WO2023188555A1 - Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
WO2023188555A1
WO2023188555A1 PCT/JP2022/045256 JP2022045256W WO2023188555A1 WO 2023188555 A1 WO2023188555 A1 WO 2023188555A1 JP 2022045256 W JP2022045256 W JP 2022045256W WO 2023188555 A1 WO2023188555 A1 WO 2023188555A1
Authority
WO
WIPO (PCT)
Prior art keywords
dam
solid electrolytic
flat film
capacitor element
forming
Prior art date
Application number
PCT/JP2022/045256
Other languages
French (fr)
Japanese (ja)
Inventor
純一 佐藤
健一 鴛海
和豊 堀尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023188555A1 publication Critical patent/WO2023188555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor having a structure in which a laminate of a plurality of capacitor elements is molded with an insulating resin.
  • Patent Document 1 describes a method for manufacturing a solid electrolytic capacitor and a solid electrolytic capacitor.
  • the solid electrolytic capacitor described in Patent Document 1 includes a plurality of flat film capacitor elements and a plurality of metal foils (cathode).
  • a flat film capacitor element includes a foil-like valve metal base, a porous portion and a dielectric layer formed on the surface of the valve metal base, and a solid electrolyte layer formed on the surface of the dielectric layer.
  • a mask layer is formed on the surface of the dielectric layer in Patent Document 1 to cover the ends and sides of each element region.
  • a solid electrolyte layer is formed in a region surrounded by this mask layer.
  • an insulating adhesive layer is formed so as to overlap this mask layer, and a conductive layer is formed on this solid electrolyte layer.
  • the flat film-shaped capacitor elements and metal foils thus formed are alternately laminated, thereby forming an element laminate.
  • the element stack is sealed with an insulating resin.
  • Patent Document 2 describes a surface-mount thin capacitor.
  • the cathode portion of the surface-mount thin capacitor described in Patent Document 2 is formed by laminating a conductive polymer, a graphite layer, and a silver paste layer on the surface of an anode (aluminum foil).
  • a resist resin is formed at the boundary between the anode (aluminum foil) and the cathode.
  • An insulating resin is formed so as to partially cover this resist resin.
  • Patent Document 2 On the other hand, in the surface mount thin capacitor shown in Patent Document 2, as described above, an insulating resin is formed so as to cover a part of the resist resin formed at the boundary between the anode and cathode parts. However, since the insulating resin only covers a part of the resist resin, when re-forming is performed, the resist resin and conductive polymer will shrink, and the chemical solution will flow between the resist resin and the conductive polymer. Get into it. This creates a gap between the resist resin and the conductive polymer. Therefore, the configuration of Patent Document 2 may also cause the same problem as Patent Document 1.
  • an object of the present invention is to provide a solid electrolytic capacitor that can suppress short circuits between an anode and a cathode and achieve high reliability.
  • the solid electrolytic capacitor of the present invention includes a sheet laminate formed by alternately laminating a plurality of flat film capacitor elements and a plurality of flat film cathode electrode foils via a conductive adhesive; and an insulating resin that seals the laminate.
  • a flat film capacitor element includes a flat film-like anode electrode foil, a dielectric layer formed on the surface of the anode electrode foil, a first dam formed on the surface of the dielectric layer, and a first dam.
  • a solid electrolyte layer formed within a region regulated by.
  • the conductive adhesive is formed within a region regulated by the second dam that overlaps at least the first dam.
  • the second dam is formed to cover the boundary between the solid electrolyte layer and the first dam.
  • an object of the present invention is to provide a solid electrolytic capacitor that can suppress short circuits between an anode and a cathode and achieve high reliability.
  • FIG. 1 is a side sectional view showing the configuration of a solid electrolytic capacitor according to a first embodiment.
  • FIG. 2(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation
  • FIG. 2(B) is a side cross-sectional view showing the configuration of the capacitor element before singulation.
  • FIG. 2C is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode after being separated into pieces.
  • FIG. 3(A) is a diagram schematically showing the structure of the capacitor element and cathode electrode of the present invention, and FIG.
  • FIG. 3(B) is a diagram schematically showing the structure of the capacitor element and cathode electrode of the conventional configuration.
  • FIG. FIG. 4(A) is a plan view schematically showing the structure of the capacitor element and cathode electrode of the present invention
  • FIG. 4(B) is a plan view schematically showing the structure of the capacitor element and cathode electrode of the conventional configuration.
  • FIG. FIG. 5 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment.
  • FIG. 6 is a flowchart showing an example of a process for forming a capacitor element sheet.
  • FIG. 7(A) is an external perspective view showing the shape of the anode electrode and dielectric layer of the capacitor element before singulation, and FIG.
  • FIG. 7(B) is an external appearance showing the shape of the capacitor element before singulation.
  • FIG. FIG. 8 is an external view in the multi-state.
  • FIG. 9 is an external perspective view showing the shape of the cathode electrode before singulation.
  • FIG. 10 is a flowchart illustrating an example of a process for forming a sheet laminate.
  • FIGS. 11(A) and 11(B) are external perspective views showing a state in which a second dam is formed on the capacitor element sheet.
  • 12(A) and 12(B) are external perspective views showing a state in which a second dam and an adhesive are formed on a capacitor element sheet.
  • 13(A) and 13(B) are exploded perspective views showing a state in which a capacitor element sheet and a cathode electrode sheet are laminated.
  • FIG. 11(A) and 11(B) are external perspective views showing a state in which a second dam is formed on the capacitor element sheet.
  • 12(A) and 12(B) are external perspective views showing
  • FIG. 14(A) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state
  • FIG. 14(B) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state
  • FIG. 3 is an external perspective view showing a stacked state
  • FIG. 15 is an exploded perspective view showing the state of the capacitor element sheet and the cathode electrode sheet in a multi-state state.
  • FIG. 16(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation in the second embodiment
  • FIG. 1 is a side sectional view showing the configuration of a solid electrolytic capacitor according to a first embodiment. Note that in FIG. 1, only the insulating resin and the external electrodes are hatched to make the diagram easier to read.
  • FIG. 2(A) is a side sectional view showing the configuration of a set of a capacitor element and a cathode electrode before being separated into pieces.
  • FIG. 2(B) is a side cross-sectional view showing the structure of the capacitor element before being separated into pieces.
  • FIG. 2(C) is a side sectional view showing the configuration of a set of a capacitor element and a cathode electrode after being separated into pieces.
  • the solid electrolytic capacitor 1 includes a capacitor element laminate 100, an insulating resin 50, an external electrode 61, and an external electrode. 62.
  • the capacitor element laminate 100 includes a plurality of flat film-shaped capacitor elements 10 , a plurality of flat film-shaped cathode electrodes 20 , a second dam 30 , and an adhesive 40 .
  • the number of flat film capacitor elements 10 and the number of cathode electrodes is four, but the number is not limited to this.
  • the cathode electrode 20 corresponds to the "cathode electrode foil" in the present invention.
  • the side sectional views in FIGS. 1, 2(A), 2(B), and 2(C) are sectional views taken along a plane perpendicular to the top surface 101 and bottom surface 102 of the capacitor element laminate 100 in FIG. .
  • the capacitor element 10 includes a flat film-shaped anode electrode 11, a dielectric layer 12, and a CP layer (solid electrolyte layer) 13.
  • the anode electrode 11 includes a large number of holes. In other words, the anode electrode 11 is in a porous state (porous body). The ratio of the thicknesses of the porous portion and core metal portion on one side of the anode electrode 11 to the porous portion on the other side is approximately 1:1:1.
  • Dielectric layer 12 covers the outer surface of anode electrode 11 . Since the detailed structure of the anode electrode 11 is not shown in FIG. 2, the dielectric layer 12 is schematically shown covering the macroscopic surface of the anode electrode 11. In reality, the dielectric layer 12 covers not only the macroscopic surface of the anode electrode 11 but also the surfaces of many holes in the anode electrode 11 . Note that the anode electrode 11 corresponds to the "anode electrode foil" in the present invention.
  • the CP layer 13 covers the surface of the dielectric layer 12.
  • the CP layer 13 is formed inside a frame-shaped first dam 14.
  • the first dam 14 has insulation properties.
  • the region in which the CP layer 13 is formed is regulated by the first dam 14 .
  • the first dam 14 may not be formed in a frame shape. That is, the first dam 14 may be formed on one side, or may be formed on two sides having corners. Furthermore, the structure may be formed on two opposing sides in a plan view.
  • the CP layer 13 has a laminated structure of an inner layer CP (inner solid electrolyte layer) 131 and an outer layer CP (outer solid electrolyte layer) 132.
  • the inner layer CP131 is formed on the surface of the dielectric layer 12, and the outer layer CP132 is formed on the surface of the inner layer CP131.
  • the plurality of capacitor elements 10 and the plurality of cathode electrodes 20 are alternately stacked so that their flat film surfaces are parallel and overlap in plan view.
  • a second dam 30 and an adhesive 40 are provided between adjacent capacitor elements 10 and cathode electrodes 20.
  • the second dam 30 has insulation properties.
  • Adhesive 40 has electrical conductivity. Note that the adhesive 40 corresponds to the "conductive adhesive" in the present invention.
  • the second dam 30 has a frame shape.
  • the adhesive 40 is placed inside the frame defined by the second dam 30. Adjacent capacitor elements 10 and cathode electrodes 20 are bonded together by this adhesive 40 .
  • the second dam 30 is formed to overlap the outer layer CP 132. In other words, it is formed to cover the end of the first dam 14 and the end of the outer layer CP132. A more detailed structure will be described later.
  • the second dam 30 is made of an insulating material such as an insulating resin, for example.
  • the second dam 30 has a dam adjustment section 30L.
  • This dam adjustment section 30L is used to control the volume when applying the second dam 30.
  • unnecessary expansion of the second dam 30 during stacking is suppressed.
  • the second dam 30 enters, for example, the anode through holes 19C and 19L and the cathode through holes 29C and 29L (detailed configurations of which are shown below).
  • the dam adjustment portion 30L it is possible to inhibit molding by the insulating resin 50 and prevent molding defects from occurring.
  • the dam adjustment section 30L is formed by a printed pattern.
  • the dam adjustment portion 30L may be a through hole or may have a shape having a bottom surface on the second dam 30 like a recessed portion. Further, it is preferable to form the size (width, length) of the dam adjustment portion 30L according to the volume of the second dam 30.
  • the second dam 30 is expanded by heating and pressurizing the capacitor element 10 and the cathode electrode 20. This reduces the difference in thickness between the dam adjustment portion 30L and other portions.
  • the first ends 10E1 (see FIG. 2C) of the plurality of capacitor elements 10 are at approximately the same position when viewed from the side.
  • the second ends 10E2 (see FIG. 2C) of the plurality of capacitor elements 10 are at substantially the same position when viewed from the side.
  • the first ends 20E1 (see FIG. 2C) of the plurality of cathode electrodes 20 are at substantially the same position when viewed from the side.
  • the second ends 20E2 (see FIG. 2C) of the plurality of cathode electrodes 20 are at substantially the same position when viewed from the side.
  • the first ends 10E1 of the plurality of capacitor elements 10 and the second ends 20E2 of the plurality of cathode electrodes 20 are arranged on the first end side of the capacitor element stack 100.
  • the first ends 10E1 of the plurality of capacitor elements 10 protrude further outward than the second ends 20E2 of the plurality of cathode electrodes 20.
  • the second ends 10E2 of the plurality of capacitor elements 10 and the first ends 20E1 of the plurality of cathode electrodes 20 are arranged on the second end side of the capacitor element stack 100.
  • the first ends 20E1 of the plurality of cathode electrodes 20 protrude further outward than the second ends 10E2 of the plurality of capacitor elements 10.
  • the capacitor element stack 100 is realized.
  • the capacitor element stack 100 is sealed with an insulating resin 50. More specifically, the insulating resin 50 is applied to the capacitor element laminate except for the first ends 10E1 of the plurality of capacitor elements 10 (the first ends 10E1 of the anode electrodes 11) and the first ends 20E1 of the plurality of cathode electrodes 20. Cover 100.
  • the external electrode 61 covers the first end of the insulating resin 50 (the first end 10E1 of the anode electrode 11).
  • the external electrode 61 is connected to the first end 10E1 of the anode electrode 11 of the plurality of capacitor elements 10.
  • the external electrode 62 covers the second end of the insulating resin 50 (the first end 20E1 of the cathode electrode 20).
  • the external electrode 62 is connected to the first end 20E1 of the plurality of cathode electrodes 20.
  • the solid electrolytic capacitor 1 is realized.
  • FIG. 3(A) is a side sectional view schematically showing the structure of the capacitor element 10 and the cathode electrode 20, and is an enlarged view of the structure of FIG. 2(A) described above.
  • FIG. 3(B) is a side sectional view schematically showing the structure of the capacitor element 10 and the cathode electrode 20 according to the conventional structure.
  • FIGS. 3(A) is a side sectional view schematically showing the structure of the capacitor element 10 and the cathode electrode 20 according to the conventional structure.
  • FIGS. 3A and 3B are cross-sectional views taken along a plane perpendicular to the top surface 101 and bottom surface 102 of the capacitor element laminate 100 in FIG.
  • FIGS. 3A and 3B show only one set of the capacitor element 10 and the cathode electrode 20, the solid electrolytic capacitor 1 is formed by laminating a plurality of these sets.
  • an outer layer CP 132 is formed within the region surrounded by the first dam 14.
  • a boundary portion BD exists at the boundary between the inside of the area formed by the first dam 14 and the area where the outer layer CP132 is formed. Due to the existence of this boundary portion BD, the dielectric layer 12 is exposed. For convenience, the boundary portion BD and the exposed portion of the dielectric layer 12 are shown as the same portion.
  • the second dam 30 is formed to cover this boundary portion BD. That is, even if the dielectric layer 12 is exposed, the second dam 30 enters the exposed portion. Therefore, the dielectric layer 12 is not exposed.
  • FIG. 4(A) is a plan view schematically showing the arrangement of the adhesive 40 on the capacitor element 10.
  • FIG. 4(B) is a plan view schematically showing the arrangement of the adhesive 40 on the capacitor element 10 in a conventional configuration. Note that in FIGS. 4(A) and 4(B), in order to explain the dielectric layer 12 in an easy-to-understand manner, the hatching is different from that in other figures, and each structure is The composition is expanded and exaggerated.
  • the positional relationship between the inner circumferential portion 14P of the first dam 14 and the inner circumferential portion 30P of the second dam 30 is compared.
  • the inner peripheral part 30P is formed inside the capacitor element 10 (inner side in plan view) at a distance d from the inner peripheral part 14P over the entire circumference. That is, the second dam 30 is formed to extend further into the capacitor element 10 than the first dam 14 at the distance d.
  • the distance d is preferably in a range of about 50 ⁇ m to about 100 ⁇ m.
  • the boundary portion BD is covered by the second dam 30. That is, even if the adhesive 40 wets and spreads through a process such as heating and pressing, the adhesive 40 does not come into contact with the dielectric layer 12 (boundary portion BD). That is, short circuit between the anode electrode 11 and the cathode electrode 20 can be suppressed.
  • FIG. 5 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment.
  • a capacitor element sheet is formed (FIG. 5: S11).
  • a plurality of capacitor elements 10 forming different solid electrolytic capacitors 1 are arranged on the capacitor element sheet.
  • the capacitor element sheet and the cathode electrode sheet are laminated with the adhesive 40 in between to form a sheet laminate (FIG. 5: S12).
  • a plurality of cathode electrodes 20 forming different solid electrolytic capacitors 1 are arranged in the cathode electrode sheet.
  • a structure in which a plurality of capacitor element laminates 100 are arranged in a plane is formed.
  • the sheet laminate is one in which a plurality of capacitor element laminates 100 are arranged in a plane.
  • the sheet stack is sealed with insulating resin 50 (FIG. 5: S13). Although details will be described later, at this time, a through hole penetrating from the upper surface to the lower surface of the sheet laminate is provided in the sheet laminate, and resin sealing is performed by compression molding.
  • This sealing with the insulating resin 50 is performed in a multi-state state (a state in which a plurality of solid electrolytic capacitors 1 are arranged) before the solid electrolytic capacitors 1 are separated into individual pieces.
  • the sheet stack sealed with the insulating resin 50 is cut into individual pieces (FIG. 5: S14). Specifically, cutting is performed along cutting lines E11, E12, S11, and S12 shown in FIG. 13(B), which will be described later. As a result, a plurality of solid electrolytic capacitors 1 (referred to as elements of solid electrolytic capacitors 1) in which no external electrodes are formed are formed. Thereafter, the element body of the solid electrolytic capacitor 1 is subjected to secondary sealing with an insulating resin 50.
  • the side surface of the element body of the solid electrolytic capacitor 1 (the surface cut along the cutting lines S11 and S12 (the top surface, the bottom surface, the side surface different from the end surface where the anode electrode 11 and the cathode electrode 20 are exposed)) is insulated. It is covered by secondary sealing with a synthetic resin 50. Thereby, the anode electrode 11 and the cathode electrode 20 that are unnecessarily exposed during singulation are covered with the insulating resin 50.
  • external electrodes 61 and 62 are formed on the end face of the element body of solid electrolytic capacitor 1 (FIG. 5: S15).
  • FIG. 6 is a flowchart showing an example of a process for forming a capacitor element sheet.
  • FIG. 7(A) is an external perspective view showing the shape of the anode electrode and dielectric layer of the capacitor element before singulation
  • FIG. 7(B) is an external appearance showing the shape of the capacitor element before singulation.
  • FIG. 8 is an external view in the multi-state.
  • a chemical conversion treatment is performed on the anode electrode 11 to form the dielectric layer 12 (FIG. 6: S111).
  • a large number of holes are formed on the surface of the anode electrode 11 by etching, and the vicinity of the surface of the anode electrode 11 is a porous body.
  • the dielectric layer 12 covers the surface of the anode electrode 11 including the inner surface of the hole.
  • an anode through hole is formed in the anode electrode 11 (FIG. 6: S112). More specifically, as shown in FIG. 7A, a plurality of cylindrical anode through holes 19C and groove-shaped anode through holes 19L are formed in the anode electrode 11.
  • the plurality of cylindrical anode through-holes 19C and the groove-shaped anode through-holes 19L are arranged alternately along the direction in which the portions that will become the plurality of anode electrodes 11 are lined up.
  • the plurality of cylindrical anode through holes 19C are formed at positions that realize the first ends 10E1 of the anode electrodes 11, and the groove-shaped anode through holes 19L are formed at positions that straddle the portions that will become adjacent anode electrodes 11. And, it is formed at a position that realizes the second end 10E2 of the adjacent anode electrodes 11.
  • a CP layer (solid electrolyte layer) 13 is formed on the surface of the dielectric layer 12 (FIG. 6: S113). More specifically, as shown in FIG. 7(B), a first dam 14 having a frame-shaped opening is formed. Then, the CP layer 13 (a laminated structure of the inner layer CP131 and the outer layer CP132) is formed in the opening of the first dam 14.
  • this structure has a multi-state structure in which a plurality of capacitor elements 10 (a structure consisting of an anode electrode 11, a dielectric layer 12, a CP layer 13, and a first dam 14) are arranged in two dimensions. It will be held in
  • FIG. 9 is an external perspective view showing the shape of the cathode electrode before singulation.
  • the cathode electrode 20 is formed with a plurality of cylindrical cathode through holes 29C and groove-shaped cathode through holes 29L.
  • the plurality of cylindrical cathode through-holes 29C and the groove-shaped cathode through-holes 29L are arranged alternately along the direction in which the portions that will become the plurality of cathode electrodes 20 are lined up.
  • the plurality of cylindrical cathode through holes 29C are formed at positions that realize the first ends 20E1 of the cathode electrodes 20, and the groove-shaped cathode through holes 29L are formed at positions that straddle the portions that will become adjacent cathode electrodes 20, And, it is formed at a position that realizes the second end 20E2 of the adjacent cathode electrodes 20.
  • FIG. 10 is a flowchart illustrating an example of a process for forming a sheet laminate.
  • FIG. 11 is an external perspective view showing a state in which a second dam is formed on a capacitor element sheet
  • FIG. 11(A) shows a multi-state state
  • FIG. 11(B) shows a portion of one capacitor element.
  • FIG. 12 is an external perspective view showing a state in which a second dam and adhesive are formed on a capacitor element sheet
  • FIG. 12(A) shows a multi-layer state
  • FIG. 12(B) shows a portion of one capacitor element.
  • shows. 13(A) and 13(B) are exploded perspective views showing a state in which a capacitor element sheet and a cathode electrode sheet are laminated.
  • FIG. 14(A) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state
  • FIG. 14(B) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state
  • FIG. 3 is an external perspective view showing a stacked state
  • FIG. 15 is a diagram showing the structure after laminating a capacitor element sheet and a cathode electrode sheet and heating and pressurizing them.
  • a second dam 30 is formed on the sheet stack (FIG. 10: S121). More specifically, as shown in FIGS. 11(A) and 11(B), a second dam 30 having a frame-shaped opening is formed. The second dam 30 is formed at a position overlapping the first dam 14. Furthermore, the second dam 30 is formed to an area inside the inner frame of the first dam 14.
  • the shape at the time of printing is not limited to this, as long as the second dam 30 has a shape that expands further inward than the inner frame of the first dam 14 during heating and pressurization, which will be described later.
  • the second dam 30 is formed by a printed pattern so as to have a dam adjustment portion 30L.
  • FIG. 11(A) the example in which the dam adjustment part 30L is formed in the whole 1st dam 14 was shown.
  • a configuration may be adopted in which the dam adjustment portion 30L is not formed over the entire first dam 14. That is, the number of dam adjustment parts 30L may be formed according to the volume of the adhesive 40, similar to the size of the dam adjustment parts 30L described above.
  • the adhesive 40 is placed inside the opening of the second dam 30 (FIG. 10: S122).
  • capacitor element sheets and cathode electrode sheets are alternately laminated (FIG. 10: S123) . More specifically, the capacitor element sheet and the cathode electrode sheet are laminated so as to satisfy the following conditions.
  • the plurality of cylindrical anode through holes 19C in the capacitor element sheet and the groove-shaped cathode through holes 29L in the cathode electrode sheet overlap.
  • the groove-shaped anode through-hole 19L in the capacitor element sheet overlaps with the plurality of cylindrical cathode through-holes 29C in the cathode electrode sheet.
  • the groove-shaped anode through-hole 19L in the capacitor element sheet and the groove-shaped cathode through-hole 29L in the cathode electrode sheet overlap.
  • a plurality of these through holes are formed in accordance with the number of capacitor elements arranged in the sheet laminate. Therefore, a plurality of through holes are formed in the sheet stack, which penetrate from the top surface to the bottom surface of the sheet stack.
  • the sheet laminate is heated and pressurized (FIG. 10: S124). Thereby, the capacitor element sheet and the cathode electrode sheet are adhered by the adhesive 40, and a sheet laminate is formed. As shown in FIG. 15, this heating and pressing causes the adhesive 40 to spread in a plane. However, since the second dam 30 covers the boundary portion BD, contact between the adhesive 40 and the anode electrode 11 can be suppressed. That is, short circuit between the anode and the cathode is suppressed.
  • the dam adjustment portion 30L formed in the second dam 30 is closed. Therefore, the thickness of the second dam 30 can be adjusted, and the thickness of the second dam 30 can be prevented from becoming unnecessarily high. Therefore, the height of the sheet laminate can be reduced.
  • FIG. 16(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation in the second embodiment, and FIG. FIG.
  • the solid electrolytic capacitor 1A according to the second embodiment has a third electrode on the cathode electrode 20A, unlike the solid electrolytic capacitor 1 according to the first embodiment. The difference is that a dam 210 is included.
  • the other configuration of the solid electrolytic capacitor 1A is the same as that of the solid electrolytic capacitor 1, and the explanation of the similar parts will be omitted.
  • the cathode electrode 20A includes a third dam 210.
  • the third dam 210 like the second dam 30, is made of an insulating material such as an insulating resin.
  • the cathode electrode 20A and the capacitor element 10 are bonded together through the adhesive 40 by heating and pressurizing. Even with such a configuration, contact between the adhesive 40 and the anode electrode 11 can be suppressed.
  • the presence of the third dam 210 can further suppress the spread of the adhesive 40 from the cathode electrode 20A to the outer periphery.
  • Capacitor element 10 (Explanation of an example of specific materials, etc. of each component of solid electrolytic capacitor 1) (Capacitor element 10)
  • the capacitor element 10 is realized using, for example, the following materials and thicknesses.
  • the anode electrode 11 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, or magnesium, or an alloy containing these metals. Note that the anode electrode 11 is preferably made of aluminum or an aluminum alloy. The anode electrode 11 may be any valve metal as long as it exhibits a so-called valve action.
  • the anode electrode 11 has a flat plate shape, and the thickness of the core part of the anode electrode 11 (the central part where the pores of the porous body do not reach) is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness (thickness of one side) of the porous portion (the portion of the porous body in which pores are formed) is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the dielectric layer 12 is preferably made of an oxide film of the anode electrode 11.
  • the dielectric layer 12 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium or ammonium salts.
  • the thickness of the dielectric layer 12 is preferably 1 nm or more and 100 nm or less.
  • the inner layer CP131 is made of, for example, a conductive polymer having a backbone of pyrroles, thiophenes, anilines, etc., or PEDOT [poly(3,4-ethylenedioxythiophene)], which is a conductive polymer having a backbone of thiophenes. It may also be a layer of PEDOT:PSS, which is realized by a method such as PEDOT:PSS and is composited with polystyrene sulfonic acid (PSS) as a dopant.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the inner layer CP131 is formed by forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer 12 using, for example, a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene. It is formed by applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric part and drying it.
  • the thickness of the outer layer CP132 is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the material of the outer layer CP132 is the same as that of the inner layer CP131.
  • the adhesive 40 is preferably a mixture of an insulating resin such as an epoxy resin or a phenol resin, and conductive particles such as carbon or silver. Note that the adhesive 40 may be a dispersion of a conductive polymer, a dispersion of a conductive polymer to which a binder is added, or the like.
  • the cathode electrode 20 is made of, for example, aluminum, titanium, copper, silver, or the like.
  • the thickness of the cathode electrode 20 is, for example, thinner than or approximately the same as the thickness of the anode electrode 11. Note that the thickness of the cathode electrode 20 is preferably as thin as possible, and is about 5 ⁇ m to 50 ⁇ m, preferably about 30 ⁇ m.
  • Insulating resin 50 may contain filler.
  • the resin include epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers.
  • the filler for example, insulating oxide particles such as silica particles, alumina particles, titania particles, and zirconia particles are preferable.
  • the maximum diameter of the filler is preferably 30 ⁇ m or more and 40 ⁇ m or less, for example. For example, it is more preferable to use a material containing silica particles in solid epoxy resin and phenol resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A solid electrolytic capacitor according to the present invention comprises: a sheet laminate formed by alternately laminating a plurality of flat film-shaped capacitor elements and a plurality of flat film-shaped cathode electrode foils with a conductive adhesive interposed therebetween; and an insulating resin that seals the sheet laminate. Each of the flat film-shaped capacitor elements comprises: a flat film-shaped anode electrode foil; a dielectric layer formed on the surface of the anode electrode foil; a first dam formed on the surface of the dielectric layer; and a solid electrolyte layer formed within a region regulated by the first dam. The conductive adhesive is formed within a region regulated by a second dam overlapping at least the first dam. The second dam is formed so as to cover a boundary section between the solid electrolyte layer and the first dam.

Description

固体電解コンデンサ、および固体電解コンデンサの製造方法Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
 本発明は、複数のコンデンサ素子の積層体を絶縁性樹脂でモールドした構成を備える固体電解コンデンサに関する。 The present invention relates to a solid electrolytic capacitor having a structure in which a laminate of a plurality of capacitor elements is molded with an insulating resin.
 特許文献1には、固体電解コンデンサの製造方法および固体電解コンデンサが記載されている。特許文献1に記載の固体電解コンデンサは、複数の平膜状のコンデンサ素子と複数の金属箔(陰極)とを備える。平膜状のコンデンサ素子は、箔状の弁作用金属基体、弁作用金属基体の多孔質部および表面に形成された誘電体層、誘電体層の表面に形成された固体電解質層を備える。 Patent Document 1 describes a method for manufacturing a solid electrolytic capacitor and a solid electrolytic capacitor. The solid electrolytic capacitor described in Patent Document 1 includes a plurality of flat film capacitor elements and a plurality of metal foils (cathode). A flat film capacitor element includes a foil-like valve metal base, a porous portion and a dielectric layer formed on the surface of the valve metal base, and a solid electrolyte layer formed on the surface of the dielectric layer.
 より具体的には、次の構成を備える。特許文献1における誘電体層の表面には、各素子領域の端部及び側部を被覆するマスク層が形成されている。このマスク層によって囲まれた領域に固体電解質層が形成されている。さらにこのマスク層に重なるように絶縁性接着層を形成し、この固体電解質層上に導電体層を形成している。 More specifically, it has the following configuration. A mask layer is formed on the surface of the dielectric layer in Patent Document 1 to cover the ends and sides of each element region. A solid electrolyte layer is formed in a region surrounded by this mask layer. Furthermore, an insulating adhesive layer is formed so as to overlap this mask layer, and a conductive layer is formed on this solid electrolyte layer.
 このように形成された平膜状のコンデンサ素子と金属箔とは交互に積層されており、これにより、素子積層体が形成される。素子積層体は、絶縁性樹脂によって封止されている。 The flat film-shaped capacitor elements and metal foils thus formed are alternately laminated, thereby forming an element laminate. The element stack is sealed with an insulating resin.
 特許文献2には、表面実装薄型コンデンサが記載されている。特許文献2に記載の表面実装薄型コンデンサの陰極部は、陽極(アルミニウム箔)の表面上に導電性ポリマー、グラファイト層、銀ペースト層を積層することによって形成される。この陽極(アルミニウム箔)と陰極部の境界にはレジスト樹脂が形成されている。このレジスト樹脂の一部を覆うように、絶縁性樹脂が形成されている。 Patent Document 2 describes a surface-mount thin capacitor. The cathode portion of the surface-mount thin capacitor described in Patent Document 2 is formed by laminating a conductive polymer, a graphite layer, and a silver paste layer on the surface of an anode (aluminum foil). A resist resin is formed at the boundary between the anode (aluminum foil) and the cathode. An insulating resin is formed so as to partially cover this resist resin.
特開2019-79866号公報JP2019-79866A 特開2009-129936号公報Japanese Patent Application Publication No. 2009-129936
 しかしながら、特許文献1に示すような固体電解コンデンサにおいて平膜状のコンデンサ素子と誘電体層を表面に形成した弁金属基体(金属箔)とを積層する際、導電体層は濡れ広がる。この際、マスク層と固体電解質層との境界部に隙間が存在すると、誘電体層が露出する可能性がある。また、マスク層と固体電解質層との形成時にマスク層と固体電解質層との間に隙間が存在しない場合であっても、その後の積層時等の加熱加圧処理等によって、マスク層と固体電解質層が収縮する場合がある。すなわち、マスク層と固体電解質層との境界部が露出し、導電体層と弁金属基体が接触する虞がある。このことによって、漏れ電流が大きくなり、短絡する虞がある。 However, in a solid electrolytic capacitor as shown in Patent Document 1, when a flat film capacitor element and a valve metal base (metal foil) having a dielectric layer formed on the surface are laminated, the conductor layer wets and spreads. At this time, if a gap exists at the boundary between the mask layer and the solid electrolyte layer, the dielectric layer may be exposed. Furthermore, even if there is no gap between the mask layer and the solid electrolyte layer when forming the mask layer and the solid electrolyte layer, the mask layer and the solid electrolyte layer may be separated by heat and pressure treatment during subsequent lamination, etc. Layers may shrink. That is, there is a possibility that the boundary between the mask layer and the solid electrolyte layer will be exposed, and the conductor layer and the valve metal base will come into contact with each other. This increases leakage current and may cause a short circuit.
 一方、特許文献2に示す表面実装薄型コンデンサは、上述のとおり陽極と陰極部との境界に形成されたレジスト樹脂の一部を覆うように絶縁性樹脂が形成されている。しかしながら、絶縁性樹脂はレジスト樹脂の一部を覆っているのみであるため、再化成を行った場合、レジスト樹脂、導電性ポリマーが収縮し、化成液がレジスト樹脂と導電性ポリマーとの間に入り込む。このことによって、レジスト樹脂と導電性ポリマーとの間には隙間ができる。このため、特許文献2の構成においても、特許文献1と同様の問題を生じる虞がある。 On the other hand, in the surface mount thin capacitor shown in Patent Document 2, as described above, an insulating resin is formed so as to cover a part of the resist resin formed at the boundary between the anode and cathode parts. However, since the insulating resin only covers a part of the resist resin, when re-forming is performed, the resist resin and conductive polymer will shrink, and the chemical solution will flow between the resist resin and the conductive polymer. Get into it. This creates a gap between the resist resin and the conductive polymer. Therefore, the configuration of Patent Document 2 may also cause the same problem as Patent Document 1.
 したがって、本発明の目的は、陽極と陰極との間の短絡を抑制し、高い信頼性を実現できる固体電解コンデンサを提供することにある。 Therefore, an object of the present invention is to provide a solid electrolytic capacitor that can suppress short circuits between an anode and a cathode and achieve high reliability.
 この発明の固体電解コンデンサは、複数の平膜状のコンデンサ素子と複数の平膜状の陰極用電極箔とを導電性接着剤を介して交互に積層して形成されたシート積層体と、シート積層体を封止する絶縁性樹脂とを備える。平膜状のコンデンサ素子は、平膜状の陽極用電極箔と、陽極用電極箔の表面に形成された誘電体層と、誘電体層の表面に形成された第1ダムと、第1ダムで規制された領域内に形成された固体電解質層とを備える。導電性接着剤は、少なくとも第1ダムに重なる第2ダムで規制された領域内に形成される。第2ダムは、固体電解質層と第1ダムとの境界部を覆うように形成されている。 The solid electrolytic capacitor of the present invention includes a sheet laminate formed by alternately laminating a plurality of flat film capacitor elements and a plurality of flat film cathode electrode foils via a conductive adhesive; and an insulating resin that seals the laminate. A flat film capacitor element includes a flat film-like anode electrode foil, a dielectric layer formed on the surface of the anode electrode foil, a first dam formed on the surface of the dielectric layer, and a first dam. A solid electrolyte layer formed within a region regulated by. The conductive adhesive is formed within a region regulated by the second dam that overlaps at least the first dam. The second dam is formed to cover the boundary between the solid electrolyte layer and the first dam.
 この構成を備えることで、導電性接着剤でコンデンサ素子と陰極用電極箔とを積層する場合においても、導電性接着剤が固体電解質層に接触することを抑制できる。すなわち、陽極と陰極との短絡が抑制される。 With this configuration, even when the capacitor element and the cathode electrode foil are laminated using a conductive adhesive, it is possible to suppress the conductive adhesive from coming into contact with the solid electrolyte layer. That is, short circuit between the anode and the cathode is suppressed.
 したがって、本発明の目的は、陽極と陰極との間の短絡を抑制し、高い信頼性を実現できる固体電解コンデンサを提供することにある。 Therefore, an object of the present invention is to provide a solid electrolytic capacitor that can suppress short circuits between an anode and a cathode and achieve high reliability.
図1は、第1の実施形態に係る固体電解コンデンサの構成を示す側面断面図である。FIG. 1 is a side sectional view showing the configuration of a solid electrolytic capacitor according to a first embodiment. 図2(A)は、個片化前のコンデンサ素子と陰極電極との組の構成を示す側面断面図であり、図2(B)は、個片化前のコンデンサ素子の構成を示す側面断面図であり、図2(C)は、個片化後のコンデンサ素子と陰極電極との組の構成を示す側面断面図である。FIG. 2(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation, and FIG. 2(B) is a side cross-sectional view showing the configuration of the capacitor element before singulation. FIG. 2C is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode after being separated into pieces. 図3(A)は、本発明のコンデンサ素子と陰極電極との構造を概略的に示した図であり、図3(B)は、従来構成のコンデンサ素子と陰極電極との構造を概略的に示した図である。FIG. 3(A) is a diagram schematically showing the structure of the capacitor element and cathode electrode of the present invention, and FIG. 3(B) is a diagram schematically showing the structure of the capacitor element and cathode electrode of the conventional configuration. FIG. 図4(A)は、本発明のコンデンサ素子と陰極電極との構造を概略的に示した平面図であり、図4(B)は、従来構成のコンデンサ素子と陰極電極との構造を概略的に示した平面図である。FIG. 4(A) is a plan view schematically showing the structure of the capacitor element and cathode electrode of the present invention, and FIG. 4(B) is a plan view schematically showing the structure of the capacitor element and cathode electrode of the conventional configuration. FIG. 図5は、本実施形態に係る固体電解コンデンサの製造方法の概略フローの一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment. 図6は、コンデンサ素子シートの形成工程の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a process for forming a capacitor element sheet. 図7(A)は、個片化前のコンデンサ素子の陽極電極および誘電体層の形状を示す外観斜視図であり、図7(B)は、個片化前のコンデンサ素子の形状を示す外観斜視図である。FIG. 7(A) is an external perspective view showing the shape of the anode electrode and dielectric layer of the capacitor element before singulation, and FIG. 7(B) is an external appearance showing the shape of the capacitor element before singulation. FIG. 図8は、マルチ状態での外観図である。FIG. 8 is an external view in the multi-state. 図9は、個片化前の陰極電極の形状を示す外観斜視図である。FIG. 9 is an external perspective view showing the shape of the cathode electrode before singulation. 図10は、シート積層体の形成工程の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of a process for forming a sheet laminate. 図11(A)、図11(B)は、コンデンサ素子シートに第2ダムを形成した状態を示す外観斜視図である。FIGS. 11(A) and 11(B) are external perspective views showing a state in which a second dam is formed on the capacitor element sheet. 図12(A)、図12(B)は、コンデンサ素子シートに第2ダムおよび接着剤を形成した状態を示す外観斜視図である。12(A) and 12(B) are external perspective views showing a state in which a second dam and an adhesive are formed on a capacitor element sheet. 図13(A)、図13(B)は、コンデンサ素子シートと陰極電極シートとを積層する状態を示す分解斜視図である。13(A) and 13(B) are exploded perspective views showing a state in which a capacitor element sheet and a cathode electrode sheet are laminated. 図14(A)は、マルチ状態でのコンデンサ素子シートと陰極電極シートとの積層状態を示す分解斜視図であり、図14(B)は、マルチ状態でのコンデンサ素子シートと陰極電極シートとの積層状態を示す外観斜視図である。FIG. 14(A) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state, and FIG. 14(B) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state. FIG. 3 is an external perspective view showing a stacked state. 図15は、マルチ状態でのコンデンサ素子シートと陰極電極シートとの状態を示す分解斜視図である。FIG. 15 is an exploded perspective view showing the state of the capacitor element sheet and the cathode electrode sheet in a multi-state state. 図16(A)は、第2の実施形態における個片化前のコンデンサ素子と陰極電極との組の構成を示す側面断面図であり、図16(B)は、個片化前のコンデンサ素子の構成を示す側面断面図である。FIG. 16(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation in the second embodiment, and FIG. FIG.
 [第1の実施形態]
 本発明の第1の実施形態に係る固体電解コンデンサ、および、この固体電解コンデンサの製造方法について、図を参照して説明する。
[First embodiment]
A solid electrolytic capacitor according to a first embodiment of the present invention and a method for manufacturing the solid electrolytic capacitor will be described with reference to the drawings.
 (固体電解コンデンサ1の概略的な構成の説明)
 まず、本発明の実施形態に係る固体電解コンデンサの構造について説明する。図1は、第1の実施形態に係る固体電解コンデンサの構成を示す側面断面図である。なお、図1では、図を見やすくするため、絶縁性樹脂および外部電極のみをハッチングしている。図2(A)は、個片化前のコンデンサ素子と陰極電極との組の構成を示す側面断面図である。図2(B)は、個片化前のコンデンサ素子の構成を示す側面断面図である。図2(C)は、個片化後のコンデンサ素子と陰極電極との組の構成を示す側面断面図である。
(Explanation of the schematic configuration of solid electrolytic capacitor 1)
First, the structure of a solid electrolytic capacitor according to an embodiment of the present invention will be described. FIG. 1 is a side sectional view showing the configuration of a solid electrolytic capacitor according to a first embodiment. Note that in FIG. 1, only the insulating resin and the external electrodes are hatched to make the diagram easier to read. FIG. 2(A) is a side sectional view showing the configuration of a set of a capacitor element and a cathode electrode before being separated into pieces. FIG. 2(B) is a side cross-sectional view showing the structure of the capacitor element before being separated into pieces. FIG. 2(C) is a side sectional view showing the configuration of a set of a capacitor element and a cathode electrode after being separated into pieces.
 図1、図2(A)、図2(B)、図2(C)に示すように、固体電解コンデンサ1は、コンデンサ素子積層体100、絶縁性樹脂50、外部電極61、および、外部電極62を備える。コンデンサ素子積層体100は、複数の平膜状のコンデンサ素子10、複数の平膜状の陰極電極20、第2ダム30、および、接着剤40を備える。なお、図1では、平膜状のコンデンサ素子10および陰極電極の個数(枚数)は、それぞれに4であるが、これに限るものではない。なお、陰極電極20が本発明における「陰極用電極箔」に対応する。図1、図2(A)、図2(B)、図2(C)における側面断面図は、図1におけるコンデンサ素子積層体100の天面101と底面102に直交する面による断面図である。 As shown in FIGS. 1, 2(A), 2(B), and 2(C), the solid electrolytic capacitor 1 includes a capacitor element laminate 100, an insulating resin 50, an external electrode 61, and an external electrode. 62. The capacitor element laminate 100 includes a plurality of flat film-shaped capacitor elements 10 , a plurality of flat film-shaped cathode electrodes 20 , a second dam 30 , and an adhesive 40 . In FIG. 1, the number of flat film capacitor elements 10 and the number of cathode electrodes is four, but the number is not limited to this. Note that the cathode electrode 20 corresponds to the "cathode electrode foil" in the present invention. The side sectional views in FIGS. 1, 2(A), 2(B), and 2(C) are sectional views taken along a plane perpendicular to the top surface 101 and bottom surface 102 of the capacitor element laminate 100 in FIG. .
 図2(B)に示すように、コンデンサ素子10は、平膜状の陽極電極11、誘電体層12、および、CP層(固体電解質層)13を備える。 As shown in FIG. 2(B), the capacitor element 10 includes a flat film-shaped anode electrode 11, a dielectric layer 12, and a CP layer (solid electrolyte layer) 13.
 図2では詳細な構造の図示は割愛されているが、陽極電極11は、多数の孔を備える。言い換えれば、陽極電極11は、ポーラス状態(多孔質体)である。陽極電極11の一方側の多孔質部分と芯金部分と他方側の多孔質部分の厚みの比は、1:1:1程度となっている。誘電体層12は、陽極電極11の外面を覆う。図2では陽極電極11の詳細な構造の図示が割愛されているため、誘電体層12は模式的に陽極電極11の巨視的な表面を覆っているように図示されている。実際には、誘電体層12は、陽極電極11の巨視的な表面のみならず、陽極電極11の多数の孔の表面も覆っている。なお、陽極電極11が本発明における「陽極用電極箔」に対応する。 Although the detailed structure is not illustrated in FIG. 2, the anode electrode 11 includes a large number of holes. In other words, the anode electrode 11 is in a porous state (porous body). The ratio of the thicknesses of the porous portion and core metal portion on one side of the anode electrode 11 to the porous portion on the other side is approximately 1:1:1. Dielectric layer 12 covers the outer surface of anode electrode 11 . Since the detailed structure of the anode electrode 11 is not shown in FIG. 2, the dielectric layer 12 is schematically shown covering the macroscopic surface of the anode electrode 11. In reality, the dielectric layer 12 covers not only the macroscopic surface of the anode electrode 11 but also the surfaces of many holes in the anode electrode 11 . Note that the anode electrode 11 corresponds to the "anode electrode foil" in the present invention.
 CP層13は、誘電体層12の表面を覆う。CP層13は、枠状の第1ダム14の内部に形成されている。第1ダム14は、絶縁性を有する。第1ダム14によって、CP層13の形成領域が規制される。なお、第1の実施形態では、後述する製造方法で説明されるように、第1ダム14が枠状に形成された後、第1ダム14の内部にCP層13が形成される。しかしながら、例えば最初から個片化された状態でコンデンサ素子10を作成する場合など、コンデンサ素子10の製造方法によっては、第1ダム14は、枠状に形成されていなくてもよい。すなわち、第1ダム14は、1辺に形成されていてもよいし、角を有する2辺に形成されていてもよい。さらには、平面視において対向する2辺に形成されている構造であってもよい。 The CP layer 13 covers the surface of the dielectric layer 12. The CP layer 13 is formed inside a frame-shaped first dam 14. The first dam 14 has insulation properties. The region in which the CP layer 13 is formed is regulated by the first dam 14 . Note that in the first embodiment, as explained in the manufacturing method described later, after the first dam 14 is formed into a frame shape, the CP layer 13 is formed inside the first dam 14. However, depending on the manufacturing method of the capacitor element 10, for example, when the capacitor element 10 is created in a singulated state from the beginning, the first dam 14 may not be formed in a frame shape. That is, the first dam 14 may be formed on one side, or may be formed on two sides having corners. Furthermore, the structure may be formed on two opposing sides in a plan view.
 CP層13は、内層CP(内層固体電解質層)131と外層CP(外層固体電解質層)132との積層構造である。内層CP131は、誘電体層12の表面に形成され、外層CP132は、内層CP131の表面に形成される。 The CP layer 13 has a laminated structure of an inner layer CP (inner solid electrolyte layer) 131 and an outer layer CP (outer solid electrolyte layer) 132. The inner layer CP131 is formed on the surface of the dielectric layer 12, and the outer layer CP132 is formed on the surface of the inner layer CP131.
 複数のコンデンサ素子10と複数の陰極電極20とは、それぞれの平膜面が平行になるように、且つ、平面視して重なり合うように交互に積層されている。 The plurality of capacitor elements 10 and the plurality of cathode electrodes 20 are alternately stacked so that their flat film surfaces are parallel and overlap in plan view.
 隣り合うコンデンサ素子10と陰極電極20との間には、第2ダム30および接着剤40が配設される。第2ダム30は、絶縁性を有する。接着剤40は、導電性を有する。なお、接着剤40が本発明における「導電性接着剤」に対応する。 A second dam 30 and an adhesive 40 are provided between adjacent capacitor elements 10 and cathode electrodes 20. The second dam 30 has insulation properties. Adhesive 40 has electrical conductivity. Note that the adhesive 40 corresponds to the "conductive adhesive" in the present invention.
 第2ダム30は枠状である。接着剤40は、第2ダム30で規定される枠の内側に配設される。この接着剤40によって、隣り合うコンデンサ素子10と陰極電極20とは接着する。 The second dam 30 has a frame shape. The adhesive 40 is placed inside the frame defined by the second dam 30. Adjacent capacitor elements 10 and cathode electrodes 20 are bonded together by this adhesive 40 .
 図2(B)に示すように、第2ダム30は外層CP132に重なるように形成されている。言い換えれば、第1ダム14の端部と外層CP132の端部を覆うように形成されている。より詳細な構造については後述する。なお、第2ダム30は、例えば絶縁性樹脂等の絶縁材料からなる。 As shown in FIG. 2(B), the second dam 30 is formed to overlap the outer layer CP 132. In other words, it is formed to cover the end of the first dam 14 and the end of the outer layer CP132. A more detailed structure will be described later. Note that the second dam 30 is made of an insulating material such as an insulating resin, for example.
 第2ダム30はダム調整部30Lを有する。このダム調整部30Lは第2ダム30を塗布する際の体積を制御するために用いられる。言い換えれば、ダム調整部30Lを用いることによって、積層時における第2ダム30の不必要な広がりが抑制される。この第2ダム30が不必要に押し広げられることによって、第2ダム30は、例えば陽極用貫通穴19C,19Lや、陰極用貫通穴29C,29L(詳細な構成を以下に示す)に入り込む。しかしながら、ダム調整部30Lを有することによって絶縁性樹脂50によるモールドを阻害し、成型不良が引き起こされることを抑制できる。 The second dam 30 has a dam adjustment section 30L. This dam adjustment section 30L is used to control the volume when applying the second dam 30. In other words, by using the dam adjustment section 30L, unnecessary expansion of the second dam 30 during stacking is suppressed. By unnecessarily expanding the second dam 30, the second dam 30 enters, for example, the anode through holes 19C and 19L and the cathode through holes 29C and 29L (detailed configurations of which are shown below). However, by having the dam adjustment portion 30L, it is possible to inhibit molding by the insulating resin 50 and prevent molding defects from occurring.
 ダム調整部30Lは、印刷パターンによって形成される。ダム調整部30Lは貫通穴であっても、凹部のように第2ダム30に底面を有する形状であってもよい。また、第2ダム30の体積に応じてダム調整部30Lの大きさ(幅、長さ)を形成するとよい。 The dam adjustment section 30L is formed by a printed pattern. The dam adjustment portion 30L may be a through hole or may have a shape having a bottom surface on the second dam 30 like a recessed portion. Further, it is preferable to form the size (width, length) of the dam adjustment portion 30L according to the volume of the second dam 30.
 なお、コンデンサ素子10と陰極電極20を加熱加圧することによって、第2ダム30は押し広げられる。このことによって、ダム調整部30Lとその他の部分との厚みの差は小さくなる。 Note that the second dam 30 is expanded by heating and pressurizing the capacitor element 10 and the cathode electrode 20. This reduces the difference in thickness between the dam adjustment portion 30L and other portions.
 このような積層状態において、複数のコンデンサ素子10の第1端10E1(図2(C)参照)は、側面視して略同じ位置となる。同様に、複数のコンデンサ素子10の第2端10E2(図2(C)参照)は、側面視して略同じ位置となる。さらに、複数の陰極電極20の第1端20E1(図2(C)参照)は、側面視して略同じ位置となる。同様に、複数の陰極電極20の第2端20E2(図2(C)参照)は、側面視して略同じ位置となる。 In such a stacked state, the first ends 10E1 (see FIG. 2C) of the plurality of capacitor elements 10 are at approximately the same position when viewed from the side. Similarly, the second ends 10E2 (see FIG. 2C) of the plurality of capacitor elements 10 are at substantially the same position when viewed from the side. Furthermore, the first ends 20E1 (see FIG. 2C) of the plurality of cathode electrodes 20 are at substantially the same position when viewed from the side. Similarly, the second ends 20E2 (see FIG. 2C) of the plurality of cathode electrodes 20 are at substantially the same position when viewed from the side.
 複数のコンデンサ素子10の第1端10E1と複数の陰極電極20の第2端20E2とは、コンデンサ素子積層体100の第1端側に配置される。複数のコンデンサ素子10の第1端10E1は、複数の陰極電極20の第2端20E2よりも外方に突出している。 The first ends 10E1 of the plurality of capacitor elements 10 and the second ends 20E2 of the plurality of cathode electrodes 20 are arranged on the first end side of the capacitor element stack 100. The first ends 10E1 of the plurality of capacitor elements 10 protrude further outward than the second ends 20E2 of the plurality of cathode electrodes 20.
 複数のコンデンサ素子10の第2端10E2と複数の陰極電極20の第1端20E1とは、コンデンサ素子積層体100の第2端側に配置される。複数の陰極電極20の第1端20E1は、複数のコンデンサ素子10の第2端10E2よりも外方に突出している。 The second ends 10E2 of the plurality of capacitor elements 10 and the first ends 20E1 of the plurality of cathode electrodes 20 are arranged on the second end side of the capacitor element stack 100. The first ends 20E1 of the plurality of cathode electrodes 20 protrude further outward than the second ends 10E2 of the plurality of capacitor elements 10.
 このような構造によって、コンデンサ素子積層体100は実現される。 With such a structure, the capacitor element stack 100 is realized.
 コンデンサ素子積層体100は、絶縁性樹脂50によって封止される。より具体的には、絶縁性樹脂50は、複数のコンデンサ素子10の第1端10E1(陽極電極11の第1端10E1)および複数の陰極電極20の第1端20E1を除き、コンデンサ素子積層体100を覆う。 The capacitor element stack 100 is sealed with an insulating resin 50. More specifically, the insulating resin 50 is applied to the capacitor element laminate except for the first ends 10E1 of the plurality of capacitor elements 10 (the first ends 10E1 of the anode electrodes 11) and the first ends 20E1 of the plurality of cathode electrodes 20. Cover 100.
 外部電極61は、絶縁性樹脂50の第1端(陽極電極11の第1端10E1)を覆う。外部電極61は、複数のコンデンサ素子10の陽極電極11の第1端10E1に接続する。 The external electrode 61 covers the first end of the insulating resin 50 (the first end 10E1 of the anode electrode 11). The external electrode 61 is connected to the first end 10E1 of the anode electrode 11 of the plurality of capacitor elements 10.
 外部電極62は、絶縁性樹脂50の第2端(陰極電極20の第1端20E1)を覆う。外部電極62は、複数の陰極電極20の第1端20E1に接続する。 The external electrode 62 covers the second end of the insulating resin 50 (the first end 20E1 of the cathode electrode 20). The external electrode 62 is connected to the first end 20E1 of the plurality of cathode electrodes 20.
 以上の構成によって、固体電解コンデンサ1は実現される。 With the above configuration, the solid electrolytic capacitor 1 is realized.
 (固体電解コンデンサ1の詳細な構造の説明)
 次に、図3(A)、図3(B)を用いて、固体電解コンデンサ1を構成するコンデンサ素子10と陰極電極20との詳細な構造を説明する。図3(A)は、コンデンサ素子10と陰極電極20との構造を概略的に示した側面断面図であり、上述した図2(A)の構造を拡大した図である。図3(B)は、従来構成によるコンデンサ素子10と陰極電極20との構造を概略的に示した側面断面図である。図3(A)、図3(B)においては、コンデンサ素子10に陰極電極20が配置される一方主面の構造を用いて説明するが、一方主面に対向する他方主面においても同様の構造である。図3(A)、図3(B)における側面断面図は、図1におけるコンデンサ素子積層体100の天面101と底面102に直交する面による断面図である。
(Detailed structure description of solid electrolytic capacitor 1)
Next, the detailed structure of the capacitor element 10 and the cathode electrode 20 that constitute the solid electrolytic capacitor 1 will be described using FIGS. 3(A) and 3(B). FIG. 3(A) is a side sectional view schematically showing the structure of the capacitor element 10 and the cathode electrode 20, and is an enlarged view of the structure of FIG. 2(A) described above. FIG. 3(B) is a side sectional view schematically showing the structure of the capacitor element 10 and the cathode electrode 20 according to the conventional structure. In FIGS. 3(A) and 3(B), the structure of one main surface of the capacitor element 10 on which the cathode electrode 20 is disposed will be explained, but the same structure can be applied to the other main surface opposite to the one main surface. It is a structure. The side cross-sectional views in FIGS. 3A and 3B are cross-sectional views taken along a plane perpendicular to the top surface 101 and bottom surface 102 of the capacitor element laminate 100 in FIG.
 なお、それぞれの構造は説明を分かりやすくするため、各構成を拡大し、かつ誇張して表現している。また、図3(A)、図3(B)では、コンデンサ素子10と陰極電極20を1組のみ図示しているが、固体電解コンデンサ1はこの組を複数積層して形成されている。 In addition, each structure is enlarged and exaggerated to make the explanation easier to understand. Although FIGS. 3A and 3B show only one set of the capacitor element 10 and the cathode electrode 20, the solid electrolytic capacitor 1 is formed by laminating a plurality of these sets.
 図3(A)に示すように、第1ダム14で囲まれる領域内に外層CP132が形成される。この第1ダム14で形成される領域の内側と外層CP132が形成された領域との境目には境界部BDが存在する。この境界部BDが存在することによって、誘電体層12が露出する。便宜的に、境界部BDと誘電体層12が露出している箇所は同じ部分を示している。 As shown in FIG. 3(A), an outer layer CP 132 is formed within the region surrounded by the first dam 14. A boundary portion BD exists at the boundary between the inside of the area formed by the first dam 14 and the area where the outer layer CP132 is formed. Due to the existence of this boundary portion BD, the dielectric layer 12 is exposed. For convenience, the boundary portion BD and the exposed portion of the dielectric layer 12 are shown as the same portion.
 しかしながら、本発明においては、第2ダム30がこの境界部BDを覆うように形成されている。すなわち、誘電体層12が露出していた場合でも、この露出している部分には第2ダム30が入り込む。よって、誘電体層12は露出しない。 However, in the present invention, the second dam 30 is formed to cover this boundary portion BD. That is, even if the dielectric layer 12 is exposed, the second dam 30 enters the exposed portion. Therefore, the dielectric layer 12 is not exposed.
 この構成のコンデンサ素子10と複数の陰極電極20とを接着剤40を介して積層することによって、接着剤40と陽極電極11との接触を抑制することができる。すなわち、陽極と陰極との短絡が抑制される。 By laminating the capacitor element 10 with this configuration and the plurality of cathode electrodes 20 via the adhesive 40, contact between the adhesive 40 and the anode electrode 11 can be suppressed. That is, short circuit between the anode and the cathode is suppressed.
 次に、図3(A)、図4(A)、図4(B)を用いて、より詳細な構成について説明する。図4(A)は、コンデンサ素子10に接着剤40を配置した概要を示す平面図である。図4(B)は、従来構成におけるコンデンサ素子10に接着剤40を配置した概要を示す平面図である。なお、図4(A)、図4(B)においては、誘電体層12を分かり易く説明するため、他の図とハッチングを異ならせており、それぞれの構造は説明を分かりやすくするため、各構成を拡大し、かつ誇張して表現している。 Next, a more detailed configuration will be described using FIG. 3(A), FIG. 4(A), and FIG. 4(B). FIG. 4(A) is a plan view schematically showing the arrangement of the adhesive 40 on the capacitor element 10. FIG. 4(B) is a plan view schematically showing the arrangement of the adhesive 40 on the capacitor element 10 in a conventional configuration. Note that in FIGS. 4(A) and 4(B), in order to explain the dielectric layer 12 in an easy-to-understand manner, the hatching is different from that in other figures, and each structure is The composition is expanded and exaggerated.
 図3(A)、図4(A)に示すように、第1ダム14の内周部14Pと、第2ダム30の内周部30Pの位置関係を比較する。本発明においては、内周部30Pは、内周部14Pよりも全周に亘って、距離dにおいてコンデンサ素子10の内部(平面視した内側)に形成されている。すなわち、第2ダム30は、距離dにおいて第1ダム14よりもコンデンサ素子10の内部に広がるように形成されている。なお、距離dは約50μmから約100μmの範囲であるとよい。 As shown in FIGS. 3(A) and 4(A), the positional relationship between the inner circumferential portion 14P of the first dam 14 and the inner circumferential portion 30P of the second dam 30 is compared. In the present invention, the inner peripheral part 30P is formed inside the capacitor element 10 (inner side in plan view) at a distance d from the inner peripheral part 14P over the entire circumference. That is, the second dam 30 is formed to extend further into the capacitor element 10 than the first dam 14 at the distance d. Note that the distance d is preferably in a range of about 50 μm to about 100 μm.
 このように構成することで、境界部BDは第2ダム30によって覆われる。すなわち、接着剤40が加熱加圧等の処理によって濡れ広がった場合でも、接着剤40が誘電体層12(境界部BD)に接触しない。すなわち、陽極電極11と陰極電極20との短絡を抑制できる。 With this configuration, the boundary portion BD is covered by the second dam 30. That is, even if the adhesive 40 wets and spreads through a process such as heating and pressing, the adhesive 40 does not come into contact with the dielectric layer 12 (boundary portion BD). That is, short circuit between the anode electrode 11 and the cathode electrode 20 can be suppressed.
 (固体電解コンデンサ1の製造方法)
 上述の構成からなる固体電解コンデンサ1は、例えば、次のように製造される。図5は、本実施形態に係る固体電解コンデンサの製造方法の概略フローの一例を示すフローチャートである。
(Method for manufacturing solid electrolytic capacitor 1)
The solid electrolytic capacitor 1 having the above-described configuration is manufactured, for example, as follows. FIG. 5 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment.
 コンデンサ素子シートを形成する(図5:S11)。コンデンサ素子シートには、それぞれの異なる固体電解コンデンサ1を形成する複数のコンデンサ素子10が配列された状態で形成されている。 A capacitor element sheet is formed (FIG. 5: S11). A plurality of capacitor elements 10 forming different solid electrolytic capacitors 1 are arranged on the capacitor element sheet.
 次に、コンデンサ素子シートと陰極電極シートとを接着剤40を挟んで積層し、シート積層体を形成する(図5:S12)。なお、陰極電極シートには、それぞれの異なる固体電解コンデンサ1を形成する複数の陰極電極20が配列された状態で形成されている。これにより、複数のコンデンサ素子積層体100が平面的に配列された構造体が形成される。言い換えれば、シート積層体とは、複数のコンデンサ素子積層体100が平面的に配列されたものである。 Next, the capacitor element sheet and the cathode electrode sheet are laminated with the adhesive 40 in between to form a sheet laminate (FIG. 5: S12). Note that a plurality of cathode electrodes 20 forming different solid electrolytic capacitors 1 are arranged in the cathode electrode sheet. As a result, a structure in which a plurality of capacitor element laminates 100 are arranged in a plane is formed. In other words, the sheet laminate is one in which a plurality of capacitor element laminates 100 are arranged in a plane.
 次に、シート積層体を絶縁性樹脂50で封止する(図5:S13)。詳細は後述するが、この際に、シート積層体の上面から下面までを貫通する貫通穴をシート積層体に備え、コンプレッションモールドによって樹脂封止を行う。 Next, the sheet stack is sealed with insulating resin 50 (FIG. 5: S13). Although details will be described later, at this time, a through hole penetrating from the upper surface to the lower surface of the sheet laminate is provided in the sheet laminate, and resin sealing is performed by compression molding.
 この絶縁性樹脂50での封止までは、固体電解コンデンサ1が個片化される前のマルチ状態(複数の固体電解コンデンサ1となるものが配列された状態)で行われる。 This sealing with the insulating resin 50 is performed in a multi-state state (a state in which a plurality of solid electrolytic capacitors 1 are arranged) before the solid electrolytic capacitors 1 are separated into individual pieces.
 次に、絶縁性樹脂50で封止されたシート積層体を切断し、個片化する(図5:S14)。具体的には、後述する図13(B)に示す切断線E11、E12、S11、S12に沿って切断を行う。これにより、外部電極が形成されていない状態の複数の固体電解コンデンサ1(固体電解コンデンサ1の素体と称する)が形成される。この後、固体電解コンデンサ1の素体に絶縁性樹脂50の2次封止を行う。より具体的には、固体電解コンデンサ1の素体の側面(切断線S11、S12で切断した面(上面、下面、陽極電極11および陰極電極20が露出する端面とは異なる側面))を、絶縁性樹脂50の2次封止によって覆う。これにより、個片化時に不要に露出する陽極電極11および陰極電極20を絶縁性樹脂50で覆う。 Next, the sheet stack sealed with the insulating resin 50 is cut into individual pieces (FIG. 5: S14). Specifically, cutting is performed along cutting lines E11, E12, S11, and S12 shown in FIG. 13(B), which will be described later. As a result, a plurality of solid electrolytic capacitors 1 (referred to as elements of solid electrolytic capacitors 1) in which no external electrodes are formed are formed. Thereafter, the element body of the solid electrolytic capacitor 1 is subjected to secondary sealing with an insulating resin 50. More specifically, the side surface of the element body of the solid electrolytic capacitor 1 (the surface cut along the cutting lines S11 and S12 (the top surface, the bottom surface, the side surface different from the end surface where the anode electrode 11 and the cathode electrode 20 are exposed)) is insulated. It is covered by secondary sealing with a synthetic resin 50. Thereby, the anode electrode 11 and the cathode electrode 20 that are unnecessarily exposed during singulation are covered with the insulating resin 50.
 次に、固体電解コンデンサ1の素体の端面に外部電極61および外部電極62を形成する(図5:S15)。 Next, external electrodes 61 and 62 are formed on the end face of the element body of solid electrolytic capacitor 1 (FIG. 5: S15).
 次に、各工程をより具体的に説明する。 Next, each step will be explained in more detail.
 (コンデンサ素子シートの形成工程)
 図6は、コンデンサ素子シートの形成工程の一例を示すフローチャートである。図7(A)は、個片化前のコンデンサ素子の陽極電極および誘電体層の形状を示す外観斜視図であり、図7(B)は、個片化前のコンデンサ素子の形状を示す外観斜視図である。図8は、マルチ状態での外観図である。
(Formation process of capacitor element sheet)
FIG. 6 is a flowchart showing an example of a process for forming a capacitor element sheet. FIG. 7(A) is an external perspective view showing the shape of the anode electrode and dielectric layer of the capacitor element before singulation, and FIG. 7(B) is an external appearance showing the shape of the capacitor element before singulation. FIG. FIG. 8 is an external view in the multi-state.
 陽極電極11に化成処理を行って、誘電体層12を形成する(図6:S111)。この際、陽極電極11の表面には、エッチングによって多数の孔が形成されており、陽極電極11の表面付近は多孔質体となっている。誘電体層12は、孔の内面も含めた陽極電極11の表面を覆っている。 A chemical conversion treatment is performed on the anode electrode 11 to form the dielectric layer 12 (FIG. 6: S111). At this time, a large number of holes are formed on the surface of the anode electrode 11 by etching, and the vicinity of the surface of the anode electrode 11 is a porous body. The dielectric layer 12 covers the surface of the anode electrode 11 including the inner surface of the hole.
 次に、陽極電極11に陽極用貫通穴を形成する(図6:S112)。より具体的には、図7(A)に示すように、陽極電極11には、複数の円筒形の陽極用貫通穴19Cと、溝状の陽極用貫通穴19Lとが形成される。複数の円筒形の陽極用貫通穴19Cと、溝状の陽極用貫通穴19Lとは、複数の陽極電極11となる部分の並ぶ方向に沿って、交互に配列されている。複数の円筒形の陽極用貫通穴19Cは、陽極電極11の第1端10E1を実現する位置に形成され、溝状の陽極用貫通穴19Lは、隣り合う陽極電極11となる部分を跨ぐ位置、および、隣り合う陽極電極11の第2端10E2を実現する位置に形成される。 Next, an anode through hole is formed in the anode electrode 11 (FIG. 6: S112). More specifically, as shown in FIG. 7A, a plurality of cylindrical anode through holes 19C and groove-shaped anode through holes 19L are formed in the anode electrode 11. The plurality of cylindrical anode through-holes 19C and the groove-shaped anode through-holes 19L are arranged alternately along the direction in which the portions that will become the plurality of anode electrodes 11 are lined up. The plurality of cylindrical anode through holes 19C are formed at positions that realize the first ends 10E1 of the anode electrodes 11, and the groove-shaped anode through holes 19L are formed at positions that straddle the portions that will become adjacent anode electrodes 11. And, it is formed at a position that realizes the second end 10E2 of the adjacent anode electrodes 11.
 次に、誘電体層12の表面にCP層(固体電解質層)13を形成する(図6:S113)。より具体的には、図7(B)に示すように、枠状の開口を有する第1ダム14を形成する。そして、第1ダム14の開口内に、CP層13(内層CP131と外層CP132との積層構造)を形成する。 Next, a CP layer (solid electrolyte layer) 13 is formed on the surface of the dielectric layer 12 (FIG. 6: S113). More specifically, as shown in FIG. 7(B), a first dam 14 having a frame-shaped opening is formed. Then, the CP layer 13 (a laminated structure of the inner layer CP131 and the outer layer CP132) is formed in the opening of the first dam 14.
 この構造は、図8に示すように、複数のコンデンサ素子10(陽極電極11、誘電体層12、CP層13、および、第1ダム14からなる構造体)が二次元で配列されたマルチ状態で行われる。 As shown in FIG. 8, this structure has a multi-state structure in which a plurality of capacitor elements 10 (a structure consisting of an anode electrode 11, a dielectric layer 12, a CP layer 13, and a first dam 14) are arranged in two dimensions. It will be held in
 (陰極電極シートの形成工程)
 図9は、個片化前の陰極電極の形状を示す外観斜視図である。
(Cathode electrode sheet formation process)
FIG. 9 is an external perspective view showing the shape of the cathode electrode before singulation.
 図9に示すように、陰極電極20には、複数の円筒形の陰極用貫通穴29Cと、溝状の陰極用貫通穴29Lとが形成される。複数の円筒形の陰極用貫通穴29Cと、溝状の陰極用貫通穴29Lとは、複数の陰極電極20となる部分の並ぶ方向に沿って、交互に配列されている。複数の円筒形の陰極用貫通穴29Cは、陰極電極20の第1端20E1を実現する位置に形成され、溝状の陰極用貫通穴29Lは、隣り合う陰極電極20となる部分を跨ぐ位置、および、隣り合う陰極電極20の第2端20E2を実現する位置に形成される。 As shown in FIG. 9, the cathode electrode 20 is formed with a plurality of cylindrical cathode through holes 29C and groove-shaped cathode through holes 29L. The plurality of cylindrical cathode through-holes 29C and the groove-shaped cathode through-holes 29L are arranged alternately along the direction in which the portions that will become the plurality of cathode electrodes 20 are lined up. The plurality of cylindrical cathode through holes 29C are formed at positions that realize the first ends 20E1 of the cathode electrodes 20, and the groove-shaped cathode through holes 29L are formed at positions that straddle the portions that will become adjacent cathode electrodes 20, And, it is formed at a position that realizes the second end 20E2 of the adjacent cathode electrodes 20.
 (シート積層体の形成工程)
 図10は、シート積層体の形成工程の一例を示すフローチャートである。図11は、コンデンサ素子シートに第2ダムを形成した状態を示す外観斜視図であり、図11(A)はマルチ状態を示し、図11(B)は1個のコンデンサ素子の部分を示す。図12は、コンデンサ素子シートに第2ダムおよび接着剤を形成した状態を示す外観斜視図であり、図12(A)はマルチ状態を示し、図12(B)は1個のコンデンサ素子の部分を示す。図13(A)、図13(B)は、コンデンサ素子シートと陰極電極シートとを積層する状態を示す分解斜視図である。図13(A)、図13(B)は、1個の固体電解コンデンサに該当する部分を示す。図14(A)は、マルチ状態でのコンデンサ素子シートと陰極電極シートとの積層状態を示す分解斜視図であり、図14(B)は、マルチ状態でのコンデンサ素子シートと陰極電極シートとの積層状態を示す外観斜視図である。図15は、コンデンサ素子シートと陰極電極シートとの積層し、加熱加圧した後の構成を示す図である。
(Formation process of sheet laminate)
FIG. 10 is a flowchart illustrating an example of a process for forming a sheet laminate. FIG. 11 is an external perspective view showing a state in which a second dam is formed on a capacitor element sheet, FIG. 11(A) shows a multi-state state, and FIG. 11(B) shows a portion of one capacitor element. FIG. 12 is an external perspective view showing a state in which a second dam and adhesive are formed on a capacitor element sheet, FIG. 12(A) shows a multi-layer state, and FIG. 12(B) shows a portion of one capacitor element. shows. 13(A) and 13(B) are exploded perspective views showing a state in which a capacitor element sheet and a cathode electrode sheet are laminated. 13(A) and 13(B) show portions corresponding to one solid electrolytic capacitor. FIG. 14(A) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state, and FIG. 14(B) is an exploded perspective view showing a laminated state of a capacitor element sheet and a cathode electrode sheet in a multi-state. FIG. 3 is an external perspective view showing a stacked state. FIG. 15 is a diagram showing the structure after laminating a capacitor element sheet and a cathode electrode sheet and heating and pressurizing them.
 シート積層体に第2ダム30を形成する(図10:S121)。より具体的には、図11(A)、図11(B)に示すように、枠状の開口を有する第2ダム30を形成する。第2ダム30は、第1ダム14に重なる位置に形成される。さらには、第2ダム30は、第1ダム14の内枠よりも内側の領域まで形成されている。ただし、後述する加熱加圧時において第2ダム30が第1ダム14の内枠よりも内側に広がる形状であれば、印刷時の形状はこれに限るものではない。 A second dam 30 is formed on the sheet stack (FIG. 10: S121). More specifically, as shown in FIGS. 11(A) and 11(B), a second dam 30 having a frame-shaped opening is formed. The second dam 30 is formed at a position overlapping the first dam 14. Furthermore, the second dam 30 is formed to an area inside the inner frame of the first dam 14. However, the shape at the time of printing is not limited to this, as long as the second dam 30 has a shape that expands further inward than the inner frame of the first dam 14 during heating and pressurization, which will be described later.
 この際、第2ダム30は、ダム調整部30Lを有するように印刷パターンによって形成される。なお、図11(A)においては、ダム調整部30Lが第1ダム14の全体に形成されている例を示した。しかしながら、ダム調整部30Lが第1ダム14の全体に形成されていない構成であってもよい。すなわち、ダム調整部30Lの個数は、上述したダム調整部30Lの大きさと同様に、接着剤40の体積に応じて形成する構造であってもよい。 At this time, the second dam 30 is formed by a printed pattern so as to have a dam adjustment portion 30L. In addition, in FIG. 11(A), the example in which the dam adjustment part 30L is formed in the whole 1st dam 14 was shown. However, a configuration may be adopted in which the dam adjustment portion 30L is not formed over the entire first dam 14. That is, the number of dam adjustment parts 30L may be formed according to the volume of the adhesive 40, similar to the size of the dam adjustment parts 30L described above.
 次に、図12(A)、図12(B)に示すように、第2ダム30の開口内に接着剤40を配設する(図10:S122)。 Next, as shown in FIGS. 12(A) and 12(B), the adhesive 40 is placed inside the opening of the second dam 30 (FIG. 10: S122).
 次に、図13(A)、図13(B)、図14(A)、図14(B)に示すように、コンデンサ素子シートと陰極電極シートとを交互に積層する(図10:S123)。より具体的には、コンデンサ素子シートと陰極電極シートとは、次の条件を満たすように積層される。 Next, as shown in FIGS. 13(A), 13(B), 14(A), and 14(B), capacitor element sheets and cathode electrode sheets are alternately laminated (FIG. 10: S123) . More specifically, the capacitor element sheet and the cathode electrode sheet are laminated so as to satisfy the following conditions.
 ・積層方向に視て、コンデンサ素子シートにおける複数の円筒形の陽極用貫通穴19Cと、陰極電極シートにおける溝状の陰極用貫通穴29Lとは重なる。 
 ・積層方向に視て、コンデンサ素子シートにおける溝状の陽極用貫通穴19Lと、陰極電極シートにおける複数の円筒形の陰極用貫通穴29Cとは重なる。 
 ・積層方向に視て、コンデンサ素子シートにおける溝状の陽極用貫通穴19Lと、陰極電極シートにおける溝状の陰極用貫通穴29Lとは重なる。 
 そして、これらの貫通穴は、シート積層体に配列されたコンデンサ素子の個数に応じて複数形成される。したがって、シート積層体には、シート積層体の上面から下面まで貫通する貫通穴が複数形成される。
- When viewed in the stacking direction, the plurality of cylindrical anode through holes 19C in the capacitor element sheet and the groove-shaped cathode through holes 29L in the cathode electrode sheet overlap.
- When viewed in the stacking direction, the groove-shaped anode through-hole 19L in the capacitor element sheet overlaps with the plurality of cylindrical cathode through-holes 29C in the cathode electrode sheet.
- When viewed in the stacking direction, the groove-shaped anode through-hole 19L in the capacitor element sheet and the groove-shaped cathode through-hole 29L in the cathode electrode sheet overlap.
A plurality of these through holes are formed in accordance with the number of capacitor elements arranged in the sheet laminate. Therefore, a plurality of through holes are formed in the sheet stack, which penetrate from the top surface to the bottom surface of the sheet stack.
 次に、シート積層体を加熱加圧する(図10:S124)。これにより、コンデンサ素子シートと陰極電極シートとが接着剤40によって接着され、シート積層体が形成される。図15に示すように、この加熱加圧によって、接着剤40は平面的に広がる。しかしながら、第2ダム30が境界部BDを覆っているので、接着剤40と陽極電極11との接触を抑制することができる。すなわち、陽極と陰極との短絡が抑制される。 Next, the sheet laminate is heated and pressurized (FIG. 10: S124). Thereby, the capacitor element sheet and the cathode electrode sheet are adhered by the adhesive 40, and a sheet laminate is formed. As shown in FIG. 15, this heating and pressing causes the adhesive 40 to spread in a plane. However, since the second dam 30 covers the boundary portion BD, contact between the adhesive 40 and the anode electrode 11 can be suppressed. That is, short circuit between the anode and the cathode is suppressed.
 また、この加熱加圧によって、第2ダム30に形成されていたダム調整部30Lは塞がれる。これにより、第2ダム30の厚みを調整でき、第2ダム30の厚みが不必要に高くなることを抑制できる。したがって、シート積層体の低背化が実現できる。 Also, due to this heating and pressurization, the dam adjustment portion 30L formed in the second dam 30 is closed. Thereby, the thickness of the second dam 30 can be adjusted, and the thickness of the second dam 30 can be prevented from becoming unnecessarily high. Therefore, the height of the sheet laminate can be reduced.
 [第2の実施形態]
 次に、第2の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図16(A)は、第2の実施形態における個片化前のコンデンサ素子と陰極電極との組の構成を示す側面断面図であり、図16(B)は、個片化前のコンデンサ素子の構成を示す側面断面図である。
[Second embodiment]
Next, a solid electrolytic capacitor according to a second embodiment will be described with reference to the drawings. FIG. 16(A) is a side cross-sectional view showing the configuration of a set of a capacitor element and a cathode electrode before singulation in the second embodiment, and FIG. FIG.
 図16(A)、図16(B)に示すように、第2の実施形態に係る固体電解コンデンサ1Aは、第1の実施形態に係る固体電解コンデンサ1に対して、陰極電極20Aに第3ダム210を有する点において異なる。固体電解コンデンサ1Aの他の構成は、固体電解コンデンサ1と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 16(A) and 16(B), the solid electrolytic capacitor 1A according to the second embodiment has a third electrode on the cathode electrode 20A, unlike the solid electrolytic capacitor 1 according to the first embodiment. The difference is that a dam 210 is included. The other configuration of the solid electrolytic capacitor 1A is the same as that of the solid electrolytic capacitor 1, and the explanation of the similar parts will be omitted.
 図16(B)に示すように、陰極電極20Aは第3ダム210を備える。第3ダム210は、第2ダム30と同様に、例えば絶縁性樹脂等の絶縁材料からなる。 As shown in FIG. 16(B), the cathode electrode 20A includes a third dam 210. The third dam 210, like the second dam 30, is made of an insulating material such as an insulating resin.
 この陰極電極20Aとコンデンサ素子10とは、接着剤40を介して、加熱加圧することによって接着される。このような構成であっても、接着剤40と陽極電極11との接触を抑制できる。第3ダム210があることで、接着剤40が陰極電極20Aから外周に広がることをさらに抑制できる。 The cathode electrode 20A and the capacitor element 10 are bonded together through the adhesive 40 by heating and pressurizing. Even with such a configuration, contact between the adhesive 40 and the anode electrode 11 can be suppressed. The presence of the third dam 210 can further suppress the spread of the adhesive 40 from the cathode electrode 20A to the outer periphery.
 (固体電解コンデンサ1の各構成要素の具体的な材料等の一例の説明)
 (コンデンサ素子10)
 コンデンサ素子10、例えば以下の材料や厚みで実現される。
(Explanation of an example of specific materials, etc. of each component of solid electrolytic capacitor 1)
(Capacitor element 10)
The capacitor element 10 is realized using, for example, the following materials and thicknesses.
 陽極電極11は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム等の金属単体、または、これらの金属を含む合金等からなる。なお、陽極電極11は、アルミニウムまたはアルミニウム合金であることが好ましい。陽極電極11は、いわゆる弁作用を示す弁作用金属であればよい。 The anode electrode 11 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, or magnesium, or an alloy containing these metals. Note that the anode electrode 11 is preferably made of aluminum or an aluminum alloy. The anode electrode 11 may be any valve metal as long as it exhibits a so-called valve action.
 陽極電極11は、平板状であることが好ましく、陽極電極11の芯部(多孔質体の孔が到達しない中心部)の厚みは、5μm以上、100μm以下であることが好ましい。多孔質部(多孔質体の孔が形成されている部)の厚さ(片面の厚さ)は、5μm以上、200μm以下であることが好ましい。 It is preferable that the anode electrode 11 has a flat plate shape, and the thickness of the core part of the anode electrode 11 (the central part where the pores of the porous body do not reach) is preferably 5 μm or more and 100 μm or less. The thickness (thickness of one side) of the porous portion (the portion of the porous body in which pores are formed) is preferably 5 μm or more and 200 μm or less.
 誘電体層12は、陽極電極11の酸化皮膜からなることが好ましい。誘電体層12は、例えば、陽極電極11にアルミニウム箔を用いる場合、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩等を含む水溶液中で酸化させることで形成される。誘電体層12の厚みは1nm以上、100nm以下であることが好ましい。 The dielectric layer 12 is preferably made of an oxide film of the anode electrode 11. For example, when aluminum foil is used for the anode electrode 11, the dielectric layer 12 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium or ammonium salts. The thickness of the dielectric layer 12 is preferably 1 nm or more and 100 nm or less.
 内層CP131は、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子、もしくはチオフェン類を骨格とする導電性高分子のPEDOT[ポリ(3,4-エチレンジオキシチオフェン)]等で実現され、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSの層であってもよい。内層CP131は、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層12の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体部の表面に塗布して乾燥させる方法等によって形成される。 The inner layer CP131 is made of, for example, a conductive polymer having a backbone of pyrroles, thiophenes, anilines, etc., or PEDOT [poly(3,4-ethylenedioxythiophene)], which is a conductive polymer having a backbone of thiophenes. It may also be a layer of PEDOT:PSS, which is realized by a method such as PEDOT:PSS and is composited with polystyrene sulfonic acid (PSS) as a dopant. The inner layer CP131 is formed by forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer 12 using, for example, a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene. It is formed by applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric part and drying it.
 外層CP132の厚みは、2μm以上、20μm以下であることが好ましい。外層CP132の材料は、内層CP131の材料と同様である。 The thickness of the outer layer CP132 is preferably 2 μm or more and 20 μm or less. The material of the outer layer CP132 is the same as that of the inner layer CP131.
 接着剤40は、例えば、エポキシ樹脂、フェノール樹脂等の絶縁性樹脂と、カーボンや銀等の導電性粒子との混合物を用いるとよい。なお、接着剤40は、導電性高分子の分散液、またはバインダーが添加された導電性高分子の分散液等を用いてもよい。 The adhesive 40 is preferably a mixture of an insulating resin such as an epoxy resin or a phenol resin, and conductive particles such as carbon or silver. Note that the adhesive 40 may be a dispersion of a conductive polymer, a dispersion of a conductive polymer to which a binder is added, or the like.
 陰極電極20は、例えば、アルミ、チタン、銅、銀等で形成されている。陰極電極20の厚みは、例えば、陽極電極11の厚みよりも薄い、または同程度である。なお、陰極電極20の厚みはできるだけ薄いほうがよく、5μm~50μm程度であり、好ましくは約30μmである。 The cathode electrode 20 is made of, for example, aluminum, titanium, copper, silver, or the like. The thickness of the cathode electrode 20 is, for example, thinner than or approximately the same as the thickness of the anode electrode 11. Note that the thickness of the cathode electrode 20 is preferably as thin as possible, and is about 5 μm to 50 μm, preferably about 30 μm.
 絶縁性樹脂50は、フィラーを含んでいてもよい。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等が好ましい。フィラーとしては、例えば、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子などの絶縁性酸化物粒子等が好ましい。フィラーの最大径は、例えば30μm以上、40μm以下が望ましい。例えば、固形エポキシ樹脂とフェノール樹脂に、シリカ粒子を含む材料であることがより好ましい。
Insulating resin 50 may contain filler. Preferred examples of the resin include epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers. As the filler, for example, insulating oxide particles such as silica particles, alumina particles, titania particles, and zirconia particles are preferable. The maximum diameter of the filler is preferably 30 μm or more and 40 μm or less, for example. For example, it is more preferable to use a material containing silica particles in solid epoxy resin and phenol resin.
BD…境界部
d…距離
1、1A…固体電解コンデンサ
10…コンデンサ素子
10E1、20E1…第1端
10E2、20E2…第2端
11…陽極電極
12…誘電体層
14…第1ダム
14P…内周部
19C、19L…陽極用貫通穴
20、20A…陰極電極
29C、29L…陰極用貫通穴
30…第2ダム
30L…ダム調整部
30P…内周部
40…接着剤
50…絶縁性樹脂
61、62…外部電極
100…コンデンサ素子積層体
131…内層CP
132…外層CP
210…第3ダム
BD...boundary part d...distance 1, 1A...solid electrolytic capacitor 10...capacitor element 10E1, 20E1...first end 10E2, 20E2...second end 11...anode electrode 12...dielectric layer 14...first dam 14P... inner circumference Parts 19C, 19L...Anode through holes 20, 20A... Cathode electrodes 29C, 29L...Cathode through holes 30...Second dam 30L...Dam adjustment part 30P...Inner peripheral part 40...Adhesive 50...Insulating resin 61, 62 …External electrode 100…Capacitor element laminate 131…Inner layer CP
132...Outer layer CP
210...Third dam

Claims (5)

  1.  複数の平膜状のコンデンサ素子と複数の平膜状の陰極用電極箔とを導電性接着剤を介して交互に積層して形成されたシート積層体と、
     前記シート積層体を封止する絶縁性樹脂と、
     を備え、
     前記平膜状のコンデンサ素子は、
      平膜状の陽極用電極箔と、
      前記陽極用電極箔の表面に形成された誘電体層と、
      前記誘電体層の表面に形成された第1ダムと、
      前記第1ダムで規制された領域内に形成された固体電解質層と、
     を備え、
     前記導電性接着剤は、少なくとも前記第1ダムに重なる第2ダムで規制された領域内に形成され、
     前記第2ダムは、前記固体電解質層と前記第1ダムとの境界部を覆うように形成されている、固体電解コンデンサ。
    A sheet laminate formed by alternately laminating a plurality of flat film-like capacitor elements and a plurality of flat film-like cathode electrode foils via a conductive adhesive;
    an insulating resin that seals the sheet laminate;
    Equipped with
    The flat film capacitor element is
    A flat film-shaped anode electrode foil,
    a dielectric layer formed on the surface of the anode electrode foil;
    a first dam formed on the surface of the dielectric layer;
    a solid electrolyte layer formed within a region regulated by the first dam;
    Equipped with
    The conductive adhesive is formed at least within a region regulated by a second dam overlapping the first dam,
    The second dam is a solid electrolytic capacitor formed to cover a boundary between the solid electrolyte layer and the first dam.
  2.  前記第2ダムには、ダム材が形成されていないダム調整部を有する、請求項1に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the second dam has a dam adjustment portion in which no dam material is formed.
  3.  前記ダム調整部の大きさは、前記第2ダムの体積に応じて決定される、
     請求項2に記載の固体電解コンデンサ。
    The size of the dam adjustment part is determined according to the volume of the second dam.
    The solid electrolytic capacitor according to claim 2.
  4.  複数の平膜状のコンデンサ素子を形成する工程と、
     複数の平膜状の陰極用電極箔を形成する工程と、
     前記複数の平膜状のコンデンサ素子と前記複数の平膜の陰極用電極箔とを、導電性接着剤を介して交互に積層して、シート積層体を形成する工程と、
     前記シート積層体を絶縁性樹脂で封止する工程と、
     を有し、
     前記平膜状のコンデンサ素子を形成する工程は、
     平膜状の陽極用電極箔の表面に誘電体層を形成する工程と、
     前記誘電体層の表面に第1ダムを形成する工程と、
     前記第1ダムで規制された領域内に固体電解質層を形成する工程と、
     を有し、
     前記シート積層体を形成する工程は、
     少なくとも前記第1ダムに重なる第2ダムを形成する工程と、
     前記第2ダムで規制された領域内に前記導電性接着剤を形成する工程と、
     を有し、
     前記第2ダムは、前記固体電解質層と前記第1ダムとの境界部を覆うように形成する、
     固体電解コンデンサの製造方法。
    a step of forming a plurality of flat film capacitor elements;
    a step of forming a plurality of flat film-like cathode electrode foils;
    forming a sheet laminate by alternately laminating the plurality of flat film capacitor elements and the plurality of flat film cathode electrode foils via a conductive adhesive;
    a step of sealing the sheet laminate with an insulating resin;
    has
    The step of forming the flat film-like capacitor element includes:
    a step of forming a dielectric layer on the surface of a flat film-shaped anode electrode foil;
    forming a first dam on the surface of the dielectric layer;
    forming a solid electrolyte layer within a region regulated by the first dam;
    has
    The step of forming the sheet laminate includes:
    forming a second dam that overlaps at least the first dam;
    forming the conductive adhesive within a region regulated by the second dam;
    has
    the second dam is formed to cover a boundary between the solid electrolyte layer and the first dam;
    Method of manufacturing solid electrolytic capacitors.
  5.  前記シート積層体を形成する工程において、
     前記第2ダムには、ダム材が形成されていないダム調整部が形成される、請求項4に記載の固体電解コンデンサの製造方法。
    In the step of forming the sheet laminate,
    5. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein the second dam includes a dam adjustment portion in which no dam material is formed.
PCT/JP2022/045256 2022-03-30 2022-12-08 Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor WO2023188555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056207 2022-03-30
JP2022056207 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188555A1 true WO2023188555A1 (en) 2023-10-05

Family

ID=88200693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045256 WO2023188555A1 (en) 2022-03-30 2022-12-08 Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2023188555A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154374A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for manufacturing same
JP2019079866A (en) * 2017-10-20 2019-05-23 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP2020102651A (en) * 2020-03-24 2020-07-02 株式会社村田製作所 Solid electrolytic capacitor
JP2020145276A (en) * 2019-03-05 2020-09-10 株式会社村田製作所 Solid electrolytic capacitor
JP2020188147A (en) * 2019-05-15 2020-11-19 株式会社村田製作所 Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154374A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for manufacturing same
JP2019079866A (en) * 2017-10-20 2019-05-23 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP2020145276A (en) * 2019-03-05 2020-09-10 株式会社村田製作所 Solid electrolytic capacitor
JP2020188147A (en) * 2019-05-15 2020-11-19 株式会社村田製作所 Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2020102651A (en) * 2020-03-24 2020-07-02 株式会社村田製作所 Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US10032567B2 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
WO2013088954A1 (en) Solid electrolytic capacitor and method for manufacturing same
CN111724993A (en) Solid electrolytic capacitor
WO2018066254A1 (en) Solid electrolytic capacitor
CN111724994A (en) Solid electrolytic capacitor
WO2018066253A1 (en) Solid electrolytic capacitor
CN114830275B (en) Solid electrolytic capacitor
WO2018142972A1 (en) Solid electrolytic capacitor
WO2023188555A1 (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
WO2019156120A1 (en) Electrolytic capacitor
WO2022264575A1 (en) Capacitor array
JP7419791B2 (en) solid electrolytic capacitor
WO2024090047A1 (en) Solid electrolytic capacitor
US11211204B2 (en) Solid electrolytic capacitor and method for manufacturing same
JP2023181685A (en) solid electrolytic capacitor
WO2023167228A1 (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
WO2023167229A1 (en) Method for producing solid electrolytic capacitor
JPH07240351A (en) Electrolytic capacitor
WO2024029458A1 (en) Solid electrolytic capacitor
WO2023153424A1 (en) Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method
WO2024135309A1 (en) Solid electrolytic capacitor
JP2004281515A (en) Layered solid electrolytic capacitor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
WO2024048414A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511211

Country of ref document: JP

Kind code of ref document: A