WO2023188269A1 - Rotorcraft - Google Patents

Rotorcraft Download PDF

Info

Publication number
WO2023188269A1
WO2023188269A1 PCT/JP2022/016518 JP2022016518W WO2023188269A1 WO 2023188269 A1 WO2023188269 A1 WO 2023188269A1 JP 2022016518 W JP2022016518 W JP 2022016518W WO 2023188269 A1 WO2023188269 A1 WO 2023188269A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
main body
wing aircraft
propeller
rotational speed
Prior art date
Application number
PCT/JP2022/016518
Other languages
French (fr)
Japanese (ja)
Inventor
誠 野村
Original Assignee
三共木工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三共木工株式会社 filed Critical 三共木工株式会社
Priority to PCT/JP2022/016518 priority Critical patent/WO2023188269A1/en
Publication of WO2023188269A1 publication Critical patent/WO2023188269A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • the technology of the present disclosure relates to rotary wing aircraft.
  • helicopters are equipped with a tail rotor to counteract the reversal torque caused by the rotation of the main rotor.
  • the tail rotor consumes 20-30% of the engine power. Therefore, a helicopter without a tail rotor has been proposed as described below.
  • Japanese Unexamined Patent Publication No. 07-304499 discloses that a fan is rotated using part of the power of an engine for driving a main rotor, airflow by the fan is guided rearward via a tail boom, and a blowout port is used to rotate a fan.
  • a helicopter is disclosed that cancels the counter torque generated in the fuselage by emitting air in a substantially vertical and horizontal direction of the aircraft axis.
  • the airflow by the fan is only blown out in a horizontal direction substantially perpendicular to the axis of the machine through the outlet, so that the airflow from the outlet can only be controlled in the yaw direction. Therefore, when the airflow is blown out from the air outlet of the conventional helicopter described above, it is not possible to control the pitch direction and the rolling direction, nor is it possible to control the lift force, and the main rotor is responsible for all of these. , the load on the main rotor is large.
  • the technology of the present disclosure aims to provide a rotary wing aircraft that can reduce the load on the rotor.
  • a rotary wing aircraft includes a main body, a rotor that rotates above the main body, a rotor drive unit that rotates the rotor, and a plurality of rotary wing aircraft connected to the main body. , a plurality of motors provided at the tips of the plurality of arms, a plurality of propellers rotated by the plurality of motors, and counter torque generated in the main body due to rotation of the rotor by the rotor drive unit.
  • a control unit that controls the plurality of motors so that a reaction force is generated in the main body by rotation of the propeller.
  • control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary wing aircraft is changed.
  • a rotary-wing aircraft includes a main body, a rotor that rotates above the main body, a rotor drive unit that rotates the rotor, a plurality of arms connected to the main body, and a rotor that rotates in the air above the main body.
  • a plurality of motors provided, a plurality of propellers rotated by the plurality of motors, a tilting motor that tilts a rotating surface of a propeller on the rear side in a traveling direction among the plurality of propellers, and a rotor driven by the rotor drive unit.
  • a control unit that controls the tilting motor so that a reaction force that cancels the counter-torque generated in the main body due to the rotation of the propeller is generated in the main body due to the inclination of the rotating surface of the rotating propeller on the rear side in the traveling direction; Equipped with
  • control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary wing aircraft is changed.
  • the technology of the present disclosure can reduce the load on the rotor.
  • FIG. 1 is a schematic perspective view of a rotary wing aircraft 10A according to a first embodiment.
  • 5 is a diagram showing the positional relationship between the rotational region RD of the rotor 16 of the rotary-wing aircraft 10A and the rotational regions rd1 to rd4 of the four propellers 46N1 to 46N4.
  • FIG. It is a graph showing the relationship between the rotational speed v of the rotor 16 and the counter torque RT generated when the rotational speed of the rotor 16 is the rotational speed v.
  • FIG. 2 is a schematic block diagram of a control system of rotary wing aircraft 10A.
  • FIG. 3 is a functional block diagram of a CPU 52 of the rotary wing aircraft 10A. It is a flowchart of the direction control program for controlling the direction of the main body 12, executed by the CPU 52 of the rotary wing aircraft 10A of the first embodiment.
  • FIG. 2 is a top view of a schematic configuration of a rotary wing aircraft 10B according to a second embodiment.
  • FIG. 3 is a top view of a schematic configuration of a rotary wing aircraft 10C according to a third embodiment. It is a figure which shows the positional relationship of the direction of the downwash D by the rotation of the rotor 16 of 10 C of rotary-wing aircraft, and the rotating surface S1 of two propellers 46N1 and 46N2, and S2. It is a schematic structural perspective view of rotary wing aircraft 10D of a 4th embodiment.
  • FIG. 1 shows a schematic perspective view of a rotary wing aircraft 10A according to a first embodiment.
  • the rotary wing aircraft 10A includes elements of a helicopter.
  • the rotary wing aircraft 10A includes a main body 12, a rotor 16 provided on the upper part of the main body 12, and a rotor drive unit 14 that is provided in the main body 12 and rotates the rotor 16.
  • the rotary-wing aircraft 10A can lift the main body 12 in the air by using lift generated by rotating the rotor 16 in the air above the main body 2, thereby raising and lowering the aircraft.
  • the rotary wing aircraft 10A includes a complex mechanism as a helicopter element, but since the helicopter element is well known, a detailed explanation thereof will be omitted.
  • the legs (skids) are also omitted.
  • the rotary wing aircraft 10A does not include a tail rotor.
  • the rotary wing aircraft 10A includes elements of a drone.
  • the rotary wing aircraft 10A includes four arms 40N1 to 40N4 connected to the main body 12A, four motors 44N1 to 44N4 provided at the tips of the four arms 40N1 to 40N4, and four motors 44N1 to 44N4.
  • Four propellers 46N1 to 46N4 are provided.
  • Each of the four arms 40N1 to 40N4 is provided with an ESC (Electric Speed Controller) 50N1 to 50N4 for controlling the rotation of the four motors 44N1 to 44N4, respectively.
  • ESC Electronic Speed Controller
  • the four propellers 46N1 to 46N4 are, with respect to the traveling direction, a first propeller 46N1 located on the left front, a second propeller 16N2 located on the left rear, a third propeller 46N3 located on the right rear, and a right front propeller 46N2. This is the fourth propeller 46N4 located at.
  • the rotary wing aircraft 10A includes helicopter elements and drone elements.
  • FIG. 2 shows the positional relationship between the rotation region RD of the rotor 16 of the rotary-wing aircraft 10A and the rotation regions rd1 to rd4 of the four propellers 46N1 to 46N4.
  • the lift generated by rotating the rotor 16 above the main body 2 is reduced by the motors 44N1 to 44N4 and propellers 46N1 to 46N4.
  • the entire rotation areas rd1 to rd4 of the propellers 46N1 to 46N4 are located outside the rotation area RD of the rotor 16 centered on the rotation center CG of the rotor 16.
  • the ESCs 50N1 to 50N4 provided in each of the four arms 40N1 to 40N4 are located at positions where the downwash of the rotor 16 is supplied, and are cooled by the downwash.
  • FIG. 3 shows a graph showing the relationship between the rotational speed v of the rotor 16 and the reaction torque RT generated when the rotational speed of the rotor 16 is the rotational speed v.
  • a counter torque RT is generated in the main body 2.
  • the reaction torque RT increases as the rotational speed v of the rotor 16 increases.
  • the relationship between the rotational speed v of the rotor 16 and the counter torque RT is determined in advance.
  • the direction of the counter torque RT generated in the main body 2 due to the clockwise rotation R of the rotor 16 is the counterclockwise rotation direction.
  • the main body 12 is rotated clockwise by the propellers 46N1 to 46N4 in order to generate a reaction force in the main body 2 that cancels the anti-torque RT in the counterclockwise rotation direction.
  • the rotational speed of the first propeller 46N1 located at the front left and the third propeller 46N3 located at the rear right is set to the rotational speed of the second propeller 16N2 located at the rear left and the third propeller 46N3 located at the front right.
  • the rotational speed of each of the propellers 46N1 to 46N4 is controlled so that the force that attempts to rotate the main body 12 clockwise due to the rotation of each of the propellers 46N1 to 46N4 is equalized.
  • the relationship between the rotational speed of each of the propellers 46N1 to 46N4 and the force that attempts to rotate the main body 12 clockwise is determined in advance. For example, as shown in FIG. 4, the relationship between the rotational speed r1 of the first propeller 46N1 and the reaction force Lr1 generated in the main body 12 by the first propeller 46N1 is determined in advance. Note that for the other propellers 46N2 to 46N4, the relationship between their respective rotational speeds and the reaction forces Lr2 to Lr4 generated in the main body 12 is determined in advance.
  • the rotational speed v of the rotor 16 is V1
  • the magnitude of the counter torque RT is RT1
  • the rotational speed r1 of the first propeller 46N1 is set to R1.
  • the rotary wing aircraft 10A may be instructed to proceed to the right, for example.
  • R0 the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating
  • r1 the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating
  • the rotation speed r1 of the propeller 46N1 is R0, and the main body 12 is prevented from rotating
  • the rotation speed r1 of the propeller 46N1 is made larger than R0
  • the rotation speed r1 of the propeller 46N1 is increased from the state in which the main body 12 is prevented from rotating, the main body 12 can be turned to the right.
  • the amount of change ⁇ r1 and the rotational speed r1 are changed.
  • the relationship between the amount of change in the angle at which the main body 12 changes in the rightward direction is determined in advance. Therefore, for example, in order to direct the main body 12 to the right by an angle R1 as shown in FIG. It is understood that it is good. Therefore, when the rotary wing aircraft 10A is instructed to proceed in the right direction from a state in which the main body 12 is prevented from rotating during flight, the amount of change in the rotational speed r1 of the first propeller 46N1 is calculated as follows. It can be determined by calculation using a relational expression. Note that the amount of change in the rotational speed of the other propellers 46N2 to 46N4 can be calculated by using a relational expression.
  • the rotary wing aircraft 10A may be instructed to proceed upward during flight.
  • the first propeller 46N1 on the left front and the fourth propeller 46N4 on the right front are in a state where the main body 12 is prevented from rotating. be greater than the rotational speed of.
  • R0 the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating
  • r1 the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating
  • a graph showing the relationship between the amount of change in the angle at which the main body 12 changes upward when the angle is changed is shown.
  • the relationship between the amount of change ⁇ r1 in which the rotational speed r1 of the first propeller 46N1 changes from R0 and the amount of change in the upward direction of the main body 12 when the rotational speed r1 is changed is as follows. Determined in advance.
  • the relationship between the amount of change in the rotational speed of the fourth propeller 46N4 and the amount of change in which the main body 12 changes upward is also determined in advance. Therefore, when the rotary wing aircraft 10A is instructed to move upward from a state in which the main body 12 is prevented from rotating during flight, the first The amount of change in the rotational speed of the propeller 46N1 and the fourth propeller 46N4 can be calculated by using a relational expression.
  • the rotary-wing aircraft 10A may be instructed to proceed in the upper right direction during flight.
  • the first propeller 46N1 on the left front and the fourth propeller 46N4 on the right front are set in a state where the main body 12 is prevented from rotating.
  • the amount of change in the rotation speed of the first propeller 46N1 is made larger than the amount of change in the rotation speed of the fourth propeller 46N4 on the front right.
  • R0 the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating
  • a graph is shown that shows the relationship between the amount of change in the body 12 in the upper right direction when the change is made. In this way, the relationship between the amount of change ⁇ r1 in the rotational speed r1 of the first propeller 46N1 and the amount of change in which the main body 12 changes in the upper right direction, and the relationship between the amount of change in the rotational speed of the fourth propeller 46N6 and the amount in which the main body 12 changes in the upper right direction.
  • the relationship with the amount of change is also determined in advance. Therefore, when the rotary-wing aircraft 10A is instructed to proceed in the upper right direction from a state in which the main body 12 is prevented from rotating during flight, the first The amount of change in the rotational speed of the propeller 46N1 and the fourth propeller 46N4 can be calculated by using a relational expression.
  • the amount of change in the rotational speed of each propeller in other directions can be similarly calculated.
  • FIG. 8 shows a schematic block diagram of the control system of the rotary wing aircraft 10A.
  • the control system of the rotary wing aircraft 10A includes a computer 50.
  • the computer 50 includes a CPU (Central Processing Unit) 52, a ROM (Read Only Memory) 54, a RAM (Random Access Memory) 56, and an input/output (I/O) port 58.
  • the CPU 52, ROM 54, RAM 56, and I/O port 58 are interconnected via a bus 60.
  • a communication device 62, a secondary storage device 64, a rotor drive unit 14, and ESCs 50N1 to 50N4 are connected to the I/O port 58.
  • the communication device 62 is a device that receives a direction change instruction signal from a remote control device operated by an operator on the ground.
  • the secondary storage device 64 stores a direction control program 62P (FIG. 10), which will be described later.
  • the direction control program 64P is read out from the secondary storage device 64 to the RAM 54 and executed by the CPU 52 to execute the direction control process (therefore, the direction control method) to be described later.
  • the secondary storage device 64 is a non-transitory tangible computer readable recording medium, such as a hard disk drive (HDD) or solid disk drive (SSD). state drive) etc. It is a non-volatile storage device. Note that the direction control program 62P may be stored in the ROM 54 instead of the next storage device 62.
  • a relationship 64Q0 between the rotational speed v of the rotor 16 and the counter torque RT generated when the rotational speed of the rotor 16 is the rotational speed v, shown in FIG. 3, is stored in a data table or the like. ing.
  • the secondary storage device 64 stores the rotational speed r1 of the first propeller 46N1 and the first The relationship 64Q1 with the reaction force Lr1 generated in the main body 12 due to the rotation of the propeller 46N1 is stored in a data table or the like. Similarly, the relationships 64Q2 to 64Q4 between the rotational speeds of the other propellers 46N2 to 46N4 and the reaction forces generated in the main body 12 due to the rotation of the propellers 46N2 to 46N4 are stored in a data table or the like.
  • FIG. 9 shows a functional block diagram of the CPU 52 of the rotary wing aircraft 10A.
  • the functions of the CPU 52 include a calculation function, a capture function, a drive control function, and a judgment function.
  • the CPU 52 functions as a calculation unit 62, a capture unit 64, a drive control unit 66, and a determination unit 68 by executing any of the direction control programs.
  • FIG. 10 shows a flowchart of a direction control program 64P for controlling the direction of the main body 12, which is executed by the CPU 52 of the rotary wing aircraft 10A of the first embodiment.
  • the direction control program 64P starts when the communication device 62 receives an instruction signal to start flight from the remote control device.
  • the direction control process and the direction control method are executed by the CPU 52 executing the direction control program 64P.
  • step 102 the calculation unit 62 calculates the rotational speed v of the rotor 16 based on the control data for rotating the rotor 16 via the rotor drive unit 14.
  • the rotational speed V of the rotor 16 may be acquired by a sensor that detects the rotational speed V of the rotor 16.
  • step 104 the capture unit 64 captures the counter torque RT from the above relationship 64Q0 stored in the secondary storage device 62 using the rotational speed v of the rotor 16 calculated in step 102, and obtains the counter torque RT/
  • the rotation speed of each propeller 46N1 to 46N4 that generates a reaction force having a value equal to the value of 4 is fetched from the above relationships 62Q1 to 64Q4 stored in the secondary storage device 62.
  • step 106 the drive control unit 66 controls the ESCs 50N to 50N4 to drive the motors 44N1 to 44N4 so that the rotational speed of each propeller 46N1 to 46N4 becomes the rotational speed taken in step 104.
  • the rotation of each of the propellers 46N1 to 46N4 generates a reaction force in the main body 12 to cancel the counter torque RT, thereby preventing the main body 12 from rotating.
  • step 108 the determining unit 68 determines whether the flight is to be stopped by determining whether the communication device 62 has received a flight stop instruction signal from the remote control device. If it is determined that the flight has not stopped, the direction control process proceeds to step 110.
  • step 110 the determining unit 68 determines whether a direction change has been instructed by determining whether a direction change instruction signal has been received from a remote control device operated by an operator on the ground. If it is determined that a direction change has not been instructed, the direction control process returns to step 102. If it is determined that a direction change has been instructed, the direction control process proceeds to step 112, in which the calculation unit 62 calculates the rotational speed of each propeller 46N1 to 46N4 to face in the instructed direction from the above relational expression. do.
  • step 114 the drive control unit 66 controls the ESCs 50N to 50N4 to drive the motors 44N1 to 44N4 so that the rotational speed of each propeller 46N1 to 46N4 becomes the rotational speed calculated in step 112. This allows the main body 12 to be directed in the designated direction.
  • step 108 If it is determined in step 108 that the flight has stopped, the direction control program ends.
  • the lift force is controlled by the rotor 16.
  • Generation of a reaction force that cancels out the reaction torque and control of the direction of the rotary wing aircraft 10A are performed by controlling the rotational speed of each propeller 46N1 to 46N4. Therefore, in this embodiment, the load on the rotor can be reduced.
  • the entire rotation ranges rd1 to rd4 of the propellers 46N1 to 46N4 are located outside the rotation range RD of the rotor 16 centered on the rotation center CG of the rotor 16.
  • the length from the rotation center CG of the rotor 16 to the propellers 46N1 to 46N4 can be made longer than when the rotation regions rd1 to rd4 of the propellers 46N1 to 46N4 are located inside the rotation region RD of the rotor 16. Therefore, the torque of the propellers 46N1 to 46N4 increases, and it is possible to generate a reaction force that cancels out the reaction torque and control the direction of the rotary wing aircraft 10A with a lower rotational speed of the motors 44N1 to 44N4.
  • the direction of the rotary-wing aircraft 10A may be controlled by controlling the rotational speed of each propeller 46N1 to 46N4 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. good. Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of each propeller 46N1 to 46N4, so the load on the rotor is reduced.
  • a second embodiment Next, a second embodiment will be described.
  • the configuration of the second embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
  • FIG. 11 shows a top view of a schematic configuration of a rotary wing aircraft 10B according to the second embodiment.
  • the rotary wing aircraft 10B includes three arms 40N1 to 40N3, three motors 44N1 to 44N43 provided at the tips of the three arms 40N1 to 40N3, and three motors 44N1 to 44N3. and three propellers 46N1 to 46N3 that rotate by.
  • Each of the three arms 40N1 to 40N3 is provided with an ESC (not shown) for controlling the rotation of the three motors 44N1 to 44N4.
  • the rotary wing aircraft 10B does not include the arm 40N4, motor 44N4, propeller 46N4, and ESC 50N4 of the first embodiment.
  • the three propellers 46N1 to 46N3 include a first propeller 46N1 arranged on the rear side with respect to the traveling direction, a second propeller 16N2 arranged on the diagonally front right side, and a third propeller 16N2 arranged diagonally on the left front side.
  • the propeller is 46N3.
  • FIG. 12 shows a tilt motor 48N1 that tilts the rear propeller 46N1 and motor 44N1 of the rotary wing aircraft 10B of the second embodiment.
  • the rotor drive unit 14 rotates the rotor 16 clockwise R.
  • the direction of the counter torque RT generated in the main body 2 by the clockwise rotation R of the rotor 16 is the direction of counterclockwise rotation.
  • the tilt motor 48N1 tilts the propeller 46N1 to the left in order to generate a reaction force in the main body 2 that cancels out the anti-torque RT in the direction of counterclockwise rotation, and the rotation of the propeller 46N1 causes the main body 2 to A force (reaction force) in the direction of clockwise rotation L is generated.
  • the lift force is controlled by the rotor 16.
  • a reaction force that cancels the reaction torque is generated by rotating the propeller 46N1, and the direction of the rotary wing aircraft 10B is controlled by controlling the rotational speed of the propellers 46N1 to 46N3. Therefore, in this embodiment, the load on the rotor can be reduced.
  • the direction of the rotary wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 to 46N3 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. . Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of the propeller 46N1, so the load on the rotor is reduced.
  • a third embodiment will be described.
  • the configuration of the third embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
  • FIG. 13 shows a schematic top view of a rotary wing aircraft 10C according to the third embodiment.
  • the rotary wing aircraft 10C includes two arms 40N1 and 40N2, two motors 44N1 and 44N2 provided at the tips of the two arms 40N1 and 40N2, and two motors 44N1 and 44N2.
  • Two propellers 46N1 and 46N2 are provided.
  • Each of the two arms 40N1 and 40N2 is equipped with an ESC (not shown) for controlling the rotation of the two motors 44N1 and 44N2.
  • the rotary wing aircraft 10C does not include the arms 40N3, 40N4, motors 44N3, 44N4, propellers 46N3, 46N4, and ESCs 50N3, 50N4 of the first embodiment.
  • the rotary wing aircraft 10C is provided with a tail fin 17 for flight stability.
  • FIG. 14 shows a diagram showing the direction of downwash D caused by the rotation of the rotor 16 of the rotary-wing aircraft 10C and the positional relationship between the rotational surfaces S1 and S2 of the two propellers 46N1 and 46N2.
  • the direction of downwash D caused by the rotation of the rotor 16 of the rotary-wing aircraft 10C is perpendicular to the rotational surfaces S1 and S2 of the two propellers 46N1 and 46N2.
  • the rotor drive unit 14 rotates the rotor 16 clockwise.
  • the direction of the counter torque RT generated in the main body 2 by the clockwise rotation R of the rotor 16 is the direction of counterclockwise rotation.
  • a force ( generate a reaction force).
  • the lift force is controlled by the rotor 16.
  • Generation of a reaction force that cancels the reaction torque and control of the direction of the rotary wing aircraft 10B are performed by controlling the rotational speed of the propellers 46N1 and 46N2. Therefore, in this embodiment, the load on the rotor can be reduced.
  • the direction of the rotary wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 and 46N2 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. . Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of the propellers 46N1 and 46N2, so the load on the rotor is reduced.
  • a fourth embodiment will be described.
  • the configuration of the fourth embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
  • FIG. 15 shows a schematic structural perspective view of a rotary wing aircraft 10D according to the fourth embodiment.
  • the rotary-wing aircraft 10D has the same structure as the rotary-wing aircraft 10A of the first embodiment, but also includes two arms 30N1 and 30N2, and two arms 30N1 and 30N2. and two propellers 36N1 and 36N2 rotated by the two motors 34N1 and 34N2.
  • Each of the two arms 30N1 and 30N2 is provided with an ESC (not shown) for controlling the rotation of the two motors 34N1 and 34N2.
  • the lift force is controlled by the rotor 16.
  • Generation of a reaction force that cancels the reaction torque and control of the direction of the rotary wing aircraft 10B are performed by controlling the rotational speed of the propellers 46N1 to 46N3, 36N1, and 36N2. Therefore, in this embodiment, the load on the rotor can be reduced.
  • the direction of the rotary-wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 to 46N3, 36N1, and 36N2 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. You can also do this. Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speeds of the propellers 46N1 to 46N3, 36N1, and 36N2, so that the load on the rotor is reduced.
  • the number of blades of the rotor 16 is not limited to two, but may be three, four, five, six, etc.
  • rotary-wing aircraft in each of the embodiments described above is an unmanned rotary-wing aircraft
  • the technology of the present disclosure is not limited thereto, and may be a manned rotary-wing aircraft.
  • each component may exist as long as there is no contradiction.
  • the direction control processing is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this.
  • the direction control process may be performed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). .
  • Part of the direction control processing may be executed by a software configuration, and the remaining processing may be executed by a hardware configuration.
  • Non-transitory computer-readable media includes various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the orientation control program may also be provided to the computer by various types of temporary computer-readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the orientation control program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

This rotorcraft comprises: a body; a rotor that rotates above the body; a rotor drive unit that causes the rotor to rotate; a plurality of arms that are connected to the body; a plurality of motors that are provided to the distal ends of the plurality of arms; a plurality of propellers that are rotated by the plurality of motors; and a control unit that controls the plurality of motors such that a reaction force canceling out the reaction torque generated in the body due to the rotation of the rotor by the rotor drive unit is generated in the body due to the rotation of the propellers. The control unit controls the rotor drive unit and/or the plurality of motors such that the direction of the rotorcraft is changed.

Description

回転翼機rotary wing aircraft
 本開示の技術は、回転翼機に関する。 The technology of the present disclosure relates to rotary wing aircraft.
 従来、ヘリコプタは、メインロータの回転により生ずる反転トルクを打ち消すためにテールロータを備えている。しかし、テールロータは、エンジン出力の20~30%を消費する。そこで、以下のように、テールロータを備えないヘリコプタが提案されている。 Conventionally, helicopters are equipped with a tail rotor to counteract the reversal torque caused by the rotation of the main rotor. However, the tail rotor consumes 20-30% of the engine power. Therefore, a helicopter without a tail rotor has been proposed as described below.
 特開平07-304499号公報には、メインロータを駆動するためのエンジンの動力の一部を用いてファンを回転させ、ファンによる空気流を、テールブームを介して後方に導き、吹出口により、機軸の略垂直水平方向に吹出すことで、胴体に生ずる反トルクを打ち消すヘリコプタが開示されている。 Japanese Unexamined Patent Publication No. 07-304499 discloses that a fan is rotated using part of the power of an engine for driving a main rotor, airflow by the fan is guided rearward via a tail boom, and a blowout port is used to rotate a fan. A helicopter is disclosed that cancels the counter torque generated in the fuselage by emitting air in a substantially vertical and horizontal direction of the aircraft axis.
 しかし、上記従来のヘリコプタでは、ファンによる空気流を吹出口により機軸に略垂直水平方向に吹出すだけであるので、吹出口からの空気流の吹き出しでは、ヨー方向の制御しかできない。よって、上記従来のヘリコプタの吹出口からの空気流の吹き出しでは、ピッチ方向及びローリング方向の制御をすることができず、また、揚力制御もすることができず、これらは全てメインロータが担当し、メインロータの負荷を大きい。 However, in the above-mentioned conventional helicopter, the airflow by the fan is only blown out in a horizontal direction substantially perpendicular to the axis of the machine through the outlet, so that the airflow from the outlet can only be controlled in the yaw direction. Therefore, when the airflow is blown out from the air outlet of the conventional helicopter described above, it is not possible to control the pitch direction and the rolling direction, nor is it possible to control the lift force, and the main rotor is responsible for all of these. , the load on the main rotor is large.
 本開示の技術は、ロータの負荷を軽減することができる回転翼機を提供することを目的とする。 The technology of the present disclosure aims to provide a rotary wing aircraft that can reduce the load on the rotor.
 上記目的を達成するため本開示の技術の第1の態様の回転翼機は、本体と、本体の上空で回転するロータと、前記ロータを回転させるロータ駆動部と、前記本体に接続された複数のアームと、前記複数のアームの先端に設けられた複数のモータと、前記複数のモータにより回転する複数のプロペラと、前記ロータ駆動部による前記ロータの回転により前記本体に発生する反トルクを打ち消す反力が、前記プロペラの回転により、前記本体に発生するように、前記複数のモータを制御する制御部と、を備える。 In order to achieve the above object, a rotary wing aircraft according to a first aspect of the technology of the present disclosure includes a main body, a rotor that rotates above the main body, a rotor drive unit that rotates the rotor, and a plurality of rotary wing aircraft connected to the main body. , a plurality of motors provided at the tips of the plurality of arms, a plurality of propellers rotated by the plurality of motors, and counter torque generated in the main body due to rotation of the rotor by the rotor drive unit. A control unit that controls the plurality of motors so that a reaction force is generated in the main body by rotation of the propeller.
 第2の態様の回転翼機は、第1の態様において、前記制御部は、前記回転翼機の方向が変更されるように、前記ロータ駆動部及び前記複数のモータの少なくとも一方を制御する。 In the rotary wing aircraft of a second aspect, in the first aspect, the control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary wing aircraft is changed.
 第3の態様の回転翼機は、本体と、本体の上空で回転するロータと、前記ロータを回転させるロータ駆動部と、前記本体に接続された複数のアームと、前記複数のアームの先端に設けられた複数のモータと、前記複数のモータにより回転する複数のプロペラと、前記複数のプロペラの内、進行方向後側のプロペラの回転面を傾斜させる傾斜モータと、前記ロータ駆動部による前記ロータの回転により前記本体に発生する反トルクを打ち消す反力が、回転する前記進行方向後側のプロペラの回転面の傾斜により、前記本体に発生するように、前記傾斜モータを制御する制御部と、を備える。 A rotary-wing aircraft according to a third aspect includes a main body, a rotor that rotates above the main body, a rotor drive unit that rotates the rotor, a plurality of arms connected to the main body, and a rotor that rotates in the air above the main body. a plurality of motors provided, a plurality of propellers rotated by the plurality of motors, a tilting motor that tilts a rotating surface of a propeller on the rear side in a traveling direction among the plurality of propellers, and a rotor driven by the rotor drive unit. a control unit that controls the tilting motor so that a reaction force that cancels the counter-torque generated in the main body due to the rotation of the propeller is generated in the main body due to the inclination of the rotating surface of the rotating propeller on the rear side in the traveling direction; Equipped with
 第4の態様の回転翼機は、第3の態様において、前記制御部は、前記回転翼機の方向が変更されるように、前記ロータ駆動部及び前記複数のモータの少なくとも一方を制御する。 In the rotary wing aircraft of a fourth aspect, in the third aspect, the control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary wing aircraft is changed.
 本開示の技術は、ロータの負荷を軽減することができる。 The technology of the present disclosure can reduce the load on the rotor.
第1の実施の形態の回転翼機10Aの概略構成斜視図である。FIG. 1 is a schematic perspective view of a rotary wing aircraft 10A according to a first embodiment. 回転翼機10Aのロータ16の回転領域RDと4つのプロペラ46N1~46N4の回転領域rd1~rd4との位置関係を示す図である。5 is a diagram showing the positional relationship between the rotational region RD of the rotor 16 of the rotary-wing aircraft 10A and the rotational regions rd1 to rd4 of the four propellers 46N1 to 46N4. FIG. ロータ16の回転速度vと、ロータ16の回転速度が回転速度vの場合に発生する反トルクRTとの関係を示すグラフである。It is a graph showing the relationship between the rotational speed v of the rotor 16 and the counter torque RT generated when the rotational speed of the rotor 16 is the rotational speed v. 反トルクRTを打ち消すための反力Lを発生させるための第1のプロペラ46N1の回転速度r1と本体12に発生する反トルクRTとは逆方向の力Lr1の大きさとの関係を示すグラフである。This is a graph showing the relationship between the rotational speed r1 of the first propeller 46N1 for generating the reaction force L for canceling the reaction torque RT and the magnitude of the force Lr1 in the direction opposite to the reaction torque RT generated in the main body 12. . 第1のプロペラ46N1の回転速度r1がR0から変化させた変化量Δr1と、本体12が右方向に変化する変化量との関係を示すグラフである。It is a graph showing the relationship between the amount of change Δr1 that the rotational speed r1 of the first propeller 46N1 changes from R0 and the amount of change that the main body 12 changes in the right direction. 第1のプロペラ46N1の回転速度r1がR0から変化させた変化量Δr1と、本体12が上方向に変化する変化量との関係を示すグラフである。It is a graph showing the relationship between the amount of change Δr1 by which the rotational speed r1 of the first propeller 46N1 changes from R0 and the amount of change by which the main body 12 changes upward. 第1のプロペラ46N1の回転速度r1がR0から変化させた変化量Δr1と、本体12が右上方向に変化する変化量との関係を示すグラフである。It is a graph showing the relationship between the amount of change Δr1 in which the rotational speed r1 of the first propeller 46N1 changes from R0 and the amount of change in which the main body 12 changes in the upper right direction. 回転翼機10Aの制御系の概略ブロック図である。FIG. 2 is a schematic block diagram of a control system of rotary wing aircraft 10A. 回転翼機10AのCPU52の機能ブロック図である。FIG. 3 is a functional block diagram of a CPU 52 of the rotary wing aircraft 10A. 第1の実施の形態の回転翼機10AのCPU52が実行する、本体12の方向を制御するための方向制御プログラムのフローチャートである。It is a flowchart of the direction control program for controlling the direction of the main body 12, executed by the CPU 52 of the rotary wing aircraft 10A of the first embodiment. 第2の実施の形態の回転翼機10Bの概略構成上面図である。FIG. 2 is a top view of a schematic configuration of a rotary wing aircraft 10B according to a second embodiment. 第2の実施の形態の回転翼機10Bの後側のプロペラ46N1及びモータ44N1を傾斜させるチルトモータ48N1を示す図である。It is a figure which shows the tilt motor 48N1 which tilts the propeller 46N1 and motor 44N1 of the rear side of rotary wing aircraft 10B of 2nd Embodiment. 第3の実施の形態の回転翼機10Cの概略構成上面図である。FIG. 3 is a top view of a schematic configuration of a rotary wing aircraft 10C according to a third embodiment. 回転翼機10Cのロータ16の回転によるダウンウォッシュDの方向と2つのプロペラ46N1、46N2の回転面S1、S2との位置関係を示す図である。It is a figure which shows the positional relationship of the direction of the downwash D by the rotation of the rotor 16 of 10 C of rotary-wing aircraft, and the rotating surface S1 of two propellers 46N1 and 46N2, and S2. 第4の実施の形態の回転翼機10Dの概略構成斜視図である。It is a schematic structural perspective view of rotary wing aircraft 10D of a 4th embodiment.
 以下、図面を参照して、本開示の技術の実施の形態を説明する。
[第1の実施の形態]
 図1には、第1の実施の形態の回転翼機10Aの概略構成斜視図が示されている。図1に示すように、回転翼機10Aは、ヘリコプタの要素を含む。回転翼機10Aは、本体12、本体12の上部に設けられたロータ16、及び本体12に備えられ且つロータ16を回転させるロータ駆動部14を備えている。
Embodiments of the technology of the present disclosure will be described below with reference to the drawings.
[First embodiment]
FIG. 1 shows a schematic perspective view of a rotary wing aircraft 10A according to a first embodiment. As shown in FIG. 1, the rotary wing aircraft 10A includes elements of a helicopter. The rotary wing aircraft 10A includes a main body 12, a rotor 16 provided on the upper part of the main body 12, and a rotor drive unit 14 that is provided in the main body 12 and rotates the rotor 16.
 回転翼機10Aは、本体2の上空でロータ16を回転して発生させた揚力を利用して本体12を空中に浮揚させて機体を上昇及び下降させることができる。回転翼機10Aは、ヘリコプタの要素として、複雑な機構を含むが、ヘリコプタの要素は、周知であるので、その詳細な説明を省略する。また、脚(スキッド)も省略されている。 The rotary-wing aircraft 10A can lift the main body 12 in the air by using lift generated by rotating the rotor 16 in the air above the main body 2, thereby raising and lowering the aircraft. The rotary wing aircraft 10A includes a complex mechanism as a helicopter element, but since the helicopter element is well known, a detailed explanation thereof will be omitted. The legs (skids) are also omitted.
 ところで、本体2の上空でロータ16を回転させると、作用反作用の法則によって、本体2には、ロータ16の回転方向と逆方向に回転させようとする力、即ち、反トルクRTが発生する。例えば、ロータ16を、上部から見て、時計回り(右回転R)に回転させると、本体2には、左回転の反トルクRTが発生する。従来は、テールロータを回転させ、反トルクRTを打ち消す反力を本体12に発生させている。 By the way, when the rotor 16 is rotated in the air above the main body 2, according to the law of action and reaction, a force that tries to rotate the main body 2 in the opposite direction to the rotational direction of the rotor 16, that is, a counter torque RT is generated in the main body 2. For example, when the rotor 16 is rotated clockwise (clockwise rotation R) when viewed from above, a counter-torque RT of counterclockwise rotation is generated in the main body 2. Conventionally, the tail rotor is rotated to generate a reaction force in the main body 12 that cancels out the reaction torque RT.
 しかし、本実施の形態では、回転翼機10Aは、テールロータを備えていない。回転翼機10Aは、ドローンの要素を備えている。回転翼機10Aは、本体12Aに接続された4本のアーム40N1~40N4と、4本のアーム40N1~40N4の先端に設けられた4個のモータ44N1~44N4と、4個のモータ44N1~44N4により回転する4個のプロペラ46N1~46N4と、を備える。4本のアーム40N1~40N4それぞれには、4個のモータ44N1~44N4の回転を制御するためのESC(Electric Speed Controller)50N1~50N4のそれぞれが備えられている。 However, in this embodiment, the rotary wing aircraft 10A does not include a tail rotor. The rotary wing aircraft 10A includes elements of a drone. The rotary wing aircraft 10A includes four arms 40N1 to 40N4 connected to the main body 12A, four motors 44N1 to 44N4 provided at the tips of the four arms 40N1 to 40N4, and four motors 44N1 to 44N4. Four propellers 46N1 to 46N4 are provided. Each of the four arms 40N1 to 40N4 is provided with an ESC (Electric Speed Controller) 50N1 to 50N4 for controlling the rotation of the four motors 44N1 to 44N4, respectively.
 4個のプロペラ46N1~46N4は、進行方向に対して、左前に配置された第1のプロペラ46N1、左後に配置された第2のプロペラ16N2、右後に配置された第3のプロペラ46N3、及び右前に配置された第4のプロペラ46N4である。 The four propellers 46N1 to 46N4 are, with respect to the traveling direction, a first propeller 46N1 located on the left front, a second propeller 16N2 located on the left rear, a third propeller 46N3 located on the right rear, and a right front propeller 46N2. This is the fourth propeller 46N4 located at.
 以上説明したように、回転翼機10Aは、ヘリコプタの要素と、ドローンの要素とを備えている。 As explained above, the rotary wing aircraft 10A includes helicopter elements and drone elements.
 図2には、回転翼機10Aのロータ16の回転領域RDと4つのプロペラ46N1~46N4の回転領域rd1~rd4との位置関係が示されている。図2に示すように、第1の実施の形態の回転翼機10Aでは、本体2の上空でロータ16を回転して発生させた揚力が、モータ44N1~44N4とプロペラ46N1~46N4とにより、減少しないように、プロペラ46N1~46N4の回転領域rd1~rd4の全域は、ロータ16の回転中心CGを中心としたロータ16の回転領域RDの外側に位置する。即ち、回転領域rd1~rd4の全域はロータ16の回転領域RDの全域と重ならない。
 4本のアーム40N1~40N4それぞれに備えられたESC50N1~50N4は、ロータ16のダウンウォッシュが供給される位置に位置し、ダウンウォッシュにより冷やされる。
FIG. 2 shows the positional relationship between the rotation region RD of the rotor 16 of the rotary-wing aircraft 10A and the rotation regions rd1 to rd4 of the four propellers 46N1 to 46N4. As shown in FIG. 2, in the rotary wing aircraft 10A of the first embodiment, the lift generated by rotating the rotor 16 above the main body 2 is reduced by the motors 44N1 to 44N4 and propellers 46N1 to 46N4. In order to prevent this, the entire rotation areas rd1 to rd4 of the propellers 46N1 to 46N4 are located outside the rotation area RD of the rotor 16 centered on the rotation center CG of the rotor 16. That is, the entire area of the rotation areas rd1 to rd4 does not overlap with the entire area of the rotation area RD of the rotor 16.
The ESCs 50N1 to 50N4 provided in each of the four arms 40N1 to 40N4 are located at positions where the downwash of the rotor 16 is supplied, and are cooled by the downwash.
 図3には、ロータ16の回転速度vと、ロータ16の回転速度が回転速度vの場合に発生する反トルクRTとの関係を示すグラフが示されている。上記のように、本体2の上空でロータ16が回転すると、本体2には反トルクRTが発生する。図3に示すように、反トルクRTは、ロータ16の回転速度vが大きくなるに従い、大きくなる。ロータ16の回転速度vと反トルクRTとの関係は予め定まる。 FIG. 3 shows a graph showing the relationship between the rotational speed v of the rotor 16 and the reaction torque RT generated when the rotational speed of the rotor 16 is the rotational speed v. As described above, when the rotor 16 rotates above the main body 2, a counter torque RT is generated in the main body 2. As shown in FIG. 3, the reaction torque RT increases as the rotational speed v of the rotor 16 increases. The relationship between the rotational speed v of the rotor 16 and the counter torque RT is determined in advance.
 上記のように本実施の形態では、ロータ16の右回転Rにより本体2に発生する反トルクRTの方向は、左回転の方向である。本実施の形態では、左回転の方向の反トルクRTを打ち消す反力を本体2に発生させるために、プロペラ46N1~46N4により本体12を右回転させようとしている。 As described above, in this embodiment, the direction of the counter torque RT generated in the main body 2 due to the clockwise rotation R of the rotor 16 is the counterclockwise rotation direction. In this embodiment, the main body 12 is rotated clockwise by the propellers 46N1 to 46N4 in order to generate a reaction force in the main body 2 that cancels the anti-torque RT in the counterclockwise rotation direction.
 例えば、本実施の形態では、左前に配置された第1のプロペラ46N1及び右後に配置された第3のプロペラ46N3の回転速度を、左後に配置された第2のプロペラ16N2及び右前に配置された第4のプロペラ46N4の回転速度よりも大きくすることにより、本体12を右回転させようとする。そして、本実施の形態では、プロペラ46N1~46N4のそれぞれの回転により本体12を右回転させようとする力は均等になるように、プロペラ46N1~46N4のそれぞれの回転速度を制御する。プロペラ46N1~46N4のそれぞれの回転速度と本体12を右回転させようとする力との関係は予め定まる。例えば、図4に示すように、第1のプロペラ46N1の回転速度r1と第1のプロペラ46N1により本体12に発生する反力Lr1との関係は予め定まる。なお、他のプロペラ46N2~46N4についても、それぞれの回転速度と本体12に発生する反力Lr2~Lr4との関係は予め定まる。 For example, in this embodiment, the rotational speed of the first propeller 46N1 located at the front left and the third propeller 46N3 located at the rear right is set to the rotational speed of the second propeller 16N2 located at the rear left and the third propeller 46N3 located at the front right. By making the rotation speed higher than that of the fourth propeller 46N4, the main body 12 is attempted to rotate clockwise. In this embodiment, the rotational speed of each of the propellers 46N1 to 46N4 is controlled so that the force that attempts to rotate the main body 12 clockwise due to the rotation of each of the propellers 46N1 to 46N4 is equalized. The relationship between the rotational speed of each of the propellers 46N1 to 46N4 and the force that attempts to rotate the main body 12 clockwise is determined in advance. For example, as shown in FIG. 4, the relationship between the rotational speed r1 of the first propeller 46N1 and the reaction force Lr1 generated in the main body 12 by the first propeller 46N1 is determined in advance. Note that for the other propellers 46N2 to 46N4, the relationship between their respective rotational speeds and the reaction forces Lr2 to Lr4 generated in the main body 12 is determined in advance.
 そして、例えば、ロータ16の回転速度v=V1の場合、反トルクRTの大きさは、図3に示すように、RT1である。第1のプロペラ46N1により本体12に発生する反力Lr1がL1(=RT1/4)となるためには、図4に示すように、第1のプロペラ46N1の回転速度r1を、R1にする。その他のプロペラ46N2~46N4も同様に制御する。これにより、反トルクRT=RT1を打ち消す反力を、プロペラ46N1~46N4の回転により、本体12に発生させることができ、本体12が回転することを防止することができる。 For example, when the rotational speed v of the rotor 16 is V1, the magnitude of the counter torque RT is RT1, as shown in FIG. In order for the reaction force Lr1 generated on the main body 12 by the first propeller 46N1 to become L1 (=RT1/4), as shown in FIG. 4, the rotational speed r1 of the first propeller 46N1 is set to R1. The other propellers 46N2 to 46N4 are similarly controlled. Thereby, a reaction force that cancels out the reaction torque RT=RT1 can be generated in the main body 12 by the rotation of the propellers 46N1 to 46N4, and the main body 12 can be prevented from rotating.
 ところで、回転翼機10Aは、飛行中、例えば、右方向に進むことが指示される場合がある。 By the way, during flight, the rotary wing aircraft 10A may be instructed to proceed to the right, for example.
 図5には、第1のプロペラ46N1の回転速度r1がR0(=本体12が回転することを防止するための第1のプロペラ46N1の回転速度)から変化させた変化量Δr1と、回転速度r1を変化させた場合に本体12が右方向に変化する変化量との関係を示すグラフが示されている。 FIG. 5 shows the amount of change Δr1 in which the rotational speed r1 of the first propeller 46N1 is changed from R0 (=the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating), and the rotational speed r1. A graph showing the relationship between the amount of change in the body 12 in the right direction and the change in the amount of change is shown.
 上記のように反トルクRT=RT1を打ち消す反力を、プロペラ46N1~46N4の回転により、本体12に発生させ、本体12が回転することを防止することができる。例えば、プロペラ46N1の回転速度r1=R0で、本体12が回転することを防止している場合、プロペラ46N1の回転速度r1を、R0より大きくすると、第1のプロペラ46N1により本体12に発生する力Lr1がL1(=RT1/4)より大きくなり、本体12が右方向に向く。このように、本体12が回転することを防止している状態から、プロペラ46N1の回転速度r1を大きくすると、本体12を右方向に向かせることができる。このように第1のプロペラ46N1の回転速度r1を、本体12が回転することを防止している状態(例えば、r1=R0)から変化させた変化量Δr1と、回転速度r1を変化させた場合に本体12が右方向に変化する角度の変化量との関係は予め定まる。よって、例えば、図5に示すように、本体12を角度R1だけ右方向に向かせるためには、この関係から、第1のプロペラ46N1の回転速度r1を、変化量Δr1=rR1だけ変化させればよい、ことが理解される。よって、回転翼機10Aが、飛行中、本体12が回転することを防止している状態から、右方向に進むこが指示された場合、第1のプロペラ46N1の回転速度r1の変化量を、関係式を用いて計算により求めることができる。なお、他のプロペラ46N2~46N4の回転速度の変化量を、関係式を用いて計算により求めることができる。 As described above, the rotation of the propellers 46N1 to 46N4 generates a reaction force that cancels the reaction torque RT=RT1 in the main body 12, thereby preventing the main body 12 from rotating. For example, if the rotation speed r1 of the propeller 46N1 is R0, and the main body 12 is prevented from rotating, if the rotation speed r1 of the propeller 46N1 is made larger than R0, the force generated on the main body 12 by the first propeller 46N1 Lr1 becomes larger than L1 (=RT1/4), and the main body 12 faces to the right. In this way, when the rotation speed r1 of the propeller 46N1 is increased from the state in which the main body 12 is prevented from rotating, the main body 12 can be turned to the right. In this way, when the rotational speed r1 of the first propeller 46N1 is changed from the state where the main body 12 is prevented from rotating (for example, r1=R0), the amount of change Δr1 and the rotational speed r1 are changed. The relationship between the amount of change in the angle at which the main body 12 changes in the rightward direction is determined in advance. Therefore, for example, in order to direct the main body 12 to the right by an angle R1 as shown in FIG. It is understood that it is good. Therefore, when the rotary wing aircraft 10A is instructed to proceed in the right direction from a state in which the main body 12 is prevented from rotating during flight, the amount of change in the rotational speed r1 of the first propeller 46N1 is calculated as follows. It can be determined by calculation using a relational expression. Note that the amount of change in the rotational speed of the other propellers 46N2 to 46N4 can be calculated by using a relational expression.
 また、回転翼機10Aは、飛行中、上方向に進むことが指示される場合がある。本実施の形態では、回転翼機10Aを上方向に進めさせるためには、左前の第1のプロペラ46N1と右前の第4のプロペラ46N4とを、本体12が回転することを防止している状態の回転速度より大きくする。 Additionally, the rotary wing aircraft 10A may be instructed to proceed upward during flight. In this embodiment, in order to advance the rotary wing aircraft 10A upward, the first propeller 46N1 on the left front and the fourth propeller 46N4 on the right front are in a state where the main body 12 is prevented from rotating. be greater than the rotational speed of.
 図6には、第1のプロペラ46N1の回転速度r1がR0(=本体12が回転することを防止するための第1のプロペラ46N1の回転速度)から変化させた変化量Δr1と、回転速度r1を変化させた場合に本体12が上方向に変化する角度の変化量との関係を示すグラフが示されている。図6に示すように、第1のプロペラ46N1の回転速度r1がR0から変化させた変化量Δr1と、回転速度r1を変化させた場合に本体12の上方向が変化する変化量との関係は予め定まる。なお、第4のプロペラ46N4の回転速度の変化量と本体12が上方向に変化する変化量との関係も予め定まる。よって、回転翼機10Aが、飛行中、本体12が回転することを防止している状態から、上方向に進むことが指示された場合、回転翼機10Aが上方向に進むための、第1のプロペラ46N1及び第4のプロペラ46N4の回転速度の変化量を、関係式を用いて計算により求めることができる。 FIG. 6 shows the amount of change Δr1 in which the rotational speed r1 of the first propeller 46N1 is changed from R0 (=the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating), and the rotational speed r1. A graph showing the relationship between the amount of change in the angle at which the main body 12 changes upward when the angle is changed is shown. As shown in FIG. 6, the relationship between the amount of change Δr1 in which the rotational speed r1 of the first propeller 46N1 changes from R0 and the amount of change in the upward direction of the main body 12 when the rotational speed r1 is changed is as follows. Determined in advance. Note that the relationship between the amount of change in the rotational speed of the fourth propeller 46N4 and the amount of change in which the main body 12 changes upward is also determined in advance. Therefore, when the rotary wing aircraft 10A is instructed to move upward from a state in which the main body 12 is prevented from rotating during flight, the first The amount of change in the rotational speed of the propeller 46N1 and the fourth propeller 46N4 can be calculated by using a relational expression.
 更に、回転翼機10Aは、飛行中、右上方向に進むことが指示される場合がある。本実施の形態では、回転翼機10Aを右上方向に進めさせるために、左前の第1のプロペラ46N1と右前の第4のプロペラ46N4とを、本体12が回転することを防止している状態の回転速度より大きく且つ第1のプロペラ46N1の回転速度の変化量を、右前の第4のプロペラ46N4の回転速度の変化量より大きくする。 Further, the rotary-wing aircraft 10A may be instructed to proceed in the upper right direction during flight. In this embodiment, in order to advance the rotary wing aircraft 10A in the upper right direction, the first propeller 46N1 on the left front and the fourth propeller 46N4 on the right front are set in a state where the main body 12 is prevented from rotating. The amount of change in the rotation speed of the first propeller 46N1 is made larger than the amount of change in the rotation speed of the fourth propeller 46N4 on the front right.
 図7には、第1のプロペラ46N1の回転速度r1がR0(=本体12が回転することを防止するための第1のプロペラ46N1の回転速度)から変化させた変化量Δr1と、回転速度r1を変化させた場合に本体12が右上方向に変化する変化量との関係を示すグラフが示されている。このように、第1のプロペラ46N1の回転速度r1の変化量Δr1と本体12が右上方向に変化する変化量との関係及び第4のプロペラ46N6の回転速度の変化量と本体12が右上方向に変化する変化量との関係も予め定まる。よって、回転翼機10Aが、飛行中、本体12が回転することを防止している状態から、右上方向に進むことが指示された場合、回転翼機10Aが右上方向に進むための、第1のプロペラ46N1及び第4のプロペラ46N4の回転速度の変化量を、関係式を用いて計算により求めることができる。 FIG. 7 shows the amount of change Δr1 in which the rotational speed r1 of the first propeller 46N1 is changed from R0 (=the rotational speed of the first propeller 46N1 for preventing the main body 12 from rotating), and the rotational speed r1 A graph is shown that shows the relationship between the amount of change in the body 12 in the upper right direction when the change is made. In this way, the relationship between the amount of change Δr1 in the rotational speed r1 of the first propeller 46N1 and the amount of change in which the main body 12 changes in the upper right direction, and the relationship between the amount of change in the rotational speed of the fourth propeller 46N6 and the amount in which the main body 12 changes in the upper right direction. The relationship with the amount of change is also determined in advance. Therefore, when the rotary-wing aircraft 10A is instructed to proceed in the upper right direction from a state in which the main body 12 is prevented from rotating during flight, the first The amount of change in the rotational speed of the propeller 46N1 and the fourth propeller 46N4 can be calculated by using a relational expression.
 その他の方向についての各プロペラの回転速度の変化量について同様に計算により求めることができる。 The amount of change in the rotational speed of each propeller in other directions can be similarly calculated.
 図8には、回転翼機10Aの制御系の概略ブロック図が示されている。図8に示すように、回転翼機10Aの制御系は、コンピュータ50を備えている。コンピュータ50は、CPU(Central Processing Unit)52、ROM(Read Only Memory)54、RAM(Random Access Memory)56、及び入出力(I/O)ポート58を備えている。CPU52、ROM54、RAM56、及びI/Oポート58は、バス60を介して、相互に接続されている。I/Oポート58には、通信装置62、2次記憶装置64、ロータ駆動部14、及びESC50N1~50N4が接続されている。 FIG. 8 shows a schematic block diagram of the control system of the rotary wing aircraft 10A. As shown in FIG. 8, the control system of the rotary wing aircraft 10A includes a computer 50. The computer 50 includes a CPU (Central Processing Unit) 52, a ROM (Read Only Memory) 54, a RAM (Random Access Memory) 56, and an input/output (I/O) port 58. The CPU 52, ROM 54, RAM 56, and I/O port 58 are interconnected via a bus 60. A communication device 62, a secondary storage device 64, a rotor drive unit 14, and ESCs 50N1 to 50N4 are connected to the I/O port 58.
 通信装置62は、地上のオペレータにより操作された遠隔操作装置からの方向変更の指示信号を受信する装置である。 The communication device 62 is a device that receives a direction change instruction signal from a remote control device operated by an operator on the ground.
 2次記憶装置64には、後述する方向制御プログラム62P(図10)が記憶されている。2次記憶装置64から情方向制御プログラム64PがRAM54に読み出され、CPU52により実行され、後述する方向制御処理(従って、方向制御方法)が実行される。なお、2次記憶装置64は、一時的でない有形のコンピュータが可読可能な記録媒体(non-transitory tangible Computer Readable media)であり、例えば、HDD(Hard disk drive)やSSD(Solid state drive)等の不揮発性の記憶装置である。なお、方向制御プログラム62Pは、次記憶装置62に代えて、ROM54に記憶するようにしてもよい。 The secondary storage device 64 stores a direction control program 62P (FIG. 10), which will be described later. The direction control program 64P is read out from the secondary storage device 64 to the RAM 54 and executed by the CPU 52 to execute the direction control process (therefore, the direction control method) to be described later. The secondary storage device 64 is a non-transitory tangible computer readable recording medium, such as a hard disk drive (HDD) or solid disk drive (SSD). state drive) etc. It is a non-volatile storage device. Note that the direction control program 62P may be stored in the ROM 54 instead of the next storage device 62.
 2次記憶装置64には、図3に示す、ロータ16の回転速度vと、ロータ16の回転速度が回転速度vの場合に発生する反トルクRTとの関係64Q0が、データテーブル等で記憶されている。 In the secondary storage device 64, a relationship 64Q0 between the rotational speed v of the rotor 16 and the counter torque RT generated when the rotational speed of the rotor 16 is the rotational speed v, shown in FIG. 3, is stored in a data table or the like. ing.
 2次記憶装置64には、図4に示す、ロータ16の回転により発生する反トルクRTを打ち消すための反力Lを発生させるための、第1のプロペラ46N1の回転速度r1と、第1のプロペラ46N1の回転により本体12に発生する反力Lr1との関係64Q1が、データテーブル等で記憶されている。なお、同様に、他のプロペラ46N2~46N4の回転速度と、プロペラ46N2~46N4の回転により本体12に発生する反力との関係64Q2~64Q4が、データテーブル等で記憶されている。 The secondary storage device 64 stores the rotational speed r1 of the first propeller 46N1 and the first The relationship 64Q1 with the reaction force Lr1 generated in the main body 12 due to the rotation of the propeller 46N1 is stored in a data table or the like. Similarly, the relationships 64Q2 to 64Q4 between the rotational speeds of the other propellers 46N2 to 46N4 and the reaction forces generated in the main body 12 due to the rotation of the propellers 46N2 to 46N4 are stored in a data table or the like.
 図9には、回転翼機10AのCPU52の機能ブロック図が示されている。CPU52の機能には、計算機能、取り込み機能、駆動制御機能、及び判断機能がある。図9に示すように、CPU52は、方向制御プログラムの何れかを実行することにより、計算部62、取り込み部64、駆動制御部66、及び判断部68として機能する。 FIG. 9 shows a functional block diagram of the CPU 52 of the rotary wing aircraft 10A. The functions of the CPU 52 include a calculation function, a capture function, a drive control function, and a judgment function. As shown in FIG. 9, the CPU 52 functions as a calculation unit 62, a capture unit 64, a drive control unit 66, and a determination unit 68 by executing any of the direction control programs.
 次に、本実施の形態の作用を説明する。 Next, the operation of this embodiment will be explained.
 図10には、第1の実施の形態の回転翼機10AのCPU52が実行する、本体12の方向を制御するための方向制御プログラム64Pのフローチャートを示している。方向制御プログラム64Pは、遠隔操作装置からの飛行開始の指示信号を通信装置62が受信した場合にスタートする。CPU52が方向制御プログラム64Pを実行することにより、方向制御処理及び方向制御方法が実行される。 FIG. 10 shows a flowchart of a direction control program 64P for controlling the direction of the main body 12, which is executed by the CPU 52 of the rotary wing aircraft 10A of the first embodiment. The direction control program 64P starts when the communication device 62 receives an instruction signal to start flight from the remote control device. The direction control process and the direction control method are executed by the CPU 52 executing the direction control program 64P.
 ステップ102で、計算部62は、ロータ駆動部14を介してロータ16を回転させている制御データに基づいて、ロータ16の回転速度vを計算する。なお、その他、ロータ16の回転速度Vを検出するセンサにより、ロータ16の回転速度Vを取得してもよい。 In step 102, the calculation unit 62 calculates the rotational speed v of the rotor 16 based on the control data for rotating the rotor 16 via the rotor drive unit 14. In addition, the rotational speed V of the rotor 16 may be acquired by a sensor that detects the rotational speed V of the rotor 16.
 ステップ104で、取り込み部64は、ステップ102で計算されたロータ16の回転速度vを用いて、2次記憶装置62に記憶されている上記関係64Q0から、反トルクRTを取り込み、反トルクRT/4の値と等しい値の反力を発生させる各プロペラ46N1~46N4の回転速度を、2次記憶装置62に記憶されている上記関係62Q1~64Q4から取り込む。 In step 104, the capture unit 64 captures the counter torque RT from the above relationship 64Q0 stored in the secondary storage device 62 using the rotational speed v of the rotor 16 calculated in step 102, and obtains the counter torque RT/ The rotation speed of each propeller 46N1 to 46N4 that generates a reaction force having a value equal to the value of 4 is fetched from the above relationships 62Q1 to 64Q4 stored in the secondary storage device 62.
 ステップ106で、駆動制御部66は、各プロペラ46N1~46N4の回転速度が、ステップ104で取り込んだ回転速度となるようにモータ44N1~44N4を駆動するように、ESC50N~50N4を制御する。これにより、各プロペラ46N1~46N4の回転により、反トルクRTを打ち消すための反力を本体12に発生させ、本体12が回転することを防止することができる。 In step 106, the drive control unit 66 controls the ESCs 50N to 50N4 to drive the motors 44N1 to 44N4 so that the rotational speed of each propeller 46N1 to 46N4 becomes the rotational speed taken in step 104. Thereby, the rotation of each of the propellers 46N1 to 46N4 generates a reaction force in the main body 12 to cancel the counter torque RT, thereby preventing the main body 12 from rotating.
 ステップ108で、判断部68は、遠隔操作装置からの飛行停止の指示信号を通信装置62が受信したか否かを判断することにより、飛行停止か否かを判断する。飛行停止と判断されなかった場合には、方向制御処理は、ステップ110に進む。 In step 108, the determining unit 68 determines whether the flight is to be stopped by determining whether the communication device 62 has received a flight stop instruction signal from the remote control device. If it is determined that the flight has not stopped, the direction control process proceeds to step 110.
 ステップ110で、判断部68は、地上のオペレータにより操作された遠隔操作装置からの方向変更の指示信号を受信したか否かを判断することにより、方向変更が指示されたかを判断する。方向変更が指示されたと判断されなかった場合には、方向制御処理は、ステップ102に戻る。方向変更が指示されたと判断された場合には、方向制御処理は、ステップ112で、計算部62は、上記関係式から、指示された方向に向くための各プロペラ46N1~46N4の回転速度を計算する。 In step 110, the determining unit 68 determines whether a direction change has been instructed by determining whether a direction change instruction signal has been received from a remote control device operated by an operator on the ground. If it is determined that a direction change has not been instructed, the direction control process returns to step 102. If it is determined that a direction change has been instructed, the direction control process proceeds to step 112, in which the calculation unit 62 calculates the rotational speed of each propeller 46N1 to 46N4 to face in the instructed direction from the above relational expression. do.
 ステップ114で、駆動制御部66は、各プロペラ46N1~46N4の回転速度が、ステップ112で計算された回転速度となるように、モータ44N1~44N4を駆動するように、ESC50N~50N4を制御する。これにより、本体12が指示された方向に向かせることができる。 In step 114, the drive control unit 66 controls the ESCs 50N to 50N4 to drive the motors 44N1 to 44N4 so that the rotational speed of each propeller 46N1 to 46N4 becomes the rotational speed calculated in step 112. This allows the main body 12 to be directed in the designated direction.
 ステップ108で飛行停止と判断された場合には、方向制御プログラムは終了する。 If it is determined in step 108 that the flight has stopped, the direction control program ends.
 以上説明したように本実施の形態では、ロータ16により揚力制御をする。反トルクを打ち消す反力の生成及び回転翼機10Aの方向の制御を、各プロペラ46N1~46N4の回転速度を制御することにより行っている。よって、本実施の形態では、ロータの負荷を軽減することができる。また、上記のように(図2参照)、プロペラ46N1~46N4の回転領域rd1~rd4の全域は、ロータ16の回転中心CGを中心としたロータ16の回転領域RDの外側に位置する。よって、プロペラ46N1~46N4の回転領域rd1~rd4がロータ16の回転領域RDの内側に位置する場合より、ロータ16の回転中心CGからプロペラ46N1~46N4までの長さを長くすることができる。よって、プロペラ46N1~46N4のトルクが大きくなり、モータ44N1~44N4のより少ない回転速度で反トルクを打ち消す反力の生成及び回転翼機10Aの方向の制御をすることができる。また、ロータ16の回転によるダウンウォッシュにより、プロペラ46N1~46N4の回転制御に支障が生じ、反力の生成及び回転翼機10Aの方向の制御に支障が生ずることを防止することができる。 As explained above, in this embodiment, the lift force is controlled by the rotor 16. Generation of a reaction force that cancels out the reaction torque and control of the direction of the rotary wing aircraft 10A are performed by controlling the rotational speed of each propeller 46N1 to 46N4. Therefore, in this embodiment, the load on the rotor can be reduced. Furthermore, as described above (see FIG. 2), the entire rotation ranges rd1 to rd4 of the propellers 46N1 to 46N4 are located outside the rotation range RD of the rotor 16 centered on the rotation center CG of the rotor 16. Therefore, the length from the rotation center CG of the rotor 16 to the propellers 46N1 to 46N4 can be made longer than when the rotation regions rd1 to rd4 of the propellers 46N1 to 46N4 are located inside the rotation region RD of the rotor 16. Therefore, the torque of the propellers 46N1 to 46N4 increases, and it is possible to generate a reaction force that cancels out the reaction torque and control the direction of the rotary wing aircraft 10A with a lower rotational speed of the motors 44N1 to 44N4. Further, it is possible to prevent downwash caused by the rotation of the rotor 16 from causing trouble in controlling the rotation of the propellers 46N1 to 46N4, thereby preventing trouble from occurring in the generation of reaction force and the control of the direction of the rotary wing aircraft 10A.
 なお、回転翼機10Aの方向の制御を、各プロペラ46N1~46N4の回転速度の制御とロータ16の回転面の変化とにより、又は、ロータ16の回転面の変化のみにより、行うようにしてもよい。この場合でも、反トルクを打ち消す反力の生成は、各プロペラ46N1~46N4の回転速度を制御することにより行われるので、ロータの負荷が軽減される。
[第2の実施の形態]
 次に、第2の実施の形態を説明する。第2の実施の形態の構成は、第1の実施の形態と同一の部分があるので、同一の部分には同一の符号を付して、その説明を省略し、主として異なる部分を説明する。
Note that the direction of the rotary-wing aircraft 10A may be controlled by controlling the rotational speed of each propeller 46N1 to 46N4 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. good. Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of each propeller 46N1 to 46N4, so the load on the rotor is reduced.
[Second embodiment]
Next, a second embodiment will be described. The configuration of the second embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
 図11には、第2の実施の形態の回転翼機10Bの概略構成上面図が示されている。図11に示すように、回転翼機10Bは、3本のアーム40N1~40N3と、3本のアーム40N1~40N3の先端に設けられた3個のモータ44N1~44N43、3個のモータ44N1~44N3により回転する3個のプロペラ46N1~46N3と、を備える。3本のアーム40N1~40N3それぞれには、3個のモータ44N1~44N4の回転を制御するための図示しないESCが備えられている。 FIG. 11 shows a top view of a schematic configuration of a rotary wing aircraft 10B according to the second embodiment. As shown in FIG. 11, the rotary wing aircraft 10B includes three arms 40N1 to 40N3, three motors 44N1 to 44N43 provided at the tips of the three arms 40N1 to 40N3, and three motors 44N1 to 44N3. and three propellers 46N1 to 46N3 that rotate by. Each of the three arms 40N1 to 40N3 is provided with an ESC (not shown) for controlling the rotation of the three motors 44N1 to 44N4.
 回転翼機10Bは、第1の実施の形態のアーム40N4と、モータ44N4、プロペラ46N4、及びESC50N4を備えていない。 The rotary wing aircraft 10B does not include the arm 40N4, motor 44N4, propeller 46N4, and ESC 50N4 of the first embodiment.
 3個のプロペラ46N1~46N3は、進行方向に対して、後側に配置された第1のプロペラ46N1、右斜め前側に配置された第2のプロペラ16N2、及び左斜め前側に配置された第3のプロペラ46N3である。 The three propellers 46N1 to 46N3 include a first propeller 46N1 arranged on the rear side with respect to the traveling direction, a second propeller 16N2 arranged on the diagonally front right side, and a third propeller 16N2 arranged diagonally on the left front side. The propeller is 46N3.
 図12には、第2の実施の形態の回転翼機10Bの後側のプロペラ46N1及びモータ44N1を傾斜させるチルトモータ48N1が示されている。 FIG. 12 shows a tilt motor 48N1 that tilts the rear propeller 46N1 and motor 44N1 of the rotary wing aircraft 10B of the second embodiment.
 本実施の形態では、図11に示すように、ロータ駆動部14は、ロータ16を右回転Rさせる。ロータ16の右回転Rにより本体2に発生する反トルクRTの方向は、左回転の方向である。本実施の形態では、左回転の方向の反トルクRTを打ち消す反力を本体2に発生させるために、チルトモータ48N1は、プロペラ46N1を左方向に傾斜させ、プロペラ46N1の回転により、本体2に右回転Lの方向の力(反力)を発生させる。 In this embodiment, as shown in FIG. 11, the rotor drive unit 14 rotates the rotor 16 clockwise R. The direction of the counter torque RT generated in the main body 2 by the clockwise rotation R of the rotor 16 is the direction of counterclockwise rotation. In this embodiment, the tilt motor 48N1 tilts the propeller 46N1 to the left in order to generate a reaction force in the main body 2 that cancels out the anti-torque RT in the direction of counterclockwise rotation, and the rotation of the propeller 46N1 causes the main body 2 to A force (reaction force) in the direction of clockwise rotation L is generated.
 以上説明したように本実施の形態では、ロータ16により揚力制御をする。反トルクを打ち消す反力の生成を、プロペラ46N1の回転により行い、回転翼機10Bの方向の制御を、プロペラ46N1~46N3の回転速度を制御することにより行っている。よって、本実施の形態では、ロータの負荷を軽減するこすることができる。 As explained above, in this embodiment, the lift force is controlled by the rotor 16. A reaction force that cancels the reaction torque is generated by rotating the propeller 46N1, and the direction of the rotary wing aircraft 10B is controlled by controlling the rotational speed of the propellers 46N1 to 46N3. Therefore, in this embodiment, the load on the rotor can be reduced.
 なお、回転翼機10Aの方向の制御を、プロペラ46N1~46N3の回転速度の制御とロータ16の回転面の変化とにより、又は、ロータ16の回転面の変化のみにより、行うようにしてもよい。この場合でも、反トルクを打ち消す反力の生成は、プロペラ46N1の回転速度を制御することにより行われるので、ロータの負荷が軽減される。
[第3の実施の形態]
 次に、第3の実施の形態を説明する。第3の実施の形態の構成は、第1の実施の形態と同一の部分があるので、同一の部分には同一の符号を付して、その説明を省略し、主として異なる部分を説明する。
Note that the direction of the rotary wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 to 46N3 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. . Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of the propeller 46N1, so the load on the rotor is reduced.
[Third embodiment]
Next, a third embodiment will be described. The configuration of the third embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
 図13には、第3の実施の形態の回転翼機10Cの概略構成上面図が示されている。図13に示すように、回転翼機10Cは、2本のアーム40N1、40N2と、2本のアーム40N1、40N2の先端に設けられた2個のモータ44N1、44N2、2個のモータ44N1、44N2により回転する2個のプロペラ46N1、46N2と、を備える。2本のアーム40N1、40N2それぞれには、2個のモータ44N1、44N2の回転を制御するための図示しないESCが備えられている。 FIG. 13 shows a schematic top view of a rotary wing aircraft 10C according to the third embodiment. As shown in FIG. 13, the rotary wing aircraft 10C includes two arms 40N1 and 40N2, two motors 44N1 and 44N2 provided at the tips of the two arms 40N1 and 40N2, and two motors 44N1 and 44N2. Two propellers 46N1 and 46N2 are provided. Each of the two arms 40N1 and 40N2 is equipped with an ESC (not shown) for controlling the rotation of the two motors 44N1 and 44N2.
 回転翼機10Cは、第1の実施の形態のアーム40N3,40N4と、モータ44N3、44N4、プロペラ46N3、46N4、ESC50N3、50N4を備えていない。 The rotary wing aircraft 10C does not include the arms 40N3, 40N4, motors 44N3, 44N4, propellers 46N3, 46N4, and ESCs 50N3, 50N4 of the first embodiment.
 回転翼機10Cは、飛行の安定化のため、尾翼17が設けられている。 The rotary wing aircraft 10C is provided with a tail fin 17 for flight stability.
 図14には、回転翼機10Cのロータ16の回転によるダウンウォッシュDの方向と2つのプロペラ46N1、46N2の回転面S1、S2との位置関係を示す図が示されている。図14に示すように、回転翼機10Cのロータ16の回転によるダウンウォッシュDの方向と2つのプロペラ46N1、46N2の回転面S1、S2とは直交する。 FIG. 14 shows a diagram showing the direction of downwash D caused by the rotation of the rotor 16 of the rotary-wing aircraft 10C and the positional relationship between the rotational surfaces S1 and S2 of the two propellers 46N1 and 46N2. As shown in FIG. 14, the direction of downwash D caused by the rotation of the rotor 16 of the rotary-wing aircraft 10C is perpendicular to the rotational surfaces S1 and S2 of the two propellers 46N1 and 46N2.
 本実施の形態では、ロータ駆動部14は、ロータ16を右回転Rさせる。ロータ16の右回転Rにより本体2に発生する反トルクRTの方向は、左回転の方向である。本実施の形態では、左回転の方向の反トルクRTを打ち消す反力を本体2に発生させるために、2つのプロペラ46N1、46N2の回転速度の差により、本体2に右回転の方向の力(反力)を発生させる。 In this embodiment, the rotor drive unit 14 rotates the rotor 16 clockwise. The direction of the counter torque RT generated in the main body 2 by the clockwise rotation R of the rotor 16 is the direction of counterclockwise rotation. In this embodiment, in order to generate a reaction force in the main body 2 that cancels the anti-torque RT in the counterclockwise direction, a force ( generate a reaction force).
 以上説明したように本実施の形態では、ロータ16により揚力制御をする。反トルクを打ち消す反力の生成及び回転翼機10Bの方向の制御を、プロペラ46N1、46N2の回転速度制御により行っている。よって、本実施の形態では、ロータの負荷を軽減するこすることができる。 As explained above, in this embodiment, the lift force is controlled by the rotor 16. Generation of a reaction force that cancels the reaction torque and control of the direction of the rotary wing aircraft 10B are performed by controlling the rotational speed of the propellers 46N1 and 46N2. Therefore, in this embodiment, the load on the rotor can be reduced.
 なお、回転翼機10Aの方向の制御を、プロペラ46N1、46N2の回転速度の制御とロータ16の回転面の変化とにより、又は、ロータ16の回転面の変化のみにより、行うようにしてもよい。この場合でも、反トルクを打ち消す反力の生成は、プロペラ46N1、46N2の回転速度を制御することにより行われるので、ロータの負荷が軽減される。
[第4の実施の形態]
 次に、第4の実施の形態を説明する。第4の実施の形態の構成は、第1の実施の形態と同一の部分があるので、同一の部分には同一の符号を付して、その説明を省略し、主として異なる部分を説明する。
Note that the direction of the rotary wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 and 46N2 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. . Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speed of the propellers 46N1 and 46N2, so the load on the rotor is reduced.
[Fourth embodiment]
Next, a fourth embodiment will be described. The configuration of the fourth embodiment has the same parts as the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
 図15には、第4の実施の形態の回転翼機10Dの概略構成斜視図が示されている。図15に示すように、回転翼機10Dは、第1の実施の形態の回転翼機10Aの構成に、更に、2本のアーム30N1、30N2と、2本のアーム30N1、30N2の先端に設けられた2個のモータ34N1、34N2、2個のモータ34N1、34N2により回転する2個のプロペラ36N1、36N2と、を備える。2本のアーム30N1、30N2それぞれには、2個のモータ34N1、34N2の回転を制御するための図示しないESCのそれぞれが備えられている。 FIG. 15 shows a schematic structural perspective view of a rotary wing aircraft 10D according to the fourth embodiment. As shown in FIG. 15, the rotary-wing aircraft 10D has the same structure as the rotary-wing aircraft 10A of the first embodiment, but also includes two arms 30N1 and 30N2, and two arms 30N1 and 30N2. and two propellers 36N1 and 36N2 rotated by the two motors 34N1 and 34N2. Each of the two arms 30N1 and 30N2 is provided with an ESC (not shown) for controlling the rotation of the two motors 34N1 and 34N2.
 6個のプロペラ46N1~46N3、36N1、36N2の回転を制御することにより、反トルクRTを打ち消す反力を本体2に発生させる。 By controlling the rotation of the six propellers 46N1 to 46N3, 36N1, and 36N2, a reaction force that cancels the reaction torque RT is generated in the main body 2.
 以上説明したように本実施の形態では、ロータ16により揚力制御をする。反トルクを打ち消す反力の生成及び回転翼機10Bの方向の制御を、プロペラ46N1~46N3、36N1、36N2の回転速度制御により行っている。よって、本実施の形態では、ロータの負荷を軽減するこすることができる。 As explained above, in this embodiment, the lift force is controlled by the rotor 16. Generation of a reaction force that cancels the reaction torque and control of the direction of the rotary wing aircraft 10B are performed by controlling the rotational speed of the propellers 46N1 to 46N3, 36N1, and 36N2. Therefore, in this embodiment, the load on the rotor can be reduced.
 なお、回転翼機10Aの方向の制御を、プロペラ46N1~46N3、36N1、36N2の回転速度の制御とロータ16の回転面の変化とにより、又は、ロータ16の回転面の変化のみにより、行うようにしてもよい。この場合でも、反トルクを打ち消す反力の生成は、プロペラ46N1~46N3、36N1、36N2の回転速度を制御することにより行われるので、ロータの負荷が軽減される。 Note that the direction of the rotary-wing aircraft 10A may be controlled by controlling the rotational speed of the propellers 46N1 to 46N3, 36N1, and 36N2 and changing the rotational surface of the rotor 16, or by changing only the rotational surface of the rotor 16. You can also do this. Even in this case, the generation of the reaction force that cancels out the reaction torque is performed by controlling the rotational speeds of the propellers 46N1 to 46N3, 36N1, and 36N2, so that the load on the rotor is reduced.
 以上説明した各実施の形態では、ロータ16のブレードは、2枚に限定されず、3枚、4枚、5枚、6枚等でもよい。 In each of the embodiments described above, the number of blades of the rotor 16 is not limited to two, but may be three, four, five, six, etc.
 以上説明した各実施の形態の回転翼機は、無人の回転翼機であるが、本開示の技術はこれに限定されず、有人の回転翼機でもよい。 Although the rotary-wing aircraft in each of the embodiments described above is an unmanned rotary-wing aircraft, the technology of the present disclosure is not limited thereto, and may be a manned rotary-wing aircraft.
 本開示において、各構成要素(装置等)は、矛盾が生じない限りは、1つのみ存在しても2つ以上存在してもよい。 In the present disclosure, only one or two or more of each component (device, etc.) may exist as long as there is no contradiction.
 以上説明した各例では、コンピュータを利用したソフトウェア構成により方向制御処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、方向制御処理が実行されるようにしてもよい。方向制御処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。 In each of the examples described above, the direction control processing is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this. For example, instead of using a software configuration using a computer, the direction control process may be performed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). . Part of the direction control processing may be executed by a software configuration, and the remaining processing may be executed by a hardware configuration.
 なお、上述した方向制御ログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、方向制御ログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、方向制御ログラムをコンピュータに供給できる。 Note that the above-described directional control program can be stored and provided to a computer using various types of non-transitory computer-readable media. Non-transitory computer-readable media includes various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The orientation control program may also be provided to the computer by various types of temporary computer-readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the orientation control program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
 以上説明した方向制御処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 The direction control processing described above is just an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, or the processing order may be changed within the scope of the main idea.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference, as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (4)

  1.  本体と、
     本体の上空で回転するロータと、
     前記ロータを回転させるロータ駆動部と、
     前記本体に接続された複数のアームと、
     前記複数のアームの先端に設けられた複数のモータと、
     前記複数のモータにより回転する複数のプロペラと、
     前記ロータ駆動部による前記ロータの回転により前記本体に発生する反トルクを打ち消す反力が、前記プロペラの回転により、前記本体に発生するように、前記複数のモータを制御する制御部と、
     を備える回転翼機。
    The main body and
    A rotor that rotates above the main body,
    a rotor drive unit that rotates the rotor;
    a plurality of arms connected to the main body;
    a plurality of motors provided at the tips of the plurality of arms;
    a plurality of propellers rotated by the plurality of motors;
    a control unit that controls the plurality of motors so that the rotation of the propeller generates a reaction force in the main body that cancels the reaction torque generated in the main body due to the rotation of the rotor by the rotor drive unit;
    A rotary wing aircraft equipped with.
  2.  前記制御部は、前記回転翼機の方向が変更されるように、前記ロータ駆動部及び前記複数のモータの少なくとも一方を制御する、請求項1に記載の回転翼機。 The rotary-wing aircraft according to claim 1, wherein the control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary-wing aircraft is changed.
  3.  本体と、
     本体の上空で回転するロータと、
     前記ロータを回転させるロータ駆動部と、
     前記本体に接続された複数のアームと、
     前記複数のアームの先端に設けられた複数のモータと、
     前記複数のモータにより回転する複数のプロペラと、
     前記複数のプロペラの内、進行方向後側のプロペラの回転面を傾斜させる傾斜モータと、
     前記ロータ駆動部による前記ロータの回転により前記本体に発生する反トルクを打ち消す反力が、回転する前記進行方向後側のプロペラの回転面の傾斜により、前記本体に発生するように、前記傾斜モータを制御する制御部と、
     を備える回転翼機。
    The main body and
    A rotor that rotates above the main body,
    a rotor drive unit that rotates the rotor;
    a plurality of arms connected to the main body;
    a plurality of motors provided at the tips of the plurality of arms;
    a plurality of propellers rotated by the plurality of motors;
    a tilting motor that tilts a rotating surface of a propeller on the rear side in the traveling direction among the plurality of propellers;
    The tilt motor is configured such that a reaction force is generated in the main body due to an inclination of a rotating surface of the rotating propeller on the rear side in the traveling direction, which cancels the counter torque generated in the main body due to the rotation of the rotor by the rotor drive unit. a control unit that controls the
    A rotary wing aircraft equipped with.
  4.  前記制御部は、前記回転翼機の方向が変更されるように、前記ロータ駆動部及び前記複数のモータの少なくとも一方を制御する、請求項3に記載の回転翼機。 The rotary-wing aircraft according to claim 3, wherein the control unit controls at least one of the rotor drive unit and the plurality of motors so that the direction of the rotary-wing aircraft is changed.
PCT/JP2022/016518 2022-03-31 2022-03-31 Rotorcraft WO2023188269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016518 WO2023188269A1 (en) 2022-03-31 2022-03-31 Rotorcraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016518 WO2023188269A1 (en) 2022-03-31 2022-03-31 Rotorcraft

Publications (1)

Publication Number Publication Date
WO2023188269A1 true WO2023188269A1 (en) 2023-10-05

Family

ID=88199870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016518 WO2023188269A1 (en) 2022-03-31 2022-03-31 Rotorcraft

Country Status (1)

Country Link
WO (1) WO2023188269A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690012A1 (en) * 2012-07-27 2014-01-29 Eurocopter Deutschland GmbH Semi-convertible rotorcraft
WO2018139661A1 (en) * 2017-01-30 2018-08-02 日本電産株式会社 Unmanned aircraft
US20190337612A1 (en) * 2018-05-03 2019-11-07 Carter Aviation Technologies, Llc Compound Rotorcraft with Propeller
US20210031908A1 (en) * 2018-03-01 2021-02-04 Textron Innovations Inc. Propulsion Systems for Rotorcraft
CN113002769A (en) * 2021-03-11 2021-06-22 北京航空航天大学 Longitudinal rotor-tilt rotor combined type aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690012A1 (en) * 2012-07-27 2014-01-29 Eurocopter Deutschland GmbH Semi-convertible rotorcraft
WO2018139661A1 (en) * 2017-01-30 2018-08-02 日本電産株式会社 Unmanned aircraft
US20210031908A1 (en) * 2018-03-01 2021-02-04 Textron Innovations Inc. Propulsion Systems for Rotorcraft
US20190337612A1 (en) * 2018-05-03 2019-11-07 Carter Aviation Technologies, Llc Compound Rotorcraft with Propeller
CN113002769A (en) * 2021-03-11 2021-06-22 北京航空航天大学 Longitudinal rotor-tilt rotor combined type aircraft

Similar Documents

Publication Publication Date Title
CN107458597B (en) Reactive torque assembly and system for a helicopter and method of operating a helicopter
US11407509B2 (en) Tilt-wing aircraft
EP3868660A1 (en) Vertical take-off and landing (vtol) aircraft and related methods
KR101767943B1 (en) Multirotor type Unmanned Aerial Vehicle Available for Adjusting Direction of Thrust
RU2700084C2 (en) Multi-rotor with rotary wing
JP6158459B2 (en) Multicopter
US20220048618A1 (en) Autonomous thrust vectoring ring wing pod
US20180362146A1 (en) Tilt-rotor multicopters with variable pitch propellers
US11279477B2 (en) Rotating electric distributed anti-torque fin
KR102032243B1 (en) Tilt-prop air vehicle
EP3708499B1 (en) Electric distributed propulsion with different rotor rotational speeds
JP7488200B2 (en) Tail Sitter
AU2016344527B2 (en) Air vehicle and method and apparatus for control thereof
US20220289400A1 (en) Method of Adjusting Directional Movement Ability in a Multi-Rotor Aircraft
JP2023512074A (en) Aircraft with tilting fan assembly
KR102245397B1 (en) Multi rotor unmanned aerial vehicle
CN112292317B (en) Flying body and method for controlling flying body
CN110077586B (en) Composite aircraft and control method thereof
EP3647191B1 (en) Bidirectional aircraft rotor
WO2023188269A1 (en) Rotorcraft
CN103600632A (en) Flying car
WO2023188268A1 (en) Rotary wing aircraft
JP2017074868A (en) Rotorcraft
WO2023188266A1 (en) Aircraft
CN114275148A (en) Control method and system of aircraft, aircraft and computing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935414

Country of ref document: EP

Kind code of ref document: A1