WO2023186052A1 - 植入式可拉伸柔性神经电极、电极组及电极阵列 - Google Patents

植入式可拉伸柔性神经电极、电极组及电极阵列 Download PDF

Info

Publication number
WO2023186052A1
WO2023186052A1 PCT/CN2023/085295 CN2023085295W WO2023186052A1 WO 2023186052 A1 WO2023186052 A1 WO 2023186052A1 CN 2023085295 W CN2023085295 W CN 2023085295W WO 2023186052 A1 WO2023186052 A1 WO 2023186052A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flexible
implantable
stretchable
flexible neural
Prior art date
Application number
PCT/CN2023/085295
Other languages
English (en)
French (fr)
Inventor
方英
田慧慧
方润九
杜岩
Original Assignee
北京智冉医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京智冉医疗科技有限公司 filed Critical 北京智冉医疗科技有限公司
Publication of WO2023186052A1 publication Critical patent/WO2023186052A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/294Bioelectric electrodes therefor specially adapted for particular uses for nerve conduction study [NCS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/388Nerve conduction study, e.g. detecting action potential of peripheral nerves

Definitions

  • At least one embodiment of the present disclosure relates to an implantable stretchable flexible neural electrode, an implantable stretchable flexible neural electrode group, an implantable stretchable flexible neural electrode array, and their manufacturing methods and implantation methods.
  • neural electrodes The main function of neural electrodes is to realize mutual conversion between bioelectrical signals using ions as carriers and universal electrical signals using electrons as carriers, thereby achieving recording and regulation of brain and peripheral nerve signals.
  • Existing neural electrodes include electroencephalography (EEG) electrodes, cerebral cortex (ECoG) electrodes and implantable electrodes.
  • EEG electroencephalography
  • EoG cerebral cortex
  • Implantable neural electrodes can record and regulate the electrical activity of multiple neurons, and therefore have broad application prospects in the fields of neurological disease treatment and brain-computer interfaces.
  • the most widely used implanted neural electrodes are silicon-based rigid neural electrodes.
  • the mechanical properties of rigid neural electrodes do not match the brain, which will cause greater mechanical damage; at the same time, due to the brain's own movement, rigid electrodes are prone to micro-movements in the brain, resulting in instability in neural signal recording and exacerbating brain damage. The inflammatory reaction will then produce glial cells around the electrode and adhere to the surface of the electrode site, leading to the attenuation of the electrical signal and the failure of the electrode site. Therefore, it is difficult for rigid electrodes to ensure the long-term stability of signal recording.
  • the mechanical properties of flexible neural electrodes match the large target tissue, greatly reducing the movement with the target tissue and the inflammatory response of the target tissue, thereby achieving long-term stable recording and regulation of neural signals.
  • the structure of flexible neural electrodes is mostly based on a straight electrode wire structure, which limits the high-throughput transfer and in-situ implantation of electrode wires. Moreover, the implantation depth of flexible linear electrode wires is limited by the processing size and the movable distance of the electrode.
  • an implantable stretchable flexible neural electrode including an electrode wire and a flexible insulating part wrapping the electrode wire, wherein the flexible neural electrode includes: the electrode wire and the flexible A spiral structure of the insulating part, the spiral structure is stretchable, an electrode site and an auxiliary implant structure are provided at the spiral structure, the electrode site is electrically connected to the electrode wire and exposed from the flexible insulating part , the auxiliary implant structure is configured to drive the spiral structure to expand under the action of external force.
  • the convoluted structure may be configured to be stretchable in any direction.
  • the spiral structure includes a plurality of rings, any two adjacent rings among the plurality of rings are divided into an inner ring and an outer ring, the outer ring surrounds the inner ring, and the terminal end of the outer ring Connect the starting end of the inner circle.
  • the auxiliary implant structure is disposed at an innermost ring among the plurality of rings.
  • the flexible insulating part has a protrusion beyond the electrode wire
  • the auxiliary implant structure is a through hole, a groove or a protrusion provided at the protrusion.
  • the protrusion is provided with a position mark.
  • each of the plurality of loops includes a plurality of curved portions connected in sequence.
  • an implantable stretchable flexible neural electrode further includes: a linear structure of the electrode wire and the flexible insulating part, and the linear structure is connected to the spiral structure.
  • the linear structure includes: an auxiliary electrode wire wrapped by the flexible insulating part; in the linear structure, the auxiliary electrode wire is electrically connected to the electrode wire.
  • the implantable stretchable flexible neural electrode according to the embodiment of the present disclosure further includes: an anchoring structure, wherein there is an included angle between the anchoring structure and the electrode wire, and the anchoring structure is configured as After the flexible neural electrode is implanted into the target tissue, it interacts with the target tissue to hinder relative movement between the flexible neural electrode and the target tissue.
  • an edge of the anchoring structure extending from the electrode wire in a direction away from the electrode wire is arc-shaped, and the arc shape protrudes toward the auxiliary implant structure.
  • the anchoring structure includes an anchoring electrode wire covered by the flexible insulating portion, and the electrode site is electrically connected to the electrode wire through the anchoring electrode wire.
  • the material of the electrode wire and the electrode site includes at least one of gold, platinum and iridium; and the material of the flexible insulating part includes polyimide, parylene and SU-8 photolithography in glue At least one.
  • an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure further includes an adhesive layer disposed between the electrode wire and the flexible insulating portion.
  • an implantable stretchable flexible neural electrode includes: a plurality of electrode wires wrapped by the flexible insulating portion and insulated from each other; a plurality of electrode sites formed from the flexible insulating portion. Parts are exposed, electrically connected to a plurality of electrode wires in one-to-one correspondence, and spatially spaced apart from each other.
  • a plurality of the electrode wires are located on the same layer; or a plurality of the electrode wires are located on multiple stacked layers, and each of the multiple layers includes at least one of the plurality of electrode wires.
  • any two adjacent layers among the plurality of layers are the first layer and the second layer; in the stacking direction of the plurality of layers, the electrode wire located in the first layer and the electrode wire located in the The electrode wires in the second layer respectively at least partially overlap or at least partially do not overlap.
  • a plurality of the electrode sites may be located on the same side of the flexible neural electrode or on different sides of the flexible neural electrode.
  • an implantable stretchable flexible neural electrode set including a plurality of flexible neural electrodes as described above, wherein the plurality of flexible neural electrodes are insulated from each other;
  • the spiral structures form a composite spiral structure, and in the same circle of the composite spiral structure, the parts of the multiple spiral structures located in the same circle are arranged in sequence from the inside to the outside.
  • the plurality of electrode sites of the plurality of flexible neural electrodes are spatially spaced apart from each other.
  • the composite spiral structure includes a plurality of circles, any two adjacent circles among the plurality of circles are divided into an inner circle and an outer circle, the outer circle surrounds the inner circle, and the end of the outer circle The end is connected to the starting end of the inner circle; in each of the plurality of circles of the composite spiral structure, the corresponding parts of the plurality of spiral structures are arranged in the same order from the inside to the outside.
  • the plurality of auxiliary implant structures of the plurality of flexible nerve electrodes are integrated into a common auxiliary structure, and the common auxiliary structure is configured to drive the plurality of spiral structures of the plurality of flexible nerve electrodes to extend synchronously under the action of external force. .
  • the plurality of flexible insulating portions of the plurality of flexible neural electrodes are at least partially connected to each other.
  • the plurality of auxiliary implant structures of the plurality of flexible neural electrodes are spatially spaced apart from each other.
  • an implantable stretchable flexible neural electrode array including a plurality of flexible neural electrodes as described above, wherein the plurality of flexible neural electrodes are insulated from each other, and A plurality of the convoluted structures of the plurality of flexible neural electrodes are arranged in an array.
  • each of the plurality of flexible neural electrodes includes: a linear structure of the electrode wire and the flexible insulating portion, the linear structure being connected to the spiral structure.
  • an implantable stretchable flexible neural electrode array including a plurality of flexible neural electrode groups as described above, wherein a plurality of the composite spiral structures of the plurality of flexible neural electrode groups Arranged in an array.
  • each of all flexible neural electrodes included in the plurality of flexible neural electrode groups includes: a linear structure of the electrode wire and the flexible insulating portion, and the linear structure is connected to the spiral structure.
  • a method for manufacturing a neural electrode array including: providing a substrate, wherein the substrate includes a first region and a second region; forming a first insulating layer on the substrate; forming a conductive layer on the first insulating layer , patterning the conductive layer to form the electrode wire and the electrode site in the first region of the substrate; forming a second insulating layer on the electrode wire and the electrode site; patterning the electrode wire and the electrode site;
  • the first insulating layer and the second insulating layer are used to form the flexible insulating part wrapping the electrode wire and the auxiliary implant structure, and the second insulating layer is patterned to expose the electrode site; and removing at least a portion of the substrate located in the first region.
  • the method according to an embodiment of the present disclosure further includes: before forming the first insulating layer on the substrate, forming a sacrificial layer in at least the first region of the substrate; and at least removing the liner
  • the portion of the substrate located in the first region includes removing the sacrificial layer and cutting the substrate to remove at least the portion of the substrate located in the first region.
  • the conductive layer is patterned to form the electrode wire and the electrode site in a first area of the substrate while forming a bonding pad in a second area of the substrate, the electrode wire being in contact with the electrode site.
  • the pads are electrically connected; and the method further includes patterning the second insulating layer to expose the pads.
  • a method of implanting a neural electrode array including: using an auxiliary implant tool to apply an external force to the auxiliary implant structure to implant at least a portion of the flexible neural electrode into the target tissue, and after implanting at least a portion of the flexible neural electrode During the process of partially implanting the target tissue, the spiral structure is at least partially stretched under the drive of the external force; and the auxiliary implant tool is removed and the The at least a portion of the flexible neural electrode that has been implanted in the target tissue remains in the target tissue.
  • Figure 1 is a schematic plan view 1 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 2 is a schematic plan view two of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 3 is a schematic plan view three of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • 4a-4f are respectively schematic diagrams of a spiral structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the inner and outer rings of the spiral structure of the implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figures 6a-6d are respectively schematic diagrams of an auxiliary implant structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 7 is a schematic plan view 4 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view 5 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figure 9 is a schematic plan view six of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figure 10a is a schematic plan view 7 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 10b is a schematic plan view 8 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 11a is a schematic plan view of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure. Nine;
  • Figure 11b is a schematic diagram of an anchoring structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • FIG. 12 is a schematic plan view of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figures 13a and 13b are respectively schematic cross-sectional views taken along line A-A of Figure 12 .
  • Figures 14a-14c are respectively schematic cross-sectional views of implantable stretchable flexible neural electrodes according to embodiments of the present disclosure.
  • Figure 15 is a schematic plan view 1 of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure
  • Figures 16a-16c are enlarged schematic views of part A of Figure 15;
  • Figure 17a is a second schematic plan view of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure.
  • Figure 17b is an enlarged schematic view of part B of Figure 17a;
  • Figure 18 is a schematic plan view three of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure.
  • Figure 19 is a plan view of an implantable stretchable flexible neural electrode array according to an embodiment of the present disclosure.
  • Figure 20 is a schematic flow chart of a method for manufacturing an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 21 is a schematic cross-sectional view of each step in the manufacturing method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 22 is an exploded schematic diagram of a completed implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 23 is an exploded schematic diagram of a completed implantable stretchable flexible neural electrode array according to an embodiment of the present disclosure.
  • Figure 24 is a schematic flow chart of an implantation method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • 25a-25c are three-dimensional schematic views of each step in the implantation method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an implantable stretchable flexible neural electrode.
  • Figure 1 is a schematic plan view 1 of an implantable stretchable flexible nerve electrode according to an embodiment of the present disclosure
  • Figure 2 is a schematic plan view 2 of an implantable stretchable flexible nerve electrode according to an embodiment of the present disclosure
  • Figure 3 is a schematic plan view 2 of an implantable stretchable flexible nerve electrode according to an embodiment of the present disclosure.
  • an implantable stretchable flexible neural electrode includes an electrode wire 10 and a flexible insulating portion 20 wrapping the electrode wire 10; an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • the neural electrode also includes: a spiral structure SS of an electrode wire 10 and a flexible insulating portion 20.
  • the spiral structure SS is stretchable.
  • An electrode site 30 and an auxiliary implant structure 40 are provided at the spiral structure SS.
  • the electrode site 30 and the electrode The wire 10 is electrically connected and exposed from the flexible insulating part 20, and the auxiliary implant structure 40 is configured to drive the spiral structure SS to expand under the action of external force.
  • the flexible neural electrode includes a spiral structure SS of an electrode wire 10 and a flexible insulating portion 20, and the spiral structure SS is stretchable.
  • the spiral structure SS can greatly increase the implantation depth of the flexible neural electrode in the target tissue (for example, brain tissue); for example, taking the shape of the spiral structure as a circle as an example, the implantation of two circles of the spiral structure with a diameter of 1 mm Penetration depth can reach to about 6mm, the implantation depth of a four-turn spiral structure with a diameter of 1mm can reach about 12mm; as another example, still taking the shape of the spiral structure as a circle, the implantation depth of a two-turn spiral structure with a diameter of 3mm can reach The implantation depth of the four-circle spiral structure of about 12mm and 3mm in diameter can reach about 25mm; therefore, designing the flexible neural electrode as a spiral structure SS including the electrode wire 10 and the flexible insulating part 20 can greatly increase the effective area of the flexible neural electrode.
  • the spiral structure SS has good stretchability and can achieve a wide range of stretching in different directions and distances, thereby improving the operational flexibility of implanting flexible neural electrodes into target tissues.
  • the spiral structure SS has good mechanical stability. It can still ensure good structural stability when stretched over a wide range to transform the flat spiral structure into a three-dimensional curve, thereby ensuring that the flexible neural electrode can be implanted in the target. Stability after organization.
  • the spiral structure SS according to the embodiment of the present disclosure is a regular or irregular coiled structure of any combination of straight lines and any curves. Therefore, the spiral structure SS according to the embodiment of the present disclosure includes at least one circle of electrode wire 10 and the flexible insulating portion 20 .
  • the number of turns of the electrode wire 10 and the flexible insulating part 20 in the spiral structure SS is 1 turn to 100,000 turns, such as 1 turn, 10 turns, 50 turns, 100 turns, 300 turns, 500 turns, 700 turns, or 1,000 turns, etc. .
  • the number of turns of the electrode wire 10 and the flexible insulating portion 20 in the spiral structure SS is more than 1 turn, such as more than 1 turn, 2 turns, 10 turns, or 50 turns. , 100 laps, 300 laps, 500 laps, 700 laps or 1000 laps, etc.
  • FIG. 1 and FIG. 3 show that the spiral structure SS includes two turns of electrode wires 10 and a flexible insulating part 20
  • FIG. 2 shows that the spiral structure SS includes one turn of multiple electrode wires 10 and a flexible insulating part 20 .
  • the spiral structure SS is stretchable; further for example, the spiral structure SS is configured to be stretchable in any direction.
  • the achievable length of the flexible neural electrode within the effective area is increased, and the operational flexibility of implanting the flexible neural electrode into the target tissue is improved.
  • “the spiral structure SS is configured to be stretchable in any direction” includes both stretching in the direction in the plane in which the spiral structure SS is located, and also includes stretching in any direction different from the direction in the plane in which the spiral structure SS is located. .
  • the spiral structure SS is a regular or irregular looped structure of any combination of straight lines and any curves.
  • one circle of the spiral structure SS is generally circular; however, the embodiment of the present disclosure does not limit the shape of one circle of the spiral structure SS.
  • a circle of the spiral structure SS can be generally circular, oval, triangular, square, Rectangle or any polygon;
  • a circle of the spiral structure SS can also generally be in the shape of a rounded triangle, a rounded square, a rounded rectangle or any rounded polygon.
  • the processing accuracy requirements for rounded polygons are smaller than for normal polygons.
  • FIGS. 4a-4f are respectively schematic diagrams of a spiral structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figures 4a and 4b show that a circle of the spiral structure SS is generally elliptical.
  • the difference between Figures 4a and 4b is that the direction of the major axis of the ellipse in Figure 4a is different from that of the major axis of the ellipse in Figure 4b direction.
  • Figure 4d and Figure 4e show that one circle of the spiral structure SS is generally in the shape of a rounded rectangle.
  • Figure 4d shows that the direction of the long side of the rounded rectangle in Figure 4d is different from that of the rounded corner in Figure 4e The direction of the long side of the rectangle.
  • Figure 4c shows that one ring of the spiral structure SS is generally in the shape of a rounded triangle
  • Figure 4f shows that one ring of the spiral structure is generally in the shape of a rounded hexagon.
  • the electrode wire 10 and the flexible insulating part 20 are not specifically shown in FIGS. 4a to 4f , but only the spiral pattern of their spiral structure SS is shown.
  • the maximum size of the spiral structure SS is 0.1mm ⁇ 2cm, such as 1mm, 3mm, 5mm, 7mm, 1cm or 2cm, etc. If the overall size of the spiral structure SS along a certain direction is greater than the dimensions along all other directions, then the size of the spiral structure SS along the certain direction is the maximum size of the spiral structure SS.
  • the maximum size of the spiral structure SS is the size of the major axis of the outermost ellipse, which is 0.1 mm to 2 cm.
  • the height of the cross-section of one turn (for example, see h in Figure 13a) is 1 ⁇ m to 200 ⁇ m, preferably 2 ⁇ m; the width of the cross-section of one turn (for example, See w) in Figure 13a, which is 1 ⁇ m to 2000 ⁇ m, preferably 20 ⁇ m.
  • the flexible insulating part 20 wrapping the electrode wire 10 may be understood to mean that the flexible insulating part 20 covers all surfaces of the electrode wire 10 except for surface portions of the electrode wire 10 that are in contact with other components.
  • the flexible insulation part 20 is made of a flexible material with good biocompatibility and mechanical elasticity.
  • the material of the flexible insulating part 20 includes at least one of polyimide (PI), parylene C (Parylene C), and SU-8 photoresist.
  • the material of the flexible insulating part 20 includes a combination of SU-8 photoresist and Parylene C, a combination of Parylene C and PI, or a combination of SU-8 photoresist, Parylene C and PI, etc.; it is further preferred that the flexible insulating part 20 The material is PI.
  • the flexible insulation 20 is transparent or translucent or Opaque.
  • the thickness of the flexible insulating part 20 is 1 ⁇ m to 200 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 13 ⁇ m, 15 ⁇ m, 17 ⁇ m, 20 ⁇ m or 50 ⁇ m, etc.; further preferably 2 ⁇ m.
  • the thickness of the electrode wire 10 is 10 nm to 1000 nm, for example, 10 nm, 50 nm, 100 nm, 300 nm, 500 nm, 800 nm or 1000 nm, etc.; further preferably, 100 nm .
  • the width of the electrode wire 10 (for example, see w' in Figure 13a) is 1 ⁇ m to 200 ⁇ m, such as 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 50 ⁇ m, 100 ⁇ m or 200 ⁇ m, etc.; further preferably, it is 20 ⁇ m.
  • the electrode site 30 and the auxiliary implant structure 40 are provided at the spiral structure SS
  • the electrode site 30 and the auxiliary implant structure 40 are provided at and/or connected to the spiral structure SS of at least one lap.
  • the electrode site 30 is electrically connected to the electrode wire 10 and exposed from the flexible insulating portion 20 .
  • the electrode site 30 collects biological information in the target tissue, and the biological information is transmitted via the electrode wire 10 that is electrically connected to the electrode site 30 to an external circuit; and/or, after the flexible neural electrode is implanted into the target tissue (for example, brain tissue), the external circuit applies electrical control information, and the electrical control information is transmitted to the electrode site electrically connected to the electrode wire 10 via the electrode wire 10 Point 30, electrode site 30 applies electrical control information to the target tissue.
  • the electrode site 30 is exposed from the flexible insulating part 20 , which can be understood as the flexible insulating part 20 does not cover at least part of the electrode site 30 .
  • the electrode wire 10 and the electrode site 30 that are electrically connected to each other are formed of the same material or formed of different materials, which is not limited by the embodiment of the present disclosure.
  • the electrode wire 10 and the electrode site 30 that are electrically connected to each other are formed of the same material.
  • materials of the electrode wire 10 and the electrode site 30 include at least one of gold, platinum, and iridium.
  • the material of the electrode wire 10 and the electrode site 30 is a combination of gold and platinum, a combination of platinum and iridium, or a combination of gold, platinum and iridium.
  • the material of the electrode wire 10 and the electrode site 30 is gold. It should be noted that “the material of the electrode wire 10 and the electrode site 30 includes at least one of gold, platinum and iridium” means that at least the material of the outer surface of the electrode wire 10 and the electrode site 30 includes gold, platinum and iridium. At least one of iridium.
  • the shape of the electrode site 30 is a semicircle, a large cistern, a small secant circle, an ellipse or a circle, etc.; further preferably, it is a circle, as shown in Figures 1-3.
  • the diameter of a circle is 1 ⁇ m to 100 ⁇ m, such as 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 70 ⁇ m or 100 ⁇ m; more preferably, it is 20 ⁇ m.
  • the arrangement manner of the electrode sites 30 is not specifically limited, as long as the electrode sites 30 and the electrode wires 10 are electrically connected.
  • the electrode site 30 is located outside the electrode wire 10 and is electrically connected to the electrode wire 10 through a connecting structure (eg, anchoring electrode wire 62 as described below).
  • the electrode site 30 is located on the electrode wire 10 , that is, it is a part of the electrode wire 10 ; in this case, a part of the electrode wire 10 is exposed from the flexible insulating part 20 to serve as the electrode site 30 .
  • the spiral structure SS includes a plurality of circles. Any two adjacent circles among the plurality of circles are divided into an inner circle and an outer circle.
  • the outer circle surrounds the inner circle, and the terminal end of the outer circle is connected to the inner circle.
  • the spiral structure SS includes multiple circles, the achievable length of the flexible neural electrode within the effective area can be increased; since the outer circle surrounds the inner circle and the terminal end of the outer circle is connected to the starting end of the inner circle, the multiple circles can The arrangement is more orderly and does not intersperse with each other, so that the spiral structure SS can be easily produced using a patterning process such as photolithography and the stretching process of the spiral structure SS is smoother.
  • FIG. 5 is a schematic diagram of the inner and outer rings of the spiral structure of the implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • From point O to point O' is the outer ring
  • from point O' to point O" is the inner ring
  • the outer ring OO' surrounds the inner ring O'O
  • the terminal end of the outer ring OO' is connected to the inner ring
  • the starting end of O'O the ending end of the outer circle OO' and the starting end of the inner circle O'O" are indicated by point O'.
  • the multiple circles of the spiral structure SS are basically multiple circles of the same shape.
  • the embodiments of the present disclosure are not limited thereto; the shapes of at least two of the multiple circles of the spiral structure SS can be different from each other, which can be flexibly designed according to actual conditions.
  • the auxiliary implant structure 40 is configured to drive the spiral structure SS to expand under the action of an external force. That is to say, according to the embodiment of the present disclosure, on the one hand, the auxiliary implantation structure 40 has the function of auxiliary implantation and can drive at least part of the flexible neural electrode to be implanted into the target tissue; on the other hand, the auxiliary implantation structure 40 can also At least part of the spiral structure SS is caused to expand.
  • the auxiliary implant structure 40 is provided at the innermost circle among the plurality of circles of the spiral structure SS, that is, it is provided on the innermost circle and/or connected to the innermost circle.
  • the auxiliary implant structure 40 is provided at the terminal end of the innermost circle among the plurality of circles of the spiral structure SS to better realize the functions of assisting implantation and extending the spiral structure SS.
  • the setting position of the electrode site 30 is more flexible than the setting position of the auxiliary implant structure 40.
  • the electrode site 30 can be set at the innermost circle and/or other circles among the multiple circles of the spiral structure SS. at.
  • the flexible insulating part 20 has a protruding part 21 extending beyond the electrode wire 10
  • the auxiliary implant structure 40 is a through hole, a groove or a protrusion provided at the protruding part 21 .
  • the auxiliary implant tool that cooperates with the auxiliary implant structure 40 may have a protrusion that matches the through hole or groove; in the auxiliary implantation
  • the auxiliary implant tool that cooperates with the auxiliary implant structure 40 may have holes or grooves that match the protrusion.
  • Figures 6a-6d are respectively schematic diagrams of an auxiliary implant structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figures 6a-6d show the auxiliary implant structure 40 as a through hole.
  • the embodiment of the present disclosure does not limit the number of auxiliary implant structures 40.
  • when one auxiliary implant structure 40 fails, other auxiliary implant structures 40 can also be used, thereby greatly improving the operational friendliness of the flexible neural electrode according to the embodiment of the present disclosure. sex and implantability.
  • Figures 6b-6d illustrate a plurality of auxiliary implant structures 40.
  • FIG. 6 c shows one arrangement of three auxiliary implant structures 40
  • FIG. 6 d shows another arrangement of three auxiliary implant structures 40 .
  • FIG. 7 is a schematic plan view 4 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • the protrusion 21 is provided with a position mark 50 .
  • the position mark 50 By setting the position mark 50, the position where the flexible neural electrode according to the embodiment of the present disclosure is implanted in the target tissue can be conveniently determined.
  • the position mark 50 and the electrode wire 10 are arranged on the same layer and made of the same material, so that the position mark 50 and the electrode 10 can be formed in the same patterning process, simplifying the manufacturing process.
  • the position mark 50 is not limited to being provided at the protruding portion 21, and it can be provided at any required position according to the situation.
  • each of the plurality of loops of the spiral structure SS includes a plurality of curved portions connected in sequence, thereby further increasing the achievable length of the flexible neural electrode within the effective area.
  • the curved portions included in the multiple turns of the spiral structure SS may be the same or different, and only some of the multiple turns of the spiral structure SS may include the bent portions. This is not the case in the embodiment of the present disclosure. Specific restrictions.
  • the flexible neural electrode may only include the spiral structure SS, or may include other structures except the spiral structure SS.
  • 9 is a schematic plan view six of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • a flexible neural electrode according to an embodiment of the present disclosure also includes a linear structure LS of an electrode wire 10 and a flexible insulating portion 20 , and the linear structure LS is connected to the spiral structure SS.
  • the flexible neural electrode including the linear structure LS can make the connection between the flexible neural electrode and the external circuit more convenient.
  • the linear structure SS does not necessarily have to be a straight line, as long as its size in one direction is much larger than the size in other directions; therefore, according to the embodiment of the present disclosure, the linear structure SS can be Straight lines can also be curves such as polylines, wavy lines, etc., which can be flexibly designed according to the situation.
  • FIG. 9 shows that there is a straight angle between the starting ends of the outer rings of the linear structure LS and the spiral structure SS; however, the embodiments of the present disclosure are not limited to this.
  • the outer rings of the linear structure LS and the spiral structure SS can be at any angle between the starting ends.
  • Figure 10a is a schematic plan view VIII of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 10b is a schematic plan view VIII of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • the linear structure LS also includes: an auxiliary electrode wire 11 wrapped by a flexible insulating portion 20; and in the linear structure LS, the auxiliary electrode wire 11 is electrically connected to the electrode wire 10.
  • the auxiliary electrode wire 11 By providing the auxiliary electrode wire 11, the wiring length of the electrode wire 10 can be extended, thereby further improving the Wiring flexibility of flexible neural electrodes according to embodiments of the present disclosure.
  • the electrode wire 10 and the auxiliary electrode wire 11 can be arranged in the same layer or in different layers, can be formed of the same material or different materials, and can have the same size or different sizes.
  • the length of the auxiliary electrode wire 11 is 1 mm to 10 cm, such as 1 mm, 3 mm, 5 mm, 7 mm, 1 cm or 5 cm; more preferably, it is 1 cm or 2.5 cm.
  • the width of the auxiliary electrode wire 11 is 1 ⁇ m to 50 ⁇ m, such as 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m; more preferably, it is 1.5 ⁇ m.
  • the linear structure LS includes a plurality of auxiliary electrode wires 11 wrapped by a flexible insulating part 20 .
  • the plurality of auxiliary electrode wires 11 are insulated from each other and are electrically connected to the electrode wires 10 respectively.
  • another auxiliary electrode wire 11 can be used, thereby enhancing the reliability of the flexible neural electrode according to the embodiment of the present disclosure.
  • FIG 11a is a schematic plan view 9 of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • the implantable stretchable flexible neural electrode according to the embodiment of the present disclosure also includes an anchoring structure 60; there is an included angle between the anchoring structure 60 and the electrode wire 10, and the anchoring structure 60 is configured to After the flexible neural electrode is implanted into the target tissue, it interacts with the target tissue to hinder relative movement between the flexible neural electrode and the target tissue.
  • the anchoring structure 60 the part of the flexible neural electrode that is implanted in the target tissue can be more stably maintained in the target tissue, so that the flexible neural electrode can stably detect or regulate the target tissue.
  • the included angle can be any angle, as long as the anchoring structure 60 interacts with the target tissue to hinder relative movement between the flexible neural electrode and the target tissue.
  • the anchoring structure 60 protrudes from the flexible insulating portion 20 surrounding the electrode wire 10 .
  • the number of anchor structures 60 is 1-20, such as 1, 4, 8, 16 or 20, etc., and the embodiment of the present disclosure does not limit this.
  • the multiple anchoring structures 60 can be located on the same side or different sides of the electrode wire 10, and the shapes of the multiple anchoring structures 60 can be They may be the same or different, and the embodiment of the present disclosure does not limit this.
  • the anchoring structure 60 can change from wide to narrow in the direction away from the electrode wire 10, or from narrow to wide, or sometimes narrow and sometimes wide, or it can maintain a constant width.
  • the embodiments of the present disclosure do not limit this.
  • Figure 11b is a schematic diagram of an anchoring structure of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figure 11b shows that the anchoring structure 60 can be thickened at the end.
  • Arrow-shaped structure for example, see arrow-shaped 1
  • the anchoring structure 60 may also be an arrow-shaped structure with a tapered end (for example, see arrow-shaped 2)
  • the anchoring structure 60 may also be a triangular structure (for example, see triangular-shaped )
  • the anchoring structure 60 may also be a wedge-shaped structure (eg, see wedge-shaped)
  • the anchoring structure 60 may also be a fish-bone structure (eg, see fish-bone shape).
  • the embodiments of the present disclosure are not limited thereto.
  • the shape of the anchoring structure 60 can be flexibly designed as needed, as long as the anchoring structure 60 interacts with the target tissue after the flexible neural electrode is implanted into the target tissue to prevent the flexible neural electrode from interacting with the target tissue. It is enough that the target tissue undergoes relative movement.
  • the left column shows multiple anchor structures 60 located on the same side of the electrode wire 10
  • the right column shows multiple anchor structures 60 located on both sides of the electrode wire 10; in the multiple anchors
  • the number of anchor structures 60 located on both sides of the electrode wire 10 may be equal or unequal, and this is not limited in the embodiment of the present disclosure.
  • the edge of the anchoring structure 60 extending from the electrode wire 10 in a direction away from the electrode wire 10 is an arc 61 , and the arc 61 protrudes toward the auxiliary implant structure 40 .
  • the arc 61 protruding toward the auxiliary implant structure 40 the implantation process of the flexible neural electrode according to the embodiment of the present disclosure can be made smoother.
  • the anchoring structure 60 includes an anchoring electrode wire 62 covered by a flexible insulating portion 20 , and the electrode site 30 is electrically connected to the electrode wire 10 through the anchoring electrode wire 62 .
  • the anchoring structure 60 may also be only a protruding portion of the flexible insulating part 20 without including the anchoring electrode wire 62 .
  • Figure 12 is a schematic plan view of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figures 13a and 13b are respectively schematic cross-sectional views taken along AA of Figure 12, that is, Figures 13a and 13b are diagrams A schematic cross-sectional view of a circle of the spiral structure SS shown in 12.
  • a flexible neural electrode according to an embodiment of the present disclosure includes: a plurality of electrode wires 10 wrapped 20 by a flexible insulating portion and insulated from each other; and a plurality of electrode sites 30 formed from flexible insulators. The portion 20 is exposed, is electrically connected to the plurality of electrode wires 10 in one-to-one correspondence, and is spatially spaced apart from each other.
  • each turn of the spiral structure SS of the flexible neural electrode includes the plurality of electrode wires 10 .
  • the number of the plurality of electrode wires 10 is 1 to 10,000, such as 1, 10, 50, 100, 300, 500 , 700 or 1,000, etc., further preferably 10; correspondingly, the number of multiple electrode sites is 1 to 10,000, such as 1, 10, 50, 100, 300, 500 , 700 or 1000 etc., further preferably 10.
  • the multiple electrode sites 30 can monitor and/or regulate multiple positions of the target tissue, thereby greatly improving the performance of the target tissue according to the present disclosure.
  • the monitoring and/or regulating effects of the flexible neural electrodes of the disclosed embodiments are disclosed.
  • the plurality of electrode sites 30 are spatially spaced apart from each other by approximately 70 ⁇ m.
  • Figures 12, 13a and 13b show 5 electrode wires 10 and 5 electrode sites 30.
  • the implantable stretchable flexible neural electrode according to an embodiment of the present disclosure further includes an adhesive layer 70 disposed between the electrode wire 10 and the flexible insulating part 20 .
  • the adhesion layer 70 By providing the adhesion layer 70, the bonding strength between the electrode wire 10 and the flexible insulating part 20 can be enhanced, making the structure of the flexible neural electrode more stable.
  • the material of the adhesion layer 70 includes chromium or titanium; further preferably, it includes chromium.
  • the thickness of the adhesion layer 70 is 1 nm to 100 nm, such as 1 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm or 100 nm; more preferably, it is 5 nm.
  • a flexible neural electrode according to an embodiment of the present disclosure includes a plurality of electrode wires 10 located in a plurality of stacked layers, each of the plurality of layers including at least one of the plurality of electrode wires 10 .
  • each layer may include one electrode wire 10 or multiple electrode wires 10 , and the number of electrode wires 10 included in each layer They may be equal or unequal, and the embodiment of the present disclosure does not limit this.
  • Figures 14a-14c are respectively schematic cross-sectional views of implantable stretchable flexible neural electrodes according to embodiments of the present disclosure.
  • Figures 14a-14c show 10 electrode wires 10, of which 5 electrode wires 10 are disposed in the lower layer and 5 electrode wires 10 are disposed in the upper layer.
  • any two adjacent layers among the plurality of layers are the first layer and the second layer; in the stacking direction of the plurality of layers, the electrode wire 10 located in the first layer They at least partially overlap or at least partially do not overlap with the electrode wires 10 located in the second layer.
  • Figure 14a shows that the electrode wire 10 located in the first layer completely overlaps the electrode wire 10 located in the second layer in the stacking direction
  • Figure 14b shows that the electrode wire 10 located in the first layer
  • the wire 10 and the electrode wire 10 located in the second layer do not overlap at all in the stacking direction
  • Figure 14c shows the electrode wire 10 located in the first layer and the electrode wire 10 located in the second layer.
  • the electrode wires 10 in partially overlap and partially do not overlap in the stacking direction.
  • the electrode wire 10 located on the first layer and the electrode wire 10 located on the second layer are implanted into the target tissue at the same time.
  • the electrode wire 10 located on the first layer and the electrode wire 10 located on the second layer are alternately implanted into the target tissue.
  • multiple electrode sites 10 are located on the same side of the flexible neural electrode.
  • the plurality of electrode sites 10 may be located on the same side of the flexible neural electrode, or may be located on different sides of the flexible neural electrode. Referring to FIG. 12 , a plurality of electrode sites 10 are arranged in sequence, so that the plurality of electrode sites 10 are sequentially implanted into the target tissue and located at different depths of the target tissue.
  • Multiple electrode sites 10 may also be disposed in multiple layers so that the multiple electrode sites 10 are implanted into the target tissue at the same time and located at different positions at the same depth of the target tissue.
  • an implantable stretchable flexible neural electrode set is also provided.
  • Figure 15 is a schematic plan view 1 of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure; and Figures 16a-16c are enlarged schematic views of part A of Figure 15.
  • an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure includes a plurality of flexible neural electrodes as described above; the plurality of flexible neural electrodes are insulated from each other; as described above
  • the multiple spiral structures SS of the flexible neural electrode form a composite spiral structure CSS. In the same circle of the composite spiral structure SS, the portions of the multiple spiral structures SS located in the same circle are arranged in sequence from the inside to the outside.
  • the multiple electrode sites 30 of the multiple flexible neural electrodes are spatially spaced apart from each other, which can avoid mutual interference between the multiple electrode sites 30 and facilitate the multiple electrode sites 30 to be implanted in the target tissue (for example, brain tissue) are then dispersed in different locations in the target tissue.
  • the target tissue for example, brain tissue
  • the mechanical properties of the flexible neural electrode set according to embodiments of the present disclosure match those of the target tissue (for example, brain tissue), will not cause an inflammatory response in the target tissue, and can perform multi-point, long-term stable monitoring and/or regulation of the target tissue.
  • Embodiments of the present disclosure do not limit the number of flexible nerve electrodes included in the flexible nerve electrode group and the number of electrode wires 10 included in each flexible nerve electrode. Embodiments of the present disclosure do not limit the arrangement of all electrode sites included in the flexible neural electrode set. These electrode sites can be arranged to be implanted into the target tissue sequentially or at the same time, or a part of them can be implanted into the target tissue sequentially. tissue while the other is simultaneously implanted into the target tissue.
  • the flexible neural electrode set shown in Figures 15 and 16a-16c includes three flexible neural electrodes as described above, and each flexible neural electrode includes two electrode wires 10 and two 30 electrode sites.
  • the multiple flexible neural electrodes are insulated from each other means that the electrode wires 10 of the multiple flexible neural electrodes are insulated from each other, and the multiple electrode sites 30 of the multiple flexible neural electrodes are also insulated from each other.
  • the composite spiral structure CSS is stretchable; further for example, the composite spiral structure CSS is configured to be stretchable in any direction, so that the operational flexibility of the flexible neural electrode group for implantation into target tissue is greatly improved.
  • “the composite convoluted structure CSS is constructed to be stretchable in any direction” includes stretching in the direction in the plane of the composite convoluted structure CSS, and in any direction different from the direction in the plane of the composite convoluted structure CSS. Stretch.
  • the composite spiral structure CSS includes a plurality of circles. Any two adjacent circles among the plurality of circles are divided into an inner circle and an outer circle.
  • the outer circle surrounds the inner circle, and the terminal end of the outer circle is connected to the inner circle. the starting end of; in each of the multiple circles of the composite spiral structure CSS, the corresponding parts of the multiple spiral structures SS are arranged sequentially from the inside to the outside in the same order.
  • the multiple circles of the composite spiral structure CSS are arranged in a more orderly manner without interpenetrating each other, and the multiple spiral structures SS of the multiple flexible neural electrodes are also arranged in an orderly manner without interpenetrating with each other, so that the composite spiral structure CSS can adopt, for example,
  • the patterning process of photolithography facilitates fabrication and makes the stretching process of the composite spiral structure CSS smoother.
  • From point O to point O' is the outer ring
  • from point O' to point O" is the inner ring
  • the outer ring OO' surrounds the inner ring O'O"
  • the terminal end of the outer ring OO' is connected to the inner ring The starting end of O'O".
  • the ending end of the outer ring OO' and the starting end of the inner ring O'O" are indicated by point O'.
  • the multiple auxiliary implant structures 40 of the multiple flexible neural electrodes included in the flexible neural electrode group are integrated into a common auxiliary structure 40S, and the common auxiliary structure 40S is configured to withstand external forces.
  • multiple spiral structures SS of multiple flexible neural electrodes are driven to extend synchronously. In this way, the structure of the flexible neural electrode group can be made simpler, and the multiple flexible neural electrodes included in the flexible neural electrode group can be implanted simultaneously, and the multiple spiral structures SS of the multiple flexible neural electrodes can be stretched simultaneously, improving improve implantation efficiency.
  • the plurality of flexible insulating portions 20 of the plurality of flexible neural electrodes are at least partially connected to each other, so that the structural stability of the spiral composite structure CSS can be enhanced.
  • the difference between Figure 16b and Figure 16c is that the connection positions of the plurality of flexible insulating parts 20 are different.
  • the embodiment of the present disclosure does not limit the connection positions of the plurality of flexible insulating parts 20.
  • Figure 17a is a plan view of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure.
  • Figure 17b is an enlarged schematic view of part B of Figure 17a.
  • a plurality of flexible neural electrodes included in the flexible neural electrode group are divided into a first subgroup and a second subgroup; the flexible insulating parts 20 of all flexible neural electrodes included in the first subgroup are integrated into The first common flexible insulating part 20S1; the flexible insulating parts 20 of all flexible neural electrodes included in the second subset are integrated into a second common flexible insulating part 20S2.
  • the structure of the flexible neural electrode group is simpler.
  • the number of flexible neural electrodes included in the first subgroup and the number of flexible neural electrodes included in the second subgroup may be the same or different.
  • the number of electrode wires 10 included in the first subgroup and the number of electrode wires 10 included in the second subgroup may be the same or different.
  • Figures 17a and 17b show that the first subgroup includes four electrode wires 10 and the second subgroup includes four electrode wires 10.
  • the plurality of electrode sites 10 of the plurality of flexible neural electrodes included in the first subgroup are located on a side of the first subgroup away from the second subgroup, and the second subgroup includes The plurality of electrode sites 10 of the plurality of flexible neural electrodes are located on a side of the second subgroup away from the first subgroup; in this way, interference between the electrode sites 10 can be avoided.
  • auxiliary implant structures 40 of multiple flexible neural electrodes are integrated into a common auxiliary structure 40S.
  • the common auxiliary structure 40S is configured to drive the first sub-group and the The spiral structures SS of all flexible neural electrodes included in the second subgroup are extended simultaneously.
  • the structure of the flexible neural electrode group can be made simpler, and the multiple flexible neural electrodes included in the flexible neural electrode group can be implanted simultaneously, and the multiple spiral structures SS of the multiple flexible neural electrodes can be stretched simultaneously, improving improve implantation efficiency.
  • the first common flexible insulating part 20S1 and the second flexible common insulating part 20S2 are at least partially connected, which can enhance the structural stability of the spiral composite structure CSS.
  • Figure 18 is a schematic plan view III of an implantable stretchable flexible neural electrode set according to an embodiment of the present disclosure.
  • multiple auxiliary implant structures 40 of multiple flexible neural electrodes are spatially spaced apart from each other; in this way, multi-point implantation can be achieved, thereby allowing more flexibility according to actual needs.
  • the implantation location of each flexible neural electrode can be carefully selected and the implantation density can be increased.
  • Embodiments of the present disclosure do not limit the distance at which the plurality of auxiliary implant structures 40 are spaced apart from each other, as long as they do not interfere with each other's implantation.
  • each of the plurality of flexible neural electrodes included in the flexible neural electrode group also includes a linear structure of the electrode wire 10 and the flexible insulating portion 20.
  • the design of the linear structure can refer to the previous description, and will not be described again here.
  • an implantable stretchable flexible neural electrode array is also provided.
  • Figure 19 is a plan view of an implantable stretchable flexible neural electrode array according to an embodiment of the present disclosure.
  • a flexible neural electrode array according to an embodiment of the present disclosure includes a plurality of flexible neural electrodes as described above, the plurality of flexible neural electrodes are insulated from each other, and a plurality of the spiral structures SS of the plurality of flexible neural electrodes are arranged in an array. .
  • an array of flexible neural electrodes multiple spiral structures SS included in the array can be transferred and implanted simultaneously, making the operation easy and efficient.
  • each spiral structure SS included in the flexible neural electrode array is stretchable; further, each spiral structure SS included in the flexible neural electrode array is stretchable in any direction.
  • the mechanical properties of the flexible neural electrode array according to embodiments of the present disclosure match that of the target tissue (for example, brain tissue), will not cause an inflammatory response in the target tissue, and can enable multi-point, long-term stable monitoring and/or regulation of the target tissue.
  • the array in which the spiral structures SS are arranged may be a regular array or an irregular array. In comparison, regular arrays are more convenient to operate than irregular arrays.
  • embodiments of the present disclosure do not limit the number of spiral structures SS included in the array. As an example, Figure 19 shows 12 spiral structures SS arranged in a regular 3 ⁇ 4 array.
  • each of the plurality of flexible neural electrodes included in the flexible neural electrode array includes: a linear structure LS of an electrode wire 10 and a flexible insulating portion 20 , and the linear structure LS is connected to the spiral structure SS.
  • the plurality of flexible neural electrodes included in the flexible neural electrode array can be more conveniently connected to the external circuit 90 .
  • each electrode wire 10 is connected to a pad 80, which is in turn connected to an external circuit 90; that is, the electrode wire 10 is connected to the external circuit 90 through the pad 80 connected thereto. It should be noted that the dimensions of each part shown in FIG. 19 are only exemplary and should not be regarded as limiting the embodiments of the present disclosure.
  • the multiple linear structures LS of the multiple flexible neural electrodes included in the flexible neural electrode array are located on the same side of the array in which the spiral structures SS are arranged. However, this is not shown in the embodiments of the present disclosure.
  • the multiple linear structures LS of the multiple flexible neural electrodes included in the flexible neural electrode array can also be located on opposite sides, adjacent sides, and opposite sides of the array arranged by the spiral structures SS. Three sides or multiple sides, this can be flexibly designed according to actual conditions.
  • an implantable stretchable flexible neural electrode array is also provided.
  • a flexible neural electrode array according to an embodiment of the present disclosure includes a plurality of flexible neural electrode groups as described above, and a plurality of composite spiral structures CSS of the plurality of flexible neural electrode groups are arranged in an array.
  • an array of flexible neural electrode groups multiple spiral structures SS included in the array can be transferred and implanted simultaneously, which is easy to operate and highly efficient; and the array can include more electrode sites 30, so that according to The technical solutions of the embodiments of the present disclosure have higher monitoring efficiency and/or control efficiency.
  • each composite spiral structure CSS included in the flexible neural electrode array is stretchable; further, each composite spiral structure CSS included in the flexible neural electrode array is stretchable in any direction.
  • the array in which the composite spiral structure CSS is arranged may be a regular array or an irregular array. In comparison, regular arrays are more convenient to operate than irregular arrays.
  • embodiments of the present disclosure do not limit the number of composite spiral structure CSS included in the array. As an example, Figure 19 shows 12 composite spiral structures CSS arranged in a regular 3 ⁇ 4 array.
  • each of all flexible neural electrodes included in the plurality of flexible neural electrode groups includes: a linear structure LS of an electrode wire 10 and a flexible insulating portion 20 , and the linear structure LS is connected to the spiral structure SS.
  • all flexible neural electrodes included in the flexible neural electrode array can be connected to the external circuit 90 more conveniently.
  • each electrode wire 10 is connected to a pad 80, which is in turn connected to an external circuit 90; that is, the electrode wire 10 is connected to the external circuit 90 through the pad 80 connected thereto. It should be noted that the dimensions of each part shown in FIG. 19 are only exemplary and should not be regarded as limiting the embodiments of the present disclosure.
  • all linear structures LS of all flexible neural electrodes included in the flexible neural electrode array are located on the same side of the array in which the composite spiral structures CSS are arranged.
  • All linear structures LS of all flexible neural electrodes included in the flexible neural electrode array can also be located on opposite sides, adjacent sides, and three of the array arranged by the composite spiral structure CSS. One side or multiple sides, this can be flexibly designed according to the actual situation.
  • a manufacturing method is also provided, which can be used to manufacture the implantable stretchable flexible neural electrode as described above, and can also be used to manufacture the implantable stretchable flexible neural electrode as described above.
  • the group can also be used to make implantable stretchable flexible neural electrode arrays as described above.
  • a method for making implantable stretchable flexible neural electrodes will be described below; it should be noted that this method can be used to make implantable stretchable flexible nerve electrode groups and to make implantable stretchable neural electrodes. Stretchable flexible neural electrode array.
  • Figure 20 is a schematic flow chart of a manufacturing method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figure 21 is a schematic diagram of each step in a manufacturing method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure. Schematic cross-section.
  • the method of manufacturing an implantable stretchable flexible neural electrode includes: step S11, providing a substrate 100, where the substrate 100 includes a first region and a second region, as shown in the cross-sectional view (a) of Figure 21 As shown; Step S12, form the first insulating layer 101 on the substrate 100, as shown in the cross-sectional view (c) of Figure 21; Step S13, form a conductive layer on the first insulating layer 101, pattern the conductive layer to The electrode wire 10 and the electrode site 30 are formed in the first area of the substrate 101, as shown in the cross-sectional view (d) of Figure 21; step S14, the second insulating layer 102 is formed on the electrode wire 10 and the electrode site 30, as shown in As shown in the cross-sectional view (e) of Figure 21; step S15, pattern the first insulating layer 101 and the second insulating layer 102 to form the flexible insulating part 20 wrapping the electrode wire 10, the auxiliary implant structure 40 and the electrode wire 10 and the spiral structure SS
  • the substrate 100 is a silicon wafer or a glass wafer; providing the substrate 100 includes preprocessing the substrate 100.
  • the preprocessing includes, for example: cleaning the substrate 100 with acetone and isopropyl alcohol, and then Wash with water, dry, and then clean with oxygen plasma.
  • the portion of the substrate 100 located in the second area is retained or removed; further preferably, the portion of the substrate 100 located in the second area is retained to reduce the operational difficulty of removing the substrate 100. And ensure the structural stability of the pad 80 in the second area.
  • the "patterning" process in steps S13 and S15 includes: coating, exposure, and development of photoresist to form a photoresist pattern, and using the photoresist pattern as a mask to form the desired pattern on each layer.
  • a method of manufacturing an implantable stretchable flexible neural electrode further includes: before forming the first insulating layer 101 on the substrate 100, forming a sacrificial layer 103 in at least a first region of the substrate 100 , as shown in the cross-sectional view (b) of FIG. 21 ; removing at least the portion of the substrate 100 located in the first region includes: removing the sacrificial layer 103 and cutting the substrate 100 to remove at least the portion of the substrate 100 located in the first region. part.
  • the thickness of the sacrificial layer 103 is 10 nm to 1000 nm, such as 10 nm, 30 nm, 50 nm, 70 nm, 100 nm, 300 nm, 500 nm, 700 nm or 1000 nm; more preferably, it is 100 nm.
  • the material of the sacrificial layer 103 includes at least one of aluminum, PMMA, and nickel; further preferably, it includes aluminum.
  • step S13 further includes: patterning the conductive layer to While the electrode wire 10 and the electrode site 30 are formed in the first area of the substrate 100, the bonding pad 80 is formed in the second area of the substrate 100, and the electrode wire 100 is electrically connected to the bonding pad 80; and step S15 also includes: patterning the first The second insulating layer 102 exposes the pad 80 .
  • the size of the pad 80 is (0.1 ⁇ 4)mm ⁇ (0.1 ⁇ 4)mm, such as 0.1mm ⁇ 0.1mm, 0.2mm ⁇ 0.1mm, 1mm ⁇ 2mm, 3.5mm ⁇ 3.5mm, 3.7mm ⁇ 4mm, 4mm ⁇ 4mm or 4mm ⁇ 3.7mm, etc.; more preferably 0.1mm ⁇ 0.2mm.
  • Figure 22 is an exploded schematic diagram of a completed implantable stretchable flexible neural electrode according to an embodiment of the present disclosure.
  • Figure 22(a) shows the patterned first insulating layer 101
  • Figure 22(b) shows the electrode wire 10 and the electrode site 30 connected thereto
  • Figure 22(c) shows the pattern The second insulating layer 102 after treatment.
  • the patterned second insulating layer 102 includes openings 20h1 to expose the electrode sites 30 .
  • Figure 23 is an exploded schematic diagram of a completed implantable stretchable flexible neural electrode array according to an embodiment of the present disclosure.
  • Figure 22(a) shows the patterned first insulating layer 101
  • Figure 22(b) shows the electrode wire 10 and the pad 80 connected thereto
  • Figure 22(c) shows the patterned the second insulating layer 102 behind.
  • the patterned second insulating layer 102 includes openings 20h2 to expose the pads 80 .
  • the exploded schematic diagram of each of the plurality of flexible neural electrodes included in the flexible neural electrode array of FIG. 23 is shown in FIG. 22 .
  • implantable stretchable flexible neural electrodes implantable stretchable flexible neural electrode groups, and implantable stretchable flexible neural electrode arrays produced according to the methods of the embodiments of the present disclosure can be referred to the above description. , which will not be described in detail here.
  • an implantation method is also provided, which can be used to implant the implantable stretchable flexible neural electrode as described above into the target tissue, and can also be used to implant the implantable stretchable flexible neural electrode as described above.
  • the stretchable and flexible neural electrode group is implanted into the target tissue, and the implantable stretchable and flexible neural electrode array as described above can also be implanted into the target tissue.
  • the implantation method of the implantable stretchable flexible neural electrode will be described below; it should be noted that this method can be used to implant the implantable stretchable flexible neural electrode group into the target tissue and implant the implantable stretchable neural electrode into the target tissue.
  • Stretchable flexible neural electrode arrays implanted into target tissues are described below.
  • Figure 24 is a schematic flow chart of an implantation method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure
  • Figures 25a-25c are a schematic diagram of an implantation method of an implantable stretchable flexible neural electrode according to an embodiment of the present disclosure. Three-dimensional schematic of each step in the method.
  • the implantation method of the implantable stretchable flexible neural electrode includes: step S21, using the auxiliary implantation tool 40' to auxiliary implantation node
  • the structure 40 applies an external force to implant at least a portion of the flexible neural electrode into the target tissue, and during the process of implanting at least a portion of the flexible neural electrode into the target tissue, the spiral structure SS is at least partially stretched out under the drive of the external force, such as As shown in Figure 25b; and step S22, remove the auxiliary implantation tool 40' and retain at least a portion of the flexible neural electrode that has been implanted in the target tissue in the target tissue, as shown in Figure 25c.
  • the implantation method further includes: assembling the auxiliary implant tool 40' and the auxiliary implant structure 40, as shown in Figure 25a.
  • the auxiliary implant structure 40 is a through hole, and the auxiliary implant tool 40' that cooperates with the auxiliary implant structure 40 has a protrusion that matches the through hole.
  • the embodiments of the present disclosure are not limited thereto.
  • the auxiliary implant tool 40' that cooperates with the auxiliary implant structure 40 may have a hole that matches the protrusion or groove.
  • all electrode wires 10 can be stretched in situ and implanted into the target tissue, thereby increasing the implantation density and reducing the difficulty of the implantation process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

植入式可拉伸柔性神经电极、电极组、电极阵列以及制作方法和植入方法。植入式可拉伸柔性神经电极包括电极丝(10)和包裹电极丝(10)的柔性绝缘部(20)。柔性神经电极还包括:电极丝(10)和柔性绝缘部(20)的盘旋结构(SS),盘旋结构(SS)可拉伸,在盘旋结构(SS)处设置有电极位点(30)和辅助植入结构(40),电极位点(30)与电极丝(10)电连接且从柔性绝缘部(20)露出,辅助植入结构(40)构造为在外力的作用下带动盘旋结构(SS)伸展。能够大大提高有效面积内柔性神经电极的可实现长度,提高将柔性神经电极植入目标组织的操作灵活度,并保证柔性神经电极在植入目标组织之后的稳定性。

Description

植入式可拉伸柔性神经电极、电极组及电极阵列
本申请要求于2022年4月2日递交的第202210351191.0号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种植入式可拉伸柔性神经电极、植入式可拉伸柔性神经电极组、植入式可拉伸柔性神经电极阵列以及它们的制作方法和植入方法。
背景技术
神经电极的主要功能是实现以离子为载体的生物电信号与以电子为载体的通用电信号之间的相互转换,从而实现对大脑和外周神经信号的记录和调控。现有神经电极包括脑电图(EEG)电极、脑皮层(ECoG)电极和植入式电极。植入式神经电极可实现对多个神经元电活动的记录与调控,因此在神经系统疾病治疗及脑机接口等领域具有广泛的应用前景。
目前,应用最广泛的植入式神经电极为硅基刚性神经电极。然而,刚性神经电极的机械性能与大脑不匹配,会造成较大的机械损伤;同时由于大脑的自身运动,刚性电极容易在大脑中发生微移动,导致神经信号记录的不稳定性并加剧大脑的炎症反应,进而在电极周围产生胶质细胞包附在电极位点表面,导致电信号的衰减和电极位点的失效。因此,刚性电极难以保证信号记录的长期稳定性。与刚性神经电极相比,柔性神经电极的机械性能与大目标组织相匹配,极大地降低了与目标组织的移动以及目标组织的炎症反应,从而实现对神经信号的长期稳定记录和调控。
目前,柔性神经电极的结构多基于直线电极丝结构,限制了电极丝的高通量转移和原位植入。并且,柔性直线电极丝的植入深度受到加工工艺尺寸和电极可移动距离的限制。
发明内容
根据本公开的实施例,提供一种植入式可拉伸柔性神经电极,包括电极丝和包裹所述电极丝的柔性绝缘部,其中,所述柔性神经电极包括:所述电极丝和所述柔性绝缘部的盘旋结构,该盘旋结构可拉伸,在所述盘旋结构处设置有电极位点和辅助植入结构,所述电极位点与所述电极丝电连接且从所述柔性绝缘部露出,所述辅助植入结构构造为在外力的作用下带动所述盘旋结构伸展。
例如,所述盘旋结构构造为沿任意方向可拉伸。
例如,所述盘旋结构包括多个圈,所述多个圈中任意相邻的两个圈分为内侧圈和外侧圈,所述外侧圈围绕所述内侧圈,且所述外侧圈的终止端连接所述内侧圈的起始端。
例如,所述辅助植入结构设置在所述多个圈中的最内侧圈处。
例如,所述柔性绝缘部具有超出所述电极丝的突出部,所述辅助植入结构为设置于所述突出部处的通孔、凹槽或凸起。
例如,在所述突出部设置有位置标记。
例如,所述多个圈的每个包括依次连接的多个弯曲部分。
例如,根据本公开实施例的植入式可拉伸柔性神经电极还包括:所述电极丝和所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
例如,所述线性结构包括:被所述柔性绝缘部包裹的辅助电极丝;在所述线性结构中,所述辅助电极丝与所述电极丝电连接。
例如,根据本公开实施例的植入式可拉伸柔性神经电极还包括:锚定结构,其中,所述锚定结构与所述电极丝之间具有夹角,并且所述锚定结构构造为在将所述柔性神经电极植入目标组织之后与所述目标组织相互作用以阻碍所述柔性神经电极与所述目标组织发生相对运动。
例如,所述锚定结构自所述电极丝沿远离所述电极丝的方向延伸的边缘为弧形,所述弧形朝向所述辅助植入结构突出。
例如,所述锚定结构包括被所述柔性绝缘部覆盖的锚定电极丝,所述电极位点通过所述锚定电极丝与所述电极丝电连接。
例如,所述电极丝和所述电极位点的材料包括金、铂和铱中的至少一种;并且所述柔性绝缘部的材料包括聚酰亚胺、聚对二甲苯和SU-8光刻胶中的 至少一种。
例如,根据本公开实施例的植入式可拉伸柔性神经电极还包括设置在电极丝和柔性绝缘部之间的粘附层。
例如,根据本公开实施例的植入式可拉伸柔性神经电极包括:多个所述电极丝,被所述柔性绝缘部包裹且彼此绝缘;多个所述电极位点,从所述柔性绝缘部露出,与多个所述电极丝一一对应地电连接,并且在空间上彼此间隔开。
例如,多个所述电极丝位于同一层;或者多个所述电极丝位于堆叠设置的多个层,所述多个层的每个包括多个所述电极丝当中的至少一个。
例如,所述多个层中任意相邻的两个层为第一层和第二层;在所述多个层的堆叠方向上,位于所述第一层的所述电极丝与位于所述第二层中的电极丝分别至少部分重叠或者至少部分不重叠。
例如,多个所述电极位点位于所述柔性神经电极的同一侧或者位于所述柔性神经电极的不同侧。
根据本公开的实施例,提供一种植入式可拉伸柔性神经电极组,包括多个如上所述的柔性神经电极,其中,所述多个柔性神经电极彼此绝缘;所述柔性神经电极的多个盘旋结构形成复合盘旋结构,在所述复合盘旋结构的同一圈中所述多个盘旋结构的位于该同一圈中的部分由里至外依次排列。
例如,所述多个柔性神经电极的多个电极位点在空间上彼此间隔开。
例如,所述复合盘旋结构包括多个圈,所述多个圈中任意相邻的两个圈分为内侧圈和外侧圈,所述外侧圈围绕所述内侧圈,且所述外侧圈的终止端连接所述内侧圈的起始端;在所述复合盘旋结构的多个圈的每个中,所述多个盘旋结构的相应部分按照相同的顺序由里至外依次排列。
例如,所述多个柔性神经电极的多个辅助植入结构一体化为一个共用辅助结构,该共用辅助结构构造为在外力的作用下带动所述多个柔性神经电极的多个盘旋结构同步伸展。
例如,所述多个柔性神经电极的多个柔性绝缘部至少部分彼此连接。
例如,所述多个柔性神经电极的多个辅助植入结构在空间上彼此间隔开。
根据本公开的实施例,提供一种植入式可拉伸柔性神经电极阵列,包括多个如上所述的柔性神经电极,其中,所述多个柔性神经电极彼此绝缘,且 所述多个柔性神经电极的多个所述盘旋结构排列成阵列。
例如,所述多个柔性神经电极的每个包括:所述电极丝及所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
根据本公开的实施例,提供一种植入式可拉伸柔性神经电极阵列,包括多个如上所述的柔性神经电极组,其中,所述多个柔性神经电极组的多个所述复合盘旋结构排列成阵列。
例如,所述多个柔性神经电极组所包括的所有柔性神经电极的每个包括:所述电极丝及所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
根据本公开的实施例,提供一种如上所述的植入式可拉伸柔性神经电极或如上所述的植入式可拉伸柔性神经电极组或者如上所述的植入式可拉伸柔性神经电极阵列的制作方法,包括:提供衬底,其中所述衬底包括第一区域和第二区域;在所述衬底上形成第一绝缘层;在所述第一绝缘层上形成导电层,图案化所述导电层以在所述衬底的第一区域形成所述电极丝和所述电极位点;在所述电极丝和所述电极位点上形成第二绝缘层;图案化所述第一绝缘层和所述第二绝缘层以形成包裹所述电极丝的所述柔性绝缘部以及所述辅助植入结构,并图案化所述第二绝缘层以露出所述电极位点;以及至少去除所述衬底的位于所述第一区域中的部分。
例如,根据本公开实施例所述方法还包括:在所述衬底上形成所述第一绝缘层之前,至少在所述衬底的所述第一区域中形成牺牲层;至少去除所述衬底的位于所述第一区域中的部分包括:去除所述牺牲层并切割所述衬底,以至少去除所述衬底的位于所述第一区域中的部分。
例如,图案化所述导电层以在所述衬底的第一区域形成所述电极丝和所述电极位点的同时在所述衬底的第二区域形成焊盘,所述电极丝与所述焊盘电连接;并且所述方法还包括:图案化所述第二绝缘层以露出所述焊盘。
根据本公开实施例,还提供一种如上所述的植入式可拉伸柔性神经电极或如上所述的植入式可拉伸柔性神经电极组或者如上所述的植入式可拉伸柔性神经电极阵列的植入方法,包括:采用辅助植入工具向所述辅助植入结构施加外力,以将所述柔性神经电极的至少一部分植入目标组织,并且在将所述柔性神经电极的至少一部分植入所述目标组织的过程中使所述盘旋结构在所述外力的带动下至少部分地伸展开;以及移除所述辅助植入工具并将所述 柔性神经电极的已经植入所述目标组织的所述至少一部分保留在所述目标组织中。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图一;
图2是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图二;
图3是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图三;
图4a-图4f分别是根据本公开实施例的植入式可拉伸柔性神经电极的盘旋结构的示意图;
图5是根据本公开实施例的植入式可拉伸柔性神经电极的盘旋结构的内侧圈和外侧圈的示意图;
图6a-图6d分别是根据本公开实施例的植入式可拉伸柔性神经电极的辅助植入结构的示意图;
图7是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图四;
图8是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图五;
图9是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图六;
图10a是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图七;
图10b是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图八;
图11a是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图 九;
图11b是根据本公开实施例的植入式可拉伸柔性神经电极的锚定结构的示意图;
图12是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图十;
图13a和图13b分别是沿图12的A-A截取的截面示意图。
图14a-图14c分别是根据本公开实施例的植入式可拉伸柔性神经电极的截面示意图;
图15是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意图一;
图16a-图16c是图15的部分A的放大示意图;
图17a是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意图二;
图17b是图17a的部分B的放大示意图;
图18是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意图三;
图19是根据本公开实施例的植入式可拉伸柔性神经电极阵列的平面示意图;
图20是根据本公开实施例的植入式可拉伸柔性神经电极的制作方法的流程示意图;
图21是根据本公开实施例的植入式可拉伸柔性神经电极的制作方法中各步骤的截面示意图;
图22是根据本公开实施例的制作完成的植入式可拉伸柔性神经电极的分解示意图;
图23是根据本公开实施例的制作完成的植入式可拉伸柔性神经电极阵列的分解示意图;
图24是根据本公开实施例的植入式可拉伸柔性神经电极的植入方法的流程示意图;以及
图25a-图25c是根据本公开实施例的植入式可拉伸柔性神经电极的植入方法中各步骤的立体示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中的附图并不是严格按实际比例绘制,各个结构的具体地尺寸和数量可根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
本公开的实施例提供一种植入式可拉伸柔性神经电极。图1为根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图一;图2为根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图二;图3为根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图三。参见图1-图3,根据本公开实施例的植入式可拉伸柔性神经电极包括电极丝10和包裹电极丝10的柔性绝缘部20;根据本公开实施例的植入式可拉伸柔性神经电极还包括:电极丝10和柔性绝缘部20的盘旋结构SS,该盘旋结构SS可拉伸,在盘旋结构SS处设置有电极位点30和辅助植入结构40,电极位点30与电极丝10电连接且从柔性绝缘部20露出,辅助植入结构40构造为在外力的作用下带动盘旋结构SS伸展。
根据本公开的实施例,柔性神经电极包括电极丝10和柔性绝缘部20的盘旋结构SS,并且该盘旋结构SS可拉伸。一方面,盘旋结构SS能够大大增加柔性神经电极在目标组织(例如,脑组织)中的植入深度;例如,以盘旋结构的形状为圆形为例,直径为1mm的两圈盘旋结构的植入深度能够达 到约6mm,直径为1mm的四圈盘旋结构的植入深度能够达到约12mm;再例如,仍然以盘旋结构的形状为圆形为例,直径为3mm的两圈盘旋结构的植入深度能够达到约12mm,直径为3mm的四圈盘旋结构的植入深度能够达到约25mm;因此将柔性神经电极设计为包括电极丝10和柔性绝缘部20的盘旋结构SS,能够大大提高有效面积内柔性神经电极的可实现长度。另一方面,盘旋结构SS具有良好的可拉伸性,能够实现在不同方向和距离上的大范围拉伸,从而提高了将柔性神经电极植入目标组织的操作灵活度。再一方面,盘旋结构SS具有良好的力学稳定性,在大范围拉伸从而将平面的盘旋结构转变成三维曲线时,仍能保证良好的结构稳定性,从而保证了柔性神经电极在植入目标组织之后的稳定性。
例如,根据本公开实施例的盘旋结构SS是任意直线和任意曲线组合的规则或不规则的成圈的结构。因此,根据本公开实施例的盘旋结构SS包括至少一圈电极丝10和柔性绝缘部20。例如,盘旋结构SS中电极丝10和柔性绝缘部20的圈数为1圈~100000圈,例如1圈、10圈、50圈、100圈、300圈、500圈、700圈或1000圈等等。进一步地,为了提高有效面积内柔性神经电极的可实现长度,例如盘旋结构SS中电极丝10和柔性绝缘部20的圈数多于1圈,例如1圈多、2圈、10圈、50圈、100圈、300圈、500圈、700圈或1000圈等等。作为示例,图1和图3示出了盘旋结构SS包括两圈电极丝10和柔性绝缘部20,图2示出了盘旋结构SS包括1圈多电极丝10和柔性绝缘部20。
例如,根据本公开的实施例,盘旋结构SS可拉伸;进一步地例如,盘旋结构SS构造为沿任意方向可拉伸。这样一来,既提高了有效面积内柔性神经电极的可实现长度,也提高了将柔性神经电极植入目标组织的操作灵活度。例如,“盘旋结构SS构造为沿任意方向可拉伸”,既包括沿盘旋结构SS所在平面内的方向进行拉伸,也包括沿与盘旋结构SS所在平面内的方向不同的任意方向进行拉伸。
如上所述,根据本公开实施例的盘旋结构SS是任意直线和任意曲线组合的规则或不规则的成圈的结构。参见图1至图3,盘旋结构SS的一圈大体上呈圆形;然而,本公开实施例对盘旋结构SS的一圈的形状并不进行限制。例如,盘旋结构SS的一圈可以大体上呈圆形、椭圆形、三角形、正方形、 长方形或者任意多边形;盘旋结构SS的一圈还可以大体上呈圆角三角形、圆角正方形、圆角长方形或者圆角的任意多边形。相比之下,圆角多边形的加工精度要求小于正常的多边形。图4a-图4f分别为根据本公开实施例的植入式可拉伸柔性神经电极的盘旋结构的示意图。作为示例,图4a和图4b示出了盘旋结构SS的一圈大体上呈椭圆形,图4a和图4b的区别在于图4a中椭圆的长轴的方向不同于图4b中椭圆的长轴的方向。作为示例,图4d和图4e示出了盘旋结构SS的一圈大体上呈圆角长方形,图4d和图4e的区别在于图4d中圆角长方形的长边的方向不同于图4e中圆角长方形的长边的方向。作为示例,图4c示出了盘旋结构SS的一圈大体上呈圆角三角形,而图4f示出了盘旋结构的一圈大体上呈圆角六边形。需要说明的是,为了图示简单,在图4a至图4f中并未具体示出电极丝10和柔性绝缘部20,而仅示出了它们的盘旋结构SS的盘旋样式。
例如,根据本公开实施例,盘旋结构SS的最大尺寸为0.1mm~2cm,例如1mm、3mm、5mm、7mm、1cm或者2cm等等。如果盘旋结构SS整体上沿某个方向的尺寸大于所有沿其他方向的尺寸,则盘旋结构SS的沿所述某个方向的尺寸即为盘旋结构SS的最大尺寸。例如,在图4a和4b中,盘旋结构SS的最大尺寸即为最外圈椭圆的长轴的尺寸,该尺寸为0.1mm~2cm。
例如,根据本公开实施例,对于盘旋结构SS,其1圈的横截面的高度(例如,参见图13a的h)为1μm~200μm,优选为2μm;其1圈的横截面的宽度(例如,参见图13a的w)为1μm~2000μm,优选为20μm。
例如,根据本公开的实施例,柔性绝缘部20包裹电极丝10可以理解为柔性绝缘部20覆盖电极丝10的所有表面,除了电极丝10的与其他部件接触的表面部分之外。
例如,根据本公开的实施例,柔性绝缘部20的材料采用具有良好生物相容性和机械弹性的柔性材料。进一步地,例如,柔性绝缘部20的材料包括聚酰亚胺(PI)、聚对二甲苯(Parylene C)和SU-8光刻胶中的至少一种。例如,柔性绝缘部20的材料包括SU-8光刻胶和Parylene C的组合、Parylene C和PI的组合、或者SU-8光刻胶、Parylene C和PI的组合等;进一步优选柔性绝缘部20的材料为PI。例如,柔性绝缘部20是透明的或者半透明的或者 不透明的。
例如,根据本公开的实施例,柔性绝缘部20的厚度为1μm~200μm,例如,1μm、2μm、3μm、4μm、5μm、7μm、10μm、13μm、15μm、17μm、20μm或50μm等;进一步优选为2μm。
例如,根据本公开的实施例,电极丝10的厚度(例如,参见图13a的h’)为10nm~1000nm,例如,10nm、50nm、100nm、300nm、500nm、800nm或1000nm等;进一步优选为100nm。
例如,根据本公开的实施例,电极丝10的宽度(例如,参见图13a的w’)为1μm~200μm,例如1μm、5μm、10μm、50μm、100μm或200μm等;进一步优选为20μm。
例如,根据本公开实施例,“在盘旋结构SS处设置有电极位点30和辅助植入结构40”是指,电极位点30和辅助植入结构40设置在和/或连接于盘旋结构SS的至少一圈上。
例如,根据本公开的实施例,电极位点30与电极丝10电连接且从柔性绝缘部20露出。在此情形下,在将柔性神经电极植入目标组织(例如,脑组织)之后,电极位点30采集目标组织中的生物信息,该生物信息经由与电极位点30电连接的电极丝10传输至外部电路;并且/或者,在将柔性神经电极植入目标组织(例如,脑组织),外部电路施加电调控信息,该电调控信息经由电极丝10传输至与电极丝10电连接的电极位点30,电极位点30将电调控信息施加至目标组织。电极位点30从柔性绝缘部20露出,可以理解为柔性绝缘部20不覆盖电极位点30的至少部分。
例如,根据本公开的实施例,彼此电连接的电极丝10和电极位点30由相同的材料形成或者由不同的材料形成,本公开实施例对此不进行限定。例如,为了简化制作工艺,彼此电连接的电极丝10和电极位点30由相同的材料形成。例如,根据本公开的实施例,电极丝10和电极位点30的材料包括金、铂和铱中的至少一种。例如,电极丝10和电极位点30的材料为金和铂的组合、铂和铱的组合、或者金、铂和铱的组合等;进一步优选电极丝10和电极位点30的材料为金。需要说明的是,“电极丝10和电极位点30的材料包括金、铂和铱中的至少一种”是指,至少电极丝10和电极位点30的外表面的材料包括金、铂和铱中的至少一种。
例如,根据本公开的实施例,电极位点30的形状为半圆、大割圆、小割圆、椭圆或圆形等;进一步优选为圆形,如图1-3所示。例如,圆形的直径为1μm~100μm,例如1μm、5μm、10μm、30μm、50μm、70μm或100μm等;进一步优选为20μm。
例如,根据本公开的实施例,对电极位点30的设置方式不进行具体限制,只要电极位点30和电极丝10电连接即可。例如,如图1和图2所示,电极位点30位于电极丝10之外,其通过连接结构(例如,如下所述的锚定电极丝62)与电极丝10电连接。例如,如图3所示,电极位点30位于电极丝10上,即其为电极丝10的一部分;在此情形的,电极丝10的一部分从柔性绝缘部20露出以用作电极位点30。
例如,根据本公开的实施例,盘旋结构SS包括多个圈,多个圈中任意相邻的两个圈分为内侧圈和外侧圈,外侧圈围绕内侧圈,且外侧圈的终止端连接内侧圈的起始端。这样一来,由于盘旋结构SS包括多个圈,可以提高有效面积内柔性神经电极的可实现长度;由于外侧圈围绕内侧圈且外侧圈的终止端连接内侧圈的起始端,使得多个圈的排列更有序而不互相穿插,从而使得盘旋结构SS可以采用例如光刻的图案化工艺方便地制作并使得盘旋结构SS的拉伸过程更顺畅。图5为根据本公开实施例的植入式可拉伸柔性神经电极的盘旋结构的内侧圈和外侧圈的示意图。参见图5,从点O至点O’为外侧圈,从点O’至点O”为内侧圈,外侧圈OO’围绕内侧圈O’O”,并且外侧圈OO’的终止端连接内侧圈O’O”的起始端。在图5中,外侧圈OO’的终止端和内侧圈O’O”的起始端由点O’指示。
需要说明的是,在已经描述的图1和图3、图4a-图4f以及图5中,盘旋结构SS的多个圈基本上是形状相同的多个圈。然而,本公开实施例不局限于此;盘旋结构SS的多个圈中至少两个圈的形状可以彼此不同,这可以根据实际情况灵活设计。
需要说明的是,在已经描述的图1和图3、图4a-图4f以及图5中,盘旋结构SS的多个圈基本上是等间隔设置。然而,本公开实施例不局限于此;盘旋结构SS的多个圈中可以以不同的间隔设置,这可以根据实际情况灵活设计。
需要说明的是,在已经描述的图1和图3、图4a-图4f以及图5中,盘 旋结构SS的内侧圈与外侧圈之间的距离处处相等。然而,本公开实施例不局限于此;盘旋结构SS的内侧圈和外侧圈之间的距离可以是变化的,这也可以根据实际情况灵活设计。
例如,根据本公开的实施例,辅助植入结构40构造为在外力的作用下带动盘旋结构SS伸展。也就是说,根据本公开实施例,一方面,辅助植入结构40具有辅助植入的功能,能够带动柔性神经电极的至少部分被植入目标组织;另一方面,辅助植入结构40还能够带动盘旋结构SS的至少部分伸展开。例如,为了使得辅助植入结构40更好地实现其如上所述的两个功能,辅助植入结构40设置在盘旋结构SS的多个圈中的最内侧圈处,即设置在最内侧圈上和/或连接到最内侧圈。更进一步地例如,辅助植入结构40设置在盘旋结构SS的多个圈中的最内侧圈的终止端,以更好地实现辅助植入和使盘旋结构SS伸展的功能。需要说明的是,电极位点30的设置位置要比辅助植入结构40的设置位置更灵活,电极位点30可以设置在盘旋结构SS的多个圈中的最内侧圈处和/或其他圈处。
例如,根据本公开的实施例,柔性绝缘部20具有超出电极丝10的突出部21,辅助植入结构40为设置于突出部21处的通孔、凹槽或凸起。例如,在辅助植入结构40为通孔或者凹槽的情形下,与辅助植入结构40配合的辅助植入工具可具有与所述通孔或者凹槽相配合的凸起;在辅助植入结构40为凸起的情形下,与辅助植入结构40配合的辅助植入工具可具有与所述凸起相配合的孔或者槽。图6a-图6d分别是根据本公开实施例的植入式可拉伸柔性神经电极的辅助植入结构的示意图。作为示例,图6a-图6d将辅助植入结构40示出为通孔。另外,本公开实施例对辅助植入结构40的数量不进行限制,例如辅助植入结构40可以为1个或者多个。在辅助植入结构40为多个的情形下,当一个辅助植入结构40失效了,还可以采用其他的辅助植入结构40,从而大大提高了根据本公开实施例的柔性神经电极的操作友好性和植入可行性。作为示例,图6b-图6d示出了多个辅助植入结构40。需要说明的是,在多个辅助植入结构40的情形下,本公开实施例对多个辅助植入结构40的排列方式不进行具体限制,可以根据情况灵活设计。作为示例,图6c示出了三个辅助植入结构40的一种排列方式,而图6d示出了三个辅助植入结构40的另一种排列方式。
图7是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图四。参见图7,例如,在突出部21设置有位置标记50。通过设置位置标记50,可以方便地确定根据本公开实施例的柔性神经电极被植入目标组织的位置。进一步地例如,位置标记50与电极丝10同层设置且采用相同的材料制成,从而使得位置标记50和电极10可以在同一构图工艺中形成,简化制作工艺。另外,需要说明的是,位置标记50不限于设置在突出部21处,其可以根据情况被设置在任何需要的位置处。
图8是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图五。例如,参见图8,盘旋结构SS的多个圈的每个包括依次连接的多个弯曲部分,从而更进一步地提高有效面积内柔性神经电极的可实现长度。需要说明的是,盘旋结构SS的多个圈所包括的弯曲部分可以相同也可以不同,盘旋结构SS的多个圈中也可以只有部分圈包括所述弯曲部分,本公开实施例对此不进行具体限制。
例如,根据本公开实施例柔性神经电极可以只包括盘旋结构SS,也可以包括除盘旋结构SS之外的其他结构。图9是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图六。例如参见图9,根据本公开实施例的柔性神经电极还包括电极丝10及柔性绝缘部20的线性结构LS,该线性结构LS与盘旋结构SS连接。柔性神经电极包括线性结构LS可以使得柔性神经电极与外部电路的连接更加方便。需要说明的是,根据本公开的实施例,线性结构SS并不一定必须是直线,只要其沿一个方向的尺寸远大于其他方向的尺寸即可;因此根据本公开实施例,线性结构SS可以是直线也可以是诸如折线、波浪线等的曲线,这可以根据情况灵活设计。另外,作为示例,图9示出了线性结构LS与盘旋结构SS的外侧圈的起始端之间呈平角;然而,本公开实施例对此不进行限制,线性结构LS与盘旋结构SS的外侧圈的起始端之间可以呈任意角度。
图10a是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图七;图10b是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图八。参见图10a和图10b,线性结构LS还包括:被柔性绝缘部20包裹的辅助电极丝11;并且在线性结构LS中,辅助电极丝11与电极丝10电连接。通过设置辅助电极丝11,可以延长电极丝10的布线长度,从而进一步提高 根据本公开实施例的柔性神经电极的布线灵活性。例如,电极丝10和辅助电极丝11可以同层设置也可以不同层设置,可以采用相同的材料形成也可以采用不同的材料形成,可以具有相同的尺寸也可以具有不同的尺寸,本公开实施例对此不进行限制。例如,辅助电极丝11的长度为1mm~10cm,例如1mm、3mm、5mm、7mm、1cm或者5cm等;进一步优选为1cm或2.5cm。例如,辅助电极丝11的宽度为1μm~50μm,例如1μm、5μm、10μm、20μm、30μm、40μm或50μm等;进一步优选为1.5μm。
例如,参见图10b,线性结构LS包括被柔性绝缘部20包裹的多个辅助电极丝11,该多个辅助电极丝11彼此绝缘且分别与电极丝10电连接。例如,在设置多个辅助电极丝11的情形下,一个辅助电极丝11失效了,可以采用另一个辅助电极丝11,从而增强了根据本公开实施例的柔性神经电极的可靠性。
图11a是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图九。例如,参见图11a,根据本公开实施例的植入式可拉伸柔性神经电极还包括锚定结构60;锚定结构60与电极丝10之间具有夹角,并且锚定结构60构造为在将柔性神经电极植入目标组织之后与目标组织相互作用以阻碍柔性神经电极与目标组织发生相对运动。通过设置锚定结构60可以将柔性神经电极的被植入到目标组织中的部分更加稳定地保持在目标组织中,从而使得柔性神经电极能够稳定地检测或者调控目标组织。例如,锚定结构60与电极丝10之间具有夹角,该夹角可以是任意角度,只要锚定结构60与目标组织相互作用以阻碍柔性神经电极与目标组织发生相对运动即可。例如,锚定结构60突出于包裹电极丝10的柔性绝缘部20。例如,锚定结构60的数量为1-20个,例如1个、4个、8个、16个或20个等,本公开实施例对此不进行限制。例如,为了增强锚定效果,优选地锚定结构60为多个;在此情形下,多个锚定结构60可以位于电极丝10的同一侧或者不同侧,多个锚定结构60的形状可以相同也可以不相同,本公开实施例对此不进行限制。对于一个锚定结构60而言,沿着远离电极丝10的方向锚定结构60可以由宽变窄,也可以由窄变宽,还可以时而窄时而宽,还可以保持恒定不变的宽度,本公开实施例对此不进行限制。图11b是根据本公开实施例的植入式可拉伸柔性神经电极的锚定结构的示意图。作为示例,图11b示出了锚定结构60可以为末端变粗的 箭头状结构(例如,参见箭头状1),锚定结构60还可以为末端变细的箭头状结构(例如,参见箭头状2),锚定结构60还可以是三角形结构(例如,参见三角状),锚定结构60还可以是楔形结构(例如,参见楔状),锚定结构60还可以是鱼骨结构(例如,参见鱼骨状)。然而,本公开实施例并不局限于此,锚定结构60的形状可以根据需要灵活设计,只要在将柔性神经电极植入目标组织之后锚定结构60与目标组织相互作用以阻碍柔性神经电极与目标组织发生相对运动即可。在图11b,左侧一列示出了多个锚定结构60位于电极丝10的同一侧,而右侧一列示出了多个锚定结构60分别位于电极丝10的两侧;在多个锚定结构60分别位于电极丝10的两侧的情形下,位于电极丝10两侧的锚定结构60的数量可以相等也可以不相等,本公开实施例对此不进行限定。
例如,参见图11b的最后一行结构,锚定结构60自电极丝10沿远离电极丝10的方向延伸的边缘为弧形61,弧形61朝向辅助植入结构40突出。通过设置朝向辅助植入结构40突出的弧形61,可以使得根据本公开实施例的柔性神经电极的植入过程更加流畅。
例如,继续参见图11a,锚定结构60包括被柔性绝缘部20覆盖的锚定电极丝62,电极位点30通过锚定电极丝62与电极丝10电连接。这样一来,可以不用为电极丝10和电极位点30设置专门的连接结构,使得根据本公开实施例的柔性神经电极的结构更加简洁、容易实现。然而,需要说明的是,本公开实施例并不局限于此,锚定结构60也可以仅仅是柔性绝缘部20的突出部而不包括锚定电极丝62。
图12是根据本公开实施例的植入式可拉伸柔性神经电极的平面示意图十;图13a和图13b分别是沿图12的A-A截取的截面示意图,也就是,图13a和图13b是图12所示的盘旋结构SS的一个圈的截面示意图。例如,参见图12和图13a-图13b,根据本公开实施例的柔性神经电极包括:多个电极丝10,被柔性绝缘部包裹20且彼此绝缘;以及多个电极位点30,从柔性绝缘部20露出,与多个电极丝10一一对应地电连接,并且在空间上彼此间隔开。在根据本公开实施例的柔性神经电极包括多个电极丝10的情形下,柔性神经电极的盘旋结构SS的每圈均包括该多个电极丝10。例如,多个电极丝10数量为1个~10000个,例如1个、10个、50个、100个、300个、500 个、700个或1000个等等,进一步优选为10个;相应地,多个电极位点的数量为1个~10000个,例如1个、10个、50个、100个、300个、500个、700个或1000个等等,进一步优选为10个。在将根据本公开实施例的柔性神经电极植入目标组织(例如,脑组织)之后,多个电极位点30可以对目标组织的多个位置进行监测和/或调控,从而大大提高了根据本公开实施例的柔性神经电极的监测和/或调控效果。例如,多个电极位点30在空间上彼此间隔开大约70μm。作为示例,图12、图13a和图13b示出了5根电极丝10和5个电极位点30。
例如,参见图13b,根据本公开实施例的植入式可拉伸柔性神经电极还包括设置在电极丝10和柔性绝缘部20之间的粘附层70。通过设置粘附层70,可以增强电极丝10与柔性绝缘部20之间的结合强度,使得柔性神经电极的结构更加稳定。例如,粘附层70的材料包括铬或钛;进一步优选包括铬。例如,粘附层70的厚度为1nm~100nm,例如,1nm、5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm等;进一步优选为5nm。
在图13a和图13b中,多个电极丝10位于同一层。然而,本公开实施例不局限于此。根据本公开实施例的柔性神经电极包括多个电极丝10,该多个电极丝10位于堆叠设置的多个层,多个层的每个包括该多个电极丝10当中的至少一个。根据本公开的实施例,在多个电极丝10位于堆叠设置的多个层的情形下,每个层可以包括一个电极丝10或者多个电极丝10,各层所包括的电极丝10的数量可以相等也可以不相等,本公开实施例对此不进行限制。图14a-图14c分别是根据本公开实施例的植入式可拉伸柔性神经电极的截面示意图。作为示例,图14a-图14c示出了10个电极丝10,其中5个电极丝10设置于下层中,而5个电极丝设置于上层中。根据本公开的实施例,所述多个层中任意相邻的两个层为第一层和第二层;在所述多个层的堆叠方向上,位于所述第一层的电极丝10与位于所述第二层中的电极丝10分别至少部分重叠或者至少部分不重叠。作为示例,图14a示出了位于所述第一层的电极丝10与位于所述第二层中的电极丝10在堆叠方向上完全重叠,图14b示出了位于所述第一层的电极丝10与位于所述第二层中的电极丝10在堆叠方向上完全不重叠,图14c示出了位于所述第一层的电极丝10与位于所述第二层 中的电极丝10在堆叠方向上部分地重叠以及部分地不重叠。例如,位于第一层的电极丝10与位于第二层的电极丝10同时被植入目标组织。例如,位于第一层的电极丝10与位于第二层的电极丝10交替地被植入目标组织。
参见图12,多个电极位点10位于柔性神经电极的同一侧。然而,本公开实施例不局限于此,多个所述电极位点10可以位于柔性神经电极的同一侧,也可以位于柔性神经电极的不同侧。参见图12,多个电极位点10依次排列,从而该多个电极位点10被依次植入目标组织而位于目标组织的不同深度。然而,本公开实施例不局限于此。多个电极位点10也可以设置于多个层以使得该多个电极位点10被同时植入目标组织且位于目标组织的同一深度的不同位置处。
根据本公开的实施例,还提供一种植入式可拉伸柔性神经电极组。图15是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意图一;并且图16a-图16c是图15的部分A的放大示意图。参见图15和图16a-图16c,根据本公开实施例的植入式可拉伸柔性神经电极组包括多个如上所述的柔性神经电极;该多个柔性神经电极彼此绝缘;如上所述的柔性神经电极的多个盘旋结构SS形成复合盘旋结构CSS,在复合盘旋结构SS的同一圈中多个盘旋结构SS的位于该同一圈中的部分由里至外依次排列。例如,多个柔性神经电极的多个电极位点30在空间上彼此间隔开,可以避免多个电极位点30之间的相互干扰且有利于多个电极位点30在被植入目标组织(例如,脑组织)之后分散于目标组织的不同位置。通过提供柔性神经电极组,大大提高了有效面积内电极位点30的数量,从而大大提供了根据本公开实施例的柔性神经电极的监控效率和/或调控效率。根据本公开实施例的柔性神经电极组的力学性能与目标组织(例如,脑组织)相匹配,不会引起目标组织的炎症反应,可对目标组织进行多点、长期稳定监测和/或调控。本公开实施例对于柔性神经电极组所包括的柔性神经电极的数量以及每个柔性神经电极所包括的电极丝10的数量不进行限制。本公开实施例对于柔性神经电极组所包括的所有电极位点的排列方式不进行限制,这些电极位点可以排列为被依次植入目标组织或者被同时植入目标组织或者一部分被依次植入目标组织而另一部被同时植入目标组织。作为示例,图15和图16a-图16c示出的柔性神经电极组包括3个如上所述的柔性神经电极,且每个柔性神经电极包括两个电极丝10和两 个电极位点30。根据本公开的实施例,多个柔性神经电极彼此绝缘是指:多个柔性神经电极的电极丝10彼此绝缘,且多个柔性神经电极的多个电极位点30也彼此绝缘。
例如,根据本公开的实施例,复合盘旋结构CSS可拉伸;进一步地例如,复合盘旋结构CSS构造为沿任意方向可拉伸,使得柔性神经电极组植入目标组织的操作灵活度大大提高。例如,“复合盘旋结构CSS构造为沿任意方向可拉伸”,既包括沿复合盘旋结构CSS所在平面内的方向进行拉伸,也包括沿与复合盘旋结构CSS所在平面内的方向不同的任意方向进行拉伸。
继续参见图15,复合盘旋结构CSS包括多个圈,所述多个圈中任意相邻的两个圈分为内侧圈和外侧圈,外侧圈围绕内侧圈,且外侧圈的终止端连接内侧圈的起始端;在复合盘旋结构CSS的多个圈的每个中,多个盘旋结构SS的相应部分按照相同的顺序由里至外依次排列。这样一来,复合盘旋结构CSS的多个圈的排列更有序而不互相穿插并且多个柔性神经电极的多个盘旋结构SS也有序排列而不相互穿插,从而使得复合盘旋结构CSS可以采用例如光刻的图案化工艺方便地制作并使得复合盘旋结构CSS的拉伸过程更顺畅。参见图15,从点O至点O’为外侧圈,从点O’至点O”为内侧圈,外侧圈OO’围绕内侧圈O’O”,并且外侧圈OO’的终止端连接内侧圈O’O”的起始端。在图15中,外侧圈OO’的终止端和内侧圈O’O”的起始端由点O’指示。
继续参见图15和图16a-图16c,柔性神经电极组所包括的多个柔性神经电极的多个辅助植入结构40一体化为一个共用辅助结构40S,该共用辅助结构40S构造为在外力的作用下带动多个柔性神经电极的多个盘旋结构SS同步伸展。这样一来,可以使得柔性神经电极组的结构更简洁,并且柔性神经电极组所包括的多个柔性神经电极可以被同步植入并且多个柔性神经电极的多个盘旋结构SS可以同步伸展,提高了植入效率。
参见图16b和图16c,多个柔性神经电极的多个柔性绝缘部20至少部分彼此连接,这样一来可以增强盘旋复合结构CSS的结构稳定性。图16b和图16c的区别在于多个柔性绝缘部20的连接位置有所不同,本公开实施例对多个柔性绝缘部20的连接位置不进行限制。
图17a是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意 图二;图17b是图17a的部分B的放大示意图。参见图17a和图17b,柔性神经电极组所包括的多个柔性神经电极被分成第一子组和第二子组;第一子组所包括的所有柔性神经电极的柔性绝缘部20一体化为第一共用柔性绝缘部20S1;第二子组所包括的所有柔性神经电极的柔性绝缘部20一体化为第二共用柔性绝缘部20S2。这样一来,在大大提高有效面积内电极位点30的数量的同时,使得柔性神经电极组的结构更加简洁。例如,第一子组所包括的柔性神经电极的数量与第二子组所包括的柔性神经电极的数量可以相同也可以不相同。例如,第一子组所包括的电极丝10的数量与第二子组所包括的电极丝10的数量可以相同也可以不相同。作为示例,图17a和图17b示出了第一子组包括四个电极丝10且第二子组包括四个电极丝10。例如,参见图17a和图17b,第一子组所包括的多个柔性神经电极的多个电极位点10位于第一子组的远离第二子组的一侧,第二子组所包括的多个柔性神经电极的多个电极位点10位于第二子组的远离第一子组的一侧;这样一来,可以避免电极位点10之间的干扰。
例如,继续参见图17a和图17b,多个柔性神经电极的多个辅助植入结构40一体化为一个共用辅助结构40S,该共用辅助结构40S构造为在外力的作用下带动第一子组和第二子组所包括的所有柔性神经电极的盘旋结构SS同步伸展。这样一来,可以使得柔性神经电极组的结构更简洁,并且柔性神经电极组所包括的多个柔性神经电极可以被同步植入并且多个柔性神经电极的多个盘旋结构SS可以同步伸展,提高了植入效率。
例如,参见图17b,第一共用柔性绝缘部20S1和第二柔性共用绝缘部20S2至少部分连接,这样一来可以增强盘旋复合结构CSS的结构稳定性。
图18是根据本公开实施例的植入式可拉伸柔性神经电极组的平面示意图三。在图18所示的柔性神经电极组中,多个柔性神经电极的多个辅助植入结构40在空间上彼此间隔开;这样一来,可以实现多点植入,从而可以根据实际需要更加灵活地选择各个柔性神经电极的植入位置,并且可提高植入密度。本公开实施例对多个辅助植入结构40彼此间隔开的距离不进行限制,只要不干扰彼此的植入即可。
需要说明的是,在图15、图17a和图18所示的植入式可拉伸柔性神经电极组中,为了图示方便仅示出了盘旋结构CSS。然而,本公开实施例不局 限于此,柔性神经电极组还可以包括除盘旋结构CSS之外的其他结构。例如,柔性神经电极组所包括的多个柔性神经电极的每个还包括电极丝10和柔性绝缘部20的线性结构,该线性结构的设计可以参照前面的描述,在此不再赘述。
根据本公开的实施例,还提供一种植入式可拉伸柔性神经电极阵列。图19是根据本公开实施例的植入式可拉伸柔性神经电极阵列的平面示意图。参见图19,根据本公开实施例的柔性神经电极阵列包括多个如上所述的柔性神经电极,多个柔性神经电极彼此绝缘,且多个柔性神经电极的多个所述盘旋结构SS排列成阵列。通过采用柔性神经电极的阵列,可以使得阵列所包括的多个盘旋结构SS同步被转移,同步被植入,操作方便且效率高。根据本公开的实施例,柔性神经电极阵列所包括的每个盘旋结构SS可拉伸;进一步地,柔性神经电极阵列所包括的每个盘旋结构SS沿任意方向可拉伸。根据本公开实施例的柔性神经电极阵列的力学性能与目标组织(例如,脑组织)相匹配,不会引起目标组织的炎症反应,可对目标组织进行多点、长期稳定监测和/或调控。根据本公开实施例,盘旋结构SS排列成的阵列可以是规则的阵列也可以是不规则的阵列。相比较而言,规则阵列比不规则阵列更方便操作。此外,本公开实施例对阵列所包括的盘旋结构SS的数量不进行限制。作为示例,图19示出了12个盘旋结构SS排列为规则的3×4阵列。
继续参见图19,柔性神经电极阵列所包括的多个柔性神经电极的每个包括:电极丝10及柔性绝缘部20的线性结构LS,该线性结构LS与盘旋结构SS连接。这样一来,可以使得柔性神经电极阵列所包括的多个柔性神经电极更方便地连接到外部电路90。参见图19,每个电极丝10连接到焊盘80,焊盘80再连接到外部电路90;也就是,电极丝10通过与其连接的焊盘80而连接到外部电路90。需要说明的是,图19所示出的各部分的尺寸仅仅是示例性的,不应该被看作是对本公开实施例的限制。例如,为了方便与外部电路90进行连接,柔性神经电极阵列所包括的多个柔性神经电极的多个线性结构LS位于盘旋结构SS排列成的阵列的同一侧。然而,本公开实施例对此不进行显示,柔性神经电极阵列所包括的多个柔性神经电极的多个线性结构LS也可以位于盘旋结构SS排列成的阵列的相反两侧、相邻两侧、三侧或者多侧,这可以根据实际情况灵活设计。
根据本公开的实施例,还提供一种植入式可拉伸柔性神经电极阵列。继续参见图19,根据本公开实施例的柔性神经电极阵列包括多个如上所述的柔性神经电极组,多个柔性神经电极组的多个复合盘旋结构CSS排列成阵列。通过采用柔性神经电极组的阵列,可以使得阵列所包括的多个盘旋结构SS同步被转移,同步被植入,操作方便且效率高;并且可以使得阵列包括更多的电极位点30,使得根据本公开实施例的技术方案的监测效率和/或调控效率更高。根据本公开的实施例,柔性神经电极阵列所包括的每个复合盘旋结构CSS可拉伸;进一步地,柔性神经电极阵列所包括的每个复合盘旋结构CSS沿任意方向可拉伸。根据本公开实施例,复合盘旋结构CSS排列成的阵列可以是规则的阵列也可以是不规则的阵列。相比较而言,规则阵列比不规则阵列更方便操作。此外,本公开实施例对阵列所包括的复合盘旋结构CSS的数量不进行限制。作为示例,图19示出了12个复合盘旋结构CSS排列为规则的3×4阵列。
继续参见图19,多个柔性神经电极组所包括的所有柔性神经电极的每个包括:电极丝10及柔性绝缘部20的线性结构LS,该线性结构LS与盘旋结构SS连接。这样一来,可以使得柔性神经电极阵列所包括的所有柔性神经电极更方便地连接到外部电路90。参见图19,每个电极丝10连接到焊盘80,焊盘80再连接到外部电路90;也就是,电极丝10通过与其连接的焊盘80而连接到外部电路90。需要说明的是,图19所示出的各部分的尺寸仅仅是示例性的,不应该被看作是对本公开实施例的限制。例如,为了方便与外部电路90进行连接,柔性神经电极阵列所包括的所有柔性神经电极的所有线性结构LS位于复合盘旋结构CSS排列成的阵列的同一侧。然而,本公开实施例对此不进行显示,柔性神经电极阵列所包括的所有柔性神经电极的所有线性结构LS也可以位于复合盘旋结构CSS排列成的阵列的相反两侧、相邻两侧、三侧或者多侧,这可以根据实际情况灵活设计。
根据本公开的实施例,还提供一种制作方法,可以用于制作如上所述的植入式可拉伸柔性神经电极,也可以用于制作如上所述的植入式可拉伸柔性神经电极组,还可以用于制作如上所述的植入式可拉伸柔性神经电极阵列。作为示例,下面将描述植入式可拉伸柔性神经电极的制作方法;需要说明的是,可以采用该方法来制作植入式可拉伸柔性神经电极组并制作植入式可拉 伸柔性神经电极阵列。图20是根据本公开实施例的植入式可拉伸柔性神经电极的制作方法的流程示意图;图21是根据本公开实施例的植入式可拉伸柔性神经电极的制作方法中各步骤的截面示意图。根据本公开实施例,植入式可拉伸柔性神经电极的制作方法包括:步骤S11,提供衬底100,其中衬底100包括第一区域和第二区域,如图21的截面图(a)所示;步骤S12,在衬底100上形成第一绝缘层101,如图21的截面图(c)所示;步骤S13,在第一绝缘层101上形成导电层,图案化导电层以在衬底101的第一区域形成电极丝10和电极位点30,如图21的截面图(d)所示;步骤S14,在电极丝10和电极位点30上形成第二绝缘层102,如图21的截面图(e)所示;步骤S15,图案化第一绝缘层101和第二绝缘层102以形成包裹电极丝10的柔性绝缘部20、所述辅助植入结构40以及电极丝10和柔性绝缘部20的盘旋结构SS,并图案化第二绝缘层102以露出电极位点30,如图21的截面图(f)所示;以及步骤S16,至少去除衬底100的位于第一区域中的部分,如图21的截面图(g)所示。例如,在步骤S11中,衬底100为硅片或玻璃片;提供衬底100包括对衬底100进行预处理,该预处理例如为:将衬底100用丙酮和异丙醇进行清洗,然后用水清洗再烘干,再用氧等离子体进行清洗。例如,在步骤S16中,衬底100的位于第二区域中部分被保留或者被去除;进一步优选地,衬底100的位于第二区域中部分被保留,以降低衬底100移除的操作难度并保证第二区域中的焊盘80的结构稳定性。例如,步骤S13和步骤S15中的“图案化”工艺包括:光刻胶的涂覆、曝光、显影以形成光刻胶图案,以及采用光刻胶图案作为掩膜使各层形成期望的图案。
例如,根据本公开实施例,植入式可拉伸柔性神经电极的制作方法还包括:在衬底100上形成第一绝缘层101之前,至少在衬底100的第一区域中形成牺牲层103,如图21的截面图(b)所示;至少去除衬底100的位于第一区域中的部分包括:去除牺牲层103并切割衬底100,以至少去除衬底100的位于第一区域中的部分。例如,牺牲层103的厚度为10nm~1000nm,例如10nm、30nm、50nm、70nm、100nm、300nm、500nm、700nm或1000nm等;进一步优选为100nm。例如,牺牲层103的材料包括铝、PMMA和镍中的至少一种;进一步优选包括铝。
例如,根据本公开的实施例,步骤S13还包括:图案化所述导电层以在 衬底100的第一区域形成电极丝10和电极位点30的同时在衬底100的第二区域形成焊盘80,电极丝100与焊盘80电连接;并且步骤S15还包括:图案化第二绝缘层102以露出焊盘80。例如,焊盘80的尺寸为(0.1~4)mm×(0.1~4)mm,例如0.1mm×0.1mm、0.2mm×0.1mm、1mm×2mm、3.5mm×3.5mm、3.7mm×4mm、4mm×4mm或4mm×3.7mm等;进一步优选为0.1mm×0.2mm。
图22是根据本公开实施例的制作完成的植入式可拉伸柔性神经电极的分解示意图。图22的(a)示出了图案化后的第一绝缘层101,图22的(b)示出了电极丝10和与其连接的电极位点30,图22的(c)示出了图案化后的第二绝缘层102。参见图22,图案化后的第二绝缘层102包括开口20h1以露出电极位点30。
图23是根据本公开实施例的制作完成的植入式可拉伸柔性神经电极阵列的分解示意图。图22的(a)示出了图案化后的第一绝缘层101,图22的(b)示出了电极丝10和与其连接的焊盘80,图22的(c)示出了图案化后的第二绝缘层102。参见图22,图案化后的第二绝缘层102包括开口20h2以露出焊盘80。图23的柔性神经电极阵列所包括的多个柔性神经电极的每个的分解示意图即为图22。
根据本公开实施例的方法所制作得到的植入式可拉伸柔性神经电极、植入式可拉伸柔性神经电极组以及植入式可拉伸柔性神经电极阵列的技术效果可以参照上面的描述,在此不再赘述。
根据本公开的实施例,还提供一种植入方法,可以用于将如上所述的植入式可拉伸柔性神经电极植入目标组织,也可以用于将如上所述的植入式可拉伸柔性神经电极组植入目标组织,还可以将如上所述的植入式可拉伸柔性神经电极阵列植入目标组织。作为示例,下面将描述植入式可拉伸柔性神经电极的植入方法;需要说明的是,可以采用该方法来将植入式可拉伸柔性神经电极组植入目标组织并将植入式可拉伸柔性神经电极阵列植入目标组织。图24是根据本公开实施例的植入式可拉伸柔性神经电极的植入方法的流程示意图;图25a-图25c是根据本公开实施例的植入式可拉伸柔性神经电极的植入方法中各步骤的立体示意图。根据本公开的实施例,植入式可拉伸柔性神经电极的植入方法包括:步骤S21,采用辅助植入工具40’向辅助植入结 构40施加外力,以将柔性神经电极的至少一部分植入目标组织,并且在将柔性神经电极的至少一部分植入目标组织的过程中使盘旋结构SS在外力的带动下至少部分地伸展开,如图25b所示;以及步骤S22,移除辅助植入工具40’并将柔性神经电极的已经植入目标组织的至少一部分保留在目标组织中,如图25c所示。例如,根据本公开的实施例,在步骤S21之前,所述植入方法还包括:装配辅助植入工具40’和辅助植入结构40,如图25a所示。作为示例,在图25a至图25c中,辅助植入结构40为通孔,与辅助植入结构40配合的辅助植入工具40’具有与所述通孔相配合的凸起。然而,本公开实施例不局限于此,在辅助植入结构40为凸起的情形下,与辅助植入结构40配合的辅助植入工具40’可具有与所述凸起相配合的孔或者槽。
根据本公开实施例的植入方法,所有电极丝10都能够实现原位伸展植入目标组织内,从而提高植入密度并降低植入过程难度。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (32)

  1. 一种植入式可拉伸柔性神经电极,包括电极丝和包裹所述电极丝的柔性绝缘部,其中,
    所述柔性神经电极包括:所述电极丝和所述柔性绝缘部的盘旋结构,该盘旋结构可拉伸,在所述盘旋结构处设置有电极位点和辅助植入结构,所述电极位点与所述电极丝电连接且从所述柔性绝缘部露出,所述辅助植入结构构造为在外力的作用下带动所述盘旋结构伸展。
  2. 根据权利要求1所述的植入式可拉伸柔性神经电极,其中,所述盘旋结构构造为沿任意方向可拉伸。
  3. 根据权利要求1或2所述的植入式可拉伸柔性神经电极,其中,
    所述盘旋结构包括多个圈,所述多个圈中任意相邻的两个圈分为内侧圈和外侧圈,所述外侧圈围绕所述内侧圈,且所述外侧圈的终止端连接所述内侧圈的起始端。
  4. 根据权利要求3所述的植入式可拉伸柔性神经电极,其中,
    所述辅助植入结构设置在所述多个圈中的最内侧圈处。
  5. 根据权利要求4所述的植入式可拉伸柔性神经电极,其中,
    所述柔性绝缘部具有超出所述电极丝的突出部,所述辅助植入结构为设置于所述突出部处的通孔、凹槽或凸起。
  6. 根据权利要求5所述的植入式可拉伸柔性神经电极,其中,在所述突出部设置有位置标记。
  7. 根据权利要求3-6任一项所述的植入式可拉伸柔性神经电极,其中,所述多个圈的每个包括依次连接的多个弯曲部分。
  8. 根据权利要求1-7任一项所述的植入式可拉伸柔性神经电极,还包括:
    所述电极丝和所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
  9. 根据权利要求8所述的植入式可拉伸柔性神经电极,其中,
    所述线性结构包括:被所述柔性绝缘部包裹的辅助电极丝;
    在所述线性结构中,所述辅助电极丝与所述电极丝电连接。
  10. 根据权利要求1-9任一项所述的植入式可拉伸柔性神经电极,还包 括:锚定结构,其中,
    所述锚定结构与所述电极丝之间具有夹角,并且所述锚定结构构造为在将所述柔性神经电极植入目标组织之后与所述目标组织相互作用以阻碍所述柔性神经电极与所述目标组织发生相对运动。
  11. 根据权利要求10所述的植入式可拉伸柔性神经电极,其中,所述锚定结构自所述电极丝沿远离所述电极丝的方向延伸的边缘为弧形,所述弧形朝向所述辅助植入结构突出。
  12. 根据权利要求10或11所述的植入式可拉伸柔性神经电极,其中,所述锚定结构包括被所述柔性绝缘部覆盖的锚定电极丝,所述电极位点通过所述锚定电极丝与所述电极丝电连接。
  13. 根据权利要求1-12任一项所述的植入式可拉伸柔性神经电极,其中,
    所述电极丝和所述电极位点的材料包括金、铂和铱中的至少一种;并且
    所述柔性绝缘部的材料包括聚酰亚胺、聚对二甲苯和SU-8光刻胶中的至少一种。
  14. 根据权利要求1-13所述的植入式可拉伸柔性神经电极,还包括设置在电极丝和柔性绝缘部之间的粘附层。
  15. 根据权利要求1-14任一项所述的植入式可拉伸柔性神经电极,包括:
    多个所述电极丝,被所述柔性绝缘部包裹且彼此绝缘;
    多个所述电极位点,从所述柔性绝缘部露出,与多个所述电极丝一一对应地电连接,并且在空间上彼此间隔开。
  16. 根据权利要求15所述的植入式可拉伸柔性神经电极,其中,
    多个所述电极丝位于同一层;或者
    多个所述电极丝位于堆叠设置的多个层,所述多个层的每个包括多个所述电极丝当中的至少一个。
  17. 根据权利要求16所述的植入式可拉伸柔性神经电极,其中,
    所述多个层中任意相邻的两个层为第一层和第二层;
    在所述多个层的堆叠方向上,位于所述第一层的所述电极丝与位于所述第二层中的电极丝分别至少部分重叠或者至少部分不重叠。
  18. 根据权利要求15-17任一项所述的植入式可拉伸柔性神经电极,其中,多个所述电极位点位于所述柔性神经电极的同一侧或者位于所述柔性神 经电极的不同侧。
  19. 一种植入式可拉伸柔性神经电极组,包括多个如权利要求1-18任一项所述的植入式可拉伸柔性神经电极,其中,
    所述多个柔性神经电极彼此绝缘;
    所述多个柔性神经电极的多个盘旋结构形成复合盘旋结构,在所述复合盘旋结构的同一圈中所述多个盘旋结构的位于该同一圈中的部分由里至外依次排列。
  20. 根据权利要求19所述的植入式可拉伸柔性神经电极组,其中,所述多个柔性神经电极的多个电极位点在空间上彼此间隔开。
  21. 根据权利要求19或20所述的植入式可拉伸柔性神经电极组,其中,
    所述复合盘旋结构包括多个圈,所述多个圈中任意相邻的两个圈分为内侧圈和外侧圈,所述外侧圈围绕所述内侧圈,且所述外侧圈的终止端连接所述内侧圈的起始端;
    在所述复合盘旋结构的多个圈的每个中,所述多个盘旋结构的相应部分按照相同的顺序由里至外依次排列。
  22. 根据权利要求19-21任一项所述的植入式可拉伸柔性神经电极组,其中,
    所述多个柔性神经电极的多个辅助植入结构一体化为一个共用辅助结构,该共用辅助结构构造为在外力的作用下带动所述多个柔性神经电极的多个盘旋结构同步伸展。
  23. 根据权利要求22所述的植入式可拉伸柔性神经电极组,其中,所述多个柔性神经电极的多个柔性绝缘部至少部分彼此连接。
  24. 根据权利要求19-21任一项所述的植入式可拉伸柔性神经电极组,其中,所述多个柔性神经电极的多个辅助植入结构在空间上彼此间隔开。
  25. 一种植入式可拉伸柔性神经电极阵列,包括多个如权利要求1-18任一项所述的柔性神经电极,其中,所述多个柔性神经电极彼此绝缘,且所述多个柔性神经电极的多个所述盘旋结构排列成阵列。
  26. 根据权利要求25所述的植入式可拉伸柔性神经电极阵列,其中,
    所述多个柔性神经电极的每个包括:所述电极丝及所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
  27. 一种植入式可拉伸柔性神经电极阵列,包括多个如权利要求19-24任一项所述的柔性神经电极组,其中,所述多个柔性神经电极组的多个所述复合盘旋结构排列成阵列。
  28. 根据权利要求27所述的植入式可拉伸柔性神经电极阵列,其中,
    所述多个柔性神经电极组所包括的所有柔性神经电极的每个包括:所述电极丝及所述柔性绝缘部的线性结构,该线性结构与所述盘旋结构连接。
  29. 一种如权利要求1-18任一项所述的植入式可拉伸柔性神经电极或如权利要求19-24任一项所述的植入式可拉伸柔性神经电极组或者如权利要求25-28任一项所述的植入式可拉伸柔性神经电极阵列的制作方法,包括:
    提供衬底,其中所述衬底包括第一区域和第二区域;
    在所述衬底上形成第一绝缘层;
    在所述第一绝缘层上形成导电层,图案化所述导电层以在所述衬底的第一区域形成所述电极丝和所述电极位点;
    在所述电极丝和所述电极位点上形成第二绝缘层;
    图案化所述第一绝缘层和所述第二绝缘层以形成包裹所述电极丝的所述柔性绝缘部以及所述辅助植入结构,并图案化所述第二绝缘层以露出所述电极位点;以及
    至少去除所述衬底的位于所述第一区域中的部分。
  30. 根据权利要求29所述的制作方法,还包括:
    在所述衬底上形成所述第一绝缘层之前,至少在所述衬底的所述第一区域中形成牺牲层;
    至少去除所述衬底的位于所述第一区域中的部分包括:去除所述牺牲层并切割所述衬底,以至少去除所述衬底的位于所述第一区域中的部分。
  31. 根据权利要求29或30所述的制作方法,其中,
    图案化所述导电层以在所述衬底的第一区域形成所述电极丝和所述电极位点的同时在所述衬底的第二区域形成焊盘,所述电极丝与所述焊盘电连接;并且,
    所述方法还包括:图案化所述第二绝缘层以露出所述焊盘。
  32. 一种如权利要求1-18任一项所述的植入式可拉伸柔性神经电极或如权利要求19-24任一项所述的植入式可拉伸柔性神经电极组或者如权利要求 25-28任一项所述的植入式可拉伸柔性神经电极阵列的植入方法,包括:
    采用辅助植入工具向所述辅助植入结构施加外力,以将所述柔性神经电极的至少一部分植入目标组织,并且在将所述柔性神经电极的至少一部分植入所述目标组织的过程中使所述盘旋结构在所述外力的带动下至少部分地伸展开;以及
    移除所述辅助植入工具并将所述柔性神经电极的已经植入所述目标组织的所述至少一部分保留在所述目标组织中。
PCT/CN2023/085295 2022-04-02 2023-03-31 植入式可拉伸柔性神经电极、电极组及电极阵列 WO2023186052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210351191.0 2022-04-02
CN202210351191.0A CN116919408A (zh) 2022-04-02 2022-04-02 植入式可拉伸柔性神经电极、电极组及电极阵列

Publications (1)

Publication Number Publication Date
WO2023186052A1 true WO2023186052A1 (zh) 2023-10-05

Family

ID=88199476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085295 WO2023186052A1 (zh) 2022-04-02 2023-03-31 植入式可拉伸柔性神经电极、电极组及电极阵列

Country Status (2)

Country Link
CN (1) CN116919408A (zh)
WO (1) WO2023186052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117982213A (zh) * 2024-04-03 2024-05-07 北京智冉医疗科技有限公司 植入电极丝

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361665A (zh) * 2009-02-06 2012-02-22 Med-El电气医疗器械有限公司 具有可变机械调节布线的植入式电极
US20120203245A1 (en) * 2011-02-07 2012-08-09 Olympus Corporation Nerve stimulator
US20130131482A1 (en) * 2011-11-17 2013-05-23 Carnegie Mellon University, Center For Technology Transfer And Enterprise Creation Fabrication, methods, apparatuses, and systems for ultra-compliant probes for neural and other tissues
CN107158560A (zh) * 2017-04-27 2017-09-15 清华大学 基于水凝胶溶胀特性的可控自变形神经微电极
US20180264255A1 (en) * 2015-09-08 2018-09-20 Case Western Reserve University Neural electrodes and methods for implanting same
CN112617864A (zh) * 2020-11-19 2021-04-09 南京医科大学 一种可自卷曲的外周神经电极及其制备方法
CN113041496A (zh) * 2021-03-19 2021-06-29 国家纳米科学中心 一种神经电刺激电极、其制备方法和植入方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361665A (zh) * 2009-02-06 2012-02-22 Med-El电气医疗器械有限公司 具有可变机械调节布线的植入式电极
US20120203245A1 (en) * 2011-02-07 2012-08-09 Olympus Corporation Nerve stimulator
US20130131482A1 (en) * 2011-11-17 2013-05-23 Carnegie Mellon University, Center For Technology Transfer And Enterprise Creation Fabrication, methods, apparatuses, and systems for ultra-compliant probes for neural and other tissues
US20180264255A1 (en) * 2015-09-08 2018-09-20 Case Western Reserve University Neural electrodes and methods for implanting same
CN107158560A (zh) * 2017-04-27 2017-09-15 清华大学 基于水凝胶溶胀特性的可控自变形神经微电极
CN112617864A (zh) * 2020-11-19 2021-04-09 南京医科大学 一种可自卷曲的外周神经电极及其制备方法
CN113041496A (zh) * 2021-03-19 2021-06-29 国家纳米科学中心 一种神经电刺激电极、其制备方法和植入方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117982213A (zh) * 2024-04-03 2024-05-07 北京智冉医疗科技有限公司 植入电极丝
CN117982213B (zh) * 2024-04-03 2024-06-07 北京智冉医疗科技有限公司 植入电极丝

Also Published As

Publication number Publication date
CN116919408A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2023186052A1 (zh) 植入式可拉伸柔性神经电极、电极组及电极阵列
US11730953B2 (en) Deep brain stimulation lead
US9289151B2 (en) Implantable neural interface device with a deformable carrier
KR101704851B1 (ko) 신경 인터페이스 시스템
JP2012508639A (ja) 埋め込み型医療システム
CN110327544B (zh) 一种植入式高密度电极点柔性探针电极及制备方法
US20220110565A1 (en) Method of manufacturing a neural interface probe employing amorphous silicon carbide
EP3413354A1 (en) Thin-film transistor sensor and method for fabrication thereof
JP2020527379A5 (zh)
RU2678637C2 (ru) Структура на основе гибких токопроводящих дорожек и способ ее изготовления
US20230277137A1 (en) Flexible neural electrode array
US10433067B2 (en) DSR speaker elements and methods of manufacturing thereof
JP2013543780A (ja) 医療用プローブ及び当該医療用プローブの提供方法
US10567883B2 (en) Piezo-electric actuators
CN204767032U (zh) 一种柔性神经微电极阵列
KR101168939B1 (ko) 관통 비아홀 연결을 포함하고 적어도 하나의 나노와이어를 이용하는 신경 소자
KR20110084666A (ko) 커프형 신경 전극 및 그의 제작 방법
KR102594605B1 (ko) 주사기 주입형 뇌 신호 측정 및 자극용 구조체 및 이의 주사기 주입 방법
Xiao et al. Ultra-thin, ultra-conformal neural interfaces
KR100489377B1 (ko) 임의의 형태 변형이 가능한 신경탐침 어레이 및 그제조방법
US20230181918A1 (en) Transducer array with adhesive layer shaped to reduce skin irritation
US20220047845A1 (en) Catheter Comprising a Flexible Flat Cable and FPCB and Method for Producing It
JP2021028974A (ja) チップ部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778417

Country of ref document: EP

Kind code of ref document: A1