WO2023188071A1 - Speed reducer - Google Patents

Speed reducer Download PDF

Info

Publication number
WO2023188071A1
WO2023188071A1 PCT/JP2022/015856 JP2022015856W WO2023188071A1 WO 2023188071 A1 WO2023188071 A1 WO 2023188071A1 JP 2022015856 W JP2022015856 W JP 2022015856W WO 2023188071 A1 WO2023188071 A1 WO 2023188071A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
eccentric
input shaft
collar
eccentric part
Prior art date
Application number
PCT/JP2022/015856
Other languages
French (fr)
Japanese (ja)
Inventor
良一 吉野
美千広 亀田
貴俊 木森
大樹 佐藤
Original Assignee
株式会社Nittan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nittan filed Critical 株式会社Nittan
Priority to PCT/JP2022/015856 priority Critical patent/WO2023188071A1/en
Publication of WO2023188071A1 publication Critical patent/WO2023188071A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a speed reducer that reduces the rotational speed input to an input shaft and outputs it from an output shaft.
  • a cycloid reducer has been disclosed that is interposed between an electric motor and a wheel hub to reduce the rotational speed of the motor and transmit it to the wheel hub bearing (for example, Patent Document 1 and Patent Document 2). .
  • the outer pin, the curved plate, and the output pin inserted through the hole formed in the curved plate are essential components, and there was a problem that the size in the radial direction became large. .
  • the size in the radial direction is reduced by arranging the outer pin in the axial direction as a crankshaft, but the structure in which the outer pin is arranged in the axial direction tends to increase the length in the axial direction. For this reason, there is a need for a reduction gear that is well-balanced and compact in size.
  • the present invention has been made in view of this, and provides a reduction gear that is well-balanced and has a reduced size.
  • the reducer of the present disclosure has an input shaft provided with an eccentric part and a flange part, and the flange part has a circular hole on a circumferential orbit centered on the rotation axis.
  • an output shaft formed with an inner trochoid plate;
  • a pin held between an inner circumferential side surface and an outer circumferential side surface of the eccentric portion, and a holding member that restricts rotation of the pin and holds the pin, and one end of the pin is at least partially inserted into the round hole.
  • the input shaft is rotatably received in the round hole while being in contact with the inner circumferential side surface, and the rotation of the input shaft causes the pin, which is held between the eccentric part and the inner trochoid plate, to be rotated in the eccentric direction.
  • the pin rotates around the core, and the pin rotates while at least partially abutting it within the round hole, so that the rotational movement of the pin is centered around the rotational axis of the output shaft.
  • the output shaft is configured to be converted into a rotational motion to rotate the output shaft.
  • the pin serves both as an output pin and an input pin. It does not have the external pins used in conventional cycloid reducers, allowing for a smaller external size. The number of parts is reduced, and the overall size can be reduced.
  • the input shaft and the output shaft are rotatably held in a housing with their rotation axes aligned with each other, and the inner trochoid plate is fixed to the housing. It was configured as follows. According to this aspect, the loaded endotrochoid is completely fixed to the housing. Although the size is small, the rigidity can be increased.
  • the holding member was configured in the shape of a flat ring, and a hole was provided on a circumferential orbit centered on the ring center axis, and the pin was press-fitted into the hole. According to this aspect, by press-fitting and connecting the pin with the holding member, rotation is restricted and only revolution is permitted.
  • the flat plate-shaped holding member performs the function of regulating rotation, and can be kept compact without being elongated in the axial direction.
  • an eccentric part collar rotatably supported by the eccentric part is attached to the eccentric part, and a first pin collar is attached to the pin.
  • the pin is held between the inner circumferential side surface of the inner trochoid plate and the outer circumferential side surface of the eccentric section via the eccentric collar and the first pin collar, and the pin is held in the round hole.
  • a second pin collar is interposed between the pin and the pin. According to this aspect, the surfaces come into smooth contact with each other, reducing friction and increasing rigidity.
  • n pins are provided around the axis of the eccentric portion, and the inner trochoid plate has a leaf shape in which n+1 or more trochoids are offset.
  • the reduction ratio can be set by the number n.
  • a first counterweight formed so that the center of gravity is at an eccentric position is attached to the input shaft at a position different from the pin in the axial direction, and the first counterweight is The input shaft is configured such that the eccentric direction of the center of gravity is 180 degrees out of phase with the protruding direction of the eccentric portion of the input shaft.
  • the eccentric part is a first eccentric part
  • the input shaft has a second eccentric part having a phase different from the first eccentric part by 180 degrees
  • a second counterweight was attached to the core. The counterweight allows the input shaft to rotate in a well-balanced manner while maintaining high pin rigidity, improving the performance of the reducer.
  • FIG. 1 is a sectional view of a speed reducer according to an embodiment of the present invention. It is an exploded perspective view of the same reduction gear. Bearings are omitted.
  • 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 2 is a sectional view taken along line BB in FIG. 1.
  • FIG. 7 is an exploded perspective view of a reduction gear according to a modification. Bearings are omitted.
  • 6 is a sectional view taken along line CC in FIG. 5.
  • FIG. 6 is a sectional view taken along line DD in FIG. 5.
  • FIG. 1 is a sectional view of a speed reducer W1 according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the speed reducer W1. In FIG. 2, bearings are omitted.
  • the speed reducer W1 is mounted on the wheel drive section of the vehicle, and is interposed between the motor M and the wheel hub H.
  • the speed reducer W1 has an input shaft 1 as an input shaft and an output shaft 10 as an output shaft, and the rotation of the input shaft 1 is decelerated and output from the output shaft 10.
  • the input shaft 1 is fitted into a motor M, and as the motor M rotates, the input shaft 1 rotates.
  • the output shaft 10 is connected to a wheel hub H to which wheels (not shown) are connected, and the rotation of the output shaft 10 is transmitted to the wheels through the wheel hub H.
  • the rotation of the motor M is decelerated by a speed reducer W1 and transmitted to the wheels, so that the wheels rotate. Either a configuration in which the input shaft 1 is directly driven as a rotating shaft on the motor M side, or a configuration in which the input shaft 1 is connected to and driven by the rotating shaft of the motor M may be used.
  • the reducer W1 includes an input shaft 1, a first counterweight 2, a connecting member 3, a first pin collar 4, an eccentric collar 5, a pin 6, an inner trochoid plate 7, a holding member 8, It includes a second counterweight 9, an output shaft 10, a housing body 11, a housing cover 12, and a second pin collar 13.
  • the housing body 11 and the housing cover 12 are housing parts for holding and protecting the components of the reducer W1, and are formed into a hollow, substantially cylindrical shape with both upper and lower ends open.
  • One of the openings of the housing body 11 and the housing cover 12 has a reduced diameter, and the other opening has flanges 11a and 12a formed as joints.
  • the housing main body 11 and the housing cover 12 have a box shape with flanges 11a and 12a facing each other. Each component is held in the inner space of the housing body 11 and the housing cover 12 thus formed.
  • a portion of the input shaft 1 is inserted through the diameter-reduced opening of the housing cover 12 and held therein. Further, a portion of the output shaft 10 is inserted through and held in the diameter-reduced opening of the housing body 11.
  • the input shaft 1 is formed into a substantially cylindrical rod shape, and is housed inside a housing body 11 and a housing cover 12, which are housings. One end (lower side in FIG. 1) of the input shaft 1 protrudes from the diameter-reduced opening of the housing cover 12, and is inserted into and fixed to the motor M.
  • the input shaft 1 has a first eccentric portion 1a that is eccentric with respect to the rotation axis of the input shaft 1 in a portion housed in the housing.
  • the input shaft 1 also has a second eccentric part 1b arranged at a phase 180 degrees different from the first eccentric part 1a.
  • a first counterweight 2 is press-fitted into the input shaft 1 at a portion other than the first eccentric portion 1a and the second eccentric portion 1b.
  • a second counterweight 9 is attached to the second eccentric portion 1b via a bearing BR4. The first counterweight 2 and the second counterweight 9 serve as weights to balance the rotating input shaft 1.
  • the first counterweight 2 has an approximately disk-shaped but asymmetrical outer shape, and is formed so that its center of gravity is not at the center of the approximately disk shape but at an eccentric position, so that the load is tilted in one direction. It is configured.
  • the direction in which this load is applied is 180 degrees different from the protruding direction of the first eccentric portion 1a, and the first eccentric portion 1a is mounted on the input shaft 1 without using a bearing.
  • the first counterweight 2 maintains a balance between the first eccentric portion 1a, the connecting member 3, the first pin collar 4, the eccentric portion collar 5, the pin 6, and a portion of the second pin collar 13. I'm taking it.
  • the first counterweight 2 is attached to the input shaft 1 in a different arrangement in the axial direction from the pin 6 described later.
  • the disk-shaped second counterweight 9 is provided with an insertion hole 9a for the pin 6 to be inserted on the center circumferential orbit.
  • the pin 6 is inserted into the insertion hole 9a, but the inner diameter is made large so that the inserted pin 6 and the insertion hole 9a do not come into contact with each other.
  • the second counterweight 9 and the pin 6 inserted into the insertion hole 9a do not come into contact with each other even if they rotate. In this way, the first counterweight 2 and the second counterweight 9 are configured to function without interfering with the movement of the pin 6.
  • the inner trochoid plate 7 has an approximately disk-shaped outer shape, and a large through hole 7a is formed in the center. A wavy curve is formed on the inner peripheral side surface 7b of the through hole 7a.
  • the inner trochoid plate 7 has its outer edge sandwiched between flanges 11a and 12a formed at the joint openings of the housing body 11 and the housing cover 12, and is fastened to the housing body 11 and the housing cover 12 by a fixing member (not shown). be done. As a result, the inner trochoid plate 7 is fixed to the housing body 11 and the housing cover 12, and will not rotate or move due to pressing force or frictional force even if it interferes with other parts.
  • the eccentric portion collar 5 has a short cylindrical shape and is rotatably supported by the first eccentric portion 1a of the input shaft 1 via a bearing BR2.
  • the collar is a cylindrical member in which a cylindrical hole is formed, and is a part that is inserted into the mounted member to smooth the rotation of the mounted member.
  • collars are mainly arranged at locations where rigidity is required and where shear loads are applied, and the collars can be replaced with bearings as appropriate.
  • the eccentric collar 5 is arranged within the through hole 7a of the inner trochoid plate 7.
  • the eccentric portion collar 5 receives an eccentric input from the input shaft 1.
  • the pin 6 is formed into a cylindrical rod shape, and is a component that is driven by the input shaft 1 and outputs driving force to the output shaft 10. That is, pin 6 serves as both an input pin and an output pin.
  • the outer pin and inner pin, which were essential in the cycloid reducer of the prior art, can now be provided with only the pin 6, and the reducer W1 has a more compact external shape than the cycloid reducer of the prior art.
  • a cylindrical first pin collar 4 is inserted into the pin 6.
  • the pin 6 is held between the eccentric collar 5 and the inner trochoid plate 7 at the location where the first pin collar 4 is inserted. Specifically, it is held between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the first eccentric section 1a via the first pin collar 4 and the eccentric section collar 5.
  • the first eccentric part 1a is fitted with an eccentric part collar 5, and the pin 6 is fitted with a first pin collar 4.
  • the pin 6 may be directly sandwiched between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the first eccentric section 1a without using the first pin collar 4 and the eccentric section collar 5. .
  • the pins 6 are arranged at equal intervals on the same circumference.
  • the wavy curved surface of the inner trochoid plate 7 of the reducer W1 is designed, for example, as follows.
  • an inner trochoidal curve formed by a moving circle rolling inside a fixed circle when there are n pins 6 rolling on the inner trochoidal curve, the shape of the rolling surface of the pin is defined as an inner trochoidal curve of n+1 leaves.
  • seven pins 6 are used, and eight corrugations (trochoid offset leaf shapes) are provided on the inner circumferential side surface 7b of the inner trochoid plate 7. Based on the trochoidal curve, a portion of the outer peripheral surface of the pin is appropriately offset so that it is always in contact with the pin.
  • a first pin collar is placed between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the eccentric collar 5.
  • a gap is formed with a size that allows the pin 6 with the pin 4 attached thereto to be inserted therein.
  • the holding member 8 is a ring-shaped flat plate member with a central hole 8a formed in the center. Furthermore, in addition to the central hole 8a, the holding member 8 has a through hole 8b formed on a circumferential orbit around the central axis of the central hole 8a.
  • the through holes 8b are provided around the central hole 8a of the holding member 8 at equal intervals in the circumferential direction by the number of pins 6 (seven in this embodiment), and each pin 6 is press-fitted into the through hole 8b. Ru.
  • the holding member 8 holds the pin 6 and is rotatably supported by the first eccentric portion 1a via a bearing BR3 mounted in the central hole 8a.
  • the connecting member 3 has the same structure as the holding member 8, and is a ring-shaped flat plate member in which a central insertion hole 3a is formed as an insertion hole in the center. Similar to the holding member 8, the through hole 3b is formed on a circumferential orbit centered on the central axis of the ring-shaped connecting member 3.
  • the through holes 3b are provided around the central insertion hole 3a of the connecting member 3 at equal intervals in the circumferential direction by the number of pins, and the pins 6 are press-fitted into the through holes 3b.
  • the arrangement of the through holes 3b in the connecting member 3 is configured to be equal to the arrangement of the through holes 8b of the holding member 8. Therefore, the pin 6 press-fitted into the connecting member 3 and the holding member 8 are held parallel to each other.
  • the connecting member 3 and the holding member 8 connect the pin 6 by press-fitting, thereby preventing the pin 6 from rotating in response to eccentric input from the input shaft 1, and preventing rotation (mainly revolution) around the input shaft 1. operation).
  • the connecting member 3 and the holding member 8 both have the role of connecting the pin 6 and regulating the rotation of the pin 6, and have the same structure. They can be substituted for each other, and there is no problem even if only one of them is used.
  • the central insertion hole 3a of the connecting member 3 is an insertion hole for the input shaft 1, and the connecting member 3 is arranged in the first eccentric portion 1a with the input shaft 1 inserted through the central insertion hole 3a.
  • the center insertion hole 3a is formed with an inner diameter larger than the outer diameter of the first eccentric portion 1a, and even if the input shaft 1 is inserted into the center insertion hole 3a, the connecting member 3 does not allow the first eccentric portion 1a to pass through the center insertion hole 3a.
  • the structure is such that it does not come into contact with the included input shaft 1.
  • the connecting member 3 and the holding member 8 are arranged on the first eccentric portion 1a of the input shaft 1 so as to sandwich the eccentric portion collar 5 and the inner trochoid plate 7 in the axial direction.
  • the holding member 8 is rotatably supported by the first eccentric part 1a via a bearing, but the connecting member 3 is not held by the first eccentric part 1a, but is held by connecting a cylindrical pin 6. This serves to assist the holding member 8.
  • the pin 6 is supported at two locations in the axial direction by the holding member 8 and the connecting member 3, and is stably arranged.
  • a bearing may be installed in the central insertion hole 3a of the connecting member 3 so that the connecting member 3 is rotatably supported by the first eccentric portion 1a of the input shaft 1.
  • the output shaft 10 has a solid flange shape having a substantially cylindrical rod-shaped shaft portion 10c and a flange portion 10a formed at one end of the shaft portion 10c.
  • the output shaft 10 is arranged with the flange portion 10a facing the input shaft 1 side, and the other end of the input shaft 1 (the upper side in FIG. 1) is inserted into the engagement hole provided at the center of the bottom surface of the flange portion 10a. It is linked via BR5.
  • the input shaft 1 and the output shaft 10 are connected so that their rotation axes coincide with each other and can rotate relative to each other.
  • the rotation axes of both shafts will be referred to as the central axis x.
  • the input shaft 1 and the output shaft 10 are housed in a housing body 11 and a housing cover 12 with one end protruding from an opening, and are inserted into the housing body 11 and the housing cover 12 through bearings BR1 and BR6, respectively. It is held rotatably.
  • An end of the shaft portion 10c of the output shaft 10 protrudes from the housing body 11 and is connected to the wheel hub H.
  • the outer peripheral surface of the shaft portion 10c is fixed to the wheel hub H, and the rotation of the output shaft 10 is transmitted to rotate the wheel hub H.
  • round holes 10b are provided as many as the number of pins at equal intervals in the circumferential direction on a circumferential orbit centered on the central axis x.
  • One end (the upper end in FIG. 1) of the pin 6 is received in the round hole 10b so as to be eccentrically rotatable.
  • a cylindrical second pin collar 13 having the same structure as the first pin collar 4 is inserted into the upper end of the pin 6, and the pin 6 has an upper end through which the second pin collar 13 is inserted. It is received in the round hole 10b so as to be eccentrically rotatable.
  • the round hole 10b is formed so that at least a part of the outer circumferential side of any one of the pins 6 is always in contact with the round hole 10b, and at least a part of the outer circumferential side of the pin 6 is inserted into the round hole 10b through the second pin collar 13.
  • the outer circumferential side of the second pin collar 13 is configured to rotate and push the inner circumferential side of the round hole 10b. Thereby, the revolution rotation of the pin 6 is converted into a movement that rotates the output shaft 10 around the central axis x.
  • the round hole 10b is formed so that its diameter is larger than the outer diameter of the pin 6 through which the second pin collar 13 is inserted.
  • the second pin collar 13 is arranged such that the pin 6 is inserted thereinto to enable rotation relative to each other, and at least a part of the outer circumferential side surface of the second pin collar 13 is in contact with the round hole 10b. Ru. The rotation of the pin 6 is transmitted to the output shaft 10 via the second pin collar, causing the output shaft 10 to rotate around the central axis x.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. It is an explanatory diagram mainly showing the movement of the input shaft 1 and the pin 6.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 2 is an explanatory diagram mainly showing the movement of the output shaft 10 and the pin 6.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. It is an explanatory diagram mainly showing the movement of the input shaft 1 and the pin 6.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 2 is an explanatory diagram mainly showing the movement of the output shaft 10 and the pin 6.
  • the shaft 1 rotates stably.
  • the second counterweight 9 rotatably supported by the second eccentric part 1b rotates so that the phase is 180 degrees different from that of the first eccentric part 1a, thereby achieving balance.
  • the pin 6 is held between the first eccentric part 1a and the inner peripheral side surface 7b of the inner trochoid plate 7 within the through hole 7a of the inner trochoid plate 7 via the eccentric collar 5 and the first pin collar 4. ing.
  • the inner trochoid plate 7 is completely fixed to the housing body 11 and the housing cover 12, and does not rotate or move.
  • the pin 6 is press-fitted and connected to the connecting member 3 and the holding member 8, and rotation of each pin 6 is restricted. Therefore, the pin 6 is driven by the eccentric collar 5 via the first pin collar 4, revolves around the first eccentric part 1a, and moves along the inner circumferential side surface 7b of the inner trochoid plate 7. Moving.
  • the waveform curved surface of the inner circumferential side surface 7b is formed so that the number of trochoidal offset leaves (n+1 pieces) is greater than the number of pins (n pieces).
  • the fact that the trochoidal offset leaf shape is formed with the number of leaves n+1 means that the number of pins is n+1 and the first eccentric portion 1a is configured to go around once, but in reality there are only n pins. Therefore, the rotation of the pin is relatively delayed by 1/(n+1) rotation. The delay is reduced by that amount and the rotation is made in the opposite direction.
  • the first eccentric portion 1a rotates once in the same rotation direction as the input shaft 1
  • the pin 6 rotates 1/8 in the opposite direction to the rotation direction of the input shaft 1. It revolves only around the circumference.
  • the rotation of the input shaft 1 is reduced to 1/8 of the rotation speed of the input shaft 1, causing the pin 6 to revolve.
  • the pin 6 is inserted into the round hole 10b of the output shaft 10, and the second pin collar 13 is arranged so as to come into contact with the inner surface of the round hole 10b.
  • the pin 6 moves along the inner surface of the round hole 10b via the second pin collar 13, and rotates at a reduced speed in a direction opposite to the rotational direction of the input shaft 1.
  • the rotation of the pin 6 is restricted, and movement relative to the round hole 10b is accepted by the second pin collar 13 as rotation along the inner surface of the round hole 10b.
  • the decelerated revolution of the pin 6 pushes the inner surface of the round hole 10b and rotates the output shaft 10 around the central axis x.
  • the rotation of the input shaft 1 is transmitted to the output shaft 10 as rotation in the opposite direction at a rotation speed of 1/(n+1).
  • the speed reducer W1 rotates the wheels connected to the wheel hub H at a speed where the speed of the motor M is reduced to 1/(n+1). The wheels will rotate in the opposite direction to the rotation direction of the motor M.
  • the speed reducer W1 is different from conventional speed reducers in that it does not have any outer pins. Accordingly, the external size can be reduced. In addition, the rotation of the pin 6 is restricted, and its eccentric movement and revolution are absorbed by the round hole formed in the flange portion 10a of the output shaft 10, and only the revolution of the pin 6 is restricted to the output shaft 10. is transmitted, causing the output shaft 10 to rotate. Since the reduction ratio of the reduction gear W1 is determined by the number of corrugations of the inner trochoid plate 7 (the number of trochoid offset leaf shapes) and the number of pins 6, the outer diameter is difficult to increase even if the reduction ratio is increased. Pin 6 serves as both an output pin and an input pin, and since both pins can be integrated, the number of parts can be reduced and the size can be reduced. In this way, the reduction gear W1 has a well-balanced overall structure with a reduced size.
  • the rigidity can be increased.
  • a collar is used to ensure smooth rotation of the pin and is resistant to radial loads.
  • a trochoidal curve is used, and by making contact with the outer surface of the pin 6, smooth rotation can be achieved without producing any collision noise. In this way, the speed reducer W1 has increased rigidity.
  • the second pin collar 13 is not limited to a cylindrical shape, and for example, an eccentric collar in which the central axis of the outer circumferential side surface and the central axis of the inner circumferential side surface are offset may be used.
  • the second pin collar of the eccentric collar is a second pin collar 13A
  • the second pin collar 13A has a cylindrical outer shape and has a through hole whose central axis is offset from the central axis of the cylindrical shape.
  • the outer diameter of the cylindrical shape is approximately slightly smaller than the outer diameter of the round hole 10b.
  • the diameter of the through hole is slightly larger than that of the pin 6.
  • the second pin collar 13A is arranged in the round hole 10b with the pin 6 inserted into the through hole. At this time, the offset of the central axis of the eccentric shape described above is configured to accept eccentric rotation of the first eccentric portion 1a.
  • the round hole 10b, the second pin collar 13A of the eccentric collar, and the pin 6 are supported so that they can rotate relative to each other, and when the pin 6 rotates around the first eccentric portion 1a, the outer circumferential side of the second pin collar 13A rotates. , while rotating around the center axis of the pin 6, pushes the inner circumferential side of the round hole 10b, thereby causing the output shaft 10 to rotate around the center axis x.
  • FIG. 5 is a sectional view of the speed reducer W2.
  • FIG. 6 is an exploded perspective view of the reducer W2. In FIG. 6, bearings are omitted.
  • the reducer W2 includes an input shaft 1', a connecting member 3, a first pin collar 4, an eccentric collar 5, a pin 6, an inner trochoid plate 7, an output shaft 10, and a housing body. 11, it has a housing cover 12.
  • the reducer W2 is not equipped with the first counterweight 2 and the second counterweight 9, but instead has another pair of first pin collars 4', eccentric collars 5', pins 6', and inner trochoids.
  • a plate 7' is provided. These are collectively referred to as a counterweight unit CU.
  • the first pin collar 4, the eccentric collar 5, the pin 6, and the inner trochoid plate 7, which are the original, are collectively referred to as an original unit OU.
  • the input shaft 1' is the same as the input shaft 1 except that it has a first eccentric part 1a, does not have a second eccentric part 1b, and has another first eccentric part 1a' instead.
  • the structure is as follows.
  • the first eccentric part 1a' has an eccentric direction 180 degrees different from that of the first eccentric part 1a, and in the axial direction, the output shaft 10 is arranged with respect to the first eccentric part 1a. It is provided in the opposite direction (downward in FIG. 5).
  • the counterweight unit CU is 180 degrees out of phase with the paired original unit OU, that is, rotated 180 degrees, and is arranged at the first eccentric portion 1a' in the axial direction.
  • the connecting member 3 is arranged between the original unit OU and the counterweight unit CU. Both the pin 6' and the pin 6 are press-fitted into the hole formed in the connecting member 3 and are connected. At this time, the pin 6 protrudes in the direction in which the output shaft 10 is arranged and is press-fitted, and the pin 6' protrudes in the opposite direction to the pin 6 and is press-fitted, thereby connecting them.
  • the pin 6 is press-fitted into the upper surface of the connecting member 3 and protrudes upward, and the pin 6' is press-fitted into the bottom surface of the connecting member 3 and protrudes downward, so that the pin 6, the pin 6', and the connecting member 3 are integrally connected.
  • the holding member 8 is not used, and the connecting member 3 performs the function of the holding member 8, connects the pin 6, regulates rotation, and holds it.
  • the connecting member 3 has the same structure as the holding member 8, and it can be said that the connecting member 3 of this embodiment is the holding member 8.
  • a holding member 8 and another pair of holding members 8' may be used.
  • the outer edges of the inner trochoid plate 7 and the inner trochoid plate 7' are sandwiched between the flange portion 11a of the housing body 11 and the flange portion 12a of the housing cover 12 with a spacer 20 in between, so that the housing body 11 and the housing cover 12 It is fastened with a fixing member (not shown). Thereby, the inner trochoid plate 7 and the inner trochoid plate 7' are fixed to the housing body 11 and the housing cover 12, which are the housings.
  • the spacer 20 is arranged to ensure a space for the connecting member 3 arranged between the original unit OU and the counterweight unit CU.
  • the spacer 20 is configured in the shape of a flat ring, and the inner diameter of the through hole formed in the center is configured to be large so as not to interfere with the holding member 8.
  • FIG. 7 is a sectional view taken along line CC in FIG. Mainly shows the original unit OU.
  • FIG. 8 is a cross-sectional view taken along line DD in FIG. Mainly shows the counterweight unit CU.
  • the original unit OU and the counterweight unit CU are arranged with a phase difference of 180 degrees.
  • the eccentric collar 5 held by the first eccentric part 1a via the bearing BR2 receives the eccentric input and rotates around the central axis x. It revolves around The pin 6 is driven by the eccentric collar 5 via the first pin collar 4, revolves around the first eccentric part 1a, and moves along the inner peripheral side surface 7b of the inner trochoid plate 7.
  • the counterweight unit CU moves in the same way as the original unit OU, with a phase difference of 180 degrees. That is, when the input shaft 1' rotates around the central axis , revolves around the central axis x.
  • the pin 6' is driven by the eccentric collar 5' via the first pin collar 4', revolves around the first eccentric part 1a', and rotates along the inner circumferential side surface 7b of the inner trochoid plate 7. and move.
  • a cross-sectional view of the output shaft 10 of the speed reducer W2 is the same as FIG. 4.
  • the output configuration of the speed reducer W2 is the same as that of the speed reducer W1, and a description thereof will be omitted.
  • the rotation of the pin 6' is not output to the output shaft 10 or other parts, but is simply driven as a counterweight for balance.
  • the counterweight unit CU uses the same parts as the original unit OU and operates as a well-balanced counterweight. Furthermore, since the same parts can be used for each unit, manufacturing costs can be reduced. Because the paired parts, the eccentric part collar 5 and the eccentric part collar 5', the pin 6 and the pin 6', and the first pin collar 4 and the first pin collar 4', move point-symmetrically about the central axis x. , the counterweight unit CU is a high-performance balancer in a reduction gear that makes complex movements, and improves the performance of the reduction gear W2.

Abstract

Provided is a speed reducer constructed in a well-balanced, compact size. A speed reducer (W1) comprises: an input shaft (1) with an eccentric part (1a); an output shaft (10) having a flange part (10a), and a circular hole (10b) formed in the flange part (10a), on a circumferential orbit centered on a rotation axis; a fixed inner trochoid plate (7) having a through-hole (7a), and a wavy curved surface formed on an inner circumferential side surface (7b) of the through-hole; a pin (6) held between the inner circumferential side surface (7b) of the inner trochoid plate (7) and an outer circumferential side surface of the eccentric part (1a); and a holding member (8) that holds the pin (6) while restricting rotation of the pin (6). One end of the pin (6) is rotatably received in the circular hole (10b) while being at least partially abutted on the inner circumferential side surface of the circular hole (10b). The rotation of the input shaft (1) causes a rotational motion of the pin (6) around the eccentric part (1a), and the rotational motion of the pin causes the output shaft (10) to rotate.

Description

減速機Decelerator
 本願発明は、入力軸に入力される回転速度を減速して出力軸から出力する減速機に関する。 The present invention relates to a speed reducer that reduces the rotational speed input to an input shaft and outputs it from an output shaft.
 従来から、電動モータと車輪ハブとの間に介装されて、モータの回転速度を減速して車輪ハブ軸受けに伝達するサイクロイド減速機が公開されている(例えば、特許文献1、特許文献2)。 Conventionally, a cycloid reducer has been disclosed that is interposed between an electric motor and a wheel hub to reduce the rotational speed of the motor and transmit it to the wheel hub bearing (for example, Patent Document 1 and Patent Document 2). .
特許5010484号Patent No. 5010484 WO2021/024312号WO2021/024312
 しかし、特許文献1の減速機では、外ピンと、曲線板と、曲線板に形成された孔を挿通させた出力ピンが必須部材となっており、径方向のサイズが大きくなるという問題があった。これに対し、特許文献2の減速機では、外ピンを軸方向にクランク軸として配置することで径方向のサイズを小さくしているが、軸方向に配置する構造から軸方向に長くなりやすい。このため、バランスよく省サイズに構成される減速機が望まれている。 However, in the reducer of Patent Document 1, the outer pin, the curved plate, and the output pin inserted through the hole formed in the curved plate are essential components, and there was a problem that the size in the radial direction became large. . On the other hand, in the reducer of Patent Document 2, the size in the radial direction is reduced by arranging the outer pin in the axial direction as a crankshaft, but the structure in which the outer pin is arranged in the axial direction tends to increase the length in the axial direction. For this reason, there is a need for a reduction gear that is well-balanced and compact in size.
 本発明は、これを鑑みてなされたものであり、バランスよく省サイズに構成される減速機を提供する。 The present invention has been made in view of this, and provides a reduction gear that is well-balanced and has a reduced size.
 上記問題を解決するため、本開示の減速機においては、偏芯部が設けられた入力軸と、フランジ部を有し、該フランジ部に回転軸心を中心とする円周軌道上に丸穴が形成された出力軸と、貫通孔が設けられており、該貫通孔の内周側面に波形曲面が形成され、回動せぬように固定された内トロコイド板と、前記内トロコイド板の前記内周側面と、前記偏芯部の外周側面とに挟持されるピンと、前記ピンの自転を規制して保持する保持部材と、を備え、前記ピンの一端が、少なくとも一部を前記丸穴の内周側面に当接されて、前記丸穴内に、回動可能に受け入れられており、前記入力軸の回動は、前記偏芯部と前記内トロコイド板に挟持される前記ピンを、前記偏芯部回りに回動運動させ、前記ピンが、前記丸穴内で、少なくとも一部を当接させながら回動することにより、前記ピンの回動運動が前記出力軸の回転軸心を中心とした回転運動として変換されて、前記出力軸を回転させるように構成した。 In order to solve the above problem, the reducer of the present disclosure has an input shaft provided with an eccentric part and a flange part, and the flange part has a circular hole on a circumferential orbit centered on the rotation axis. an output shaft formed with an inner trochoid plate; A pin held between an inner circumferential side surface and an outer circumferential side surface of the eccentric portion, and a holding member that restricts rotation of the pin and holds the pin, and one end of the pin is at least partially inserted into the round hole. The input shaft is rotatably received in the round hole while being in contact with the inner circumferential side surface, and the rotation of the input shaft causes the pin, which is held between the eccentric part and the inner trochoid plate, to be rotated in the eccentric direction. The pin rotates around the core, and the pin rotates while at least partially abutting it within the round hole, so that the rotational movement of the pin is centered around the rotational axis of the output shaft. The output shaft is configured to be converted into a rotational motion to rotate the output shaft.
 この態様によれば、ピンは出力ピンと入力ピンを兼ねる。従来のサイクロイド減速機に使用されている外ピンを配置しておらず、外形サイズを小さくできる。部品点数が削減され、全体を省サイズとすることができる。 According to this aspect, the pin serves both as an output pin and an input pin. It does not have the external pins used in conventional cycloid reducers, allowing for a smaller external size. The number of parts is reduced, and the overall size can be reduced.
 また、ある態様によれば、前記入力軸および前記出力軸は、互いの回転軸心を一致させて、ハウジングに回動可能に保持され、前記内トロコイド板は、前記ハウジングに固定されているように構成した。この態様によれば、荷重のかかる内トロコイドはハウジングに完全に固定される。省サイズでありながら、剛性は高くすることができる。 According to another aspect, the input shaft and the output shaft are rotatably held in a housing with their rotation axes aligned with each other, and the inner trochoid plate is fixed to the housing. It was configured as follows. According to this aspect, the loaded endotrochoid is completely fixed to the housing. Although the size is small, the rigidity can be increased.
 前記保持部材は、平板リング状に構成され、リング中心軸を中心とする円周軌道上に、孔が設けられており、前記孔に前記ピンは圧入されているものとした。この態様によれば、保持部材によって、ピンを圧入して連結することで自転を規制して公転のみ許可することになる。平板形状の保持部材で自転規制の機能を発揮し、軸方向に長くせず、省サイズに収めることができる。 The holding member was configured in the shape of a flat ring, and a hole was provided on a circumferential orbit centered on the ring center axis, and the pin was press-fitted into the hole. According to this aspect, by press-fitting and connecting the pin with the holding member, rotation is restricted and only revolution is permitted. The flat plate-shaped holding member performs the function of regulating rotation, and can be kept compact without being elongated in the axial direction.
 また、ある態様によれば、前記偏芯部には、該偏芯部に回動可能に支持される偏芯部カラーが装着されており、前記ピンには、第1ピンカラーが装着されており、前記ピンは、前記偏芯部カラーおよび前記第1ピンカラーを介して、前記内トロコイド板の前記内周側面と、前記偏芯部の前記外周側面とに挟持されており、前記丸穴と前記ピンとの間には、第2ピンカラーが介装されるように構成した。この態様によれば、面同士で滑らかに接触し、摩擦を減らすと共に剛性を高くすることができる。 According to another aspect, an eccentric part collar rotatably supported by the eccentric part is attached to the eccentric part, and a first pin collar is attached to the pin. The pin is held between the inner circumferential side surface of the inner trochoid plate and the outer circumferential side surface of the eccentric section via the eccentric collar and the first pin collar, and the pin is held in the round hole. A second pin collar is interposed between the pin and the pin. According to this aspect, the surfaces come into smooth contact with each other, reducing friction and increasing rigidity.
 また、ある態様では、前記ピンは、前記偏芯部の軸回りにn本設けられており、前記内トロコイド板は、n+1以上のトロコイドをオフセットした葉形を有しているものとした。この態様によれば、n数により減速比を設定できる。 In one aspect, n pins are provided around the axis of the eccentric portion, and the inner trochoid plate has a leaf shape in which n+1 or more trochoids are offset. According to this aspect, the reduction ratio can be set by the number n.
 また、ある態様では、前記入力軸には、重心が偏芯位置となるように形成された第1カウンターウェイトが、前記ピンとは軸方向に異なる位置に装着されており、前記第1カウンターウェイトは、前記重心の偏芯方向が、前記入力軸の前記偏芯部の突出方向と位相を180度異ならしめて装着されているように構成した。 Further, in one aspect, a first counterweight formed so that the center of gravity is at an eccentric position is attached to the input shaft at a position different from the pin in the axial direction, and the first counterweight is The input shaft is configured such that the eccentric direction of the center of gravity is 180 degrees out of phase with the protruding direction of the eccentric portion of the input shaft.
 また、ある態様では、前記偏芯部を第1偏芯部として、前記入力軸は、前記第1偏芯部とは位相を180度異ならしめる第2偏芯部を有し、前記第2偏芯部には、第2カウンターウェイトが装着されている、ものとした。カウンターウェイトにより、ピンの剛性を高く保ちつつバランスよく入力軸を回転させることができ、減速機の性能を高めることができる。 Further, in one aspect, the eccentric part is a first eccentric part, and the input shaft has a second eccentric part having a phase different from the first eccentric part by 180 degrees, and A second counterweight was attached to the core. The counterweight allows the input shaft to rotate in a well-balanced manner while maintaining high pin rigidity, improving the performance of the reducer.
 以上の説明から明らかなように、バランスよく省サイズに構成される減速機を提供できる。 As is clear from the above description, it is possible to provide a reduction gear that is well-balanced and size-saving.
本発明の実施形態に係る減速機の断面図である。1 is a sectional view of a speed reducer according to an embodiment of the present invention. 同減速機の分解斜視図である。軸受け(ベアリング)は省略する。It is an exploded perspective view of the same reduction gear. Bearings are omitted. 図1のA-A線に沿った断面図である。2 is a cross-sectional view taken along line AA in FIG. 1. FIG. 図1のB-B線に沿った断面図である。2 is a sectional view taken along line BB in FIG. 1. FIG. 変形例に係る減速機の断面図である。It is a sectional view of a reduction gear concerning a modification. 変形例に係る減速機の分解斜視図である。軸受け(ベアリング)は省略する。FIG. 7 is an exploded perspective view of a reduction gear according to a modification. Bearings are omitted. 図5のC-C線に沿った断面図である。6 is a sectional view taken along line CC in FIG. 5. FIG. 図5のD-D線に沿った断面図である。6 is a sectional view taken along line DD in FIG. 5. FIG.
 以下、本発明の具体的な実施形態を、図面を参照しながら説明する。実施形態は、発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。また、以下の実施形態および変形例の説明において、同一の構成には同一の符号を付し、重複する説明は適宜省略する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The embodiments are illustrative rather than limiting the invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention. In addition, in the following description of the embodiment and modified examples, the same configurations are denoted by the same reference numerals, and overlapping description will be omitted as appropriate.
 (第1の実施形態)
 図1は、第1の実施形態に係る減速機W1の断面図である。図2は、減速機W1の分解斜視図である。図2においては、軸受け(ベアリング)は省略されている。
(First embodiment)
FIG. 1 is a sectional view of a speed reducer W1 according to the first embodiment. FIG. 2 is an exploded perspective view of the speed reducer W1. In FIG. 2, bearings are omitted.
 減速機W1は、車両の車輪駆動部に搭載され、モータMと、車輪ハブHの間に介装される。減速機W1は、インプットシャフトの入力軸1と、アウトプットシャフトの出力軸10を有し、入力軸1の回転が減速されて出力軸10から出力される。 The speed reducer W1 is mounted on the wheel drive section of the vehicle, and is interposed between the motor M and the wheel hub H. The speed reducer W1 has an input shaft 1 as an input shaft and an output shaft 10 as an output shaft, and the rotation of the input shaft 1 is decelerated and output from the output shaft 10.
 入力軸1はモータMに挿嵌されており、モータMが回転することにより、入力軸1は回転するようになっている。出力軸10は、図示しない車輪が連結された車輪ハブHに接続されており、出力軸10の回転は、車輪ハブHを通して車輪に伝達される。モータMの回転は、減速機W1により減速して車輪に伝達され、車輪が回転する構成となっている。入力軸1がモータM側の回転軸として直接駆動される構成、または入力軸1がモータMの回転軸に接続されて駆動される構成の、どちらであってもよい。 The input shaft 1 is fitted into a motor M, and as the motor M rotates, the input shaft 1 rotates. The output shaft 10 is connected to a wheel hub H to which wheels (not shown) are connected, and the rotation of the output shaft 10 is transmitted to the wheels through the wheel hub H. The rotation of the motor M is decelerated by a speed reducer W1 and transmitted to the wheels, so that the wheels rotate. Either a configuration in which the input shaft 1 is directly driven as a rotating shaft on the motor M side, or a configuration in which the input shaft 1 is connected to and driven by the rotating shaft of the motor M may be used.
 図2に示すように、減速機W1は、入力軸1、第1カウンターウェイト2、連結部材3、第1ピンカラー4、偏芯部カラー5、ピン6、内トロコイド板7、保持部材8、第2カウンターウェイト9、出力軸10、ハウジング本体11、ハウジングカバー12、および第2ピンカラー13を備える。 As shown in FIG. 2, the reducer W1 includes an input shaft 1, a first counterweight 2, a connecting member 3, a first pin collar 4, an eccentric collar 5, a pin 6, an inner trochoid plate 7, a holding member 8, It includes a second counterweight 9, an output shaft 10, a housing body 11, a housing cover 12, and a second pin collar 13.
 ハウジング本体11およびハウジングカバー12は、減速機W1の構成部品を保持し保護するためのハウジング(筐体)部品であり、上下両端が解放された中空の略円筒状に形成される。ハウジング本体11およびハウジングカバー12は、一方の開口部が縮径されており、他方の開口部は接合部としてフランジ部11a,12aが形成されている。ハウジング本体11およびハウジングカバー12は、フランジ部11a,12a同士が対向配置されて箱状となる。これにより形成されたハウジング本体11およびハウジングカバー12の内側空間に各部品が保持される。ハウジングカバー12の縮径された開口部に入力軸1の一部が挿通して保持される。また、ハウジング本体11の縮径された開口部には出力軸10の一部が挿通して保持される。 The housing body 11 and the housing cover 12 are housing parts for holding and protecting the components of the reducer W1, and are formed into a hollow, substantially cylindrical shape with both upper and lower ends open. One of the openings of the housing body 11 and the housing cover 12 has a reduced diameter, and the other opening has flanges 11a and 12a formed as joints. The housing main body 11 and the housing cover 12 have a box shape with flanges 11a and 12a facing each other. Each component is held in the inner space of the housing body 11 and the housing cover 12 thus formed. A portion of the input shaft 1 is inserted through the diameter-reduced opening of the housing cover 12 and held therein. Further, a portion of the output shaft 10 is inserted through and held in the diameter-reduced opening of the housing body 11.
 入力軸1は略円柱棒状に形成されており、ハウジング(筐体)であるハウジング本体11およびハウジングカバー12の内部に収容される。入力軸1の一方の端部(図1では下方側)がハウジングカバー12の縮径開口部から突出してモータMに挿嵌され固定されている。 The input shaft 1 is formed into a substantially cylindrical rod shape, and is housed inside a housing body 11 and a housing cover 12, which are housings. One end (lower side in FIG. 1) of the input shaft 1 protrudes from the diameter-reduced opening of the housing cover 12, and is inserted into and fixed to the motor M.
 入力軸1は、ハウジング内に収容されている部分に、入力軸1の回転軸心に対して偏芯している第1偏芯部1aを有している。 The input shaft 1 has a first eccentric portion 1a that is eccentric with respect to the rotation axis of the input shaft 1 in a portion housed in the housing.
 入力軸1は、第1偏芯部1aとは180度異なる位相で配置された第2偏芯部1bも有している。入力軸1には、第1偏芯部1a,第2偏芯部1b以外の部分に、第1カウンターウェイト2が圧入されている。また、第2偏芯部1bに第2カウンターウェイト9がベアリングBR4を介して装着されている。第1カウンターウェイト2および第2カウンターウェイト9は、回動する入力軸1のバランスをとるウェイトの役割を果たしている。 The input shaft 1 also has a second eccentric part 1b arranged at a phase 180 degrees different from the first eccentric part 1a. A first counterweight 2 is press-fitted into the input shaft 1 at a portion other than the first eccentric portion 1a and the second eccentric portion 1b. Further, a second counterweight 9 is attached to the second eccentric portion 1b via a bearing BR4. The first counterweight 2 and the second counterweight 9 serve as weights to balance the rotating input shaft 1.
 第1カウンターウェイト2は、略円盤状だが非対称な外形を有し、重心の位置が、略円盤形状の中心ではなく偏芯位置となるように形成されており、一方向に荷重が傾くように構成されている。この荷重のかかる方向が、第1偏芯部1aの突出方向とは180度異ならしめて、ベアリングを介さずに入力軸1に装着される。これにより第1カウンターウェイト2は、第1偏芯部1aを主として、連結部材3、第1ピンカラー4、偏芯部カラー5、ピン6、および第2ピンカラー13の一部とのバランスをとっている。 The first counterweight 2 has an approximately disk-shaped but asymmetrical outer shape, and is formed so that its center of gravity is not at the center of the approximately disk shape but at an eccentric position, so that the load is tilted in one direction. It is configured. The direction in which this load is applied is 180 degrees different from the protruding direction of the first eccentric portion 1a, and the first eccentric portion 1a is mounted on the input shaft 1 without using a bearing. As a result, the first counterweight 2 maintains a balance between the first eccentric portion 1a, the connecting member 3, the first pin collar 4, the eccentric portion collar 5, the pin 6, and a portion of the second pin collar 13. I'm taking it.
 第1カウンターウェイト2は、後述するピン6とは軸方向に異なった配置で入力軸1に装着される。 The first counterweight 2 is attached to the input shaft 1 in a different arrangement in the axial direction from the pin 6 described later.
 円盤形状の第2カウンターウェイト9には、中心の円周軌道上に、ピン6が挿通するための挿通孔9aが設けられている。この挿通孔9aにはピン6が挿通されるが、挿通したピン6と挿通孔9aとは接触しないように内径が大きく設けられている。第2カウンターウェイト9と挿通孔9aに挿通したピン6とは、それぞれが回動しても接触はしない。このように、第1カウンターウェイト2および第2カウンターウェイト9は、ピン6の動きを妨げずに機能する構成となっている。 The disk-shaped second counterweight 9 is provided with an insertion hole 9a for the pin 6 to be inserted on the center circumferential orbit. The pin 6 is inserted into the insertion hole 9a, but the inner diameter is made large so that the inserted pin 6 and the insertion hole 9a do not come into contact with each other. The second counterweight 9 and the pin 6 inserted into the insertion hole 9a do not come into contact with each other even if they rotate. In this way, the first counterweight 2 and the second counterweight 9 are configured to function without interfering with the movement of the pin 6.
 内トロコイド板7は略円盤形状の外形で、中央部に大きな貫通孔7aが形成されている。貫通孔7aの内周側面7bには波形曲線が形成されている。内トロコイド板7は、ハウジング本体11およびハウジングカバー12のそれぞれの接合開口部に形成されたフランジ部11a,12aに外縁部を挟持されて、ハウジング本体11およびハウジングカバー12に図示しない固定部材で締結される。これにより、内トロコイド板7は、ハウジングであるハウジング本体11およびハウジングカバー12に固定されて、他部品と干渉しても押圧力や摩擦力によって回動することも移動することもない。 The inner trochoid plate 7 has an approximately disk-shaped outer shape, and a large through hole 7a is formed in the center. A wavy curve is formed on the inner peripheral side surface 7b of the through hole 7a. The inner trochoid plate 7 has its outer edge sandwiched between flanges 11a and 12a formed at the joint openings of the housing body 11 and the housing cover 12, and is fastened to the housing body 11 and the housing cover 12 by a fixing member (not shown). be done. As a result, the inner trochoid plate 7 is fixed to the housing body 11 and the housing cover 12, and will not rotate or move due to pressing force or frictional force even if it interferes with other parts.
 偏芯部カラー5は、短い円筒形状で、ベアリングBR2を介して入力軸1の第1偏芯部1aに回動可能に支持されている。カラーは、円柱形状の孔が形成された筒状部材であり、被装着部材に挿通されて被装着部材の回動を滑らかにする部品である。本実施形態においては、せん断荷重の掛かる剛性の必要な箇所に主としてカラーを配置しており、カラーを適宜ベアリングに置き換えることも可能である。 The eccentric portion collar 5 has a short cylindrical shape and is rotatably supported by the first eccentric portion 1a of the input shaft 1 via a bearing BR2. The collar is a cylindrical member in which a cylindrical hole is formed, and is a part that is inserted into the mounted member to smooth the rotation of the mounted member. In this embodiment, collars are mainly arranged at locations where rigidity is required and where shear loads are applied, and the collars can be replaced with bearings as appropriate.
 偏芯部カラー5は、内トロコイド板7の貫通孔7a内に配置される。偏芯部カラー5は、入力軸1からの偏芯入力を受け付ける。 The eccentric collar 5 is arranged within the through hole 7a of the inner trochoid plate 7. The eccentric portion collar 5 receives an eccentric input from the input shaft 1.
 ピン6は円柱棒状に形成されており、入力軸1に駆動されて、駆動力を出力軸10に出力するための部品である。即ち、ピン6は、入力ピンおよび出力ピンの両方の役割を果たす。従来技術のサイクロイド減速機において必須であった外ピンおよび内ピンが、ピン6だけで対応できるようになり、従来技術のものに比べて、減速機W1はコンパクトな外形となっている。 The pin 6 is formed into a cylindrical rod shape, and is a component that is driven by the input shaft 1 and outputs driving force to the output shaft 10. That is, pin 6 serves as both an input pin and an output pin. The outer pin and inner pin, which were essential in the cycloid reducer of the prior art, can now be provided with only the pin 6, and the reducer W1 has a more compact external shape than the cycloid reducer of the prior art.
 ピン6には、円筒形状の第1ピンカラー4が挿通されている。ピン6は、第1ピンカラー4が挿通された箇所にて、偏芯部カラー5および内トロコイド板7に挟持されて保持される。詳しくは、第1ピンカラー4および偏芯部カラー5を介して、内トロコイド板7の内周側面7bと、第1偏芯部1aの外周側面とに挟持されて保持される。本実施形態においては、摩擦を低減させるため、第1偏芯部1aには偏芯部カラー5を装着させ、ピン6には第1ピンカラー4を装着させている。第1ピンカラー4および偏芯部カラー5を介さずに、ピン6が内トロコイド板7の内周側面7bと、第1偏芯部1aの外周側面とに直接に挟持される構成としてもよい。ピン6は、同一円周上に、等間隔に配置されている。 A cylindrical first pin collar 4 is inserted into the pin 6. The pin 6 is held between the eccentric collar 5 and the inner trochoid plate 7 at the location where the first pin collar 4 is inserted. Specifically, it is held between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the first eccentric section 1a via the first pin collar 4 and the eccentric section collar 5. In this embodiment, in order to reduce friction, the first eccentric part 1a is fitted with an eccentric part collar 5, and the pin 6 is fitted with a first pin collar 4. The pin 6 may be directly sandwiched between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the first eccentric section 1a without using the first pin collar 4 and the eccentric section collar 5. . The pins 6 are arranged at equal intervals on the same circumference.
 減速機W1の内トロコイド板7の波形曲面は、例えば、以下のように設計する。定円の内側を転がる動円による内トロコイド曲線において、内トロコイド曲線上を転がるピン6がn本の場合、n+1葉の内トロコイド曲線からなるピンの転がり面の形状を定義する。 The wavy curved surface of the inner trochoid plate 7 of the reducer W1 is designed, for example, as follows. In an inner trochoidal curve formed by a moving circle rolling inside a fixed circle, when there are n pins 6 rolling on the inner trochoidal curve, the shape of the rolling surface of the pin is defined as an inner trochoidal curve of n+1 leaves.
 本実施形態においては、ピン6は、7本用いており、内トロコイド板7の内周側面7bには、8個の波形(トロコイドオフセット葉形)が設けられている。トロコイド曲線を基本として、ピンの外周面の一部が常に接触するように適宜オフセットされている。 In this embodiment, seven pins 6 are used, and eight corrugations (trochoid offset leaf shapes) are provided on the inner circumferential side surface 7b of the inner trochoid plate 7. Based on the trochoidal curve, a portion of the outer peripheral surface of the pin is appropriately offset so that it is always in contact with the pin.
 内トロコイド板7の貫通孔7aの所定位置に、偏芯部カラー5を配置すると、内トロコイド板7の内周側面7bと、偏芯部カラー5の外周側面との間に、第1ピンカラー4を装着したピン6を挿嵌可能な寸法の隙間が形成される。この隙間に、複数のピン6を挿嵌させることにより、複数のピン6が、内トロコイド板7の内周側面7bと、第1偏芯部1aの外周側面とに挟持される構成となる。 When the eccentric collar 5 is placed at a predetermined position of the through hole 7a of the inner trochoid plate 7, a first pin collar is placed between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the eccentric collar 5. A gap is formed with a size that allows the pin 6 with the pin 4 attached thereto to be inserted therein. By inserting a plurality of pins 6 into this gap, the plurality of pins 6 are sandwiched between the inner circumferential side surface 7b of the inner trochoid plate 7 and the outer circumferential side surface of the first eccentric portion 1a.
 保持部材8は中央に中央孔8aが形成されたリング状の平板部材である。さらに保持部材8には、中央孔8aとは別に、中央孔8aの中心軸を中心とする円周軌道上に貫通孔8bが形成されている。貫通孔8bは、保持部材8の中央孔8aの周囲に、ピン6の数(本実施形態は7本)だけ周方向に等間隔で設けられており、ピン6はそれぞれ貫通孔8bに圧入される。保持部材8はピン6を保持して、中央孔8aに装着されたベアリングBR3を介して第1偏芯部1aに回動可能に支持される。 The holding member 8 is a ring-shaped flat plate member with a central hole 8a formed in the center. Furthermore, in addition to the central hole 8a, the holding member 8 has a through hole 8b formed on a circumferential orbit around the central axis of the central hole 8a. The through holes 8b are provided around the central hole 8a of the holding member 8 at equal intervals in the circumferential direction by the number of pins 6 (seven in this embodiment), and each pin 6 is press-fitted into the through hole 8b. Ru. The holding member 8 holds the pin 6 and is rotatably supported by the first eccentric portion 1a via a bearing BR3 mounted in the central hole 8a.
 連結部材3は、保持部材8と同等に構成されており、中央に挿通孔として中央挿通孔3aが形成されているリング形状の平板部材である。保持部材8と同様に、リング形状の連結部材3の中心軸を中心とする円周軌道上に貫通孔3bが形成されている。貫通孔3bは、連結部材3の中央挿通孔3aの周囲に、ピンの数だけ周方向に等間隔で設けられており、この貫通孔3bにピン6が圧入される。連結部材3における貫通孔3bの配置は、保持部材8の貫通孔8bの配置と等しくなるように構成されている。このため、連結部材3と保持部材8に圧入されたピン6は、互いに平行に保持される。 The connecting member 3 has the same structure as the holding member 8, and is a ring-shaped flat plate member in which a central insertion hole 3a is formed as an insertion hole in the center. Similar to the holding member 8, the through hole 3b is formed on a circumferential orbit centered on the central axis of the ring-shaped connecting member 3. The through holes 3b are provided around the central insertion hole 3a of the connecting member 3 at equal intervals in the circumferential direction by the number of pins, and the pins 6 are press-fitted into the through holes 3b. The arrangement of the through holes 3b in the connecting member 3 is configured to be equal to the arrangement of the through holes 8b of the holding member 8. Therefore, the pin 6 press-fitted into the connecting member 3 and the holding member 8 are held parallel to each other.
 連結部材3および保持部材8は、圧入によりピン6を連結することで、入力軸1の偏芯入力に対して、ピン6が自転するのを防いで、入力軸1周りの回動(主として公転動作)のみできるようにしている。連結部材3と保持部材8は、どちらもピン6を連結してピン6の自転を規制する役割を有しており、同等の構成となっている。互いに代替可能で、いずれか一方のみの構成としても問題ない。 The connecting member 3 and the holding member 8 connect the pin 6 by press-fitting, thereby preventing the pin 6 from rotating in response to eccentric input from the input shaft 1, and preventing rotation (mainly revolution) around the input shaft 1. operation). The connecting member 3 and the holding member 8 both have the role of connecting the pin 6 and regulating the rotation of the pin 6, and have the same structure. They can be substituted for each other, and there is no problem even if only one of them is used.
 連結部材3の中央挿通孔3aは入力軸1の挿通孔であり、連結部材3は、中央挿通孔3aに入力軸1を挿通させて、第1偏芯部1aに配置される。中央挿通孔3aは、第1偏芯部1aの外径よりも大きな内径で形成されており、連結部材3は中央挿通孔3aに入力軸1を挿通させても、第1偏芯部1aを含めた入力軸1とは接触しない構成となっている。 The central insertion hole 3a of the connecting member 3 is an insertion hole for the input shaft 1, and the connecting member 3 is arranged in the first eccentric portion 1a with the input shaft 1 inserted through the central insertion hole 3a. The center insertion hole 3a is formed with an inner diameter larger than the outer diameter of the first eccentric portion 1a, and even if the input shaft 1 is inserted into the center insertion hole 3a, the connecting member 3 does not allow the first eccentric portion 1a to pass through the center insertion hole 3a. The structure is such that it does not come into contact with the included input shaft 1.
 連結部材3は、保持部材8とで、偏芯部カラー5および内トロコイド板7を軸方向に挟むようにして、入力軸1の第1偏芯部1aに配置される。保持部材8はベアリングを介して第1偏芯部1aに回動可能に支持されるが、連結部材3は第1偏芯部1aには保持されず、円柱形状のピン6を連結して保持して、保持部材8を補助する役割となっている。ピン6は、保持部材8および連結部材3により、軸方向に二か所で支持され、安定して配置される。保持部材8と同様に、連結部材3の中央挿通孔3aにベアリングを装着して、連結部材3が入力軸1の第1偏芯部1aに回動可能に支持されるようにしてもよい。 The connecting member 3 and the holding member 8 are arranged on the first eccentric portion 1a of the input shaft 1 so as to sandwich the eccentric portion collar 5 and the inner trochoid plate 7 in the axial direction. The holding member 8 is rotatably supported by the first eccentric part 1a via a bearing, but the connecting member 3 is not held by the first eccentric part 1a, but is held by connecting a cylindrical pin 6. This serves to assist the holding member 8. The pin 6 is supported at two locations in the axial direction by the holding member 8 and the connecting member 3, and is stably arranged. Similarly to the holding member 8, a bearing may be installed in the central insertion hole 3a of the connecting member 3 so that the connecting member 3 is rotatably supported by the first eccentric portion 1a of the input shaft 1.
 出力軸10は、略円柱棒状の軸部10cと、軸部10cの一端部に形成されたフランジ部10aとを有する中実フランジ形状となっている。出力軸10は、フランジ部10aを入力軸1側へ向けて配置され、フランジ部10aの底面中央に設けられた係合穴に入力軸1の他方の端部(図1では上方側)がベアリングBR5を介して連結されている。これにより入力軸1と出力軸10は回転軸心を一致させて、互いに相対的な回動が可能に連結される。以下、両軸の回転軸心を中心軸xと称する。 The output shaft 10 has a solid flange shape having a substantially cylindrical rod-shaped shaft portion 10c and a flange portion 10a formed at one end of the shaft portion 10c. The output shaft 10 is arranged with the flange portion 10a facing the input shaft 1 side, and the other end of the input shaft 1 (the upper side in FIG. 1) is inserted into the engagement hole provided at the center of the bottom surface of the flange portion 10a. It is linked via BR5. As a result, the input shaft 1 and the output shaft 10 are connected so that their rotation axes coincide with each other and can rotate relative to each other. Hereinafter, the rotation axes of both shafts will be referred to as the central axis x.
 入力軸1および出力軸10は、ハウジングであるハウジング本体11およびハウジングカバー12内に、一端を開口部から突出させて収納され、それぞれベアリングBR1,BR6を介してハウジング本体11,ハウジングカバー12内に回動可能に保持される。出力軸10の軸部10cの端部がハウジング本体11から突出して車輪ハブHに連結されている。軸部10cの外周面は車輪ハブHに固定されており、出力軸10の回転が伝達されて、車輪ハブHが回転する。 The input shaft 1 and the output shaft 10 are housed in a housing body 11 and a housing cover 12 with one end protruding from an opening, and are inserted into the housing body 11 and the housing cover 12 through bearings BR1 and BR6, respectively. It is held rotatably. An end of the shaft portion 10c of the output shaft 10 protrudes from the housing body 11 and is connected to the wheel hub H. The outer peripheral surface of the shaft portion 10c is fixed to the wheel hub H, and the rotation of the output shaft 10 is transmitted to rotate the wheel hub H.
 出力軸10のフランジ部10aには、中心軸xを中心とした円周軌道上に丸穴10bがピンの数だけ周方向に等間隔で設けられている。この丸穴10bに、ピン6の一方の端部(図1では上方端部)が偏芯回動可能に受け入れられている。 In the flange portion 10a of the output shaft 10, round holes 10b are provided as many as the number of pins at equal intervals in the circumferential direction on a circumferential orbit centered on the central axis x. One end (the upper end in FIG. 1) of the pin 6 is received in the round hole 10b so as to be eccentrically rotatable.
 ピン6の上方端部には、第1ピンカラー4と同等に構成される、円筒形状の第2ピンカラー13が挿通されており、ピン6は第2ピンカラー13が挿通された上方端部にて、丸穴10bに、偏芯回動を可能に受け入れられている。丸穴10bは、常にいずれかのピン6の外周側面の少なくとも一部が当接するように形成されており、ピン6の外周側面の少なくとも一部が第2ピンカラー13を介して、丸穴10bの内周側面に当接するように配置され、第2ピンカラー13の外周側面が丸穴10bの内周側面を回動しながら押すように構成されている。これにより、ピン6の公転回動が、出力軸10を中心軸x回りに回転させる動きに変換される。 A cylindrical second pin collar 13 having the same structure as the first pin collar 4 is inserted into the upper end of the pin 6, and the pin 6 has an upper end through which the second pin collar 13 is inserted. It is received in the round hole 10b so as to be eccentrically rotatable. The round hole 10b is formed so that at least a part of the outer circumferential side of any one of the pins 6 is always in contact with the round hole 10b, and at least a part of the outer circumferential side of the pin 6 is inserted into the round hole 10b through the second pin collar 13. The outer circumferential side of the second pin collar 13 is configured to rotate and push the inner circumferential side of the round hole 10b. Thereby, the revolution rotation of the pin 6 is converted into a movement that rotates the output shaft 10 around the central axis x.
 丸穴10bは、その径が、第2ピンカラー13を挿通させたピン6の外径よりも大きくなるように形成されている。第2ピンカラー13は内側にピン6を挿通させて、互いに相対的な回動を可能にして、第2ピンカラー13の外周側面の少なくとも一部が、丸穴10bと当接するように配置される。ピン6の回動が、第2ピンカラーを介して出力軸10に伝達され、出力軸10を中心軸x回りに回転させる。 The round hole 10b is formed so that its diameter is larger than the outer diameter of the pin 6 through which the second pin collar 13 is inserted. The second pin collar 13 is arranged such that the pin 6 is inserted thereinto to enable rotation relative to each other, and at least a part of the outer circumferential side surface of the second pin collar 13 is in contact with the round hole 10b. Ru. The rotation of the pin 6 is transmitted to the output shaft 10 via the second pin collar, causing the output shaft 10 to rotate around the central axis x.
(減速機W1の動き)
 減速機W1の動作について説明する。図3は、図1のA-A線に沿った断面図である。主として、入力軸1とピン6の動きを示す説明図である。図4は、図1のB-B線に沿った断面図である。主として出力軸10とピン6の動きを示す説明図である。
(Movement of reducer W1)
The operation of the reduction gear W1 will be explained. FIG. 3 is a cross-sectional view taken along line AA in FIG. It is an explanatory diagram mainly showing the movement of the input shaft 1 and the pin 6. FIG. 4 is a cross-sectional view taken along line BB in FIG. 2 is an explanatory diagram mainly showing the movement of the output shaft 10 and the pin 6. FIG.
 まず図3を用いて、入力軸1とピン6の動きを説明する。モータMが駆動して入力軸1が中心軸x回りに回転すると、ベアリングBR2を介して第1偏芯部1aに支持された偏芯部カラー5が、入力軸1からの偏芯入力を受けて、中心軸x回りに、入力軸1の回転方向と逆方向に自転するとともに、入力軸1の回転方向と同一方向に公転する。 First, the movement of the input shaft 1 and pin 6 will be explained using FIG. 3. When the motor M is driven and the input shaft 1 rotates around the central axis x, the eccentric portion collar 5 supported by the first eccentric portion 1a via the bearing BR2 receives eccentric input from the input shaft 1. The input shaft 1 rotates around the central axis x in a direction opposite to the rotation direction of the input shaft 1, and also revolves in the same direction as the input shaft 1 rotation direction.
 入力軸1の回転時、バランサーである第1カウンターウェイト2の偏荷重によって、第1偏芯部1aおよび第2偏芯部1bを持つ入力軸1の重心の移動が許容範囲内におさまり、入力軸1は安定して回転する。さらに第2偏芯部1bに回動可能に支持された第2カウンターウェイト9が、第1偏芯部1aとは位相が180度異なるように回動し、バランスが取られる。 When the input shaft 1 rotates, the shift of the center of gravity of the input shaft 1, which has the first eccentric part 1a and the second eccentric part 1b, is kept within the allowable range due to the eccentric load of the first counterweight 2, which is a balancer, and the input shaft 1 is rotated. The shaft 1 rotates stably. Furthermore, the second counterweight 9 rotatably supported by the second eccentric part 1b rotates so that the phase is 180 degrees different from that of the first eccentric part 1a, thereby achieving balance.
 ピン6は、偏芯部カラー5および第1ピンカラー4を介して、内トロコイド板7の貫通孔7a内で、第1偏芯部1aと内トロコイド板7の内周側面7bとに挟持されている。内トロコイド板7は、ハウジングであるハウジング本体11およびハウジングカバー12に完全固定されており、回動も移動もすることはない。ピン6は連結部材3におよび保持部材8に圧入されて連結されており、それぞれのピン6の自転は規制されている。このため、ピン6は、第1ピンカラー4を介して偏芯部カラー5に駆動され、第1偏芯部1a周りに公転回動すると共に、内トロコイド板7の内周側面7bに沿って移動する。 The pin 6 is held between the first eccentric part 1a and the inner peripheral side surface 7b of the inner trochoid plate 7 within the through hole 7a of the inner trochoid plate 7 via the eccentric collar 5 and the first pin collar 4. ing. The inner trochoid plate 7 is completely fixed to the housing body 11 and the housing cover 12, and does not rotate or move. The pin 6 is press-fitted and connected to the connecting member 3 and the holding member 8, and rotation of each pin 6 is restricted. Therefore, the pin 6 is driven by the eccentric collar 5 via the first pin collar 4, revolves around the first eccentric part 1a, and moves along the inner circumferential side surface 7b of the inner trochoid plate 7. Moving.
 ここで内周側面7bの波形曲面においては、ピンの数(n本)よりも、トロコイドオフセット葉形(n+1個)が多くなるように形成されている。トロコイドオフセット葉形が葉数n+1で形成されているとは、ピンの数がn+1本で第1偏芯部1aが一周するよう構成されていることを意味し、実際にはピンはn本しかないため、1/(n+1)周だけピンは相対的に回転が遅れることとなる。その分の遅れが減速されて逆方向に回転するものとなる。即ち、入力軸1が一周回転すると、入力軸1と同じ回転方向で第1偏芯部1aが一周だけ回転して、ピン6は入力軸1の回転方向とは逆の方向に、1/8周だけ公転する。入力軸1の回転が、入力軸1の回転速度の1/8の速度に減速されて、ピン6を公転回動させる。 Here, the waveform curved surface of the inner circumferential side surface 7b is formed so that the number of trochoidal offset leaves (n+1 pieces) is greater than the number of pins (n pieces). The fact that the trochoidal offset leaf shape is formed with the number of leaves n+1 means that the number of pins is n+1 and the first eccentric portion 1a is configured to go around once, but in reality there are only n pins. Therefore, the rotation of the pin is relatively delayed by 1/(n+1) rotation. The delay is reduced by that amount and the rotation is made in the opposite direction. That is, when the input shaft 1 rotates once, the first eccentric portion 1a rotates once in the same rotation direction as the input shaft 1, and the pin 6 rotates 1/8 in the opposite direction to the rotation direction of the input shaft 1. It revolves only around the circumference. The rotation of the input shaft 1 is reduced to 1/8 of the rotation speed of the input shaft 1, causing the pin 6 to revolve.
 次に、図4を用いて、ピン6の出力軸10との関係を示す。 Next, the relationship between the pin 6 and the output shaft 10 will be shown using FIG.
 ピン6は出力軸10の丸穴10bに挿嵌されており、第2ピンカラー13が丸穴10bの内側面に当接するように配置されている。ピン6は、第2ピンカラー13を介して、丸穴10bの内側面に沿って移動するとともに、入力軸1の回転方向とは逆の方向に、減速されて公転回動する。ピン6は自転が規制されており、丸穴10bに対する移動は、第2ピンカラー13によって、丸穴10bの内側面に沿った回転として受け入れられる。ピン6の減速された公転回動は、丸穴10bの内側面を押し、出力軸10を中心軸x回りに回転させる。 The pin 6 is inserted into the round hole 10b of the output shaft 10, and the second pin collar 13 is arranged so as to come into contact with the inner surface of the round hole 10b. The pin 6 moves along the inner surface of the round hole 10b via the second pin collar 13, and rotates at a reduced speed in a direction opposite to the rotational direction of the input shaft 1. The rotation of the pin 6 is restricted, and movement relative to the round hole 10b is accepted by the second pin collar 13 as rotation along the inner surface of the round hole 10b. The decelerated revolution of the pin 6 pushes the inner surface of the round hole 10b and rotates the output shaft 10 around the central axis x.
 上記構成により、入力軸1の回転は、出力軸10に1/(n+1)の回転速度で逆方向の回転として伝達される。減速機W1により、モータMでの回転数が、1/(n+1)に減速された回転数で、車輪ハブHに接続された車輪を回転させる。モータMの回転方向とは逆方向に車輪は回転することとなる。 With the above configuration, the rotation of the input shaft 1 is transmitted to the output shaft 10 as rotation in the opposite direction at a rotation speed of 1/(n+1). The speed reducer W1 rotates the wheels connected to the wheel hub H at a speed where the speed of the motor M is reduced to 1/(n+1). The wheels will rotate in the opposite direction to the rotation direction of the motor M.
(作用効果)
 減速機W1は、従来の減速機と異なり、外ピンを配置していない。その分、外形サイズを小さくできる。加えて、ピン6は、自転が規制され、その偏芯移動や公転回転は、出力軸10のフランジ部10aに形成された丸穴で吸収され、出力軸10にはピン6の公転回動のみが伝達されて、出力軸10を自転させる。減速機W1の減速比は、内トロコイド板7の波形の数(トロコイドオフセット葉形の数)と、ピン6の数で決定されるため、減速比を大きくしても外径が大きくなりにくい。ピン6は出力ピンと入力ピンの両方の役割を果たし、両ピンを統合できるため、部品点数が削減され、サイズダウンを図ることができる。このように、減速機W1は、全体がバランスよく省サイズに構成されている。
(effect)
The speed reducer W1 is different from conventional speed reducers in that it does not have any outer pins. Accordingly, the external size can be reduced. In addition, the rotation of the pin 6 is restricted, and its eccentric movement and revolution are absorbed by the round hole formed in the flange portion 10a of the output shaft 10, and only the revolution of the pin 6 is restricted to the output shaft 10. is transmitted, causing the output shaft 10 to rotate. Since the reduction ratio of the reduction gear W1 is determined by the number of corrugations of the inner trochoid plate 7 (the number of trochoid offset leaf shapes) and the number of pins 6, the outer diameter is difficult to increase even if the reduction ratio is increased. Pin 6 serves as both an output pin and an input pin, and since both pins can be integrated, the number of parts can be reduced and the size can be reduced. In this way, the reduction gear W1 has a well-balanced overall structure with a reduced size.
 加えて、大きな荷重の掛かる内トロコイド板7がハウジングと固定されているため、剛性が高くすることできる。また、カラーを用いて、ピンの回転を滑らかにしたうえ、ラジアル荷重にも強い構成としている。トロコイド曲線を用いており、ピン6の外側面と接触させることで、衝突音が発生せず、なめらかな回動を実施できる。このようにして、減速機W1は剛性を高めている。 In addition, since the inner trochoid plate 7, which is subject to a large load, is fixed to the housing, the rigidity can be increased. In addition, a collar is used to ensure smooth rotation of the pin and is resistant to radial loads. A trochoidal curve is used, and by making contact with the outer surface of the pin 6, smooth rotation can be achieved without producing any collision noise. In this way, the speed reducer W1 has increased rigidity.
(変形例)
 本開示の構成は、上記減速機W1の形態に限られない。
(Modified example)
The configuration of the present disclosure is not limited to the form of the reduction gear W1 described above.
 第2ピンカラー13は円筒形状に限られず、例えば、外周側面の中心軸と内周側面の中心軸とがオフセットされて形成される、偏芯形状のカラーを用いてもよい。 The second pin collar 13 is not limited to a cylindrical shape, and for example, an eccentric collar in which the central axis of the outer circumferential side surface and the central axis of the inner circumferential side surface are offset may be used.
 偏芯カラーの第2ピンカラーを第2ピンカラー13Aとすると、第2ピンカラー13Aは円柱形状の外形を有し、円柱形状の中心軸とはオフセットされた中心軸をもつ貫通孔を有する。円柱形状の外径はおおむね丸穴10bの外径よりもわずかに小さい。貫通孔の孔径は、ピン6とよりもわずかに大きい。第2ピンカラー13Aは、貫通孔にピン6を挿通させて、丸穴10b内に配置される。このとき、上述の偏芯形状の中心軸のオフセットが第1偏芯部1aの偏芯回転を受け入れるように構成される。丸穴10b,偏芯カラーの第2ピンカラー13A,ピン6は、互いに相対回転可能に支持され、ピン6が第1偏芯部1a周りに回動すると、第2ピンカラー13Aの外周側面は、ピン6の中心軸で回動しながら丸穴10bの内周側面を押し、これにより出力軸10が中心軸x周りに回転する。 Assuming that the second pin collar of the eccentric collar is a second pin collar 13A, the second pin collar 13A has a cylindrical outer shape and has a through hole whose central axis is offset from the central axis of the cylindrical shape. The outer diameter of the cylindrical shape is approximately slightly smaller than the outer diameter of the round hole 10b. The diameter of the through hole is slightly larger than that of the pin 6. The second pin collar 13A is arranged in the round hole 10b with the pin 6 inserted into the through hole. At this time, the offset of the central axis of the eccentric shape described above is configured to accept eccentric rotation of the first eccentric portion 1a. The round hole 10b, the second pin collar 13A of the eccentric collar, and the pin 6 are supported so that they can rotate relative to each other, and when the pin 6 rotates around the first eccentric portion 1a, the outer circumferential side of the second pin collar 13A rotates. , while rotating around the center axis of the pin 6, pushes the inner circumferential side of the round hole 10b, thereby causing the output shaft 10 to rotate around the center axis x.
(変形例2)
 本発明の変形例である減速機W2について、図5~図8を用いて説明する。図5は減速機W2の断面図である。図6は、減速機W2の分解斜視図である。図6においては、軸受け(ベアリング)は省略されている。
(Modification 2)
A reduction gear W2, which is a modification of the present invention, will be explained using FIGS. 5 to 8. FIG. 5 is a sectional view of the speed reducer W2. FIG. 6 is an exploded perspective view of the reducer W2. In FIG. 6, bearings are omitted.
 図5および図6に示すように、減速機W2は、入力軸1´、連結部材3、第1ピンカラー4、偏芯部カラー5、ピン6、内トロコイド板7、出力軸10、ハウジング本体11、ハウジングカバー12を有する。 As shown in FIGS. 5 and 6, the reducer W2 includes an input shaft 1', a connecting member 3, a first pin collar 4, an eccentric collar 5, a pin 6, an inner trochoid plate 7, an output shaft 10, and a housing body. 11, it has a housing cover 12.
 減速機W2には、第1カウンターウェイト2および第2カウンターウェイト9は備えられておらず、代わりにもう一対の、第1ピンカラー4´、偏芯部カラー5´、ピン6´、内トロコイド板7´が備えらえている。これらをまとめて、カウンターウェイトユニットCUと称する。また、元となる第1ピンカラー4、偏芯部カラー5、ピン6、内トロコイド板7を、まとめてオリジナルユニットOUと称する。 The reducer W2 is not equipped with the first counterweight 2 and the second counterweight 9, but instead has another pair of first pin collars 4', eccentric collars 5', pins 6', and inner trochoids. A plate 7' is provided. These are collectively referred to as a counterweight unit CU. Further, the first pin collar 4, the eccentric collar 5, the pin 6, and the inner trochoid plate 7, which are the original, are collectively referred to as an original unit OU.
 入力軸1´は、第1偏芯部1aを有し、第2偏芯部1bは有さず、代わりにもう一つの第1偏芯部1a´を有する以外は、入力軸1と同等の構成となっている。第1偏芯部1a´は、第1偏芯部1aとは、偏芯方向が180度異なっており、軸方向には、第1偏芯部1aに対して、出力軸10の配置されている方向とは逆方向(図5では下方)に設けられている。 The input shaft 1' is the same as the input shaft 1 except that it has a first eccentric part 1a, does not have a second eccentric part 1b, and has another first eccentric part 1a' instead. The structure is as follows. The first eccentric part 1a' has an eccentric direction 180 degrees different from that of the first eccentric part 1a, and in the axial direction, the output shaft 10 is arranged with respect to the first eccentric part 1a. It is provided in the opposite direction (downward in FIG. 5).
 カウンターウェイトユニットCUは、対となるオリジナルユニットOUとは180度位相を異ならしめて、即ち、180度回転した状態で、軸方向には第1偏芯部1a´の位置に配置される。 The counterweight unit CU is 180 degrees out of phase with the paired original unit OU, that is, rotated 180 degrees, and is arranged at the first eccentric portion 1a' in the axial direction.
 連結部材3は、オリジナルユニットOUと、カウンターウェイトユニットCUの間に配置される。ピン6´とピン6の両方が、連結部材3に形成された穴に圧入されて連結される。このとき、ピン6が、出力軸10が配置される方向に突出して圧入され、ピン6´が、ピン6とは逆の方向に突出して圧入されることで連結される。本実施形態においては、連結部材3の上面にピン6が圧入されて上方に突出し、連結部材3の底面からピン6´が圧入されて下方に突出し、ピン6、ピン6´、および連結部材3が一体的に連結される。 The connecting member 3 is arranged between the original unit OU and the counterweight unit CU. Both the pin 6' and the pin 6 are press-fitted into the hole formed in the connecting member 3 and are connected. At this time, the pin 6 protrudes in the direction in which the output shaft 10 is arranged and is press-fitted, and the pin 6' protrudes in the opposite direction to the pin 6 and is press-fitted, thereby connecting them. In this embodiment, the pin 6 is press-fitted into the upper surface of the connecting member 3 and protrudes upward, and the pin 6' is press-fitted into the bottom surface of the connecting member 3 and protrudes downward, so that the pin 6, the pin 6', and the connecting member 3 are integrally connected.
 本実施形態では、保持部材8は用いられず、連結部材3が保持部材8の機能を発揮し、ピン6を連結して自転を規制し、これを保持する。連結部材3は保持部材8と同等の構成であり、本態様の連結部材3は保持部材8であると言える。連結部材3の代わりに保持部材8、さらにもう一対の保持部材8´を用いる構成としてもよい。 In this embodiment, the holding member 8 is not used, and the connecting member 3 performs the function of the holding member 8, connects the pin 6, regulates rotation, and holds it. The connecting member 3 has the same structure as the holding member 8, and it can be said that the connecting member 3 of this embodiment is the holding member 8. In place of the connecting member 3, a holding member 8 and another pair of holding members 8' may be used.
 内トロコイド板7および内トロコイド板7´が、間にスペーサ20を挟んで、ハウジング本体11のフランジ部11a、およびハウジングカバー12のフランジ部12aに外縁を挟持されて、ハウジング本体11およびハウジングカバー12に図示しない固定部材で締結されている。これにより、内トロコイド板7および内トロコイド板7´が、ハウジングであるハウジング本体11およびハウジングカバー12に固定される。 The outer edges of the inner trochoid plate 7 and the inner trochoid plate 7' are sandwiched between the flange portion 11a of the housing body 11 and the flange portion 12a of the housing cover 12 with a spacer 20 in between, so that the housing body 11 and the housing cover 12 It is fastened with a fixing member (not shown). Thereby, the inner trochoid plate 7 and the inner trochoid plate 7' are fixed to the housing body 11 and the housing cover 12, which are the housings.
 スペーサ20は、オリジナルユニットOUと、カウンターウェイトユニットCUの間に配置される連結部材3の空間を確保するために配置される。スペーサ20は、平板リング形状に構成され、保持部材8と干渉しないように、中央に形成された貫通孔の内径は大きく構成されている。 The spacer 20 is arranged to ensure a space for the connecting member 3 arranged between the original unit OU and the counterweight unit CU. The spacer 20 is configured in the shape of a flat ring, and the inner diameter of the through hole formed in the center is configured to be large so as not to interfere with the holding member 8.
 減速機W2の動きについて説明する。図7は図5のC-C線に沿った断面図である。主としてオリジナルユニットOUを示す。図8は図5のD-D線に沿った断面図である。主としてカウンターウェイトユニットCUを示す。 The movement of the reducer W2 will be explained. FIG. 7 is a sectional view taken along line CC in FIG. Mainly shows the original unit OU. FIG. 8 is a cross-sectional view taken along line DD in FIG. Mainly shows the counterweight unit CU.
 図7および図8に示すように、オリジナルユニットOUとカウンターウェイトユニットCUとは、180度位相を異ならしめて配置される。 As shown in FIGS. 7 and 8, the original unit OU and the counterweight unit CU are arranged with a phase difference of 180 degrees.
 入力軸1´が中心軸x回りに回転すると、ベアリングBR2を介して第1偏芯部1aに保持された偏芯部カラー5が、偏芯入力を受けて、自転するとともに、中心軸x回りに公転する。ピン6は、第1ピンカラー4を介して偏芯部カラー5に駆動され、第1偏芯部1a周りに公転回動すると共に、内トロコイド板7の内周側面7bに沿って移動する。 When the input shaft 1' rotates around the central axis x, the eccentric collar 5 held by the first eccentric part 1a via the bearing BR2 receives the eccentric input and rotates around the central axis x. It revolves around The pin 6 is driven by the eccentric collar 5 via the first pin collar 4, revolves around the first eccentric part 1a, and moves along the inner peripheral side surface 7b of the inner trochoid plate 7.
 入力軸1の回転時、カウンターウェイトユニットCUは、オリジナルユニットOUとは、180度位相を異ならしめて同等の動きをする。即ち、入力軸1´が中心軸x回りに回転すると、ベアリングBR2´を介して第1偏芯部1a´に保持された偏芯部カラー5´が、偏芯入力を受けて、自転するとともに、中心軸x回りに公転する。ピン6´は、第1ピンカラー4´を介して偏芯部カラー5´に駆動され、第1偏芯部1a´周りに公転回動すると共に、内トロコイド板7の内周側面7bに沿って移動する。 When the input shaft 1 rotates, the counterweight unit CU moves in the same way as the original unit OU, with a phase difference of 180 degrees. That is, when the input shaft 1' rotates around the central axis , revolves around the central axis x. The pin 6' is driven by the eccentric collar 5' via the first pin collar 4', revolves around the first eccentric part 1a', and rotates along the inner circumferential side surface 7b of the inner trochoid plate 7. and move.
 オリジナルユニットOUとは逆位相でカウンターウェイトユニットCUが駆動されることで、バランスがとられ、入力軸1´の重心の移動が許容範囲内におさまり、入力軸1は安定して回転する。 By driving the counterweight unit CU in a phase opposite to that of the original unit OU, balance is maintained, the movement of the center of gravity of the input shaft 1' falls within an allowable range, and the input shaft 1 rotates stably.
 ピン6の回動は、出力軸10の丸穴10bに受け入れられて、出力軸10を中心軸x回りに回転させる。減速機W2の出力軸10での断面図は図4と同じとなる。減速機W2の出力構成は減速機W1と同じであり、説明は省略する。 The rotation of the pin 6 is received in the round hole 10b of the output shaft 10, and rotates the output shaft 10 around the central axis x. A cross-sectional view of the output shaft 10 of the speed reducer W2 is the same as FIG. 4. The output configuration of the speed reducer W2 is the same as that of the speed reducer W1, and a description thereof will be omitted.
 ピン6´の回動は、出力軸10にも他の部品にも出力はされず、単にバランスを取るためのカウンターウェイトとして駆動される。 The rotation of the pin 6' is not output to the output shaft 10 or other parts, but is simply driven as a counterweight for balance.
 カウンターウェイトユニットCUは、オリジナルユニットOUと同等の部品を使用しており、バランスの良いカウンターウェイトとして作動する。またそれぞれのユニットの対応部品には同じ部品を使用できるため、製造コストを下げることができる。ペアとなる部品である、偏芯部カラー5と偏芯部カラー5´、ピン6とピン6´、および第1ピンカラー4と第1ピンカラー4´は中心軸xに点対称に動くため、カウンターウェイトユニットCUは、複雑な動きをする減速機における高性能なバランサーであり、減速機W2の性能を高めている。 The counterweight unit CU uses the same parts as the original unit OU and operates as a well-balanced counterweight. Furthermore, since the same parts can be used for each unit, manufacturing costs can be reduced. Because the paired parts, the eccentric part collar 5 and the eccentric part collar 5', the pin 6 and the pin 6', and the first pin collar 4 and the first pin collar 4', move point-symmetrically about the central axis x. , the counterweight unit CU is a high-performance balancer in a reduction gear that makes complex movements, and improves the performance of the reduction gear W2.
 以上、本発明の好ましい実施形態について述べたが、上記の実施形態は本発明の一例であり、これらを当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 The preferred embodiments of the present invention have been described above, but the above embodiments are only examples of the present invention, and these can be combined based on the knowledge of those skilled in the art, and such embodiments also fall within the scope of the present invention. include.
1   :入力軸
1a   :第1偏芯部(偏心部)
1b   :第2偏芯部
2    :第1カウンターウェイト
3    :連結部材
3b   :貫通孔
4    :第1ピンカラー
5    :偏芯部カラー
6    :ピン
7    :内トロコイド板
7a   :貫通孔
7b   :内周側面
8    :保持部材
8b   :貫通孔
9    :第2カウンターウェイト
10   :出力軸
10a  :フランジ部
10b  :丸穴
11   :ハウジング本体(ハウジング)
12   :ハウジングカバー(ハウジング)
13   :第2ピンカラー
W1   :減速機
W2   :減速機
x    :中心軸
1: Input shaft 1a: First eccentric part (eccentric part)
1b: Second eccentric part 2: First counterweight 3: Connecting member 3b: Through hole 4: First pin collar 5: Eccentric part collar 6: Pin 7: Inner trochoid plate 7a: Through hole 7b: Inner peripheral side 8: Holding member 8b: Through hole 9: Second counterweight 10: Output shaft 10a: Flange portion 10b: Round hole 11: Housing body (housing)
12: Housing cover (housing)
13: Second pin collar W1: Reducer W2: Reducer x: Center shaft

Claims (7)

  1.  偏芯部が設けられた入力軸と、
     フランジ部を有し、該フランジ部に回転軸心を中心とする円周軌道上に丸穴が形成された出力軸と、
     貫通孔が設けられており、該貫通孔の内周側面に波形曲面が形成され、回動せぬように固定された内トロコイド板と、
     前記内トロコイド板の前記内周側面と、前記偏芯部の外周側面とに挟持されるピンと、
     前記ピンの自転を規制して保持する保持部材と、
     を備え、
     前記ピンの一端が、少なくとも一部を前記丸穴の内周側面に当接されて、前記丸穴内に、回動可能に受け入れられており、
     前記入力軸の回動は、前記偏芯部と前記内トロコイド板に挟持される前記ピンを、前記偏芯部回りに回動運動させ、
     前記ピンが、前記丸穴内で、少なくとも一部を当接させながら回動することにより、前記ピンの回動運動が前記出力軸の回転軸心を中心とした回転運動として変換されて、前記出力軸を回転させる、
     ことを特徴とした減速機。
    an input shaft provided with an eccentric portion;
    an output shaft having a flange portion, and a round hole formed in the flange portion on a circumferential orbit around the rotation axis;
    an inner trochoid plate provided with a through hole, a wave-shaped curved surface formed on the inner peripheral side of the through hole, and fixed so as not to rotate;
    a pin held between the inner circumferential side surface of the inner trochoid plate and the outer circumferential side surface of the eccentric portion;
    a holding member that restricts rotation of the pin and holds it;
    Equipped with
    one end of the pin is rotatably received in the round hole with at least a portion of it abutting an inner circumferential side of the round hole;
    The rotation of the input shaft causes the pin held between the eccentric part and the inner trochoid plate to rotate around the eccentric part,
    The pin rotates in the round hole while at least partially in contact with the pin, so that the rotational movement of the pin is converted into rotational movement about the rotational axis of the output shaft, and the output rotate the axis,
    A speed reducer characterized by:
  2.  前記入力軸および前記出力軸は、互いの回転軸心を一致させて、ハウジングに回動可能に保持され、
     前記内トロコイド板は、前記ハウジングに固定されている、
     ことを特徴とする請求項1に記載の減速機。
    The input shaft and the output shaft are rotatably held in a housing with their rotation axes aligned with each other,
    the inner trochoid plate is fixed to the housing;
    The reduction gear according to claim 1, characterized in that:
  3.  前記保持部材は、平板リング状に構成され、リング中心軸を中心とする円周軌道上に、孔が設けられており、前記孔に前記ピンは圧入されている、
     ことを特徴とする請求項1または請求項2に記載の減速機。
    The holding member is configured in the shape of a flat ring, and a hole is provided on a circumferential orbit centered on the ring center axis, and the pin is press-fitted into the hole.
    The reduction gear according to claim 1 or claim 2, characterized in that:
  4.  前記偏芯部には、該偏芯部に回動可能に支持される偏芯部カラーが装着されており、前記ピンには、第1ピンカラーが装着されており、
     前記ピンは、前記偏芯部カラーおよび前記第1ピンカラーを介して、前記内トロコイド板の前記内周側面と、前記偏芯部の前記外周側面とに挟持されており、
     前記丸穴と前記ピンとの間には、第2ピンカラーが介装されている、
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の減速機。
    An eccentric part collar rotatably supported by the eccentric part is attached to the eccentric part, and a first pin collar is attached to the pin,
    The pin is held between the inner circumferential side surface of the inner trochoid plate and the outer circumferential side surface of the eccentric portion via the eccentric portion collar and the first pin collar,
    A second pin collar is interposed between the round hole and the pin,
    The reduction gear according to any one of claims 1 to 3, characterized in that:
  5.  前記ピンは、前記偏芯部の軸回りにn本設けられており、前記内トロコイド板は、n+1以上のトロコイドをオフセットした葉形を有している、
     ことを特徴とする前記請求項1~請求項4のいずれか一項に記載の減速機。
    n pins are provided around the axis of the eccentric portion, and the inner trochoid plate has a leaf shape in which n+1 or more trochoids are offset.
    The reduction gear according to any one of claims 1 to 4, characterized in that:
  6.  前記入力軸には、重心が偏芯位置となるように形成された第1カウンターウェイトが、前記ピンとは軸方向に異なる位置に装着されており、
     前記第1カウンターウェイトは、前記重心の偏芯方向が、前記入力軸の前記偏芯部の突出方向と位相を180度異ならしめて装着されている、
     ことを特徴とする請求項1~請求項5のいずれか一項に記載の減速機。
    A first counterweight formed so that the center of gravity is at an eccentric position is attached to the input shaft at a position different from the pin in the axial direction,
    The first counterweight is mounted such that the eccentric direction of the center of gravity is 180 degrees out of phase with the protruding direction of the eccentric portion of the input shaft.
    The reduction gear according to any one of claims 1 to 5, characterized in that:
  7.  前記偏芯部を第1偏芯部として、
     前記入力軸は、前記第1偏芯部とは位相を180度異ならしめる第2偏芯部を有し、
     前記第2偏芯部には、第2カウンターウェイトが装着されている、
     ことを特徴とした請求項6に記載の減速機。
    The eccentric part is a first eccentric part,
    The input shaft has a second eccentric part having a phase different from the first eccentric part by 180 degrees,
    A second counterweight is attached to the second eccentric part,
    The reduction gear according to claim 6, characterized in that:
PCT/JP2022/015856 2022-03-30 2022-03-30 Speed reducer WO2023188071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015856 WO2023188071A1 (en) 2022-03-30 2022-03-30 Speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015856 WO2023188071A1 (en) 2022-03-30 2022-03-30 Speed reducer

Publications (1)

Publication Number Publication Date
WO2023188071A1 true WO2023188071A1 (en) 2023-10-05

Family

ID=88200288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015856 WO2023188071A1 (en) 2022-03-30 2022-03-30 Speed reducer

Country Status (1)

Country Link
WO (1) WO2023188071A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099263A (en) * 1999-09-29 2001-04-10 Sumitomo Heavy Ind Ltd Drive device having oscillation internal engaging planetary gear structure and transmission
JP2011027253A (en) * 2009-06-30 2011-02-10 Jtekt Corp Planetary gear mechanism
CN211145241U (en) * 2019-09-23 2020-07-31 清华大学苏州汽车研究院(吴江) Cycloidal pin gear speed reducer with oil dynamic lubrication and cooling
JP2020128817A (en) * 2019-02-06 2020-08-27 セイコーインスツル株式会社 Transmission device, drive unit, and movable unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099263A (en) * 1999-09-29 2001-04-10 Sumitomo Heavy Ind Ltd Drive device having oscillation internal engaging planetary gear structure and transmission
JP2011027253A (en) * 2009-06-30 2011-02-10 Jtekt Corp Planetary gear mechanism
JP2020128817A (en) * 2019-02-06 2020-08-27 セイコーインスツル株式会社 Transmission device, drive unit, and movable unit
CN211145241U (en) * 2019-09-23 2020-07-31 清华大学苏州汽车研究院(吴江) Cycloidal pin gear speed reducer with oil dynamic lubrication and cooling

Similar Documents

Publication Publication Date Title
US7717203B2 (en) Wheel rotating apparatus and in-wheel motor vehicle
JP5533194B2 (en) Transmission gear unit
WO2002023065A1 (en) Series of motors with speed reducer
US10190666B2 (en) Differential device
WO2017094796A1 (en) Transmission device and differential device
WO2023188071A1 (en) Speed reducer
RU2666482C1 (en) Mechanism for power transmission
JP2003021198A (en) Transmission using epicyclic gear structure
JP5882478B2 (en) Continuously variable transmission
JP2024003284A (en) Internal meshing planetary gear device and articulation device for robot
WO2017170588A1 (en) Gearing
WO2020149219A1 (en) Reduction gear
WO2021024312A1 (en) Reduction gear
KR102465194B1 (en) Cycloidal reducer
WO2017131141A1 (en) Transmission device
US20180291993A1 (en) Transmission device
CN213017530U (en) Internal gearing transmission mechanism
JP6029212B2 (en) Power transmission device for vehicle
JP2017141929A (en) Transmission device
JP2017053378A (en) Transmission device and differential device
CN114526315A (en) Cycloidal speed reducer
JPS6332441Y2 (en)
JP2017172774A (en) Transmission device
WO2017154898A1 (en) Power transmitting device
WO2018100987A1 (en) Transmission device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935217

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)