WO2023187120A1 - Cryogenic tank having complex shape and high gravimetric index and corresponding manufacturing method - Google Patents

Cryogenic tank having complex shape and high gravimetric index and corresponding manufacturing method Download PDF

Info

Publication number
WO2023187120A1
WO2023187120A1 PCT/EP2023/058406 EP2023058406W WO2023187120A1 WO 2023187120 A1 WO2023187120 A1 WO 2023187120A1 EP 2023058406 W EP2023058406 W EP 2023058406W WO 2023187120 A1 WO2023187120 A1 WO 2023187120A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tank
layers
external
cryogenic tank
Prior art date
Application number
PCT/EP2023/058406
Other languages
French (fr)
Inventor
Franck Doyen
Eric Torres
Original Assignee
Design Tech Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Design Tech Centre filed Critical Design Tech Centre
Publication of WO2023187120A1 publication Critical patent/WO2023187120A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/013Reinforcing means in the vessel, e.g. columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/032Multi-sheet layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0119Vessel walls form part of another structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/017Improving mechanical properties or manufacturing by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0173Railways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0176Buses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes

Definitions

  • TITLE Cryogenic tank of complex shape and high gravimetric index and corresponding manufacturing process
  • the technical field is that of short-term storage and transport of energy sources, in particular via the use of cryogenic tanks.
  • the technique relates more particularly to a cryogenic tank for the transport and/or use of a liquid (this liquid being in the form of gas at room temperature and atmospheric pressure). Furthermore, the technique also relates to the corresponding manufacturing process.
  • cryogenic tanks still remain heavy due to their necessary insulation, the density of aluminum and they can only be cylindrical or spherical in shape. They cannot therefore be integrated into all situations or all vehicle configurations.
  • current cryogenic tanks cannot be integrated into the wing of an airplane, unlike kerosene tanks, or into the space of a car tank for example.
  • cryogenic tanks must therefore be integrated into dedicated spaces, or even the vehicle carrying one or more tanks of this type must be built around these tanks.
  • current cryogenic tanks are mainly integrated into the fuselage, which further limits the payload and requires the development of new architectures to be certified without the possibility of reusing the existing one.
  • Such hydrogen tanks therefore do not allow the retrofit of existing aircraft (re-equipment of an existing aircraft by replacing the current propulsion system with a propulsion system using hydrogen).
  • the present invention aims to respond to at least some of the problems of the prior art.
  • a cryogenic tank whose wall comprises a plurality of layers, among which an external layer is in contact with the external environment, an internal layer is in contact with the contents of the tank, at least one of the layers of the wall of the tank being made of composite material comprising a laminate of plies stacked on top of each other along a stacking direction locally perpendicular to the surface of said layer in which at least one ply of the ply laminate diverges from the surface of the layer, thus forming a reinforcing structure of said layer, called reinforced part, and said layer being named reinforced composite layer.
  • the external layer of the tank is a reinforced composite layer.
  • the external surface of the tank has improved mechanical properties, making it possible to resist external stress (pressure change, buckling, etc.).
  • two successive layers among the plurality of layers of said wall of said reservoir have an inter-layer space, said inter-layer space being configured to be placed under vacuum or under ultra-high vacuum.
  • the tank has improved insulation properties, while remaining compact, the vacuum being created between two successive pre-existing layers.
  • said inter-layer space is maintained using supports.
  • the supports make it possible to prevent any collapse of the interlayer space placed under vacuum, and can also contribute to improving the mechanical properties of the tank wall.
  • one of said two successive layers of the plurality of layers is the outer layer, said outer layer being at least partially free from attachment with respect to the following layer, so that the layer external from deforming under the effect of pressure variations.
  • said internal layer of the reservoir is made of composite material.
  • said internal layer (12) of the tank is made of aluminum.
  • said tank is integrated into an aircraft.
  • said tank is integrated within a fuselage or a wing or a tail of an aircraft.
  • the invention also relates to a method of manufacturing a tank as described above.
  • the method comprises the following steps: shaping an internal layer; optional addition of ribs; optional addition of at least one intermediate layer; addition of an external layer around the assembly formed by said internal layer and optionally said at least one intermediate layer; evacuation of at least one inter-layer space; at least one of the layers mentioned above being manufactured according to the following steps: positioning of at least one ply on the external side of said layer, called non-diverging ply; creation of a reinforced part within a laminate of plies according to the following steps: addition of at least one element composed of a low density material on said at least one non-diverging external ply, called support element; addition and shaping of at least one fold on the internal side of the layer, covering the assembly formed by said at least one external fold and said at least one support element, said at least one internal fold conforming to the shapes of the assembly formed by said at least one external fold and said support element; addition
  • FIG. 1 represents an example of a cryogenic tank seen in section
  • FIG. 2 represents the phase diagram of hydrogen
  • FIG. 3 represents an example of the production of cryogenic tanks integrated into the fuselage of an aircraft
  • FIG. 4 represents an exemplary embodiment of a cryogenic tank seen in section, the section of which has the shape of an airplane wing profile;
  • FIG. 5 represents an example of a cryogenic tank seen in section, the section of which is an assembly of a rectangular parallelepiped and a cylinder;
  • FIG. 6 represents an example of making a layer of a cryogenic tank, seen in section
  • FIG. 7 represents an example of an embodiment of an inter-layer space placed under vacuum having transverse ribs, seen in section;
  • FIG. 8 represents an example of an embodiment of an inter-layer space placed under vacuum having longitudinal ribs, seen in section;
  • FIG. 9 represents an example of a cryogenic tank seen in section
  • FIG. 10 represents an example of making a wall of a cryogenic tank
  • the general principle of the technique consists of manufacturing a tank of complex shape from lighter and more malleable materials, while retaining properties suitable for temporary storage and transport of gas in liquid form.
  • the manufacturing technique developed by the inventors makes it possible to have a cryogenic tank which can, for example, be used for the transport and/or use of liquid hydrogen by a vehicle.
  • This tank is made of lightweight and mechanically efficient materials, making it possible to define complex geometries and obtain structural weight reduction.
  • the advantages of such a reservoir are the adaptability of its shape and its high gravimetric index.
  • the gravimetric index of a gaseous hydrogen tank is currently 5 to 6% while the gravimetric index of the tank described in this document is at least 30%.
  • the tank has a wall composed of at least two layers, including an outer layer (11) and an inner layer (12). At least one of the layers of the wall is a reinforced composite layer, a reinforced composite layer being composed of a composite material and comprising a laminate of plies stacked on top of each other along a stacking direction locally perpendicular to the surface of the layer and in which at least one ply of the ply laminate diverges from the surface of the layer, thus forming a reinforcing structure of the layer, called reinforced part.
  • such a tank is mechanically resistant, in particular to buckling, due to the use of a reinforced composite layer as described above.
  • such a tank can adapt to any volume and any environment in which it must be placed thanks to the adaptability of its shape, due to its composite construction.
  • such a tank has a high gravimetric index allowing, for example, fuel savings during its transport.
  • FIG. 10 In relation to Figure 1 we describe a tank according to the present technique.
  • the tank (10) has a wall composed of at least two layers, including an outer layer (11) and an inner layer (12).
  • Figure 1 represents a sectional view of a tank of any shape according to an exemplary embodiment, this shape being generally similar to a cylinder having any section.
  • the assembly can integrate a filling and draining port (13), as well as a gas discharge valve (14), which can be calibrated to trigger at a given pressure.
  • an orifice (18) allowing the vacuum to be drawn can be added, this passing through the layer(s) s) external(s) of the tank wall, in order to connect the inter-layer space to the outside of the tank.
  • the orifice is self-sealing thanks to a ball, thus allowing the vacuum to be drawn in one direction and the sealing of the orifice in the other.
  • this inter-layer space can also have a sensor (19) allowing the measurement of vacuum (or ultra-high vacuum), this sensor transmitting information relating to the measurements carried out to the outside of the tank. This information can then be transmitted via radio waves or via cable, for example.
  • Such devices orifice 18, sensor 19) can be used for any inter-layer space placed under vacuum (or ultra-high vacuum).
  • the tank (10) may also include a level sensor or probe (15) in order to know the quantity of liquid gas remaining in the tank, a pressure sensor (16), as well as a temperature sensor (17).
  • the filling and draining orifice (13) as well as the valve (14) pass through the structure in order to connect the interior of the cavity formed by the internal layer (12) to the open air from the outside.
  • the valve (14) allows excess cryogenic fuel to be managed.
  • the phase diagram of hydrogen presents a liquid zone (21) under temperature conditions between 10 K and 30 K, and pressure between 0.1 and 100 bars.
  • the valve allows unloading of gaseous hydrogen in order to avoid a possible excessive increase in pressure within the tank. This pressure must therefore not exceed a threshold limit which can be around 10-20 bar for a temperature of 20 K. The gas responsible for the overpressure is therefore either consumed before reaching the threshold pressure value, or discharged by the valve.
  • the reservoir described is a passive reservoir, the role of which is solely to provide a source of energy to be consumed.
  • the tank makes it possible to maintain the hydrogen in liquid form for a period of 48 hours to 72 hours, a period of time during which the hydrogen contained in the tank is consumed.
  • the tank can integrate a heating element within the tank, in order to accelerate, if necessary, the evaporation of the hydrogen when the need for an energy source is increased (in the phase of acceleration for example).
  • the tank described is an active tank, making it possible to maintain the hydrogen in liquid form for periods greater than 72 hours, using an integrated cooling system.
  • the temperature sensor described above can be connected to a thermostatic device integrated into said cooling system. This makes it possible to maintain a stable temperature of 20K within the tank over long periods of time. This type of production, however, makes the whole thing heavier.
  • the tank can integrate solid or perforated internal partitions occupying all or part of the section of the tank in order to limit the movements of the cryogenic liquid and thus create a flood barrier.
  • solid or perforated internal partitions occupying all or part of the section of the tank in order to limit the movements of the cryogenic liquid and thus create a flood barrier.
  • cryogenic tank(s) such as aeronautics/aerospace, railways, automobiles, heavy goods vehicles/buses. , naval/maritime...
  • the tank can be integrated into any type of vehicle for land mobility (trains, trucks, buses, cars, tractors, etc.) or for maritime mobility (boats of any type and any dimension, hydrofoil, hovercraft, etc.).
  • a tank as described above can be integrated into the wings, or into the fuselage of the aircraft. Indeed, its adaptable geometry allows the tank to be placed in areas of complex shapes. This complex geometry is made possible by the internal pressure of the tank maintained around 1 atm. Thus, it is not no need to use spherical or oblong geometries or even round the corners of the walls. Broken lines are possible.
  • FIG 3 illustrates a particular embodiment of the technique, in which two tanks are integrated into the fuselage of an aircraft.
  • the first tank (31) takes the shape of a truncated pyramid with a rectangular base, and is placed at the rear of the cockpit (33). While the second tank (32) is placed under the cockpit (33) and has a rectangular parallelepiped shape.
  • any shape deemed adequate by those skilled in the art can be envisaged for the production of such a reservoir: cone, block, cylinder, prism, ovoid, ellipsoid, sphere, any complex shape, etc. (all of these solids can be associated, deformed or even truncated according to all planes of space).
  • Figures 4 and 5 show two particular embodiments of the tank.
  • Figure 4 represents a section of a tank taking the shape of the profile of an airplane wing (shape resembling a slightly flattened drop of water). This tank has a section whose surface changes according to the length of the tank. Thus, the section (41) seen in section is larger than a section (42) taken further on in the diagram.
  • Figure 5 represents a section of a tank whose shape consists of the association of a cylinder (51) and a rectangular parallelepiped (52), the center of the cylinder being centered around an edge of the rectangular parallelepiped.
  • the walls of the tank are made up of at least two layers: an outer layer and an inner layer, between which additional elements or layers can be inserted.
  • These layers can be composed of any material deemed suitable by those skilled in the art. Thus, they can be composed of wood, perlite, foam (polyurethane for example), glass or even metal for example aluminum (or aluminum alloy with for example silicon, copper, magnesium, etc.), titanium (or alloy), etc.
  • the layers can also be made of composite material, for example carbon or glass fibers, GLARE, zylon, kevlar, etc. with resin (epoxy, unsaturated polyester, PEEK, polyimide...) with honeycomb, multilayer, sandwich structure, etc. In the case where the layers include fibers, these can be of a single nature or of different natures, they can have a single orientation or be multidirectional.
  • a layer can be composed of a stack of composite plies.
  • the composite layers comprising a stack of plies can integrate cooling and/or heating films between them, making it possible to control the temperature and therefore the thermal gradient.
  • Another example of integration of elements within the folds of a composite layer consists of the addition of photovoltaic cells under one or more transparent folds at the level of the external layer, thus making it possible to accumulate and/or provide energy. energy to the different systems integrated into the tank.
  • the layers composed of composites are saturated with resin, thus ensuring inter-layer sealing.
  • Thicknesses and number of layers may vary depending on the materials used and the desired application. These values must be adapted so as to control the temperature gradient, which extends from -260°C at the inner layer (11) to +60°C at the surface of the outer layer (12).
  • the total thickness of the walls of a tank as described in this document is between 50 and 250 mm, depending on the vacuum resistance.
  • two successive layers have an inter-layer space placed under vacuum (between 1CT 3 and 1CT 6 mbar) making it possible to improve the thermal performance of the tank wall. These adjacent layers can, in an exemplary embodiment, be kept apart by supports.
  • the tank is composed of at least one reinforced composite layer.
  • this layer can act as an external layer, this being the last layer in contact with the external atmosphere and having the objective of ensuring that the structure does not buckle.
  • the design and manufacture of such a composite layer consists of providing it with reinforced parts. More particularly, the diaper is provided with reinforced parts integrated into the diaper itself. In this way, we have an integrated/compact layer, in which the reinforced parts are an integral part of the layer itself.
  • ply is used to refer to a thin layer that may be composed of fibers.
  • laminated or stacking designates a superposition of folds.
  • Figure 6 represents two sectional views of such a layer (61) having several reinforced parts (62) integrated into its thickness. At the top of Figure 6 is shown a layer (61) seen from above, while at the bottom is shown a layer (61) seen from below.
  • the layer (61) shown is of generally rectangular parallelepiped shape and comprises an external surface
  • This layer (61) is made up of a laminate or stack of plies (65, 66). The folds (65) of the external surface (63) being non-diverged, and the folds (66) of the internal surface
  • Figure 6 represents a particular embodiment in which the reinforced parts (62) have an isosceles trapezoidal section and are of elongated shape. Furthermore, Figure 6 represents an exemplary embodiment in which the divergence of the folds is allowed by the addition of a support element (67) composed of a low density material. Indeed, the diverging folds conform to the shape of the support elements (67), the folds are deviated from the plane of the panel and thus form reinforced parts (62).
  • the support elements (67) have the function of maintaining the spacing between the diverged and non-diverged plies, and can also have thermal properties suitable for insulation.
  • the diverging folds match the shape of the support elements (67).
  • these reinforced parts (62) are of generally elongated shape in the direction to be reinforced, so as to oppose the forces to which is submitted the structure.
  • the tank can take the shape of an airplane wing, resisting the forces linked to lift.
  • all of the characteristics of the reinforced composite layer (61) developed above are applicable to any layer making up the tank wall, including the internal layer.
  • Supports can be used between two layers of the wall to create a spacing between them, which is maintained under vacuum or ultra-high vacuum, making it possible to improve the thermal performance of the tank.
  • the supports occupy the space between the internal layer of the tank and the following solid layer, the vacuum created between these layers making it possible to control the thermal gradient by isolating the liquid hydrogen in contact with the internal layer from the others. layers of the wall.
  • the supports occupy the space between the outer layer of the tank and the next solid layer (inwards), the vacuum created between these layers making it possible to control the thermal gradient by insulating the exterior of the tank from the other layers of the wall.
  • the outer layer being subjected to atmospheric pressure from the outside and to vacuum from the inside, it is therefore pressed onto the supports by atmospheric pressure, and free to deform (in the case of an application in aeronautics for example) with the change in atmospheric pressure, due to its non-fixation to the supports.
  • the supports are in the form of hollowed-out ribs.
  • Their recesses help to limit the weight of the tank, while creating an insulating layer.
  • These recesses can be in any form deemed suitable by those skilled in the art. They can be open or not, square, elliptical, any shape, etc.
  • the spacing and distribution of these recesses can be determined in design, depending on the forces exerted on the different zones of the tank and the desired application.
  • these supports can be made of compressed balsa or any other material for which the weight of the support is less than the equivalent weight of a composite material.
  • FIGs 7 and 8 illustrate two particular embodiments of hollowed ribs (71).
  • Figure 7 represents a 3D sectional view of an evacuated inter-layer space forming part of the wall of a tank of any/complex shape.
  • This inter-layer void space has a succession of hollowed out longitudinal ribs (71).
  • the recesses (72) shown in Figure 7 are through and have an elliptical shape.
  • Figure 8, for its part represents a 3D view of part of an interlayer space placed under vacuum forming part of the wall of a tank of any/complex shape.
  • This inter-layer space has hollowed out transverse ribs (71).
  • the recesses shown in Figure 8 are through and have an elliptical shape.
  • the wall of the tank comprises at least two inter-layer spaces of voids, the ribs of which are alternately transverse then longitudinal in order to better distribute the forces exerted on the wall of the tank.
  • the reinforced parts of the reinforced composite layer can act as inter-layer supports.
  • an ultra-high vacuum can be made between a reinforced composite layer and the next layer, without adding additional supports.
  • a first waterproof internal layer (12) made of aluminum or composite covered on its upper or interior part of a film or fabric resistant to ultra-low temperatures such as polyimide (TECASINT®, KAPTON®), polytetrafluoroethylene (TECAFLON®, GORE-TEX®), polyolefin (Porelle® membrane), or even a layer of NEGs (Non-Evaporable Getters).
  • TECASINT®, KAPTON® polytetrafluoroethylene
  • TECAFLON® polytetrafluoroethylene
  • GORE-TEX® polyolefin
  • Porelle® membrane polyolefin
  • NEGs Non-Evaporable Getters
  • a second layer (94) composed of a stack of plies of composite material based on carbon fibers, or other type of fibers, the angle of the plies between them being able to be any angle value deemed adequate by those skilled in the art job.
  • the thickness of this second layer is between 0.5mm to 20mm depending on the required technical specifications.
  • This layer is saturated with a resin ensuring inter-layer and inter-ply sealing.
  • This layer can also be in the form of a composite-foam-composite sandwich in part or in full, it will then be obtained by successive or simultaneous cooking.
  • This second layer (94) is covered on its interior part with an insulator (93) of the Mylar type or with a layer of NEGs, and on its exterior part with an optional insulation layer (95), of the type “cryogenic insulating glass sheet” for example that of the company UNIFRAX or a polyimide or polyamide film.
  • This second layer (94) is repeated as many times as necessary to control the temperature gradient.
  • the outer layer (11), the last layer which faces the external atmosphere is a composite layer making it possible to prevent buckling of the structure, using reinforced portions or parts, as described previously.
  • the different layers making up the walls of the tank are successively, from the inside to the outside: a sealed internal layer made of aluminum or composite, which may have the characteristics of a reinforced composite layer such as as described previously; an inter-layer space placed under vacuum or ultra-high vacuum (that is to say between pressures between 10 -3 and 10 -6 mbar); an external layer of reinforced composite whose reinforced parts are elongated in the direction of the forces to which the structure is subjected, so as to prevent buckling;
  • the inter-layer space under vacuum or under ultra-high vacuum present between the internal layer and the external layer can be created without adding support, by simply evacuating the spaces formed between the internal layers and layers.
  • external(s) by the reinforced parts can be created without adding support, by simply evacuating the spaces formed between the internal layers and layers.
  • the reinforced parts When the internal layer is a composite layer, it may have reinforced parts perpendicular to the reinforced parts of the external layer in order to limit thermal bridge zones.
  • the vacuum inter-layer spacing present between the internal layer and the external layer can be created using rib-type supports making it possible to maintain a spacing between the internal layer and the external layer, the ribs being perpendicular to the reinforced parts of the reinforced composite layer(s).
  • the internal layer is a reinforced composite layer, as illustrated in Figure 10, it can have reinforced parts (62) parallel to the reinforced parts of the external layer (11, 61), while the ribs (71) are perpendicular to the reinforced parts (62) of the internal (12, 61) and external (11, 61) layers, consequently limiting the thermal bridge zones.
  • the reinforced parts have a policeman's hat section due to the shape of the support elements (67) which is married by the diverged folds (66).
  • the ribs have recesses (72) of elliptical section.
  • the method of manufacturing the tank as described above therefore uses at least two layers including at least one layer forming a laminated material.
  • the manufacture of such a tank can be carried out in part using processes adapted to composite materials, these processes can be manual (contact molding, vacuum molding, infusion, prepregs, etc.), and/or mechanized ( RTM, thermoforming, molding, filament winding, etc.) or any other type of process deemed suitable by those skilled in the art.
  • the tank consists of an internal layer (composite or metallic), increased from the inside to the outside by layers of composite materials (carbon fibers, glass fibers, zylon, kevlar, with resin), manufactured by the deposition of composite plies and/or by filament winding.
  • the tank is therefore capable of taking any geometric shape.
  • the waterproofing of the composite layers of the entire wall is obtained by saturating the composite plies with resin so as to eliminate any porosity.
  • the general manufacturing method of a tank (10) comprises the following steps: shaping an internal layer (12); optional addition of ribs (71); optional addition of at least one intermediate layer which may be made of composite (94) and/or insulating (93, 95) and/or mechanically resistant (94); addition of an external layer (11) around the assembly formed by said internal layer (12) and optionally said at least one intermediate layer (93, 94, 95); evacuating at least one inter-layer space (92, 96); at least one of the layers mentioned above being manufactured according to the following steps: positioning of at least one ply (65) on the external side of said layer (61), called non-diverging ply; creation of a reinforced part within a laminate of plies (65, 66) according to the following steps addition of at least one element (67) composed of a low density material on said at least one ply (65) external non-diverged, called support element (67); addition and shaping of at least one fold (66) on the internal side of the layer (61),
  • the manufacturing process implements the following steps: shaping of an inner core (or inner layer 12) made of composite or metallic material, this inner core comprising a filling orifice and a filling orifice degassing; addition of ribs, hollowed out as explained above, on the inner core; addition, in the space between the ribs, of a soluble paste (for example soluble polymer) in water (or any other solvent) to a height equal to the height of the ribs at any point; addition of a layer (61) of reinforced composite, by draping the folds, over the assembly formed by the ribs and the paste, this layer comprising a self-sealing orifice intended for drawing the vacuum; the steps of adding ribs, soluble paste and a reinforced composite layer are repeated as many times as necessary to achieve the number of layers and the desired performance; polymerization of the whole and demolding; removal of the soluble paste by dissolution in a solvent (water or other); installation of valves and seals;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a cryogenic tank. More particularly, the invention relates to a cryogenic tank (10), the wall of which comprises a plurality of layers (11, 12, 61), an outer layer (11) of which is in contact with the outside environment and an inner layer (12) of which is in contact with the contents of the tank. According to the invention, at least one of the layers of the wall of the tank (10) is made of composite material comprising a lamination of plies (65, 66) stacked on one another in a stacking direction locally perpendicular to the surface of said layer (61) in which at least one ply (66) of the lamination of plies (65, 66) diverges from the surface of the layer (61), thus forming a reinforcing structure of said layer (61), referred to as a reinforced portion (62), and said layer (61) being known as a composite reinforced layer. Due to its structure, the tank can adopt any shape, in particular complex shapes, and leads to a high gravimetric index.

Description

DESCRIPTION DESCRIPTION
TITRE : Réservoir cryogénique de forme complexe et à indice gravimétrique élevé et procédé de fabrication correspondant TITLE: Cryogenic tank of complex shape and high gravimetric index and corresponding manufacturing process
Domaine technique de l'invention Technical field of the invention
Le domaine de la technique est celui du stockage à court terme et du transport de source d'énergie, notamment via l'utilisation de réservoirs cryogéniques. La technique concerne plus particulièrement un réservoir cryogénique pour le transport et/ou l'utilisation d'un liquide (ce liquide étant sous forme de gaz à température ambiante et pression atmosphérique). De plus, la technique concerne également le procédé de fabrication correspondant. The technical field is that of short-term storage and transport of energy sources, in particular via the use of cryogenic tanks. The technique relates more particularly to a cryogenic tank for the transport and/or use of a liquid (this liquid being in the form of gas at room temperature and atmospheric pressure). Furthermore, the technique also relates to the corresponding manufacturing process.
Arrière-plan technologique Technology background
Dans le cadre de la transition énergétique qui doit nécessairement être opérée pour réduire les émissions de gaz à effet de serre, il est indispensable de repenser complètement le stockage temporaire et le transport de sources d'énergie propre, comme par exemple l'hydrogène. As part of the energy transition that must necessarily be carried out to reduce greenhouse gas emissions, it is essential to completely rethink the temporary storage and transport of clean energy sources, such as hydrogen.
Les méthodes de fabrication actuelles fournissent des réservoirs à gaz, lourds et encombrants. La problématique de ce type de réservoir est que la source d'énergie (l'hydrogène) y est stockée sous forme gazeuse, qui entraine soit un réservoir à indice gravimétrique faible donc un réservoir lourd, soit une réduction de l'autonomie apportée au véhicule en question à poids constant. Des solutions sont donc développées pour construire des réservoirs cryogéniques permettant de transporter et d'utiliser ce gaz sous forme liquide. Une de ces solutions de réservoir cryogénique est de fabriquer le dit réservoir à partir d'aluminium, dont la masse volumique est inférieure à l'acier et qui possède de très bonnes propriétés mécaniques à basse température. Current manufacturing methods provide heavy and bulky gas tanks. The problem with this type of tank is that the energy source (hydrogen) is stored there in gaseous form, which results in either a tank with a low gravimetric index and therefore a heavy tank, or a reduction in the autonomy provided to the vehicle. in question at constant weight. Solutions are therefore being developed to build cryogenic tanks allowing this gas to be transported and used in liquid form. One of these cryogenic tank solutions is to manufacture the said tank from aluminum, whose density is lower than steel and which has very good mechanical properties at low temperatures.
Cependant, les réservoirs cryogéniques actuels restent malgré tout lourds du fait de leur nécessaire isolation, de la masse volumique de l'aluminium et ils ne peuvent être que de forme cylindrique ou sphérique. Ils ne sont donc pas intégrables dans toutes les situations ou dans toutes les configurations de véhicules. Par exemple, les réservoirs cryogéniques actuels ne sont pas intégrables dans l'aile d'un avion, contrairement aux réservoirs de kérosènes, ou dans l'espace d'un réservoir de voiture par exemple. Ainsi, à ce jour, de tels réservoirs cryogéniques doivent donc être intégrés dans des espaces dédiés, voire le véhicule embarquant un ou plusieurs réservoirs de ce type doit être construit autour de ces réservoirs. Ainsi par exemple, dans le cas d'un avion, les réservoirs cryogéniques actuels sont principalement intégrés dans le fuselage, ce qui limite d'autant plus la charge utile et nécessite le développement de nouvelles architectures à certifier sans possibilité de réutiliser l'existant. De tels réservoirs à hydrogène ne permettent donc pas le rétrofit d'avions existants (rééquipement d'un avion existant en remplaçant le système de propulsion actuel par un système de propulsion utilisant de l'hydrogène). However, current cryogenic tanks still remain heavy due to their necessary insulation, the density of aluminum and they can only be cylindrical or spherical in shape. They cannot therefore be integrated into all situations or all vehicle configurations. For example, current cryogenic tanks cannot be integrated into the wing of an airplane, unlike kerosene tanks, or into the space of a car tank for example. Thus, to date, such cryogenic tanks must therefore be integrated into dedicated spaces, or even the vehicle carrying one or more tanks of this type must be built around these tanks. For example, in the case of an airplane, current cryogenic tanks are mainly integrated into the fuselage, which further limits the payload and requires the development of new architectures to be certified without the possibility of reusing the existing one. Such hydrogen tanks therefore do not allow the retrofit of existing aircraft (re-equipment of an existing aircraft by replacing the current propulsion system with a propulsion system using hydrogen).
Les inconvénients des réservoirs cryogéniques et des réservoirs à stockage gazeux actuels sont donc leur poids, leur encombrement et leurs formes limitées (sphère, cylindre). The disadvantages of current cryogenic tanks and gas storage tanks are therefore their weight, their bulk and their limited shapes (sphere, cylinder).
Ainsi, il est nécessaire de trouver une solution permettant d'obtenir des réservoirs moins encombrants aux formes complexe, et plus légers, tout en présentant une très bonne résistance mécanique. Résumé de l'invention Thus, it is necessary to find a solution making it possible to obtain less bulky tanks with complex shapes, and lighter, while having very good mechanical resistance. Summary of the invention
La présente invention a pour objectif de répondre à au moins certaines des problématiques de l'art antérieur. The present invention aims to respond to at least some of the problems of the prior art.
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un réservoir cryogénique dont la paroi comprend une pluralité de couches, parmi lesquelles une couche externe est en contact avec le milieu extérieur, une couche interne est en contact avec le contenu du réservoir, au moins une des couches de la paroi du réservoir étant constituée de matériau composite comprenant un feuilleté de plis empilés les uns sur les autres le long d'une direction d'empilement localement perpendiculaire à la surface de ladite couche dans laquelle au moins un pli du feuilleté de plis diverge de la surface de la couche, formant ainsi une structure de renforcement de ladite couche, appelée partie renforcée, et ladite couche étant nommée couche composite renforcée. These objectives, as well as others which will appear subsequently, are achieved using a cryogenic tank whose wall comprises a plurality of layers, among which an external layer is in contact with the external environment, an internal layer is in contact with the contents of the tank, at least one of the layers of the wall of the tank being made of composite material comprising a laminate of plies stacked on top of each other along a stacking direction locally perpendicular to the surface of said layer in which at least one ply of the ply laminate diverges from the surface of the layer, thus forming a reinforcing structure of said layer, called reinforced part, and said layer being named reinforced composite layer.
Ainsi, il est possible d'obtenir, en suivant le principe général de l'invention, un réservoir de forme complexe en raison de l'utilisation de matériaux composite et de l'absence de pression excessive au sein du réservoir, celui-ci conservant le contenu sous forme liquide et non gazeuse. Une telle forme complexe permet par conséquent d'intégrer ce réservoir dans tout espace jugé utile par l'homme du métier. De plus, l'utilisation de matériaux composites permet l'allègement du système et l'amélioration des propriétés mécaniques. Thus, it is possible to obtain, by following the general principle of the invention, a tank of complex shape due to the use of composite materials and the absence of excessive pressure within the tank, the latter retaining the contents in liquid and non-gaseous form. Such a complex shape therefore makes it possible to integrate this tank into any space deemed useful by those skilled in the art. In addition, the use of composite materials allows the system to be lighter and the mechanical properties to be improved.
Selon un exemple de réalisation particulier de l'invention, la couche externe du réservoir est une couche composite renforcée. According to a particular embodiment of the invention, the external layer of the tank is a reinforced composite layer.
Ainsi, la surface externe du réservoir présente des propriétés mécaniques améliorées, permettant de résister à une contrainte externe (changement de pression, flambage, etc.). Thus, the external surface of the tank has improved mechanical properties, making it possible to resist external stress (pressure change, buckling, etc.).
Selon un exemple de réalisation particulier de l'invention, deux couches successives parmi la pluralité de couches de ladite paroi dudit réservoir présentent un espace inter-couches, ledit espace inter-couches étant configuré pour être placé sous vide ou sous ultravide. According to a particular embodiment of the invention, two successive layers among the plurality of layers of said wall of said reservoir have an inter-layer space, said inter-layer space being configured to be placed under vacuum or under ultra-high vacuum.
Ainsi, le réservoir présente des propriétés d'isolation améliorées, tout en restant compact, le vide étant fait entre deux couches successives préexistantes. Thus, the tank has improved insulation properties, while remaining compact, the vacuum being created between two successive pre-existing layers.
Selon un exemple de réalisation particulier de l'invention, ledit espace inter-couche est maintenu à l'aide de supports. According to a particular embodiment of the invention, said inter-layer space is maintained using supports.
Ainsi, les supports (ou nervures) permettent d'empêcher tout effondrement de l'espace intercouche placé sous vide, et peuvent également participer à l'amélioration des propriétés mécaniques de la paroi du réservoir. Thus, the supports (or ribs) make it possible to prevent any collapse of the interlayer space placed under vacuum, and can also contribute to improving the mechanical properties of the tank wall.
Selon un exemple de réalisation particulier de l'invention, l'une desdites deux couches successives de la pluralité de couches est la couche externe, ladite couche externe étant au moins partiellement libre de fixation par rapport à la couche suivante, de sorte que la couche externe de se déformer sous l'effet de variations de pressions. According to a particular embodiment of the invention, one of said two successive layers of the plurality of layers is the outer layer, said outer layer being at least partially free from attachment with respect to the following layer, so that the layer external from deforming under the effect of pressure variations.
Selon un exemple de réalisation particulier de l'invention, ladite couche interne du réservoir est constituée de matériau composite. According to a particular embodiment of the invention, said internal layer of the reservoir is made of composite material.
Selon un exemple de réalisation particulier de l'invention, ladite couche interne (12) du réservoir est en aluminium. According to a particular embodiment of the invention, said internal layer (12) of the tank is made of aluminum.
Selon un exemple de réalisation particulier de l'invention, ledit réservoir est intégré au sein d'un avion. According to a particular embodiment of the invention, said tank is integrated into an aircraft.
Selon un exemple de réalisation particulier de l'invention, ledit réservoir est intégré au sein d'un fuselage ou d'une aile ou d'un empennage d'un avion. According to a particular embodiment of the invention, said tank is integrated within a fuselage or a wing or a tail of an aircraft.
Les différentes caractéristiques particulières listées ci-dessus peuvent bien sûr être combinées entre elles, selon toutes les combinaisons possibles. L'invention concerne également un procédé de fabrication d'un réservoir tel que décrit précédemment. Le procédé comprend les étapes suivantes : mise en forme d'une couche interne ; adjonction optionnelle de nervures ; adjonction optionnelle d'au moins une couche intermédiaire ; adjonction d'une couche externe autour de l'ensemble formé par ladite couche interne et optionnellement ladite au moins une couche intermédiaire ; mise sous vide d'au moins un espace inter-couche ; au moins une des couches précédemment citées étant fabriquée selon les étapes suivantes : positionnement d'au moins un pli du côté externe de ladite couche, nommé pli non-divergé ; création d'une partie renforcée au sein d'un feuilleté de plis selon les étapes suivantes: adjonction d'au moins un élément composé d'un matériau de faible densité sur ledit au moins un pli externe non-divergé, appelé élément support ; adjonction et mise en forme d'au moins un pli du côté interne de la couche, recouvrant l'ensemble formé par ledit au moins un pli externe et ledit au moins un élément support, ledit au moins un pli interne épousant les formes de l'ensemble formé par ledit au moins un pli externe et ledit élément support ; adjonction de résine pour former une matrice englobant l'ensemble formé par le feuilleté de plis et ledit au moins un élément support ; polymérisation de ladite résine. The different particular characteristics listed above can of course be combined with each other, in all possible combinations. The invention also relates to a method of manufacturing a tank as described above. The method comprises the following steps: shaping an internal layer; optional addition of ribs; optional addition of at least one intermediate layer; addition of an external layer around the assembly formed by said internal layer and optionally said at least one intermediate layer; evacuation of at least one inter-layer space; at least one of the layers mentioned above being manufactured according to the following steps: positioning of at least one ply on the external side of said layer, called non-diverging ply; creation of a reinforced part within a laminate of plies according to the following steps: addition of at least one element composed of a low density material on said at least one non-diverging external ply, called support element; addition and shaping of at least one fold on the internal side of the layer, covering the assembly formed by said at least one external fold and said at least one support element, said at least one internal fold conforming to the shapes of the assembly formed by said at least one external fold and said support element; addition of resin to form a matrix encompassing the assembly formed by the laminate of plies and said at least one support element; polymerization of said resin.
Brève description des figures Brief description of the figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement illustratif et non limitatif, et qui se réfère aux figures annexées, dans lesquelles : Other aims, characteristics and advantages of the invention will appear on reading the following description given for illustrative and non-limiting purposes only, and which refers to the appended figures, in which:
[Fig. 1] représente un exemple de réalisation d'un réservoir cryogénique vu en coupe ; [Fig. 1] represents an example of a cryogenic tank seen in section;
[Fig. 2] représente le diagramme de phase de l'hydrogène ; [Fig. 2] represents the phase diagram of hydrogen;
[Fig. 3] représente un exemple de réalisation de réservoirs cryogéniques intégrés dans le fuselage d'un avion ; [Fig. 3] represents an example of the production of cryogenic tanks integrated into the fuselage of an aircraft;
[Fig. 4] représente un exemple de réalisation d'un réservoir cryogénique vu en coupe dont la section présente la forme d'un profil d'aile d'avion ; [Fig. 4] represents an exemplary embodiment of a cryogenic tank seen in section, the section of which has the shape of an airplane wing profile;
[Fig. 5] représente un exemple de réalisation d'un réservoir cryogénique vu en coupe dont la section est un assemblage d'un parallélépipède rectangle et d'un cylindre ; [Fig. 5] represents an example of a cryogenic tank seen in section, the section of which is an assembly of a rectangular parallelepiped and a cylinder;
[Fig. 6] représente un exemple de réalisation d'une couche d'un réservoir cryogénique, vue en coupe ; [Fig. 6] represents an example of making a layer of a cryogenic tank, seen in section;
[Fig. 7] représente un exemple de réalisation d'un espace inter-couches placé sous vide présentant des nervures transversales, vue en coupe ; [Fig. 7] represents an example of an embodiment of an inter-layer space placed under vacuum having transverse ribs, seen in section;
[Fig. 8] représente un exemple de réalisation d'un espace inter-couches placé sous vide présentant des nervures longitudinales, vue en coupe ; [Fig. 8] represents an example of an embodiment of an inter-layer space placed under vacuum having longitudinal ribs, seen in section;
[Fig. 9] représente un exemple de réalisation d'un réservoir cryogénique vu en coupe ; [Fig. 9] represents an example of a cryogenic tank seen in section;
[Fig. 10] représente un exemple de réalisation d'une paroi d'un réservoir cryogénique ; Description détaillée [Fig. 10] represents an example of making a wall of a cryogenic tank; detailed description
1. Principe général 1. General principle
Comme explicité précédemment, le principe général de la technique consiste à fabriquer un réservoir de forme complexe à partir de matériaux plus légers et plus malléables, tout en conservant des propriétés adaptées au stockage temporaire et au transport de gaz sous forme liquide. Ainsi, la technique de fabrication développée par les inventeurs permet de disposer d'un réservoir cryogénique pouvant par exemple être utilisé pour le transport et/ou l'utilisation d'hydrogène liquide par un véhicule. Ce réservoir est composé de matériaux légers et performants mécaniquement, permettant de définir des géométries complexes et d'obtenir un allègement de structure. Ainsi, les avantages d'un tel réservoir sont l'adaptabilité de sa forme et son indice gravimétrique élevé. As explained previously, the general principle of the technique consists of manufacturing a tank of complex shape from lighter and more malleable materials, while retaining properties suitable for temporary storage and transport of gas in liquid form. Thus, the manufacturing technique developed by the inventors makes it possible to have a cryogenic tank which can, for example, be used for the transport and/or use of liquid hydrogen by a vehicle. This tank is made of lightweight and mechanically efficient materials, making it possible to define complex geometries and obtain structural weight reduction. Thus, the advantages of such a reservoir are the adaptability of its shape and its high gravimetric index.
L'indice gravimétrique I d'un réservoir se définit comme : I = - avec Pt le poids du liquideThe gravimetric index I of a reservoir is defined as: I = - with P t the weight of the liquid
Pi+Pr contenu dans le réservoir, et Pr le poids du réservoir à vide. L'indice gravimétrique d'un réservoir à hydrogène gazeux est actuellement de 5 à 6% tandis que l'indice gravimétrique du réservoir décrit dans ce document est d'au moins 30%. Pi+P r contained in the tank, and P r the weight of the empty tank. The gravimetric index of a gaseous hydrogen tank is currently 5 to 6% while the gravimetric index of the tank described in this document is at least 30%.
Le réservoir, selon la présente technique, possède une paroi composée d'au moins deux couches, parmi lesquelles une couche externe (11) et une couche interne (12). Au moins une des couches de la paroi est une couche composite renforcée, une couche composite renforcée étant composée d'un matériau composite et comprenant un feuilleté de plis empilés les uns sur les autres le long d'une direction d'empilement localement perpendiculaire à la surface de la couche et dans laquelle au moins un pli du feuilleté de plis diverge de la surface de la couche, formant ainsi une structure de renforcement de la couche, appelée partie renforcée. The tank, according to the present technique, has a wall composed of at least two layers, including an outer layer (11) and an inner layer (12). At least one of the layers of the wall is a reinforced composite layer, a reinforced composite layer being composed of a composite material and comprising a laminate of plies stacked on top of each other along a stacking direction locally perpendicular to the surface of the layer and in which at least one ply of the ply laminate diverges from the surface of the layer, thus forming a reinforcing structure of the layer, called reinforced part.
Ainsi, un tel réservoir est résistant mécaniquement, en particulier au flambage, en raison de l'utilisation d'une couche composite renforcée telle que décrite ci-dessus. De plus, un tel réservoir peut s'adapter à tout volume et tout environnement dans lequel il doit être placé grâce à l'adaptabilité de sa forme, due à sa réalisation en composite. Enfin, un tel réservoir possède un indice gravimétrique élevé permettant, par exemple, une économie de carburant lors de son transport. Thus, such a tank is mechanically resistant, in particular to buckling, due to the use of a reinforced composite layer as described above. In addition, such a tank can adapt to any volume and any environment in which it must be placed thanks to the adaptability of its shape, due to its composite construction. Finally, such a tank has a high gravimetric index allowing, for example, fuel savings during its transport.
En relation avec la figure 1 on décrit un réservoir selon la présente technique. Le réservoir (10) possède une paroi composée d'au moins deux couche, parmi lesquelles une couche externe (11) et une couche interne (12). La figure 1 représente une vue en coupe d'un réservoir de forme quelconque selon un exemple de réalisation, cette forme pouvant globalement s'apparenter à un cylindre présentant une section quelconque. In relation to Figure 1 we describe a tank according to the present technique. The tank (10) has a wall composed of at least two layers, including an outer layer (11) and an inner layer (12). Figure 1 represents a sectional view of a tank of any shape according to an exemplary embodiment, this shape being generally similar to a cylinder having any section.
L'ensemble peut intégrer un orifice (13) de remplissage et de vidange, ainsi qu'une valve (14) de déchargement de gaz, pouvant être calibrée pour se déclencher à une pression donnée. The assembly can integrate a filling and draining port (13), as well as a gas discharge valve (14), which can be calibrated to trigger at a given pressure.
Dans le cas où un espace inter-couches est placé sous vide ou ultravide (entre 10-3 et 10-6 mbar), un orifice (18) permettant le tirage du vide peut être ajouté, celui-ci traversant la ou les couche(s) externe(s) de la paroi du réservoir, afin de relier l'espace inter-couche à l'extérieur du réservoir. L'orifice est auto-obturant grâce à une bille permettant ainsi le tirage du vide dans un sens et l'étanchéité de l'orifice dans l'autre. De plus, cet espace inter-couche peut également présenter un capteur (19) permettant la mesure du vide (ou ultravide), ce capteur transmettant les informations relatives aux mesures effectuées vers l'extérieur du réservoir. Ces informations peuvent ensuite être transmises via des ondes radio ou via un câble, par exemple. De tels dispositifs (orifice 18, capteur 19) peuvent être utilisés pour tout espace inter-couches placé sous vide (ou ultravide). In the case where an inter-layer space is placed under vacuum or ultra-high vacuum (between 10 -3 and 10 -6 mbar), an orifice (18) allowing the vacuum to be drawn can be added, this passing through the layer(s) s) external(s) of the tank wall, in order to connect the inter-layer space to the outside of the tank. The orifice is self-sealing thanks to a ball, thus allowing the vacuum to be drawn in one direction and the sealing of the orifice in the other. In addition, this inter-layer space can also have a sensor (19) allowing the measurement of vacuum (or ultra-high vacuum), this sensor transmitting information relating to the measurements carried out to the outside of the tank. This information can then be transmitted via radio waves or via cable, for example. Such devices (orifice 18, sensor 19) can be used for any inter-layer space placed under vacuum (or ultra-high vacuum).
Le réservoir (10) peut également comprendre un capteur ou sonde de niveau (15) afin de connaître la quantité de gaz liquide restant dans le réservoir, un capteur de pression (16), ainsi qu'un capteur de température (17). L'orifice (13) de remplissage et de vidange ainsi que la valve (14) traversent la structure afin de relier l'intérieur de la cavité formée par la couche interne (12), à l'air libre de l'extérieur. La valve (14) permet de gérer l'excès de carburant cryogénique. Par exemple, l'hydrogène liquide contenu dans le réservoir doit être maintenu à une température de 20 K et à une pression de 1 atm (= 1,013 bar = 101,3 kPa). Comme illustré par la figure 2, le diagramme de phase de l'hydrogène présente une zone liquide (21) dans des conditions de températures comprises entre 10 K et 30 K, et de pression entre 0,1 et 100 bars. Cependant, les coordonnées correspondant aux valeurs de 20 K et 1 bar sur le diagramme coïncident avec un point (22) de la courbe de changement d'état liquide (21) - gaz (23). Par conséquent, l'hydrogène liquide contenu dans le réservoir est très proche de la limite liquide-gaz et toute augmentation de température ou diminution de pression peut provoquer la vaporisation de l'hydrogène. Or, l'isolation thermique des réservoirs peut présenter des imperfections avec pour conséquence une légère ébullition de l'hydrogène due aux potentiels apports de chaleur, en effet, des conditions parfaitement adiabatiques sont matériellement irréalisables. Ainsi, la valve permet un déchargement d'hydrogène gazeux afin d'éviter un éventuel accroissement excessif de la pression au sein du réservoir. Cette pression ne doit ainsi pas dépasser un seuil limite pouvant être d'environ 10- 20 bar pour une température de 20 K. Le gaz responsable de la surpression est donc soit consommé avant d'atteindre la valeur de pression seuil, soit déchargé par la valve. The tank (10) may also include a level sensor or probe (15) in order to know the quantity of liquid gas remaining in the tank, a pressure sensor (16), as well as a temperature sensor (17). The filling and draining orifice (13) as well as the valve (14) pass through the structure in order to connect the interior of the cavity formed by the internal layer (12) to the open air from the outside. The valve (14) allows excess cryogenic fuel to be managed. For example, the liquid hydrogen contained in the tank must be maintained at a temperature of 20 K and a pressure of 1 atm (= 1.013 bar = 101.3 kPa). As illustrated in Figure 2, the phase diagram of hydrogen presents a liquid zone (21) under temperature conditions between 10 K and 30 K, and pressure between 0.1 and 100 bars. However, the coordinates corresponding to the values of 20 K and 1 bar on the diagram coincide with a point (22) of the liquid (21) - gas (23) state change curve. Therefore, the liquid hydrogen in the tank is very close to the liquid-gas boundary and any increase in temperature or decrease in pressure can cause the hydrogen to vaporize. However, the thermal insulation of the tanks can present imperfections with the consequence of a slight boiling of the hydrogen due to the potential heat input, in fact, perfectly adiabatic conditions are materially unachievable. Thus, the valve allows unloading of gaseous hydrogen in order to avoid a possible excessive increase in pressure within the tank. This pressure must therefore not exceed a threshold limit which can be around 10-20 bar for a temperature of 20 K. The gas responsible for the overpressure is therefore either consumed before reaching the threshold pressure value, or discharged by the valve.
Dans un exemple de réalisation, le réservoir décrit est un réservoir passif, dont le rôle est uniquement de fournir une source d'énergie à consommer. Ainsi, le réservoir permet de maintenir l'hydrogène sous forme liquide pendant une durée de 48h à 72h, lapse de temps au cours duquel l'hydrogène contenu dans le réservoir est consommé. De plus, dans cet exemple de réalisation, le réservoir peut intégrer un élément de chauffage au sein du réservoir, afin d'accélérer si nécessaire l'évaporation de l'hydrogène lorsque le besoin en source d'énergie est accru (en phase d'accélération par exemple). In an exemplary embodiment, the reservoir described is a passive reservoir, the role of which is solely to provide a source of energy to be consumed. Thus, the tank makes it possible to maintain the hydrogen in liquid form for a period of 48 hours to 72 hours, a period of time during which the hydrogen contained in the tank is consumed. Furthermore, in this exemplary embodiment, the tank can integrate a heating element within the tank, in order to accelerate, if necessary, the evaporation of the hydrogen when the need for an energy source is increased (in the phase of acceleration for example).
Dans un autre exemple de réalisation, le réservoir décrit est un réservoir actif, permettant de maintenir l'hydrogène sous forme liquide sur des durées supérieures à 72h, à l'aide d'un système de refroidissement intégré. Ainsi, le capteur de température décrit précédemment peut être relié à un dispositif thermostatique intégré audit système de refroidissement. Cela permet ainsi de maintenir une température stable de 20K au sein du réservoir sur de longue durées. Ce type de réalisation, cependant, alourdit l'ensemble. In another embodiment, the tank described is an active tank, making it possible to maintain the hydrogen in liquid form for periods greater than 72 hours, using an integrated cooling system. Thus, the temperature sensor described above can be connected to a thermostatic device integrated into said cooling system. This makes it possible to maintain a stable temperature of 20K within the tank over long periods of time. This type of production, however, makes the whole thing heavier.
Par ailleurs, le réservoir peut intégrer des cloisons internes pleines ou ajourées occupant toute ou partie de la section du réservoir afin de limiter les mouvements du liquide cryogénique et de créer ainsi un brise-flot. En effet, dans une application telle que l'aéronautique ou plus généralement pour le transport d'un réservoir contenant un liquide cryogénique, un déséquilibre du véhicule dû au mouvement de ce liquide au sein du réservoir n'est pas souhaitable. Furthermore, the tank can integrate solid or perforated internal partitions occupying all or part of the section of the tank in order to limit the movements of the cryogenic liquid and thus create a flood barrier. Indeed, in an application such as aeronautics or more generally for the transport of a tank containing a cryogenic liquid, an imbalance of the vehicle due to the movement of this liquid within the tank is not desirable.
Le principe général de la technique est applicable à de nombreux types d'industries pouvant mettre en oeuvre un ou plusieurs réservoir(s) cryogénique(s) comme l'aéronautique/aérospatiale, le ferroviaire, l'automobile, les poids-lourds/bus, le naval/maritime... Ainsi, le réservoir peut être intégré dans tout type de véhicule pour la mobilité terrestre (trains, camions, autobus, voiture, tracteur, etc.) ou pour la mobilité maritime (bateaux de tout type et toute dimension, hydroglisseur, hovercraft, etc.). The general principle of the technique is applicable to many types of industries that can use one or more cryogenic tank(s) such as aeronautics/aerospace, railways, automobiles, heavy goods vehicles/buses. , naval/maritime... Thus, the tank can be integrated into any type of vehicle for land mobility (trains, trucks, buses, cars, tractors, etc.) or for maritime mobility (boats of any type and any dimension, hydrofoil, hovercraft, etc.).
2. Géométrie du réservoir 2. Reservoir geometry
En prenant l'exemple d'une application à l'aéronautique, un réservoir tel que décrit précédemment peut être intégré dans les ailes, ou dans le fuselage de l'avion. En effet, sa géométrie adaptable permet de placer le réservoir dans des zones de formes complexes. Cette géométrie complexe est permise par la pression interne du réservoir maintenue autour de 1 atm. Ainsi, il n'est pas nécessaire d'utiliser des géométries sphériques ou oblongues ni même d'arrondir les angles des parois. Des lignes brisées sont possibles. Taking the example of an application in aeronautics, a tank as described above can be integrated into the wings, or into the fuselage of the aircraft. Indeed, its adaptable geometry allows the tank to be placed in areas of complex shapes. This complex geometry is made possible by the internal pressure of the tank maintained around 1 atm. Thus, it is not no need to use spherical or oblong geometries or even round the corners of the walls. Broken lines are possible.
La figure 3 illustre un exemple de réalisation particulier de la technique, dans lequel deux réservoirs sont intégrés dans le fuselage d'un avion. Le premier réservoir (31) prend une forme de pyramide tronquée à base rectangle, et est placé à l'arrière de la cabine de pilotage (33). Tandis que le second réservoir (32) est placé sous la cabine de pilotage (33) et présente une forme parallélépipède rectangle. Figure 3 illustrates a particular embodiment of the technique, in which two tanks are integrated into the fuselage of an aircraft. The first tank (31) takes the shape of a truncated pyramid with a rectangular base, and is placed at the rear of the cockpit (33). While the second tank (32) is placed under the cockpit (33) and has a rectangular parallelepiped shape.
Toute forme jugée adéquate par l'homme du métier est envisageable pour la réalisation d'un tel réservoir : cône, pavé, cylindre, prisme, ovoïde, ellipsoïde, sphère, forme complexe quelconque, etc. (l'ensemble de ces solides pouvant être associés, déformés ou encore tronqués selon tous les plans de l'espace). Any shape deemed adequate by those skilled in the art can be envisaged for the production of such a reservoir: cone, block, cylinder, prism, ovoid, ellipsoid, sphere, any complex shape, etc. (all of these solids can be associated, deformed or even truncated according to all planes of space).
Les figures 4 et 5 présentent deux exemples de réalisation particuliers du réservoir. La figure 4 représente une coupe d'un réservoir prenant la forme d'un profil d'une aile d'avion (forme s'apparentant à une goutte d'eau légèrement aplanie). Ce réservoir présentant une section dont la surface évolue selon la longueur du réservoir. Ainsi, la section (41) vue en coupe est plus grande qu'une section (42) prise plus loin sur le schéma. La figure 5 représente une coupe d'un réservoir dont la forme consiste en l'association d'un cylindre (51) et d'un parallélépipède rectangle (52), le centre du cylindre étant centré autour d'une arrête du parallélépipède rectangle. Figures 4 and 5 show two particular embodiments of the tank. Figure 4 represents a section of a tank taking the shape of the profile of an airplane wing (shape resembling a slightly flattened drop of water). This tank has a section whose surface changes according to the length of the tank. Thus, the section (41) seen in section is larger than a section (42) taken further on in the diagram. Figure 5 represents a section of a tank whose shape consists of the association of a cylinder (51) and a rectangular parallelepiped (52), the center of the cylinder being centered around an edge of the rectangular parallelepiped.
3. Description des couches selon différents exemples de réalisation 3. Description of the layers according to different embodiments
3.1. Généralités 3.1. General
Les parois du réservoir sont composées d'au moins deux couches : une couche externe et une couche interne, entre lesquelles peuvent s'insérer des éléments ou couches supplémentaires. Ces couches peuvent être composées de tout matériau jugé adéquate par l'homme du métier. Ainsi, elles peuvent être composées de bois, de perlite, de mousse (polyuréthane par exemple), de verre ou encore de métal par exemple de l'aluminium (ou alliage d'aluminium avec par exemple du silicium, du cuivre, du magnésium, etc.), du titane (ou alliage), etc. Les couches peuvent également être composées de matériau composite, par exemple des fibres de carbone ou de verre, du GLARE, du zylon, du kevlar, etc. avec de la résine (époxyde, polyester insaturé, PEEK, polyimide...) avec une structure en nid d'abeille, multicouche, en sandwich, etc. Dans le cas où les couches comportent des fibres, celles-ci peuvent être d'une seule nature ou de natures différentes, elles peuvent présenter une seule orientation ou être multidirectionnelles. Une couche peut être composée d'un empilement de plis composites. The walls of the tank are made up of at least two layers: an outer layer and an inner layer, between which additional elements or layers can be inserted. These layers can be composed of any material deemed suitable by those skilled in the art. Thus, they can be composed of wood, perlite, foam (polyurethane for example), glass or even metal for example aluminum (or aluminum alloy with for example silicon, copper, magnesium, etc.), titanium (or alloy), etc. The layers can also be made of composite material, for example carbon or glass fibers, GLARE, zylon, kevlar, etc. with resin (epoxy, unsaturated polyester, PEEK, polyimide...) with honeycomb, multilayer, sandwich structure, etc. In the case where the layers include fibers, these can be of a single nature or of different natures, they can have a single orientation or be multidirectional. A layer can be composed of a stack of composite plies.
Dans un exemple de réalisation, les couches composites comportant un empilement de plis peuvent intégrer entre ces derniers, des films refroidissants et/ou chauffants, permettant de contrôler la température et donc le gradient thermique. Un autre exemple d'intégration d'éléments au sein des plis d'une couche composite consiste en l'ajout de cellules photovoltaïques sous un ou plusieurs plis transparents au niveau de la couche externe, permettant ainsi d'accumuler et/ou de fournir de l'énergie aux différents systèmes intégrés dans le réservoir. In an exemplary embodiment, the composite layers comprising a stack of plies can integrate cooling and/or heating films between them, making it possible to control the temperature and therefore the thermal gradient. Another example of integration of elements within the folds of a composite layer consists of the addition of photovoltaic cells under one or more transparent folds at the level of the external layer, thus making it possible to accumulate and/or provide energy. energy to the different systems integrated into the tank.
Dans un exemple de réalisation, les couches composées de composites sont saturées de résine permettant ainsi d'assurer l'étanchéité inter-couches. In an exemplary embodiment, the layers composed of composites are saturated with resin, thus ensuring inter-layer sealing.
Les épaisseurs et le nombre de couches peuvent varier en fonction des matériaux utilisés et de l'application souhaitée. Ces valeurs doivent être adaptées de manière à contrôler le gradient de température, lequel s'étale de -260°C à la couche interne (11) à +60°C à la surface de la couche externe (12). L'épaisseur totale des parois d'un réservoir tel que décrit dans ce document est comprise entre 50 et 250 mm, en fonction de la tenue au vide. Dans un exemple de réalisation particulier, deux couches successives présentent un espace inter-couches placé sous vide (entre 1CT3 et 1CT6 mbar) permettant d'améliorer les performances thermiques de la paroi du réservoir. Ces couches adjacentes peuvent, dans un exemple de réalisation, être maintenues éloignées par des supports. Thicknesses and number of layers may vary depending on the materials used and the desired application. These values must be adapted so as to control the temperature gradient, which extends from -260°C at the inner layer (11) to +60°C at the surface of the outer layer (12). The total thickness of the walls of a tank as described in this document is between 50 and 250 mm, depending on the vacuum resistance. In a particular embodiment, two successive layers have an inter-layer space placed under vacuum (between 1CT 3 and 1CT 6 mbar) making it possible to improve the thermal performance of the tank wall. These adjacent layers can, in an exemplary embodiment, be kept apart by supports.
3.2. Description d'une couche composite renforcée selon différents exemples de réalisation3.2. Description of a reinforced composite layer according to different embodiment examples
Le réservoir est composé d'au moins une couche composite renforcée. En particulier, cette couche peut tenir le rôle de couche externe, celle-ci étant la dernière couche en contact avec l'atmosphère extérieure et ayant pour objectif d'assurer le non-flambage de la structure. The tank is composed of at least one reinforced composite layer. In particular, this layer can act as an external layer, this being the last layer in contact with the external atmosphere and having the objective of ensuring that the structure does not buckle.
Ainsi, la conception et la fabrication d'une telle couche composite consiste à munir celle-ci de parties renforcées. Plus particulièrement, la couche est munie de parties renforcées intégrées à même la couche. De cette manière, on dispose d'une couche intégrée/compact, dans laquelle les parties renforcées font partie intégrante de la couche elle-même. Thus, the design and manufacture of such a composite layer consists of providing it with reinforced parts. More particularly, the diaper is provided with reinforced parts integrated into the diaper itself. In this way, we have an integrated/compact layer, in which the reinforced parts are an integral part of the layer itself.
Le terme pli est utilisé comme désignant une fine couche pouvant être composée de fibres. Le terme feuilleté ou empilement désigne une superposition de plis. The term ply is used to refer to a thin layer that may be composed of fibers. The term laminated or stacking designates a superposition of folds.
En relation avec la figure 6, on décrit un exemple de réalisation d'une couche (61) composite renforcée. La figure 6 représente deux vues en coupe d'une telle couche (61) présentant plusieurs parties renforcées (62) intégrées dans son épaisseur. En haut de la figure 6 est représentée une couche (61) vue du dessus, tandis qu'en bas est représentée une couche (61) vue du dessous. La couche (61) représentée est de forme globalement parallélépipédique rectangle et comprend une surface externeIn relation to Figure 6, we describe an example of production of a reinforced composite layer (61). Figure 6 represents two sectional views of such a layer (61) having several reinforced parts (62) integrated into its thickness. At the top of Figure 6 is shown a layer (61) seen from above, while at the bottom is shown a layer (61) seen from below. The layer (61) shown is of generally rectangular parallelepiped shape and comprises an external surface
(63) et une surface interne (64). Cette couche (61) est constituée d'un feuilleté ou empilement de plis (65, 66). Les plis (65) de la surface externe (63) étant non-divergés, et les plis (66) de la surface interne(63) and an internal surface (64). This layer (61) is made up of a laminate or stack of plies (65, 66). The folds (65) of the external surface (63) being non-diverged, and the folds (66) of the internal surface
(64) étant divergés pour créer une partie renforcée (62). La divergence des plis est définie comme étant l'éloignement/écartement de la trajectoire normale du pli dans le cas où aucune partie renforcée n'est présente. Par ailleurs, la figure 6 représente un exemple de réalisation particulier dans lequel les parties renforcées (62) ont une section trapézoïdale isocèle et sont de forme allongée. De plus, la figure 6 représente un exemple de réalisation dans lequel la divergence des plis est permise par l'adjonction d'un élément de support (67) composé d'un matériau de faible densité. En effet, les plis divergés épousant la forme des éléments de supports (67), les plis sont déviés par rapport au plan du panneau et forment ainsi des parties renforcées (62). Les éléments de support (67) ont pour fonction de maintenir l'écartement entre les plis divergés et non-divergés, et pouvant également présenter des propriétés thermiques adaptées pour l'isolation. Ainsi, dans un exemple de réalisation, les plis divergés épousent la forme des éléments de support (67). De plus, le rôle des parties renforcées (62) étant de renforcer la structure, dans un exemple de réalisation, ces parties renforcées (62) sont de forme globalement allongée dans la direction à renforcer, de façon à s'opposer aux efforts auxquels est soumise la structure. (64) being diverged to create a reinforced part (62). The divergence of the folds is defined as the distance/spacing from the normal trajectory of the fold in the case where no reinforced part is present. Furthermore, Figure 6 represents a particular embodiment in which the reinforced parts (62) have an isosceles trapezoidal section and are of elongated shape. Furthermore, Figure 6 represents an exemplary embodiment in which the divergence of the folds is allowed by the addition of a support element (67) composed of a low density material. Indeed, the diverging folds conform to the shape of the support elements (67), the folds are deviated from the plane of the panel and thus form reinforced parts (62). The support elements (67) have the function of maintaining the spacing between the diverged and non-diverged plies, and can also have thermal properties suitable for insulation. Thus, in an exemplary embodiment, the diverging folds match the shape of the support elements (67). In addition, the role of the reinforced parts (62) being to reinforce the structure, in an exemplary embodiment, these reinforced parts (62) are of generally elongated shape in the direction to be reinforced, so as to oppose the forces to which is submitted the structure.
Ainsi, grâce à l'utilisation d'une telle couche externe, le réservoir peut prendre la forme d'une aile d'aéroplane, résistant aux efforts liés à la portance. Thus, thanks to the use of such an external layer, the tank can take the shape of an airplane wing, resisting the forces linked to lift.
Dans un exemple de réalisation, l'ensemble des caractéristiques de la couche (61) composite renforcée développés ci-dessus, sont applicables à toute couche composant la paroi du réservoir, y compris la couche interne. In an exemplary embodiment, all of the characteristics of the reinforced composite layer (61) developed above are applicable to any layer making up the tank wall, including the internal layer.
4. Description des supports selon différents exemples de réalisation 4. Description of the supports according to different embodiment examples
Des supports peuvent être utilisés entre deux couches de la paroi pour créer un espacement entre celles-ci, lequel est maintenu sous vide ou ultravide, permettant d'améliorer les performances thermiques du réservoir. Dans un exemple de réalisation, les supports occupent l'espace entre la couche interne du réservoir et la couche pleine suivante, le vide créé entre ces couches permettant de contrôler le gradient thermique en isolant l'hydrogène liquide en contact avec la couche interne des autres couches de la paroi. Supports can be used between two layers of the wall to create a spacing between them, which is maintained under vacuum or ultra-high vacuum, making it possible to improve the thermal performance of the tank. In an exemplary embodiment, the supports occupy the space between the internal layer of the tank and the following solid layer, the vacuum created between these layers making it possible to control the thermal gradient by isolating the liquid hydrogen in contact with the internal layer from the others. layers of the wall.
Dans un exemple de réalisation, les supports occupent l'espace entre la couche externe du réservoir et la couche pleine suivante (vers l'intérieur), le vide créé entre ces couches permettant de contrôler le gradient thermique en isolant l'extérieur du réservoir des autres couches de la paroi. La couche externe étant soumise à la pression atmosphérique depuis l'extérieur et au vide depuis l'intérieur, elle est donc plaquée sur les supports par la pression atmosphérique, et libre de se déformer (dans le cas d'une application dans l'aéronautique par exemple) avec le changement de pression atmosphérique, du fait de sa non-fixation aux supports. In an exemplary embodiment, the supports occupy the space between the outer layer of the tank and the next solid layer (inwards), the vacuum created between these layers making it possible to control the thermal gradient by insulating the exterior of the tank from the other layers of the wall. The outer layer being subjected to atmospheric pressure from the outside and to vacuum from the inside, it is therefore pressed onto the supports by atmospheric pressure, and free to deform (in the case of an application in aeronautics for example) with the change in atmospheric pressure, due to its non-fixation to the supports.
Dans un exemple de réalisation, les supports se présentent sous la forme de nervures évidées. Leurs évidements contribuent à limiter le poids du réservoir, tout en créant une couche isolante. Ces évidements peuvent se présenter sous toute forme jugée adaptée par l'homme du métier. Ils peuvent être débouchant ou non, de forme carré, elliptique, quelconque, etc. De plus l'espacement et la répartition de ces évidements peuvent être déterminés en conception, en fonction des efforts exercés sur les différentes zones du réservoir et de l'application souhaitée. In an exemplary embodiment, the supports are in the form of hollowed-out ribs. Their recesses help to limit the weight of the tank, while creating an insulating layer. These recesses can be in any form deemed suitable by those skilled in the art. They can be open or not, square, elliptical, any shape, etc. In addition, the spacing and distribution of these recesses can be determined in design, depending on the forces exerted on the different zones of the tank and the desired application.
Dans un exemple de réalisation particulier, ces supports peuvent être en balsa compressé ou tout autre matériau pour lequel le poids du support est inférieur au poids équivalent d'un matériau composite. In a particular embodiment, these supports can be made of compressed balsa or any other material for which the weight of the support is less than the equivalent weight of a composite material.
Les supports peuvent être longitudinaux ou transversaux, selon la forme du réservoir et l'optimisation des efforts s'exerçant sur celui-ci. Les figures 7 et 8 illustrent deux exemples de réalisation particuliers de nervures évidées (71). La figure 7 représente une vue 3D en coupe d'un espace inter-couches mise sous vide faisant partie de la paroi d'un réservoir de forme quelconque/complexe. Cet espace inter-couches de vide présente une succession de nervures (71) longitudinales évidées. Les évidements (72) présentés sur la figure 7 sont traversant et possèdent une forme elliptique. La figure 8, quant à elle, représente une vue 3D d'une partie d'un espace intercouches placé sous vide faisant partie de la paroi d'un réservoir de forme quelconque/complexe. Cet espace inter-couches présente des nervures (71) transversales évidées. Les évidements présentés sur la figure 8 sont traversants et possèdent une forme elliptique. The supports can be longitudinal or transverse, depending on the shape of the tank and the optimization of the forces exerted on it. Figures 7 and 8 illustrate two particular embodiments of hollowed ribs (71). Figure 7 represents a 3D sectional view of an evacuated inter-layer space forming part of the wall of a tank of any/complex shape. This inter-layer void space has a succession of hollowed out longitudinal ribs (71). The recesses (72) shown in Figure 7 are through and have an elliptical shape. Figure 8, for its part, represents a 3D view of part of an interlayer space placed under vacuum forming part of the wall of a tank of any/complex shape. This inter-layer space has hollowed out transverse ribs (71). The recesses shown in Figure 8 are through and have an elliptical shape.
Ainsi, il est possible d'associer des espaces inter-couches de vide comportant des nervures transversales et/ou longitudinales. Dans un mode de réalisation, la paroi du réservoir comporte au moins deux espaces inter-couches de vides, dont les nervures sont alternativement transversales puis longitudinales afin de mieux répartir les efforts s'exerçant sur la paroi du réservoir. Thus, it is possible to associate void inter-layer spaces comprising transverse and/or longitudinal ribs. In one embodiment, the wall of the tank comprises at least two inter-layer spaces of voids, the ribs of which are alternately transverse then longitudinal in order to better distribute the forces exerted on the wall of the tank.
Dans un autre exemple de réalisation, les parties renforcées de la couche composite renforcée, décrite précédemment, peuvent faire office de supports inter-couches. Ainsi, un ultravide peut être fait entre une couche composite renforcée et la couche suivante, sans ajout de supports supplémentaires. In another embodiment, the reinforced parts of the reinforced composite layer, described previously, can act as inter-layer supports. Thus, an ultra-high vacuum can be made between a reinforced composite layer and the next layer, without adding additional supports.
5. Description d'un premier exemple de réalisation spécifique 5. Description of a first specific embodiment
Dans un exemple de réalisation particulier, illustré par la figure 9, les différentes couches composant les parois du réservoir sont successivement, de l'intérieur vers l'extérieur : une première couche interne (12) étanche constituée d'aluminium ou de composite (recouvert sur sa partie supérieure ou intérieure d'un film ou d'un tissu supportant les températures ultra-basses comme le polyimide (TECASINT®, KAPTON®), le polytétrafluoroéthylène (TECAFLON®, GORE-TEX®), le polyoléfine (membrane Porelle®), ou encore une couche de NEGs (Non-Evaporable Getters)... un espace inter-couches (92) placé sous vide (ou ultravide), les couches adjacentes étant maintenues éloignées à l'aide de supports/nervures. une deuxième couche (94) composée d'un empilement de plis en matériau composite à base de fibres de carbone, ou autre type de fibres, l'angle des plis entre eux pouvant être toute valeur d'angle jugée adéquate par l'homme du métier. L'épaisseur de cette deuxième couche est comprise entre 0,5mm à 20mm suivant les spécifications techniques requises. Cette couche est saturée par une résine assurant l'étanchéité inter-couches et inter-plis. Cette couche peut également se présenter sous la forme d'un sandwich composite-mousse- composite en partie ou en totalité, elle sera alors obtenue par cuissons successives ou simultanées. Cette deuxième couche (94) est recouverte sur sa partie intérieure d'un isolant (93) de type Mylar ou d'une couche de NEGs, et sur sa partie extérieure d'une nappe d'isolation (95), optionnelle, de type « nappe en verre isolant cryogénique » par exemple celle de la société UNIFRAX ou un film polyimide ou polyamide. Cette deuxième couche (94) est répétée autant de fois que nécessaire pour contrôler le gradient de température. un espace inter-couches (96) placé sous vide (ou ultravide), les couches adjacentes étant maintenues éloignées à l'aide de supports/nervures. la couche externe (11), dernière couche qui fait face à l'atmosphère extérieure, est une couche composite permettant de prévenir le flambage de la structure, à l'aide de portions ou de parties renforcées, telles que décrites précédemment. In a particular embodiment, illustrated in Figure 9, the different layers making up the walls of the tank are successively, from the inside to the outside: a first waterproof internal layer (12) made of aluminum or composite (covered on its upper or interior part of a film or fabric resistant to ultra-low temperatures such as polyimide (TECASINT®, KAPTON®), polytetrafluoroethylene (TECAFLON®, GORE-TEX®), polyolefin (Porelle® membrane), or even a layer of NEGs (Non-Evaporable Getters)... an inter-layer space (92) placed under vacuum (or ultra-high vacuum), the adjacent layers being held apart using supports/ribs. a second layer (94) composed of a stack of plies of composite material based on carbon fibers, or other type of fibers, the angle of the plies between them being able to be any angle value deemed adequate by those skilled in the art job. The thickness of this second layer is between 0.5mm to 20mm depending on the required technical specifications. This layer is saturated with a resin ensuring inter-layer and inter-ply sealing. This layer can also be in the form of a composite-foam-composite sandwich in part or in full, it will then be obtained by successive or simultaneous cooking. This second layer (94) is covered on its interior part with an insulator (93) of the Mylar type or with a layer of NEGs, and on its exterior part with an optional insulation layer (95), of the type “cryogenic insulating glass sheet” for example that of the company UNIFRAX or a polyimide or polyamide film. This second layer (94) is repeated as many times as necessary to control the temperature gradient. an inter-layer space (96) placed under vacuum (or ultra-high vacuum), adjacent layers being held apart using supports/ribs. the outer layer (11), the last layer which faces the external atmosphere, is a composite layer making it possible to prevent buckling of the structure, using reinforced portions or parts, as described previously.
6. Description d'un second exemple de réalisation spécifique 6. Description of a second specific embodiment
Dans un exemple de réalisation particulier, les différentes couches composant les parois du réservoir sont successivement, de l'intérieur vers l'extérieur : une couche interne étanche constituée d'aluminium ou de composite, pouvant présenter les caractéristiques d'une couche composite renforcée telle que décrite précédemment ; un espace inter-couches placé sous vide ou sous ultravide (c'est-à-dire entre des pressions comprises entre 10-3 et 10-6 mbar) ; une couche externe en composite renforcée dont les parties renforcées sont allongées dans le sens des efforts auxquels est soumise la structure, de façon à empêcher le flambement ;In a particular embodiment, the different layers making up the walls of the tank are successively, from the inside to the outside: a sealed internal layer made of aluminum or composite, which may have the characteristics of a reinforced composite layer such as as described previously; an inter-layer space placed under vacuum or ultra-high vacuum (that is to say between pressures between 10 -3 and 10 -6 mbar); an external layer of reinforced composite whose reinforced parts are elongated in the direction of the forces to which the structure is subjected, so as to prevent buckling;
Dans un exemple de réalisation, l'espace inter-couches sous vide ou sous ultravide présent entre la couche interne et la couche externe peut être créé sans ajout de support, par simple mise sous vide des espaces formés entre les couches interne(s) et externe(s) par les parties renforcées. Lorsque la couche interne est une couche composite, elle peut présenter des parties renforcées perpendiculaires aux parties renforcées de la couche externe afin de limiter les zones de ponts thermiques. In an exemplary embodiment, the inter-layer space under vacuum or under ultra-high vacuum present between the internal layer and the external layer can be created without adding support, by simply evacuating the spaces formed between the internal layers and layers. external(s) by the reinforced parts. When the internal layer is a composite layer, it may have reinforced parts perpendicular to the reinforced parts of the external layer in order to limit thermal bridge zones.
Dans un autre exemple de réalisation, l'espacement inter-couches sous vide présent entre la couche interne et la couche externe peut être créé à l'aide de supports de type nervures permettant de maintenir un écartement entre la couche interne et la couche externe, les nervures étant perpendiculaires aux parties renforcées de la (ou des) couche(s) composite(s) renforcée(s). Si la couche interne est une couche composite renforcées, tel qu'illustré par la figure 10, elle peut présenter des parties renforcées (62) parallèles aux parties renforcées de la couche externe (11, 61), tandis que les nervures (71) sont perpendiculaires aux parties renforcées (62) des couches interne (12, 61) et externe (11, 61), limitant par conséquent les zones de ponts thermiques. Dans la figure 10, les parties renforcées possèdent une section en chapeau de gendarme due à la forme des éléments de support (67) qui est épousée par les plis divergés (66). De plus, les nervures présentent des évidements (72) de section elliptique. In another exemplary embodiment, the vacuum inter-layer spacing present between the internal layer and the external layer can be created using rib-type supports making it possible to maintain a spacing between the internal layer and the external layer, the ribs being perpendicular to the reinforced parts of the reinforced composite layer(s). If the internal layer is a reinforced composite layer, as illustrated in Figure 10, it can have reinforced parts (62) parallel to the reinforced parts of the external layer (11, 61), while the ribs (71) are perpendicular to the reinforced parts (62) of the internal (12, 61) and external (11, 61) layers, consequently limiting the thermal bridge zones. In Figure 10, the reinforced parts have a policeman's hat section due to the shape of the support elements (67) which is married by the diverged folds (66). In addition, the ribs have recesses (72) of elliptical section.
7. Description d'un procédé de fabrication 7. Description of a manufacturing process
Le procédé de fabrication du réservoir tel que décrit précédemment met donc en oeuvre au moins deux couches dont au moins une couche formant un matériau stratifié. La fabrication d'un tel réservoir peut être effectuée en partie grâce à des procédés adaptés aux matériaux composites, ces procédés peuvent être manuels (moulage au contact, moulage sous vide, infusion, pré-imprégnés...), et/ou mécanisés (RTM, thermoformage, moulage, enroulement filamentaire...) ou tout autre type de procédé jugé adapté par l'homme du métier. The method of manufacturing the tank as described above therefore uses at least two layers including at least one layer forming a laminated material. The manufacture of such a tank can be carried out in part using processes adapted to composite materials, these processes can be manual (contact molding, vacuum molding, infusion, prepregs, etc.), and/or mechanized ( RTM, thermoforming, molding, filament winding, etc.) or any other type of process deemed suitable by those skilled in the art.
Dans un exemple de réalisation, le réservoir est constitué d'une couche interne (composite ou métallique), augmentée de l'intérieur vers l'extérieur par des couches en matériaux composite (fibres de carbone, de verre, zylon, kevlar, avec de la résine), fabriqué par le dépôt de plis composite et/ou par enroulement filamentaire. Le réservoir est donc capable de prendre toute forme géométrique. L'étanchéité des couches composites de l'ensemble de la paroi est obtenue par saturation en résine des plis de composite de façon à éliminer toute porosité. In an exemplary embodiment, the tank consists of an internal layer (composite or metallic), increased from the inside to the outside by layers of composite materials (carbon fibers, glass fibers, zylon, kevlar, with resin), manufactured by the deposition of composite plies and/or by filament winding. The tank is therefore capable of taking any geometric shape. The waterproofing of the composite layers of the entire wall is obtained by saturating the composite plies with resin so as to eliminate any porosity.
En relation avec les figures 1 et 6, le procédé de fabrication général d'un réservoir (10) comprend les étapes suivantes : mise en forme d'une couche interne (12) ; adjonction optionnelle de nervures (71) ; adjonction optionnelle d'au moins une couche intermédiaire pouvant être en composite (94) et/ou isolante (93, 95) et/ou résistante mécaniquement (94) ; adjonction d'une couche externe (11) autour de l'ensemble formé par ladite couche interne (12) et optionnellement ladite au moins une couche intermédiaire (93, 94, 95) ; mise sous vide d'au moins un espace inter-couche (92, 96) ; au moins une des couches précédemment citées étant fabriquée selon les étapes suivantes : positionnement d'au moins un pli (65) du côté externe de ladite couche (61), nommé pli non- divergé ; création d'une partie renforcée au sein d'un feuilleté de plis (65, 66) selon les étapes suivantes adjonction d'au moins un élément (67) composé d'un matériau de faible densité sur ledit au moins un pli (65) externe non-divergé, appelé élément support (67) ; adjonction et mise en forme d'au moins un pli (66) du côté interne de la couche (61), recouvrant l'ensemble formé par ledit au moins un pli externe (65) et ledit au moins un élément support (67), ledit au moins un pli interne (66) épousant les formes de l'ensemble formé par ledit au moins un pli externe (65) et ledit élément support (67) ; adjonction de résine pour former une matrice englobant l'ensemble formé par le feuilleté de plis (65, 66) et ledit au moins un élément support (67) ; polymérisation de ladite résine. In relation to Figures 1 and 6, the general manufacturing method of a tank (10) comprises the following steps: shaping an internal layer (12); optional addition of ribs (71); optional addition of at least one intermediate layer which may be made of composite (94) and/or insulating (93, 95) and/or mechanically resistant (94); addition of an external layer (11) around the assembly formed by said internal layer (12) and optionally said at least one intermediate layer (93, 94, 95); evacuating at least one inter-layer space (92, 96); at least one of the layers mentioned above being manufactured according to the following steps: positioning of at least one ply (65) on the external side of said layer (61), called non-diverging ply; creation of a reinforced part within a laminate of plies (65, 66) according to the following steps addition of at least one element (67) composed of a low density material on said at least one ply (65) external non-diverged, called support element (67); addition and shaping of at least one fold (66) on the internal side of the layer (61), covering the assembly formed by said at least one external fold (65) and said at least one support element (67), said at least one internal fold (66) matching the shapes of the assembly formed by said at least one external fold (65) and said support element (67); addition of resin to form a matrix encompassing the assembly formed by the laminate of plies (65, 66) and said at least one support element (67); polymerization of said resin.
Selon un exemple de réalisation spécifique, le procédé de fabrication met en oeuvre des étapes suivantes : mise en forme d'une âme intérieure (ou couche interne 12) en matériau composite ou métallique, cette âme intérieure comprenant un orifice de remplissage et un orifice de dégazage ; adjonction de nervures, évidées comme expliqué ci-dessus, sur l'âme intérieure ; adjonction, dans l'espace entre les nervures, d'une pâte soluble (par exemple polymère soluble) à l'eau (ou tout autre solvant) sur une hauteur égale à la hauteur des nervures en tout point ; adjonction d'une couche (61) en composite renforcée, par drapage des plis, sur l'ensemble formé par les nervures et la pâte, cette couche comprenant un orifice auto-obturant destiné au tirage du vide ; les étapes d'adjonction de nervures, de pâte soluble et d'une couche composite renforcée sont répétées autant de fois que nécessaire pour atteindre le nombre de couches et les performances souhaitées ; polymérisation de l'ensemble et démoulage ; évacuation de la pâte soluble par dissolution dans un solvant (eau ou autre) ; installation des valves et des joints d'étanchéité ; mise sous vide (ou ultravide) de l'espace inter-couche via l'orifice de tirage du vide ; test du réservoir. According to a specific example of embodiment, the manufacturing process implements the following steps: shaping of an inner core (or inner layer 12) made of composite or metallic material, this inner core comprising a filling orifice and a filling orifice degassing; addition of ribs, hollowed out as explained above, on the inner core; addition, in the space between the ribs, of a soluble paste (for example soluble polymer) in water (or any other solvent) to a height equal to the height of the ribs at any point; addition of a layer (61) of reinforced composite, by draping the folds, over the assembly formed by the ribs and the paste, this layer comprising a self-sealing orifice intended for drawing the vacuum; the steps of adding ribs, soluble paste and a reinforced composite layer are repeated as many times as necessary to achieve the number of layers and the desired performance; polymerization of the whole and demolding; removal of the soluble paste by dissolution in a solvent (water or other); installation of valves and seals; placing the inter-layer space under vacuum (or ultra-high vacuum) via the vacuum draw-off port; tank test.

Claims

REVENDICATIONS
1. Réservoir cryogénique (10) dont la paroi comprend une pluralité de couches (11, 12, 61), parmi lesquelles une couche externe (11) est en contact avec le milieu extérieur, une couche interne (12) est en contact avec le contenu du réservoir, caractérisé en ce qu'au moins une des couches de la paroi du réservoir (10) est constituée de matériau composite comprenant un feuilleté de plis (65, 66) empilés les uns sur les autres le long d'une direction d'empilement localement perpendiculaire à la surface de ladite couche (61) dans laquelle au moins un pli (66) du feuilleté de plis (65, 66) diverge de la surface de la couche (61), formant ainsi une structure de renforcement de ladite couche (61), appelée partie renforcée (62), ladite couche (61) étant nommée couche composite renforcée. 1. Cryogenic tank (10) whose wall comprises a plurality of layers (11, 12, 61), among which an external layer (11) is in contact with the external environment, an internal layer (12) is in contact with the contents of the tank, characterized in that at least one of the layers of the tank wall (10) is made of composite material comprising a laminate of plies (65, 66) stacked on top of each other along a direction d stack locally perpendicular to the surface of said layer (61) in which at least one ply (66) of the laminate of plies (65, 66) diverges from the surface of the layer (61), thus forming a reinforcing structure of said layer (61), called reinforced part (62), said layer (61) being called reinforced composite layer.
2. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce que la couche externe (11) du réservoir (10) est une couche composite renforcée (61). 2. Cryogenic tank (10) according to claim 1, characterized in that the outer layer (11) of the tank (10) is a reinforced composite layer (61).
3. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce que deux couches successives parmi la pluralité de couches de ladite paroi dudit réservoir présentent un espace intercouches, ledit espace inter-couches étant configuré pour être placé sous vide ou sous ultravide. 3. Cryogenic tank (10) according to claim 1, characterized in that two successive layers among the plurality of layers of said wall of said tank have an interlayer space, said inter-layer space being configured to be placed under vacuum or under ultra-high vacuum.
4. Réservoir cryogénique (10) selon la revendication 3, caractérisé en ce que ledit espace intercouche est maintenu à l'aide de supports (71, 62). 4. Cryogenic tank (10) according to claim 3, characterized in that said interlayer space is maintained using supports (71, 62).
5. Réservoir cryogénique (10) selon la revendication 3, caractérisé en ce que l'une desdites deux couches successives de la pluralité de couches (11, 12, 61) est la couche externe (11), ladite couche externe (11) étant au moins partiellement libre de fixation par rapport à la couche suivante, de sorte que la couche externe (11) de se déformer sous l'effet de variations de pressions. 5. Cryogenic tank (10) according to claim 3, characterized in that one of said two successive layers of the plurality of layers (11, 12, 61) is the outer layer (11), said outer layer (11) being at least partially free from attachment with respect to the next layer, so that the outer layer (11) can deform under the effect of pressure variations.
6. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce que ladite couche interne (12) du réservoir est constituée de matériau composite. 6. Cryogenic tank (10) according to claim 1, characterized in that said internal layer (12) of the tank is made of composite material.
7. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce que ladite couche interne (12) du réservoir est en aluminium. 7. Cryogenic tank (10) according to claim 1, characterized in that said internal layer (12) of the tank is made of aluminum.
8. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce qu'il est intégré au sein d'un avion. 8. Cryogenic tank (10) according to claim 1, characterized in that it is integrated into an aircraft.
9. Réservoir cryogénique (10) selon la revendication 1, caractérisé en ce qu'il est intégré au sein d'un fuselage ou d'une aile ou d'un empennage d'un avion. 9. Cryogenic tank (10) according to claim 1, characterized in that it is integrated within a fuselage or a wing or tail of an aircraft.
10. Procédé de fabrication d'un réservoir cryogénique (10) caractérisé en ce qu'il comprend les étapes suivantes : mise en forme d'une couche interne (12) ; adjonction optionnelle de nervures (71) ; adjonction optionnelle d'au moins une couche intermédiaire (93, 94, 95) ; adjonction d'une couche externe (11) autour de l'ensemble formé par ladite couche interne (12) et optionnellement ladite au moins une couche intermédiaire (93, 94, 95) ; mise sous vide d'au moins un espace inter-couche (92, 96) ; au moins une des couches précédemment citées étant fabriquée selon les étapes suivantes : positionnement d'au moins un pli (65) du côté externe de ladite couche (61), nommé pli non- divergé ; création d'une partie renforcée au sein d'un feuilleté de plis (65, 66) selon les étapes suivantes adjonction d'au moins un élément (67) composé d'un matériau de faible densité sur ledit au moins un pli (65) externe non-divergé, appelé élément support (67) ; adjonction et mise en forme d'au moins un pli (66) du côté interne de la couche (61), recouvrant l'ensemble formé par ledit au moins un pli externe (65) et ledit au moins un élément support (67), ledit au moins un pli interne (66) épousant les formes de l'ensemble formé par ledit au moins un pli externe (65) et ledit élément support (67) ; adjonction de résine pour former une matrice englobant l'ensemble formé par le feuilleté de plis (65, 66) et ledit au moins un élément support (67) ; polymérisation de ladite résine. 10. Method for manufacturing a cryogenic tank (10) characterized in that it comprises the following steps: shaping of an internal layer (12); optional addition of ribs (71); optional addition of at least one intermediate layer (93, 94, 95); addition of an external layer (11) around the assembly formed by said internal layer (12) and optionally said at least one intermediate layer (93, 94, 95); evacuating at least one inter-layer space (92, 96); at least one of the layers mentioned above being manufactured according to the following steps: positioning of at least one ply (65) on the external side of said layer (61), called non-diverging ply; creation of a reinforced part within a laminate of plies (65, 66) according to the following steps addition of at least one element (67) composed of a low density material on said at least one ply (65) external non-diverged, called support element (67); addition and shaping of at least one fold (66) on the internal side of the layer (61), covering the assembly formed by said at least one external fold (65) and said at least one support element (67), said at least one internal fold (66) matching the shapes of the assembly formed by said at least one external fold (65) and said support element (67); addition of resin to form a matrix encompassing the assembly formed by the laminate of plies (65, 66) and said at least one support element (67); polymerization of said resin.
PCT/EP2023/058406 2022-04-01 2023-03-30 Cryogenic tank having complex shape and high gravimetric index and corresponding manufacturing method WO2023187120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203009 2022-04-01
FR2203009A FR3134163A1 (en) 2022-04-01 2022-04-01 Cryogenic tank of complex shape and high gravimetric index and corresponding manufacturing method

Publications (1)

Publication Number Publication Date
WO2023187120A1 true WO2023187120A1 (en) 2023-10-05

Family

ID=82196542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/058406 WO2023187120A1 (en) 2022-04-01 2023-03-30 Cryogenic tank having complex shape and high gravimetric index and corresponding manufacturing method

Country Status (2)

Country Link
FR (1) FR3134163A1 (en)
WO (1) WO2023187120A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368670A (en) * 1990-07-16 1994-11-29 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5651474A (en) * 1994-12-22 1997-07-29 The United States Of America As Represented By The Secretary Of The Air Force Cryogenic structures
US5659941A (en) * 1991-02-01 1997-08-26 Institut Francais Du Petrole Process for manufacturing a light structure through the expansion of a metallic tank in an armored corrugated pipe
FR2799526A1 (en) * 1999-10-11 2001-04-13 Roxer CONTAINER FOR PRESSURE FLUID AND MANUFACTURING METHOD THEREOF
DE19929421B4 (en) * 1999-06-26 2015-05-13 Bayerische Motoren Werke Aktiengesellschaft Container for holding fluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368670A (en) * 1990-07-16 1994-11-29 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5659941A (en) * 1991-02-01 1997-08-26 Institut Francais Du Petrole Process for manufacturing a light structure through the expansion of a metallic tank in an armored corrugated pipe
US5651474A (en) * 1994-12-22 1997-07-29 The United States Of America As Represented By The Secretary Of The Air Force Cryogenic structures
DE19929421B4 (en) * 1999-06-26 2015-05-13 Bayerische Motoren Werke Aktiengesellschaft Container for holding fluids
FR2799526A1 (en) * 1999-10-11 2001-04-13 Roxer CONTAINER FOR PRESSURE FLUID AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
FR3134163A1 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
EP2739895B1 (en) Sealed, thermally-insulating vessel
US8939407B2 (en) Common bulkhead for composite propellant tanks
FR3030014A1 (en) INSULATING BLOCK SUITABLE FOR MAKING AN INSULATING WALL IN A WATERPROOF TANK
US9944452B1 (en) Multi-layer insulation
EP2726375B2 (en) Cryogenic fluid tank and its use
FR3072758B1 (en) SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
EP1789258B1 (en) Multilayer wall especially consisting of gossamer-type inflatable structures
JP5044310B2 (en) Low temperature liquefied gas storage tank
EP3055606B1 (en) Self-supporting box for thermally insulating a fluid storage tank and method for producing such a box
WO2023187120A1 (en) Cryogenic tank having complex shape and high gravimetric index and corresponding manufacturing method
FR3107332A1 (en) Cryogenic propellant tank
FR2932243A1 (en) Thermal insulation device for liquid hydrogen reservoir of space launcher, has flexible insulating layer arranged to form screen between cryogenic liquid and rigid insulation layer with thickness ranging from specific millimeters
FR3092898A1 (en) Insulating block for thermal insulation of a storage tank
EP4182601A1 (en) Device for storing cryogenic fluid and vehicle comprising such a device
WO2023198766A1 (en) Wall for a leaktight and thermally insulating vessel
EP2032890B1 (en) System for insulating a cryogenic tank and method of insulating said tank
FR3044739A1 (en) INSULATING MECHANICAL PIECE
FR3044740A1 (en) THREE DIMENSIONAL INSULATING METAL PIECE
WO2024126282A1 (en) Sealed and thermally insulating structure
WO2023198637A1 (en) Wall for a leaktight and thermally insulating vessel
WO2022189469A1 (en) Device for storing a pressurised gas, in particular hydrogen
US20220112984A1 (en) Storage tank for gaseous hydrogen
WO2023066613A1 (en) Sealed and insulating tank for storing and/or transporting a liquefied gas
WO2021078981A1 (en) Tank for storing natural gas in a liquid state aboard a vessel
EP2809581B1 (en) Tank for a launch vehicle and method of fabrication of its outer layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23715868

Country of ref document: EP

Kind code of ref document: A1