WO2023188059A1 - Attachment structure and refrigeration cycle device - Google Patents

Attachment structure and refrigeration cycle device Download PDF

Info

Publication number
WO2023188059A1
WO2023188059A1 PCT/JP2022/015793 JP2022015793W WO2023188059A1 WO 2023188059 A1 WO2023188059 A1 WO 2023188059A1 JP 2022015793 W JP2022015793 W JP 2022015793W WO 2023188059 A1 WO2023188059 A1 WO 2023188059A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection element
temperature detection
flat tube
wall portion
support wall
Prior art date
Application number
PCT/JP2022/015793
Other languages
French (fr)
Japanese (ja)
Inventor
昌寛 岡島
嘉一 村上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024510845A priority Critical patent/JPWO2023188059A1/ja
Priority to PCT/JP2022/015793 priority patent/WO2023188059A1/en
Publication of WO2023188059A1 publication Critical patent/WO2023188059A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a mounting structure and a refrigeration cycle device.
  • Patent Document 1 describes a mounting structure for mounting a thermistor on a cylindrical pipe.
  • the above-described mounting structure is provided, for example, in a refrigeration cycle device such as an air conditioner.
  • a refrigeration cycle device such as an air conditioner
  • the heat exchanger of an outdoor unit may have a flat tube. Since the above mounting structure is a structure in which the temperature detection element is attached to a cylindrical pipe, the temperature detection element cannot be attached to a flat tube. Therefore, conventionally, when attaching a temperature detection element to a heat exchanger having a flat tube, the temperature detection element was attached to a cylindrical pipe provided separately from the flat tube. Therefore, there were problems such as difficulty in accurately detecting the temperature of the flat tube.
  • an object of the present disclosure is to provide a mounting structure that can suitably attach a temperature detection element to a flat tube, and a refrigeration cycle device equipped with such a mounting structure.
  • One aspect of the mounting structure according to the present disclosure is a third direction that extends in a first direction and has a dimension in a second direction orthogonal to the first direction that is orthogonal to both the first direction and the second direction.
  • a flat tube larger in size than the flat tube, a temperature detection element extending in one direction and attached to the flat tube, and a mounting member attaching the temperature detection element to the flat tube, and inside the flat tube,
  • a plurality of channels through which fluid flows are formed in line in the second direction, and the mounting member is located on a first side in the third direction with respect to the flat tube, and the first support wall is in contact with the flat tube.
  • a second support wall portion located on a second side opposite to the first side in the third direction with respect to the flat tube; the first support wall portion and the second support wall portion. and an engagement wall that protrudes from the first support wall to the second side and sandwiches the flat tube in the second direction between the connection wall and the connection wall.
  • a through hole passing through the connection wall in the second direction is formed in the wall, and the temperature detection element is inserted through the through hole and is inserted between the flat tube and the second support wall.
  • the second support wall portion is placed in contact with the flat tube, and presses the temperature sensing element against the flat tube while being elastically deformed in the third direction.
  • One aspect of the refrigeration cycle device includes the above-described mounting structure, a heat exchanger having the flat tube, and a control unit to which the temperature detection element is electrically connected.
  • a temperature detection element can be suitably attached to a flat tube in a refrigeration cycle device or the like.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a refrigeration cycle device in Embodiment 1.
  • FIG. 1 is a perspective view showing an outdoor unit in Embodiment 1.
  • FIG. It is a perspective view showing a heat exchanger of an outdoor unit in Embodiment 1.
  • FIG. 3 is a diagram showing a part of the heat exchanger of the outdoor unit in Embodiment 1, viewed from the rear side.
  • FIG. 3 is a perspective view showing the mounting structure in the first embodiment.
  • 6 is a perspective view showing the mounting structure in Embodiment 1, and is a view of the mounting structure viewed from a different angle from that in FIG. 5.
  • FIG. 7 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along VII-VII in FIG. 6.
  • FIG. 1 is a perspective view showing an outdoor unit in Embodiment 1.
  • FIG. It is a perspective view showing a heat exchanger of an outdoor unit in Embodiment 1.
  • FIG. 3
  • FIG. 8 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 9 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along line IX-IX in FIG. 8.
  • FIG. FIG. 3 is a perspective view showing a mounting member in Embodiment 1.
  • FIG. 11 is a perspective view showing the mounting member in Embodiment 1, and is a view of the mounting member viewed from a different angle from that in FIG. 10.
  • FIG. FIG. 3 is a cross-sectional view showing the mounting member in the first embodiment.
  • FIG. 7 is a perspective view showing a mounting structure in Embodiment 2;
  • the drawings appropriately indicate an X axis, a Y axis, and a Z axis.
  • the X-axis indicates one of the horizontal directions.
  • the Y axis indicates the other horizontal direction.
  • the Z axis indicates the vertical direction.
  • the horizontal direction along the X-axis will be referred to as the "back-and-forth direction ”.
  • the front-rear direction X, the left-right direction Y, and the vertical direction Z are directions that are orthogonal to each other.
  • the side of the vertical direction Z that the Z-axis arrow points to (+Z side) is referred to as the upper side
  • the side of the vertical direction Z that is opposite to the side that the Z-axis arrow points to (-Z side) is referred to as the lower side.
  • the front-rear direction X the side toward which the X-axis arrow points (+X side) is the front side
  • the front-rear direction X the side opposite to the side toward which the X-axis arrow points (-X side) is the rear side.
  • the left-right direction Y is the left-right direction when the outdoor unit of the following embodiment is viewed from the front side (+X side).
  • the side of the left-right direction Y that the Y-axis arrow points to (+Y side) is the right side
  • the side of the left-right direction Y that is opposite to the side that the Y-axis arrow points to (-Y side) is the left side
  • FIG. 1 is a schematic diagram showing a schematic configuration of a refrigeration cycle device 100 in the first embodiment.
  • the refrigeration cycle device 100 is a device that uses a refrigeration cycle in which refrigerant 19 circulates.
  • refrigeration cycle device 100 is an air conditioner.
  • the refrigeration cycle device 100 includes an outdoor unit 10, an indoor unit 20, and a circulation path section 18.
  • the outdoor unit 10 is placed outdoors.
  • the indoor unit 20 is placed indoors.
  • the outdoor unit 10 and the indoor unit 20 are connected to each other by a circulation path section 18 through which a refrigerant 19 circulates.
  • the outdoor unit 10 and the indoor unit 20 are heat exchange units that exchange heat with air.
  • the refrigeration cycle device 100 can adjust the temperature of indoor air by exchanging heat between the refrigerant 19 flowing in the circulation path section 18 and the air in the room where the indoor unit 20 is placed.
  • the refrigerant 19 include a fluorine-based refrigerant or a hydrocarbon-based refrigerant that has a low global warming potential (GWP).
  • GWP global warming potential
  • the outdoor unit 10 includes a housing 11, a compressor 12, a heat exchanger 13, a flow rate adjustment valve 14, a blower 15, a four-way valve 16, and a control section 17. Inside the housing 11, a compressor 12, a heat exchanger 13, a flow rate regulating valve 14, an air blower 15, a four-way valve 16, and a control unit 17 are housed.
  • the compressor 12, the heat exchanger 13, the flow rate adjustment valve 14, and the four-way valve 16 are provided in a portion of the circulation path portion 18 located inside the housing 11.
  • the compressor 12, the heat exchanger 13, the flow rate adjustment valve 14, and the four-way valve 16 are connected by a portion of the circulation path portion 18 located inside the housing 11.
  • the four-way valve 16 is provided in a portion of the circulation path section 18 that is connected to the discharge side of the compressor 12.
  • the four-way valve 16 can reverse the direction of the refrigerant 19 flowing within the circulation path section 18 by switching a part of the circulation path section 18 .
  • the path connected by the four-way valve 16 is the path shown by the solid line in the four-way valve 16 in FIG. 1
  • the refrigerant 19 flows in the circulation path section 18 in the direction shown by the solid line arrow in FIG.
  • the path connected by the four-way valve 16 is the path shown by the broken line in the four-way valve 16 in FIG. 1
  • the refrigerant 19 flows in the circulation path portion 18 in the direction shown by the broken line arrow in FIG.
  • the indoor unit 20 includes a housing 21, a heat exchanger 22, and a blower 23.
  • the housing 21 houses a heat exchanger 22 and a blower 23 therein.
  • the indoor unit 20 is capable of a cooling operation that cools the air in the room where the indoor unit 20 is placed, and a heating operation that warms the air in the room where the indoor unit 20 is placed.
  • the refrigerant 19 flowing within the circulation path section 18 flows in the direction shown by the solid arrow in FIG. 1. That is, when the indoor unit 20 is operated for cooling, the refrigerant 19 flowing in the circulation path section 18 is transferred to the compressor 12, the heat exchanger 13 of the outdoor unit 10, the flow rate adjustment valve 14, and the heat exchanger 22 of the indoor unit 20. are circulated in this order and returned to the compressor 12.
  • the heat exchanger 13 in the outdoor unit 10 functions as a condenser
  • the heat exchanger 22 in the indoor unit 20 functions as an evaporator.
  • the refrigerant 19 flowing within the circulation path section 18 flows in the direction shown by the broken line in FIG. That is, when the indoor unit 20 is operated for heating, the refrigerant 19 flowing in the circulation path section 18 is transferred to the compressor 12, the heat exchanger 22 of the indoor unit 20, the flow rate adjustment valve 14, and the heat exchanger 13 of the outdoor unit 10. are circulated in this order and returned to the compressor 12.
  • the heat exchanger 13 in the outdoor unit 10 functions as an evaporator
  • the heat exchanger 22 in the indoor unit 20 functions as a condenser.
  • FIG. 2 is a perspective view showing the outdoor unit 10.
  • FIG. 3 is a perspective view showing the heat exchanger 13 of the outdoor unit 10.
  • FIG. 4 is a diagram of a part of the heat exchanger 13 of the outdoor unit 10 viewed from the rear side (-X side). Note that FIG. 4 is a diagram of, for example, a portion of the heat exchanger 13 surrounded by an imaginary circle P shown by a two-dot chain line in FIG. 3, viewed from the rear side. The portion of the heat exchanger 13 surrounded by the virtual circle P is the right (+Y side) end of the lower end of the first portion 13a.
  • the outdoor unit 10 has a substantially rectangular parallelepiped shape that is long in the vertical direction Z.
  • the housing 11 of the outdoor unit 10 has a substantially rectangular parallelepiped box shape that is long in the vertical direction Z.
  • two blowers 15 are housed inside the casing 11 in line with each other in the vertical direction Z.
  • the heat exchanger 13 has a substantially L-shape when viewed in the vertical direction Z.
  • the heat exchanger 13 has a first portion 13a extending in the left-right direction Y, and a second portion 13b extending toward the front side (+X side) from the left end ( ⁇ Y side) of the first portion 13a.
  • the heat exchanger 13 includes a plurality of flat tubes 40 arranged at intervals in the vertical direction Z. Refrigerant 19 flows inside the plurality of flat tubes 40 .
  • a temperature detection element 60 is attached to one of the plurality of flat tubes 40 by an attachment member 50. In the first embodiment, a temperature detection element 60 is attached from the rear side (-X side) to a part of the flat tube 40 located in the area surrounded by the virtual circle P in FIG.
  • the portion of the flat tube 40 to which the temperature detection element 60 is attached constitutes a part of the first portion 13a of the heat exchanger 13, and extends in the left-right direction Y.
  • the "first direction” in which the flat tube 40 extends is referred to as the left-right direction Y
  • the "second direction” orthogonal to the first direction is referred to as the front-back direction X
  • the first direction and the second direction The "third direction” perpendicular to both is defined as the vertical direction Z.
  • the upper side in the vertical direction Z is the "first side” in the third direction
  • the lower side in the vertical direction Z is the "second side” opposite to the first side in the third direction. side”.
  • FIG. 5 is a perspective view showing the mounting structure 30.
  • FIG. 6 is a perspective view showing the mounting structure 30, and is a view of the mounting structure 30 from a different angle from that in FIG.
  • FIG. 7 is a sectional view showing the mounting structure 30, and is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a sectional view showing the mounting structure 30, and is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a sectional view showing the mounting structure 30, and is a sectional view taken along line IX--IX in FIG.
  • FIG. 10 is a perspective view showing the mounting member 50.
  • FIG. 11 is a perspective view showing the mounting member 50, and is a view of the mounting member 50 seen from a different angle from that in FIG.
  • FIG. 12 is a sectional view showing the mounting member 50.
  • the attachment structure 30 includes a flat tube 40, a temperature detection element 60 attached to the flat tube 40, and an attachment member 50 that attaches the temperature detection element 60 to the flat tube 40.
  • the temperature detection element 60 extends in one direction. In the first embodiment, one direction in which the temperature detection element 60 extends is the front-rear direction X.
  • the temperature detection element 60 has a cylindrical shape extending in the front-rear direction X.
  • the temperature detection element 60 is an element that is attached in contact with the flat tube 40 and detects the surface temperature of the flat tube 40. In the first embodiment, temperature detection element 60 is a thermistor.
  • the surface temperature of the flat tube 40 tends to be approximately the same as the temperature of the refrigerant 19 flowing inside the flat tube 40. Therefore, by detecting the surface temperature of the flat tube 40 with the temperature detection element 60, the temperature of the refrigerant 19 flowing inside the flat tube 40 can be indirectly detected.
  • a plurality of wires 61 are connected to the rear (-X side) end of the temperature detection element 60.
  • the plurality of wires 61 are electrically connected to the control section 17 of the outdoor unit 10.
  • the temperature detection element 60 is electrically connected to the control section 17.
  • the control unit 17 controls the outdoor unit 10 based on a signal transmitted from the temperature detection element 60 via the wiring 61.
  • the control unit 17 performs a defrosting operation to remove frost generated in the heat exchanger 13 of the outdoor unit 10 based on a signal from the temperature detection element 60.
  • the flat tube 40 extends in the left-right direction Y.
  • the flat tube 40 is a tube whose dimension in the front-rear direction X is larger than its dimension in the vertical direction Z.
  • the flat tube 40 is a tube that is flat in the vertical direction Z.
  • the cross-sectional shape of the flat tube 40 in a cross section perpendicular to the left-right direction Y is a rectangular shape with rounded corners elongated in the front-rear direction X.
  • the surfaces on both sides of the flat tube 40 in the vertical direction Z are flat surfaces perpendicular to the vertical direction Z.
  • a plurality of channels 41 through which fluid flows are formed in line in the front-rear direction X.
  • the fluid flowing through the flow path 41 is the refrigerant 19.
  • the number of channels 41 formed inside one flat tube 40 is not particularly limited. In the example shown in FIGS. 5 and 6, five channels 41 are formed inside the flat tube 40.
  • Each flow path 41 extends in the direction in which the flat tube 40 extends, that is, in the left-right direction Y.
  • the plurality of channels 41 are formed by partitioning the inside of the flat tube 40 into a plurality of sections in the front-rear direction X.
  • the attachment member 50 is a member for attaching the temperature detection element 60 to the flat tube 40.
  • the attachment member 50 is a clip member that attaches the temperature detection element 60 to the flat tube 40 by sandwiching the temperature detection element 60 and the flat tube 40 together in the vertical direction Z.
  • the mounting member 50 is a sheet metal member made by subjecting a sheet metal to press working or the like.
  • the mounting member 50 includes a first support wall portion 51, a second support wall portion 52, a connection wall portion 53, an engagement wall portion 54, a pair of guide portions 55, 56.
  • the first support wall portion 51 has a rectangular plate shape that is long in the front-rear direction X.
  • the plate surface of the first support wall portion 51 faces the vertical direction Z. More specifically, the plate surface of the first support wall portion 51 is perpendicular to the vertical direction Z.
  • the first support wall portion 51 is located above the flat tube 40.
  • the first support wall portion 51 is in contact with the flat tube 40 . More specifically, the lower surface of the first support wall portion 51 is in contact with the upper surface of the flat tube 40.
  • the second support wall portion 52 has a substantially rectangular plate shape that is long in the front-rear direction X. As shown in FIGS. The plate surface of the second support wall portion 52 faces the vertical direction Z. The second support wall portion 52 is arranged below and apart from the first support wall portion 51 . The front end (+X side) of the second support wall 52 is located further back ( ⁇ X side) than the front end of the first support wall 51 . As shown in FIG. 6, the second support wall portion 52 is located below the flat tube 40. The second support wall portion 52 is located away from the flat tube 40 on the lower side. A temperature detection element 60 is inserted between the second support wall portion 52 and the flat tube 40 in the vertical direction Z.
  • the temperature detection element 60 is located above the second support wall portion 52 in the vertical direction Z and below the flat tube 40 in the vertical direction Z.
  • the second support wall portion 52 includes a main body portion 52a, support portions 52b and 52c, and a connection portion 52d.
  • the main body portion 52a has a substantially square plate shape.
  • the plate surface of the main body portion 52a faces the vertical direction Z. More specifically, the plate surface of the main body portion 52a is perpendicular to the vertical direction Z.
  • the support portion 52b and the support portion 52c are spaced apart from each other in the front-rear direction X.
  • the support portion 52b and the support portion 52c are arranged to sandwich the main body portion 52a in the front-rear direction X.
  • the support portion 52b is connected to the rear ( ⁇ X side) edge of the main body portion 52a.
  • the support portion 52c is connected to the front (+X side) edge of the main body portion 52a.
  • the support portions 52b and 52c extend in the left-right direction Y.
  • the support parts 52b and 52c protrude upward from the main body part 52a.
  • the support portions 52b and 52c have a semicircular arc shape that is convex upward when viewed in the left-right direction Y.
  • the upper surfaces of the support portions 52b and 52c have an arcuate shape that is convex upward when viewed in the left-right direction Y.
  • the support portion 52b is formed by bending a portion of the second support wall portion 52 on the rear side ( ⁇ X side) of the main body portion 52a into an upwardly convex arc shape.
  • the support portion 52c is formed by bending a portion of the second support wall portion 52 on the front side (+X side) of the main body portion 52a into an upwardly convex arc shape.
  • the front end of the support portion 52c is the front end of the second support wall portion 52.
  • the support parts 52b and 52c protrude upward and are in contact with the temperature detection element 60. More specifically, the upper vertex of the support parts 52b and 52c is in contact with the lower end of the temperature detection element 60.
  • the connecting portion 52d is a portion of the second support wall portion 52 that is connected to the connecting wall portion 53.
  • the connecting portion 52d connects the rear ( ⁇ X side) end of the support portion 52b and the lower end of the connecting wall portion 53.
  • the rear end of the connecting portion 52d is the rear end of the second support wall portion 52.
  • the connecting portion 52d extends in the left-right direction Y.
  • the second support wall portion 52 is a leaf spring that can be elastically deformed in the vertical direction Z using the connecting portion 52d as a fulcrum.
  • the second support wall portion 52 When the temperature detection element 60 is attached to the flat tube 40, the second support wall portion 52 is in a state in which it is slightly elastically deformed downward using the connecting portion 52d as a fulcrum. Thereby, the second support wall portion 52 applies an upward elastic force to the temperature detection element 60 via the pair of support portions 52b and 52c.
  • the temperature detection element 60 which receives an upward elastic force from the second support wall portion 52, is pressed against the lower surface of the flat tube 40. Thereby, the temperature detection element 60 is in contact with the flat tube 40. In this manner, the second support wall portion 52 presses the temperature detection element 60 against the flat tube 40 while being elastically deformed in the vertical direction Z.
  • connection wall portion 53 is a wall portion that connects the first support wall portion 51 and the second support wall portion 52.
  • the connection wall 53 connects the rear end (-X side) of the first support wall 51 and the rear end of the second support wall 52.
  • the connection wall portion 53 has a rectangular plate shape that is long in the left-right direction Y.
  • the plate surface of the connection wall portion 53 faces the front-rear direction X. More specifically, the plate surface of the connecting wall portion 53 is perpendicular to the front-rear direction X.
  • the upper end of the connection wall 53 is connected to the rear end of the first support wall 51 .
  • the lower end portion of the connecting wall portion 53 is connected to the rear end portion of the second support wall portion 52, that is, the rear end portion of the connecting portion 52d.
  • a through hole 53a is formed in the connection wall portion 53.
  • the through hole 53a penetrates the connection wall portion 53 in the front-rear direction X.
  • the through hole 53a is a rectangular hole that is long in the left-right direction Y.
  • the dimension of the through hole 53a in the left-right direction Y and the dimension of the through hole 53a in the vertical direction Z are larger than the outer diameter of the cylindrical temperature detection element 60.
  • both edges in the left-right direction Y are arranged apart from both ends of the connection wall portion 53 in the left-right direction Y, respectively.
  • the lower inner edge of the through hole 53a is arranged above and away from the lower end of the connection wall portion 53. As shown in FIGS. 8 and 12, the lower edge of the inner edge of the through hole 53a is arranged at approximately the same position in the vertical direction Z as the upper end portions of the supports 52b and 52c. The lower inner edge of the through hole 53a is located slightly below the upper ends of the support parts 52b and 52c.
  • the upper edge of the inner edge of the through hole 53a is located further away from the upper end of the connection wall portion 53 on the lower side. As shown in FIG. 8, the upper edge of the inner edge of the through hole 53a is located above the lower surface of the flat tube 40.
  • a temperature detection element 60 is passed through the through hole 53a in the front-rear direction X.
  • the temperature detection element 60 is passed through the through hole 53a and is disposed between the flat tube 40 and the second support wall portion 52.
  • the outer peripheral surface of the portion of the temperature detection element 60 inserted into the through hole 53a is arranged slightly away from the inner edge of the through hole 53a. Note that a part of the outer peripheral surface of the portion of the temperature detection element 60 inserted into the through hole 53a may contact the inner edge of the through hole 53a.
  • the engagement wall portion 54 protrudes downward from the first support wall portion 51. More specifically, the engagement wall 54 protrudes downward from the front (+X side) end of the first support wall 51 .
  • the engagement wall portion 54 has a rectangular plate shape that is long in the left-right direction Y.
  • the plate surface of the engagement wall portion 54 faces in the front-rear direction X. More specifically, the plate surface of the engagement wall portion 54 is perpendicular to the front-rear direction X.
  • the engagement wall portion 54 and the connection wall portion 53 sandwich the flat tube 40 in the front-rear direction X.
  • the connecting wall portion 53 and the engaging wall portion 54 are in contact with the flat tube 40.
  • the flat tube 40 is fitted between the connecting wall portion 53 and the engaging wall portion 54 in the front-rear direction X.
  • the lower end of the engagement wall portion 54 is located below the upper edge of the inner edge of the through hole 53a.
  • the lower end of the engagement wall portion 54 is located below the flat tube 40.
  • the lower end of the engagement wall 54 is located above the second support wall 52.
  • the lower end of the engagement wall portion 54 is located above the central axis C of the temperature detection element 60.
  • the central axis C is an imaginary line passing through the center of the cylindrical temperature sensing element 60 and extending in the front-rear direction X. As shown in FIG. 11, the lower end of the engagement wall portion 54 is located above the pair of guide portions 55, 56.
  • the lower part of the engagement wall part 54 is arranged opposite to the front side (+X side) of the upper part of the temperature detection element 60.
  • the temperature detection element 60 is arranged to face a portion of the engagement wall portion 54 located below the flat tube 40 in the front-rear direction X.
  • the rear ( ⁇ X side) surface of the engagement wall portion 54 is in contact with the front (+X side) end of the flat tube 40 and the front end of the temperature detection element 60.
  • the pair of guide parts 55 and 56 are connected to both edges of the second support wall part 52 in the left-right direction Y, respectively.
  • the guide portion 55 is connected to the left (-Y side) edge of the main body portion 52a of the second support wall portion 52.
  • the guide portion 56 is connected to the right (+Y side) edge of the main body portion 52a of the second support wall portion 52.
  • the guide portion 55 and the guide portion 56 are arranged opposite to each other with an interval in the left-right direction Y.
  • the pair of guide parts 55 and 56 are arranged to sandwich the part of the temperature detection element 60 located between the flat tube 40 and the second support wall part 52 in the left-right direction Y. .
  • the pair of guide portions 55 and 56 are arranged to sandwich a portion of the temperature detection element 60 located below the central axis C in the left-right direction Y.
  • the guide portion 55 includes a protruding wall portion 55a that protrudes upward from the left ( ⁇ Y side) edge of the main body portion 52a, and a protruding wall portion 55a that protrudes upward from the left ( ⁇ Y side) edge of the main body portion 52a, and a right side (+Y side) from the upper end of the protruding wall portion 55a. ).
  • the guide portion 56 has a protruding wall portion 56a that protrudes upward from the right edge of the main body portion 52a, and a guide wall portion 56b that protrudes to the left from the upper end of the protruding wall portion 56a.
  • the protruding wall portions 55a and 56a have a rectangular plate shape extending in the front-rear direction X.
  • the plate surfaces of the protruding walls 55a and 56a face the left-right direction Y.
  • the pair of guide walls 55b and 56b are plate-shaped with plate surfaces facing in the vertical direction Z.
  • the pair of guide walls 55b and 56b are arranged facing each other with an interval in the left-right direction Y.
  • the right (+Y side) edge of the guide wall 55b is a guide edge 55c extending in the front-rear direction X.
  • the left (-Y side) edge of the guide wall 56b is a guide edge 56c extending in the front-rear direction X.
  • the pair of guide edges 55c and 56c are arranged opposite to each other with an interval in the left-right direction Y.
  • the pair of guide edges 55c and 56c face the temperature detection element 60 in the left-right direction Y.
  • the pair of guide edges 55c and 56c face the temperature detection element 60 with a gap interposed therebetween.
  • the pair of guide edges 55c and 56c are arranged to sandwich a portion of the temperature detection element 60 located below the center of the temperature detection element 60 in the vertical direction Z, that is, the central axis C, in the left-right direction Y. There is.
  • the pair of guide edges 55c and 56c face the temperature detection element 60 with a gap interposed therebetween. Note that the pair of guide edges 55c and 56c may be in contact with the temperature detection element 60.
  • the guide edge 55c has an inclined part 55d and a straight part 55e.
  • the inclined portion 55d is a portion on the rear side ( ⁇ X side) of the guide edge portion 55c.
  • the inclined portion 55d extends linearly in a direction inclined in the left-right direction Y with respect to the front-rear direction X.
  • the inclined portion 55d is located on the right side (+Y side) toward the front side (+X side).
  • the straight portion 55e is a portion on the front side of the guide edge portion 55c.
  • the dimension of the straight portion 55e in the front-rear direction X is smaller than the dimension of the inclined portion 55d in the front-rear direction X.
  • the straight portion 55e is connected to the end portion of the inclined portion 55d in the front-rear direction X on the side farthest from the connection wall portion 53 (+X side), that is, the front end portion.
  • the straight portion 55e extends in the front-rear direction X along the temperature detection element 60. In the first embodiment, the straight portion 55e extends linearly in parallel to the front-rear direction X.
  • the guide edge portion 56c has an inclined portion 56d and a straight portion 56e.
  • the inclined portion 56d is a portion on the rear side ( ⁇ X side) of the guide edge portion 56c.
  • the inclined portion 56d extends linearly in a direction inclined in the left-right direction Y with respect to the front-rear direction X.
  • the inclined portion 56d is located on the left side (-Y side) toward the front side (+X side).
  • the straight portion 56e is the front portion of the guide edge 56c.
  • the dimension of the straight portion 56e in the front-rear direction X is smaller than the dimension of the inclined portion 56d in the front-rear direction X.
  • the straight portion 56e is connected to the end of the inclined portion 56d in the front-rear direction X on the side far from the connection wall portion 53 (+X side), that is, the front end.
  • the straight portion 56e extends in the front-rear direction X along the temperature detection element 60. In the first embodiment, the straight portion 56e extends linearly parallel to the front-rear direction X.
  • the inclined portions 55d and 56d of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y.
  • the pair of inclined portions 55d and 56d extend toward each other toward the front side (+X side).
  • the pair of inclined parts 55d and 56d extend in a direction closer to each other as they move away from the connecting wall part 53 in the front-rear direction X.
  • the distance in the left-right direction Y between the rear (-X side) ends of the pair of inclined parts 55d and 56d is larger than the outer diameter of the temperature detection element 60.
  • the straight portions 55e and 56e of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y.
  • the distance between the pair of straight portions 55e and 56e in the left-right direction Y is the same throughout the front-rear direction X.
  • the distance in the left-right direction Y between the pair of straight portions 55e and 56e is the same as the distance in the left-right direction Y between the rear ( ⁇ X side) ends of the pair of inclined portions 55d and 56d.
  • the distance between the pair of straight portions 55e and 56e in the left-right direction Y is smaller than the outer diameter of the temperature detection element 60.
  • the pair of straight portions 55e and 56e face the temperature detection element 60 with a gap therebetween. Note that the pair of straight portions 55e and 56e may be in contact with the temperature detection element 60.
  • An operator who attaches the temperature detection element 60 to the flat tube 40 using the attachment structure 30 first attaches the attachment member 50 to the flat tube 40. Specifically, the operator fits the flat tube 40 between the connection wall 53 and the engagement wall 54 while hooking the first support wall 51 of the mounting member 50 onto the flat tube 40 from above. Next, the operator inserts the temperature detection element 60 into the through hole 53a formed in the connection wall part 53 from the rear side (-X side), and inserts the temperature detection element 60 between the flat tube 40 and the second support wall part 52. Insert it in between. The operator inserts the temperature detection element 60 to the front side (+X side) until the front end of the temperature detection element 60 hits the engagement wall part 54.
  • the distance in the vertical direction Z between the upper end part of the support part 52b of the second support wall part 52 and the flat tube 40 is slightly smaller than the diameter. Therefore, when the temperature detection element 60 is inserted between the support part 52b and the flat tube 40, the support part 52b is pushed downward by the temperature detection element 60, and the second support wall part 52 and the flat tube 40 are pushed downward. The space between them is pushed wider. As a result, the second support wall portion 52 is elastically deformed downward. The operator inserts the temperature detection element 60 further to the front side (+X side) against the elastic force that the temperature detection element 60 receives from the second support wall part 52, and inserts the front end of the temperature detection element 60 into the engagement wall part. Hit 54. As described above, the temperature detection element 60 is attached to the flat tube 40.
  • the mounting member 50 includes a first support wall portion 51 located above the flat tube 40, a second support wall portion 52 located below the flat tube 40,
  • the flat tube 40 is connected in the front-rear direction It has an engaging wall portion 54 which is sandwiched therebetween.
  • a through hole 53a is formed in the connection wall portion 53, passing through the connection wall portion 53 in the front-rear direction X.
  • the temperature detection element 60 extending in one direction is passed through the through hole 53a and disposed between the flat tube 40 and the second support wall portion 52, and is in contact with the flat tube 40.
  • the second support wall portion 52 presses the temperature detection element 60 against the flat tube 40 while being elastically deformed in the vertical direction Z. Therefore, by sandwiching the flat tube 40 and the temperature detection element 60 between the first support wall part 51 and the second support wall part 52, the temperature detection element 60 is suitably flattened while being in contact with the flat tube 40. It can be attached to the tube 40.
  • the temperature detection element 60 can be attached to the flat tube 40 by simply inserting the temperature detection element 60 through the through hole 53a after hooking the attachment member 50 onto the flat tube 40. Therefore, the work of attaching the temperature detection element 60 to the flat tube 40 can be facilitated. Further, when removing the temperature detection element 60 from the flat tube 40, pull the temperature detection element 60 to the rear side (-X side) and remove the temperature detection element 60 from the first support wall part 51 and the second support wall part 50. Just pull it out from between. Therefore, the work of removing the temperature detection element 60 from the flat tube 40 can be done easily.
  • a plurality of channels 41 through which the refrigerant 19 as a fluid flows are formed in a line in the front-rear direction X, that is, a direction perpendicular to the direction in which the flat tube 40 extends. Therefore, for example, if the temperature detection element 60 is attached to the flat tube 40 with the direction in which the temperature detection element 60 extends aligned with the direction in which the flat tube 40 extends, the part of the flat tube 40 where the flow path 41 is formed will be The temperature detection element 60 may not come into contact with the surface. Therefore, the surface temperature of the flat tube 40 detected by the temperature detection element 60 becomes a temperature based on the temperature of the refrigerant 19 flowing only in some of the channels 41 among the plural channels 41. There is a possibility that the surface temperature of the flat tube 40 through which the refrigerant 19 flows cannot be properly detected.
  • the temperature is The detection element 60 can be attached to the flat tube 40. Therefore, the temperature detection element 60 can be brought into contact with each of the surfaces of the portion of the flat tube 40 in which the plurality of channels 41 arranged in the front-rear direction X are formed. Thereby, the temperature detection element 60 can easily detect the surface temperature of the flat tube 40 through which the refrigerant 19 flows in the plurality of channels 41 with good precision.
  • the temperature detection element 60 can be suitably attached to the flat tube 40 by the attachment structure 30.
  • the control unit 17 electrically connected to the temperature detection element 60 can suitably and accurately detect the surface temperature of the flat tube 40 included in the heat exchanger 13 using the temperature detection element 60. Therefore, the outdoor unit 10 can be suitably controlled by the control unit 17.
  • the temperature detection element 60 is located below the flat tube 40 in the vertical direction Z. Therefore, even if the condensed water generated in the heat exchanger 13 remains on the upper surface of the flat tube 40, the condensed water does not come into contact with the temperature detection element 60. Thereby, it is possible to suppress the condensed water from coming into contact with the temperature detection element 60 for a long time, and it is possible to suppress the occurrence of malfunctions such as malfunctions in the temperature detection element 60.
  • the second support wall portion 52 includes a plurality of support portions 52b and 52c that protrude upward and contact the temperature detection element 60.
  • the plurality of support parts 52b and 52c are arranged at intervals in the front-rear direction X. Therefore, the second support wall portion 52 can be suitably brought into contact with the temperature detection element 60 by the plurality of support portions 52b and 52c. Thereby, the elastic force can be suitably transmitted from the second support wall portion 52 to the temperature detection element 60, and the temperature detection element 60 can be suitably pressed against the flat tube 40.
  • the temperature detection element 60 can be moved to the main body of the second support wall 52 by the support parts 52 b and 52 c that protrude upward. It can be arranged upwardly away from the portion 52a. Therefore, it is possible to suppress the condensed water that remains on the main body part 52a of the second support wall part 52 from coming into contact with the temperature detection element 60 for a long time, and it is possible to further suppress the occurrence of malfunctions such as malfunctions in the temperature detection element 60. .
  • the upper surfaces of the plurality of support parts 52b and 52c have an arcuate shape that is convex upward when viewed in the left-right direction Y. Therefore, the apexes of the arcuate support portions 52b and 52c can be brought into contact with the temperature detection element 60, and the contact area between the second support wall portion 52 and the temperature detection element 60 can be reduced. Therefore, for example, it is easier to prevent condensed water from entering and staying between the second support wall portion 52 and the temperature detection element 60, and it is possible to further suppress the temperature detection element 60 from coming into contact with the condensed water for a long time.
  • the contact between the temperature detection element 60 and each support portion 52b, 52c is approximately a point contact. This makes it easier to prevent condensed water from entering and staying between the second support wall portion 52 and the temperature detection element 60. Moreover, since the upper surfaces of the plurality of support parts 52b, 52c are arc-shaped, even if dew condensation water adheres to the support parts 52b, 52c, the dew condensation water can flow downward. Thereby, it is possible to more preferably suppress the contact of dew condensed water with the temperature detection element 60 for a long time.
  • the mounting member 50 includes a pair of mounting members arranged to sandwich the portion of the temperature detection element 60 between the flat tube 40 and the second support wall portion 52 in the left-right direction Y. It has guide parts 55 and 56. Each of the pair of guide parts 55 and 56 has guide edges 55c and 56c that face the temperature detection element 60 in the left-right direction Y and extend in the front-rear direction X. Therefore, the temperature detection element 60 can be positioned in the left-right direction Y by each guide edge 55c, 56c of the pair of guide parts 55, 56. Furthermore, it is possible to prevent the temperature detection element 60 from being disposed at an angle in the left-right direction Y with respect to the front-rear direction X.
  • the guide edges 55c and 56c of the pair of guide parts 55 and 56 are located below the center of the temperature detection element 60 in the vertical direction Z.
  • the parts are placed on both sides in the left-right direction Y. Therefore, the temperature detection element 60 can be supported in the left-right direction Y by the pair of guide parts 55 and 56 at a position close to the second support wall part 52.
  • This allows the second support wall portion 52 to easily apply elastic force to the temperature detection element 60 in a stable manner.
  • the pair of guide edges 55c and 56c can be arranged close to the second support wall 52, it is easy to connect the pair of guide parts 55 and 56 to the second support wall 52, and the pair of guide edges 55c and 56c can be easily connected to the second support wall 52. , 56 can be easily provided.
  • the portion below the central axis C of the temperature detection element 60 is sandwiched between the pair of guide edges 55c and 56c.
  • the distance between the pair of guide edges 55c and 56c can be narrowed.
  • the dimensions of the guide wall portions 55b, 56b in the pair of guide portions 55, 56 in the left-right direction Y can be increased. Therefore, the pair of guide walls 55b, 56b can be easily elastically deformed in the vertical direction Z.
  • the guide wall By elastically deforming the guide edges 55b and 56b in the vertical direction Z, the temperature detection element 60 can be inserted between the pair of guide edges 55c and 56c.
  • the guide edges 55c and 56c have inclined portions 55d and 56d extending in a direction inclined in the left-right direction Y with respect to the front-rear direction X.
  • the sloped portions 55d and 56d of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y, and extend toward each other as they move away from the connection wall portion 53 in the front-rear direction X.
  • the posture of the temperature detection element 60 can be corrected to a posture extending in the front-rear direction X. This makes it easy to suitably attach the temperature detection element 60 to the flat tube 40 with one direction in which the temperature detection element 60 extends perpendicular to the direction in which the flat tube 40 extends.
  • the guide edges 55c and 56c have straight portions 55e and 56e that extend in the front-rear direction X along the temperature detection element 60.
  • the straight portions 55e and 56e of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y, and the connecting wall portion 53 is located at the end of each inclined portion 55d and 56e in the front-rear direction X. It is connected to the end on the far side (+X side). Therefore, when the temperature detection element 60 is inserted between the flat tube 40 and the second support wall part 52, the front end of the temperature detection element 60 is guided in the left-right direction Y by the pair of inclined parts 55d and 56d.
  • the temperature detection element 60 can be stably positioned in the left-right direction Y by the pair of straight portions 55e and 56e. Therefore, it is easier to attach the temperature detection element 60 to the flat tube 40 in a state where one direction in which the temperature detection element 60 extends is perpendicular to the direction in which the flat tube 40 extends.
  • the lower end of the engagement wall portion 54 is located below the flat tube 40.
  • the temperature detection element 60 is arranged to face a portion of the engagement wall portion 54 located below the flat tube 40 in the front-rear direction X. Therefore, the temperature detection element 60 can be positioned in the front-rear direction X by abutting the front end of the temperature detection element 60 against the engagement wall part 54. As a result, the front end of the temperature detection element 60 can be prevented from being disposed protruding forward (+X side) relative to the flat tube 40, and the temperature detection element 60 can be suitably disposed in the front-rear direction X with respect to the flat tube 40. can do.
  • the temperature detection element 60 it is easier to bring the temperature detection element 60 into contact with each of the surfaces of the portion of the flat tube 40 where the plurality of channels 41 are formed. Therefore, the surface temperature of the flat tube 40 through which the refrigerant 19 flows in the plurality of channels 41 can be more easily detected by the temperature detection element 60.
  • FIG. 13 is a perspective view showing the mounting structure 230 in the second embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
  • the second support wall 252 of the mounting member 250 is formed with a discharge hole 252e that penetrates the second support wall 252 in the vertical direction Z.
  • the discharge hole 252e is formed in the main body portion 52a of the second support wall portion 252.
  • the discharge hole 252e is formed in the center portion of the main body portion 52a in the front-rear direction X and the left-right direction Y.
  • the discharge hole 252e is located below the temperature detection element 60.
  • the discharge hole 252e is a circular hole. Note that the shape of the discharge hole 252e is not particularly limited, and may be elliptical or polygonal.
  • the other configurations of each part of the attachment structure 230 are the same as the other configurations of each part of the attachment structure 30 in the first embodiment.
  • the second support wall portion 252 is formed with a discharge hole 252e that penetrates the second support wall portion 252 in the vertical direction Z. Therefore, even if dew condensation water or the like drips onto the upper surface of the second support wall portion 252, the dew condensation water can be discharged downward from the discharge hole 252e. Thereby, it is possible to suppress the accumulation of condensed water on the second support wall portion 252, and it is possible to further suppress the temperature detection element 60 from coming into contact with the condensed water for a long period of time. Therefore, occurrence of malfunctions such as malfunctions in the temperature detection element 60 can be further suppressed.
  • the temperature detection element is not particularly limited as long as it extends in one direction and can detect temperature.
  • the temperature detection element may be a thermocouple, a resistance temperature detector, or another temperature sensor.
  • One direction in which the temperature detection element extends when attached to the flat tube may be, for example, a direction that intersects both the direction in which the flat tube extends and the thickness direction of the flat tube.
  • the temperature detection element 60 may be attached to the flat tube 40 with one direction in which the temperature detection element 60 extends inclined in the left-right direction Y with respect to the front-rear direction X.
  • the temperature detection element may have a square columnar shape or an elliptical columnar shape as long as it extends in one direction.
  • the material constituting the mounting member is not particularly limited.
  • the mounting member may be made of metal or resin.
  • the second side (lower side) end of the engagement wall in the mounting member may be located on the first side (upper side) than the second side end of the flat tube, or may be located at the same position in the third direction (vertical direction Z) as the end portion of.
  • an opposing wall that faces the temperature detection element in the second direction front-back direction X
  • an opposing wall portion may be provided that protrudes from the second support wall portion to the first side (upper side), and the tip portion (front end portion) of the temperature detection element may abut against the opposing wall portion.
  • the number of support parts in the second support wall part is not particularly limited.
  • the support portion may have any shape.
  • the pair of guide parts in the mounting member may have any configuration as long as it has a guide edge that faces the temperature detection element in the first direction (left-right direction Y) and extends in the second direction (front-back direction X). good.
  • the pair of guide portions may be connected to the connection wall portion or may be connected to the first support wall portion.
  • the pair of guide parts may not be provided.
  • the mounting structure of the present disclosure may be any structure as long as it is a structure in which a temperature detection element is attached to a flat tube, and may be applied to an indoor unit of a refrigeration cycle device, or may be applied to equipment other than a refrigeration cycle device.
  • the fluid flowing through the flow path of the flat tube is not particularly limited, and may be water or the like.
  • the refrigeration cycle device of the present disclosure may be any device that utilizes a refrigeration cycle in which refrigerant circulates, and is not limited to an air conditioner.
  • the refrigeration cycle device may be a heat pump water heater or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An attachment structure according to the present disclosure comprises: a flat pipe that extends in a first direction and has a dimension in a second direction that is perpendicular to the first direction greater than the dimension in a third direction that is perpendicular to both the first direction and the second direction; a temperature detecting element attached to the flat pipe; and an attachment member that attaches the temperature detecting element to the flat pipe. A plurality of flow paths aligned in the second direction are formed inside the flat pipe. The attachment member has: a first supporting wall part that is positioned on a first side in the third direction with respect to the flat pipe; a second supporting wall part that is positioned on a second side in the third direction with respect to the flat pipe; a connecting wall part that joins the first supporting wall part and the second supporting wall part; and an engagement wall part that protrudes from the first supporting wall part to the second side and sandwiches the flat pipe between itself and the connecting wall part in the second direction. A through-hole is formed in the connecting wall part, and the temperature detecting element passes through the through-hole and is disposed between the flat pipe and the second supporting wall part and is in contact with the flat pipe, and the second supporting wall part presses the temperature detecting element against the flat pipe while the second supporting wall part is deformed in the third direction.

Description

取付構造、および冷凍サイクル装置Mounting structure and refrigeration cycle equipment
 本開示は、取付構造、および冷凍サイクル装置に関する。 The present disclosure relates to a mounting structure and a refrigeration cycle device.
 サーミスタなどの温度検出素子を配管に取り付ける取付構造が知られている。例えば、特許文献1には、円筒状の配管に対してサーミスタを取り付ける取付構造が記載されている。 A mounting structure for attaching a temperature detection element such as a thermistor to piping is known. For example, Patent Document 1 describes a mounting structure for mounting a thermistor on a cylindrical pipe.
特開2000-146264号公報Japanese Patent Application Publication No. 2000-146264
 上記のような取付構造は、例えば、空気調和機などの冷凍サイクル装置に備えられる。空気調和機などの冷凍サイクル装置においては、例えば、室外機の熱交換器が扁平管を有する場合がある。上記のような取付構造は、円筒の配管に温度検出素子を取り付ける構造であるため、扁平管に温度検出素子を取り付けることはできない。そのため、従来では、扁平管を有する熱交換器に対して温度検出素子を取り付ける場合には、扁平管とは別に設けられた円筒の配管に対して温度検出素子を取り付けていた。したがって、扁平管の温度を精度よく検出しにくいなどの問題があった。 The above-described mounting structure is provided, for example, in a refrigeration cycle device such as an air conditioner. In a refrigeration cycle device such as an air conditioner, for example, the heat exchanger of an outdoor unit may have a flat tube. Since the above mounting structure is a structure in which the temperature detection element is attached to a cylindrical pipe, the temperature detection element cannot be attached to a flat tube. Therefore, conventionally, when attaching a temperature detection element to a heat exchanger having a flat tube, the temperature detection element was attached to a cylindrical pipe provided separately from the flat tube. Therefore, there were problems such as difficulty in accurately detecting the temperature of the flat tube.
 本開示は、上記の事情に鑑みて、温度検出素子を扁平管に対して好適に取り付けることができる取付構造、およびそのような取付構造を備える冷凍サイクル装置を提供することを目的とする。 In view of the above circumstances, an object of the present disclosure is to provide a mounting structure that can suitably attach a temperature detection element to a flat tube, and a refrigeration cycle device equipped with such a mounting structure.
 本開示に係る取付構造の一つの態様は、第1方向に延び、かつ、前記第1方向と直交する第2方向における寸法が前記第1方向および前記第2方向の両方と直交する第3方向における寸法よりも大きい扁平管と、一方向に延び、前記扁平管に取り付けられる温度検出素子と、前記温度検出素子を前記扁平管に取り付ける取付部材と、を備え、前記扁平管の内部には、流体が流れる流路が前記第2方向に並んで複数形成され、前記取付部材は、前記扁平管に対して前記第3方向における第1側に位置し、前記扁平管に接触する第1支持壁部と、前記扁平管に対して前記第3方向における前記第1側と逆側の第2側に位置する第2支持壁部と、前記第1支持壁部と前記第2支持壁部とを繋ぐ接続壁部と、前記第1支持壁部から前記第2側に突出し、前記接続壁部との間で前記扁平管を前記第2方向に挟む係合壁部と、を有し、前記接続壁部には、前記接続壁部を前記第2方向に貫通する貫通穴が形成され、前記温度検出素子は、前記貫通穴に通されて前記扁平管と前記第2支持壁部との間に配置され、かつ、前記扁平管に接触し、前記第2支持壁部は、前記第3方向に弾性変形した状態で前記温度検出素子を前記扁平管に押し付ける。 One aspect of the mounting structure according to the present disclosure is a third direction that extends in a first direction and has a dimension in a second direction orthogonal to the first direction that is orthogonal to both the first direction and the second direction. a flat tube larger in size than the flat tube, a temperature detection element extending in one direction and attached to the flat tube, and a mounting member attaching the temperature detection element to the flat tube, and inside the flat tube, A plurality of channels through which fluid flows are formed in line in the second direction, and the mounting member is located on a first side in the third direction with respect to the flat tube, and the first support wall is in contact with the flat tube. a second support wall portion located on a second side opposite to the first side in the third direction with respect to the flat tube; the first support wall portion and the second support wall portion. and an engagement wall that protrudes from the first support wall to the second side and sandwiches the flat tube in the second direction between the connection wall and the connection wall. A through hole passing through the connection wall in the second direction is formed in the wall, and the temperature detection element is inserted through the through hole and is inserted between the flat tube and the second support wall. The second support wall portion is placed in contact with the flat tube, and presses the temperature sensing element against the flat tube while being elastically deformed in the third direction.
 本開示に係る冷凍サイクル装置の一つの態様は、上記の取付構造と、前記扁平管を有する熱交換器と、前記温度検出素子が電気的に接続される制御部と、を備える。 One aspect of the refrigeration cycle device according to the present disclosure includes the above-described mounting structure, a heat exchanger having the flat tube, and a control unit to which the temperature detection element is electrically connected.
 本開示によれば、冷凍サイクル装置などにおいて、温度検出素子を扁平管に対して好適に取り付けることができる。 According to the present disclosure, a temperature detection element can be suitably attached to a flat tube in a refrigeration cycle device or the like.
実施の形態1における冷凍サイクル装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a refrigeration cycle device in Embodiment 1. FIG. 実施の形態1における室外機を示す斜視図である。1 is a perspective view showing an outdoor unit in Embodiment 1. FIG. 実施の形態1における室外機の熱交換器を示す斜視図である。It is a perspective view showing a heat exchanger of an outdoor unit in Embodiment 1. 実施の形態1における室外機の熱交換器の一部を後側から見た図である。FIG. 3 is a diagram showing a part of the heat exchanger of the outdoor unit in Embodiment 1, viewed from the rear side. 実施の形態1における取付構造を示す斜視図である。FIG. 3 is a perspective view showing the mounting structure in the first embodiment. 実施の形態1における取付構造を示す斜視図であって、図5とは異なる角度から取付構造を見た図である。6 is a perspective view showing the mounting structure in Embodiment 1, and is a view of the mounting structure viewed from a different angle from that in FIG. 5. FIG. 実施の形態1における取付構造を示す断面図であって、図6におけるVII-VII断面図である。7 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along VII-VII in FIG. 6. FIG. 実施の形態1における取付構造を示す断面図であって、図7におけるVIII-VIII断面図である。8 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along line VIII-VIII in FIG. 7. FIG. 実施の形態1における取付構造を示す断面図であって、図8におけるIX-IX断面図である。9 is a sectional view showing the mounting structure in Embodiment 1, and is a sectional view taken along line IX-IX in FIG. 8. FIG. 実施の形態1における取付部材を示す斜視図である。FIG. 3 is a perspective view showing a mounting member in Embodiment 1. FIG. 実施の形態1における取付部材を示す斜視図であって、図10とは異なる角度から取付部材を見た図である。11 is a perspective view showing the mounting member in Embodiment 1, and is a view of the mounting member viewed from a different angle from that in FIG. 10. FIG. 実施の形態1における取付部材を示す断面図である。FIG. 3 is a cross-sectional view showing the mounting member in the first embodiment. 実施の形態2における取付構造を示す斜視図である。FIG. 7 is a perspective view showing a mounting structure in Embodiment 2;
 以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数などを、実際の構造における縮尺および数などと異ならせる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily modified within the scope of the technical idea of the present disclosure. Further, in the following drawings, in order to make each structure easier to understand, the scale and number of each structure may be different from the scale and number of the actual structure.
 また、図面には、適宜、X軸、Y軸、およびZ軸を示している。X軸は、水平方向のうちの一方向を示している。Y軸は、水平方向のうちの他の一方向を示している。Z軸は、鉛直方向を示している。以下の説明においては、X軸に沿った水平方向を“前後方向X”と呼び、Y軸に沿った水平方向を“左右方向Y”と呼び、Z軸に沿った鉛直方向を“鉛直方向Z”と呼ぶ。前後方向X、左右方向Y、および鉛直方向Zは、互いに直交する方向である。以下の説明においては、鉛直方向ZのうちZ軸の矢印が向く側(+Z側)を上側とし、鉛直方向ZのうちZ軸の矢印が向く側と逆側(-Z側)を下側とする。また、前後方向XのうちX軸の矢印が向く側(+X側)を前側とし、前後方向XのうちX軸の矢印が向く側と逆側(-X側)を後側とする。また、左右方向Yは、以下の実施の形態の室外機を前側(+X側)から見た場合における左右方向とする。つまり、左右方向YのうちY軸の矢印が向く側(+Y側)を右側とし、左右方向YのうちY軸の矢印が向く側と逆側(-Y側)を左側とする。 Additionally, the drawings appropriately indicate an X axis, a Y axis, and a Z axis. The X-axis indicates one of the horizontal directions. The Y axis indicates the other horizontal direction. The Z axis indicates the vertical direction. In the following explanation, the horizontal direction along the X-axis will be referred to as the "back-and-forth direction ”. The front-rear direction X, the left-right direction Y, and the vertical direction Z are directions that are orthogonal to each other. In the following explanation, the side of the vertical direction Z that the Z-axis arrow points to (+Z side) is referred to as the upper side, and the side of the vertical direction Z that is opposite to the side that the Z-axis arrow points to (-Z side) is referred to as the lower side. do. Further, in the front-rear direction X, the side toward which the X-axis arrow points (+X side) is the front side, and in the front-rear direction X, the side opposite to the side toward which the X-axis arrow points (-X side) is the rear side. Moreover, the left-right direction Y is the left-right direction when the outdoor unit of the following embodiment is viewed from the front side (+X side). In other words, the side of the left-right direction Y that the Y-axis arrow points to (+Y side) is the right side, and the side of the left-right direction Y that is opposite to the side that the Y-axis arrow points to (-Y side) is the left side.
 実施の形態1.
 図1は、実施の形態1における冷凍サイクル装置100の概略構成を示す模式図である。冷凍サイクル装置100は、冷媒19が循環する冷凍サイクルを利用する装置である。実施の形態1において冷凍サイクル装置100は、空気調和機である。図1に示すように、冷凍サイクル装置100は、室外機10と、室内機20と、循環経路部18と、を備える。室外機10は、屋外に配置されている。室内機20は、室内に配置されている。室外機10と室内機20とは、冷媒19が循環する循環経路部18によって互いに接続されている。室外機10および室内機20は、空気との間で熱交換を行う熱交換ユニットである。
Embodiment 1.
FIG. 1 is a schematic diagram showing a schematic configuration of a refrigeration cycle device 100 in the first embodiment. The refrigeration cycle device 100 is a device that uses a refrigeration cycle in which refrigerant 19 circulates. In the first embodiment, refrigeration cycle device 100 is an air conditioner. As shown in FIG. 1, the refrigeration cycle device 100 includes an outdoor unit 10, an indoor unit 20, and a circulation path section 18. The outdoor unit 10 is placed outdoors. The indoor unit 20 is placed indoors. The outdoor unit 10 and the indoor unit 20 are connected to each other by a circulation path section 18 through which a refrigerant 19 circulates. The outdoor unit 10 and the indoor unit 20 are heat exchange units that exchange heat with air.
 冷凍サイクル装置100は、循環経路部18内を流れる冷媒19と室内機20が配置された室内の空気との間で熱交換を行うことによって、室内の空気の温度を調整可能である。冷媒19としては、例えば、地球温暖化係数(GWP:Global Warming Potential)が低いフッ素系冷媒、または炭化水素系冷媒などが挙げられる。 The refrigeration cycle device 100 can adjust the temperature of indoor air by exchanging heat between the refrigerant 19 flowing in the circulation path section 18 and the air in the room where the indoor unit 20 is placed. Examples of the refrigerant 19 include a fluorine-based refrigerant or a hydrocarbon-based refrigerant that has a low global warming potential (GWP).
 室外機10は、筐体11と、圧縮機12と、熱交換器13と、流量調整弁14と、送風機15と、四方弁16と、制御部17と、を備える。筐体11の内部には、圧縮機12、熱交換器13、流量調整弁14、送風機15、四方弁16、および制御部17が収容されている。 The outdoor unit 10 includes a housing 11, a compressor 12, a heat exchanger 13, a flow rate adjustment valve 14, a blower 15, a four-way valve 16, and a control section 17. Inside the housing 11, a compressor 12, a heat exchanger 13, a flow rate regulating valve 14, an air blower 15, a four-way valve 16, and a control unit 17 are housed.
 圧縮機12と熱交換器13と流量調整弁14と四方弁16とは、循環経路部18のうち筐体11の内部に位置する部分に設けられている。圧縮機12と熱交換器13と流量調整弁14と四方弁16とは、循環経路部18のうち筐体11の内部に位置する部分によって接続されている。 The compressor 12, the heat exchanger 13, the flow rate adjustment valve 14, and the four-way valve 16 are provided in a portion of the circulation path portion 18 located inside the housing 11. The compressor 12, the heat exchanger 13, the flow rate adjustment valve 14, and the four-way valve 16 are connected by a portion of the circulation path portion 18 located inside the housing 11.
 四方弁16は、循環経路部18のうち圧縮機12の吐出側に繋がる部分に設けられている。四方弁16は、循環経路部18の一部の経路を切り替えることで、循環経路部18内を流れる冷媒19の向きを反転させることができる。四方弁16によって繋がれる経路が図1の四方弁16に実線で示す経路である場合、冷媒19は、循環経路部18内を図1に実線の矢印で示す向きに流れる。一方、四方弁16によって繋がれる経路が図1の四方弁16に破線で示す経路である場合、冷媒19は、循環経路部18内を図1に破線の矢印で示す向きに流れる。 The four-way valve 16 is provided in a portion of the circulation path section 18 that is connected to the discharge side of the compressor 12. The four-way valve 16 can reverse the direction of the refrigerant 19 flowing within the circulation path section 18 by switching a part of the circulation path section 18 . When the path connected by the four-way valve 16 is the path shown by the solid line in the four-way valve 16 in FIG. 1, the refrigerant 19 flows in the circulation path section 18 in the direction shown by the solid line arrow in FIG. On the other hand, when the path connected by the four-way valve 16 is the path shown by the broken line in the four-way valve 16 in FIG. 1, the refrigerant 19 flows in the circulation path portion 18 in the direction shown by the broken line arrow in FIG.
 室内機20は、筐体21と、熱交換器22と、送風機23と、を備える。筐体21は、熱交換器22、および送風機23を内部に収容している。室内機20は、室内機20が配置された室内の空気を冷やす冷房運転と、室内機20が配置された室内の空気を暖める暖房運転とが可能である。 The indoor unit 20 includes a housing 21, a heat exchanger 22, and a blower 23. The housing 21 houses a heat exchanger 22 and a blower 23 therein. The indoor unit 20 is capable of a cooling operation that cools the air in the room where the indoor unit 20 is placed, and a heating operation that warms the air in the room where the indoor unit 20 is placed.
 室内機20が冷房運転される場合、循環経路部18内を流れる冷媒19は、図1に実線の矢印で示す向きに流れる。つまり、室内機20が冷房運転される場合、循環経路部18内を流れる冷媒19は、圧縮機12、室外機10の熱交換器13、流量調整弁14、および室内機20の熱交換器22をこの順に通って圧縮機12に戻るように循環する。冷房運転において、室外機10内の熱交換器13は凝縮器として機能し、室内機20内の熱交換器22は蒸発器として機能する。 When the indoor unit 20 is operated for cooling, the refrigerant 19 flowing within the circulation path section 18 flows in the direction shown by the solid arrow in FIG. 1. That is, when the indoor unit 20 is operated for cooling, the refrigerant 19 flowing in the circulation path section 18 is transferred to the compressor 12, the heat exchanger 13 of the outdoor unit 10, the flow rate adjustment valve 14, and the heat exchanger 22 of the indoor unit 20. are circulated in this order and returned to the compressor 12. In the cooling operation, the heat exchanger 13 in the outdoor unit 10 functions as a condenser, and the heat exchanger 22 in the indoor unit 20 functions as an evaporator.
 一方、室内機20が暖房運転される場合、循環経路部18内を流れる冷媒19は、図1に破線で示す向きに流れる。つまり、室内機20が暖房運転される場合、循環経路部18内を流れる冷媒19は、圧縮機12、室内機20の熱交換器22、流量調整弁14、および室外機10の熱交換器13をこの順に通って圧縮機12に戻るように循環する。暖房運転において、室外機10内の熱交換器13は蒸発器として機能し、室内機20内の熱交換器22は凝縮器として機能する。 On the other hand, when the indoor unit 20 is operated for heating, the refrigerant 19 flowing within the circulation path section 18 flows in the direction shown by the broken line in FIG. That is, when the indoor unit 20 is operated for heating, the refrigerant 19 flowing in the circulation path section 18 is transferred to the compressor 12, the heat exchanger 22 of the indoor unit 20, the flow rate adjustment valve 14, and the heat exchanger 13 of the outdoor unit 10. are circulated in this order and returned to the compressor 12. In heating operation, the heat exchanger 13 in the outdoor unit 10 functions as an evaporator, and the heat exchanger 22 in the indoor unit 20 functions as a condenser.
 次に、室外機10について、さらに詳細に説明する。図2は、室外機10を示す斜視図である。図3は、室外機10の熱交換器13を示す斜視図である。図4は、室外機10の熱交換器13の一部を後側(-X側)から見た図である。なお、図4は、例えば、熱交換器13のうち図3に二点鎖線で示す仮想円Pで囲まれた部分を後側から見た図である。熱交換器13のうち仮想円Pで囲まれた部分は、第1部分13aの下側の端部における右側(+Y側)の端部である。 Next, the outdoor unit 10 will be explained in more detail. FIG. 2 is a perspective view showing the outdoor unit 10. FIG. 3 is a perspective view showing the heat exchanger 13 of the outdoor unit 10. FIG. 4 is a diagram of a part of the heat exchanger 13 of the outdoor unit 10 viewed from the rear side (-X side). Note that FIG. 4 is a diagram of, for example, a portion of the heat exchanger 13 surrounded by an imaginary circle P shown by a two-dot chain line in FIG. 3, viewed from the rear side. The portion of the heat exchanger 13 surrounded by the virtual circle P is the right (+Y side) end of the lower end of the first portion 13a.
 図2に示すように、室外機10は、鉛直方向Zに長い略直方体状である。室外機10の筐体11は、鉛直方向Zに長い略直方体箱状である。実施の形態1において筐体11の内部には、鉛直方向Zに並んで2つの送風機15が収容されている。 As shown in FIG. 2, the outdoor unit 10 has a substantially rectangular parallelepiped shape that is long in the vertical direction Z. The housing 11 of the outdoor unit 10 has a substantially rectangular parallelepiped box shape that is long in the vertical direction Z. In the first embodiment, two blowers 15 are housed inside the casing 11 in line with each other in the vertical direction Z.
 図3に示すように、実施の形態1において熱交換器13は、鉛直方向Zに見て略L字形状である。熱交換器13は、左右方向Yに延びる第1部分13aと、第1部分13aの左側(-Y側)の端部から前側(+X側)に延びる第2部分13bと、を有する。図4に示すように、熱交換器13は、鉛直方向Zに間隔を空けて配置された複数の扁平管40を有する。複数の扁平管40の内部には、冷媒19が流れる。複数の扁平管40のうちの1つには、取付部材50によって温度検出素子60が取り付けられている。実施の形態1では、図3において仮想円Pで囲まれた部分に位置する扁平管40の一部に、後側(-X側)から温度検出素子60が取り付けられている。 As shown in FIG. 3, in the first embodiment, the heat exchanger 13 has a substantially L-shape when viewed in the vertical direction Z. The heat exchanger 13 has a first portion 13a extending in the left-right direction Y, and a second portion 13b extending toward the front side (+X side) from the left end (−Y side) of the first portion 13a. As shown in FIG. 4, the heat exchanger 13 includes a plurality of flat tubes 40 arranged at intervals in the vertical direction Z. Refrigerant 19 flows inside the plurality of flat tubes 40 . A temperature detection element 60 is attached to one of the plurality of flat tubes 40 by an attachment member 50. In the first embodiment, a temperature detection element 60 is attached from the rear side (-X side) to a part of the flat tube 40 located in the area surrounded by the virtual circle P in FIG.
 次に、温度検出素子60を取付部材50によって扁平管40に取り付ける取付構造30について詳細に説明する。実施の形態1において、扁平管40のうち温度検出素子60が取り付けられた部分は、熱交換器13の第1部分13aの一部を構成する部分であり、左右方向Yに延びている。以下の取付構造30の説明においては、扁平管40が延びる“第1方向”を左右方向Yとし、第1方向と直交する“第2方向”を前後方向Xとし、第1方向および第2方向の両方と直交する“第3方向”を鉛直方向Zとする。また、以下の取付構造30の説明において、鉛直方向Zの上側は第3方向における“第1側”であり、鉛直方向Zの下側は第3方向における第1側と逆側の“第2側”である。 Next, the attachment structure 30 for attaching the temperature detection element 60 to the flat tube 40 using the attachment member 50 will be described in detail. In the first embodiment, the portion of the flat tube 40 to which the temperature detection element 60 is attached constitutes a part of the first portion 13a of the heat exchanger 13, and extends in the left-right direction Y. In the following description of the mounting structure 30, the "first direction" in which the flat tube 40 extends is referred to as the left-right direction Y, the "second direction" orthogonal to the first direction is referred to as the front-back direction X, and the first direction and the second direction The "third direction" perpendicular to both is defined as the vertical direction Z. In addition, in the following description of the mounting structure 30, the upper side in the vertical direction Z is the "first side" in the third direction, and the lower side in the vertical direction Z is the "second side" opposite to the first side in the third direction. side”.
 図5は、取付構造30を示す斜視図である。図6は、取付構造30を示す斜視図であって、図5とは異なる角度から取付構造30を見た図である。図7は、取付構造30を示す断面図であって、図6におけるVII-VII断面図である。図8は、取付構造30を示す断面図であって、図7におけるVIII-VIII断面図である。図9は、取付構造30を示す断面図であって、図8におけるIX-IX断面図である。図10は、取付部材50を示す斜視図である。図11は、取付部材50を示す斜視図であって、図10とは異なる角度から取付部材50を見た図である。図12は、取付部材50を示す断面図である。 FIG. 5 is a perspective view showing the mounting structure 30. FIG. 6 is a perspective view showing the mounting structure 30, and is a view of the mounting structure 30 from a different angle from that in FIG. FIG. 7 is a sectional view showing the mounting structure 30, and is a sectional view taken along line VII-VII in FIG. FIG. 8 is a sectional view showing the mounting structure 30, and is a sectional view taken along line VIII-VIII in FIG. FIG. 9 is a sectional view showing the mounting structure 30, and is a sectional view taken along line IX--IX in FIG. FIG. 10 is a perspective view showing the mounting member 50. FIG. 11 is a perspective view showing the mounting member 50, and is a view of the mounting member 50 seen from a different angle from that in FIG. FIG. 12 is a sectional view showing the mounting member 50.
 図5および図6に示すように、取付構造30は、扁平管40と、扁平管40に取り付けられる温度検出素子60と、温度検出素子60を扁平管40に取り付ける取付部材50と、を備える。温度検出素子60は、一方向に延びている。実施の形態1において、温度検出素子60が延びる一方向は、前後方向Xである。温度検出素子60は、前後方向Xに延びる円柱状である。温度検出素子60は、扁平管40に接触して取り付けられ、扁平管40の表面温度を検出するための素子である。実施の形態1において温度検出素子60は、サーミスタである。扁平管40の表面温度は、扁平管40の内部を流れる冷媒19の温度とほぼ同じになりやすい。そのため、温度検出素子60によって扁平管40の表面温度を検出することで、扁平管40内を流れる冷媒19の温度を間接的に検出することができる。 As shown in FIGS. 5 and 6, the attachment structure 30 includes a flat tube 40, a temperature detection element 60 attached to the flat tube 40, and an attachment member 50 that attaches the temperature detection element 60 to the flat tube 40. The temperature detection element 60 extends in one direction. In the first embodiment, one direction in which the temperature detection element 60 extends is the front-rear direction X. The temperature detection element 60 has a cylindrical shape extending in the front-rear direction X. The temperature detection element 60 is an element that is attached in contact with the flat tube 40 and detects the surface temperature of the flat tube 40. In the first embodiment, temperature detection element 60 is a thermistor. The surface temperature of the flat tube 40 tends to be approximately the same as the temperature of the refrigerant 19 flowing inside the flat tube 40. Therefore, by detecting the surface temperature of the flat tube 40 with the temperature detection element 60, the temperature of the refrigerant 19 flowing inside the flat tube 40 can be indirectly detected.
 温度検出素子60の後側(-X側)の端部には、複数の配線61が接続されている。図示は省略するが、複数の配線61は、室外機10の制御部17に電気的に接続されている。これにより、温度検出素子60は、制御部17に電気的に接続されている。制御部17は、温度検出素子60から配線61を介して伝達される信号に基づいて、室外機10を制御する。制御部17は、例えば、温度検出素子60からの信号に基づいて、室外機10の熱交換器13に生じた霜を取り除くための除霜運転などを行う。 A plurality of wires 61 are connected to the rear (-X side) end of the temperature detection element 60. Although not shown, the plurality of wires 61 are electrically connected to the control section 17 of the outdoor unit 10. Thereby, the temperature detection element 60 is electrically connected to the control section 17. The control unit 17 controls the outdoor unit 10 based on a signal transmitted from the temperature detection element 60 via the wiring 61. For example, the control unit 17 performs a defrosting operation to remove frost generated in the heat exchanger 13 of the outdoor unit 10 based on a signal from the temperature detection element 60.
 扁平管40は、左右方向Yに延びている。扁平管40は、前後方向Xにおける寸法が鉛直方向Zにおける寸法よりも大きい管である。扁平管40は、鉛直方向Zに扁平な管である。左右方向Yと直交する断面における扁平管40の断面形状は、前後方向Xに細長い角丸の長方形状である。扁平管40における鉛直方向Zの両側の面は、鉛直方向Zと直交する平坦面である。 The flat tube 40 extends in the left-right direction Y. The flat tube 40 is a tube whose dimension in the front-rear direction X is larger than its dimension in the vertical direction Z. The flat tube 40 is a tube that is flat in the vertical direction Z. The cross-sectional shape of the flat tube 40 in a cross section perpendicular to the left-right direction Y is a rectangular shape with rounded corners elongated in the front-rear direction X. The surfaces on both sides of the flat tube 40 in the vertical direction Z are flat surfaces perpendicular to the vertical direction Z.
 扁平管40の内部には、流体が流れる流路41が前後方向Xに並んで複数形成されている。実施の形態1において流路41を流れる流体は、冷媒19である。1つの扁平管40の内部に形成される流路41の数は、特に限定されない。図5および図6の例において扁平管40の内部には、5つの流路41が形成されている。各流路41は、扁平管40が延びる方向、すなわち左右方向Yに延びている。複数の流路41は、扁平管40の内部が前後方向Xに複数に仕切られることで形成されている。 Inside the flat tube 40, a plurality of channels 41 through which fluid flows are formed in line in the front-rear direction X. In the first embodiment, the fluid flowing through the flow path 41 is the refrigerant 19. The number of channels 41 formed inside one flat tube 40 is not particularly limited. In the example shown in FIGS. 5 and 6, five channels 41 are formed inside the flat tube 40. Each flow path 41 extends in the direction in which the flat tube 40 extends, that is, in the left-right direction Y. The plurality of channels 41 are formed by partitioning the inside of the flat tube 40 into a plurality of sections in the front-rear direction X.
 図5から図9に示すように、取付部材50は、温度検出素子60を扁平管40に取り付けるための部材である。取付部材50は、温度検出素子60と扁平管40とを鉛直方向Zにまとめて挟み込んで温度検出素子60を扁平管40に取り付けるクリップ部材である。実施の形態1において取付部材50は、板金にプレス加工などが施されて作られた板金部材である。図10から図12に示すように、取付部材50は、第1支持壁部51と、第2支持壁部52と、接続壁部53と、係合壁部54と、一対のガイド部55,56と、を有する。 As shown in FIGS. 5 to 9, the attachment member 50 is a member for attaching the temperature detection element 60 to the flat tube 40. The attachment member 50 is a clip member that attaches the temperature detection element 60 to the flat tube 40 by sandwiching the temperature detection element 60 and the flat tube 40 together in the vertical direction Z. In the first embodiment, the mounting member 50 is a sheet metal member made by subjecting a sheet metal to press working or the like. As shown in FIGS. 10 to 12, the mounting member 50 includes a first support wall portion 51, a second support wall portion 52, a connection wall portion 53, an engagement wall portion 54, a pair of guide portions 55, 56.
 第1支持壁部51は、前後方向Xに長い長方形板状である。第1支持壁部51の板面は、鉛直方向Zを向いている。より詳細には、第1支持壁部51の板面は、鉛直方向Zと直交している。図5に示すように、第1支持壁部51は、扁平管40に対して上側に位置する。第1支持壁部51は、扁平管40に接触している。より詳細には、第1支持壁部51の下側の面は、扁平管40の上側の面に接触している。 The first support wall portion 51 has a rectangular plate shape that is long in the front-rear direction X. The plate surface of the first support wall portion 51 faces the vertical direction Z. More specifically, the plate surface of the first support wall portion 51 is perpendicular to the vertical direction Z. As shown in FIG. 5, the first support wall portion 51 is located above the flat tube 40. The first support wall portion 51 is in contact with the flat tube 40 . More specifically, the lower surface of the first support wall portion 51 is in contact with the upper surface of the flat tube 40.
 図10から図12に示すように、第2支持壁部52は、前後方向Xに長い略長方形板状である。第2支持壁部52の板面は、鉛直方向Zを向いている。第2支持壁部52は、第1支持壁部51の下側に離れて配置されている。第2支持壁部52の前側(+X側)の端部は、第1支持壁部51の前側の端部よりも後側(-X側)に位置する。図6に示すように、第2支持壁部52は、扁平管40に対して下側に位置する。第2支持壁部52は、扁平管40から下側に離れて位置する。第2支持壁部52と扁平管40との鉛直方向Zの間には、温度検出素子60が挿し込まれている。実施の形態1において温度検出素子60は、第2支持壁部52の鉛直方向Zの上側に位置し、かつ、扁平管40の鉛直方向Zの下側に位置する。図10から図12に示すように、第2支持壁部52は、本体部52aと、支持部52b,52cと、接続部52dと、を有する。 As shown in FIGS. 10 to 12, the second support wall portion 52 has a substantially rectangular plate shape that is long in the front-rear direction X. As shown in FIGS. The plate surface of the second support wall portion 52 faces the vertical direction Z. The second support wall portion 52 is arranged below and apart from the first support wall portion 51 . The front end (+X side) of the second support wall 52 is located further back (−X side) than the front end of the first support wall 51 . As shown in FIG. 6, the second support wall portion 52 is located below the flat tube 40. The second support wall portion 52 is located away from the flat tube 40 on the lower side. A temperature detection element 60 is inserted between the second support wall portion 52 and the flat tube 40 in the vertical direction Z. In the first embodiment, the temperature detection element 60 is located above the second support wall portion 52 in the vertical direction Z and below the flat tube 40 in the vertical direction Z. As shown in FIGS. 10 to 12, the second support wall portion 52 includes a main body portion 52a, support portions 52b and 52c, and a connection portion 52d.
 本体部52aは、略正方形板状である。本体部52aの板面は、鉛直方向Zを向いている。より詳細には、本体部52aの板面は、鉛直方向Zと直交している。支持部52bと支持部52cとは、前後方向Xに間隔を空けて配置されている。支持部52bと支持部52cとは、本体部52aを前後方向Xに挟んで配置されている。支持部52bは、本体部52aの後側(-X側)の縁部に繋がっている。支持部52cは、本体部52aの前側(+X側)の縁部に繋がっている。 The main body portion 52a has a substantially square plate shape. The plate surface of the main body portion 52a faces the vertical direction Z. More specifically, the plate surface of the main body portion 52a is perpendicular to the vertical direction Z. The support portion 52b and the support portion 52c are spaced apart from each other in the front-rear direction X. The support portion 52b and the support portion 52c are arranged to sandwich the main body portion 52a in the front-rear direction X. The support portion 52b is connected to the rear (−X side) edge of the main body portion 52a. The support portion 52c is connected to the front (+X side) edge of the main body portion 52a.
 図10および図11に示すように、支持部52b,52cは、左右方向Yに延びている。支持部52b,52cは、本体部52aから上側に突出している。図12に示すように、支持部52b,52cは、左右方向Yに見て、上側に凸となる半円弧状である。つまり、支持部52b,52cにおける上側の面は、左右方向Yに見て上側に凸となる円弧状である。支持部52bは、第2支持壁部52のうち本体部52aよりも後側(-X側)の部分の一部が上側に凸となる円弧状に折り曲げられて作られている。支持部52cは、第2支持壁部52のうち本体部52aよりも前側(+X側)の部分が上側に凸となる円弧状に折り曲げられて作られている。支持部52cの前側の端部は、第2支持壁部52の前側の端部である。図8に示すように、支持部52b,52cは、上側に突出して温度検出素子60に接触している。より詳細には、支持部52b,52cのうち上側の頂点が温度検出素子60の下端部に接触している。 As shown in FIGS. 10 and 11, the support portions 52b and 52c extend in the left-right direction Y. The support parts 52b and 52c protrude upward from the main body part 52a. As shown in FIG. 12, the support portions 52b and 52c have a semicircular arc shape that is convex upward when viewed in the left-right direction Y. As shown in FIG. In other words, the upper surfaces of the support portions 52b and 52c have an arcuate shape that is convex upward when viewed in the left-right direction Y. The support portion 52b is formed by bending a portion of the second support wall portion 52 on the rear side (−X side) of the main body portion 52a into an upwardly convex arc shape. The support portion 52c is formed by bending a portion of the second support wall portion 52 on the front side (+X side) of the main body portion 52a into an upwardly convex arc shape. The front end of the support portion 52c is the front end of the second support wall portion 52. As shown in FIG. 8, the support parts 52b and 52c protrude upward and are in contact with the temperature detection element 60. More specifically, the upper vertex of the support parts 52b and 52c is in contact with the lower end of the temperature detection element 60.
 接続部52dは、第2支持壁部52のうち接続壁部53と繋がる部分である。接続部52dは、支持部52bの後側(-X側)の端部と接続壁部53の下側の端部とを繋いでいる。接続部52dの後側の端部は、第2支持壁部52の後側の端部である。図10および図11に示すように、接続部52dは、左右方向Yに延びている。第2支持壁部52は、接続部52dを支点として鉛直方向Zに弾性変形可能な板ばねである。 The connecting portion 52d is a portion of the second support wall portion 52 that is connected to the connecting wall portion 53. The connecting portion 52d connects the rear (−X side) end of the support portion 52b and the lower end of the connecting wall portion 53. The rear end of the connecting portion 52d is the rear end of the second support wall portion 52. As shown in FIGS. 10 and 11, the connecting portion 52d extends in the left-right direction Y. As shown in FIGS. The second support wall portion 52 is a leaf spring that can be elastically deformed in the vertical direction Z using the connecting portion 52d as a fulcrum.
 第2支持壁部52は、扁平管40に温度検出素子60を取り付けた状態において、接続部52dを支点として下側に僅かに弾性変形した状態となっている。これにより、第2支持壁部52は、一対の支持部52b,52cを介して、温度検出素子60に上側向きの弾性力を加えている。第2支持壁部52から上側向きの弾性力を受ける温度検出素子60は、扁平管40の下側の面に押し付けられている。これにより、温度検出素子60は、扁平管40に接触している。このように、第2支持壁部52は、鉛直方向Zに弾性変形した状態で温度検出素子60を扁平管40に押し付けている。 When the temperature detection element 60 is attached to the flat tube 40, the second support wall portion 52 is in a state in which it is slightly elastically deformed downward using the connecting portion 52d as a fulcrum. Thereby, the second support wall portion 52 applies an upward elastic force to the temperature detection element 60 via the pair of support portions 52b and 52c. The temperature detection element 60, which receives an upward elastic force from the second support wall portion 52, is pressed against the lower surface of the flat tube 40. Thereby, the temperature detection element 60 is in contact with the flat tube 40. In this manner, the second support wall portion 52 presses the temperature detection element 60 against the flat tube 40 while being elastically deformed in the vertical direction Z.
 接続壁部53は、第1支持壁部51と第2支持壁部52とを繋ぐ壁部である。実施の形態1において接続壁部53は、第1支持壁部51の後側(-X側)の端部と第2支持壁部52の後側の端部とを繋いでいる。接続壁部53は、左右方向Yに長い長方形板状である。接続壁部53の板面は、前後方向Xを向いている。より詳細には、接続壁部53の板面は、前後方向Xと直交している。接続壁部53の上端部は、第1支持壁部51の後端部に繋がっている。接続壁部53の下端部は、第2支持壁部52の後端部、すなわち接続部52dの後端部に繋がっている。 The connection wall portion 53 is a wall portion that connects the first support wall portion 51 and the second support wall portion 52. In the first embodiment, the connection wall 53 connects the rear end (-X side) of the first support wall 51 and the rear end of the second support wall 52. The connection wall portion 53 has a rectangular plate shape that is long in the left-right direction Y. The plate surface of the connection wall portion 53 faces the front-rear direction X. More specifically, the plate surface of the connecting wall portion 53 is perpendicular to the front-rear direction X. The upper end of the connection wall 53 is connected to the rear end of the first support wall 51 . The lower end portion of the connecting wall portion 53 is connected to the rear end portion of the second support wall portion 52, that is, the rear end portion of the connecting portion 52d.
 接続壁部53には、接続壁部53を前後方向Xに貫通する貫通穴53aが形成されている。実施の形態1において貫通穴53aは、左右方向Yに長い長方形状の穴である。貫通穴53aの左右方向Yの寸法および貫通穴53aの鉛直方向Zの寸法は、円柱状の温度検出素子60の外径よりも大きい。貫通穴53aの内縁のうち左右方向Yの両縁は、接続壁部53の左右方向Yの両端部からそれぞれ離れて配置されている。 A through hole 53a is formed in the connection wall portion 53. The through hole 53a penetrates the connection wall portion 53 in the front-rear direction X. In the first embodiment, the through hole 53a is a rectangular hole that is long in the left-right direction Y. The dimension of the through hole 53a in the left-right direction Y and the dimension of the through hole 53a in the vertical direction Z are larger than the outer diameter of the cylindrical temperature detection element 60. Of the inner edges of the through hole 53a, both edges in the left-right direction Y are arranged apart from both ends of the connection wall portion 53 in the left-right direction Y, respectively.
 貫通穴53aの内縁のうち下側の縁は、接続壁部53の下側の端部よりも上側に離れて配置されている。図8および図12に示すように、貫通穴53aの内縁のうち下側の縁は、支持部52b,52cの上端部と鉛直方向Zにおいてほぼ同じ位置に配置されている。貫通穴53aの内縁のうち下側の縁は、支持部52b,52cの上端部よりも僅かに下側に位置する。 The lower inner edge of the through hole 53a is arranged above and away from the lower end of the connection wall portion 53. As shown in FIGS. 8 and 12, the lower edge of the inner edge of the through hole 53a is arranged at approximately the same position in the vertical direction Z as the upper end portions of the supports 52b and 52c. The lower inner edge of the through hole 53a is located slightly below the upper ends of the support parts 52b and 52c.
 貫通穴53aの内縁のうち上側の縁は、接続壁部53の上側の端部よりも下側に離れて配置されている。図8に示すように、貫通穴53aの内縁のうち上側の縁は、扁平管40の下側の面よりも上側に位置する。貫通穴53aには、温度検出素子60が前後方向Xに通されている。温度検出素子60は、貫通穴53aに通されて扁平管40と第2支持壁部52との間に配置されている。温度検出素子60のうち貫通穴53a内に挿入された部分の外周面は、貫通穴53aの内縁から僅かに離れて配置されている。なお、温度検出素子60のうち貫通穴53a内に挿入された部分の外周面の一部は、貫通穴53aの内縁に接触してもよい。 The upper edge of the inner edge of the through hole 53a is located further away from the upper end of the connection wall portion 53 on the lower side. As shown in FIG. 8, the upper edge of the inner edge of the through hole 53a is located above the lower surface of the flat tube 40. A temperature detection element 60 is passed through the through hole 53a in the front-rear direction X. The temperature detection element 60 is passed through the through hole 53a and is disposed between the flat tube 40 and the second support wall portion 52. The outer peripheral surface of the portion of the temperature detection element 60 inserted into the through hole 53a is arranged slightly away from the inner edge of the through hole 53a. Note that a part of the outer peripheral surface of the portion of the temperature detection element 60 inserted into the through hole 53a may contact the inner edge of the through hole 53a.
 図11に示すように、係合壁部54は、第1支持壁部51から下側に突出している。より詳細には、係合壁部54は、第1支持壁部51の前側(+X側)の端部から下側に突出している。係合壁部54は、左右方向Yに長い長方形板状である。係合壁部54の板面は、前後方向Xを向いている。より詳細には、係合壁部54の板面は、前後方向Xと直交している。図8に示すように、係合壁部54は、接続壁部53との間で扁平管40を前後方向Xに挟んでいる。接続壁部53と係合壁部54とは、扁平管40に接触している。実施の形態1において扁平管40は、接続壁部53と係合壁部54との前後方向Xの間に嵌まっている。 As shown in FIG. 11, the engagement wall portion 54 protrudes downward from the first support wall portion 51. More specifically, the engagement wall 54 protrudes downward from the front (+X side) end of the first support wall 51 . The engagement wall portion 54 has a rectangular plate shape that is long in the left-right direction Y. The plate surface of the engagement wall portion 54 faces in the front-rear direction X. More specifically, the plate surface of the engagement wall portion 54 is perpendicular to the front-rear direction X. As shown in FIG. 8, the engagement wall portion 54 and the connection wall portion 53 sandwich the flat tube 40 in the front-rear direction X. As shown in FIG. The connecting wall portion 53 and the engaging wall portion 54 are in contact with the flat tube 40. In the first embodiment, the flat tube 40 is fitted between the connecting wall portion 53 and the engaging wall portion 54 in the front-rear direction X.
 係合壁部54の下側の端部は、貫通穴53aの内縁のうち上側の縁よりも下側に位置する。係合壁部54の下側の端部は、扁平管40よりも下側に位置する。係合壁部54の下側の端部は、第2支持壁部52よりも上側に位置する。係合壁部54の下側の端部は、温度検出素子60の中心軸線Cよりも上側に位置する。中心軸線Cは、円柱状の温度検出素子60の中心を通り、前後方向Xに延びる仮想線である。図11に示すように、係合壁部54の下側の端部は、一対のガイド部55,56よりも上側に位置する。 The lower end of the engagement wall portion 54 is located below the upper edge of the inner edge of the through hole 53a. The lower end of the engagement wall portion 54 is located below the flat tube 40. The lower end of the engagement wall 54 is located above the second support wall 52. The lower end of the engagement wall portion 54 is located above the central axis C of the temperature detection element 60. The central axis C is an imaginary line passing through the center of the cylindrical temperature sensing element 60 and extending in the front-rear direction X. As shown in FIG. 11, the lower end of the engagement wall portion 54 is located above the pair of guide portions 55, 56.
 図8に示すように、係合壁部54の下側部分は、温度検出素子60の上側部分の前側(+X側)に対向して配置されている。言い換えれば、温度検出素子60は、係合壁部54のうち扁平管40よりも下側に位置する部分と前後方向Xに対向して配置されている。係合壁部54の後側(-X側)の面は、扁平管40の前側(+X側)の端部と温度検出素子60の前側の端部とに接触している。 As shown in FIG. 8, the lower part of the engagement wall part 54 is arranged opposite to the front side (+X side) of the upper part of the temperature detection element 60. In other words, the temperature detection element 60 is arranged to face a portion of the engagement wall portion 54 located below the flat tube 40 in the front-rear direction X. The rear (−X side) surface of the engagement wall portion 54 is in contact with the front (+X side) end of the flat tube 40 and the front end of the temperature detection element 60.
 図11に示すように、一対のガイド部55,56は、第2支持壁部52の左右方向Yの両縁部にそれぞれ繋がっている。ガイド部55は、第2支持壁部52の本体部52aにおける左側(-Y側)の縁部に繋がっている。ガイド部56は、第2支持壁部52の本体部52aにおける右側(+Y側)の縁部に繋がっている。ガイド部55とガイド部56とは、左右方向Yに間隔を空けて対向して配置されている。図9に示すように、一対のガイド部55,56は、温度検出素子60のうち扁平管40と第2支持壁部52との間に位置する部分を左右方向Yに挟んで配置されている。一対のガイド部55,56は、温度検出素子60のうち中心軸線Cよりも下側に位置する部分を左右方向Yに挟んで配置されている。 As shown in FIG. 11, the pair of guide parts 55 and 56 are connected to both edges of the second support wall part 52 in the left-right direction Y, respectively. The guide portion 55 is connected to the left (-Y side) edge of the main body portion 52a of the second support wall portion 52. The guide portion 56 is connected to the right (+Y side) edge of the main body portion 52a of the second support wall portion 52. The guide portion 55 and the guide portion 56 are arranged opposite to each other with an interval in the left-right direction Y. As shown in FIG. 9, the pair of guide parts 55 and 56 are arranged to sandwich the part of the temperature detection element 60 located between the flat tube 40 and the second support wall part 52 in the left-right direction Y. . The pair of guide portions 55 and 56 are arranged to sandwich a portion of the temperature detection element 60 located below the central axis C in the left-right direction Y.
 図11に示すように、ガイド部55は、本体部52aにおける左側(-Y側)の縁部から上側に突出する突出壁部55aと、突出壁部55aの上側の端部から右側(+Y側)に突出するガイド壁部55bと、を有する。ガイド部56は、本体部52aにおける右側の縁部から上側に突出する突出壁部56aと、突出壁部56aの上側の端部から左側に突出するガイド壁部56bと、を有する。突出壁部55a,56aは、前後方向Xに延びる長方形板状である。突出壁部55a,56aの板面は、左右方向Yを向いている。 As shown in FIG. 11, the guide portion 55 includes a protruding wall portion 55a that protrudes upward from the left (−Y side) edge of the main body portion 52a, and a protruding wall portion 55a that protrudes upward from the left (−Y side) edge of the main body portion 52a, and a right side (+Y side) from the upper end of the protruding wall portion 55a. ). The guide portion 56 has a protruding wall portion 56a that protrudes upward from the right edge of the main body portion 52a, and a guide wall portion 56b that protrudes to the left from the upper end of the protruding wall portion 56a. The protruding wall portions 55a and 56a have a rectangular plate shape extending in the front-rear direction X. The plate surfaces of the protruding walls 55a and 56a face the left-right direction Y.
 一対のガイド壁部55b,56bは、板面が鉛直方向Zを向く板状である。一対のガイド壁部55b,56bは、左右方向Yに間隔を空けて対向して配置されている。ガイド壁部55bの右側(+Y側)の縁部は、前後方向Xに延びるガイド縁部55cである。ガイド壁部56bの左側(-Y側)の縁部は、前後方向Xに延びるガイド縁部56cである。一対のガイド縁部55c,56cは、左右方向Yに間隔を空けて対向して配置されている。 The pair of guide walls 55b and 56b are plate-shaped with plate surfaces facing in the vertical direction Z. The pair of guide walls 55b and 56b are arranged facing each other with an interval in the left-right direction Y. The right (+Y side) edge of the guide wall 55b is a guide edge 55c extending in the front-rear direction X. The left (-Y side) edge of the guide wall 56b is a guide edge 56c extending in the front-rear direction X. The pair of guide edges 55c and 56c are arranged opposite to each other with an interval in the left-right direction Y.
 図9に示すように、一対のガイド縁部55c,56cは、温度検出素子60と左右方向Yに対向している。実施の形態1において一対のガイド縁部55c,56cは、温度検出素子60と隙間を介して対向している。一対のガイド縁部55c,56cは、温度検出素子60のうち、温度検出素子60の鉛直方向Zの中心、すなわち中心軸線Cよりも下側に位置する部分を左右方向Yに挟んで配置されている。実施の形態1において、一対のガイド縁部55c,56cは、温度検出素子60と隙間を介して対向している。なお、一対のガイド縁部55c,56cは、温度検出素子60と接触してもよい。 As shown in FIG. 9, the pair of guide edges 55c and 56c face the temperature detection element 60 in the left-right direction Y. In the first embodiment, the pair of guide edges 55c and 56c face the temperature detection element 60 with a gap interposed therebetween. The pair of guide edges 55c and 56c are arranged to sandwich a portion of the temperature detection element 60 located below the center of the temperature detection element 60 in the vertical direction Z, that is, the central axis C, in the left-right direction Y. There is. In the first embodiment, the pair of guide edges 55c and 56c face the temperature detection element 60 with a gap interposed therebetween. Note that the pair of guide edges 55c and 56c may be in contact with the temperature detection element 60.
 図7に示すように、ガイド縁部55cは、傾斜部55dと、直線部55eと、を有する。傾斜部55dは、ガイド縁部55cの後側(-X側)の部分である。傾斜部55dは、前後方向Xに対して左右方向Yに傾く方向に直線状に延びている。傾斜部55dは、前側(+X側)に向かうに従って右側(+Y側)に位置する。直線部55eは、ガイド縁部55cの前側の部分である。直線部55eの前後方向Xの寸法は、傾斜部55dの前後方向Xの寸法よりも小さい。直線部55eは、傾斜部55dの前後方向Xの端部のうち接続壁部53から遠い側(+X側)、すなわち前側の端部に繋がっている。直線部55eは、温度検出素子60に沿って前後方向Xに延びている。実施の形態1において直線部55eは、前後方向Xと平行に直線状に延びている。 As shown in FIG. 7, the guide edge 55c has an inclined part 55d and a straight part 55e. The inclined portion 55d is a portion on the rear side (−X side) of the guide edge portion 55c. The inclined portion 55d extends linearly in a direction inclined in the left-right direction Y with respect to the front-rear direction X. The inclined portion 55d is located on the right side (+Y side) toward the front side (+X side). The straight portion 55e is a portion on the front side of the guide edge portion 55c. The dimension of the straight portion 55e in the front-rear direction X is smaller than the dimension of the inclined portion 55d in the front-rear direction X. The straight portion 55e is connected to the end portion of the inclined portion 55d in the front-rear direction X on the side farthest from the connection wall portion 53 (+X side), that is, the front end portion. The straight portion 55e extends in the front-rear direction X along the temperature detection element 60. In the first embodiment, the straight portion 55e extends linearly in parallel to the front-rear direction X.
 ガイド縁部56cは、傾斜部56dと、直線部56eと、を有する。傾斜部56dは、ガイド縁部56cの後側(-X側)の部分である。傾斜部56dは、前後方向Xに対して左右方向Yに傾く方向に直線状に延びている。傾斜部56dは、前側(+X側)に向かうに従って左側(-Y側)に位置する。直線部56eは、ガイド縁部56cの前側の部分である。直線部56eの前後方向Xの寸法は、傾斜部56dの前後方向Xの寸法よりも小さい。直線部56eは、傾斜部56dの前後方向Xの端部のうち接続壁部53から遠い側(+X側)、すなわち前側の端部に繋がっている。直線部56eは、温度検出素子60に沿って前後方向Xに延びている。実施の形態1において直線部56eは、前後方向Xと平行に直線状に延びている。 The guide edge portion 56c has an inclined portion 56d and a straight portion 56e. The inclined portion 56d is a portion on the rear side (−X side) of the guide edge portion 56c. The inclined portion 56d extends linearly in a direction inclined in the left-right direction Y with respect to the front-rear direction X. The inclined portion 56d is located on the left side (-Y side) toward the front side (+X side). The straight portion 56e is the front portion of the guide edge 56c. The dimension of the straight portion 56e in the front-rear direction X is smaller than the dimension of the inclined portion 56d in the front-rear direction X. The straight portion 56e is connected to the end of the inclined portion 56d in the front-rear direction X on the side far from the connection wall portion 53 (+X side), that is, the front end. The straight portion 56e extends in the front-rear direction X along the temperature detection element 60. In the first embodiment, the straight portion 56e extends linearly parallel to the front-rear direction X.
 一対のガイド部55,56における傾斜部55d,56dは、温度検出素子60を左右方向Yに挟んで配置されている。一対の傾斜部55d,56dは、前側(+X側)に向かうに従って互いに近づく向きに延びている。言い換えれば、一対の傾斜部55d,56dは、接続壁部53から前後方向Xに離れるに従って互いに近づく向きに延びている。一対の傾斜部55d,56dにおける後側(-X側)の端部同士の左右方向Yの間隔は、温度検出素子60の外径よりも大きい。 The inclined portions 55d and 56d of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y. The pair of inclined portions 55d and 56d extend toward each other toward the front side (+X side). In other words, the pair of inclined parts 55d and 56d extend in a direction closer to each other as they move away from the connecting wall part 53 in the front-rear direction X. The distance in the left-right direction Y between the rear (-X side) ends of the pair of inclined parts 55d and 56d is larger than the outer diameter of the temperature detection element 60.
 一対のガイド部55,56における直線部55e,56eは、温度検出素子60を左右方向Yに挟んで配置されている。一対の直線部55e,56e同士の左右方向Yの間隔は、前後方向Xの全体に亘って同じである。一対の直線部55e,56e同士の左右方向Yの間隔は、一対の傾斜部55d,56dにおける後側(-X側)の端部同士の左右方向Yの間隔と同じである。図9に示すように、一対の直線部55e,56e同士の左右方向Yの間隔は、温度検出素子60の外径よりも小さい。一対の直線部55e,56eは、温度検出素子60と隙間を介して対向している。なお、一対の直線部55e,56eは、温度検出素子60と接触していてもよい。 The straight portions 55e and 56e of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y. The distance between the pair of straight portions 55e and 56e in the left-right direction Y is the same throughout the front-rear direction X. The distance in the left-right direction Y between the pair of straight portions 55e and 56e is the same as the distance in the left-right direction Y between the rear (−X side) ends of the pair of inclined portions 55d and 56d. As shown in FIG. 9, the distance between the pair of straight portions 55e and 56e in the left-right direction Y is smaller than the outer diameter of the temperature detection element 60. The pair of straight portions 55e and 56e face the temperature detection element 60 with a gap therebetween. Note that the pair of straight portions 55e and 56e may be in contact with the temperature detection element 60.
 取付構造30によって温度検出素子60を扁平管40に取り付ける作業者は、まず取付部材50を扁平管40に取り付ける。具体的に、作業者は、取付部材50の第1支持壁部51を扁平管40に上側から引っ掛けつつ、接続壁部53と係合壁部54との間に扁平管40を嵌め入れる。次に作業者は、接続壁部53に形成された貫通穴53aに後側(-X側)から温度検出素子60を挿入し、温度検出素子60を扁平管40と第2支持壁部52との間に挿し込んでいく。作業者は、温度検出素子60の前端部が係合壁部54に突き当たるまで、温度検出素子60を前側(+X側)に挿し込んでいく。 An operator who attaches the temperature detection element 60 to the flat tube 40 using the attachment structure 30 first attaches the attachment member 50 to the flat tube 40. Specifically, the operator fits the flat tube 40 between the connection wall 53 and the engagement wall 54 while hooking the first support wall 51 of the mounting member 50 onto the flat tube 40 from above. Next, the operator inserts the temperature detection element 60 into the through hole 53a formed in the connection wall part 53 from the rear side (-X side), and inserts the temperature detection element 60 between the flat tube 40 and the second support wall part 52. Insert it in between. The operator inserts the temperature detection element 60 to the front side (+X side) until the front end of the temperature detection element 60 hits the engagement wall part 54.
 ここで、温度検出素子60が取り付けられていない状態においては、第2支持壁部52の支持部52bの上端部と扁平管40との間の鉛直方向Zの間隔は、温度検出素子60の外径よりも僅かに小さい。そのため、温度検出素子60が支持部52bと扁平管40との間に挿し込まれると、温度検出素子60によって支持部52bが下側に押されて、第2支持壁部52と扁平管40との間が押し広げられる。これにより、第2支持壁部52が下側に弾性変形した状態となる。作業者は、第2支持壁部52から温度検出素子60が受ける弾性力に抗して温度検出素子60をさらに前側(+X側)に挿し込み、温度検出素子60の前端部を係合壁部54に突き当てる。以上により、温度検出素子60が扁平管40に取り付けられる。 Here, when the temperature detection element 60 is not attached, the distance in the vertical direction Z between the upper end part of the support part 52b of the second support wall part 52 and the flat tube 40 is slightly smaller than the diameter. Therefore, when the temperature detection element 60 is inserted between the support part 52b and the flat tube 40, the support part 52b is pushed downward by the temperature detection element 60, and the second support wall part 52 and the flat tube 40 are pushed downward. The space between them is pushed wider. As a result, the second support wall portion 52 is elastically deformed downward. The operator inserts the temperature detection element 60 further to the front side (+X side) against the elastic force that the temperature detection element 60 receives from the second support wall part 52, and inserts the front end of the temperature detection element 60 into the engagement wall part. Hit 54. As described above, the temperature detection element 60 is attached to the flat tube 40.
 実施の形態1によれば、取付部材50は、扁平管40に対して上側に位置する第1支持壁部51と、扁平管40に対して下側に位置する第2支持壁部52と、第1支持壁部51と第2支持壁部52とを繋ぐ接続壁部53と、第1支持壁部51から下側に突出し、接続壁部53との間で扁平管40を前後方向Xに挟む係合壁部54と、を有する。接続壁部53には、接続壁部53を前後方向Xに貫通する貫通穴53aが形成されている。一方向に延びる温度検出素子60は、貫通穴53aに通されて扁平管40と第2支持壁部52との間に配置され、かつ、扁平管40に接触する。第2支持壁部52は、鉛直方向Zに弾性変形した状態で温度検出素子60を扁平管40に押し付ける。そのため、第1支持壁部51と第2支持壁部52との間で扁平管40と温度検出素子60とを挟み込んで、温度検出素子60を、扁平管40に接触させた状態で好適に扁平管40に取り付けることができる。 According to the first embodiment, the mounting member 50 includes a first support wall portion 51 located above the flat tube 40, a second support wall portion 52 located below the flat tube 40, The flat tube 40 is connected in the front-rear direction It has an engaging wall portion 54 which is sandwiched therebetween. A through hole 53a is formed in the connection wall portion 53, passing through the connection wall portion 53 in the front-rear direction X. The temperature detection element 60 extending in one direction is passed through the through hole 53a and disposed between the flat tube 40 and the second support wall portion 52, and is in contact with the flat tube 40. The second support wall portion 52 presses the temperature detection element 60 against the flat tube 40 while being elastically deformed in the vertical direction Z. Therefore, by sandwiching the flat tube 40 and the temperature detection element 60 between the first support wall part 51 and the second support wall part 52, the temperature detection element 60 is suitably flattened while being in contact with the flat tube 40. It can be attached to the tube 40.
 また、扁平管40に対して取付部材50を引っ掛けた後に、温度検出素子60を貫通穴53aから挿し込むだけで温度検出素子60を扁平管40に取り付けることができる。そのため、温度検出素子60を扁平管40に取り付ける取付作業を容易にできる。また、温度検出素子60を扁平管40から取り外す際には、温度検出素子60を後側(-X側)に引っ張って、温度検出素子60を第1支持壁部51と第2支持壁部52との間から引き抜けばよい。そのため、温度検出素子60を扁平管40から取り外す作業も容易にできる。 Further, the temperature detection element 60 can be attached to the flat tube 40 by simply inserting the temperature detection element 60 through the through hole 53a after hooking the attachment member 50 onto the flat tube 40. Therefore, the work of attaching the temperature detection element 60 to the flat tube 40 can be facilitated. Further, when removing the temperature detection element 60 from the flat tube 40, pull the temperature detection element 60 to the rear side (-X side) and remove the temperature detection element 60 from the first support wall part 51 and the second support wall part 50. Just pull it out from between. Therefore, the work of removing the temperature detection element 60 from the flat tube 40 can be done easily.
 また、扁平管40の内部には、流体としての冷媒19が流れる流路41が、前後方向X、つまり扁平管40が延びる方向と直交する方向に並んで複数形成されている。そのため、例えば、温度検出素子60が延びる方向を扁平管40が延びる方向に合わせて温度検出素子60を扁平管40に取り付けると、扁平管40のうち一部の流路41が形成された部分の表面に温度検出素子60が接触しない場合がある。そのため、温度検出素子60によって検出される扁平管40の表面温度が複数の流路41のうち一部の流路41内のみを流れる冷媒19の温度に基づいた温度となり、複数の流路41内に冷媒19が流れる扁平管40の表面温度を好適に検出できない恐れがある。 Further, inside the flat tube 40, a plurality of channels 41 through which the refrigerant 19 as a fluid flows are formed in a line in the front-rear direction X, that is, a direction perpendicular to the direction in which the flat tube 40 extends. Therefore, for example, if the temperature detection element 60 is attached to the flat tube 40 with the direction in which the temperature detection element 60 extends aligned with the direction in which the flat tube 40 extends, the part of the flat tube 40 where the flow path 41 is formed will be The temperature detection element 60 may not come into contact with the surface. Therefore, the surface temperature of the flat tube 40 detected by the temperature detection element 60 becomes a temperature based on the temperature of the refrigerant 19 flowing only in some of the channels 41 among the plural channels 41. There is a possibility that the surface temperature of the flat tube 40 through which the refrigerant 19 flows cannot be properly detected.
 これに対して、実施の形態1によれば、温度検出素子60が延びる一方向を扁平管40が延びる方向および扁平管40の厚さ方向の両方と直交する前後方向Xとした状態で、温度検出素子60を扁平管40に取り付けることができる。そのため、扁平管40のうち前後方向Xに並ぶ複数の流路41が形成された部分における表面のそれぞれに、温度検出素子60を接触させることができる。これにより、温度検出素子60によって、複数の流路41内に冷媒19が流れる扁平管40の表面温度を好適に精度よく検出しやすい。 On the other hand, according to the first embodiment, the temperature is The detection element 60 can be attached to the flat tube 40. Therefore, the temperature detection element 60 can be brought into contact with each of the surfaces of the portion of the flat tube 40 in which the plurality of channels 41 arranged in the front-rear direction X are formed. Thereby, the temperature detection element 60 can easily detect the surface temperature of the flat tube 40 through which the refrigerant 19 flows in the plurality of channels 41 with good precision.
 以上により、実施の形態1によれば、取付構造30によって、温度検出素子60を扁平管40に対して好適に取り付けることができる。これにより、温度検出素子60に電気的に接続される制御部17は、温度検出素子60によって熱交換器13が有する扁平管40の表面温度を好適に精度よく検出することができる。したがって、制御部17によって、室外機10を好適に制御することができる。 As described above, according to the first embodiment, the temperature detection element 60 can be suitably attached to the flat tube 40 by the attachment structure 30. Thereby, the control unit 17 electrically connected to the temperature detection element 60 can suitably and accurately detect the surface temperature of the flat tube 40 included in the heat exchanger 13 using the temperature detection element 60. Therefore, the outdoor unit 10 can be suitably controlled by the control unit 17.
 また、実施の形態1によれば、温度検出素子60は、扁平管40の鉛直方向Zの下側に位置する。そのため、熱交換器13において生じた結露水が扁平管40の上面に滞留する場合であっても、当該結露水が温度検出素子60に接触しない。これにより、結露水が温度検出素子60に長時間接触することを抑制でき、温度検出素子60に動作不良などの不具合が生じることを抑制できる。 Furthermore, according to the first embodiment, the temperature detection element 60 is located below the flat tube 40 in the vertical direction Z. Therefore, even if the condensed water generated in the heat exchanger 13 remains on the upper surface of the flat tube 40, the condensed water does not come into contact with the temperature detection element 60. Thereby, it is possible to suppress the condensed water from coming into contact with the temperature detection element 60 for a long time, and it is possible to suppress the occurrence of malfunctions such as malfunctions in the temperature detection element 60.
 また、実施の形態1によれば、第2支持壁部52は、上側に突出して温度検出素子60に接触する複数の支持部52b,52cを有する。複数の支持部52b,52cは、前後方向Xに間隔を空けて配置されている。そのため、複数の支持部52b,52cによって、第2支持壁部52を温度検出素子60に好適に接触させることができる。これにより、第2支持壁部52から温度検出素子60に弾性力を好適に伝えることができ、温度検出素子60を扁平管40に対して好適に押し付けることができる。また、第2支持壁部52の本体部52aの上面などに結露水が滞留する場合であっても、上側に突出する支持部52b,52cによって温度検出素子60を第2支持壁部52の本体部52aから上側に離して配置することができる。そのため、第2支持壁部52の本体部52a上に滞留する結露水が温度検出素子60に長時間接触することを抑制でき、温度検出素子60に動作不良などの不具合が生じることをより抑制できる。 Further, according to the first embodiment, the second support wall portion 52 includes a plurality of support portions 52b and 52c that protrude upward and contact the temperature detection element 60. The plurality of support parts 52b and 52c are arranged at intervals in the front-rear direction X. Therefore, the second support wall portion 52 can be suitably brought into contact with the temperature detection element 60 by the plurality of support portions 52b and 52c. Thereby, the elastic force can be suitably transmitted from the second support wall portion 52 to the temperature detection element 60, and the temperature detection element 60 can be suitably pressed against the flat tube 40. Further, even if condensed water accumulates on the upper surface of the main body 52 a of the second support wall 52 , the temperature detection element 60 can be moved to the main body of the second support wall 52 by the support parts 52 b and 52 c that protrude upward. It can be arranged upwardly away from the portion 52a. Therefore, it is possible to suppress the condensed water that remains on the main body part 52a of the second support wall part 52 from coming into contact with the temperature detection element 60 for a long time, and it is possible to further suppress the occurrence of malfunctions such as malfunctions in the temperature detection element 60. .
 また、実施の形態1によれば、複数の支持部52b,52cにおける上側の面は、左右方向Yに見て上側に凸となる円弧状である。そのため、円弧状の支持部52b,52cの頂点を温度検出素子60に接触させることができ、第2支持壁部52と温度検出素子60との接触面積を小さくできる。そのため、例えば、第2支持壁部52と温度検出素子60との間に結露水が入り込んで滞留することを抑制しやすく、温度検出素子60が結露水に長時間接触することをより抑制できる。実施の形態1では、温度検出素子60が前後方向Xに見て円形状であるため、温度検出素子60と各支持部52b,52cとの接触は、ほぼ点接触となる。これにより、第2支持壁部52と温度検出素子60との間に結露水が入り込んで滞留することをより抑制しやすい。また、複数の支持部52b,52cの上側の面が円弧状であるため、支持部52b,52cに結露水が付着した場合であっても当該結露水を下側に流すことができる。これにより、結露水が温度検出素子60に長時間接触することをより好適に抑制できる。 Furthermore, according to the first embodiment, the upper surfaces of the plurality of support parts 52b and 52c have an arcuate shape that is convex upward when viewed in the left-right direction Y. Therefore, the apexes of the arcuate support portions 52b and 52c can be brought into contact with the temperature detection element 60, and the contact area between the second support wall portion 52 and the temperature detection element 60 can be reduced. Therefore, for example, it is easier to prevent condensed water from entering and staying between the second support wall portion 52 and the temperature detection element 60, and it is possible to further suppress the temperature detection element 60 from coming into contact with the condensed water for a long time. In the first embodiment, since the temperature detection element 60 has a circular shape when viewed in the front-rear direction X, the contact between the temperature detection element 60 and each support portion 52b, 52c is approximately a point contact. This makes it easier to prevent condensed water from entering and staying between the second support wall portion 52 and the temperature detection element 60. Moreover, since the upper surfaces of the plurality of support parts 52b, 52c are arc-shaped, even if dew condensation water adheres to the support parts 52b, 52c, the dew condensation water can flow downward. Thereby, it is possible to more preferably suppress the contact of dew condensed water with the temperature detection element 60 for a long time.
 また、実施の形態1によれば、取付部材50は、温度検出素子60のうち扁平管40と第2支持壁部52との間に位置する部分を左右方向Yに挟んで配置される一対のガイド部55,56を有する。一対のガイド部55,56のそれぞれは、温度検出素子60と左右方向Yに対向し前後方向Xに延びるガイド縁部55c,56cを有する。そのため、一対のガイド部55,56の各ガイド縁部55c,56cによって、温度検出素子60を左右方向Yに位置決めできる。また、温度検出素子60が前後方向Xに対して左右方向Yに傾いて配置されることを抑制できる。 Further, according to the first embodiment, the mounting member 50 includes a pair of mounting members arranged to sandwich the portion of the temperature detection element 60 between the flat tube 40 and the second support wall portion 52 in the left-right direction Y. It has guide parts 55 and 56. Each of the pair of guide parts 55 and 56 has guide edges 55c and 56c that face the temperature detection element 60 in the left-right direction Y and extend in the front-rear direction X. Therefore, the temperature detection element 60 can be positioned in the left-right direction Y by each guide edge 55c, 56c of the pair of guide parts 55, 56. Furthermore, it is possible to prevent the temperature detection element 60 from being disposed at an angle in the left-right direction Y with respect to the front-rear direction X.
 また、実施の形態1によれば、一対のガイド部55,56におけるガイド縁部55c,56cは、温度検出素子60のうち、温度検出素子60の鉛直方向Zの中心よりも下側に位置する部分を左右方向Yに挟んで配置される。そのため、一対のガイド部55,56によって温度検出素子60を第2支持壁部52に近い位置で左右方向Yに支持できる。これにより、第2支持壁部52によって温度検出素子60に対して安定して弾性力を加えやすくできる。また、一対のガイド縁部55c,56cを第2支持壁部52に近い位置に配置できるため、一対のガイド部55,56を第2支持壁部52に繋げて作りやすく、一対のガイド部55,56を容易に設けやすい。 Further, according to the first embodiment, the guide edges 55c and 56c of the pair of guide parts 55 and 56 are located below the center of the temperature detection element 60 in the vertical direction Z. The parts are placed on both sides in the left-right direction Y. Therefore, the temperature detection element 60 can be supported in the left-right direction Y by the pair of guide parts 55 and 56 at a position close to the second support wall part 52. This allows the second support wall portion 52 to easily apply elastic force to the temperature detection element 60 in a stable manner. Further, since the pair of guide edges 55c and 56c can be arranged close to the second support wall 52, it is easy to connect the pair of guide parts 55 and 56 to the second support wall 52, and the pair of guide edges 55c and 56c can be easily connected to the second support wall 52. , 56 can be easily provided.
 また、実施の形態1のように温度検出素子60が円柱状である場合には、温度検出素子60の中心軸線Cよりも下側の部分が一対のガイド縁部55c,56cによって挟まれるため、一対のガイド縁部55c,56c同士の間隔を狭くできる。これにより、一対のガイド部55,56におけるガイド壁部55b,56bの左右方向Yの寸法を大きくできる。したがって、一対のガイド壁部55b,56bを鉛直方向Zに弾性変形させやすくできる。そのため、寸法公差などによって、一対のガイド縁部55c,56c同士の間隔が温度検出素子60のうち一対のガイド部55,56によって挟まれる部分の左右方向Yの寸法より小さくても、ガイド壁部55b,56bが鉛直方向Zに弾性変形することで、一対のガイド縁部55c,56c同士の間に温度検出素子60を挿し込むことができる。 Furthermore, when the temperature detection element 60 is cylindrical as in the first embodiment, the portion below the central axis C of the temperature detection element 60 is sandwiched between the pair of guide edges 55c and 56c. The distance between the pair of guide edges 55c and 56c can be narrowed. Thereby, the dimensions of the guide wall portions 55b, 56b in the pair of guide portions 55, 56 in the left-right direction Y can be increased. Therefore, the pair of guide walls 55b, 56b can be easily elastically deformed in the vertical direction Z. Therefore, even if the distance between the pair of guide edges 55c and 56c is smaller than the dimension in the left-right direction Y of the portion of the temperature detection element 60 sandwiched between the pair of guide portions 55 and 56 due to dimensional tolerances, the guide wall By elastically deforming the guide edges 55b and 56b in the vertical direction Z, the temperature detection element 60 can be inserted between the pair of guide edges 55c and 56c.
 また、実施の形態1によれば、ガイド縁部55c,56cは、前後方向Xに対して左右方向Yに傾く方向に延びる傾斜部55d,56dを有する。一対のガイド部55,56における傾斜部55d,56dは、温度検出素子60を左右方向Yに挟んで配置され、かつ、接続壁部53から前後方向Xに離れるに従って互いに近づく向きに延びている。そのため、温度検出素子60が貫通穴53aに挿入された際に左右方向Yに傾いていても、温度検出素子60を前側(+X側)に挿し込んでいくことで、一対の傾斜部55d,56dによって、温度検出素子60の姿勢を前後方向Xに延びる姿勢に矯正していくことができる。これにより、温度検出素子60が延びる一方向を扁平管40が延びる方向に対して直交する方向とした状態で、温度検出素子60を好適に扁平管40に取り付けやすい。 Further, according to the first embodiment, the guide edges 55c and 56c have inclined portions 55d and 56d extending in a direction inclined in the left-right direction Y with respect to the front-rear direction X. The sloped portions 55d and 56d of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y, and extend toward each other as they move away from the connection wall portion 53 in the front-rear direction X. Therefore, even if the temperature detection element 60 is inclined in the left-right direction Y when inserted into the through hole 53a, by inserting the temperature detection element 60 to the front side (+X side), the pair of inclined parts 55d, 56d Accordingly, the posture of the temperature detection element 60 can be corrected to a posture extending in the front-rear direction X. This makes it easy to suitably attach the temperature detection element 60 to the flat tube 40 with one direction in which the temperature detection element 60 extends perpendicular to the direction in which the flat tube 40 extends.
 また、実施の形態1によれば、ガイド縁部55c,56cは、温度検出素子60に沿って前後方向Xに延びる直線部55e,56eを有する。一対のガイド部55,56における直線部55e,56eは、温度検出素子60を左右方向Yに挟んで配置され、かつ、各傾斜部55d,56eの前後方向Xの端部のうち接続壁部53から遠い側(+X側)の端部に繋がっている。そのため、温度検出素子60が扁平管40と第2支持壁部52との間に挿し込まれる際に、温度検出素子60の前端部が一対の傾斜部55d,56dによって左右方向Yに案内されて、一対の直線部55e,56e同士の間に誘い込まれる。これにより、一対の直線部55e,56eによって、温度検出素子60を左右方向Yに安定して位置決めできる。したがって、温度検出素子60が延びる一方向を扁平管40が延びる方向に対して直交する方向とした状態で、温度検出素子60をより好適に扁平管40に取り付けやすい。 Furthermore, according to the first embodiment, the guide edges 55c and 56c have straight portions 55e and 56e that extend in the front-rear direction X along the temperature detection element 60. The straight portions 55e and 56e of the pair of guide portions 55 and 56 are arranged to sandwich the temperature detection element 60 in the left-right direction Y, and the connecting wall portion 53 is located at the end of each inclined portion 55d and 56e in the front-rear direction X. It is connected to the end on the far side (+X side). Therefore, when the temperature detection element 60 is inserted between the flat tube 40 and the second support wall part 52, the front end of the temperature detection element 60 is guided in the left-right direction Y by the pair of inclined parts 55d and 56d. , are drawn between the pair of straight portions 55e and 56e. Thereby, the temperature detection element 60 can be stably positioned in the left-right direction Y by the pair of straight portions 55e and 56e. Therefore, it is easier to attach the temperature detection element 60 to the flat tube 40 in a state where one direction in which the temperature detection element 60 extends is perpendicular to the direction in which the flat tube 40 extends.
 また、実施の形態1によれば、係合壁部54の下側の端部は、扁平管40よりも下側に位置する。温度検出素子60は、係合壁部54のうち扁平管40よりも下側に位置する部分と前後方向Xに対向して配置される。そのため、温度検出素子60の前端部を係合壁部54に突き当てて、温度検出素子60を前後方向Xに位置決めできる。これにより、温度検出素子60の前端部が扁平管40よりも前側(+X側)に突出して配置されることを抑制でき、温度検出素子60を扁平管40に対して前後方向Xに好適に配置することができる。したがって、温度検出素子60を、扁平管40のうち複数の流路41が形成された部分における表面のそれぞれに対して、より好適に接触させやすい。そのため、温度検出素子60によって、複数の流路41内に冷媒19が流れる扁平管40の表面温度をより好適に検出しやすい。 Furthermore, according to the first embodiment, the lower end of the engagement wall portion 54 is located below the flat tube 40. The temperature detection element 60 is arranged to face a portion of the engagement wall portion 54 located below the flat tube 40 in the front-rear direction X. Therefore, the temperature detection element 60 can be positioned in the front-rear direction X by abutting the front end of the temperature detection element 60 against the engagement wall part 54. As a result, the front end of the temperature detection element 60 can be prevented from being disposed protruding forward (+X side) relative to the flat tube 40, and the temperature detection element 60 can be suitably disposed in the front-rear direction X with respect to the flat tube 40. can do. Therefore, it is easier to bring the temperature detection element 60 into contact with each of the surfaces of the portion of the flat tube 40 where the plurality of channels 41 are formed. Therefore, the surface temperature of the flat tube 40 through which the refrigerant 19 flows in the plurality of channels 41 can be more easily detected by the temperature detection element 60.
 実施の形態2.
 図13は、実施の形態2における取付構造230を示す斜視図である。なお、以下の説明において、上述した実施の形態と同様の構成については、適宜同一の符号を付すなどにより、説明を省略する場合がある。
Embodiment 2.
FIG. 13 is a perspective view showing the mounting structure 230 in the second embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
 図13に示すように、実施の形態2の取付構造230において、取付部材250の第2支持壁部252には、第2支持壁部252を鉛直方向Zに貫通する排出穴252eが形成されている。排出穴252eは、第2支持壁部252のうち本体部52aに形成されている。排出穴252eは、本体部52aの前後方向Xおよび左右方向Yの中央部分に形成されている。排出穴252eは、温度検出素子60の下側に位置する。実施の形態2において排出穴252eは、円形状の穴である。なお、排出穴252eの形状は、特に限定されず、楕円形状であってもよいし、多角形状であってもよい。取付構造230の各部におけるその他の構成は、実施の形態1における取付構造30の各部におけるその他の構成と同様である。 As shown in FIG. 13, in the mounting structure 230 of the second embodiment, the second support wall 252 of the mounting member 250 is formed with a discharge hole 252e that penetrates the second support wall 252 in the vertical direction Z. There is. The discharge hole 252e is formed in the main body portion 52a of the second support wall portion 252. The discharge hole 252e is formed in the center portion of the main body portion 52a in the front-rear direction X and the left-right direction Y. The discharge hole 252e is located below the temperature detection element 60. In the second embodiment, the discharge hole 252e is a circular hole. Note that the shape of the discharge hole 252e is not particularly limited, and may be elliptical or polygonal. The other configurations of each part of the attachment structure 230 are the same as the other configurations of each part of the attachment structure 30 in the first embodiment.
 実施の形態2によれば、第2支持壁部252には、第2支持壁部252を鉛直方向Zに貫通する排出穴252eが形成されている。そのため、第2支持壁部252の上面に結露水などが滴下した場合であっても、当該結露水を排出穴252eから下側に排出することができる。これにより、第2支持壁部252上に結露水が滞留することを抑制でき、温度検出素子60が結露水に長時間接触することをより抑制できる。したがって、温度検出素子60に動作不良などの不具合が生じることをより抑制できる。 According to the second embodiment, the second support wall portion 252 is formed with a discharge hole 252e that penetrates the second support wall portion 252 in the vertical direction Z. Therefore, even if dew condensation water or the like drips onto the upper surface of the second support wall portion 252, the dew condensation water can be discharged downward from the discharge hole 252e. Thereby, it is possible to suppress the accumulation of condensed water on the second support wall portion 252, and it is possible to further suppress the temperature detection element 60 from coming into contact with the condensed water for a long period of time. Therefore, occurrence of malfunctions such as malfunctions in the temperature detection element 60 can be further suppressed.
 以上に本開示における実施の形態について説明したが、本開示は上述した各実施の形態の構成のみに限定されず、以下の構成および方法を採用することもできる。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the configurations of each embodiment described above, and the following configurations and methods can also be adopted.
 温度検出素子は、一方向に延びて温度検出を可能とする素子であれば、特に限定されない。温度検出素子は、熱電対であってもよいし、測温抵抗体であってもよいし、その他の温度センサであってもよい。扁平管に取り付けられた状態において温度検出素子の延びる一方向は、例えば、扁平管が延びる方向および扁平管の厚さ方向の両方と交差する方向であればよい。例えば、上述した各実施の形態において、温度検出素子60は、温度検出素子60が延びる一方向が前後方向Xに対して左右方向Yに傾いた状態で扁平管40に取り付けられてもよい。温度検出素子は、一方向に延びる形状であれば、四角柱状であってもよいし、楕円柱状であってもよい。 The temperature detection element is not particularly limited as long as it extends in one direction and can detect temperature. The temperature detection element may be a thermocouple, a resistance temperature detector, or another temperature sensor. One direction in which the temperature detection element extends when attached to the flat tube may be, for example, a direction that intersects both the direction in which the flat tube extends and the thickness direction of the flat tube. For example, in each of the embodiments described above, the temperature detection element 60 may be attached to the flat tube 40 with one direction in which the temperature detection element 60 extends inclined in the left-right direction Y with respect to the front-rear direction X. The temperature detection element may have a square columnar shape or an elliptical columnar shape as long as it extends in one direction.
 取付部材を構成する材料は、特に限定されない。取付部材は、金属製であってもよいし、樹脂製であってもよい。取付部材における係合壁部の第2側(下側)の端部は、扁平管の第2側の端部より第1側(上側)に位置してもよいし、扁平管の第2側の端部と第3方向(鉛直方向Z)において同じ位置に位置してもよい。係合壁部とは別に、温度検出素子と第2方向(前後方向X)に対向する対向壁部が設けられてもよい。例えば、第2支持壁部から第1側(上側)に突出する対向壁部が設けられ、当該対向壁部に温度検出素子の先端部(前端部)が突き当てられてもよい。第2支持壁部における支持部の数は、特に限定されない。支持部の形状は、どのような形状であってもよい。 The material constituting the mounting member is not particularly limited. The mounting member may be made of metal or resin. The second side (lower side) end of the engagement wall in the mounting member may be located on the first side (upper side) than the second side end of the flat tube, or may be located at the same position in the third direction (vertical direction Z) as the end portion of. In addition to the engagement wall, an opposing wall that faces the temperature detection element in the second direction (front-back direction X) may be provided. For example, an opposing wall portion may be provided that protrudes from the second support wall portion to the first side (upper side), and the tip portion (front end portion) of the temperature detection element may abut against the opposing wall portion. The number of support parts in the second support wall part is not particularly limited. The support portion may have any shape.
 取付部材における一対のガイド部は、温度検出素子と第1方向(左右方向Y)に対向し第2方向(前後方向X)に延びるガイド縁部を有するならば、どのような構成であってもよい。一対のガイド部は、接続壁部に繋がっていてもよいし、第1支持壁部に繋がっていてもよい。一対のガイド部は、設けられていなくてもよい。 The pair of guide parts in the mounting member may have any configuration as long as it has a guide edge that faces the temperature detection element in the first direction (left-right direction Y) and extends in the second direction (front-back direction X). good. The pair of guide portions may be connected to the connection wall portion or may be connected to the first support wall portion. The pair of guide parts may not be provided.
 本開示の取付構造は、扁平管に対して温度検出素子を取り付ける構造であればよく、冷凍サイクル装置の室内機に適用されてもよいし、冷凍サイクル装置以外の機器に適用されてもよい。扁平管の流路に流れる流体は、特に限定されず、水などであってもよい。本開示の冷凍サイクル装置は、冷媒が循環する冷凍サイクルを利用する装置であればよく、空気調和機に限られない。冷凍サイクル装置は、ヒートポンプ給湯器などであってもよい。以上、本明細書において説明した各構成および各方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The mounting structure of the present disclosure may be any structure as long as it is a structure in which a temperature detection element is attached to a flat tube, and may be applied to an indoor unit of a refrigeration cycle device, or may be applied to equipment other than a refrigeration cycle device. The fluid flowing through the flow path of the flat tube is not particularly limited, and may be water or the like. The refrigeration cycle device of the present disclosure may be any device that utilizes a refrigeration cycle in which refrigerant circulates, and is not limited to an air conditioner. The refrigeration cycle device may be a heat pump water heater or the like. As mentioned above, each structure and each method explained in this specification can be combined as appropriate within a mutually consistent range.
 13…熱交換器、17…制御部、19…冷媒(流体)、30,230…取付構造、40…扁平管、41…流路、50,250…取付部材、51…第1支持壁部、52,252…第2支持壁部、52b,52c…支持部、53…接続壁部、53a…貫通穴、54…係合壁部、55,56…ガイド部、55c,56c…ガイド縁部、55d,56d…傾斜部、55e,56e…直線部、60…温度検出素子、100…冷凍サイクル装置、252e…排出穴、X…前後方向(第2方向)、Y…左右方向(第1方向)、Z…鉛直方向(第3方向) 13... Heat exchanger, 17... Control unit, 19... Refrigerant (fluid), 30, 230... Mounting structure, 40... Flat tube, 41... Channel, 50, 250... Mounting member, 51... First support wall part, 52, 252... Second support wall part, 52b, 52c... Support part, 53... Connection wall part, 53a... Through hole, 54... Engagement wall part, 55, 56... Guide part, 55c, 56c... Guide edge part, 55d, 56d... Slanted part, 55e, 56e... Straight part, 60... Temperature detection element, 100... Refrigeration cycle device, 252e... Discharge hole, X... Front-rear direction (second direction), Y... Lateral direction (first direction) , Z...Vertical direction (third direction)

Claims (11)

  1.  第1方向に延び、かつ、前記第1方向と直交する第2方向における寸法が前記第1方向および前記第2方向の両方と直交する第3方向における寸法よりも大きい扁平管と、
     一方向に延び、前記扁平管に取り付けられる温度検出素子と、
     前記温度検出素子を前記扁平管に取り付ける取付部材と、
     を備え、
     前記扁平管の内部には、流体が流れる流路が前記第2方向に並んで複数形成され、
     前記取付部材は、
      前記扁平管に対して前記第3方向における第1側に位置し、前記扁平管に接触する第1支持壁部と、
      前記扁平管に対して前記第3方向における前記第1側と逆側の第2側に位置する第2支持壁部と、
      前記第1支持壁部と前記第2支持壁部とを繋ぐ接続壁部と、
      前記第1支持壁部から前記第2側に突出し、前記接続壁部との間で前記扁平管を前記第2方向に挟む係合壁部と、
     を有し、
     前記接続壁部には、前記接続壁部を前記第2方向に貫通する貫通穴が形成され、
     前記温度検出素子は、前記貫通穴に通されて前記扁平管と前記第2支持壁部との間に配置され、かつ、前記扁平管に接触し、
     前記第2支持壁部は、前記第3方向に弾性変形した状態で前記温度検出素子を前記扁平管に押し付ける、取付構造。
    a flat tube extending in a first direction and having a dimension in a second direction orthogonal to the first direction that is larger than a dimension in a third direction orthogonal to both the first direction and the second direction;
    a temperature detection element extending in one direction and attached to the flat tube;
    a mounting member that attaches the temperature detection element to the flat tube;
    Equipped with
    Inside the flat tube, a plurality of channels through which fluid flows are formed in line in the second direction,
    The mounting member is
    a first support wall portion located on a first side in the third direction with respect to the flat tube and in contact with the flat tube;
    a second support wall portion located on a second side opposite to the first side in the third direction with respect to the flat tube;
    a connection wall portion connecting the first support wall portion and the second support wall portion;
    an engagement wall that protrudes from the first support wall to the second side and sandwiches the flat tube in the second direction with the connection wall;
    has
    A through hole passing through the connection wall in the second direction is formed in the connection wall,
    The temperature detection element is passed through the through hole and disposed between the flat tube and the second support wall, and is in contact with the flat tube,
    The second support wall has a mounting structure that presses the temperature detection element against the flat tube while being elastically deformed in the third direction.
  2.  前記温度検出素子は、前記扁平管の鉛直方向の下側に位置する、請求項1に記載の取付構造。 The mounting structure according to claim 1, wherein the temperature detection element is located below the flat tube in the vertical direction.
  3.  前記第2支持壁部は、前記第1側に突出して前記温度検出素子に接触する複数の支持部を有し、
     前記複数の支持部は、前記第2方向に間隔を空けて配置されている、請求項1または2に記載の取付構造。
    The second support wall portion has a plurality of support portions that protrude toward the first side and contact the temperature detection element,
    The mounting structure according to claim 1 or 2, wherein the plurality of support parts are arranged at intervals in the second direction.
  4.  前記複数の支持部における前記第1側の面は、前記第1方向に見て前記第1側に凸となる円弧状である、請求項3に記載の取付構造。 The mounting structure according to claim 3, wherein the first side surface of the plurality of support parts has an arc shape that is convex toward the first side when viewed in the first direction.
  5.  前記第2支持壁部には、前記第2支持壁部を前記第3方向に貫通する排出穴が形成されている、請求項1から4のいずれか一項に記載の取付構造。 The mounting structure according to any one of claims 1 to 4, wherein the second support wall has a discharge hole that penetrates the second support wall in the third direction.
  6.  前記取付部材は、前記温度検出素子のうち前記扁平管と前記第2支持壁部との間に位置する部分を前記第1方向に挟んで配置される一対のガイド部を有し、
     前記一対のガイド部のそれぞれは、前記温度検出素子と前記第1方向に対向し前記第2方向に延びるガイド縁部を有する、請求項1から5のいずれか一項に記載の取付構造。
    The mounting member includes a pair of guide portions arranged to sandwich a portion of the temperature detection element located between the flat tube and the second support wall portion in the first direction,
    The mounting structure according to any one of claims 1 to 5, wherein each of the pair of guide parts has a guide edge that faces the temperature detection element in the first direction and extends in the second direction.
  7.  前記一対のガイド部における前記ガイド縁部は、前記温度検出素子のうち、前記温度検出素子の前記第3方向の中心よりも前記第2側に位置する部分を前記第1方向に挟んで配置される、請求項6に記載の取付構造。 The guide edge portions of the pair of guide portions are arranged to sandwich, in the first direction, a portion of the temperature detection element located on the second side with respect to the center of the temperature detection element in the third direction. The mounting structure according to claim 6.
  8.  前記ガイド縁部は、前記第2方向に対して前記第1方向に傾く方向に延びる傾斜部を有し、
     前記一対のガイド部における前記傾斜部は、前記温度検出素子を前記第1方向に挟んで配置され、かつ、前記接続壁部から前記第2方向に離れるに従って互いに近づく向きに延びている、請求項6または7に記載の取付構造。
    The guide edge has an inclined portion extending in a direction inclined in the first direction with respect to the second direction,
    The slope portions of the pair of guide portions are arranged to sandwich the temperature detection element in the first direction, and extend in a direction that approaches each other as they move away from the connection wall portion in the second direction. The mounting structure described in 6 or 7.
  9.  前記ガイド縁部は、前記温度検出素子に沿って前記第2方向に延びる直線部を有し、
     前記一対のガイド部における前記直線部は、前記温度検出素子を前記第1方向に挟んで配置され、かつ、各前記傾斜部の前記第2方向の端部のうち前記接続壁部から遠い側の端部に繋がっている、請求項8に記載の取付構造。
    The guide edge has a straight portion extending in the second direction along the temperature detection element,
    The straight portions of the pair of guide portions are arranged to sandwich the temperature detection element in the first direction, and are located on the side farthest from the connection wall portion among the ends in the second direction of each of the inclined portions. The mounting structure according to claim 8, wherein the mounting structure is connected to an end portion.
  10.  前記係合壁部の前記第2側の端部は、前記扁平管よりも前記第2側に位置し、
     前記温度検出素子は、前記係合壁部のうち前記扁平管よりも前記第2側に位置する部分と前記第2方向に対向して配置される、請求項1から9のいずれか一項に記載の取付構造。
    The second end of the engagement wall is located closer to the second side than the flat tube,
    10. The temperature detection element according to claim 1, wherein the temperature detection element is arranged to face a portion of the engagement wall portion located on the second side of the flat tube in the second direction. Mounting structure described.
  11.  請求項1から10のいずれか一項に記載の取付構造と、
     前記扁平管を有する熱交換器と、
     前記温度検出素子が電気的に接続される制御部と、
     を備える、冷凍サイクル装置。
    The mounting structure according to any one of claims 1 to 10,
    a heat exchanger having the flat tube;
    a control unit to which the temperature detection element is electrically connected;
    A refrigeration cycle device comprising:
PCT/JP2022/015793 2022-03-30 2022-03-30 Attachment structure and refrigeration cycle device WO2023188059A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024510845A JPWO2023188059A1 (en) 2022-03-30 2022-03-30
PCT/JP2022/015793 WO2023188059A1 (en) 2022-03-30 2022-03-30 Attachment structure and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015793 WO2023188059A1 (en) 2022-03-30 2022-03-30 Attachment structure and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023188059A1 true WO2023188059A1 (en) 2023-10-05

Family

ID=88200234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015793 WO2023188059A1 (en) 2022-03-30 2022-03-30 Attachment structure and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JPWO2023188059A1 (en)
WO (1) WO2023188059A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118304A (en) * 1997-10-20 1999-04-30 Daikin Ind Ltd Mounting structure of thermistor
JP2008128621A (en) * 2006-11-24 2008-06-05 Daikin Ind Ltd Temperature sensor assembly
JP2010261611A (en) * 2009-04-30 2010-11-18 Panasonic Corp Outdoor unit of air conditioner
JP2011220611A (en) * 2010-04-09 2011-11-04 Daikin Industries Ltd Temperature sensor attaching fitting
CN212108919U (en) * 2020-04-13 2020-12-08 海信(广东)空调有限公司 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118304A (en) * 1997-10-20 1999-04-30 Daikin Ind Ltd Mounting structure of thermistor
JP2008128621A (en) * 2006-11-24 2008-06-05 Daikin Ind Ltd Temperature sensor assembly
JP2010261611A (en) * 2009-04-30 2010-11-18 Panasonic Corp Outdoor unit of air conditioner
JP2011220611A (en) * 2010-04-09 2011-11-04 Daikin Industries Ltd Temperature sensor attaching fitting
CN212108919U (en) * 2020-04-13 2020-12-08 海信(广东)空调有限公司 Air conditioner

Also Published As

Publication number Publication date
JPWO2023188059A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
EP0959308B1 (en) Air conditioner
JP6088708B2 (en) Connection module, heat exchanger, and corresponding heat exchange assembly
KR101441283B1 (en) Outdoor unit for refrigeration apparatus
US9267738B2 (en) Rigid and elastic mounting for vehicle heat exchanger
US20230341077A1 (en) Vacuum adiabatic body, refrigerating or warming apparatus, and method for manufacturing vacuum adiabatic body
WO2023188059A1 (en) Attachment structure and refrigeration cycle device
CN105627424A (en) Air conditioner
JP2013232519A (en) Attachment structure of refrigerant pipeline
US20220299246A1 (en) Heat exchanger, indoor unit for air-conditioner, and refrigeration device
CN110173763B (en) Air conditioner indoor unit and air conditioner
JP2009144982A (en) Air conditioner
CN112424534B (en) Radiation panel
CN109237771B (en) Air Conditioning System
US20220373214A1 (en) Temperature-sensor fixing device and compressor
JPH07146041A (en) Sensor holder and air conditioner
CN112902487A (en) Refrigeration system
CN210241796U (en) Heater assembly, air conditioner outdoor unit with heater assembly and air conditioner
WO2024089864A1 (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
CN215412218U (en) Automatically controlled box, air condensing units and air conditioner
JP7001940B2 (en) Transport refrigeration equipment and transport containers
US20220252300A1 (en) Ducted air conditioner and assembling method thereof
CN217357068U (en) Air conditioner indoor unit and air conditioner
JP7489302B2 (en) Air conditioning equipment
JP7374356B2 (en) Outdoor unit and refrigeration cycle equipment
JP2019132448A (en) Heat exchange element, radiation panel, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024510845

Country of ref document: JP