medium supplied from the cooling medium filling tank 13.
 冷却媒体充填槽13には、凍結槽12を冷却するための冷却媒体が充填される。冷却媒体としては、例えば、液体窒素、液体アルゴン、液体ヘリウム、ドライアイス等を用いることができる。 The cooling medium filling tank 13 is filled with a cooling medium for cooling the freezing tank 12. As the cooling medium, for example, liquid nitrogen, liquid argon, liquid helium, dry ice, etc. can be used.
 真空断熱槽14は、中槽壁3と外槽壁4とで囲まれ、中槽壁3の上端と外槽壁4の上端が閉じられ、中槽壁3の下端と外槽壁4の下端が閉じられ、外部から真空断熱槽14内に流体が流入しない構造となっており、真空状態に維持され、冷却媒体充填槽13に充填された冷却媒体と外気との熱伝達が生じにくいものとなっている。 The vacuum insulation tank 14 is surrounded by an inner tank wall 3 and an outer tank wall 4, the upper end of the inner tank wall 3 and the upper end of the outer tank wall 4 are closed, and the lower end of the inner tank wall 3 and the lower end of the outer tank wall 4 are closed. is closed and has a structure that prevents fluid from flowing into the vacuum insulation tank 14 from the outside, so that it is maintained in a vacuum state and heat transfer between the cooling medium filled in the cooling medium filling tank 13 and the outside air is difficult to occur. It has become.
 冷却媒体充填槽13は、外部から冷却媒体充填槽内に延在する冷却媒体供給管15を有し、冷却媒体Nが冷却媒体充填槽13内に供給されるように構成され、及び冷却媒体充填槽13内の冷却媒体Nが気化した冷却媒体ガスを凍結槽12に導入する冷却媒体導入管16を有し、冷却媒体ガスが凍結槽12に導入されるように構成される。 The cooling medium filling tank 13 has a cooling medium supply pipe 15 extending from the outside into the cooling medium filling tank, and is configured so that the cooling medium N is supplied into the cooling medium filling tank 13. It has a cooling medium introduction pipe 16 that introduces the cooling medium gas obtained by vaporizing the cooling medium N in the tank 13 into the freezing tank 12, and is configured so that the cooling medium gas is introduced into the freezing tank 12.
 凍結造粒槽8内で形成された凍結体Pは、当該凍結造粒槽8に対して着脱自在に設けられた乾燥部6に貯留される。乾燥部6に所定量の凍結体Pが貯留され後、凍結造粒槽8から乾燥部6を分離し、密閉後、凍結乾燥を行うことでセルロースパウダーを得ることができる。以下に、本実施形態に係る乾燥器100の構成について説明する。 The frozen body P formed in the freeze granulation tank 8 is stored in a drying section 6 that is detachably provided with respect to the freeze granulation tank 8. After a predetermined amount of frozen material P is stored in the drying section 6, the drying section 6 is separated from the freeze granulation tank 8, sealed, and freeze-dried to obtain cellulose powder. The configuration of the dryer 100 according to this embodiment will be described below.
 乾燥器100は乾燥部6と真空引き機構を有する。乾燥部6は、上下方向を軸心とする円筒形状の壁とその壁に連続する底を有する形態とすることができる。円筒形状の壁には開閉可能な排気部(図示しない)を設けることができ、当該排気部から乾燥部6内のガスを排気ガスDとして排気することができる構成となっている。円筒形状の壁の上端縁は、フランジ部4aとなっており、凍結造粒槽8の下端縁と着脱可能に接続されている。凍結造粒槽8で生成した凍結体Pが乾燥部6に落下した後に、乾燥部6を凍結造粒槽8から取り外し当該フランジ部4aに上蓋を被せ密閉して凍結体Pを凍結乾燥する。 The dryer 100 has a drying section 6 and a vacuum mechanism. The drying section 6 may have a cylindrical wall whose axis is in the vertical direction and a bottom continuous with the wall. The cylindrical wall can be provided with an exhaust part (not shown) that can be opened and closed, and the gas in the drying part 6 can be exhausted as exhaust gas D from the exhaust part. The upper end edge of the cylindrical wall is a flange portion 4a, which is detachably connected to the lower end edge of the freezing granulation tank 8. After the frozen body P generated in the freeze granulation tank 8 falls into the drying section 6, the drying section 6 is removed from the freeze granulation tank 8, and the flange section 4a is covered with an upper lid and hermetically sealed to freeze-dry the frozen body P.
 凍結体Pの乾燥処理は次の通りに行うことができる。乾燥部6には、真空引き用のガス配管21の基端を接続できるように構成され、ガス配管21に吸引されたガスは、ガス配管21の先端に接続される冷却トラップ22へ導かれて一部が濃縮され濃縮液体又は濃縮固体として分離され、残部ガスが、冷却トラップ22に接続されるガス配管23の他端に設けられた真空ポンプ24によって吸引される。乾燥部6を密閉した状態で真空ポンプ24が起動すると、乾燥部6内の気圧が低下するとともに、凍結体Pに含まれる昇華可能又は気化可能な物質(例えば、原料Mが水と微細繊維状セルロースからなる分散液である場合は、水)が昇華又は気化して真空ポンプ24に吸引され、残分がセルロースパウダーとなる。乾燥処理を行う過程では凍結体Pが相互に凝集しないように、及び個々の凍結体Pをムラなく乾燥させるために乾燥部6を揺動又は振動させるとよい。乾燥部6の振動や揺動は、手動で行ってもよいし、振動機構や揺動機構を設けてすることとしてもよい。振動させる場合は、例えば略円形状に形成されるフランジ部における直径の両端部分(図1の符号4aと4aの部分)を把持して左右に振る手法とすることができ、揺動させる場合は、例えば当該直径を回転軸として右回りと左回りを交互に繰り返して回動する手法とすることができる。右回り又は左回りへの枢動角度は特に限定されないが30°~100°とすると、乾燥部6内の凍結体Pが揺さぶられるのでよい。乾燥処理では、揺動又は振動させることは必須ではなく、凍結体Pが静止された状態で真空乾燥してもよい。一概には言えないが、乾燥時に揺動又は振動した方が、生成されるセルロースパウダーの嵩密度が相対的に高くなる場合がある。 The drying process of the frozen body P can be performed as follows. The drying section 6 is configured to be able to connect the base end of a gas pipe 21 for evacuation, and the gas sucked into the gas pipe 21 is guided to a cooling trap 22 connected to the tip of the gas pipe 21. A portion of the gas is concentrated and separated as a concentrated liquid or solid, and the remaining gas is sucked by a vacuum pump 24 provided at the other end of the gas pipe 23 connected to the cooling trap 22. When the vacuum pump 24 is started with the drying section 6 sealed, the air pressure inside the drying section 6 decreases, and the sublimable or vaporizable substances contained in the frozen body P (for example, the raw material M is mixed with water and fine fibers). In the case of a dispersion made of cellulose, the water sublimes or vaporizes and is sucked into the vacuum pump 24, and the remainder becomes cellulose powder. In the process of performing the drying process, it is preferable to rock or vibrate the drying section 6 so that the frozen bodies P do not aggregate with each other and in order to dry each frozen body P evenly. The drying section 6 may be vibrated or rocked manually, or may be vibrated or rocked by a vibrating mechanism or a rocking mechanism. When vibrating, for example, the flange portion formed in a substantially circular shape may be gripped at both ends of the diameter ( portions 4a and 4a in FIG. 1) and shaken from side to side. For example, a method may be adopted in which the diameter is used as a rotation axis and the rotation is repeated alternately clockwise and counterclockwise. The pivot angle to the clockwise or counterclockwise direction is not particularly limited, but it is preferable to set it to 30° to 100° because the frozen body P in the drying section 6 is shaken. In the drying process, it is not essential to rock or vibrate, and the frozen body P may be vacuum-dried in a stationary state. Although it cannot be said in general, the bulk density of the cellulose powder produced may be relatively higher if the drying process is rocked or vibrated.
 他の実施形態の乾燥器200を図8,9を参照しつつ説明する。上記に説明した図1の乾燥器100との違いは、乾燥部6を揺動させるための軸芯30を備えている点である。軸心30に揺動機構を備えることによって、乾燥部6を、軸心30を中心に例えば、図9の紙面に向かって右回り又は左回りに100°回転させることができる。 Another embodiment of the dryer 200 will be described with reference to FIGS. 8 and 9. The difference from the dryer 100 of FIG. 1 described above is that it includes a shaft 30 for swinging the drying section 6. By providing the swinging mechanism on the axis 30, the drying section 6 can be rotated, for example, by 100 degrees clockwise or counterclockwise toward the paper surface of FIG. 9 about the axis 30.
 上記製造方法によって製造されたセルロースパウダー11,11´を図2~図5に示した。図2及び図3に示したセルロースパウダー11は、未変性微細繊維状セルロース(エレックス(登録商標)-S)2質量%水分散液を原料として噴霧式凍結造粒装置1を用いて製造したものである。セルロースパウダー11には多数の孔11aが確認され、セルロースパウダー11が多孔質構造であることが分かる。図4及び図5に示したセルロースパウダー11´は、変性微細繊維状セルロース(ELLEX(登録商標)-スター)2質量%水分散液を原料として噴霧式凍結造粒装置1を用いて製造したものである。セルロースパウダー11´には多数の孔11´aが確認された。乾燥処理は真空乾燥機(東京理化器械株式会社製「EYELA FDU-2110」)に入れて静置したまま真空乾燥する処理とした。なお、凍結造粒槽8としてはプリス社「凍結造粒チャンバーCS30」を例示でき、乾燥器200としてはプリス社製、プリス社バレル凍結乾燥ユニット「TFD-10」を例示できる。 Cellulose powders 11 and 11' produced by the above production method are shown in FIGS. 2 to 5. The cellulose powder 11 shown in FIGS. 2 and 3 was produced using a spray freeze granulation device 1 using a 2% by mass aqueous dispersion of unmodified fine fibrous cellulose (ELEX (registered trademark)-S) as a raw material. It is. A large number of pores 11a are confirmed in the cellulose powder 11, indicating that the cellulose powder 11 has a porous structure. The cellulose powder 11' shown in FIGS. 4 and 5 was produced using a spray freeze granulation device 1 using a 2% by mass aqueous dispersion of modified fine fibrous cellulose (ELLEX (registered trademark)-STAR) as a raw material. It is. A large number of pores 11'a were confirmed in the cellulose powder 11'. The drying process was performed by placing the sample in a vacuum dryer ("EYELA FDU-2110" manufactured by Tokyo Rikakikai Co., Ltd.) and vacuum drying it while standing still. The freeze granulation tank 8 can be exemplified by "Freeze Granulation Chamber CS30" manufactured by Priss Corporation, and the dryer 200 can be exemplified by the barrel freeze drying unit "TFD-10" manufactured by Priss Corporation.
 セルロースパウダーは前述の凍結乾燥方式によって製造することもできるが、その他にも加熱乾燥方式や噴霧乾燥方式によって製造することができる。加熱乾燥方式の中でもドラムドライ方式によるセルロースパウダーの製造方法によれば、相対的に高濃度の、又は流動性に乏しい微細繊維状セルロースであっても、凝集しにくく、分散が容易な乾燥体を得ることができる。ドラムドライ方式によるセルロースパウダーの製造は一例としては次のように行う。 Cellulose powder can be produced by the freeze-drying method described above, but it can also be produced by a heat-drying method or a spray-drying method. According to the method for manufacturing cellulose powder using the drum drying method among heat drying methods, even if the cellulose is in the form of fine fibers with relatively high concentration or poor fluidity, it is possible to produce a dried product that is difficult to aggregate and easily dispersed. Obtainable. An example of manufacturing cellulose powder using the drum dry method is as follows.
 微細繊維状セルロースは、例えばスラリー(水分散液)状態で乾燥処理を行うドラムドライヤーに供給することができるが、この場合の微細繊維状セルロースの含有量(絶乾質量%)は、1質量%以上、好ましくは1.5質量%、より好ましくは2.0質量%である。また、当該含有量は、10質量%以下、好ましくは7質量%、より好ましく5質量%である。当該含有量が10質量%を超えると、スラリーの粘度が高すぎてハンドリング性に欠ける。他方、当該含有量が1質量%未満だと、水分を除去するのに多くのエネルギーと時間を消費し、経済的ではない。 The fine fibrous cellulose can be supplied, for example, in the form of a slurry (aqueous dispersion) to a drum dryer that performs a drying process, but in this case, the content of the fine fibrous cellulose (absolutely dry mass %) is 1 mass %. The content is preferably 1.5% by mass, more preferably 2.0% by mass. Further, the content is 10% by mass or less, preferably 7% by mass, and more preferably 5% by mass. When the content exceeds 10% by mass, the viscosity of the slurry is too high and the handling properties are poor. On the other hand, if the content is less than 1% by mass, a lot of energy and time are consumed to remove water, which is not economical.
 ドラムドライ方式による乾燥処理で用いるドラムドライヤーは、公知のものであってよい。例えば、ジョンソンボイラー社製品の「ジョンミルダーJM-T型」を用いることができる。ドラムドライヤーとしては、内転式ドラムドライヤーを好適に使用できる。内転式ドラムドライヤーであれば、穏やかな乾燥処理がなされ、比表面積が相対的に小さい乾燥体となる。乾燥処理は、常圧下で行うことができる。 The drum dryer used in the drum drying method may be a known drum dryer. For example, "John Milder JM-T" manufactured by Johnson Boiler Company can be used. As the drum dryer, an internal rotary drum dryer can be suitably used. An internal rotary drum dryer performs a gentle drying process, resulting in a dried product with a relatively small specific surface area. The drying process can be performed under normal pressure.
 ドラムドライヤーの運転条件については、ドラム内面の表面温度が80~200℃、好ましくは90~190℃である。当該表面温度であれば、強固な凝集力のある乾燥体を得ることができる。当該表面温度が200℃を超えると、微細繊維状セルロースの繊維の一部が熱変性を起こすおそれがある。他方、当該表面温度が80℃未満だと、水分の除去に時間を多く費やしてしまうだけでなく、水分が非常に高い粒子となる。また、ドラムドライヤーの回転速度は、ドラムの内径やスラリーの投入量にもよるが、例えば1rpm以上2rpm以下とすることができる。ドラムドライヤーで乾燥させる時間は、スラリーの投入量にもよるが1秒~60秒あれば、十分乾燥し、それを超える時間乾燥させても乾燥体の水分量はそれ以上低くならない。 Regarding the operating conditions of the drum dryer, the surface temperature of the inner surface of the drum is 80 to 200°C, preferably 90 to 190°C. At this surface temperature, a dried product with strong cohesive force can be obtained. When the surface temperature exceeds 200° C., there is a risk that some of the fibers of the fine fibrous cellulose will undergo thermal denaturation. On the other hand, if the surface temperature is less than 80° C., not only will it take a lot of time to remove moisture, but the particles will have a very high moisture content. Further, the rotational speed of the drum dryer can be, for example, 1 rpm or more and 2 rpm or less, although it depends on the inner diameter of the drum and the amount of slurry input. The time required for drying with a drum dryer is from 1 second to 60 seconds, depending on the amount of slurry input, for sufficient drying, and even if the drying time is longer than that, the moisture content of the dried product will not decrease any further.
 噴霧乾燥処理に用いる装置としては、スプレードライ装置(プリス社製「TR160」)を例示することができる。スプレードライパウダーは、微細繊維状セルロースのスラリーをスプレードライ装置に供給して得ることができる。当該装置は二流体ノズル方式で、90型ノズルを2本使用した。噴霧乾燥の条件は、例えば微細繊維状セルロースのスラリー(例えば、微細繊維状セルロースの含有量の供給量0.1~3.0%)が20kg/h、乾燥空気の入口温度が200℃、出口温度が100℃、噴霧空気圧が0.6MPaとすることができるが、この限りではない。 As an example of the device used for the spray drying process, a spray drying device (“TR160” manufactured by Pris Co., Ltd.) can be exemplified. Spray-dried powder can be obtained by feeding a slurry of fine fibrous cellulose to a spray-drying device. The device was a two-fluid nozzle system and used two 90-type nozzles. The spray drying conditions are, for example, a slurry of fine fibrous cellulose (for example, a supply rate of 0.1 to 3.0% of fine fibrous cellulose): 20 kg/h, an inlet temperature of drying air of 200°C, and an outlet temperature of 200°C. The temperature can be 100° C. and the atomizing air pressure can be 0.6 MPa, but this is not the only option.
 (ワセリン)
 ワセリンとしては、黄色ワセリン、白色ワセリン、プロペト、サンホワイト、バーム(例えば保湿バーム、クレンジングバーム)、クリーム特にリップクリームを例示でき、好ましくは白色ワセリンであるが、これらに限定されない。
(Vaseline)
Examples of petrolatum include yellow petrolatum, white petrolatum, propeto, sun white, balms (e.g., moisturizing balm, cleansing balm), creams, especially lip balms, and white petrolatum is preferred, but not limited thereto.
 ワセリンは、融点が36~60℃、好ましくは40~55℃であるとよい。融点が36℃未満だと常温(例えば、15~30℃)の保存時に溶け出すおそれがあり、60℃を超過すると塗布時に硬さが残り伸びにくいおそれがある。 Vaseline has a melting point of 36 to 60°C, preferably 40 to 55°C. If the melting point is less than 36°C, it may melt during storage at room temperature (for example, 15 to 30°C), and if it exceeds 60°C, it may remain hard and difficult to spread when applied.
 (皮膚外用剤)
 本形態の皮膚外用剤においてセルロースパウダーの含有量は、皮膚外用剤のB型粘度が所定の範囲である限り、特に限定されないが、セルロースパウダーが過剰であったり、不足したりすると肌に塗布する際に違和感や強いベタツキを感じるおそれがある。そこで、皮膚外用剤にセルロースパウダーが好ましくは0.1~10質量%、より好ましくは0.2~9質量%、さらに好ましくは0.3~8質量%含まれているとよい。
(External skin preparation)
The content of cellulose powder in the external skin preparation of this form is not particularly limited as long as the type B viscosity of the external skin preparation is within a predetermined range, but if there is too much or not enough cellulose powder, it may be necessary to apply it to the skin. There is a possibility that you may feel discomfort or strong stickiness. Therefore, the skin external preparation preferably contains cellulose powder in an amount of 0.1 to 10% by mass, more preferably 0.2 to 9% by mass, and still more preferably 0.3 to 8% by mass.
 皮膚外用剤のB型粘度(測定条件は回転数3rpm、35℃)は、好ましくは50000~200000mPa・s、より好ましくは555000~190000mPa・s、さらに好ましくは60000~18000mPa・sである。皮膚外用剤のB型粘度が200000mPa・sを超過すると、本形態の皮膚外用剤を皮膚に塗布して伸ばすのが困難になる。他方、皮膚外用剤のB型粘度が50000mPa・s未満だと、ワセリンとセルロースパウダーとが相分離し易くなるし、皮膚外用剤を皮膚に塗布する際、異物感を覚えることがある。 The type B viscosity of the skin external preparation (measurement conditions are rotation speed: 3 rpm, 35° C.) is preferably 50,000 to 200,000 mPa·s, more preferably 555,000 to 190,000 mPa·s, and even more preferably 60,000 to 18,000 mPa·s. When the type B viscosity of the external skin preparation exceeds 200,000 mPa·s, it becomes difficult to apply and spread the external skin preparation of this embodiment on the skin. On the other hand, if the type B viscosity of the external skin preparation is less than 50,000 mPa·s, petrolatum and cellulose powder are likely to undergo phase separation, and a foreign body sensation may be felt when the external skin preparation is applied to the skin.
 本発明の皮膚外用剤は、親水的なセルロースパウダーが疎水的なワセリン中に原則的には界面活性剤を加えることなく分散された状態を維持できるという特徴がある。これは、本形態のセルロースパウダー特有の相対的に低い嵩密度と大きな平均粒子径に基づくものと推測される。セルロースパウダーの水分率が上記の範囲であれば、油相と水相への相分離も起こりにくいものとなる。 The skin external preparation of the present invention is characterized in that the hydrophilic cellulose powder can be maintained dispersed in the hydrophobic vaseline without adding a surfactant in principle. This is presumed to be based on the relatively low bulk density and large average particle diameter that are unique to the cellulose powder of this form. If the moisture content of the cellulose powder is within the above range, phase separation into an oil phase and an aqueous phase will be less likely to occur.
 本形態の皮膚外用剤は、固化する温度が好ましくは35℃以下、より好ましくは34℃以下であるとよい。皮膚外用剤の固化する温度が、35℃以上だと、外気温度(又は室内温度)によっては、皮膚外用剤が液化してしまい使用しづらくなるおそれがある。また、外気温度(又は室内温度)によって容易に固化したり液化したりすると、保存状体にもよるが皮膚外用剤中におけるセルロースパウダーの分布が偏在してしまうことにもなる。皮膚外用剤の固化する温度は、ワセリンや後述する界面活性剤、添加剤の配合割合により調節することができる。 The solidification temperature of the external skin preparation of this form is preferably 35°C or lower, more preferably 34°C or lower. If the temperature at which the external skin preparation solidifies is 35° C. or higher, depending on the outside temperature (or indoor temperature), the external skin preparation may liquefy and become difficult to use. Furthermore, if the cellulose powder easily solidifies or liquefies depending on the outside temperature (or room temperature), the distribution of the cellulose powder in the skin external preparation may become uneven, depending on the storage state. The temperature at which the external skin preparation solidifies can be adjusted by adjusting the blending ratio of vaseline, the surfactant and additives described below.
 皮膚外用剤は、ワセリンとセルロースパウダーが含まれ、その他にも機能性を付与するため、界面活性剤(乳化剤)や添加剤等が含まれていてもよい。皮膚外用剤に含まれるワセリンの百分率は、好ましくは50~99質量%、より好ましくは60~95質量%である。当該百分率が99質量%を超えると、相対的にセルロースパウダーの含有率が低くなるので、皮膚外用剤のテカリ抑制効果が乏しくなる。他方、当該百分率が50質量%未満だと粘度が低くなりすぎることで肌への被膜感の低い感触になるおそれがある。 The skin external preparation contains vaseline and cellulose powder, and may also contain surfactants (emulsifiers), additives, etc. to impart functionality. The percentage of vaseline contained in the skin external preparation is preferably 50 to 99% by weight, more preferably 60 to 95% by weight. If the percentage exceeds 99% by mass, the content of cellulose powder will be relatively low, and the shine-preventing effect of the external skin preparation will be poor. On the other hand, if the percentage is less than 50% by mass, the viscosity will be too low and there is a risk that the film will not feel as good on the skin.
 (界面活性剤)
 本形態の皮膚外用剤は、セルロースパウダーがワセリンに良好に分散しているので原則的には界面活性剤が含まれていなくてもよい。しかしながら、長期的に放置すると、セルロースパウダーが偏ってくる場合があるので、界面活性剤を皮膚外用剤の粘度を損なわない範囲で加え、乳化させることができる。乳化させる場合は、公知の分散機(ホモジナイザー等)で分散させて乳化することができる。皮膚外用剤は、界面活性剤が含まれていると、セルロースパウダーとワセリンとの電気的反発が軽減されるものと考えられ、結果的には長期間セルロースパウダーがワセリンに分散した状態が持続する。皮膚外用剤に占める界面活性剤の百分率は、0.1~5質量%、好ましくは0.2~4質量%とするとよい。
(surfactant)
In principle, the skin external preparation of this embodiment does not need to contain a surfactant since the cellulose powder is well dispersed in petrolatum. However, if left for a long time, the cellulose powder may become unbalanced, so a surfactant can be added to the extent that the viscosity of the external skin preparation is not impaired to emulsify it. When emulsifying, it can be dispersed and emulsified using a known disperser (homogenizer, etc.). When external skin preparations contain surfactants, it is thought that the electrical repulsion between cellulose powder and petrolatum is reduced, and as a result, cellulose powder remains dispersed in petrolatum for a long period of time. . The percentage of the surfactant in the external skin preparation is preferably 0.1 to 5% by weight, preferably 0.2 to 4% by weight.
 界面活性剤としては、例えば、非イオン性界面活性剤、陰イオン(アニオン)性界面活性剤、陽イオン(カチオン)性界面活性剤、両性界面活性剤、リン脂質等を使用することができ、特に、非イオン性界面活性剤のエステル型又はエステル・エーテル型を使用するのが好ましく、例えば、グリセリン脂肪酸エステル、ポリグリセリン、脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、及びソルビトールの脂肪酸エステル、並びにこれらのアルキレングリコール付加物、ポリアルキレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリソルベート20、ポリソルベート60、ポリソルベート80、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等を挙げることができる。 As the surfactant, for example, nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, phospholipids, etc. can be used, In particular, it is preferable to use ester type or ester/ether type nonionic surfactants, such as glycerin fatty acid ester, polyglycerin, fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, and sorbitol fatty acid ester, Also, examples thereof include alkylene glycol adducts, polyalkylene glycol fatty acid esters, sucrose fatty acid esters, polysorbate 20, polysorbate 60, polysorbate 80, polyoxyalkylene alkyl ethers, polyoxyethylene alkylphenyl ethers, and the like.
 界面活性剤以外の通常化粧品に使用される材料ついても、粘度を損なわない限りにおいて、皮膚外用剤に加えることができる。 Materials normally used in cosmetics other than surfactants can also be added to external skin preparations as long as they do not impair viscosity.
 (試験例、参考例の調製)
 <試験例1,2>
 実施例を次に示す。試験例1,2は次の通りに製造した。微細繊維状セルロース(大王製紙株式会社製製品「ELLEX(登録商標)-S」)を水に濃度2質量%になるように分散させた分散液を原料として噴霧式凍結造粒装置に供給してセルロースパウダーAを得た。当該微細繊維状セルロースの平均繊維径は50nmである。噴霧式凍結造粒装置に原料を噴霧して凍結処理をして中間体である凍結体を得て、この凍結体を真空乾燥させてセルロースパウダーAを得るに当たり、微細繊維状セルロースをプリス社「凍結造粒チャンバーCS30」を使用して凍結処理し、凍結体を得た後、凍結体が完全に乾燥しきるまでの間、プリス社製、プリス社バレル凍結乾燥ユニット「TFD-10」を使用し、凍結体を揺動しながら乾燥した。
(Preparation of test examples and reference examples)
<Test Examples 1 and 2>
Examples are shown below. Test Examples 1 and 2 were manufactured as follows. A dispersion in which fine fibrous cellulose (product "ELLEX (registered trademark)-S" manufactured by Daio Paper Co., Ltd.) is dispersed in water to a concentration of 2% by mass is supplied as a raw material to a spray freeze granulation device. Cellulose powder A was obtained. The average fiber diameter of the fine fibrous cellulose is 50 nm. The raw material is sprayed into a spray-type freezing granulator and subjected to freezing treatment to obtain a frozen intermediate, which is then vacuum-dried to obtain cellulose powder A. After obtaining a frozen body using a freeze granulation chamber CS30, a barrel freeze-drying unit "TFD-10" manufactured by Priss Co., Ltd. was used until the frozen mass was completely dried. , the frozen body was dried with rocking.
 液化した90℃の白色ワセリン(健栄製薬株式会社 日本薬局方)を100mlの容器に入れ、これにセルロースパウダーAを入れて撹拌機(IKA-T25)で8000rpm、3分間撹拌して混ぜ合わせ、その後冷蔵庫で5℃に冷却して試験例1及び試験例2を得た。 Put liquefied white petrolatum at 90°C (Ken'ei Pharmaceutical Co., Ltd., Japanese Pharmacopoeia) into a 100 ml container, add cellulose powder A to it, and stir with a stirrer (IKA-T25) at 8000 rpm for 3 minutes to mix. Thereafter, it was cooled to 5° C. in a refrigerator to obtain Test Example 1 and Test Example 2.
 <試験例3>
 試験例3は、微細繊維状セルロースを加熱乾燥処理してセルロースパウダーとしたものを用いたものであり、次の通りに製造した。濃度2質量%の微細繊維状セルロース(大王製紙株式会社製製品「ELLEX(登録商標)-S」)水分散液をダブルドラムドライヤー(ジョンソンボイラー社の「ジョンミルダーJM-T型」)にて、ドラム回転数3rpm、ドラム表面温度135℃で乾燥させて乾燥体を得て、当該乾燥体に対して粉砕加工を行い、セルロースパウダーBを得た。セルロースパウダーの平均粒子径は238.8μmであった。
<Test Example 3>
Test Example 3 used a cellulose powder obtained by heating and drying fine fibrous cellulose, and was produced as follows. An aqueous dispersion of fine fibrous cellulose (“ELLEX (registered trademark)-S” manufactured by Daio Paper Co., Ltd.) with a concentration of 2% by mass was dried in a double drum dryer (“John Milder JM-T” manufactured by Johnson Boiler Co., Ltd.). A dried body was obtained by drying at a rotation speed of 3 rpm and a drum surface temperature of 135° C., and the dried body was pulverized to obtain cellulose powder B. The average particle diameter of the cellulose powder was 238.8 μm.
 液化した90℃の白色ワセリンを100mlの容器に入れ、これにセルロースパウダーBを入れて撹拌機(IKA-T25)で8000rpm、3分間撹拌して混ぜ合わせ、その後冷蔵庫で5℃に冷却して試験例3を得た。 Put liquefied white petrolatum at 90°C into a 100ml container, add cellulose powder B to it, and mix with a stirrer (IKA-T25) at 8000 rpm for 3 minutes, then cool to 5°C in a refrigerator and test. Example 3 was obtained.
 <試験例4>
 試験例4は次の通りに製造した。濃度2質量%の微細繊維状セルロース(大王製紙株式会社製製品「ELLEX(登録商標)-S」)水分散液を噴霧式乾燥機(プリス社「TR-160」)を用いて噴霧乾燥させて、セルロースパウダーCを得た。セルロースパウダーCの平均粒子径は10.1μmであった。
<Test Example 4>
Test Example 4 was produced as follows. An aqueous dispersion of fine fibrous cellulose ("ELLEX (registered trademark)-S" manufactured by Daio Paper Co., Ltd.) with a concentration of 2% by mass was spray-dried using a spray dryer ("TR-160" by Pris Co., Ltd.). , cellulose powder C was obtained. The average particle diameter of cellulose powder C was 10.1 μm.
 液化した90℃の白色ワセリン(健栄製薬株式会社 日本薬局方)を100mlの容器に入れ、これにセルロースパウダーCを入れて撹拌機(IKA-T25)で8000rpm、3分間撹拌して混ぜ合わせ、その後冷蔵庫で5℃に冷却して試験例4を得た。 Put liquefied white petrolatum at 90°C (Kenei Pharmaceutical Co., Ltd., Japanese Pharmacopoeia) into a 100ml container, add cellulose powder C to it, and stir with a stirrer (IKA-T25) at 8000 rpm for 3 minutes to mix. Thereafter, it was cooled to 5° C. in a refrigerator to obtain Test Example 4.
 各セルロースパウダーについて物性、圧縮度、ゆるめ嵩密度、固め嵩密度、比表面積、水分率、平均粒子径、メディアン径、累積10%径、累積90%径を測定した。測定結果を表1に示す。 Physical properties, degree of compaction, loose bulk density, hardened bulk density, specific surface area, moisture content, average particle diameter, median diameter, cumulative 10% diameter, and cumulative 90% diameter were measured for each cellulose powder. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、各セルロースパウダーは、同じ微細繊維状セルロースを原料に製造しているが、嵩密度、比表面積、平均粒子径について異なる物性となった。 Although each cellulose powder was manufactured using the same fine fibrous cellulose as a raw material, it had different physical properties in terms of bulk density, specific surface area, and average particle diameter.
 <参考例1>
 参考例として、セルロースパウダーAを加えていない白色ワセリンを用意し、参考例1とした。
<Reference example 1>
As a reference example, white petrolatum to which cellulose powder A was not added was prepared and designated as reference example 1.
 (試験1:B型粘度測定)
 前述の試験例及び参考例各々について、B型粘度を測定した。セルロースパウダーと白色ワセリンの混合割合、及びB型粘度の測定結果を表2に示した。B型粘度の測定条件は回転数3rpm、35℃とした。
(Test 1: Type B viscosity measurement)
The B-type viscosity was measured for each of the above-mentioned test examples and reference examples. Table 2 shows the mixing ratio of cellulose powder and white petrolatum and the measurement results of type B viscosity. The measurement conditions for type B viscosity were a rotational speed of 3 rpm and a temperature of 35°C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、B型粘度は、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定した。B型粘度は液体を撹拌したときの抵抗トルクであり、高いほど撹拌に必要なエネルギーが多くなることを意味する。 Here, the B-type viscosity was measured in accordance with "Liquid viscosity measurement method" of JIS-Z8803 (2011). Type B viscosity is the resistance torque when stirring a liquid, and the higher the viscosity, the more energy is required for stirring.
 (試験2:官能試験)
 調製した試験例及び参考例を用いて官能試験を行った。官能試験の内容は次に示すとおりである。被験者は、試験例及び参考例を自身の肌に塗布し、その時の各項目について評価した。具体的には異物感、ベタツキ、テカリについては1,2又は3点のいずれかで評価した。使用感は、試験例1~4について1位~4位の順位を付けることで評価した。被験者は、男性13名、女性31名であった。
(Test 2: Sensory test)
A sensory test was conducted using the prepared test examples and reference examples. The contents of the sensory test are as follows. The test subjects applied the test example and the reference example to their own skin, and evaluated each item at that time. Specifically, the foreign body feeling, stickiness, and shine were evaluated with either 1, 2, or 3 points. The usability was evaluated by ranking Test Examples 1 to 4 from 1st to 4th. The subjects were 13 men and 31 women.
 評価は次の通りに行い、項目ごとに平均値を算出した。
 異物感については、参考例1と差がない場合を3点、やや気になる場合を2点、痛い・気になるを1点として評価してもらった。
 ベタツキについては、参考例1よりべたつかない場合を3点、参考例と変わらない場合を2点、参考例よりもべたつく・悪い場合を1点として評価してもらった。
 テカリについては、参考例1よりもテカらない場合を3点、参考例と変わらない場合を2点、参考例よりもテカる・悪い場合を1点として評価してもらった。
 使用感については、試験例1~4を1位~4位(1位が最も使用感に優れ、4位が最も使用感に劣るとして)の順に並べて評価してもらった。1位が1点、2位が2点、3位が3点、4位が4点である。
 評価結果を表3に示す。表3に示す点数は、被験者全員の評価を平均したものである平均点である。
Evaluation was performed as follows, and the average value was calculated for each item.
Regarding the foreign body sensation, 3 points were given if there was no difference from Reference Example 1, 2 points were given if it was a little bothersome, and 1 point was given if it was painful or bothersome.
Regarding stickiness, the students were given 3 points if it was less sticky than Reference Example 1, 2 points if it was the same as Reference Example, and 1 point if it was stickier or worse than Reference Example.
Regarding shine, the participants were given 3 points if it was less shiny than Reference Example 1, 2 points if it was the same as Reference Example, and 1 point if it was more shiny or worse than Reference Example.
Regarding the feel of use, Test Examples 1 to 4 were ranked 1st to 4th (with 1st place being the best in use feeling and 4th place being the worst in use feeling) and evaluated. 1st place gets 1 point, 2nd place gets 2 points, 3rd place gets 3 points, and 4th place gets 4 points.
The evaluation results are shown in Table 3. The scores shown in Table 3 are average scores obtained by averaging the evaluations of all subjects.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ベタツキについては、試験例1~4が参考例1に対して、同等である又は改善したと感じられる結果となった。テカリについては、試験例1~4が参考例1に対して、同等である又は改善したと感じられる結果となった。 Regarding stickiness, Test Examples 1 to 4 gave results that seemed to be equivalent to or improved from Reference Example 1. Regarding shine, Test Examples 1 to 4 gave results that seemed to be equivalent to or improved from Reference Example 1.
 (試験3:皮膚塗布試験)
 試験例及び参考例について皮膚塗布試験を行った。皮膚塗布試験は、人工皮膚(ビューラックス社製品「バイオスキンプレートH077-002 296mm×213mm×5mm」を縦10cm、横5cmにカットしたもの)に試験例1~4及び参考例1のいずれかを1gとり、同じ面積になるようにムラなく塗布し、5分後に観察した。結果を図10に示す。
(Test 3: Skin application test)
A skin application test was conducted on the test examples and reference examples. In the skin application test, one of Test Examples 1 to 4 and Reference Example 1 was applied to artificial skin (Beaulux product "Bio Skin Plate H077-002 296 mm x 213 mm x 5 mm" cut into 10 cm long and 5 cm wide). 1 g was taken and applied evenly to the same area, and observed after 5 minutes. The results are shown in FIG.
 試験例1が最もテカリが抑制されていることを確認できた。 It was confirmed that test example 1 suppressed shine the most.
 (その他)
 上記明細書中に示すJISやTAPPIその他の試験、測定方法は特段断りがない場合は、室温、特に25℃、大気圧中、特に1atmで行っている。
(others)
Unless otherwise specified, JIS, TAPPI, and other tests and measurement methods shown in the above specification are performed at room temperature, especially 25° C., and atmospheric pressure, especially 1 atm.
 本発明は、皮膚外用剤に利用できる。 The present invention can be used for external preparations for the skin.
 1   噴霧式凍結造粒装置
 2   内槽壁
 3   中槽壁
 4   外槽壁
 4a  フランジ部
 5   ノズル
 6   乾燥部
 7   噴霧機構部
 8   凍結造粒槽
11   セルロースパウダー
11a  セルロースパウダーの孔
11´  セルロースパウダー
11´a セルロースパウダーの孔
12   凍結槽
13   冷却媒体充填槽
14   真空断熱槽
15   冷却媒体供給管
16   冷却媒体導入管
21   ガス配管
22   冷却トラップ
23   ガス配管
24   真空ポンプ
100  乾燥器
1 Spray type freeze granulation device 2 Inner tank wall 3 Inner tank wall 4 Outer tank wall 4a Flange part 5 Nozzle 6 Drying part 7 Spraying mechanism part 8 Freeze granulation tank 11 Cellulose powder 11a Cellulose powder hole 11' Cellulose powder 11' a Cellulose powder holes 12 Freezing tank 13 Cooling medium filling tank 14 Vacuum insulation tank 15 Cooling medium supply pipe 16 Cooling medium introduction pipe 21 Gas pipe 22 Cooling trap 23 Gas pipe 24 Vacuum pump 100 Dryer

Claims (10)

  1.  ワセリンとセルロースパウダーを含み、
     前記セルロースパウダーは、平均繊維径1~1000nmの微細繊維状セルロースが凝集されてなり、平均粒子径が1~500μmであり、ゆるめ嵩密度が0.1~300mg/cmとなるものであり、
     B型粘度が35℃、回転数3rpmの測定条件で50000~200000mPa・sである、
     ことを特徴とする皮膚外用剤。
    Contains petrolatum and cellulose powder,
    The cellulose powder is made by agglomerating fine fibrous cellulose with an average fiber diameter of 1 to 1000 nm, has an average particle diameter of 1 to 500 μm, and has a loose bulk density of 0.1 to 300 mg/cm 3 ,
    Type B viscosity is 50,000 to 200,000 mPa·s under measurement conditions of 35°C and rotation speed of 3 rpm.
    A skin external preparation characterized by:
  2.  固化する温度が36~60℃である、
     請求項1記載の皮膚外用剤。
    The solidifying temperature is 36 to 60°C.
    The skin external preparation according to claim 1.
  3.  前記ワセリンが白色ワセリンである、
     請求項1記載の皮膚外用剤。
    the petrolatum is white petrolatum;
    The skin external preparation according to claim 1.
  4.  前記セルロースパウダーが0.1~10質量%含まれる、
     請求項1記載の皮膚外用剤。
    The cellulose powder is contained in an amount of 0.1 to 10% by mass.
    The skin external preparation according to claim 1.
  5.  前記セルロースパウダーの水分率が0.1~30%である、
     請求項1記載の皮膚外用剤。
    The moisture content of the cellulose powder is 0.1 to 30%,
    The skin external preparation according to claim 1.
  6.  前記セルロースパウダーは、比表面積が0.1~1000m/gとなるものである、
     請求項1記載の皮膚外用剤。
    The cellulose powder has a specific surface area of 0.1 to 1000 m 2 /g,
    The skin external preparation according to claim 1.
  7.  前記セルロースパウダーは、無機微粒子が担持されたものである、
     請求項1記載の皮膚外用剤。
    The cellulose powder is one in which inorganic fine particles are supported.
    The skin external preparation according to claim 1.
  8.  前記セルロースパウダーが白色又は淡黄色である、
     請求項1記載の皮膚外用剤。
    the cellulose powder is white or pale yellow;
    The skin external preparation according to claim 1.
  9.  添加剤が含まれ、
     前記添加剤が保水性高分子又は多価アルコールである、
     請求項1記載の皮膚外用剤。
    Contains additives
    the additive is a water-retaining polymer or a polyhydric alcohol;
    The skin external preparation according to claim 1.
  10.  前記セルロースパウダーが多孔質である、
     請求項1記載の皮膚外用剤。
    the cellulose powder is porous;
    The skin external preparation according to claim 1.
PCT/JP2022/046781 2022-03-31 2022-12-20 External skin preparation WO2023188602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058126A JP7412472B2 (en) 2022-03-31 2022-03-31 Skin external preparations
JP2022-058126 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188602A1 true WO2023188602A1 (en) 2023-10-05

Family

ID=88200042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046781 WO2023188602A1 (en) 2022-03-31 2022-12-20 External skin preparation

Country Status (2)

Country Link
JP (1) JP7412472B2 (en)
WO (1) WO2023188602A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026234A (en) * 1998-07-13 2000-01-25 Nof Corp Peeling cosmetic material
JP2014141424A (en) * 2013-01-22 2014-08-07 Daido Kasei Kogyo Kk Composition for external preparations
JP2019011287A (en) * 2017-06-30 2019-01-24 大王製紙株式会社 Cosmetic composition
JP2020121941A (en) * 2019-01-30 2020-08-13 日光ケミカルズ株式会社 Oil-in-water emulsifier and cosmetics
JP2021195350A (en) * 2020-06-17 2021-12-27 大王製紙株式会社 Composite particle and cosmetic composition
JP2022035333A (en) * 2020-08-20 2022-03-04 大王製紙株式会社 Hairdressing composition and method for producing hairdressing composition
JP2022035334A (en) * 2020-08-20 2022-03-04 大王製紙株式会社 Hair styling composition and method of producing hair styling composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461981B2 (en) 2022-03-24 2024-04-04 大王製紙株式会社 Oil-based cosmetics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026234A (en) * 1998-07-13 2000-01-25 Nof Corp Peeling cosmetic material
JP2014141424A (en) * 2013-01-22 2014-08-07 Daido Kasei Kogyo Kk Composition for external preparations
JP2019011287A (en) * 2017-06-30 2019-01-24 大王製紙株式会社 Cosmetic composition
JP2020121941A (en) * 2019-01-30 2020-08-13 日光ケミカルズ株式会社 Oil-in-water emulsifier and cosmetics
JP2021195350A (en) * 2020-06-17 2021-12-27 大王製紙株式会社 Composite particle and cosmetic composition
JP2022035333A (en) * 2020-08-20 2022-03-04 大王製紙株式会社 Hairdressing composition and method for producing hairdressing composition
JP2022035334A (en) * 2020-08-20 2022-03-04 大王製紙株式会社 Hair styling composition and method of producing hair styling composition

Also Published As

Publication number Publication date
JP2023149514A (en) 2023-10-13
JP7412472B2 (en) 2024-01-12

Similar Documents

Publication Publication Date Title
US9901527B2 (en) Viscous composition
ES2396596T3 (en) Derivatized microfibrillar cellulose to understand anionic charges
WO2017047768A1 (en) Product containing microfibrous cellulose
KR102503314B1 (en) Foamable aerosol composition
JP2007231438A (en) Microfibrous cellulose and method for producing the same
JP2009203559A (en) Fiber assembly of microfiber-shaped cellulose and method for producing the same
CN114269816B (en) Porous cellulose microparticles and process for producing the same
JP2024028346A (en) Cellulose particles and cellulose particle dispersions
WO2015076191A1 (en) Emulsion which contains nanofibrillated fibrous polysaccharide, material, and processes for manufacturing same
JP7462717B2 (en) Emulsion composition, cosmetic composition, and method for producing emulsion composition
WO2023181526A1 (en) Oil-based cosmetic
JP2021195350A (en) Composite particle and cosmetic composition
JP7412472B2 (en) Skin external preparations
JP2021059502A5 (en)
JP2023149514A5 (en)
JP7461920B2 (en) Cellulose particles and cellulose particle dispersion
JP7100550B2 (en) Composition for spray
JP2024071534A (en) Cellulose particles and cellulose particle dispersion
WO2024014166A1 (en) Solid powder cosmetic
WO2018009113A1 (en) Lotion comprising an emulsion
WO2022118875A1 (en) Wet sheet of cellulose fibers and method for producing molded body
JPH0523119A (en) Powdery edible material and water suspension
WO2021214300A1 (en) Composition comprising a fibrous material
JP2023131205A (en) Manufacturing method of porous ceramic
WO2020066163A1 (en) Particle-containing composition, composition for spray, and gel-like composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935729

Country of ref document: EP

Kind code of ref document: A1