WO2023188554A1 - Method for producing cellulose nanofiber and cellulose nanofiber - Google Patents

Method for producing cellulose nanofiber and cellulose nanofiber Download PDF

Info

Publication number
WO2023188554A1
WO2023188554A1 PCT/JP2022/045247 JP2022045247W WO2023188554A1 WO 2023188554 A1 WO2023188554 A1 WO 2023188554A1 JP 2022045247 W JP2022045247 W JP 2022045247W WO 2023188554 A1 WO2023188554 A1 WO 2023188554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
carbamate
fibers
pulp
urea
Prior art date
Application number
PCT/JP2022/045247
Other languages
French (fr)
Japanese (ja)
Inventor
一紘 松末
政都 妹尾
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Publication of WO2023188554A1 publication Critical patent/WO2023188554A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/432Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a method for producing cellulose nanofibers and cellulose nanofibers.
  • the problem to be solved by the present invention is to provide a method for producing highly transparent cellulose nanofibers and cellulose nanofibers.
  • Carbamate cellulose fibers are soluble in dilute alkali, and coagulation regenerates cellulose fibers. Utilizing the mechanism by which cellulose fibers are soluble in dilute alkali, we have come up with the following means for solving the above problems.
  • the method for producing cellulose nanofibers is characterized by adding dilute alkali to carbamate cellulose fibers to make them fine.
  • a highly transparent cellulose nanofiber manufacturing method and cellulose nanofiber are obtained.
  • the method for producing cellulose nanofibers of this embodiment mainly includes the following steps. (1) Carbamate the raw material pulp (2) Addition of dilute alkali, preferably dilute alkali and additives (3) Refinement
  • the raw material pulp is microfibrillated into microfiber cellulose (MFC) prior to the addition of the dilute alkali and additives in (2) above. Below, they will be explained in order.
  • MFC microfiber cellulose
  • Raw material pulp includes, for example, wood pulp made from hardwoods, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, linen, bark fiber, etc., and waste paper pulp made from recycled waste paper, waste paper, etc. (DIP) and the like, one or more types can be selected and used.
  • DIP waste paper pulp made from recycled waste paper, waste paper, etc.
  • the various raw materials mentioned above may be in the form of a pulverized material (powdered material) called, for example, cellulose powder.
  • wood pulp As the raw material pulp, one or more types can be selected and used from, for example, chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP), and the like.
  • the hardwood kraft pulp may be a bleached hardwood kraft pulp, an unbleached hardwood kraft pulp, or a semi-bleached hardwood kraft pulp.
  • the softwood kraft pulp may be a bleached softwood kraft pulp, an unbleached softwood kraft pulp, or a semi-bleached softwood kraft pulp.
  • Mechanical pulps include, for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemical ground pulp (CGP), thermoground pulp (TGP), ground pulp (GP),
  • SGP stone ground pulp
  • PGW pressurized stone ground pulp
  • RGP refiner ground pulp
  • CGP chemical ground pulp
  • TGP thermoground pulp
  • GGP ground pulp
  • TMP ground pulp
  • TMP thermomechanical pulp
  • CMP chemi-thermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • the raw material pulp is carbamated to obtain carbamate cellulose fibers (carbamate cellulose fibers).
  • carbamate formation refers to a state in which a carbamate group (carbamic acid ester) is introduced into cellulose fibers.
  • the carbamate group is a group represented by -O-CO-NH-, for example, a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 and the like. That is, the carbamate group can be represented by the following structural formula (1).
  • R is each independently a saturated linear hydrocarbon group, a saturated branched hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched hydrocarbon group, At least one of an aromatic group and a group derived therefrom.
  • saturated linear hydrocarbon group examples include linear alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, and propyl group.
  • saturated branched hydrocarbon group examples include branched alkyl groups having 3 to 10 carbon atoms such as isopropyl group, sec-butyl group, isobutyl group, and tert-butyl group.
  • saturated cyclic hydrocarbon group examples include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
  • Examples of the unsaturated linear hydrocarbon group include linear alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propen-1-yl group, propen-3-yl group, ethynyl group, propyn-1
  • Examples include straight-chain alkynyl groups having 2 to 10 carbon atoms such as -yl group and propyn-3-yl group.
  • Examples of the unsaturated branched hydrocarbon group include branched alkenyl groups having 3 to 10 carbon atoms such as propen-2-yl group, buten-2-yl group, buten-3-yl group, butyn-3 Examples include branched alkynyl groups having 4 to 10 carbon atoms such as -yl group.
  • aromatic group examples include phenyl group, tolyl group, xylyl group, and naphthyl group.
  • Examples of the derivative group include the above-mentioned saturated linear hydrocarbon groups, saturated branched hydrocarbon groups, saturated cyclic hydrocarbon groups, unsaturated linear hydrocarbon groups, unsaturated branched hydrocarbon groups, and aromatic groups.
  • Examples include groups in which one or more hydrogen atoms of the group are substituted with a substituent (eg, a hydroxy group, a carboxy group, a halogen atom, etc.).
  • carbamate cellulose fibers In carbamate cellulose fibers, some or all of the highly polar hydroxy groups are substituted with relatively less polar carbamate groups. Therefore, carbamate cellulose fine fibers obtained by refining carbamate cellulose fibers have low hydrophilicity, have low viscosity, and have good handling properties.
  • the substitution ratio of carbamate groups to hydroxy groups in cellulose fibers is preferably 0.5 to 5.0 mmol/g, more preferably 1.0 to 3.0 mmol/g, particularly preferably 1.5 to 2.0 mmol/g. It is. Considering operability, it is preferable to set the substitution rate to 0.5 mmol/g or more because the energy required for microfibrillation is reduced. On the other hand, if the substitution rate exceeds 5.0 mmol/g, the cellulose fibers will have difficulty maintaining their fiber shape, and when dilute alkali and additives are added, they will dissolve and cellulose nanofibers will not be obtained.
  • the substitution rate of carbamate groups refers to the amount of carbamate groups contained per 1 g of cellulose raw material having carbamate groups.
  • the substitution rate of carbamate groups is determined by measuring the N atoms present in the carbamate-formed pulp by the Kjeldahl method, and calculating the carbamate conversion rate per unit weight.
  • cellulose is a polymer having anhydroglucose as a structural unit, and has three hydroxy groups per structural unit.
  • the process of carbamateing raw material pulp can be mainly divided into, for example, mixing treatment, removal treatment, and heat treatment.
  • mixing treatment and the removal treatment can also be collectively referred to as a preparation treatment for preparing a mixture to be subjected to heat treatment.
  • a method for carbamate formation for example, there is a method in which raw material pulp is formed into a sheet, and this sheet-shaped raw material pulp is coated with urea or the like and heat treated, that is, a method that is not a mixing treatment.
  • this method of forming into a sheet is not denied, and below, as an example, a mode in which raw material pulp, urea, etc. are mixed and processed will be explained in detail.
  • cellulose fibers raw pulp
  • urea or a derivative of urea hereinafter also simply referred to as "urea etc."
  • urea and urea derivatives examples include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and compounds in which the hydrogen atom of urea is replaced with an alkyl group. can. These urea or urea derivatives can be used alone or in combination.
  • the lower limit of the mixing mass ratio of urea etc. to cellulose fibers is preferably 1/100, more preferably 10/100.
  • the upper limit is preferably 300/100, more preferably 200/100.
  • the dispersion medium is usually water. However, other dispersion media such as alcohol and ether, or a mixture of water and other dispersion media may also be used.
  • cellulose fibers and urea may be added to water, cellulose fibers may be added to an aqueous solution of urea, or urea may be added to a slurry containing cellulose fibers. Further, in order to mix uniformly, it may be stirred after addition. Furthermore, the dispersion containing cellulose fibers, urea, etc. may contain other components.
  • the dispersion medium is removed from the dispersion containing cellulose fibers, urea, etc. obtained in the mixing treatment.
  • the dispersion medium, urea and the like can be efficiently reacted in the subsequent heat treatment.
  • the removal of the dispersion medium is preferably performed by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
  • the lower limit of the heating temperature in the removal treatment is preferably 50°C, more preferably 70°C, particularly preferably 90°C when the dispersion medium is water.
  • the upper limit of the heating temperature is preferably 120°C, more preferably 100°C. If the heating temperature exceeds 120° C., the dispersion medium and urea may react, and urea may decompose alone.
  • the heating time in the removal treatment can be adjusted as appropriate depending on the solid content concentration of the dispersion. Specifically, it is, for example, 1 to 24 hours.
  • the mixture of cellulose fibers and urea etc. is heat treated.
  • this heat treatment some or all of the hydroxyl groups of the cellulose fibers react with urea or the like and are replaced with carbamate groups. More specifically, when urea or the like is heated, it is decomposed into isocyanic acid and ammonia as shown in reaction formula (1) below.
  • Isocyanic acid has very high reactivity, and for example, carbamate groups are formed on the hydroxyl groups of cellulose as shown in reaction formula (2) below.
  • the lower limit of the heating temperature in the heat treatment is preferably 120°C, more preferably 130°C, particularly preferably at least the melting point of urea (about 134°C), even more preferably 140°C, and most preferably 150°C.
  • the upper limit of the heating temperature is preferably 280°C, more preferably 260°C, particularly preferably 240°C. If the heating temperature exceeds 280°C, the cellulose fibers may be decomposed and cellulose nanofibers may not be obtained.
  • the lower limit of the heating time in the heat treatment is preferably 10 seconds, more preferably 20 seconds, and particularly preferably 1 minute. By setting the heating time to 10 seconds or more, the carbamate reaction can be carried out reliably.
  • the upper limit of the heating time is preferably 15 hours, more preferably 10 hours. If the heating time exceeds 15 hours, it is not economical, and 15 hours is enough to carry out carbamate formation.
  • the pH is preferably pH 9 or higher, more preferably pH 9 to 13, particularly preferably pH 10 to 12, which is an alkaline condition.
  • acidic conditions or neutral conditions with a pH of 7 or less, preferably a pH of 3 to 7, particularly preferably a pH of 4 to 7 are preferred.
  • neutral conditions of pH 7 to 8 the efficiency of the carbamate formation reaction is poor, and the heating time may be prolonged and the amount of chemicals may be required, which is not economical.
  • alkaline conditions with a pH of 9 or higher the cellulose fibers swell and the reaction to urea etc.
  • the pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
  • an acidic compound for example, acetic acid, citric acid, etc.
  • an alkaline compound for example, sodium hydroxide, calcium hydroxide, etc.
  • a hot air dryer for example, a paper machine, a dry pulp machine, etc. can be used.
  • the mixture after heat treatment may be washed. This cleaning may be performed with water or the like. By this washing, unreacted residual urea and the like can be removed.
  • microfibrillation Immediately after the cellulose fibers are carbamated, dilute alkali and additives can be added to make them fine, but in this embodiment, the carbamate cellulose fibers are first microfibrillated to form microfiber cellulose. Hereinafter, first, this microfibrillation will be explained.
  • the carbamate-formed cellulose fibers can be pretreated by a chemical method prior to microfibrillation.
  • pretreatments using chemical methods include hydrolysis of polysaccharides with acids (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkalis (alkali treatment), and oxidation of polysaccharides with oxidizing agents ( Examples include oxidation treatment), reduction of polysaccharide with a reducing agent (reduction treatment), and the like.
  • it is preferable to perform enzyme treatment it is preferable to perform enzyme treatment, and in addition, it is more preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment.
  • the enzyme treatment will be explained in detail below.
  • the enzyme used for the enzyme treatment it is preferable to use at least one of a cellulase enzyme and a hemicellulase enzyme, and it is more preferable to use both in combination.
  • the use of these enzymes makes it easier to defibrate cellulose fibers.
  • cellulase enzymes cause the decomposition of cellulose in the presence of water.
  • hemicellulase enzymes cause the decomposition of hemicellulose in the presence of water.
  • cellulase enzymes include Trichoderma, Acremonium, Aspergillus, Phanerochaete, and Trametes. It is produced by the genus Humicola, the genus Bacillus, the genus Schizophyllum, the genus Streptomyces, and the genus Pseudomonas. Enzymes can be used. These cellulase enzymes can be purchased as reagents or commercial products.
  • EG encodedoglucanase
  • CBH cellobiohydrolase
  • hemicellulase enzymes examples include xylanase, an enzyme that decomposes xylan, mannase, an enzyme that decomposes mannan, and arabanase, an enzyme that decomposes alaban. can.
  • Pectinase which is an enzyme that degrades pectin, can also be used.
  • Hemicellulose is a polysaccharide excluding pectin, which is present between cellulose microfibrils in plant cell walls. Hemicellulose is diverse and varies depending on the type of wood and the wall layers of the cell wall. In the secondary wall of softwood, glucomannan is the main component, and in the secondary wall of hardwood, 4-O-methylglucuronoxylan is the main component. Therefore, when obtaining fine fibers from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Moreover, when obtaining fine fibers from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
  • NNKP softwood bleached kraft pulp
  • LLKP hardwood bleached kraft pulp
  • the amount of enzyme added to cellulose fibers is determined by, for example, the type of enzyme, the type of wood used as a raw material (softwood or hardwood), the type of mechanical pulp, etc.
  • the amount of enzyme added to the cellulose fibers is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, particularly preferably 0.5 to 2% by mass. If the amount of the enzyme added is less than 0.1% by mass, there is a risk that the effect of the addition of the enzyme may not be sufficiently obtained. On the other hand, if the amount of enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of fine fibers may decrease. Another problem is that it is not possible to recognize an improvement in the effect commensurate with the increase in the amount added.
  • the temperature during the enzyme treatment is preferably 30 to 70°C, more preferably 35 to 65°C, particularly preferably 40 to 60°C, regardless of whether a cellulase enzyme or a hemicellulase enzyme is used as the enzyme. . If the temperature during the enzyme treatment is 30° C. or higher, the enzyme activity will be less likely to decrease, and the treatment time can be prevented from becoming longer. On the other hand, if the temperature during enzyme treatment is 70° C. or lower, deactivation of the enzyme can be prevented.
  • the time for enzyme treatment is determined by, for example, the type of enzyme, the temperature of enzyme treatment, the pH at the time of enzyme treatment, etc.
  • the general enzyme treatment time is 0.5 to 24 hours.
  • Examples of methods for inactivating enzymes include adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), adding hot water at 80 to 100°C, and the like.
  • alkali used in the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia aqueous solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc.
  • Organic alkalis and the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
  • the microfiber cellulose obtained by fibrillation can have lower water retention, higher crystallinity, and higher homogeneity. .
  • the water retention degree of microfiber cellulose is low, it becomes easy to dehydrate, and the dehydration property of the cellulose fiber slurry improves.
  • Fibrillation of cellulose fibers can be carried out using, for example, a beater, a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a grinder, a millstone friction machine such as a grinder, a single-shaft kneader, a multi-shaft kneader, a kneader refiner, a jet mill, etc.
  • a beater a high-pressure homogenizer
  • a homogenizer such as a high-pressure homogenizer
  • a grinder a millstone friction machine such as a grinder, a single-shaft kneader, a multi-shaft kneader, a kneader refiner, a jet mill, etc.
  • SDR single disc refiner
  • the average fiber diameter (average fiber width; average diameter of single fibers) of the microfiber cellulose obtained by fibrillation is preferably 0.1 to 15 ⁇ m, more preferably 0.2 to 10 ⁇ m, particularly preferably 0.5 to 15 ⁇ m. It is 10 ⁇ m. If the average fiber diameter of microfiber cellulose is less than 0.1 ⁇ m, it may dissolve when dilute alkali and additives are added, and cellulose nanofibers may not be obtained. On the other hand, if the average fiber diameter of the cellulose microfibers exceeds 15 ⁇ m, the cellulose microfibers will not be different from pulp, and the light transmittance of the cellulose nanofibers may decrease.
  • the average fiber diameter of microfiber cellulose can be adjusted, for example, by the degree of fibrillation, pretreatment, etc.
  • the method for measuring the average fiber diameter of microfiber cellulose is as follows. First, 100 ml of an aqueous dispersion of fine fibers (microfiber cellulose) with a solid content concentration of 0.01 to 0.1% by mass was filtered through a Teflon (registered trademark) membrane filter, filtered once with 100 ml of ethanol, and once with 20 ml of t-butanol. Replace the solvent three times with Next, it is freeze-dried, coated with osmium, and used as a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers.
  • the average fiber length (average length of single fibers) of microfiber cellulose is preferably 0.10 to 2.0 mm, more preferably 0.2 to 1.5 mm, particularly preferably 0.3 to 1.2 mm. be. If the average fiber length is less than 0.10 mm, there is a possibility that cellulose nanofibers will not be obtained due to dissolution during addition of dilute alkali and additives. On the other hand, if the average fiber length exceeds 2.0 mm, the light transmittance of the obtained cellulose nanofibers may decrease.
  • the average fiber length of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the fine ratio A of microfiber cellulose is preferably 10 to 100%, more preferably 20 to 100%, and particularly preferably 25 to 100%.
  • the fine ratio A is 10% or more, the energy required for the process of refining after addition of dilute alkali and additives is reduced, and economical efficiency becomes advantageous.
  • the fine ratio B of the microfiber cellulose is preferably 1 to 50%, more preferably 2 to 40%, and particularly preferably 3 to 35%. If the Fine ratio B is less than 1%, the light transmittance of the obtained cellulose nanofibers may decrease because there are many fibers with short fiber length or many fibers with large fiber width. On the other hand, if the Fine ratio B exceeds 50%, the number of thin and long fibers increases, and the fibers may become entangled with each other and aggregate.
  • the fine ratios A and B can be adjusted by pretreatment such as enzyme treatment.
  • pretreatment such as enzyme treatment.
  • the amount of enzyme added is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • one option is not to perform enzyme treatment (addition amount: 0% by mass).
  • the fine ratios A and B can be adjusted, for example, by a method of mixing two or more types of microfiber cellulose with different fine ratios.
  • manufacturing efficiency is better if one cellulose raw material is simply refined to adjust the fine ratio. Therefore, for example, it is preferable to use a mixture of a plurality of pulp raw materials as the cellulose raw material.
  • NKP softwood kraft pulp
  • LKP hardwood kraft pulp
  • 5 to 95% by mass of NKP preferably NBKP
  • LKP preferably NBKP
  • NKP is characterized by having many long, hard (thick) fibers
  • LKP is characterized by having many short, soft (thin) fibers, so according to the above blending ratio, Fine ratios A and B can be easily achieved. Can be adjusted.
  • Fine ratio A refers to the mass-based ratio of cellulose fibers having a fiber length of 0.2 mm or less and a fiber width of 75 ⁇ m or less.
  • Fine ratio B refers to the mass-based ratio of cellulose fibers whose fiber length exceeds 0.2 mm and whose fiber width is 10 ⁇ m or less.
  • the aspect ratio of the microfiber cellulose is preferably 2 to 15,000, more preferably 10 to 10,000.
  • the aspect ratio is less than 2, the shape is not fibrous and becomes close to cellulose nanocrystals.
  • the aspect ratio exceeds 15,000, the microfiber cellulose becomes entangled with each other, and there is a possibility that the dispersion becomes insufficient.
  • Aspect ratio is the value obtained by dividing the average fiber length by the average fiber width. As the aspect ratio increases, the number of places where snags occur increases, so when cellulose nanofibers are used as an additive, the reinforcing effect increases, but on the other hand, the fibers become more entangled, which may worsen handling properties.
  • the fiber length, fine rate, etc. of microfiber cellulose are values measured using a fiber analyzer "FS5" manufactured by Valmet.
  • the fibrillation rate of microfiber cellulose is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, particularly preferably 2.0 to 15.0%.
  • the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, which may make dehydration difficult.
  • the fibrillation rate is less than 1.0%, the energy required for the process of refining after addition of dilute alkali and additives may increase, which may adversely affect economic efficiency.
  • the fibrillation rate refers to cellulose fibers being disintegrated in accordance with JIS-P-8220:2012 "Pulp - Disintegration Method", and the obtained disintegrated pulp being processed by FiberLab. (Kajaani).
  • the crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, particularly preferably 60% or more.
  • the degree of crystallinity is less than 50%, there is a possibility that the cellulose nanofibers will be dissolved in dilute alkali and additives, making it difficult to obtain cellulose nanofibers.
  • the upper limit of the crystallinity of microfiber cellulose is not limited, but it is thought that about 90% is the upper limit because the crystallinity decreases during beating and microfibrillation.
  • the degree of crystallinity of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, and refining treatment.
  • the crystallinity of microfiber cellulose is a value measured in accordance with JIS K 0131 (1996).
  • the pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the microfiber cellulose is less than 2 cps, it may dissolve when dilute alkali and additives are added, and cellulose nanofibers may not be obtained.
  • the pulp viscosity of microfiber cellulose is a value measured in accordance with TAPPI T230.
  • the freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, particularly preferably 100 ml or less.
  • the freeness of the microfiber cellulose exceeds 500 ml, the beating from the pulp has not progressed, so the energy required for micronization after addition of dilute alkali and additives increases, and the light transmittance of the resulting cellulose nanofibers decreases. there is a possibility.
  • microfiber cellulose The freeness of microfiber cellulose is a value measured in accordance with JIS P8121-2 (2012).
  • the zeta potential of microfiber cellulose is preferably -150 to 20 mV, more preferably -100 to 0 mV, particularly preferably -80 to -10 mV. If the zeta potential is less than -150 mV, the amount of carbamate groups introduced may be low, and the light transmittance of cellulose nanofibers obtained by micronization after addition of dilute alkali and additives may decrease. On the other hand, when the zeta potential exceeds 20 mV, the amount of carbamate groups introduced is high, and there is a possibility that cellulose nanofibers will not be obtained due to dissolution when dilute alkali and additives are added.
  • the water retention degree of microfiber cellulose is preferably 30 to 400%, more preferably 90 to 350%, particularly preferably 100 to 300%. If the water retention is less than 30%, the light transmittance of cellulose nanofibers obtained by micronization after addition of dilute alkali and additives may decrease because it is the same as the raw material pulp. On the other hand, if the degree of water retention exceeds 400%, dehydration properties tend to be poor, and cellulose nanofibers may not be obtained due to dissolution in dilute alkali and additives. In this regard, the water retention of microfiber cellulose can be lowered by substituting the hydroxy groups of the fibers with carbamate groups, and the dehydration and drying properties can be improved.
  • the water retention degree of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • microfiber cellulose The water retention level of microfiber cellulose is JAPAN TAPPI No. 26 (2000).
  • the carbamate microfiber cellulose is dispersed in an aqueous medium to form a dispersion (slurry).
  • aqueous medium consists entirely of water, but an aqueous medium that is partially composed of other liquids that are compatible with water can also be used.
  • other liquids lower alcohols having 3 or less carbon atoms can be used.
  • the solid content concentration of the slurry is preferably 0.1 to 20% by mass, more preferably 0.5 to 5% by mass. If the solid content concentration is within the above range, defibration can be performed efficiently.
  • Examples of dilute alkalis added to carbamate microfiber cellulose include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, calcium hydroxide, manganese hydroxide, iron(II) hydroxide, and iron(II) hydroxide. III), copper(II) hydroxide, zinc hydroxide, lanthanum hydroxide, aluminum hydroxide, etc. However, from the viewpoint of economy, it is preferable to use sodium hydroxide.
  • the additive it is preferable to use at least one of urea and urea derivatives, and it is more preferable to use urea.
  • the dilute alkali inhibits the hydrogen bonds in the hydrophilic region of cellulose, and furthermore, the additives such as urea are Because cellulose fibers gather in hydrophobic regions due to Waals force and work to prevent re-aggregation of cellulose fibers, the stability of dispersion of cellulose fibers in a solvent can be improved, and the transparency of the resulting cellulose nanofibers can be improved. ) will be improved.
  • zinc oxide (ZnO) for refining.
  • zinc oxide (ZnO) forms a hydrogen bond with cellulose, selectively shearing the hydrogen bonds between cellulose molecules, and at the same time, the cellulose becomes charged, causing electrostatic repulsion. generation, the cellulose fibers become easier to disperse in the solvent, and the transparency (transparency) of the obtained cellulose nanofibers improves.
  • the amount of sodium hydroxide added is preferably 0.1 to 100 kg, particularly preferably 1 to 90 kg, per 1 kg of cellulose fiber. If the amount added is less than 0.1 kg, the light transmittance of the obtained cellulose nanofibers may decrease. On the other hand, if the amount added exceeds 100 kg, cellulose may dissolve and cellulose nanofibers may not be obtained.
  • the amount of additives such as urea added is preferably 0.1 to 100 kg, more preferably 2.5 to 90 kg, particularly preferably 5 to 80 kg, per 1 kg of cellulose. If the amount added is less than 0.1 kg, the light transmittance of the obtained cellulose nanofibers may decrease. On the other hand, even if the amount added exceeds 100 kg, the increase in light transmittance reaches a ceiling and no advantage is obtained in terms of economy and cost.
  • the amount of zinc oxide added to the cellulose dispersion solution is preferably 0.1 to 20 g, more preferably 0.1 to 10 g, per 1 kg of cellulose fiber. If the amount added exceeds 20 g, the solution may become cloudy.
  • the dilute alkali and additives are added to an aqueous dispersion of carbamate cellulose fibers and microfiber cellulose.
  • the addition can be carried out either before microfibrillation or before microfibrillation.
  • stirring is not particularly limited as long as it is a method that can uniformly disperse the dilute alkali and additives in the aqueous dispersion.
  • the carbamate microfiber cellulose is refined (fibrillated) in this state. Since this refinement is similar to the fibrillation of the carbamate cellulose fibers described above, the following will focus on the differences from the fibrillation.
  • the carbamate microfiber cellulose is refined so that the cellulose fibers become cellulose nanofibers.
  • Cellulose nanofibers are fine fibers similar to microfiber cellulose, but they have higher light transmittance and are transparent.
  • Cellulose nanofibers differ in the degree of refinement from microfiber cellulose, for example, the average fiber diameter is less than 0.1 ⁇ m.
  • the average fiber diameter (average fiber width; average diameter of single fibers) of cellulose nanofibers is preferably 1 to 20 nm, more preferably 1 to 15 nm, particularly preferably 1 to 10 nm.
  • the average fiber diameter of the cellulose nanofibers is less than 1 nm, the surface area of the fibers becomes large, resulting in poor dehydration properties, which may increase manufacturing costs for products such as sheets.
  • transparency may be poor.
  • the average fiber diameter of the cellulose nanofibers can be adjusted by, for example, the degree of fibrillation of the carbamate microfiber cellulose, pretreatment, fibrillation, etc.
  • the average fiber length (length of a single fiber) of cellulose nanofibers is preferably 0.1 to 1,000 ⁇ m, more preferably 0.5 to 500 ⁇ m.
  • the average fiber length of the cellulose nanofibers is less than 0.1 ⁇ m, the shape is not fibrous but close to that of cellulose nanocrystals.
  • the average fiber length of the cellulose nanofibers exceeds 1,000 ⁇ m, the fibers tend to become entangled with each other, and there is a possibility that the dispersibility may not be sufficiently improved.
  • the average fiber length of cellulose nanofibers can be adjusted, for example, by pretreatment, fibrillation, etc.
  • the cellulose nanofiber crystallinity is preferably 50% or more, more preferably 60% or more. If the crystallinity of cellulose nanofibers is within the above range, the mechanical properties (particularly strength and dimensional stability) of cellulose can be improved.
  • the degree of crystallinity can be arbitrarily adjusted by, for example, the degree of fibrillation of the carbamate microfiber cellulose, pretreatment, fibrillation, etc.
  • the cellulose nanofibers obtained by fibrillation can be dispersed in an aqueous medium to form a dispersion before being mixed with other cellulose fibers. It is particularly preferable that the entire amount of the dispersion medium is water (aqueous solution). However, the dispersion medium may be another liquid that is partially compatible with water. As other liquids, for example, lower alcohols having 3 or less carbon atoms can be used.
  • the type B viscosity of the cellulose nanofiber dispersion (concentration 1%) is preferably 10 to 2,000 cp, more preferably 30 to 1,500 cp.
  • concentration 1%) is preferably 10 to 2,000 cp, more preferably 30 to 1,500 cp.
  • the B-type viscosity (solid content concentration 1%) of the dispersion is a value measured in accordance with JIS-Z8803 (2011) "Liquid viscosity measurement method”.
  • Type B viscosity is the resistance torque when stirring a dispersion liquid, and means that the higher the viscosity, the more energy is required for stirring.
  • the solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass.
  • the solid content concentration is less than 0.1% by mass, excessive energy may be required during dehydration and drying.
  • the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself may decrease, and the dispersant may not be mixed uniformly.
  • the cellulose nanofiber of this embodiment can be used, for example, in the form of a transparent sheet by drying a slurry.
  • Reagent A was prepared by mixing 80.0 g of 50% sodium hydroxide aqueous solution, 50.0 g of urea, and 130.8 g of water.
  • the prepared reagent A and carbamate-modified microfiber cellulose (NBKP: moisture 97.9% by mass) dry weight 5g were mixed and subjected to defibration (refining) treatment using a high-pressure homogenizer, resulting in a concentration of 1.0% by mass.
  • An aqueous dispersion of carbamate-modified cellulose nanofibers was obtained.
  • zinc oxide was added.
  • reagent A was prepared according to the blending ratios shown in Table 1, and then similar operations were performed.
  • Total light transmittance After degassing the resulting aqueous dispersion of carbamate-modified cellulose nanofibers, total light transmittance was measured using an absorbance meter in accordance with JIS K 7361. Zero point correction was performed using ion-exchanged water placed in the same glass cell, and the total light transmittance was calculated from the average value of transmittances measured at wavelengths of 350 to 880 nm.
  • the present invention can be used as a method for producing cellulose nanofibers and cellulose nanofibers.

Abstract

[Problem] To provide: a method for producing a highly transparent cellulose nanofiber; and a cellulose nanofiber. [Solution] Provided is a method for producing cellulose nanofibers, the method being characterized by adding a dilute alkali to a carbamated cellulose fiber to make the same finer. Also provided is a cellulose nanofiber obtained by said method.

Description

セルロースナノファイバーの製造方法及びセルロースナノファイバーMethod for producing cellulose nanofibers and cellulose nanofibers
 本発明は、セルロースナノファイバーの製造方法及びセルロースナノファイバーに関するものである。 The present invention relates to a method for producing cellulose nanofibers and cellulose nanofibers.
 近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシ基をカルバメート基で置換することを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。もっとも、この提案は、微細繊維の取扱性向上や樹脂の補強性向上を意図したものであり、微細繊維の透明性を意図したものではない。 In recent years, the use of fine fibers such as cellulose nanofibers and microfiber cellulose (microfibrillated cellulose) as reinforcing materials for resins has been in the spotlight. However, while fine fibers are hydrophilic, resins are hydrophobic, and therefore, when fine fibers are used as reinforcing materials for resins, there is a problem with the dispersibility of the fine fibers. Therefore, the present inventors proposed replacing the hydroxy groups of the fine fibers with carbamate groups (see Patent Document 1). According to this proposal, the dispersibility of fine fibers is improved, thereby improving the reinforcing effect of the resin. However, this proposal is intended to improve the handling properties of the fine fibers and the reinforcing properties of the resin, and is not intended to improve the transparency of the fine fibers.
特開2019-1876号公報JP 2019-1876 Publication
 本発明が解決しようとする課題は、透明度の高いセルロースナノファイバーの製造方法及びセルロースナノファイバーを提供することにある。 The problem to be solved by the present invention is to provide a method for producing highly transparent cellulose nanofibers and cellulose nanofibers.
 カルバメート化したセルロース繊維は希アルカリに可溶性であり、凝固によってセルロース繊維を再生する。このセルロース繊維が希アルカリに可溶なメカニズムを利用し、想到するに至ったのが次に示す、上記課題を解決するための手段である。 Carbamate cellulose fibers are soluble in dilute alkali, and coagulation regenerates cellulose fibers. Utilizing the mechanism by which cellulose fibers are soluble in dilute alkali, we have come up with the following means for solving the above problems.
 すなわち、カルバメート化したセルロース繊維に、希アルカリを添加して微細化する、ことを特徴とするセルロースナノファイバーの製造方法である。 That is, the method for producing cellulose nanofibers is characterized by adding dilute alkali to carbamate cellulose fibers to make them fine.
 また、この方法によって得た、ことを特徴とするセルロースナノファイバーである。 It is also a cellulose nanofiber obtained by this method.
 本発明によると、透明性の高いセルロースナノファイバーの製造方法及びセルロースナノファイバーとなる。 According to the present invention, a highly transparent cellulose nanofiber manufacturing method and cellulose nanofiber are obtained.
 次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a mode for carrying out the invention will be described. Note that this embodiment is an example of the present invention. The scope of the present invention is not limited to the scope of this embodiment.
 本形態のセルロースナノファイバーの製造方法は、以下の工程を主に有する。
(1)原料パルプのカルバメート化
(2)希アルカリ、好ましくは希アルカリ及び添加剤の添加
(3)微細化
The method for producing cellulose nanofibers of this embodiment mainly includes the following steps.
(1) Carbamate the raw material pulp (2) Addition of dilute alkali, preferably dilute alkali and additives (3) Refinement
 また、より好適には、上記(2)の希アルカリ及び添加剤の添加に先立って原料パルプをミクロフィブリル化してマイクロ繊維セルロース(MFC)にする。以下、順に説明する。 More preferably, the raw material pulp is microfibrillated into microfiber cellulose (MFC) prior to the addition of the dilute alkali and additives in (2) above. Below, they will be explained in order.
(原料パルプ)
 原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。
(Raw material pulp)
Raw material pulp includes, for example, wood pulp made from hardwoods, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, linen, bark fiber, etc., and waste paper pulp made from recycled waste paper, waste paper, etc. (DIP) and the like, one or more types can be selected and used. Note that the various raw materials mentioned above may be in the form of a pulverized material (powdered material) called, for example, cellulose powder.
 ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。 However, in order to avoid contamination with impurities as much as possible, it is preferable to use wood pulp as the raw material pulp. As the wood pulp, one or more types can be selected and used from, for example, chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP), and the like.
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。 The hardwood kraft pulp may be a bleached hardwood kraft pulp, an unbleached hardwood kraft pulp, or a semi-bleached hardwood kraft pulp. Similarly, the softwood kraft pulp may be a bleached softwood kraft pulp, an unbleached softwood kraft pulp, or a semi-bleached softwood kraft pulp.
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。 Mechanical pulps include, for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemical ground pulp (CGP), thermoground pulp (TGP), ground pulp (GP), One or more types can be selected and used from thermomechanical pulp (TMP), chemi-thermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP), and the like.
(カルバメート化)
 原料パルプはカルバメート化してカルバメート化したセルロース繊維(カルバメート化セルロース繊維)を得る。
(Carbamate formation)
The raw material pulp is carbamated to obtain carbamate cellulose fibers (carbamate cellulose fibers).
 なお、カルバメート化とは、セルロース繊維にカルバメート基(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH、-O-CONHR、-O-CO-NR等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。 Note that carbamate formation refers to a state in which a carbamate group (carbamic acid ester) is introduced into cellulose fibers. The carbamate group is a group represented by -O-CO-NH-, for example, a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 and the like. That is, the carbamate group can be represented by the following structural formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。 Here, R is each independently a saturated linear hydrocarbon group, a saturated branched hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched hydrocarbon group, At least one of an aromatic group and a group derived therefrom.
 飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。 Examples of the saturated linear hydrocarbon group include linear alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, and propyl group.
 飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。 Examples of the saturated branched hydrocarbon group include branched alkyl groups having 3 to 10 carbon atoms such as isopropyl group, sec-butyl group, isobutyl group, and tert-butyl group.
 飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。 Examples of the saturated cyclic hydrocarbon group include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
 不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。 Examples of the unsaturated linear hydrocarbon group include linear alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propen-1-yl group, propen-3-yl group, ethynyl group, propyn-1 Examples include straight-chain alkynyl groups having 2 to 10 carbon atoms such as -yl group and propyn-3-yl group.
 不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。 Examples of the unsaturated branched hydrocarbon group include branched alkenyl groups having 3 to 10 carbon atoms such as propen-2-yl group, buten-2-yl group, buten-3-yl group, butyn-3 Examples include branched alkynyl groups having 4 to 10 carbon atoms such as -yl group.
 芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。 Examples of the aromatic group include phenyl group, tolyl group, xylyl group, and naphthyl group.
 誘導基としては、例えば、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。 Examples of the derivative group include the above-mentioned saturated linear hydrocarbon groups, saturated branched hydrocarbon groups, saturated cyclic hydrocarbon groups, unsaturated linear hydrocarbon groups, unsaturated branched hydrocarbon groups, and aromatic groups. Examples include groups in which one or more hydrogen atoms of the group are substituted with a substituent (eg, a hydroxy group, a carboxy group, a halogen atom, etc.).
 カルバメート化したセルロース繊維おいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート化セルロース繊維を微細化したカルバメート化セルロース微細繊維は、親水性が低いため粘性が低く、ハンドリング性が良い。 In carbamate cellulose fibers, some or all of the highly polar hydroxy groups are substituted with relatively less polar carbamate groups. Therefore, carbamate cellulose fine fibers obtained by refining carbamate cellulose fibers have low hydrophilicity, have low viscosity, and have good handling properties.
 セルロース繊維のヒドロキシ基に対するカルバメート基の置換率は、好ましくは0.5~5.0mmol/g、より好ましくは1.0~3.0mmol/g、特に好ましくは1.5~2.0mmol/gである。操業性を考慮すると、置換率を0.5mmol/g以上にすることで、ミクロフィブリル化に必要なエネルギーが少なくなるため好ましい。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保ちにくくなり、希アルカリ及び添加剤を添加した場合には溶解してセルロースナノファイバーが得られなくなる。 The substitution ratio of carbamate groups to hydroxy groups in cellulose fibers is preferably 0.5 to 5.0 mmol/g, more preferably 1.0 to 3.0 mmol/g, particularly preferably 1.5 to 2.0 mmol/g. It is. Considering operability, it is preferable to set the substitution rate to 0.5 mmol/g or more because the energy required for microfibrillation is reduced. On the other hand, if the substitution rate exceeds 5.0 mmol/g, the cellulose fibers will have difficulty maintaining their fiber shape, and when dilute alkali and additives are added, they will dissolve and cellulose nanofibers will not be obtained.
 本形態においてカルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。カルバメート基の置換率は、カルバメート化したパルプ内に存在するN原子をケルダール法によって測定し、単位重量当たりのカルバメート化率を算出する。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。 In this embodiment, the substitution rate of carbamate groups (mmol/g) refers to the amount of carbamate groups contained per 1 g of cellulose raw material having carbamate groups. The substitution rate of carbamate groups is determined by measuring the N atoms present in the carbamate-formed pulp by the Kjeldahl method, and calculating the carbamate conversion rate per unit weight. Further, cellulose is a polymer having anhydroglucose as a structural unit, and has three hydroxy groups per structural unit.
 原料パルプをカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調製処理ということもできる。 The process of carbamateing raw material pulp can be mainly divided into, for example, mixing treatment, removal treatment, and heat treatment. Note that the mixing treatment and the removal treatment can also be collectively referred to as a preparation treatment for preparing a mixture to be subjected to heat treatment.
 ちなみに、カルバメート化の方法としては、例えば、原料パルプをシート状にし、このシート状の原料パルプに尿素等を塗布して加熱処理する方法、つまり混合処理ではない方法なども存在する。本形態においては、このシート状にする方法を否定するものではなく、以下では、1つの例として原料パルプ及び尿素等を混合処理する形態について、詳細に説明する。 Incidentally, as a method for carbamate formation, for example, there is a method in which raw material pulp is formed into a sheet, and this sheet-shaped raw material pulp is coated with urea or the like and heat treated, that is, a method that is not a mixing treatment. In this embodiment, this method of forming into a sheet is not denied, and below, as an example, a mode in which raw material pulp, urea, etc. are mixed and processed will be explained in detail.
 混合処理においては、セルロース繊維(原料パルプ)と尿素又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。 In the mixing process, cellulose fibers (raw pulp) and urea or a derivative of urea (hereinafter also simply referred to as "urea etc.") are mixed in a dispersion medium.
 尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素又は尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。 Examples of urea and urea derivatives include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and compounds in which the hydrogen atom of urea is replaced with an alkyl group. can. These urea or urea derivatives can be used alone or in combination.
 セルロース繊維に対する尿素等の混合質量比(尿素等/セルロース繊維)の下限は、好ましくは1/100、より好ましくは10/100である。他方、上限は、好ましくは300/100、より好ましくは200/100である。混合質量比を1/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300/100を上回っても、カルバメート化は頭打ちになる。 The lower limit of the mixing mass ratio of urea etc. to cellulose fibers (urea etc./cellulose fibers) is preferably 1/100, more preferably 10/100. On the other hand, the upper limit is preferably 300/100, more preferably 200/100. By setting the mixing mass ratio to 1/100 or more, the efficiency of carbamate formation is improved. On the other hand, even if the mixing mass ratio exceeds 300/100, carbamate formation reaches a ceiling.
 分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。 The dispersion medium is usually water. However, other dispersion media such as alcohol and ether, or a mixture of water and other dispersion media may also be used.
 混合処理においては、例えば、水にセルロース繊維及び尿素等を添加しても、尿素等の水溶液にセルロース繊維を添加しても、セルロース繊維を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、セルロース繊維と尿素等とを含む分散液には、その他の成分が含まれていてもよい。 In the mixing treatment, for example, cellulose fibers and urea may be added to water, cellulose fibers may be added to an aqueous solution of urea, or urea may be added to a slurry containing cellulose fibers. Further, in order to mix uniformly, it may be stirred after addition. Furthermore, the dispersion containing cellulose fibers, urea, etc. may contain other components.
 除去処理においては、混合処理において得られたセルロース繊維及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。 In the removal treatment, the dispersion medium is removed from the dispersion containing cellulose fibers, urea, etc. obtained in the mixing treatment. By removing the dispersion medium, urea and the like can be efficiently reacted in the subsequent heat treatment.
 分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。 The removal of the dispersion medium is preferably performed by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
 除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。 The lower limit of the heating temperature in the removal treatment is preferably 50°C, more preferably 70°C, particularly preferably 90°C when the dispersion medium is water. By setting the heating temperature to 50° C. or higher, the dispersion medium can be efficiently volatilized (removed). On the other hand, the upper limit of the heating temperature is preferably 120°C, more preferably 100°C. If the heating temperature exceeds 120° C., the dispersion medium and urea may react, and urea may decompose alone.
 除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、1~24時間である。 The heating time in the removal treatment can be adjusted as appropriate depending on the solid content concentration of the dispersion. Specifically, it is, for example, 1 to 24 hours.
 除去処理に続く加熱処理においては、セルロース繊維と尿素等との混合物を加熱処理する。この加熱処理において、セルロース繊維のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基が形成される。 In the heat treatment following the removal treatment, the mixture of cellulose fibers and urea etc. is heat treated. In this heat treatment, some or all of the hydroxyl groups of the cellulose fibers react with urea or the like and are replaced with carbamate groups. More specifically, when urea or the like is heated, it is decomposed into isocyanic acid and ammonia as shown in reaction formula (1) below. Isocyanic acid has very high reactivity, and for example, carbamate groups are formed on the hydroxyl groups of cellulose as shown in reaction formula (2) below.
 NH-CO-NH → H-N=C=O + NH …(1) NH 2 -CO-NH 2 → H-N=C=O + NH 3 ...(1)
 Cell-OH + H-N=C=O → Cell-O-CO-NH…(2) Cell-OH + H-N=C=O → Cell-O-CO-NH 2 ...(2)
 加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃、最も好ましくは150℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは280℃、より好ましくは260℃、特に好ましくは240℃である。加熱温度が280℃を上回ると、セルロース繊維が分解し、セルロースナノファイバーが得られないおそれがある。 The lower limit of the heating temperature in the heat treatment is preferably 120°C, more preferably 130°C, particularly preferably at least the melting point of urea (about 134°C), even more preferably 140°C, and most preferably 150°C. By setting the heating temperature to 120° C. or higher, carbamate formation is efficiently performed. The upper limit of the heating temperature is preferably 280°C, more preferably 260°C, particularly preferably 240°C. If the heating temperature exceeds 280°C, the cellulose fibers may be decomposed and cellulose nanofibers may not be obtained.
 加熱処理における加熱時間の下限は、好ましくは10秒、より好ましくは20秒、特に好ましくは1分である。加熱時間を10秒以上にすることで、カルバメート化の反応を確実に行うことができる。他方、加熱時間の上限は、好ましくは15時間、より好ましくは10時間である。加熱時間が15時間を上回ると、経済的ではなく、15時間で十分カルバメート化を行うことができる。 The lower limit of the heating time in the heat treatment is preferably 10 seconds, more preferably 20 seconds, and particularly preferably 1 minute. By setting the heating time to 10 seconds or more, the carbamate reaction can be carried out reliably. On the other hand, the upper limit of the heating time is preferably 15 hours, more preferably 10 hours. If the heating time exceeds 15 hours, it is not economical, and 15 hours is enough to carry out carbamate formation.
 もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、カルバメート化反応の効率が悪く、加熱時間の長期化や薬品量が必要になる可能性があり経済的ではない。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維が膨潤し、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応する。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行し平均繊維長が短くなるおそれがある。 However, prolonged heating time causes deterioration of the cellulose fibers. Therefore, the pH conditions in the heat treatment become important. The pH is preferably pH 9 or higher, more preferably pH 9 to 13, particularly preferably pH 10 to 12, which is an alkaline condition. Further, as a second best measure, acidic conditions or neutral conditions with a pH of 7 or less, preferably a pH of 3 to 7, particularly preferably a pH of 4 to 7 are preferred. Under neutral conditions of pH 7 to 8, the efficiency of the carbamate formation reaction is poor, and the heating time may be prolonged and the amount of chemicals may be required, which is not economical. On the other hand, under alkaline conditions with a pH of 9 or higher, the cellulose fibers swell and the reaction to urea etc. is promoted, resulting in an efficient carbamate reaction, making it possible to ensure a sufficient average fiber length of the cellulose fibers. . On the other hand, under acidic conditions with a pH of 7 or less, the reaction of decomposing urea etc. into isocyanic acid and ammonia proceeds, promoting the reaction to cellulose fibers and efficiently carrying out the carbamate reaction. However, if possible, it is preferable to perform the heat treatment under alkaline conditions. If the condition is acidic, acid hydrolysis of cellulose may proceed and the average fiber length may become short.
 pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。 The pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
 加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。 As a device for heating in the heat treatment, for example, a hot air dryer, a paper machine, a dry pulp machine, etc. can be used.
 加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。 The mixture after heat treatment may be washed. This cleaning may be performed with water or the like. By this washing, unreacted residual urea and the like can be removed.
(ミクロフィブリル化)
 セルロース繊維をカルバメート化したら直ちに希アルカリ及び添加剤を添加し、微細化することもできるが、本形態においては、まず、カルバメート化したセルロース繊維をミクロフィブリル化し、マイクロ繊維セルロースとする。以下、まず、このミクロフィブリル化に関する説明をする。
(microfibrillation)
Immediately after the cellulose fibers are carbamated, dilute alkali and additives can be added to make them fine, but in this embodiment, the carbamate cellulose fibers are first microfibrillated to form microfiber cellulose. Hereinafter, first, this microfibrillation will be explained.
 なお、カルバメート化したセルロース繊維は、ミクロフィブリル化するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。 Note that the carbamate-formed cellulose fibers can be pretreated by a chemical method prior to microfibrillation. Examples of pretreatments using chemical methods include hydrolysis of polysaccharides with acids (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkalis (alkali treatment), and oxidation of polysaccharides with oxidizing agents ( Examples include oxidation treatment), reduction of polysaccharide with a reducing agent (reduction treatment), and the like. However, as a pretreatment using a chemical method, it is preferable to perform enzyme treatment, and in addition, it is more preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment. The enzyme treatment will be explained in detail below.
 酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース繊維の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。 As the enzyme used for the enzyme treatment, it is preferable to use at least one of a cellulase enzyme and a hemicellulase enzyme, and it is more preferable to use both in combination. The use of these enzymes makes it easier to defibrate cellulose fibers. Note that cellulase enzymes cause the decomposition of cellulose in the presence of water. Furthermore, hemicellulase enzymes cause the decomposition of hemicellulose in the presence of water.
 セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。 Examples of cellulase enzymes include Trichoderma, Acremonium, Aspergillus, Phanerochaete, and Trametes. It is produced by the genus Humicola, the genus Bacillus, the genus Schizophyllum, the genus Streptomyces, and the genus Pseudomonas. Enzymes can be used. These cellulase enzymes can be purchased as reagents or commercial products. Commercially available products include, for example, Cellleucine T2 (manufactured by HPI Co., Ltd.), Meicelase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme Co., Ltd.), Multifect CX10L (manufactured by Genencor Co., Ltd.), and Cellulase-based enzyme GC220 (manufactured by Genencor Co., Ltd.). For example,
 また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれかもを使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。 Further, as the cellulase enzyme, either EG (endoglucanase) or CBH (cellobiohydrolase) can be used. EG and CBH may be used alone or in combination. It may also be used in combination with hemicellulase enzymes.
 ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。 Examples of hemicellulase enzymes that can be used include xylanase, an enzyme that decomposes xylan, mannase, an enzyme that decomposes mannan, and arabanase, an enzyme that decomposes alaban. can. Pectinase, which is an enzyme that degrades pectin, can also be used.
 ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。 Hemicellulose is a polysaccharide excluding pectin, which is present between cellulose microfibrils in plant cell walls. Hemicellulose is diverse and varies depending on the type of wood and the wall layers of the cell wall. In the secondary wall of softwood, glucomannan is the main component, and in the secondary wall of hardwood, 4-O-methylglucuronoxylan is the main component. Therefore, when obtaining fine fibers from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Moreover, when obtaining fine fibers from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
 セルロース繊維に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース繊維に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。 The amount of enzyme added to cellulose fibers is determined by, for example, the type of enzyme, the type of wood used as a raw material (softwood or hardwood), the type of mechanical pulp, etc. However, the amount of enzyme added to the cellulose fibers is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, particularly preferably 0.5 to 2% by mass. If the amount of the enzyme added is less than 0.1% by mass, there is a risk that the effect of the addition of the enzyme may not be sufficiently obtained. On the other hand, if the amount of enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of fine fibers may decrease. Another problem is that it is not possible to recognize an improvement in the effect commensurate with the increase in the amount added.
 酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。 When using a cellulase enzyme as the enzyme, the pH during enzyme treatment is preferably in the weakly acidic region (pH = 3.0 to 6.9) from the viewpoint of reactivity of the enzyme reaction. On the other hand, when a hemicellulase enzyme is used as the enzyme, the pH during enzyme treatment is preferably in a weakly alkaline region (pH = 7.1 to 10.0).
 酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。 The temperature during the enzyme treatment is preferably 30 to 70°C, more preferably 35 to 65°C, particularly preferably 40 to 60°C, regardless of whether a cellulase enzyme or a hemicellulase enzyme is used as the enzyme. . If the temperature during the enzyme treatment is 30° C. or higher, the enzyme activity will be less likely to decrease, and the treatment time can be prevented from becoming longer. On the other hand, if the temperature during enzyme treatment is 70° C. or lower, deactivation of the enzyme can be prevented.
 酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。 The time for enzyme treatment is determined by, for example, the type of enzyme, the temperature of enzyme treatment, the pH at the time of enzyme treatment, etc. However, the general enzyme treatment time is 0.5 to 24 hours.
 酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。 After the enzyme treatment, it is preferable to deactivate the enzyme. Examples of methods for inactivating enzymes include adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), adding hot water at 80 to 100°C, and the like.
 次に、アルカリ処理の方法について説明する。 Next, the method of alkali treatment will be explained.
 フィブリル化に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、フィブリル化におけるセルロース繊維の分散が促進される。 When treated with alkali prior to fibrillation, some of the hydroxyl groups of hemicellulose and cellulose in the pulp dissociate, and the molecules become anions, weakening intramolecular and intermolecular hydrogen bonds, promoting the dispersion of cellulose fibers during fibrillation. Ru.
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。 Examples of the alkali used in the alkali treatment include sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia aqueous solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc. Organic alkalis and the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
 フィブリル化に先立って酵素処理や酸処理、酸化処理を施すと、フィブリル化によって得られるマイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。 If enzyme treatment, acid treatment, or oxidation treatment is performed prior to fibrillation, the microfiber cellulose obtained by fibrillation can have lower water retention, higher crystallinity, and higher homogeneity. . In this regard, when the water retention degree of microfiber cellulose is low, it becomes easy to dehydrate, and the dehydration property of the cellulose fiber slurry improves.
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、フィブリル化のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、過度の前処理は、マイクロ繊維セルロースのアスペクト比を低下させ、希アルカリ及び添加剤添加時に溶解しセルロースナノファイバーが得られない可能性があるため、避けるのが好ましい。 When raw pulp is subjected to enzyme treatment, acid treatment, or oxidation treatment, the amorphous regions of hemicellulose and cellulose contained in the pulp are decomposed. As a result, the energy for fibrillation can be reduced, and the uniformity and dispersibility of cellulose fibers can be improved. However, it is preferable to avoid excessive pretreatment because it may reduce the aspect ratio of microfiber cellulose and dissolve when dilute alkali and additives are added, making it impossible to obtain cellulose nanofibers.
 セルロース繊維のフィブリル化は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用してセルロース繊維を叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましく、シングルディスクリファイナー(SDR)を使用して行うのがより好ましい。 Fibrillation of cellulose fibers can be carried out using, for example, a beater, a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a grinder, a millstone friction machine such as a grinder, a single-shaft kneader, a multi-shaft kneader, a kneader refiner, a jet mill, etc. This can be done by beating cellulose fibers using However, it is preferable to use a refiner or a jet mill, and more preferably to use a single disc refiner (SDR).
 フィブリル化によって得られるマイクロ繊維セルロースの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは0.1~15μm、より好ましくは0.2~10μm、特に好ましくは0.5~10μmである。マイクロ繊維セルロースの平均繊維径が0.1μmを下回ると、希アルカリ及び添加剤添加時に溶解しセルロースナノファイバーが得られない可能性がある。他方、マイクロ繊維セルロースの平均繊維径が15μmを上回ると、パルプであるのと変わらなくなり、セルロースナノファイバーの光透過率が低下する可能性がある。 The average fiber diameter (average fiber width; average diameter of single fibers) of the microfiber cellulose obtained by fibrillation is preferably 0.1 to 15 μm, more preferably 0.2 to 10 μm, particularly preferably 0.5 to 15 μm. It is 10 μm. If the average fiber diameter of microfiber cellulose is less than 0.1 μm, it may dissolve when dilute alkali and additives are added, and cellulose nanofibers may not be obtained. On the other hand, if the average fiber diameter of the cellulose microfibers exceeds 15 μm, the cellulose microfibers will not be different from pulp, and the light transmittance of the cellulose nanofibers may decrease.
 マイクロ繊維セルロースの平均繊維径は、例えば、フィブリル化の程度、前処理等によって調整することができる。 The average fiber diameter of microfiber cellulose can be adjusted, for example, by the degree of fibrillation, pretreatment, etc.
 マイクロ繊維セルロースの平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維(マイクロ繊維セルロース)の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
The method for measuring the average fiber diameter of microfiber cellulose is as follows.
First, 100 ml of an aqueous dispersion of fine fibers (microfiber cellulose) with a solid content concentration of 0.01 to 0.1% by mass was filtered through a Teflon (registered trademark) membrane filter, filtered once with 100 ml of ethanol, and once with 20 ml of t-butanol. Replace the solvent three times with Next, it is freeze-dried, coated with osmium, and used as a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers. Specifically, two diagonal lines are drawn on the observed image, and three straight lines passing through the intersections of the diagonals are arbitrarily drawn. Furthermore, the widths of a total of 100 fibers that intersect with these three straight lines are visually measured. Then, the median diameter of the measured value is taken as the average fiber diameter.
 マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.0mm、より好ましくは0.2~1.5mm、特に好ましくは0.3~1.2mmである。平均繊維長が0.10mmを下回ると、希アルカリ及び添加剤添加時に溶解しセルロースナノファイバーが得られない可能性がある。他方、平均繊維長が2.0mmを上回ると、得られるセルロースナノファイバーの光透過率が低下する可能性がある。 The average fiber length (average length of single fibers) of microfiber cellulose is preferably 0.10 to 2.0 mm, more preferably 0.2 to 1.5 mm, particularly preferably 0.3 to 1.2 mm. be. If the average fiber length is less than 0.10 mm, there is a possibility that cellulose nanofibers will not be obtained due to dissolution during addition of dilute alkali and additives. On the other hand, if the average fiber length exceeds 2.0 mm, the light transmittance of the obtained cellulose nanofibers may decrease.
 マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The average fiber length of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 マイクロ繊維セルロースのFine率A(ファイン率A)は、10~100%であるのが好ましく、20~100%であるのがより好ましく、25~100%であるのが特に好ましい。ファイン率Aが10%以上であると希アルカリ及び添加剤添加後の微細化において処理に必要なエネルギーが少なくなり経済性が優位になる。 The fine ratio A of microfiber cellulose is preferably 10 to 100%, more preferably 20 to 100%, and particularly preferably 25 to 100%. When the fine ratio A is 10% or more, the energy required for the process of refining after addition of dilute alkali and additives is reduced, and economical efficiency becomes advantageous.
 一方、マイクロ繊維セルロースのFine率B(ファイン率B)は、1~50%であるのが好ましく、2~40%であるのがより好ましく、3~35%であるのが特に好ましい。Fine率Bが1%未満であると、繊維長が短い繊維が多い、又は繊維幅の大きい繊維が多いことから、得られるセルロースナノファイバーの光透過率が低下する可能性がある。他方、Fine率Bが50%を超えると、細くて長い繊維が多くなり、繊維同士が絡まってしまい、凝集する可能性がある。 On the other hand, the fine ratio B of the microfiber cellulose is preferably 1 to 50%, more preferably 2 to 40%, and particularly preferably 3 to 35%. If the Fine ratio B is less than 1%, the light transmittance of the obtained cellulose nanofibers may decrease because there are many fibers with short fiber length or many fibers with large fiber width. On the other hand, if the Fine ratio B exceeds 50%, the number of thin and long fibers increases, and the fibers may become entangled with each other and aggregate.
 Fine率A,Bの調整は、酵素処理等の前処理によって行うことができる。ただし、特に酵素処理する場合は、酵素を過度に添加して処理すると繊維が単糖まで分解され、セルロースナノファイバーの収率が低下してしまう可能性がある。したがって、この観点からの酵素の添加量は、2質量%以下であるのが好ましく、1質量%以下であるのがより好ましく、0.5質量%以下であるのが特に好ましい。また、酵素処理しない(添加量0質量%)のも1つの選択枠である。 The fine ratios A and B can be adjusted by pretreatment such as enzyme treatment. However, especially in the case of enzyme treatment, if too much enzyme is added to the treatment, the fibers may be broken down to monosaccharides, which may reduce the yield of cellulose nanofibers. Therefore, from this point of view, the amount of enzyme added is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Furthermore, one option is not to perform enzyme treatment (addition amount: 0% by mass).
 Fine率A,Bの調節にあたっては、例えば、Fine率の異なる2種類、又はそれ以上の複数種類のマイクロ繊維セルロースを混ぜ合わせる方法によることができる。ただし、1つのセルロース原料を単に微細化してFine率比を調節する方が製造効率に優れる。そこで、例えば、セルロース原料として複数のパルプ原料が混在したものを使用するのが好ましい。 The fine ratios A and B can be adjusted, for example, by a method of mixing two or more types of microfiber cellulose with different fine ratios. However, manufacturing efficiency is better if one cellulose raw material is simply refined to adjust the fine ratio. Therefore, for example, it is preferable to use a mixture of a plurality of pulp raw materials as the cellulose raw material.
 具体的には、例えば、NKP(針葉樹クラフトパルプ)及びLKP(広葉樹クラフトパルプ)が混在するパルプ原料を用いるのが好ましく、NKP(好適には、NBKP。)5~95質量%、LKP(好適には、LBKP。)5~95質量%からなるパルプ原料を用いるのがより好ましく、NKP25~75質量%、LKP25~75質量%からなるパルプ原料を用いるのが特に好ましい。NKPには長くて固い(太い)繊維が多いとの特徴があり、LKPには短くて柔らかい(細い)繊維が多いとの特徴があるため、上記配合割合によるとFine率A,Bを容易に調節することができる。 Specifically, for example, it is preferable to use a pulp raw material in which NKP (softwood kraft pulp) and LKP (hardwood kraft pulp) are mixed, and 5 to 95% by mass of NKP (preferably NBKP) and LKP (preferably NBKP) are used. It is more preferable to use a pulp raw material consisting of 5 to 95 mass % of LBKP.), and it is particularly preferable to use a pulp raw material of 25 to 75 mass % of NKP and 25 to 75 mass % of LKP. NKP is characterized by having many long, hard (thick) fibers, and LKP is characterized by having many short, soft (thin) fibers, so according to the above blending ratio, Fine ratios A and B can be easily achieved. Can be adjusted.
 本形態において「ファイン率A(Fine率A)」とは、繊維長が0.2mm以下で、かつ繊維幅が75μm以下であるセルロース繊維の質量基準の割合をいう。また、「ファイン率B(Fine率B)」とは、繊維長が0.2mmを超え、かつ繊維幅が10μm以下であるセルロース繊維の質量基準の割合をいう。 In this embodiment, "Fine ratio A" refers to the mass-based ratio of cellulose fibers having a fiber length of 0.2 mm or less and a fiber width of 75 μm or less. Moreover, "Fine ratio B" refers to the mass-based ratio of cellulose fibers whose fiber length exceeds 0.2 mm and whose fiber width is 10 μm or less.
 マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、繊維状ではなくなりセルロースナノクリスタルに近い形状となる。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが高くなり、分散が不十分となるおそれがある。 The aspect ratio of the microfiber cellulose is preferably 2 to 15,000, more preferably 10 to 10,000. When the aspect ratio is less than 2, the shape is not fibrous and becomes close to cellulose nanocrystals. On the other hand, when the aspect ratio exceeds 15,000, the microfiber cellulose becomes entangled with each other, and there is a possibility that the dispersion becomes insufficient.
 アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるためセルロースナノファイバーを添加剤として使用した場合は補強効果が上がるが、他方で繊維の絡み合いが多くなりハンドリング性が悪くなる可能性がある。 Aspect ratio is the value obtained by dividing the average fiber length by the average fiber width. As the aspect ratio increases, the number of places where snags occur increases, so when cellulose nanofibers are used as an additive, the reinforcing effect increases, but on the other hand, the fibers become more entangled, which may worsen handling properties.
 マイクロ繊維セルロースの繊維長、ファイン率(Fine率)等は、バルメット社製の繊維分析計「FS5」によって測定した値である。 The fiber length, fine rate, etc. of microfiber cellulose are values measured using a fiber analyzer "FS5" manufactured by Valmet.
 マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.0~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、脱水が困難になる可能性がある。他方、フィブリル化率が1.0%下回ると、希アルカリ及び添加剤添加後の微細化において処理に必要なエネルギーが増加し経済性に悪影響を及ぼす可能性がある。 The fibrillation rate of microfiber cellulose is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, particularly preferably 2.0 to 15.0%. When the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, which may make dehydration difficult. On the other hand, if the fibrillation rate is less than 1.0%, the energy required for the process of refining after addition of dilute alkali and additives may increase, which may adversely affect economic efficiency.
 本形態においてフィブリル化率とは、セルロース繊維をJIS-P-8220:2012「パルプ-離解方法」に準拠して離解し、得られた離解パルプをFiberLab.(Kajaani社)を用いて測定した値をいう。 In this embodiment, the fibrillation rate refers to cellulose fibers being disintegrated in accordance with JIS-P-8220:2012 "Pulp - Disintegration Method", and the obtained disintegrated pulp being processed by FiberLab. (Kajaani).
 マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、希アルカリ及び添加剤へ溶解するおそれがありセルロースナノファイバーが得られにくくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度の上限は限定しないが、叩解やミクロフィブリル化時に結晶性が低下するため90%程度が上限となると考えられる。 The crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, particularly preferably 60% or more. When the degree of crystallinity is less than 50%, there is a possibility that the cellulose nanofibers will be dissolved in dilute alkali and additives, making it difficult to obtain cellulose nanofibers. On the other hand, the upper limit of the crystallinity of microfiber cellulose is not limited, but it is thought that about 90% is the upper limit because the crystallinity decreases during beating and microfibrillation.
 マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。 The degree of crystallinity of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, and refining treatment.
 マイクロ繊維セルロースの結晶化度は、JIS K 0131(1996)に準拠して測定した値である。 The crystallinity of microfiber cellulose is a value measured in accordance with JIS K 0131 (1996).
 マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、希アルカリ及び添加剤添加時に溶解しセルロースナノファイバーが得られないおそれがある。 The pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the microfiber cellulose is less than 2 cps, it may dissolve when dilute alkali and additives are added, and cellulose nanofibers may not be obtained.
 マイクロ繊維セルロースのパルプ粘度は、TAPPI T 230に準拠して測定した値である。 The pulp viscosity of microfiber cellulose is a value measured in accordance with TAPPI T230.
 マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、パルプからの叩解が進んでいないため希アルカリ及び添加剤添加後の微細化において必要なエネルギーが増加し、得られるセルロースナノファイバーの光透過率が低下する可能性がある。 The freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, particularly preferably 100 ml or less. When the freeness of the microfiber cellulose exceeds 500 ml, the beating from the pulp has not progressed, so the energy required for micronization after addition of dilute alkali and additives increases, and the light transmittance of the resulting cellulose nanofibers decreases. there is a possibility.
 マイクロ繊維セルロースのフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。 The freeness of microfiber cellulose is a value measured in accordance with JIS P8121-2 (2012).
 マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、カルバメート基の導入量が低い可能性があり、希アルカリ及び添加剤添加後の微細化において得られるセルロースナノファイバーの光透過率が低下する可能性がある。他方、ゼータ電位が20mVを上回ると、カルバメート基の導入量が高く、希アルカリ及び添加剤添加時に溶解しセルロースナノファイバーが得られない可能性がある。 The zeta potential of microfiber cellulose is preferably -150 to 20 mV, more preferably -100 to 0 mV, particularly preferably -80 to -10 mV. If the zeta potential is less than -150 mV, the amount of carbamate groups introduced may be low, and the light transmittance of cellulose nanofibers obtained by micronization after addition of dilute alkali and additives may decrease. On the other hand, when the zeta potential exceeds 20 mV, the amount of carbamate groups introduced is high, and there is a possibility that cellulose nanofibers will not be obtained due to dissolution when dilute alkali and additives are added.
 マイクロ繊維セルロースの保水度は、好ましくは30~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が30%を下回ると、原料パルプと変わらないため希アルカリ及び添加剤添加後の微細化において得られるセルロースナノファイバーの光透過率が低下する可能性がある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、希アルカリ及び添加剤時に溶解しセルロースナノファイバーが得られない可能性がある。この点、マイクロ繊維セルロースの保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。 The water retention degree of microfiber cellulose is preferably 30 to 400%, more preferably 90 to 350%, particularly preferably 100 to 300%. If the water retention is less than 30%, the light transmittance of cellulose nanofibers obtained by micronization after addition of dilute alkali and additives may decrease because it is the same as the raw material pulp. On the other hand, if the degree of water retention exceeds 400%, dehydration properties tend to be poor, and cellulose nanofibers may not be obtained due to dissolution in dilute alkali and additives. In this regard, the water retention of microfiber cellulose can be lowered by substituting the hydroxy groups of the fibers with carbamate groups, and the dehydration and drying properties can be improved.
 マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The water retention degree of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
 マイクロ繊維セルロースの保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。 The water retention level of microfiber cellulose is JAPAN TAPPI No. 26 (2000).
(希アルカリ及び添加剤の添加)
 次に、カルバメート化したセルロース繊維をフィブリル化して得たマイクロ繊維セルロースを微細化するにあたって行う希アルカリ及び添加剤の添加について説明する。
(Addition of dilute alkali and additives)
Next, the addition of a dilute alkali and additives to microfiber cellulose obtained by fibrillating carbamate cellulose fibers will be explained.
 まず、カルバメート化マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。 First, if necessary, the carbamate microfiber cellulose is dispersed in an aqueous medium to form a dispersion (slurry). It is particularly preferable that the aqueous medium consists entirely of water, but an aqueous medium that is partially composed of other liquids that are compatible with water can also be used. As other liquids, lower alcohols having 3 or less carbon atoms can be used.
 スラリーの固形分濃度は、好ましくは0.1~20質量%、より好ましくは0.5~5質量%である。固形分濃度が上記範囲内であれば、効率的に解繊することができる。 The solid content concentration of the slurry is preferably 0.1 to 20% by mass, more preferably 0.5 to 5% by mass. If the solid content concentration is within the above range, defibration can be performed efficiently.
 カルバメート化マイクロ繊維セルロースに添加する希アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、水酸化マンガン、水酸化鉄(II)、水酸化鉄(III)、水酸化銅(II)、水酸化亜鉛、水酸化ランタン、水酸化アルミニウム等を例示することができる。ただし、経済性の観点から水酸化ナトリウムを使用するのが好ましい。 Examples of dilute alkalis added to carbamate microfiber cellulose include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, calcium hydroxide, manganese hydroxide, iron(II) hydroxide, and iron(II) hydroxide. III), copper(II) hydroxide, zinc hydroxide, lanthanum hydroxide, aluminum hydroxide, etc. However, from the viewpoint of economy, it is preferable to use sodium hydroxide.
 また、添加剤としては、尿素及び尿素の誘導体の少なくともいずれか一方を使用するのが好ましく、尿素を使用するのがより好ましい。 Furthermore, as the additive, it is preferable to use at least one of urea and urea derivatives, and it is more preferable to use urea.
 以上のように希アルカリ及び尿素等の添加剤を添加した状態で微細化を行う形態によると、希アルカリによりセルロースの親水性領域にある水素結合が阻害され、さらに尿素等の添加剤がファンデルワールス力により疎水性領域に集まり、セルロース繊維同士の再凝集を防ぐはたらきをするため、溶媒中へのセルロース繊維の分散の安定性を向上させることができ、得られるセルロースナノファイバーの透明性(透明度)が向上する。 As described above, according to the method in which micronization is performed with additives such as dilute alkali and urea added, the dilute alkali inhibits the hydrogen bonds in the hydrophilic region of cellulose, and furthermore, the additives such as urea are Because cellulose fibers gather in hydrophobic regions due to Waals force and work to prevent re-aggregation of cellulose fibers, the stability of dispersion of cellulose fibers in a solvent can be improved, and the transparency of the resulting cellulose nanofibers can be improved. ) will be improved.
 また、以上に加えて、更に酸化亜鉛(ZnO)を添加した状態で微細化するのが好ましい。酸化亜鉛(ZnO)を添加した状態で微細化を行う形態によると、酸化亜鉛がセルロースと水素結合し、セルロース分子間の水素結合を選択的にせん断すると同時に、セルロースが荷電することで静電反発を発生させ溶媒中にセルロース繊維が分散しやすくなり、得られるセルロースナノファイバーの透明性(透明度)が向上する。 In addition to the above, it is preferable to further add zinc oxide (ZnO) for refining. According to the method where zinc oxide (ZnO) is added and refined, zinc oxide forms a hydrogen bond with cellulose, selectively shearing the hydrogen bonds between cellulose molecules, and at the same time, the cellulose becomes charged, causing electrostatic repulsion. generation, the cellulose fibers become easier to disperse in the solvent, and the transparency (transparency) of the obtained cellulose nanofibers improves.
 希アルカリが水酸化ナトリウムである場合においては、当該水酸化ナトリウムの添加量がセルロース繊維1kgに対して、0.1~100kgであるのが好ましく、1~90kgであるのが特に好ましい。添加量が0.1kg未満であると、得られるセルロースナノファイバーの光透過率が低下する可能性がある。他方、添加量が100kgを超えると、セルロースが溶解しセルロースナノファイバーが得られない可能性がある。 When the dilute alkali is sodium hydroxide, the amount of sodium hydroxide added is preferably 0.1 to 100 kg, particularly preferably 1 to 90 kg, per 1 kg of cellulose fiber. If the amount added is less than 0.1 kg, the light transmittance of the obtained cellulose nanofibers may decrease. On the other hand, if the amount added exceeds 100 kg, cellulose may dissolve and cellulose nanofibers may not be obtained.
 また、尿素等の添加剤の添加量は、セルロース1kgに対して0.1~100kgであるのが好ましく、2.5~90kgであるのがより好ましく、5~80kgであるのが特に好ましい。添加量が0.1kg未満であると、得られるセルロースナノファイバーの光透過率が低下する可能性がある。他方、添加量が100kgを超えても、光透過率の上昇は頭打ちになり経済性コスト面において優位性が得られない。 Furthermore, the amount of additives such as urea added is preferably 0.1 to 100 kg, more preferably 2.5 to 90 kg, particularly preferably 5 to 80 kg, per 1 kg of cellulose. If the amount added is less than 0.1 kg, the light transmittance of the obtained cellulose nanofibers may decrease. On the other hand, even if the amount added exceeds 100 kg, the increase in light transmittance reaches a ceiling and no advantage is obtained in terms of economy and cost.
 また、セルロース分散溶液中の酸化亜鉛添加量はセルロース繊維1kgに対して、0.1~20gであるのが好ましく、0.1~10gであるのがより好ましい。添加量が20gを超えると溶液が白濁する可能性がある。 Furthermore, the amount of zinc oxide added to the cellulose dispersion solution is preferably 0.1 to 20 g, more preferably 0.1 to 10 g, per 1 kg of cellulose fiber. If the amount added exceeds 20 g, the solution may become cloudy.
 希アルカリ及び添加剤の添加は、カルバメート化したセルロース繊維及びマイクロ繊維セルロースの水分散液に対して行う。添加は、ミクロフィブリル化前及び微細化前のどちらで行うこともできる。また、攪拌は水分散液中に希アルカリ及び添加剤が均一に分散できる方法であれば特に制限されない。 The dilute alkali and additives are added to an aqueous dispersion of carbamate cellulose fibers and microfiber cellulose. The addition can be carried out either before microfibrillation or before microfibrillation. Further, stirring is not particularly limited as long as it is a method that can uniformly disperse the dilute alkali and additives in the aqueous dispersion.
(微細化)
 以上のようにしてカルバメート化マイクロ繊維セルロースのスラリーに希アルカリや尿素等を添加したら、この状態においてカルバメート化マイクロ繊維セルロースの微細化(解繊)を行う。この微細化は、前述したカルバメート化セルロース繊維のフィブリル化と類似するので、以下では、当該フィブリル化とは異なる点を中心に説明する。
(miniaturization)
After adding dilute alkali, urea, etc. to the slurry of carbamate microfiber cellulose as described above, the carbamate microfiber cellulose is refined (fibrillated) in this state. Since this refinement is similar to the fibrillation of the carbamate cellulose fibers described above, the following will focus on the differences from the fibrillation.
 本形態においては、カルバメート化マイクロ繊維セルロースの微細化をセルロース繊維がセルロースナノファイバーとなるように行う。セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であるが、より光透過率が高く透明である。 In this embodiment, the carbamate microfiber cellulose is refined so that the cellulose fibers become cellulose nanofibers. Cellulose nanofibers are fine fibers similar to microfiber cellulose, but they have higher light transmittance and are transparent.
 セルロースナノファイバーは、マイクロ繊維セルロースと微細化の程度が異なり、例えば、平均繊維径が0.1μmを下回る。具体的には、セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは1~20nm、より好ましくは1~15nm、特に好ましくは1~10nmである。セルロースナノファイバーの平均繊維径が1nmを下回ると、繊維の表面積が大きくなり脱水性が悪く、シート等の製品時に製造コストが上昇してしまう可能性がある。他方、セルロースナノファイバーの平均繊維径が20nmを上回ると、透明性(透明度)が劣る可能性がある。 Cellulose nanofibers differ in the degree of refinement from microfiber cellulose, for example, the average fiber diameter is less than 0.1 μm. Specifically, the average fiber diameter (average fiber width; average diameter of single fibers) of cellulose nanofibers is preferably 1 to 20 nm, more preferably 1 to 15 nm, particularly preferably 1 to 10 nm. When the average fiber diameter of the cellulose nanofibers is less than 1 nm, the surface area of the fibers becomes large, resulting in poor dehydration properties, which may increase manufacturing costs for products such as sheets. On the other hand, when the average fiber diameter of cellulose nanofibers exceeds 20 nm, transparency (transparency) may be poor.
 セルロースナノファイバーの平均繊維径は、例えば、カルバメート化マイクロ繊維セルロースのフィブリル化の程度、前処理、解繊等によって調整することができる。 The average fiber diameter of the cellulose nanofibers can be adjusted by, for example, the degree of fibrillation of the carbamate microfiber cellulose, pretreatment, fibrillation, etc.
 なお、セルロースナノファイバーの物性に関する計測方法は、特にこれに反する記載のない限り、マイクロ繊維セルロースの場合と同様である。 Note that the measurement method for the physical properties of cellulose nanofibers is the same as that for microfiber cellulose unless otherwise specified.
 セルロースナノファイバーの平均繊維長(単繊維の長さ)は、好ましくは0.1~1,000μm、より好ましくは0.5~500μmである。セルロースナノファイバーの平均繊維長が0.1μmを下回ると、繊維状ではなくなりセルロースナノクリスタルに近い形状となる。他方、セルロースナノファイバーの平均繊維長が1,000μmを上回ると、繊維同士が絡み易くなり、分散性が十分に向上しないおそれがある。 The average fiber length (length of a single fiber) of cellulose nanofibers is preferably 0.1 to 1,000 μm, more preferably 0.5 to 500 μm. When the average fiber length of the cellulose nanofibers is less than 0.1 μm, the shape is not fibrous but close to that of cellulose nanocrystals. On the other hand, if the average fiber length of the cellulose nanofibers exceeds 1,000 μm, the fibers tend to become entangled with each other, and there is a possibility that the dispersibility may not be sufficiently improved.
 セルロースナノファイバーの平均繊維長は、例えば、前処理、解繊等によって調整することができる。 The average fiber length of cellulose nanofibers can be adjusted, for example, by pretreatment, fibrillation, etc.
 セルロースナノファイバー結晶化度は、好ましくは50%以上、より好ましくは60%以上である。セルロースナノファイバーの結晶化度が以上の範囲内であればセルロースの力学物性(特に強度及び寸法安定性)を向上することができる。 The cellulose nanofiber crystallinity is preferably 50% or more, more preferably 60% or more. If the crystallinity of cellulose nanofibers is within the above range, the mechanical properties (particularly strength and dimensional stability) of cellulose can be improved.
 結晶化度は、例えば、カルバメート化マイクロ繊維セルロースのフィブリル化の程度、前処理、解繊等で任意に調整することができる。 The degree of crystallinity can be arbitrarily adjusted by, for example, the degree of fibrillation of the carbamate microfiber cellulose, pretreatment, fibrillation, etc.
 解繊して得られたセルロースナノファイバーは、必要により、他のセルロース繊維と混合するに先立って水系媒体中に分散して分散液としておくことができる。分散媒は、全量が水であるのが特に好ましい(水溶液)。ただし、分散媒は、一部が水と相溶性を有する他の液体であってもよい。他の液体としては、例えば、炭素数3以下の低級アルコール類等を使用することができる。 If necessary, the cellulose nanofibers obtained by fibrillation can be dispersed in an aqueous medium to form a dispersion before being mixed with other cellulose fibers. It is particularly preferable that the entire amount of the dispersion medium is water (aqueous solution). However, the dispersion medium may be another liquid that is partially compatible with water. As other liquids, for example, lower alcohols having 3 or less carbon atoms can be used.
 セルロースナノファイバーの分散液(濃度1%)のB型粘度は、好ましくは10~2,000cp、より好ましくは30~1,500cpである。分散液のB型粘度を以上の範囲内にすると、他のセルロース繊維との混合が容易になり、また、セルロース繊維スラリーの脱水性が向上する。 The type B viscosity of the cellulose nanofiber dispersion (concentration 1%) is preferably 10 to 2,000 cp, more preferably 30 to 1,500 cp. When the B-type viscosity of the dispersion liquid is within the above range, mixing with other cellulose fibers becomes easy, and the dewaterability of the cellulose fiber slurry improves.
 分散液のB型粘度(固形分濃度1%)は、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定した値である。B型粘度は分散液を攪拌したときの抵抗トルクであり、高いほど攪拌に必要なエネルギーが多くなることを意味する。 The B-type viscosity (solid content concentration 1%) of the dispersion is a value measured in accordance with JIS-Z8803 (2011) "Liquid viscosity measurement method". Type B viscosity is the resistance torque when stirring a dispersion liquid, and means that the higher the viscosity, the more energy is required for stirring.
 スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を均一に混合できなくなるおそれがある。 The solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass. When the solid content concentration is less than 0.1% by mass, excessive energy may be required during dehydration and drying. On the other hand, if the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself may decrease, and the dispersant may not be mixed uniformly.
(その他)
 本形態のセルロースナノファイバーは、例えば、スラリー状のものを乾燥させ透明なシート状として利用すること等ができる。
(others)
The cellulose nanofiber of this embodiment can be used, for example, in the form of a transparent sheet by drying a slurry.
 次に、本発明の実施例について、説明する。
 まず、針葉樹クラフトパルプと固形分濃度10%の尿素水溶液を固形分換算比で2:1で混合した。また20%クエン酸溶液を少量添加(0.0008g/g-尿素)した。この混合物を105℃で乾燥して乾燥体とした。この乾燥体は160℃で1時間加熱処理し、カルバメート変性パルプを得た。このようにして得られたカルバメート変性パルプは蒸留水で希釈攪拌し、脱水洗浄を2回繰り返し行った。洗浄したカルバメート変性パルプをリファイナーで叩解し、カルバメート変性マイクロ繊維セルロース(セルロース繊維)を得た。このカルバメート変性マイクロ繊維セルロースは、カルバメート基の導入量が1.4mmol/g、fineAが77%であった。
Next, examples of the present invention will be described.
First, softwood kraft pulp and an aqueous urea solution having a solid content concentration of 10% were mixed at a solid content conversion ratio of 2:1. A small amount of 20% citric acid solution was also added (0.0008 g/g-urea). This mixture was dried at 105°C to obtain a dry product. This dried product was heat-treated at 160° C. for 1 hour to obtain carbamate-modified pulp. The carbamate-modified pulp thus obtained was diluted with distilled water and stirred, and dehydrated and washed twice. The washed carbamate-modified pulp was beaten in a refiner to obtain carbamate-modified microfiber cellulose (cellulose fiber). This carbamate-modified microfiber cellulose had a carbamate group introduction amount of 1.4 mmol/g and fine A of 77%.
 次に、水酸化ナトリウム50%水溶液80.0g、尿素50.0gと水130.8gを混合し、試薬Aを作製した。作製した試薬Aとカルバメート変性マイクロ繊維セルロース(NBKP:水分97.9質量%)乾燥重量5gを混合し、高圧ホモジナイザーを用いた解繊(微細化)処理を施した後、濃度1.0質量%のカルバメート変性セルロースナノファイバーの水分散液を得た。また、一部の試験例においては、酸化亜鉛を添加した。その他の試験例は、表1の配合割合に合わせて試薬Aを作製した後に同様の操作を行った。 Next, Reagent A was prepared by mixing 80.0 g of 50% sodium hydroxide aqueous solution, 50.0 g of urea, and 130.8 g of water. The prepared reagent A and carbamate-modified microfiber cellulose (NBKP: moisture 97.9% by mass) dry weight 5g were mixed and subjected to defibration (refining) treatment using a high-pressure homogenizer, resulting in a concentration of 1.0% by mass. An aqueous dispersion of carbamate-modified cellulose nanofibers was obtained. In some test examples, zinc oxide was added. In other test examples, reagent A was prepared according to the blending ratios shown in Table 1, and then similar operations were performed.
 得られた各カルバメート変性セルロースナノファイバーの水分散液について、全光透過率を以下のようにして調べた。結果を表1に示した。 The total light transmittance of each of the obtained aqueous dispersions of carbamate-modified cellulose nanofibers was examined as follows. The results are shown in Table 1.
(全光透過率)
 得られたカルバメート変性セルロースナノファイバーの水分散液を脱気処理後、吸光度計を用いてJIS K 7361に準拠して全光透過率を測定した。ゼロ点補正は同ガラスセルに入れたイオン交換水で行い、全光透過率は波長350~880nmで測定した透過率の平均値より算出した。
(Total light transmittance)
After degassing the resulting aqueous dispersion of carbamate-modified cellulose nanofibers, total light transmittance was measured using an absorbance meter in accordance with JIS K 7361. Zero point correction was performed using ion-exchanged water placed in the same glass cell, and the total light transmittance was calculated from the average value of transmittances measured at wavelengths of 350 to 880 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明は、セルロースナノファイバーの製造方法及びセルロースナノファイバーとして利用可能である。 The present invention can be used as a method for producing cellulose nanofibers and cellulose nanofibers.

Claims (7)

  1.  カルバメート化したセルロース繊維に、希アルカリを添加して微細化する、
     ことを特徴とするセルロースナノファイバーの製造方法。
    Add dilute alkali to carbamate cellulose fibers to make them fine.
    A method for producing cellulose nanofibers, characterized by:
  2.  カルバメート化したセルロース繊維に、希アルカリと、尿素及び尿素誘導体の少なくともいずれか一方の添加剤とを添加して微細化する、
     ことを特徴とするセルロースナノファイバーの製造方法。
    Adding a dilute alkali and at least one of urea and urea derivative additives to the carbamate cellulose fibers to make them fine.
    A method for producing cellulose nanofibers, characterized by:
  3.  前記希アルカリが水酸化ナトリウムであって、前記セルロース繊維1kgに対して、前記水酸化ナトリウムの添加量が0.1~100kgであり、前記添加剤の添加量が、0.1~100kgである、
     請求項2に記載のセルロースナノファイバーの製造方法。
    The dilute alkali is sodium hydroxide, the amount of the sodium hydroxide added is 0.1 to 100 kg, and the amount of the additive is 0.1 to 100 kg with respect to 1 kg of the cellulose fiber. ,
    The method for producing cellulose nanofibers according to claim 2.
  4.  前記カルバメート化したセルロース繊維の平均繊維径が1~16μmで、かつ前記微細化を平均繊維径1~20nmとなるように行う、
     請求項1又は請求項2に記載のセルロースナノファイバーの製造方法。
    The carbamate-formed cellulose fibers have an average fiber diameter of 1 to 16 μm, and the refinement is carried out so that the average fiber diameter is 1 to 20 nm.
    The method for producing cellulose nanofibers according to claim 1 or 2.
  5.  前記カルバメート化を、pH9以上のアルカリ性条件、又はpH7以下の酸性条件で行って前記カルバメート化したセルロース繊維の平均繊維長を0.10~2.0mmとする、
     請求項1又は請求項2に記載のセルロースナノファイバーの製造方法。
    Carbamate the carbamate under alkaline conditions of pH 9 or higher or acidic conditions of pH 7 or lower so that the average fiber length of the carbamate-formed cellulose fibers is 0.10 to 2.0 mm.
    The method for producing cellulose nanofibers according to claim 1 or 2.
  6.  前記カルバメート化したセルロース繊維の結晶化度が50%以上である、
     請求項1又は請求項2に記載のセルロースナノファイバーの製造方法。
    The crystallinity of the carbamate cellulose fiber is 50% or more,
    The method for producing cellulose nanofibers according to claim 1 or 2.
  7.  請求項1又は請求項2に記載の方法によって得た、
     ことを特徴とするセルロースナノファイバー。
    Obtained by the method according to claim 1 or claim 2,
    Cellulose nanofibers are characterized by:
PCT/JP2022/045247 2022-03-29 2022-12-08 Method for producing cellulose nanofiber and cellulose nanofiber WO2023188554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053671 2022-03-29
JP2022053671A JP7449328B2 (en) 2022-03-29 2022-03-29 Method for producing cellulose nanofibers

Publications (1)

Publication Number Publication Date
WO2023188554A1 true WO2023188554A1 (en) 2023-10-05

Family

ID=88200029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045247 WO2023188554A1 (en) 2022-03-29 2022-12-08 Method for producing cellulose nanofiber and cellulose nanofiber

Country Status (2)

Country Link
JP (1) JP7449328B2 (en)
WO (1) WO2023188554A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500621A (en) * 1982-03-30 1984-04-12 ネステ・オ−・ワイ Processing method for cellulose derivative fibers
JP2018141249A (en) * 2017-02-28 2018-09-13 大王製紙株式会社 Cellulose fine fiber and manufacturing method thereof
CN108930071A (en) * 2018-08-10 2018-12-04 高密云鹰新材料科技有限公司 A kind of carbamate method prepares the production technology of regenerated cellulose staple fiber
CN109970875A (en) * 2019-04-12 2019-07-05 四川大学 It is a kind of cellulose nano-fibrous and preparation method thereof
JP2019199671A (en) * 2018-05-18 2019-11-21 大王製紙株式会社 Cellulose fine fiber and method for producing the same
WO2021038136A1 (en) * 2019-08-30 2021-03-04 Infinited Fiber Company Oy Cellulose pretreatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500621A (en) * 1982-03-30 1984-04-12 ネステ・オ−・ワイ Processing method for cellulose derivative fibers
JP2018141249A (en) * 2017-02-28 2018-09-13 大王製紙株式会社 Cellulose fine fiber and manufacturing method thereof
JP2019199671A (en) * 2018-05-18 2019-11-21 大王製紙株式会社 Cellulose fine fiber and method for producing the same
CN108930071A (en) * 2018-08-10 2018-12-04 高密云鹰新材料科技有限公司 A kind of carbamate method prepares the production technology of regenerated cellulose staple fiber
CN109970875A (en) * 2019-04-12 2019-07-05 四川大学 It is a kind of cellulose nano-fibrous and preparation method thereof
WO2021038136A1 (en) * 2019-08-30 2021-03-04 Infinited Fiber Company Oy Cellulose pretreatment

Also Published As

Publication number Publication date
JP2023146477A (en) 2023-10-12
JP7449328B2 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN110291249B (en) Cellulose microfiber and method for producing same
JP6269617B2 (en) Fine fibrous cellulose aggregate
US10167576B2 (en) Method of producing fine fiber, and fine fiber, non-woven fabric, and fine fibrous cellulose
WO2019021619A1 (en) Fine cellulose fiber-containing substance, method for manufacturing same, and fine cellulose fiber dispersion
JP2018199891A5 (en)
JP2018199891A (en) Cellulose fine fiber and manufacturing method thereof
JP5655432B2 (en) Method for producing fine fibrous cellulose
KR20220146441A (en) A method for producing fibrous cellulose, and a method for producing a fibrous cellulose composite resin
US20230183384A1 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for preparing fibrous cellulose-containing material
JP2022089848A5 (en)
JP6070200B2 (en) Method for producing fiber raw material and method for producing cellulose sheet
JP7449328B2 (en) Method for producing cellulose nanofibers
JP6098370B2 (en) Composite material and manufacturing method thereof
JP2023146477A5 (en)
JP7440574B2 (en) Fibrous cellulose composite resin
WO2024070008A1 (en) Method for producing carbamated cellulose fibers
WO2023238458A1 (en) Method for producing carbamated cellulose fibers and method for producing carbamated cellulose fine fibers
JP7429212B2 (en) Method for producing carbamate cellulose fiber
JP7406312B2 (en) Water-disintegratable paper and its manufacturing method
JP7449323B2 (en) Fibrous cellulose composite resin
JP7213296B2 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
JP7213926B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
JP2023180893A5 (en)
JP2024008128A5 (en)
JP2021161565A (en) Molded body of cellulose fiber and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935683

Country of ref document: EP

Kind code of ref document: A1