WO2023188368A1 - Drive control device and control method for drive control device - Google Patents

Drive control device and control method for drive control device Download PDF

Info

Publication number
WO2023188368A1
WO2023188368A1 PCT/JP2022/016804 JP2022016804W WO2023188368A1 WO 2023188368 A1 WO2023188368 A1 WO 2023188368A1 JP 2022016804 W JP2022016804 W JP 2022016804W WO 2023188368 A1 WO2023188368 A1 WO 2023188368A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
motor
control device
current value
drive
Prior art date
Application number
PCT/JP2022/016804
Other languages
French (fr)
Japanese (ja)
Inventor
雄紀 鈴川
歩 西宮
晋二郎 森田
亮平 今野
弘喜 中島
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/016804 priority Critical patent/WO2023188368A1/en
Publication of WO2023188368A1 publication Critical patent/WO2023188368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Definitions

  • the present invention relates to a drive control device and a method of controlling the drive control device.
  • Patent Document 1 discloses an inverter circuit including a plurality of switching elements, a current sensor that detects a current flowing through the inverter circuit, and a motor control circuit that controls the plurality of switching elements of the inverter circuit based on the detected current of the current sensor.
  • An inverter device is disclosed.
  • the motor control circuit controls the motor based on a control signal input from a host device. However, if there is an error in the battery voltage that is grasped by the host device and the motor control circuit, the motor control circuit may not be able to stop the regenerative drive, and overvoltage may be applied to the battery.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to suppress overvoltage of a battery during regenerative drive.
  • the present disclosure includes an acquisition unit that acquires the voltage of a battery, and a control unit that supplies electric power from the battery to a motor based on a torque command value input from a host device to drive the motor.
  • the control unit controls the amount of regeneration by the motor if the voltage of the battery is equal to or higher than a first preset threshold while regeneratively driving the motor.
  • This is a drive control device that executes regeneration suppression control.
  • the present disclosure is a method for controlling a drive control device installed in a vehicle, which includes the steps of acquiring battery voltage, and supplying power from the battery to a motor based on a torque command value input from a host device. the step of driving the motor, and performing regeneration suppression control to suppress the amount of regeneration by the motor if the voltage of the battery is equal to or higher than a preset first threshold while regeneratively driving the motor; A method of controlling a drive control device, including steps of executing the method.
  • FIG. 1 is a diagram showing the system configuration of a power system.
  • FIG. 2 is a diagram showing an example of the first map.
  • FIG. 3(A) is a diagram showing changes in battery voltage
  • FIG. 3(B) is a diagram showing changes in current command value.
  • FIG. 4 is a diagram showing an example of the second map.
  • FIG. 5(A) is a diagram showing changes in battery voltage
  • FIG. 5(B) is a diagram showing changes in current command value.
  • FIG. 6 is a flowchart showing the operation of the drive control device.
  • FIG. 1 is a diagram showing a system configuration of a power system 1.
  • the power system 1 includes a motor 10, a power converter 20, a battery group 50, a down regulator 41, a load 43, and a first control device 60, and is mounted on a vehicle.
  • the vehicle is, for example, a motorbike (two-wheeled vehicle). In this embodiment, a case will be described in which the vehicle is a motorbike (two-wheeled motor vehicle), but the vehicle is not limited to a motorbike.
  • the vehicle may be, for example, a four-wheeled passenger car, a four-wheeled large vehicle, or a work vehicle such as a tractor.
  • the motor 10 operates as an electric motor when the vehicle accelerates. When operating as an electric motor, the motor 10 is driven based on three-phase AC power supplied from the power conversion device 20.
  • the motor 10 operates as a generator when the vehicle is decelerating.
  • the motor 10 When the motor 10 operates as a generator, it generates electricity through regenerative driving.
  • the regenerative drive of the motor 10 applies braking force to each wheel of the vehicle.
  • the three-phase AC power generated by the regenerative drive of the motor 10 is converted into DC power by the power converter 20 and charged into the battery group 50.
  • the motor 10 is, for example, a three-phase (U, V, W) brushless motor.
  • the motor 10 includes a rotor having a permanent magnet, and coils 10U, 10V, and 10W corresponding to three phases (U phase, V phase, and W phase), respectively.
  • the coils 10U, 10V, and 10W of each phase are connected to the power conversion device 20, respectively.
  • the power conversion device 20 includes a smoothing capacitor 21, an inverter 23, and a second control device 30.
  • the second control device 30 corresponds to a drive control device.
  • the smoothing capacitor 21 is connected between the power line 28 on the high potential side and the power line 29 on the low potential side.
  • Power line 28 is connected to the positive electrode of battery group 50
  • power line 29 is connected to the negative electrode of battery group 50.
  • Smoothing capacitor 21 smoothes the DC voltage supplied from battery group 50.
  • the inverter 23 is a DC-AC converter.
  • the inverter 23 is a power converter that converts DC power to AC power.
  • the inverter 23 includes an upper arm circuit and a lower arm circuit for three phases (U, V, W).
  • the upper arm circuit is a circuit that supplies current from the power line 28 to the motor 10
  • the lower arm circuit is a circuit that draws current from the motor 10 to the battery group 50.
  • the upper arm circuit includes bipolar transistors 24U1, 24V1, and 24W1, and diodes 25U1, 25V1, and 25W1. Diodes 25U1, 25V1 and 25W1 are connected anti-parallel to bipolar transistors 24U1, 24V1 and 24W1, respectively, for free circulation.
  • the lower arm circuit includes bipolar transistors 24U2, 24V2, and 24W2, and diodes 25U2, 25V2, and 25W2. Diodes 25U2, 25V2 and 25W2 are connected anti-parallel to bipolar transistors 24U2, 24V2 and 24W2, respectively, for free circulation.
  • the second control device 30 is connected to the power line 28 on the high-potential side and the power line 29 on the low-potential side.
  • the second control device 30 includes a measuring section 31, an input/output interface 33, a second memory 35, and a second processor 37.
  • I/O input/output interface
  • the second memory 35 corresponds to a storage section
  • the second processor 37 corresponds to a control section.
  • the measurement unit 31 and I/O 33 operate as an acquisition unit.
  • the measurement unit 31 is connected to the power line 28 and the power line 29.
  • Measuring section 31 measures battery voltage.
  • the value of the battery voltage measured by the measurement unit 31 is input to the second processor 37 via the I/O 33.
  • a control signal output from the first control device 60 is input to the I/O 33. Further, the I/O 33 outputs a signal for switching on and off the bipolar transistors 24U1, 24U2, 24V1, 24V2, 24W1, and 24W2.
  • the second memory 35 includes a nonvolatile storage device such as a ROM (Read Only Memory) or a nonvolatile storage device such as a RAM (Random Access Memory).
  • the second memory 35 stores a control program executed by the second processor 37 and a first map 110 or a second map 120, which will be described later.
  • the RAM is used as a calculation area for the second processor 37.
  • the second processor 37 is composed of a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and the like.
  • the second processor 37 may be composed of a single processor or a plurality of processors. Further, the second processor 37 may be configured by an SoC integrated with part or all of the second memory 35 and other circuits. Further, the second processor 37 may be configured by a combination of a CPU that executes a program and a DSP (Digital Signal Processor) that executes predetermined arithmetic processing. Furthermore, all of the functions of the second processor 37 may be implemented in hardware, or may be configured using a programmable device. The operation of the second control device 30 will be described later.
  • the battery group 50 includes four removable and portable batteries 51, 52, 53, and 54.
  • the number of portable batteries included in the battery group 50 is not limited to four, and may be five or more or three or less.
  • the positive electrode of the battery group 50 is connected to the power line 28 on the high potential side, and the negative electrode of the battery group 50 is connected to the power line 29 on the low potential side.
  • the down regulator 41 lowers the voltage supplied from the battery group 50 and supplies the lowered voltage to the load 43 and the first control device 60.
  • the first control device 60 is an arithmetic processing device that includes a first memory 61 and a first processor 63 such as a CPU or MPU.
  • the first control device 60 corresponds to a host device.
  • the first memory 61 includes a nonvolatile storage device such as a ROM (Read Only Memory) or a nonvolatile storage device such as a RAM (Random Access Memory).
  • the first processor 63 may be composed of a single processor or may be composed of multiple processors. Further, the first processor 63 may be configured by an SoC integrated with part or all of the first memory 61 and other circuits. Further, the first processor 63 may be configured by a combination of a CPU that executes a program and a DSP that executes predetermined arithmetic processing. Furthermore, all of the functions of the first processor 63 may be implemented in hardware, or may be configured using a programmable device.
  • the first control device 60 comprehensively controls the driving state of the vehicle by executing a control program stored in the first memory 61 in advance.
  • Sensor signals from various sensors such as an accelerator position sensor 71, a brake sensor 73, a vehicle speed sensor, and a temperature sensor that measures the temperature of the battery group 50 are input to the first control device 60.
  • the first control device 60 is connected to the power line 28 on the high potential side and the power line 29 on the low potential side, and receives the voltage output from the battery group 50.
  • the first control device 60 calculates a torque command value based on information such as battery voltage, battery current, and battery temperature.
  • the torque command value is a target value of torque to be output from the motor 10. For example, when accelerating the vehicle, in other words when driving the motor 10, the first control device 60 outputs a positive torque command value. Further, when decelerating the vehicle, in other words, when regeneratively driving the motor 10, the torque command value is set to a negative value.
  • the first control device 60 outputs the calculated torque command value to the second control device 30.
  • the first control device 60 starts the regenerative drive.
  • a start notification is notified to the second control device 30.
  • the first control device 60 The second control device 30 is notified of the end of the regenerative drive.
  • the second control device 30 and the first control device 60 are connected by control signal lines 81 and 83 and a power supply line 85. Further, the second control device 30 is connected to the power line 28 on the high potential side and the power line 29 on the low potential side, and receives the voltage output from the battery group 50.
  • Regeneration suppression control is control that suppresses the amount of regenerative braking by the motor 10 and suppresses the battery group 50 from becoming in an overvoltage state.
  • the second control device 30 determines that the regeneration suppression control is not performed, and changes the torque command value input from the first control device 60 to Based on the calculated current command value, the inverter 23 is operated to drive the motor 10 regeneratively.
  • the current command value calculated based on the torque command value is referred to as a first current command value.
  • the second control device 30 determines to perform regeneration suppression control when the battery voltage measured by the measurement unit 31 is equal to or higher than the first threshold value. The second control device 30 determines that if the regenerative drive is continued based on the first current command value, the battery group 50 will be in an overvoltage state, which will cause the battery group 50 to fail, and executes regeneration suppression control. Then it is determined.
  • the second control device 30 drives the inverter 23 using a preset current command value instead of the first current command value.
  • the preset current command value will be referred to as a second current command value.
  • the second current command value corresponds to the second current value.
  • the second control device 30 also compares the first current command value and the second current command value, selects the current command value with the smaller value, and operates the inverter 23 using the selected current command value. , the motor 10 may be driven regeneratively.
  • the second control device 30 may change the current command value in steps. For example, the second control device 30 changes the current command value so that the amount of decrease in current per unit time is constant, and changes the current command value from the first current command value to the second current command value. You may.
  • FIG. 2 is a diagram showing the first map 110. Further, the second control device 30 may determine the current command value with reference to the first map 110.
  • the first map 110 is a map that defines the relationship between battery voltage and current command value.
  • the second control device 30 obtains the current command value I corresponding to the battery voltage measured by the measurement unit 31 with reference to the first map 110.
  • an increase in the battery voltage and a decrease in the current command value are defined in a linear relationship in an area where the battery voltage is equal to or higher than the first threshold value and lower than the second threshold value. .
  • the current command value is defined so that the value decreases linearly as the battery voltage increases.
  • the current command value is set to 0 in a section where the battery voltage is equal to or higher than the second threshold value.
  • the second threshold is a threshold that has a larger value than the first threshold.
  • the current command value in the section where the battery voltage is greater than or equal to the first threshold value and less than the second threshold value corresponds to the third current value.
  • the current command value in the section where the battery voltage is equal to or higher than the second threshold value corresponds to the fourth current value.
  • FIG. 3 is a diagram showing changes in battery voltage when the current command value is set according to the first map 110 shown in FIG.
  • FIG. 3(A) is a diagram showing a change in battery voltage V over time
  • FIG. 3(B) is a diagram showing a change in current command value I over time.
  • the second control device 30 provides a first current command based on the torque command value input from the first control device 60 in the section a shown in FIG. Calculate the value I-1.
  • FIG. 3A illustrates a case where the first current command value I-1 is constant.
  • the second control device 30 controls the inverter 23 based on the calculated first current command value I-1. By controlling the first current command value I-1 to a constant value, the motor 10 is regeneratively driven and the battery voltage increases.
  • the second control device 30 refers to the first map 110 shown in FIG. 2 in the section b shown in FIG. , obtains a second current command value I-2 corresponding to the battery voltage.
  • the second control device 30 controls the inverter 23 based on the acquired second current command value I-2.
  • the slope of the battery voltage in section b is smaller than the slope of battery voltage in section a.
  • the second control device 30 refers to the first map 110 shown in FIG. 2 Obtain the current command value I-3.
  • the second current command value I-3 is a command value with a value of "0".
  • the second control device 30 controls the inverter 23 based on the acquired second current command value I-3. Since the second current command value I-3 is a command value with a value of "0", regenerative drive is not executed, and an increase in battery voltage is suppressed as shown in FIG. 3(A).
  • FIG. 4 is a diagram showing the second map 120.
  • the second control device 30 may determine the current command value based on the second map 120 shown in FIG. 4.
  • the second map 120 is also a map that defines the relationship between the battery voltage V and the current command value I.
  • the second control device 30 determines the second current command value I with reference to the second map 120.
  • the second control device 30 acquires the second current command value I associated with the battery voltage from the second map 120.
  • an increase in battery voltage and a decrease in current command value are defined in a linear relationship in a section where the battery voltage is greater than or equal to the first threshold value and less than the third threshold value.
  • the current command value is set so that the value decreases linearly as the battery voltage increases.
  • the third threshold is a threshold set to a value larger than the first threshold and smaller than the second threshold.
  • the value in a section where the battery voltage is greater than or equal to the third threshold value and less than the second threshold value, the value is set to a constant set current value even if the battery voltage increases. Further, in the first map 110, the current command value is set to 0 in a section where the battery voltage is equal to or higher than the second threshold value.
  • FIG. 5 is a diagram showing changes in battery voltage when the current command value is set according to the second map 120 shown in FIG.
  • FIG. 5(A) is a diagram showing a change in battery voltage V over time
  • FIG. 5(B) is a diagram showing a change in current command value I over time.
  • the second control device 30 provides a first current command based on the torque command value input from the first control device 60 in the section d shown in FIG. Calculate the value I-4.
  • FIG. 5A illustrates a case where the first current command value I-4 is constant.
  • the second control device 30 controls the inverter 23 based on the calculated first current command value I-4. By controlling the first current command value I-4 to a constant value, the motor 10 is regeneratively driven and the battery voltage increases.
  • the second control device 30 refers to the second map 120 shown in FIG. 4 in the section e shown in FIG. , obtains a second current command value I-5 corresponding to the battery voltage.
  • the second control device 30 controls the inverter 23 based on the acquired second current command value I-5.
  • the slope of the battery voltage in the section e is smaller than the slope of the battery voltage in the section d.
  • the second control device 30 refers to the second map 120 shown in FIG. 4 in the section f shown in FIG. , obtains a second current command value I-6 corresponding to the battery voltage.
  • the second current command value I-6 is a set current value having a constant value.
  • the second control device 30 controls the inverter 23 based on the acquired current command value I-6. As shown in FIG. 5A, the slope of the battery voltage in the section f is smaller than the slope of the battery voltage in the section e.
  • the second control device 30 refers to the second map 120 shown in FIG. 2 Obtain the current command value I-7.
  • the second current command value I-7 is a set current value with a value of 0.
  • the second control device 30 controls the inverter 23 based on the acquired second current command value I-7. Since the second current command value I-7 is a command value of "0", regenerative drive is not executed, and the increase in battery voltage is suppressed as shown in FIG. 5(A).
  • FIG. 6 is a flowchart showing the control operation of the second control device 30.
  • the control operation of the second control device 30 will be explained with reference to the flowchart shown in FIG. Note that the flowchart shown in FIG. 6 shows the operation when the second control device 30 controls the current command value based on the second map 120 shown in FIG. 4.
  • the second control device 30 determines whether or not a regenerative drive start notification has been received from the first control device 60 (step S1). If the second control device 30 has not received the regenerative drive start notification (step S1/NO), it waits to start the process until it receives the regenerative drive start notification.
  • the second control device 30 When the second control device 30 receives the regenerative drive start notification from the first control device 60 (step S1/YES), the second control device 30 obtains the battery voltage (step S2), and uses the obtained battery voltage and the first threshold value. (Step S3). If the battery voltage is less than the first threshold value (step S3/NO), the second control device 30 calculates a current command value based on the torque command value input from the first control device 60 (step S4). ), the inverter 23 is controlled using the calculated current command value (step S5).
  • the second control device 30 determines whether an end notification to end the regenerative drive has been input from the first control device 60 (step S6). If the end notification has not been input from the first control device 60 (step S6/NO), the second control device 30 returns to the process of step S2. Further, when the end notification is input from the first control device 60 (step S6/YES), the second control device 30 ends this processing flow.
  • step S3 when the second control device 30 determines in step S3 that the battery voltage is less than the first threshold value (step S3/YES), it starts regeneration suppression control (step S7).
  • the second control device 30 first determines whether the battery voltage is less than the third threshold (step S8).
  • the second control device 30 refers to the second map 120 to obtain the current value command value (step S9). After that, the second control device 30 controls the inverter 23 based on the acquired current command value (step S13).
  • the second control device 30 determines whether the battery voltage is lower than the second threshold value. Determination is made (step S10). When the battery voltage is less than the second threshold (step S10/YES), the second control device 30 refers to the second map 120 and obtains a set current value that is preset as the current command value (Ste S11). The second control device 30 controls the inverter 23 using the current command value of the acquired set current value (step S13).
  • the second control device 30 refers to the second map 120 and outputs a current command with a value of 0. A value is acquired (step S12). The second control device 30 controls the inverter 23 using the acquired current command value of 0 (step S13).
  • the second control device 30 acquires the battery voltage (step S14), and determines whether the acquired battery voltage is less than or equal to the fourth threshold (step S15).
  • the fourth threshold corresponds to the end threshold. If the acquired battery voltage is not equal to or lower than the fourth threshold (step S15/NO), the second control device 30 returns to the determination in step S8.
  • the second control device 30 ends the regeneration suppression control (step S16) and returns to the process of step S2.
  • the drive control device (30) includes an acquisition unit (31, 33) that acquires the voltage of the battery (50), and a motor (10) based on the torque command value input from the host device (60). and a processor (37) that supplies power from a battery (50) to the motor (10) and drives the motor (10), and is mounted on a vehicle.
  • the processor (37) suppresses the amount of regeneration by the motor (10) when the voltage of the battery (50) is equal to or higher than a first preset threshold while regeneratively driving the motor (10). Executes regeneration suppression control.
  • the drive control device (30) executes regeneration suppression control, it is possible to suppress application of overvoltage to the battery (50).
  • the processor (37) controls the drive of the motor (10) using a first current value based on the torque command value during regenerative drive input from the host device (60), and controls the drive of the motor (10) when the battery voltage is equal to or higher than the first threshold value.
  • the regeneration suppression control is performed by changing the drive of the motor (10) from control based on the first current value to control based on a preset second current value.
  • the processor (37) controls the drive of the motor (10) using a first current value based on the torque command value during regenerative drive input from the host device (60), and controls the drive of the motor (10) when the voltage of the battery (50) reaches a first threshold. If the current value is greater than or equal to the value, the motor (10) is controlled based on the smaller current value between the first current value and the preset second current value to perform regeneration suppression control.
  • the motor is activated based on the smaller current value between the first current value and the second current value. Since the drive of the motor (10) is controlled, no unnecessary large current is passed through the motor (10).
  • the processor (37) When executing the regeneration suppression control, the processor (37) changes the current value that drives the motor (10) so that the amount of decrease in the current value per unit time is constant, and changes the current value that drives the motor (10). The value is changed from the first current value to the second current value.
  • the drive control device (30) includes a memory (35) that stores maps (110, 120) in which the voltage of the battery (50) and the current value for driving the motor (10) are registered in association with each other.
  • the processor (37) controls the drive of the motor (10) based on a current value based on a torque command value during regenerative drive input from a host device (60).
  • the processor (37) controls the drive of the motor (10) from control based on a current value based on a torque command value during regenerative drive to a map ( 110, 120) to perform regeneration suppression control.
  • the maps (110, 120) include a third value as a current value for driving the battery (50) when the voltage of the battery (50) is less than a second threshold value that is larger than the first threshold value.
  • the current value is registered, and a fourth current value smaller than the third current value is registered as the current value for driving the battery when the voltage of the battery is equal to or higher than the second threshold value.
  • the processor (37) controls driving of the battery using a third current value when the voltage of the battery (50) is less than the second threshold, and when the voltage of the battery (50) is equal to or higher than the second threshold. In this case, the battery drive is controlled by the fourth current value.
  • the battery when the voltage of the battery is equal to or higher than the second threshold value, the battery can be driven by the fourth current value smaller than the third current value, and the amount of regeneration by the motor (10) can be further suppressed.
  • the processor (37) stops the regeneration suppression control when the battery voltage becomes equal to or less than a third threshold value, which is smaller than the first threshold value.
  • the regeneration suppression control when it is determined that the battery is not in a state where overvoltage is applied, the regeneration suppression control can be ended and the battery can be charged.
  • the battery (50) is a plurality of replaceable batteries.
  • the battery (50) is a plurality of replaceable batteries, the battery (50) whose charge amount is not constant may be installed in the vehicle. Also, application of overvoltage to the battery (50) can be suppressed.
  • a three-phase AC motor is shown as the motor 10, but the motor 10 is not limited to a three-phase AC motor, and may be any general motor.
  • the battery group 50 is detachable, but the batteries are not limited to being detachable.
  • the configuration is not limited to a configuration in which a plurality of batteries are connected in parallel, but a configuration in which a plurality of batteries are connected in series may be used.
  • the second control unit 30 determines the current command value by referring to the first map 110 and the second map 120, but also determines the current command value by calculation using a function stored in the second memory 35. Good too.
  • processing units in the flowchart shown in FIG. 6 are divided according to the main processing contents in order to facilitate understanding of the processing of the second control device 30, and the main processing units are divided according to the division method and name of the processing units.
  • the invention is not limited.
  • the method for controlling the drive control device is implemented by a computer, it is also possible to configure the program to be executed by the computer in the form of a recording medium or a transmission medium that transmits the program.
  • a magnetic or optical recording medium or a semiconductor memory device can be used as the recording medium.
  • recording media include flexible disks, HDDs (Hard Disk Drives), CD-ROMs (Compact Disk Read Only Memory), DVDs, Blu-ray Discs, and magneto-optical disks. Blu-ray is a registered trademark.
  • the recording medium may be a portable recording medium such as a flash memory or a card type recording medium, or a fixed recording medium.
  • the recording medium may be a nonvolatile storage device such as a RAM, ROM, or HDD, which is an internal storage device included in the display device.

Abstract

A second control device 30 that is to be installed on a vehicle comprises: a measurement unit 31 and an I/O 33 that acquire the voltage of a battery 50; and a second processor 37 that supplies power from the battery to a motor 10 on the basis of a torque command value inputted from a first control device 60 and drives the motor 10. When regeneratively driving the motor 10, the second processor 37 executes regeneration suppression control that suppresses the amount of regeneration by the motor 10 when the voltage of the battery 10 is at least a first preset threshold value.

Description

駆動制御装置及び駆動制御装置の制御方法Drive control device and control method for the drive control device
 本発明は、駆動制御装置及び駆動制御装置の制御方法に関する。 The present invention relates to a drive control device and a method of controlling the drive control device.
 従来、モータの駆動を制御する駆動制御装置が知られている。
 例えば、特許文献1は、複数のスイッチング素子からなるインバータ回路と、インバータ回路に流れる電流を検出する電流センサと、電流センサの検出電流に基づいてインバータ回路の複数のスイッチング素子を制御するモータ制御回路と備えるインバータ装置を開示する。
Conventionally, a drive control device that controls the drive of a motor is known.
For example, Patent Document 1 discloses an inverter circuit including a plurality of switching elements, a current sensor that detects a current flowing through the inverter circuit, and a motor control circuit that controls the plurality of switching elements of the inverter circuit based on the detected current of the current sensor. An inverter device is disclosed.
特開平8-266087号公報Japanese Patent Application Publication No. 8-266087
 モータ制御回路は、上位装置から入力される制御信号に基づいてモータを制御する。しかしながら、上位装置とモータ制御回路が把握するバッテリ電圧に誤差が生じていると、モータ制御回路が回生駆動を停止させることができず、バッテリに過電圧をかけてしまう場合がある。 The motor control circuit controls the motor based on a control signal input from a host device. However, if there is an error in the battery voltage that is grasped by the host device and the motor control circuit, the motor control circuit may not be able to stop the regenerative drive, and overvoltage may be applied to the battery.
 本発明は上記事情に鑑みてなされたものであり、回生駆動時のバッテリの過電圧を抑制することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress overvoltage of a battery during regenerative drive.
 本開示は、バッテリの電圧を取得する取得部と、上位装置から入力されるトルク指令値に基づいてモータに前記バッテリの電力を供給し、前記モータを駆動する制御部と、を備え、車両に搭載される駆動制御装置であって、制御部は、前記モータを回生駆動させているときに、前記バッテリの電圧が予め設定された第1しきい値以上である場合、前記モータによる回生量を抑制する回生抑制制御を実行する、駆動制御装置である。 The present disclosure includes an acquisition unit that acquires the voltage of a battery, and a control unit that supplies electric power from the battery to a motor based on a torque command value input from a host device to drive the motor. In the mounted drive control device, the control unit controls the amount of regeneration by the motor if the voltage of the battery is equal to or higher than a first preset threshold while regeneratively driving the motor. This is a drive control device that executes regeneration suppression control.
 本開示は、車両に搭載される駆動制御装置の制御方法であって、バッテリの電圧を取得するステップと、上位装置から入力されるトルク指令値に基づいてモータに前記バッテリの電力を供給し、前記モータを駆動するステップと、前記モータを回生駆動させているときに、前記バッテリの電圧が予め設定された第1しきい値以上である場合、前記モータによる回生量を抑制する回生抑制制御を実行するステップと、を含む、駆動制御装置の制御方法である。 The present disclosure is a method for controlling a drive control device installed in a vehicle, which includes the steps of acquiring battery voltage, and supplying power from the battery to a motor based on a torque command value input from a host device. the step of driving the motor, and performing regeneration suppression control to suppress the amount of regeneration by the motor if the voltage of the battery is equal to or higher than a preset first threshold while regeneratively driving the motor; A method of controlling a drive control device, including steps of executing the method.
 本発明によれば、回生駆動時のバッテリの過電圧を抑制することができる。 According to the present invention, overvoltage of the battery during regenerative driving can be suppressed.
図1は、動力システムのシステム構成を示す図である。FIG. 1 is a diagram showing the system configuration of a power system. 図2は、第1マップの一例を示す図である。FIG. 2 is a diagram showing an example of the first map. 図3(A)は、バッテリ電圧の変化を示す図であり、図3(B)は、電流指令値の変化を示す図である。FIG. 3(A) is a diagram showing changes in battery voltage, and FIG. 3(B) is a diagram showing changes in current command value. 図4は、第2マップの一例を示す図である。FIG. 4 is a diagram showing an example of the second map. 図5(A)は、バッテリ電圧の変化を示す図であり、図5(B)は、電流指令値の変化を示す図である。FIG. 5(A) is a diagram showing changes in battery voltage, and FIG. 5(B) is a diagram showing changes in current command value. 図6は、駆動制御装置の動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the drive control device.
 [実施形態]
 以下、添付図面を参照しながら本実施形態について説明する。
[Embodiment]
This embodiment will be described below with reference to the accompanying drawings.
 [動力システムのシステム構成]
 図1は、動力システム1のシステム構成を示す図である。
 動力システム1は、モータ10と、電力変換装置20と、バッテリ群50と、ダウンレギュレータ41と、負荷43と、第1制御装置60とを備え、車両に搭載される。車両は、例えば、モーターバイク(自動二輪車)である。本実施形態では、車両がモーターバイク(自動二輪車)である場合について説明するが、車両はモーターバイクに限定されない。車両は、例えば、4輪乗用車や4輪大型車であってもよいし、トラクター等の作業用車両であってもよい。
[System configuration of power system]
FIG. 1 is a diagram showing a system configuration of a power system 1. As shown in FIG.
The power system 1 includes a motor 10, a power converter 20, a battery group 50, a down regulator 41, a load 43, and a first control device 60, and is mounted on a vehicle. The vehicle is, for example, a motorbike (two-wheeled vehicle). In this embodiment, a case will be described in which the vehicle is a motorbike (two-wheeled motor vehicle), but the vehicle is not limited to a motorbike. The vehicle may be, for example, a four-wheeled passenger car, a four-wheeled large vehicle, or a work vehicle such as a tractor.
 モータ10は、車両の加速走行時に電動機として動作する。モータ10は、電動機として動作する場合、電力変換装置20から供給される三相交流電力に基づいて駆動する。 The motor 10 operates as an electric motor when the vehicle accelerates. When operating as an electric motor, the motor 10 is driven based on three-phase AC power supplied from the power conversion device 20.
 また、モータ10は、車両の減速走行時に発電機として動作する。モータ10は、発電機として動作する場合、回生駆動することにより発電する。モータ10の回生駆動により車両の車輪に制動力がそれぞれ付与される。モータ10の回生駆動によって発電された三相交流電力は、電力変換装置20により直流電力に変換されてバッテリ群50に充電される。 Furthermore, the motor 10 operates as a generator when the vehicle is decelerating. When the motor 10 operates as a generator, it generates electricity through regenerative driving. The regenerative drive of the motor 10 applies braking force to each wheel of the vehicle. The three-phase AC power generated by the regenerative drive of the motor 10 is converted into DC power by the power converter 20 and charged into the battery group 50.
 モータ10は、例えば、三相(U、V、W)のブラシレスモータである。具体的には、モータ10は、永久磁石を有するロータと、三相(U相、V相、W相)それぞれに対応するコイル10U、10V、10Wとを備える。各相のコイル10U、10V、10Wは、それぞれ電力変換装置20に接続される。 The motor 10 is, for example, a three-phase (U, V, W) brushless motor. Specifically, the motor 10 includes a rotor having a permanent magnet, and coils 10U, 10V, and 10W corresponding to three phases (U phase, V phase, and W phase), respectively. The coils 10U, 10V, and 10W of each phase are connected to the power conversion device 20, respectively.
 電力変換装置20は、平滑コンデンサ21と、インバータ23と、第2制御装置30とを備える。第2制御装置30は、駆動制御装置に相当する。 The power conversion device 20 includes a smoothing capacitor 21, an inverter 23, and a second control device 30. The second control device 30 corresponds to a drive control device.
 平滑コンデンサ21は、高電位側の電力ライン28と、低電位側の電力ライン29との間に接続される。電力ライン28は、バッテリ群50の正極に接続され、電力ライン29は、バッテリ群50の負極に接続される。平滑コンデンサ21は、バッテリ群50から供給される直流電圧を平滑化する。 The smoothing capacitor 21 is connected between the power line 28 on the high potential side and the power line 29 on the low potential side. Power line 28 is connected to the positive electrode of battery group 50, and power line 29 is connected to the negative electrode of battery group 50. Smoothing capacitor 21 smoothes the DC voltage supplied from battery group 50.
 インバータ23は、DC-AC変換部である。インバータ23は、直流電力を交流電力に変換する電力変換部である。インバータ23は、三相(U、V、W)分の上アーム回路及び下アーム回路を備える。上アーム回路は、電力ライン28からモータ10へ電流を供給する回路であり、下アーム回路は、モータ10からバッテリ群50へ電流を引き込む回路である。 The inverter 23 is a DC-AC converter. The inverter 23 is a power converter that converts DC power to AC power. The inverter 23 includes an upper arm circuit and a lower arm circuit for three phases (U, V, W). The upper arm circuit is a circuit that supplies current from the power line 28 to the motor 10, and the lower arm circuit is a circuit that draws current from the motor 10 to the battery group 50.
 上アーム回路は、バイポーラトランジスタ24U1、24V1及び24W1と、ダイオード25U1、25V1及び25W1とを備える。
 ダイオード25U1、25V1及び25W1は、環流のため、バイポーラトランジスタ24U1、24V1及び24W1にそれぞれ逆並列に接続される。
The upper arm circuit includes bipolar transistors 24U1, 24V1, and 24W1, and diodes 25U1, 25V1, and 25W1.
Diodes 25U1, 25V1 and 25W1 are connected anti-parallel to bipolar transistors 24U1, 24V1 and 24W1, respectively, for free circulation.
 下アーム回路は、バイポーラトランジスタ24U2、24V2及び24W2と、ダイオード25U2、25V2及び25W2とを備える。
 ダイオード25U2、25V2及び25W2は、環流のため、バイポーラトランジスタ24U2、24V2及び24W2にそれぞれ逆並列に接続される。
The lower arm circuit includes bipolar transistors 24U2, 24V2, and 24W2, and diodes 25U2, 25V2, and 25W2.
Diodes 25U2, 25V2 and 25W2 are connected anti-parallel to bipolar transistors 24U2, 24V2 and 24W2, respectively, for free circulation.
 第2制御装置30は、高位側の電力ライン28と、低電位側の電力ライン29とに接続される。第2制御装置30は、測定部31と、入出力インターフェイス33と、第2メモリ35と、第2プロセッサ37とを備える。以下、入出力インターフェイスをI/Oと略記する。第2メモリ35は、記憶部に相当し、第2プロセッサ37は、制御部に相当する。 The second control device 30 is connected to the power line 28 on the high-potential side and the power line 29 on the low-potential side. The second control device 30 includes a measuring section 31, an input/output interface 33, a second memory 35, and a second processor 37. Hereinafter, the input/output interface will be abbreviated as I/O. The second memory 35 corresponds to a storage section, and the second processor 37 corresponds to a control section.
 測定部31及びI/O33は、取得部として動作する。測定部31は、電力ライン28及び電力ライン29に接続される。測定部31は、バッテリ電圧を測定する。測定部31が測定したバッテリ電圧の値は、I/O33を介して第2プロセッサ37に入力される。 The measurement unit 31 and I/O 33 operate as an acquisition unit. The measurement unit 31 is connected to the power line 28 and the power line 29. Measuring section 31 measures battery voltage. The value of the battery voltage measured by the measurement unit 31 is input to the second processor 37 via the I/O 33.
 また、I/O33には、第1制御装置60が出力した制御信号が入力される。さらに、I/O33からは、バイポーラトランジスタ24U1、24U2、24V1、24V2、24W1及び24W2のオンとオフとを切り替える信号が出力される。 Furthermore, a control signal output from the first control device 60 is input to the I/O 33. Further, the I/O 33 outputs a signal for switching on and off the bipolar transistors 24U1, 24U2, 24V1, 24V2, 24W1, and 24W2.
 第2メモリ35は、ROM(Read Only Memory)等の不揮発性の記憶装置や、RAM(Random Access Memory)等の不揮発性の記憶装置を備える。
 第2メモリ35は、第2プロセッサ37が実行する制御プログラムや、後述する第1マップ110又は第2マップ120を記憶する。RAMは、第2プロセッサ37の演算領域として使用される。
The second memory 35 includes a nonvolatile storage device such as a ROM (Read Only Memory) or a nonvolatile storage device such as a RAM (Random Access Memory).
The second memory 35 stores a control program executed by the second processor 37 and a first map 110 or a second map 120, which will be described later. The RAM is used as a calculation area for the second processor 37.
 第2プロセッサ37は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等により構成される。第2プロセッサ37は、単一のプロセッサにより構成してもよいし、複数のプロセッサにより構成することも可能である。また、第2プロセッサ37は、第2メモリ35の一部又は全部や、その他の回路と統合されたSoCにより構成してもよい。また、第2プロセッサ37は、プログラムを実行するCPUと、所定の演算処理を実行するDSP(Digital Signal Processor)との組合せにより構成してもよい。さらに、第2プロセッサ37の機能の全てをハードウェアに実装した構成としてもよく、プログラマブルデバイスを用いて構成してもよい。第2制御装置30の動作については後述する。 The second processor 37 is composed of a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and the like. The second processor 37 may be composed of a single processor or a plurality of processors. Further, the second processor 37 may be configured by an SoC integrated with part or all of the second memory 35 and other circuits. Further, the second processor 37 may be configured by a combination of a CPU that executes a program and a DSP (Digital Signal Processor) that executes predetermined arithmetic processing. Furthermore, all of the functions of the second processor 37 may be implemented in hardware, or may be configured using a programmable device. The operation of the second control device 30 will be described later.
 バッテリ群50は、脱着が可能な4つの可搬型バッテリ51、52、53及び54を備える。バッテリ群50が備える可搬型バッテリの数は、4つに限定されるものではなく、5つ以上であってもよいし、3つ以下であってもよい。バッテリ群50の正極は、高電位側の電力ライン28に接続され、バッテリ群50の負極は、低電位側の電力ライン29に接続される。 The battery group 50 includes four removable and portable batteries 51, 52, 53, and 54. The number of portable batteries included in the battery group 50 is not limited to four, and may be five or more or three or less. The positive electrode of the battery group 50 is connected to the power line 28 on the high potential side, and the negative electrode of the battery group 50 is connected to the power line 29 on the low potential side.
 ダウンレギュレータ41は、バッテリ群50から供給される電圧を降下させ、降下させた電圧を負荷43及び第1制御装置60に供給する。 The down regulator 41 lowers the voltage supplied from the battery group 50 and supplies the lowered voltage to the load 43 and the first control device 60.
 第1制御装置60は、第1メモリ61と、CPUやMPU等の第1プロセッサ63とを備える演算処理装置である。第1制御装置60は、上位装置に相当する。
 第1メモリ61は、ROM(Read Only Memory)等の不揮発性の記憶装置や、RAM(Random Access Memory)等の不揮発性の記憶装置を備える。
The first control device 60 is an arithmetic processing device that includes a first memory 61 and a first processor 63 such as a CPU or MPU. The first control device 60 corresponds to a host device.
The first memory 61 includes a nonvolatile storage device such as a ROM (Read Only Memory) or a nonvolatile storage device such as a RAM (Random Access Memory).
 第1プロセッサ63は、単一のプロセッサにより構成してもよいし、複数のプロセッサにより構成することも可能である。また、第1プロセッサ63は、第1メモリ61の一部又は全部や、その他の回路と統合されたSoCにより構成してもよい。また、第1プロセッサ63は、プログラムを実行するCPUと、所定の演算処理を実行するDSPとの組合せにより構成してもよい。さらに、第1プロセッサ63の機能の全てをハードウェアに実装した構成としてもよく、プログラマブルデバイスを用いて構成してもよい。 The first processor 63 may be composed of a single processor or may be composed of multiple processors. Further, the first processor 63 may be configured by an SoC integrated with part or all of the first memory 61 and other circuits. Further, the first processor 63 may be configured by a combination of a CPU that executes a program and a DSP that executes predetermined arithmetic processing. Furthermore, all of the functions of the first processor 63 may be implemented in hardware, or may be configured using a programmable device.
 第1制御装置60は、第1メモリ61に予め記憶された制御プログラムを実行することにより車両の走行状態を統括的に制御する。第1制御装置60には、アクセルポジションセンサ71やブレーキセンサ73、車速センサ、バッテリ群50の温度を測定する温度センサ等の各種センサのセンサ信号が入力される。また、第1制御装置60は、高電位側の電力ライン28と、低電位側の電力ライン29とに接続され、バッテリ群50が出力する電圧が入力される。 The first control device 60 comprehensively controls the driving state of the vehicle by executing a control program stored in the first memory 61 in advance. Sensor signals from various sensors such as an accelerator position sensor 71, a brake sensor 73, a vehicle speed sensor, and a temperature sensor that measures the temperature of the battery group 50 are input to the first control device 60. Further, the first control device 60 is connected to the power line 28 on the high potential side and the power line 29 on the low potential side, and receives the voltage output from the battery group 50.
 第1制御装置60は、バッテリ電圧やバッテリ電流、バッテリ温度等の情報に基づき、トルク指令値を算出する。トルク指令値は、モータ10から出力すべきトルクの目標値である。例えば車両を加速させる場合、換言すればモータ10を駆動させる場合、第1制御装置60は正の値のトルク指令値を出力する。また、車両を減速させる場合、換言すればモータ10を回生駆動させる場合、トルク指令値は負の値に設定される。第1制御装置60は、演算したトルク指令値を第2制御装置30に出力する。 The first control device 60 calculates a torque command value based on information such as battery voltage, battery current, and battery temperature. The torque command value is a target value of torque to be output from the motor 10. For example, when accelerating the vehicle, in other words when driving the motor 10, the first control device 60 outputs a positive torque command value. Further, when decelerating the vehicle, in other words, when regeneratively driving the motor 10, the torque command value is set to a negative value. The first control device 60 outputs the calculated torque command value to the second control device 30.
 第1制御装置60は、アクセルがオフされたことを示すセンサ信号がアクセルポジションセンサ71から入力されたり、ブレーキが操作されたことを示すセンサ信号がブレーキセンサ73から入力されたりすると、回生駆動の開始通知を第2制御装置30に通知する。また、第1制御装置60は、アクセルがオンされたことを示すセンサ信号がアクセルポジションセンサ71から入力されたり、ブレーキ操作がオフされたことを示すセンサ信号がブレーキセンサ73から入力されたりすると、回生駆動の終了通知を第2制御装置30に通知する。 When a sensor signal indicating that the accelerator has been turned off is input from the accelerator position sensor 71 or a sensor signal indicating that the brake has been operated is input from the brake sensor 73, the first control device 60 starts the regenerative drive. A start notification is notified to the second control device 30. Further, when a sensor signal indicating that the accelerator is turned on is input from the accelerator position sensor 71 or a sensor signal indicating that the brake operation is turned off is input from the brake sensor 73, the first control device 60 The second control device 30 is notified of the end of the regenerative drive.
 第2制御装置30と第1制御装置60とは、制御信号線81及び83と、電源線85とにより接続される。また、第2制御装置30は、高電位側の電力ライン28と、低電位側の電力ライン29とに接続され、バッテリ群50が出力する電圧が入力される。 The second control device 30 and the first control device 60 are connected by control signal lines 81 and 83 and a power supply line 85. Further, the second control device 30 is connected to the power line 28 on the high potential side and the power line 29 on the low potential side, and receives the voltage output from the battery group 50.
 第2制御装置30は、第1制御装置60から回生駆動の開始通知を受信すると、測定部31により測定されたバッテリ電圧に基づいて回生抑制制御を開始するか否かを判定する。回生抑制制御とは、モータ10による回生制動量を抑制し、バッテリ群50が過電圧の状態になるのを抑制する制御である。 When the second control device 30 receives the regeneration drive start notification from the first control device 60, it determines whether to start regeneration suppression control based on the battery voltage measured by the measurement unit 31. Regeneration suppression control is control that suppresses the amount of regenerative braking by the motor 10 and suppresses the battery group 50 from becoming in an overvoltage state.
 第2制御装置30は、測定部31により測定されたバッテリ電圧が第1しきい値未満である場合、回生抑制制御は実行しないと判定し、第1制御装置60から入力されるトルク指令値に基づいて電流指令値を算出し、算出した電流指令値によりインバータ23を動作させて、モータ10を回生駆動させる。トルク指令値に基づいて算出される電流指令値を、第1電流指令値という。 If the battery voltage measured by the measurement unit 31 is less than the first threshold, the second control device 30 determines that the regeneration suppression control is not performed, and changes the torque command value input from the first control device 60 to Based on the calculated current command value, the inverter 23 is operated to drive the motor 10 regeneratively. The current command value calculated based on the torque command value is referred to as a first current command value.
 また、第2制御装置30は、測定部31により測定されたバッテリ電圧が第1しきい値以上である場合、回生抑制制御を実行すると判定する。第2制御装置30は、このまま、第1電流指令値に基づいて回生駆動を継続した場合、バッテリ群50が過電圧の状態となり、バッテリ群50が故障する要因となると判定し、回生抑制制御を実行すると判定する。 Further, the second control device 30 determines to perform regeneration suppression control when the battery voltage measured by the measurement unit 31 is equal to or higher than the first threshold value. The second control device 30 determines that if the regenerative drive is continued based on the first current command value, the battery group 50 will be in an overvoltage state, which will cause the battery group 50 to fail, and executes regeneration suppression control. Then it is determined.
 第2制御装置30は、回生抑制制御を実行する場合、第1電流指令値ではなく、予め設定された電流指令値によりインバータ23を駆動する。以下、予め設定された電流指令値を、第2電流指令値という。第2電流指令値は、第2電流値に相当する。 When performing regeneration suppression control, the second control device 30 drives the inverter 23 using a preset current command value instead of the first current command value. Hereinafter, the preset current command value will be referred to as a second current command value. The second current command value corresponds to the second current value.
 また、第2制御装置30は、第1電流指令値と、第2電流指令値とを比較し、値が小さいほうの電流指令値を選択し、選択した電流指令値によりインバータ23を動作させて、モータ10を回生駆動させてもよい。 The second control device 30 also compares the first current command value and the second current command value, selects the current command value with the smaller value, and operates the inverter 23 using the selected current command value. , the motor 10 may be driven regeneratively.
 また、第2制御装置30は、電流指令値を、第1電流指令値から第2電流指令値に変更する場合に、電流指令値を段階的に変更してもよい。例えば、第2制御装置30は、単位時間ごとの電流の減少量が一定となるように電流指令値を変化させていき、電流指令値を、第1電流指令値から第2電流指令値に変更してもよい。 Furthermore, when changing the current command value from the first current command value to the second current command value, the second control device 30 may change the current command value in steps. For example, the second control device 30 changes the current command value so that the amount of decrease in current per unit time is constant, and changes the current command value from the first current command value to the second current command value. You may.
 図2は、第1マップ110を示す図である。
 また、第2制御装置30は、第1マップ110を参照して電流指令値を決定してもよい。第1マップ110は、バッテリ電圧と、電流指令値との関係を規定したマップである。第2制御装置30は、測定部31が測定したバッテリ電圧に対応する電流指令値Iを、第1マップ110を参照して取得する。
FIG. 2 is a diagram showing the first map 110.
Further, the second control device 30 may determine the current command value with reference to the first map 110. The first map 110 is a map that defines the relationship between battery voltage and current command value. The second control device 30 obtains the current command value I corresponding to the battery voltage measured by the measurement unit 31 with reference to the first map 110.
 図2に示す第1マップ110は、バッテリ電圧が第1しきい値以上、第2しきい値未満の区間では、バッテリ電圧の増加と、電流指令値の減少とが線形関係で規定されている。つまり、バッテリ電圧の増加に対して値が直線的に減少するように電流指令値が規定されている。また、第1マップ110は、バッテリ電圧が第2しきい値以上の区間では、電流指令値が0に設定されている。第2しきい値は、第1しきい値よりも値が大きいしきい値である。バッテリ電圧が第1しきい値以上、第2しきい値未満の区間の電流指令値は、第3電流値に相当する。バッテリ電圧が第2しきい値以上の区間の電流指令値は、第4電流値に相当する。 In the first map 110 shown in FIG. 2, an increase in the battery voltage and a decrease in the current command value are defined in a linear relationship in an area where the battery voltage is equal to or higher than the first threshold value and lower than the second threshold value. . In other words, the current command value is defined so that the value decreases linearly as the battery voltage increases. Further, in the first map 110, the current command value is set to 0 in a section where the battery voltage is equal to or higher than the second threshold value. The second threshold is a threshold that has a larger value than the first threshold. The current command value in the section where the battery voltage is greater than or equal to the first threshold value and less than the second threshold value corresponds to the third current value. The current command value in the section where the battery voltage is equal to or higher than the second threshold value corresponds to the fourth current value.
 図3は、図2に示す第1マップ110に従って電流指令値を設定した場合のバッテリ電圧の変化を示す図である。
 図3(A)は、バッテリ電圧Vの時間変化を示す図であり、図3(B)は、電流指令値Iの時間変化を示す図である。
 第2制御装置30は、図3(A)に示す区間a、つまりバッテリ電圧が第1しきい値よりも低い場合、第1制御装置60から入力されるトルク指令値に基づいて第1電流指令値I-1を算出する。図3(A)には、第1電流指令値I-1が一定である場合を例示する。第2制御装置30は、算出した第1電流指令値I-1に基づいてインバータ23を制御する。第1電流指令値I-1が一定の値に制御されることで、モータ10が回生駆動され、バッテリ電圧が上昇する。
FIG. 3 is a diagram showing changes in battery voltage when the current command value is set according to the first map 110 shown in FIG.
FIG. 3(A) is a diagram showing a change in battery voltage V over time, and FIG. 3(B) is a diagram showing a change in current command value I over time.
The second control device 30 provides a first current command based on the torque command value input from the first control device 60 in the section a shown in FIG. Calculate the value I-1. FIG. 3A illustrates a case where the first current command value I-1 is constant. The second control device 30 controls the inverter 23 based on the calculated first current command value I-1. By controlling the first current command value I-1 to a constant value, the motor 10 is regeneratively driven and the battery voltage increases.
 第2制御装置30は、図3(A)に示す区間b、つまりバッテリ電圧が第1しきい値以上、第2しきい値未満である場合、図2に示す第1マップ110を参照して、バッテリ電圧に対応した第2電流指令値I-2を取得する。第2制御装置30は、取得した第2電流指令値I-2に基づいてインバータ23を制御する。図3(A)に示すように、区間bにおけるバッテリ電圧の傾きは、区間aにおけるバッテリ電圧の傾きよりも小さい。 The second control device 30 refers to the first map 110 shown in FIG. 2 in the section b shown in FIG. , obtains a second current command value I-2 corresponding to the battery voltage. The second control device 30 controls the inverter 23 based on the acquired second current command value I-2. As shown in FIG. 3A, the slope of the battery voltage in section b is smaller than the slope of battery voltage in section a.
 第2制御装置30は、図3(A)に示す区間c、つまりバッテリ電圧が第2しきい値以上である場合、図2に示す第1マップ110を参照して、バッテリ電圧に対応した第2電流指令値I-3を取得する。第2電流指令値I-3は、値が「0」の指令値である。第2制御装置30は、取得した第2電流指令値I-3に基づいてインバータ23を制御する。第2電流指令値I-3は、値が「0」の指令値であるため、回生駆動は実行されず、図3(A)に示すようにバッテリ電圧の上昇は抑制される。 In the section c shown in FIG. 3A, that is, when the battery voltage is equal to or higher than the second threshold, the second control device 30 refers to the first map 110 shown in FIG. 2 Obtain the current command value I-3. The second current command value I-3 is a command value with a value of "0". The second control device 30 controls the inverter 23 based on the acquired second current command value I-3. Since the second current command value I-3 is a command value with a value of "0", regenerative drive is not executed, and an increase in battery voltage is suppressed as shown in FIG. 3(A).
 図4は、第2マップ120を示す図である。
 第2制御装置30は、図4に示す第2マップ120に基づいて電流指令値を決定してもよい。第2マップ120も、バッテリ電圧Vと、電流指令値Iとの関係を規定したマップである。
 第2制御装置30は、第2マップ120を参照して第2電流指令値Iを決定する。第2制御装置30は、バッテリ電圧に対応づけられた第2電流指令値Iを第2マップ120から取得する。図4に示す第2マップ120は、バッテリ電圧が第1しきい値以上、第3しきい値未満の区間では、バッテリ電圧の増加と、電流指令値の減少とが線形関係で規定される。つまり、バッテリ電圧の増加に対して値が直線的に減少するように電流指令値が設定されている。第3しきい値は、第1しきい値よりも値が大きく、第2しきい値よりも値が小さい値に設定されたしきい値である。
FIG. 4 is a diagram showing the second map 120.
The second control device 30 may determine the current command value based on the second map 120 shown in FIG. 4. The second map 120 is also a map that defines the relationship between the battery voltage V and the current command value I.
The second control device 30 determines the second current command value I with reference to the second map 120. The second control device 30 acquires the second current command value I associated with the battery voltage from the second map 120. In the second map 120 shown in FIG. 4, an increase in battery voltage and a decrease in current command value are defined in a linear relationship in a section where the battery voltage is greater than or equal to the first threshold value and less than the third threshold value. In other words, the current command value is set so that the value decreases linearly as the battery voltage increases. The third threshold is a threshold set to a value larger than the first threshold and smaller than the second threshold.
 また、第2マップ120は、バッテリ電圧が第3しきい値以上、第2しきい値未満の区間では、バッテリ電圧が増加しても値が一定の設定電流値に設定される。また、第1マップ110は、バッテリ電圧が第2しきい値以上の区間では、電流指令値が0に設定されている。 Furthermore, in the second map 120, in a section where the battery voltage is greater than or equal to the third threshold value and less than the second threshold value, the value is set to a constant set current value even if the battery voltage increases. Further, in the first map 110, the current command value is set to 0 in a section where the battery voltage is equal to or higher than the second threshold value.
 図5は、図4に示す第2マップ120に従って電流指令値を設定した場合のバッテリ電圧の変化を示す図である。
 図5(A)は、バッテリ電圧Vの時間変化を示す図であり、図5(B)は、電流指令値Iの時間変化を示す図である。
 第2制御装置30は、図5(A)に示す区間d、つまりバッテリ電圧が第1しきい値よりも低い場合、第1制御装置60から入力されるトルク指令値に基づいて第1電流指令値I-4を算出する。図5(A)には、第1電流指令値I-4が一定である場合を例示する。第2制御装置30は、算出した第1電流指令値I-4に基づいてインバータ23を制御する。第1電流指令値I-4が一定の値に制御されることで、モータ10が回生駆動され、バッテリ電圧が上昇する。
FIG. 5 is a diagram showing changes in battery voltage when the current command value is set according to the second map 120 shown in FIG.
FIG. 5(A) is a diagram showing a change in battery voltage V over time, and FIG. 5(B) is a diagram showing a change in current command value I over time.
The second control device 30 provides a first current command based on the torque command value input from the first control device 60 in the section d shown in FIG. Calculate the value I-4. FIG. 5A illustrates a case where the first current command value I-4 is constant. The second control device 30 controls the inverter 23 based on the calculated first current command value I-4. By controlling the first current command value I-4 to a constant value, the motor 10 is regeneratively driven and the battery voltage increases.
 第2制御装置30は、図5(A)に示す区間e、つまりバッテリ電圧が第1しきい値以上、第3しきい値未満である場合、図4に示す第2マップ120を参照して、バッテリ電圧に対応した第2電流指令値I-5を取得する。第2制御装置30は、取得した第2電流指令値I-5に基づいてインバータ23を制御する。図5(A)に示すように、区間eにおけるバッテリ電圧の傾きは、区間dにおけるバッテリ電圧の傾きよりも小さくなる。 The second control device 30 refers to the second map 120 shown in FIG. 4 in the section e shown in FIG. , obtains a second current command value I-5 corresponding to the battery voltage. The second control device 30 controls the inverter 23 based on the acquired second current command value I-5. As shown in FIG. 5A, the slope of the battery voltage in the section e is smaller than the slope of the battery voltage in the section d.
 第2制御装置30は、図5(A)に示す区間f、つまりバッテリ電圧が第3しきい値以上、第2しきい値未満である場合、図4に示す第2マップ120を参照して、バッテリ電圧に対応した第2電流指令値I-6を取得する。第2電流指令値I-6は、値が一定の設定電流値である。第2制御装置30は、取得した電流指令値I-6に基づいてインバータ23を制御する。図5(A)に示すように、区間fにおけるバッテリ電圧の傾きは、区間eにおけるバッテリ電圧の傾きよりも小さくなる。 The second control device 30 refers to the second map 120 shown in FIG. 4 in the section f shown in FIG. , obtains a second current command value I-6 corresponding to the battery voltage. The second current command value I-6 is a set current value having a constant value. The second control device 30 controls the inverter 23 based on the acquired current command value I-6. As shown in FIG. 5A, the slope of the battery voltage in the section f is smaller than the slope of the battery voltage in the section e.
 第2制御装置30は、図5(A)に示す区間g、つまりバッテリ電圧が第2しきい値以上である場合、図4に示す第2マップ120を参照して、バッテリ電圧に対応した第2電流指令値I-7を取得する。第2電流指令値I-7は、値が0の設定電流値である。第2制御装置30は、取得した第2電流指令値I-7に基づいてインバータ23を制御する。第2電流指令値I-7は、値が「0」の指令値であるため、回生駆動は実行されず、図5(A)に示すようにバッテリ電圧の上昇は抑制される。 In the section g shown in FIG. 5A, that is, when the battery voltage is equal to or higher than the second threshold, the second control device 30 refers to the second map 120 shown in FIG. 2 Obtain the current command value I-7. The second current command value I-7 is a set current value with a value of 0. The second control device 30 controls the inverter 23 based on the acquired second current command value I-7. Since the second current command value I-7 is a command value of "0", regenerative drive is not executed, and the increase in battery voltage is suppressed as shown in FIG. 5(A).
 [第2制御装置の動作]
 図6は、第2制御装置30の制御動作を示すフローチャートである。
 図6に示すフローチャートを参照しながら第2制御装置30の制御動作について説明する。なお、図6に示すフローチャートには、第2制御装置30が図4に示す第2マップ120に基づいて電流指令値を制御する場合の動作を示す。
 まず、第2制御装置30は、第1制御装置60から回生駆動の開始通知を受信したか否かを判定する(ステップS1)。第2制御装置30は、回生駆動の開始通知を受信していない場合(ステップS1/NO)、回生駆動の開始通知を受信するまで処理の開始を待機する。
[Operation of second control device]
FIG. 6 is a flowchart showing the control operation of the second control device 30.
The control operation of the second control device 30 will be explained with reference to the flowchart shown in FIG. Note that the flowchart shown in FIG. 6 shows the operation when the second control device 30 controls the current command value based on the second map 120 shown in FIG. 4.
First, the second control device 30 determines whether or not a regenerative drive start notification has been received from the first control device 60 (step S1). If the second control device 30 has not received the regenerative drive start notification (step S1/NO), it waits to start the process until it receives the regenerative drive start notification.
 第2制御装置30は、第1制御装置60から回生駆動の開始通知を受信した場合(ステップS1/YES)、バッテリ電圧を取得し(ステップS2)、取得したバッテリ電圧と、第1しきい値とを比較する(ステップS3)。第2制御装置30は、バッテリ電圧が第1しきい値未満である場合(ステップS3/NO)、第1制御装置60から入力されるトルク指令値に基づいて電流指令値を算出し(ステップS4)、算出した電流指令値によりインバータ23を制御する(ステップS5)。 When the second control device 30 receives the regenerative drive start notification from the first control device 60 (step S1/YES), the second control device 30 obtains the battery voltage (step S2), and uses the obtained battery voltage and the first threshold value. (Step S3). If the battery voltage is less than the first threshold value (step S3/NO), the second control device 30 calculates a current command value based on the torque command value input from the first control device 60 (step S4). ), the inverter 23 is controlled using the calculated current command value (step S5).
 次に、第2制御装置30は、回生駆動を終了する終了通知が第1制御装置60から入力されたか否かを判定する(ステップS6)。第2制御装置30は、終了通知が第1制御装置60から入力されていない場合(ステップS6/NO)、ステップS2の処理に戻る。また、第2制御装置30は、終了通知が第1制御装置60から入力された場合(ステップS6/YES)、この処理フローを終了させる。 Next, the second control device 30 determines whether an end notification to end the regenerative drive has been input from the first control device 60 (step S6). If the end notification has not been input from the first control device 60 (step S6/NO), the second control device 30 returns to the process of step S2. Further, when the end notification is input from the first control device 60 (step S6/YES), the second control device 30 ends this processing flow.
 また、第2制御装置30は、ステップS3において、バッテリ電圧が第1しきい値未満であると判定した場合(ステップS3/YES)、回生抑制制御を開始する(ステップS7)。第2制御装置30は、まず、バッテリ電圧が第3しきい値未満であるか否かを判定する(ステップS8)。 Furthermore, when the second control device 30 determines in step S3 that the battery voltage is less than the first threshold value (step S3/YES), it starts regeneration suppression control (step S7). The second control device 30 first determines whether the battery voltage is less than the third threshold (step S8).
 第2制御装置30は、バッテリ電圧が第1しきい値以上、第3しきい値未満である場合(ステップS8/YES)、第2マップ120を参照して電流値指令値を取得する(ステップS9)。その後、第2制御装置30は、取得した電流指令値に基づいてインバータ23を制御する(ステップS13)。 If the battery voltage is greater than or equal to the first threshold and less than the third threshold (step S8/YES), the second control device 30 refers to the second map 120 to obtain the current value command value (step S9). After that, the second control device 30 controls the inverter 23 based on the acquired current command value (step S13).
 また、第2制御装置30は、バッテリ電圧が第1しきい値以上、第3しきい値未満ではない場合(ステップS8/NO)、バッテリ電圧が第2しきい値未満であるか否かを判定する(ステップS10)。第2制御装置30は、バッテリ電圧が第2しきい値未満である場合(ステップS10/YES)、第2マップ120を参照して、電流指令値として予め設定された設定電流値を取得する(ステップS11)。第2制御装置30は、取得した設定電流値の電流指令値によりインバータ23を制御する(ステップS13)。 Further, when the battery voltage is not higher than the first threshold value and lower than the third threshold value (step S8/NO), the second control device 30 determines whether the battery voltage is lower than the second threshold value. Determination is made (step S10). When the battery voltage is less than the second threshold (step S10/YES), the second control device 30 refers to the second map 120 and obtains a set current value that is preset as the current command value ( Step S11). The second control device 30 controls the inverter 23 using the current command value of the acquired set current value (step S13).
 また、第2制御装置30は、第2制御装置30は、バッテリ電圧が第2しきい値以上である場合(ステップS10/NO)、第2マップ120を参照して、値が0の電流指令値を取得する(ステップS12)。第2制御装置30は、取得した値が0の電流指令値によりインバータ23を制御する(ステップS13)。 Further, when the battery voltage is equal to or higher than the second threshold value (step S10/NO), the second control device 30 refers to the second map 120 and outputs a current command with a value of 0. A value is acquired (step S12). The second control device 30 controls the inverter 23 using the acquired current command value of 0 (step S13).
 次に、第2制御装置30は、バッテリ電圧を取得し(ステップS14)、取得したバッテリ電圧が第4しきい値以下であるか否かを判定する(ステップS15)。第4しきい値は、終了しきい値に相当する。第2制御装置30は、取得したバッテリ電圧が第4しきい値以下ではない場合(ステップS15/NO)、ステップS8の判定に戻る。 Next, the second control device 30 acquires the battery voltage (step S14), and determines whether the acquired battery voltage is less than or equal to the fourth threshold (step S15). The fourth threshold corresponds to the end threshold. If the acquired battery voltage is not equal to or lower than the fourth threshold (step S15/NO), the second control device 30 returns to the determination in step S8.
 また、第2制御装置30は、取得したバッテリ電圧が第4しきい値以下である場合(ステップS15/YES)、回生抑制制御を終了し(ステップS16)、ステップS2の処理に戻る。 Further, when the acquired battery voltage is equal to or lower than the fourth threshold (step S15/YES), the second control device 30 ends the regeneration suppression control (step S16) and returns to the process of step S2.
 [上記実施形態によりサポートされる構成]
 上述した実施形態は、以下の構成をサポートする。
 以上説明したように駆動制御装置(30)は、バッテリ(50)の電圧を取得する取得部(31、33)と、上位装置(60)から入力されるトルク指令値に基づいてモータ(10)にバッテリ(50)の電力を供給し、モータ(10)を駆動するプロセッサ(37)と、を備え、車両に搭載される。
 プロセッサ(37)は、モータ(10)を回生駆動させているときに、バッテリ(50)の電圧が予め設定された第1しきい値以上である場合、モータ(10)による回生量を抑制する回生抑制制御を実行する。
[Configurations supported by the above embodiment]
The embodiments described above support the following configurations.
As explained above, the drive control device (30) includes an acquisition unit (31, 33) that acquires the voltage of the battery (50), and a motor (10) based on the torque command value input from the host device (60). and a processor (37) that supplies power from a battery (50) to the motor (10) and drives the motor (10), and is mounted on a vehicle.
The processor (37) suppresses the amount of regeneration by the motor (10) when the voltage of the battery (50) is equal to or higher than a first preset threshold while regeneratively driving the motor (10). Executes regeneration suppression control.
 この構成によれば、上位装置(60)が取得したバッテリ(50)の電圧に誤差が含まれる場合であっても、取得部(31、33)により取得したバッテリ(50)の電圧に基づいて、駆動制御装置(30)が回生抑制制御を実行するため、バッテリ(50)に過電圧をかけることを抑制することができる。 According to this configuration, even if the voltage of the battery (50) acquired by the host device (60) includes an error, the voltage of the battery (50) acquired by the acquisition unit (31, 33) is Since the drive control device (30) executes regeneration suppression control, it is possible to suppress application of overvoltage to the battery (50).
 プロセッサ(37)は、上位装置(60)から入力される回生駆動時のトルク指令値に基づく第1電流値によりモータ(10)の駆動を制御し、バッテリの電圧が第1しきい値以上である場合、モータ(10)の駆動を、第1電流値に基づく制御から、予め設定された第2電流値に基づく制御に変更して、回生抑制制御を実行する。 The processor (37) controls the drive of the motor (10) using a first current value based on the torque command value during regenerative drive input from the host device (60), and controls the drive of the motor (10) when the battery voltage is equal to or higher than the first threshold value. In some cases, the regeneration suppression control is performed by changing the drive of the motor (10) from control based on the first current value to control based on a preset second current value.
 この構成によれば、バッテリ(50)の電圧が第1しきい値以上である場合、予め設定された第2電流値に基づいてモータ(10)を駆動するため、電流値を算出する必要がなく、早期に回生抑制制御を実行することができる。 According to this configuration, when the voltage of the battery (50) is equal to or higher than the first threshold value, the motor (10) is driven based on the preset second current value, so it is not necessary to calculate the current value. Therefore, regeneration suppression control can be executed early.
 プロセッサ(37)は、上位装置(60)から入力される回生駆動時のトルク指令値に基づく第1電流値によりモータ(10)の駆動を制御し、バッテリ(50)の電圧が第1しきい値以上である場合、第1電流値と、予め設定された第2電流値とのうち、値が小さい電流値に基づいてモータ(10)を制御して回生抑制制御を実行する。 The processor (37) controls the drive of the motor (10) using a first current value based on the torque command value during regenerative drive input from the host device (60), and controls the drive of the motor (10) when the voltage of the battery (50) reaches a first threshold. If the current value is greater than or equal to the value, the motor (10) is controlled based on the smaller current value between the first current value and the preset second current value to perform regeneration suppression control.
 この構成によれば、バッテリ(50)の電圧が上限値に達したと誤判定した場合であっても、第1電流値と第2電流値とのうち、値が小さい電流値に基づいてモータ(10)の駆動を制御するため、モータ(10)に無駄に大きな電流を流すことがない。 According to this configuration, even if it is erroneously determined that the voltage of the battery (50) has reached the upper limit value, the motor is activated based on the smaller current value between the first current value and the second current value. Since the drive of the motor (10) is controlled, no unnecessary large current is passed through the motor (10).
 プロセッサ(37)は、回生抑制制御を実行する場合、単位時間当たりの電流値の減少量が一定となるようにモータ(10)を駆動する電流値を変化させ、モータ(10)を駆動する電流値を、第1電流値から第2電流値に変更する。 When executing the regeneration suppression control, the processor (37) changes the current value that drives the motor (10) so that the amount of decrease in the current value per unit time is constant, and changes the current value that drives the motor (10). The value is changed from the first current value to the second current value.
 この構成によれば、第1電流値と第2電流値とに大きな差があった場合でも、車両の挙動の大きな変化を抑制することができる。 According to this configuration, even if there is a large difference between the first current value and the second current value, a large change in the behavior of the vehicle can be suppressed.
 駆動制御装置(30)は、バッテリ(50)の電圧と、モータ(10)を駆動する電流値とを対応づけて登録したマップ(110、120)を記憶するメモリ(35)を備える。
 プロセッサ(37)は、上位装置(60)から入力される回生駆動時のトルク指令値に基づく電流値によりモータ(10)の駆動を制御する。
 プロセッサ(37)は、バッテリ(50)の電圧が第1しきい値以上である場合に、モータ(10)の駆動を、回生駆動時のトルク指令値に基づく電流値に基づく制御から、マップ(110、120)から取得した電流値に基づく制御に変更して、回生抑制制御を実行する。
The drive control device (30) includes a memory (35) that stores maps (110, 120) in which the voltage of the battery (50) and the current value for driving the motor (10) are registered in association with each other.
The processor (37) controls the drive of the motor (10) based on a current value based on a torque command value during regenerative drive input from a host device (60).
When the voltage of the battery (50) is equal to or higher than the first threshold, the processor (37) controls the drive of the motor (10) from control based on a current value based on a torque command value during regenerative drive to a map ( 110, 120) to perform regeneration suppression control.
 この構成によれば、マップ(110、120)に登録された電流値に基づいてモータ(10)を駆動するため、電流値を算出する必要がなく、早期に回生抑制制御を実行することができる。 According to this configuration, since the motor (10) is driven based on the current value registered in the map (110, 120), there is no need to calculate the current value, and regeneration suppression control can be executed early. .
 マップ(110、120)には、バッテリ(50)の電圧が、第1しきい値よりも値が大きい第2しきい値未満である場合にバッテリ(50)を駆動する電流値として、第3電流値が登録され、バッテリの電圧が、第2しきい値以上である場合にバッテリを駆動する電流値として、第3電流値よりも値の小さい第4電流値が登録される。
 プロセッサ(37)は、バッテリ(50)の電圧が第2しきい値未満である場合、第3電流値によりバッテリの駆動を制御し、バッテリ(50)の電圧が第2しきい値以上である場合、第4電流値によりバッテリの駆動を制御する。
The maps (110, 120) include a third value as a current value for driving the battery (50) when the voltage of the battery (50) is less than a second threshold value that is larger than the first threshold value. The current value is registered, and a fourth current value smaller than the third current value is registered as the current value for driving the battery when the voltage of the battery is equal to or higher than the second threshold value.
The processor (37) controls driving of the battery using a third current value when the voltage of the battery (50) is less than the second threshold, and when the voltage of the battery (50) is equal to or higher than the second threshold. In this case, the battery drive is controlled by the fourth current value.
 この構成によれば、バッテリの電圧が、第2しきい値以上である場合、第3電流値よりも値の小さい第4電流値によりバッテリを駆動することができ、モータ(10)による回生量をさらに抑制することができる。 According to this configuration, when the voltage of the battery is equal to or higher than the second threshold value, the battery can be driven by the fourth current value smaller than the third current value, and the amount of regeneration by the motor (10) can be further suppressed.
 プロセッサ(37)は、バッテリの電圧が第1しきい値よりも値が小さい第3しきい値以下になった場合、回生抑制制御を停止させる。 The processor (37) stops the regeneration suppression control when the battery voltage becomes equal to or less than a third threshold value, which is smaller than the first threshold value.
 この構成によれば、バッテリに過電圧がかかる状態ではないと判定した場合に、回生抑制制御を終了して、バッテリを充電することができる。 According to this configuration, when it is determined that the battery is not in a state where overvoltage is applied, the regeneration suppression control can be ended and the battery can be charged.
 バッテリ(50)は、複数の交換式バッテリである。 The battery (50) is a plurality of replaceable batteries.
 この構成によれば、バッテリ(50)が複数の交換式バッテリであるため、バッテリの充電量が一定ではないバッテリ(50)が車両に搭載される場合があるが、このような場合であっても、バッテリ(50)に過電圧をかけることを抑制することができる。 According to this configuration, since the battery (50) is a plurality of replaceable batteries, the battery (50) whose charge amount is not constant may be installed in the vehicle. Also, application of overvoltage to the battery (50) can be suppressed.
 上述した実施形態は、あくまでも本発明の一態様を例示するものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。
 例えば、上述した実施形態では、モータ10として三相交流モータを示したが、モータ10は三相交流モータに限定されるものではなく、一般的なモータであればよい。
The embodiment described above is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
For example, in the embodiment described above, a three-phase AC motor is shown as the motor 10, but the motor 10 is not limited to a three-phase AC motor, and may be any general motor.
 また、上述した実施形態では、着脱式のバッテリ群50を示したが、バッテリは着脱式に限定されるものではない。また、複数のバッテリを並列に接続した構成に限らず、複数のバッテリを直列に接続した構成であってもよい。 Further, in the embodiment described above, the battery group 50 is detachable, but the batteries are not limited to being detachable. Further, the configuration is not limited to a configuration in which a plurality of batteries are connected in parallel, but a configuration in which a plurality of batteries are connected in series may be used.
 また、第2制御部30は、第1マップ110や第2マップ120を参照して電流指令値を決定したが、第2メモリ35に記憶した関数を用いた演算により電流指令値を決定してもよい。 Further, the second control unit 30 determines the current command value by referring to the first map 110 and the second map 120, but also determines the current command value by calculation using a function stored in the second memory 35. Good too.
 また、図6に示すフローチャートの処理単位は、第2制御装置30の処理を理解容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって本発明が制限されることはない。 In addition, the processing units in the flowchart shown in FIG. 6 are divided according to the main processing contents in order to facilitate understanding of the processing of the second control device 30, and the main processing units are divided according to the division method and name of the processing units. The invention is not limited.
 また、駆動制御装置の制御方法をコンピュータにより実現する場合、このコンピュータに実行させるプログラムを記録媒体、又はプログラムを伝送する伝送媒体の態様で構成することも可能である。記録媒体には、磁気的、光学的記録媒体又は半導体メモリーデバイスを用いることができる。具体的には、記録媒体には、フレキシブルディスク、HDD(Hard Disk Drive)、CD-ROM(Compact Disk Read Only Memory)、DVD、Blu-ray Disc、光磁気ディスクが挙げられる。Blu-rayは、登録商標である。また、記録媒体として、フラッシュメモリ、カード型記録媒体等の可搬型、或いは固定式の記録媒体を挙げることもできる。また、上記記録媒体は、表示装置が備える内部記憶装置であるRAM、ROM、HDD等の不揮発性記憶装置であってもよい。 Furthermore, when the method for controlling the drive control device is implemented by a computer, it is also possible to configure the program to be executed by the computer in the form of a recording medium or a transmission medium that transmits the program. A magnetic or optical recording medium or a semiconductor memory device can be used as the recording medium. Specifically, recording media include flexible disks, HDDs (Hard Disk Drives), CD-ROMs (Compact Disk Read Only Memory), DVDs, Blu-ray Discs, and magneto-optical disks. Blu-ray is a registered trademark. Furthermore, the recording medium may be a portable recording medium such as a flash memory or a card type recording medium, or a fixed recording medium. Further, the recording medium may be a nonvolatile storage device such as a RAM, ROM, or HDD, which is an internal storage device included in the display device.
 1 動力システム
 10 モータ
 10U コイル
 10V コイル
 10W コイル
 20 電力変換装置
 21 平滑コンデンサ
 23 インバータ
 24 バイポーラトランジスタ
 24U1 バイポーラトランジスタ
 24U2 バイポーラトランジスタ
 24V1 バイポーラトランジスタ
 24V2 バイポーラトランジスタ
 24W1 バイポーラトランジスタ
 24W2 バイポーラトランジスタ
 25U1 ダイオード
 25U2 ダイオード
 25V1 ダイオード
 25V2 ダイオード
 25W1 ダイオード
 25W2 ダイオード
 28 電力ライン
 29 電力ライン
 30 第2制御装置
 31 測定部
 33 I/O
 35 第2メモリ
 37 第2プロセッサ
 41 ダウンレギュレータ
 43 負荷
 50 バッテリ群
 51 搬型バッテリ
 52 搬型バッテリ
 53 搬型バッテリ
 60 第1制御装置
 61 第1メモリ
 63 第1プロセッサ
 71 アクセルポジションセンサ
 73 ブレーキセンサ
 81 制御信号線
 85 電源線
 110 第1マップ
 120 第2マップ
1 Power system 10 Motor 10U coil 10V coil 10W coil 20 Power converter 21 Smoothing capacitor 23 Inverter 24 Bipolar transistor 24U1 Bipolar transistor 24U2 Bipolar transistor 24V1 Bipolar transistor 24V2 Bipolar transistor 24W1 Bipolar transistor 24W2 Bipolar transistor 25U1 Diode 25U2 Diode 25V1 Diode 25V2 Diode 25W1 Diode 25W2 Diode 28 Power line 29 Power line 30 Second control device 31 Measurement unit 33 I/O
35 Second memory 37 Second processor 41 Down regulator 43 Load 50 Battery group 51 Portable battery 52 Portable battery 53 Portable battery 60 First control device 61 First memory 63 First processor 71 Accelerator position sensor 73 Brake sensor 81 Control signal line 85 Power line 110 1st map 120 2nd map

Claims (9)

  1.  バッテリ(50)の電圧を取得する取得部(31、33)と、
     上位装置(60)から入力されるトルク指令値に基づいてモータ(10)に前記バッテリの電力を供給し、前記モータ(10)を駆動する制御部(30)と、を備え、車両に搭載される駆動制御装置であって、
     制御部(30)は、前記モータ(10)を回生駆動させているときに、前記バッテリの電圧が予め設定された第1しきい値以上である場合、前記モータ(10)による回生量を抑制する回生抑制制御を実行する、駆動制御装置。
    an acquisition unit (31, 33) that acquires the voltage of the battery (50);
    A control unit (30) that supplies power from the battery to the motor (10) based on a torque command value input from a host device (60) and drives the motor (10), and is mounted on a vehicle. A drive control device comprising:
    The control unit (30) suppresses the amount of regeneration by the motor (10) when the voltage of the battery is equal to or higher than a first preset threshold while regeneratively driving the motor (10). A drive control device that executes regeneration suppression control.
  2.  制御部(30)は、前記上位装置(60)から入力される回生駆動時のトルク指令値に基づく第1電流値により前記モータ(10)の駆動を制御し、
     前記バッテリの電圧が前記第1しきい値以上である場合、前記モータ(10)の駆動を、前記第1電流値に基づく制御から、予め設定された第2電流値に基づく制御に変更して、前記回生抑制制御を実行する、請求項1記載の駆動制御装置。
    The control unit (30) controls the drive of the motor (10) using a first current value based on a torque command value during regenerative drive input from the host device (60),
    When the voltage of the battery is equal to or higher than the first threshold value, the drive of the motor (10) is changed from control based on the first current value to control based on a preset second current value. 2. The drive control device according to claim 1, wherein the regeneration suppression control is executed.
  3.  制御部(30)は、前記上位装置(60)から入力される回生駆動時のトルク指令値に基づく第1電流値により前記モータ(10)の駆動を制御し、
     前記バッテリの電圧が前記第1しきい値以上である場合、前記第1電流値と、予め設定された第2電流値とのうち、値が小さい電流値に基づいて前記モータ(10)を制御して前記回生抑制制御を実行する、請求項1記載の駆動制御装置。
    The control unit (30) controls the drive of the motor (10) using a first current value based on a torque command value during regenerative drive input from the host device (60),
    When the voltage of the battery is equal to or higher than the first threshold value, the motor (10) is controlled based on a smaller current value between the first current value and a preset second current value. The drive control device according to claim 1, wherein the regeneration suppression control is executed by performing the regeneration suppression control.
  4.  制御部(30)は、前記回生抑制制御を実行する場合、単位時間当たりの電流値の減少量が一定となるように前記モータ(10)を駆動する電流値を変化させ、前記モータ(10)を駆動する電流値を、前記第1電流値から前記第2電流値に変更する、請求項2記載の駆動制御装置。 When executing the regeneration suppression control, the control unit (30) changes the current value for driving the motor (10) so that the amount of decrease in the current value per unit time is constant, and controls the motor (10). 3. The drive control device according to claim 2, wherein a current value for driving is changed from said first current value to said second current value.
  5.  前記バッテリの電圧と、前記モータ(10)を駆動する電流値とを対応づけて登録したマップを記憶する記憶部を備え、
     制御部(30)は、前記上位装置(60)から入力される回生駆動時のトルク指令値に基づく電流値により前記モータ(10)の駆動を制御し、
     前記バッテリの電圧が前記第1しきい値以上である場合に、前記モータ(10)の駆動を、前記回生駆動時のトルク指令値に基づく電流値に基づく制御から、前記マップから取得した電流値に基づく制御に変更して、前記回生抑制制御を実行する、請求項1記載の駆動制御装置。
    comprising a storage unit that stores a map in which the voltage of the battery and the current value for driving the motor (10) are registered in association with each other;
    The control unit (30) controls the drive of the motor (10) based on a current value based on a torque command value during regenerative drive input from the host device (60),
    When the voltage of the battery is equal to or higher than the first threshold value, the drive of the motor (10) is controlled based on a current value based on the torque command value during the regenerative drive, and the current value obtained from the map is determined. The drive control device according to claim 1, wherein the regeneration suppression control is executed by changing the control to control based on .
  6.  前記マップには、前記バッテリの電圧が、前記第1しきい値よりも値が大きい第2しきい値未満である場合に前記バッテリを駆動する電流値として、第3電流値が登録され、
     前記バッテリの電圧が、前記第2しきい値以上である場合に前記バッテリを駆動する電流値として、前記第3電流値よりも値が小さい第4電流値が登録され、
     制御部(30)は、前記バッテリの電圧が前記第2しきい値未満である場合、前記第3電流値により前記バッテリの駆動を制御し、
     前記バッテリの電圧が前記第2しきい値以上である場合、前記第4電流値により前記バッテリの駆動を制御する、請求項5記載の駆動制御装置。
    A third current value is registered in the map as a current value that drives the battery when the voltage of the battery is less than a second threshold value that is larger than the first threshold value,
    A fourth current value smaller than the third current value is registered as a current value for driving the battery when the voltage of the battery is equal to or higher than the second threshold;
    The control unit (30) controls driving of the battery using the third current value when the voltage of the battery is less than the second threshold;
    6. The drive control device according to claim 5, wherein when the voltage of the battery is equal to or higher than the second threshold, driving of the battery is controlled by the fourth current value.
  7.  制御部(30)は、前記バッテリの電圧が前記第1しきい値よりも値が小さい終了しきい値以下になった場合、前記回生抑制制御を停止させる、請求項1から6のいずれか一項に記載の駆動制御装置。 The control unit (30) is configured to stop the regeneration suppression control when the voltage of the battery becomes equal to or less than an end threshold value that is smaller than the first threshold value. The drive control device described in .
  8.  前記バッテリ(50)は、複数の交換式バッテリである、請求項1から7のいずれか一項に記載の駆動制御装置。 The drive control device according to any one of claims 1 to 7, wherein the battery (50) is a plurality of replaceable batteries.
  9.  車両に搭載される駆動制御装置の制御方法であって、
     バッテリ(50)の電圧を取得するステップと、
     上位装置(60)から入力されるトルク指令値に基づいてモータ(10)に前記バッテリの電力を供給し、前記モータ(10)を駆動するステップと、
     前記モータ(10)を回生駆動させているときに、前記バッテリの電圧が予め設定された第1しきい値以上である場合、前記モータ(10)による回生量を抑制する回生抑制制御を実行するステップと、を含む、駆動制御装置の制御方法。
    A method for controlling a drive control device mounted on a vehicle, the method comprising:
    obtaining the voltage of the battery (50);
    supplying power from the battery to the motor (10) based on a torque command value input from a host device (60) to drive the motor (10);
    When the voltage of the battery is equal to or higher than a first preset threshold while the motor (10) is regeneratively driven, regeneration suppression control is executed to suppress the amount of regeneration by the motor (10). A method for controlling a drive control device, comprising the steps of:
PCT/JP2022/016804 2022-03-31 2022-03-31 Drive control device and control method for drive control device WO2023188368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016804 WO2023188368A1 (en) 2022-03-31 2022-03-31 Drive control device and control method for drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016804 WO2023188368A1 (en) 2022-03-31 2022-03-31 Drive control device and control method for drive control device

Publications (1)

Publication Number Publication Date
WO2023188368A1 true WO2023188368A1 (en) 2023-10-05

Family

ID=88200396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016804 WO2023188368A1 (en) 2022-03-31 2022-03-31 Drive control device and control method for drive control device

Country Status (1)

Country Link
WO (1) WO2023188368A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046678A (en) * 2016-09-15 2018-03-22 トヨタ車体株式会社 Motor control device
JP2018086933A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 Hybrid vehicle
JP2018106916A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Power storage system
WO2020054828A1 (en) * 2018-09-13 2020-03-19 本田技研工業株式会社 Power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046678A (en) * 2016-09-15 2018-03-22 トヨタ車体株式会社 Motor control device
JP2018086933A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 Hybrid vehicle
JP2018106916A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Power storage system
WO2020054828A1 (en) * 2018-09-13 2020-03-19 本田技研工業株式会社 Power supply system

Similar Documents

Publication Publication Date Title
JP4751854B2 (en) Vehicle control device, control method, program for realizing the method, and recording medium recording the program
JP3928559B2 (en) Voltage conversion apparatus, computer-readable recording medium storing a program for causing a computer to execute failure processing, and a failure processing method
JP6390535B2 (en) Power conversion control device
JP4839780B2 (en) Motor control device and vehicle
US9725007B2 (en) Electric vehicle and control method therefor
US8912736B2 (en) DC-DC converter system of an electric vehicle and control method thereof
JP4835383B2 (en) Control device and control method for power supply unit, program for causing computer to realize the method, and recording medium recording the program
JP2008017682A (en) Load drive device and vehicle equipped with it
JP2006353032A (en) Voltage conversion device
JP2015089174A (en) Electric vehicle
US11545923B2 (en) Motor driving apparatus and method
WO2023188368A1 (en) Drive control device and control method for drive control device
US11251605B2 (en) System and method for protecting inverter in vehicle from overvoltage
JP2005045880A (en) Load driving device and recording medium with program recorded thereon for causing computer to control voltage conversion in load driving device
JP5062245B2 (en) Load driving device and vehicle equipped with the same
JP5400835B2 (en) Rotating electrical machine control device for vehicle
JP2006129668A (en) Motor controller
JP5316030B2 (en) Battery hybrid system and method of using the same
CN108736777B (en) Six-step pulse width modulation control by weak magnetic pairs
JP2010288414A (en) Power supply device for vehicle
JP6221824B2 (en) Control device for power converter
JP4627330B2 (en) Electric motor control device
JP7223128B2 (en) Rotating electric machine control device and control method
KR20240014856A (en) Motor driving apparatus and method
JP4455275B2 (en) Multiple inverter motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935507

Country of ref document: EP

Kind code of ref document: A1