WO2023185940A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023185940A1
WO2023185940A1 PCT/CN2023/084759 CN2023084759W WO2023185940A1 WO 2023185940 A1 WO2023185940 A1 WO 2023185940A1 CN 2023084759 W CN2023084759 W CN 2023084759W WO 2023185940 A1 WO2023185940 A1 WO 2023185940A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
connection point
inductor
antenna structure
floor
Prior art date
Application number
PCT/CN2023/084759
Other languages
English (en)
French (fr)
Inventor
薛亮
王汉阳
侯猛
叶茂
孙思宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210849062.4A external-priority patent/CN116937136A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185940A1 publication Critical patent/WO2023185940A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the field of wireless communications, and in particular, to an electronic device.
  • the second generation (2G) mobile communication system mainly supported the call function.
  • Electronic devices were just tools for people to send and receive text messages and voice communication.
  • the wireless Internet function used the voice channel for data transmission. To transmit, the speed is extremely slow.
  • electronic devices can also be used to listen to music online, watch online movies, real-time videos, etc., covering various applications in people's lives such as phone calls, film and television entertainment, and e-commerce.
  • a variety of functional applications require wireless networks to upload and download data, so high-speed data transmission becomes extremely important.
  • An embodiment of the present application provides an electronic device, including a radiator, a floor, a first inductor and a second inductor.
  • Using the inductor set between the radiator and the floor can expand the radiation diameter of the antenna structure and reduce conductor losses, thereby effectively improving the radiation efficiency of the antenna structure.
  • an electronic device including: a radiator, including a first end and a second end, and a ground point, a first connection point and a third end located between the first end and the second end. Two connection points, the ground point is arranged in the central area of the radiator, wherein the first end and the second end are both open ends; the floor, the radiator passes through the ground point at the The floor is grounded; a first inductor and a second inductor, the inductance values of the first inductor and the second inductor are both less than or equal to the first threshold; wherein, the radiator from the first end to the second end The length of the radiator is greater than three-quarters of the first wavelength, and the portion of the radiator from the first end to the second end is used to generate the first resonance, wherein the first wavelength is the length of the first resonance.
  • the first inductor is electrically connected between the first connection point and the floor
  • the second inductor is electrically connected between the second connection point and the floor
  • the first connection The distance between the point and the first end is less than one quarter of the first wavelength
  • the second connection point is located between the first connection point and the second end.
  • an inductor provided between the radiator and the floor can be used, so that when the feed point feeds an electrical signal, the radiator is electrically connected to the floor at the first connection point and the second connection point respectively.
  • the first inductor and the second inductor are connected, and the current on the radiator is reversed in the area near the first connection point and the second connection point.
  • the current on the floor will also reverse direction. It can disperse the current density on the radiator (reduce the intensity of a single current strong point and make the current more evenly distributed), thereby reducing the losses caused by the radiator and the conductors set around the radiator, thereby improving the efficiency of the antenna structure.
  • the first threshold when the frequency of the first resonance is less than or equal to 1 GHz, the first threshold is 6 nH; when the frequency of the first resonance is greater than 1 GHz and less than or equal to 2.2GHz, the first threshold is 4nH; when the frequency of the first resonance is greater than 2.2GHz and less than or equal to 3GHz, the first threshold is 3nH; when the frequency of the first resonance is greater than 3GHz , the first threshold is 2nH.
  • designing the inductance values of the first inductor and the second inductor according to the working frequency bands of different antenna structures can make the current distribution on the radiator more uniform in the working frequency band, reduce conductor losses, thereby improving The efficiency of the antenna structure.
  • the first connection point is located between the first end and the ground point, and the second connection point is located between the second end and the ground point. between the ground points; the distance between the second connection point and the second end is less than a quarter of the first wavelength.
  • the distance between the first connection point and the first end is less than a quarter of the first wavelength, which can further improve the efficiency of the antenna structure.
  • the electronic device further includes: a third inductor electrically connected between a third connection point and the floor, the third connection point being located at the ground point and the first connection point; and/or a fourth inductor, electrically connected between the fourth connection point and the floor, and the fourth connection point is located between the ground point and the second connection point.
  • increasing the number of electrically connected inductors between the radiator and the floor can make the current density distribution on the radiator more uniform, thereby reducing losses caused by the radiator and conductors provided around the radiator.
  • the position where each radiator is connected to the inductor includes a current reversal area, so that the electric field cannot reach zero, so that the electric field generated by the radiator is continuous and does not reverse (excluding the electric field reversal area), which increases the antenna structure.
  • the radiation diameter reduces conductor losses and improves the efficiency of the antenna structure.
  • one or more insulation slits are opened on the radiator, and the width of each slit is greater than or equal to 0.1 mm and less than or equal to 2 mm.
  • capacitors for example, lumped capacitors
  • capacitors can be connected in series at both ends of the gap opened on the radiator to form a metamaterial structure of series capacitors.
  • the electronic device further includes a conductive frame, the frame has a first position and a second position, and the first position and the second position are The frame in between serves as the radiator, the central area of the radiator is an area within 5 mm from the center of the radiator, and the frame is provided with insulation gaps at the first position and the second position respectively.
  • the first position and the second position can be located on the same side of the frame, and the radiator can be linear, or the first position and the second position can also be located on adjacent two sides of the frame, and the radiator can be Polyline type, for example, L-shaped.
  • an electronic device including: a radiator, including a first end and a second end, and a first connection point and a second connection point located between the first end and the second end. ;
  • Floor the radiator is at the first end and the second end is grounded through the floor;
  • a first inductor and a second inductor the inductance values of the first inductor and the second inductor are both less than the first threshold; wherein the length of the radiator is greater than Three-quarters of the first wavelength, the portion of the radiator from the first end to the second end is used to generate the first resonance, where the first wavelength is the medium wavelength of the first resonance;
  • the first inductor is electrically connected between the first connection point and the floor, and the second inductor is electrically connected between the second connection point and the floor;
  • the first connection point is located at the The distance between the center of the radiator and the first end and the center of the radiator is less than one-eighth of the first wavelength, and the second connection point is located between the first connection point and the first
  • the distance between the first end and the second end is equal to the length of the radiator; when the frequency of the first resonance is less than or equal to 1 GHz When the frequency of the first resonance is greater than 1GHz and less than or equal to 2.2GHz, the first threshold is 4nH; When the frequency of the first resonance is greater than 2.2GHz and less than or equal to When equal to 3GHz, the first threshold is 3nH; when the frequency of the first resonance is greater than 3GHz, the first threshold is 2nH. In one embodiment, the distance between the first end and the second end is equal to the length of the radiator
  • the second connection point is located between the second end and the center of the radiator; The distance between centers is less than one-eighth of the first wavelength.
  • the distance between the first end and the second end is less than the length of the radiator; when the frequency of the first resonance is less than or equal to 1 GHz When the frequency of the first resonance is greater than 1GHz and less than or equal to 2.2GHz, the first threshold is 16nH; When the frequency of the first resonance is greater than 2.2GHz and less than or equal to When it is equal to 3GHz, the first threshold is 12nH; when the frequency of the first resonance is greater than 3GHz, the first threshold is 10nH.
  • the electronic device further includes: a third inductor, electrically connected between the corresponding at least one third connection point and the floor, the third connection point is located at between the center of the radiator and the first connection point; and/or a fourth inductor, electrically connected between the corresponding at least one fourth connection point and the floor, the fourth connection point being located on the radiator between the center and the second connection point.
  • the radiator opens one or more insulation slits, and the width of each slit is greater than or equal to 0.1 mm and less than or equal to 2 mm.
  • the electronic device further includes a conductive frame, the frame has a first position and a second position, and the frame is at the first position and the The frame between the second positions serves as the radiator, and the frame is continuous with the remainder of the frame at the first position and the second position.
  • an electronic device including: a radiator including a first part, the first part of the radiator includes a first end and a second end, and is located between the first end and the second end. the first connection point and the feed point between, wherein the second end is an open end; the floor, the radiator is grounded at the first end through the floor; the first inductor, the first inductor The inductance value is less than the first threshold; wherein the length of the first part is greater than three-eighths of the first wavelength, the first part is used to generate the first resonance, and the first wavelength is the medium of the first resonance Wavelength; the first inductor is electrically connected between the first connection point and the floor, and the first connection point is provided between the feed point and the first end; the first connection The distance between the point and the second end is less than one quarter of the first wavelength.
  • the radiator further includes a second connection point located between the first connection point and the first end; the electronic device further includes a Two inductors, the second inductor is electrically connected between the first connection point and the floor.
  • the radiator further includes a second part, and the second part of the radiator includes a third end and a fourth end, and is located at the third end. and a third connection point between the fourth end, the first end of the first part is connected to the third end of the second part to form a continuous radiator, wherein the fourth end is an open end ;
  • a third inductor, the third inductor is electrically connected between the third connection point and the floor, and the inductance value of the third inductor is less than the second threshold; the length of the first part is equal to the length of the first part.
  • the length of the second part is different; the length of the second part is greater than three-eighths of the second wavelength, the second part is used to generate the second resonance, and the second wavelength is the medium wavelength of the second resonance. ; The distance between the third connection point and the fourth end is less than a quarter of the second wavelength.
  • the first threshold when the frequency of the first resonance is less than or equal to 1 GHz, the first threshold is 6nH; when the frequency of the first resonance is greater than 1 GHz and less than or equal to 2.2GHz, the first threshold is 4nH; when the frequency of the first resonance is greater than 2.2GHz and less than or equal to 3GHz, the first threshold is 3nH; when the frequency of the first resonance is greater than 3GHz , the first threshold is 2nH.
  • the second threshold when the frequency of the second resonance is less than or equal to 1 GHz, the second threshold is 6nH; when the frequency of the second resonance is greater than 1 GHz and less than or equal to 2.2GHz, the second threshold is 4nH; when the frequency of the second resonance is greater than 2.2GHz and less than or equal to 3GHz, the second threshold is 3nH; when the frequency of the second resonance is greater than 3GHz , the second threshold is 2nH.
  • the electronic device further includes: a fourth inductor, electrically connected between the corresponding at least one fourth connection point and the floor, the fourth connection point is located at between the first end and the first connection point; and/or a fifth inductor, electrically connected between the corresponding at least one fifth connection point and the ground, the fifth connection point being located at the fourth end and the third connection point.
  • an electronic device including: a radiator, including a first end and a second end, and a first connection point and a second connection point located between the first end and the second end. ;
  • Floor the radiator is grounded through the floor;
  • a first inductor electrically connected between the first connection point and the floor, the inductance value of the first inductor is less than or equal to the first threshold;
  • second An inductor is electrically connected between the second connection point and the floor, and the inductance value of the second inductor is less than or equal to the first threshold;
  • the radiator extends from the first end to the second
  • the end portion is used to generate the first resonance, the current of the radiator in the first area and/or the current of the floor in the second area includes a current reversal area, the first area includes the first connection point and The second connection point, the second area includes the connection between the first inductor and the floor and the connection between the second inductor and the floor; and/or the radiator generates the first resonance When the magnetic field generated by the
  • no switch is included between the first inductor and the radiator or the floor, and the second inductor is connected to the radiator or the floor. No switches are included between floors.
  • the first threshold when the frequency of the first resonance is less than or equal to 1 GHz, the first threshold is 6 nH; when the frequency of the first resonance is greater than 1 GHz and less than or equal to 2.2GHz, the first threshold is 4nH; when the frequency of the first resonance is greater than 2.2GHz and less than or equal to 3GHz, the first threshold is 3nH; when the frequency of the first resonance is greater than 3GHz , the first threshold is 2nH.
  • the radiator opens an insulation gap; when the radiator generates the first resonance, the current in the fifth region of the radiator does not include current reflection. to the region, the fifth region includes the insulation gap; and/or when the radiator generates the first resonance, the magnetic field of the radiator in the fifth region includes a magnetic field reversal region.
  • Figure 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the common-mode structure of a wire antenna provided by this application and the corresponding current and electric field distribution.
  • Figure 3 is a schematic diagram of the differential mode structure of a wire antenna provided by this application and the corresponding current and electric field distribution.
  • Figure 4 is a common mode structure of the slot antenna provided by this application and the corresponding distribution diagram of current, electric field, and magnetic current.
  • Figure 5 is the structure of the differential mode of the slot antenna provided by this application and the corresponding distribution diagram of current, electric field, and magnetic current.
  • Figure 6 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 8 is a simulation result diagram of the antenna structure shown in Figure 6.
  • FIG. 9 is a simulation result diagram of the antenna structure shown in (a) in FIG. 7 .
  • Figure 10 is a schematic diagram of an antenna structure 100 provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 15 is an S-parameter diagram of the antenna structure shown in Figures 12 to 14 provided by an embodiment of the present application.
  • Figure 16 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 12 to 14 provided by the embodiment of the present application.
  • Figure 17 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 12.
  • Figure 18 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 13.
  • Figure 19 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 14.
  • Figure 20 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 21 is an S-parameter diagram of the antenna structure shown in Figure 12, Figure 14 and Figure 20 provided by the embodiment of the present application.
  • Figure 22 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figure 12, Figure 14 and Figure 20 when the radiator conductivity is on the order of 10 5 provided by the embodiment of the present application.
  • Figure 23 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 12, 14 and 20 when the radiator conductivity is on the order of 10 6 provided by the embodiment of the present application.
  • FIG. 24 is a schematic diagram of current distribution of the antenna structure shown in FIG. 12 .
  • Figure 25 is a schematic diagram of current distribution of the antenna structure shown in Figure 14.
  • Figure 26 is a schematic diagram of current distribution of the antenna structure shown in Figure 20.
  • Figure 27 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 28 is a schematic diagram of current distribution of the antenna structure shown in Figure 27.
  • Figure 29 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 30 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 31 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 32 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 33 is an S-parameter diagram of the antenna structure shown in Figures 29 to 32 provided by an embodiment of the present application.
  • Figure 34 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 29 to 32 provided by the embodiment of the present application.
  • Figure 35 is a schematic diagram of the antenna structure 200 provided by the embodiment of the present application.
  • Figure 36 is a schematic diagram of another antenna structure 200 provided by an embodiment of the present application.
  • Figure 37 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 38 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 39 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 40 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 41 is an S-parameter diagram of the antenna structure shown in Figures 37 to 40 provided by an embodiment of the present application.
  • Figure 42 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 37 to 40 provided by the embodiment of the present application.
  • Figure 43 is a schematic diagram of current and electric field distribution in the antenna structure shown in Figure 38.
  • Figure 44 is a schematic diagram of current and electric field distribution in the antenna structure shown in Figure 39.
  • FIG. 45 is a schematic diagram of current and electric field distribution in the antenna structure shown in FIG. 40 .
  • Figure 46 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 47 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 48 is an S-parameter diagram of the antenna structure shown in Figure 37, Figure 39, Figure 46 and Figure 47 provided by the embodiment of the present application.
  • Figure 49 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structures shown in Figure 37, Figure 39, Figure 46 and Figure 47 provided by the embodiment of the present application.
  • Figure 50 is a schematic diagram of current distribution of the antenna structure shown in Figure 37.
  • Figure 51 is a schematic diagram of current distribution of the antenna structure shown in Figure 39.
  • Figure 52 is a schematic diagram of current distribution of the antenna structure shown in Figure 46.
  • Figure 53 is a schematic diagram of current distribution of the antenna structure shown in Figure 47.
  • Figure 54 is a schematic diagram of an antenna structure 300 provided by an embodiment of the present application.
  • Figure 55 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 56 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 57 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 58 is an S-parameter diagram of the antenna structure shown in Figures 55 to 57 provided by an embodiment of the present application.
  • Figure 59 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 55 to 57 provided by the embodiment of the present application.
  • Figure 60 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 55.
  • Figure 61 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 56.
  • Figure 62 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 57.
  • Figure 63 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 64 is an S-parameter diagram of the antenna structure shown in Figure 55, Figure 57 and Figure 63 provided by the embodiment of the present application.
  • Figure 65 is a diagram of the simulation results of the system efficiency and radiation efficiency of the antenna structure shown in Figure 55, Figure 57 and Figure 63 when the radiator conductivity is on the order of 10 5 provided by the embodiment of the present application.
  • Figure 66 is a diagram of the simulation results of the system efficiency and radiation efficiency of the antenna structure shown in Figure 55, Figure 57 and Figure 63 when the radiator conductivity is on the order of 10 6 provided by the embodiment of the present application.
  • Figure 67 is a schematic diagram of current distribution of the antenna structure shown in Figure 55.
  • Figure 68 is a schematic diagram of current distribution of the antenna structure shown in Figure 57.
  • Figure 69 is a schematic diagram of current distribution corresponding to the antenna structure shown in Figure 63 when the inductance value is large.
  • Figure 70 is a schematic diagram of current distribution corresponding to the antenna structure shown in Figure 63 when the inductance value is small.
  • Figure 71 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 72 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 73 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 74 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 75 is an S-parameter diagram of the antenna structure shown in Figures 71 to 74 provided by the embodiment of the present application.
  • Figure 76 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 71 to 74 provided by the embodiment of the present application.
  • Figure 77 is a schematic diagram of an antenna structure 400 provided by an embodiment of the present application.
  • Figure 78 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 79 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 80 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 81 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Figure 82 is an S-parameter diagram in the CM mode of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • Figure 83 is a simulation result diagram of the system efficiency and radiation efficiency in the CM mode of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • Figure 84 is an S-parameter diagram in DM mode of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • Figure 85 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 78 to 81 in the DM mode provided by the embodiment of the present application.
  • Figure 86 is an S-parameter diagram of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • Figure 87 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the copper foil or wires between different components in the circuit structure through the printed circuit board (PCB)
  • PCB printed circuit board
  • indirect coupling can be understood as the electrical conduction between two conductors through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • Connection/connection It can refer to a mechanical connection relationship or a physical connection relationship.
  • the connection between A and B or the connection between A and B can refer to the existence of fastening components (such as screws, bolts, rivets, etc.) between A and B. Or A and B are in contact with each other and A and B are difficult to separate.
  • connection The conduction or connection between two or more components through the above “electrical connection” or “indirect coupling” method for signal/energy transmission can be called connection.
  • Capacitance can be understood as lumped capacitance and/or distributed capacitance.
  • Lumped capacitance refers to capacitive components, such as capacitor components; distributed capacitance (or distributed capacitance) refers to the equivalent capacitance formed by two conductive parts separated by a certain gap.
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency can refer to the frequency at which the imaginary part of the antenna input impedance is zero.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB. It should be understandable that if there is no amount
  • the "resonance generated by the antenna/radiator” mentioned in this application should refer to the fundamental mode resonance generated by the antenna/radiator, or the resonance with the lowest frequency generated by the antenna/radiator.
  • Resonance frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • Electrical length It can refer to the ratio of physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator can be understood to be within the range of ⁇ 25% of the electrical length of the radiator, for example, within the range of ⁇ 10%.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the center frequency of the working frequency band supported by the antenna.
  • the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • the wavelength can be understood as the wavelength of the electromagnetic wave in the medium.
  • the wavelength of the electromagnetic wave generated by the radiator transmitted in the medium and the wavelength transmitted in the vacuum satisfy the following formula:
  • ⁇ ⁇ is the wavelength of electromagnetic waves in the medium
  • ⁇ c is the wavelength of electromagnetic waves in vacuum
  • ⁇ r is the relative dielectric constant of the medium in the dielectric layer.
  • the wavelength in the embodiment of this application usually refers to the medium wavelength, which can be the medium wavelength corresponding to the center frequency of the resonant frequency, or the medium wavelength corresponding to the center frequency of the working frequency band supported by the antenna. For example, assuming that the center frequency of the B1 uplink frequency band (resonant frequency is 1920MHz to 1980MHz) is 1955MHz, the wavelength can be the medium wavelength calculated using the frequency of 1955MHz.
  • medium wavelength can also refer to the medium wavelength corresponding to the resonant frequency or non-center frequency of the operating frequency band.
  • the medium wavelength mentioned in the embodiments of the present application can be simply calculated by the relative dielectric constant of the medium filled on one or more sides of the radiator.
  • the middle (location) of the conductor may be a portion of the conductor that includes the midpoint on the conductor.
  • the middle (location) of the conductor may be a distance on the conductor from the midpoint that is less than a predetermined threshold (e.g., 1 mm, 2 mm, or 2.5 mm). ) a conductor section.
  • Antenna system efficiency refers to the ratio of input power to output power at the port of the antenna.
  • Antenna radiation efficiency refers to the ratio of the power radiated by the antenna to space (that is, the power of the electromagnetic wave effectively converted) and the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna - the loss power;
  • the loss power mainly includes the return loss power and the ohmic loss power of the metal and/or the dielectric loss power.
  • Radiation efficiency is a measure of the radiation ability of an antenna. Metal loss and dielectric loss are both influencing factors of radiation efficiency.
  • efficiency is generally expressed in percentage, and there is a corresponding conversion between it and dB. Calculation relationship, the closer the efficiency is to 0dB, the better the efficiency of the antenna is.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal is, the greater the signal radiated to space through the antenna is, and the greater the antenna's radiation efficiency is. The larger the reflected signal is, the smaller the signal radiated to space through the antenna is, and the smaller the antenna's radiation efficiency is.
  • Antenna return loss can be represented by the S11 parameter, which is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that more energy actually enters the antenna, and the higher the system efficiency of the antenna is. S11 parameter The larger the value, the greater the antenna return loss and the lower the antenna system efficiency.
  • the S11 value of -6dB is generally used as a standard.
  • the S11 value of an antenna is less than -6dB, it can be considered that the antenna can work normally, or the antenna's radiation efficiency can be considered to be good.
  • Electromagnetic wave absorption rate (specific absorption rate, SAR): It is a unit of expression that measures how much radio frequency radiation energy is actually absorbed by the body. It is called the special absorption rate, expressed in watts/per kilogram (W/kg) or milliwatts/per gram ( mW/g).
  • SAR Specific absorption rate
  • the precise definition of SAR is: the derivative of unit energy (dw) absorbed by unit volume unit (dv) unit material (dm) under a given material density ( ⁇ -human tissue density) with respect to time.
  • Ground, or floor can generally refer to at least part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc. At least in part, “ground” can be used to ground components within electronic equipment. In one embodiment, "ground” may be the grounding layer of the circuit board of the electronic device, or it may be the grounding plate formed by the middle frame of the electronic device or the grounding metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the electronic device 10 may include: a cover (cover) 13, a display screen/module (display) 15, a printed circuit board (PCB) 17, a middle frame (middle frame) 19 and a rear panel.
  • Cover (rear cover)21 It should be understood that in some embodiments, the cover 13 can be a glass cover (cover glass), or can be replaced with a cover made of other materials, such as an ultra-thin glass material cover, PET (Polyethylene terephthalate, polytetraphenylene). Ethylene formate) material cover, etc.
  • the cover 13 can be placed close to the display module 15 and can be mainly used to protect the display module 15 and prevent dust.
  • the display module 15 may include a liquid crystal display panel (LCD), a light emitting diode (LED) display panel or an organic light-emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , the embodiment of the present application does not limit this.
  • LCD liquid crystal display panel
  • LED light emitting diode
  • OLED organic light-emitting semiconductor
  • the middle frame 19 mainly plays a supporting role of the whole machine.
  • Figure 1 shows that the PCB 17 is disposed between the middle frame 19 and the back cover 21. It should be understood that in one embodiment, the PCB 17 can also be disposed between the middle frame 19 and the display module 15.
  • the printed circuit board PCB17 can use a flame-resistant material (FR-4) dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, etc.
  • FR-4 is the code for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • PCB17 carries electronic components, such as radio frequency chips, etc.
  • a metal layer may be provided on the printed circuit board PCB 17 .
  • This metal layer can be used for grounding the electronic components carried on the printed circuit board PCB17, and can also be used for grounding other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, a ground plate, or a ground layer.
  • the metal layer may be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer used for grounding may be disposed on a side of the printed circuit board PCB 17 close to the middle frame 19 .
  • the edge of the printed circuit board PCB 17 can be regarded as the edge of its ground plane.
  • the metal middle frame 19 can also be used for grounding the above components.
  • the electronic device 10 may also have other floors/ground plates/ground layers, as mentioned above, which will not be described again here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery may be disposed between the middle frame 19 and the back cover 21 , or may be disposed between the middle frame 19 and the display module 15 , which is not limited in the embodiment of the present application.
  • the PCB 17 is divided into a main board and a sub-board.
  • the battery can be disposed between the main board and the sub-board.
  • the main board can be disposed between the middle frame 19 and the upper edge of the battery, and the sub-board can be disposed between the main board and the sub-board. Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may also include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 may be disposed between the display module 15 and the back cover 21 and extend circumferentially around the periphery of the electronic device 10 .
  • the frame 11 may have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 can also be made of non-metal material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for non-metal IDs.
  • the middle frame 19 may include a frame 11 , and the middle frame 19 including the frame 11 may act as an integral part to support electronic devices in the entire machine.
  • the cover 13 and the back cover 21 are respectively covered along the upper and lower edges of the frame to form a shell or housing of the electronic device.
  • the cover 13 , the back cover 21 , the frame 11 and/or the middle frame 19 can be collectively referred to as the casing or housing of the electronic device 10 .
  • casing or housing can be used to refer to part or all of any one of the cover 13 , the back cover 21 , the frame 11 or the middle frame 19 , or to refer to the cover 13 , the back cover 21 , or the frame 11 or any combination of part or all of box 19.
  • the frame 11 on the middle frame 19 can be at least partially used as an antenna radiator to receive/transmit frequency signals. There can be a gap between this part of the frame as the radiator and other parts of the middle frame 19, thereby ensuring that the antenna radiator has good performance. radiation environment.
  • the middle frame 19 may be provided with an aperture at this part of the frame serving as a radiator to facilitate radiation of the antenna.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected to the middle frame 19 and formed integrally.
  • the frame 11 may include an inwardly extending protruding piece to be connected to the middle frame 19 , for example, through elastic pieces, screws, welding, etc.
  • the protruding parts of the frame 11 can also be used to receive feed Electrical signals, so that at least part of the frame 11 acts as a radiator of the antenna to receive/transmit frequency signals.
  • the back cover 21 can be a back cover made of metal material; it can also be a back cover made of non-conductive materials, such as glass back cover, plastic back cover and other non-metal back covers; or it can also include both conductive materials and non-conductive materials. Material back cover.
  • the back cover 21 including conductive material can replace the middle frame 19 and be integrated with the frame 11 to support the electronic devices in the entire machine. It should be understood that the "middle frame" mentioned in this application It should include the middle frame provided in the case to support the device, and also include the conductive part in the back cover 21 that is part of the case and used to support the device.
  • the conductive part in the middle frame 19 and/or the back cover 21 can be used as a reference ground of the electronic device 10 , wherein the frame, PCB, etc. of the electronic device can be grounded through electrical connection with the middle frame.
  • the antenna of the electronic device 10 can also be disposed in the frame 11 .
  • the antenna radiator can be located in the electronic device 10 and arranged along the frame 11 .
  • the antenna radiator is arranged close to the frame 11 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 10 to achieve better signal transmission effects.
  • the arrangement of the antenna radiator close to the frame 11 means that the antenna radiator can be arranged close to the frame 11 or close to the frame 11 . For example, there can be a certain tiny gap between the antenna radiator and the frame 11 .
  • the antenna of the electronic device 10 may also be disposed in the housing, such as a bracket antenna, a millimeter wave antenna, etc. (not shown in FIG. 1 ).
  • the clearance of the antenna arranged in the housing can be obtained by the slits/openings on any one of the middle frame, and/or the frame, and/or the back cover, and/or the display screen, or it can be formed between any of them.
  • the non-conductive gap/aperture is obtained, and the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive component in the electronic device 10, and the antenna radiates signals to the external space through the non-conductive area.
  • the antenna 40 may be in the form of a flexible printed circuit (FPC)-based antenna, a laser-direct-structuring (LDS)-based antenna, or a microstrip antenna (microstrip disk antenna). , MDA) and other antenna forms.
  • the antenna may also adopt a transparent structure embedded inside the screen of the electronic device 10 , so that the antenna is a transparent antenna unit embedded inside the screen of the electronic device 10 .
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 1 .
  • the side where the display screen of the electronic device is located can be considered to be the front, the side where the back cover is located is the back, and the side where the frame is located is the side.
  • the orientation of the electronic device has a top, a bottom, a left side, and a right side. It should be understood that in the embodiments of the present application, it is considered that when the user holds the electronic device (usually vertically and facing the screen), the orientation of the electronic device has a top, a bottom, a left side, and a right side.
  • FIG. 2 is a schematic diagram of the common mode mode structure of a wire antenna provided by the present application and the corresponding current and electric field distribution.
  • FIG. 3 is a schematic diagram of the differential mode structure of another linear antenna provided by the present application and the corresponding current and electric field distribution.
  • Figure 4 is a schematic diagram of the common-mode structure of a slot antenna provided by this application and the corresponding distribution of current, electric field, and magnetic current.
  • FIG. 5 is a schematic diagram of the differential mode structure of another slot antenna provided by this application and the corresponding distribution of current, electric field, and magnetic current.
  • FIG. 2 shows that the radiator of the wire antenna 40 is connected to the ground (such as the floor, which may be PCB).
  • the linear antenna 40 is connected to a feeding unit (not shown) at the middle position 41 and adopts symmetrical feed.
  • the feeding unit may be connected to the middle position 41 of the line antenna 40 through the feeding line 42 .
  • symmetrical feeding can be understood as one end of the feeding unit is connected to the radiator and the other end is grounded.
  • the connection point (feeding point) between the feeding unit and the radiator is located at the center of the radiator.
  • the center of the radiator may be, for example, a collective structure.
  • the midpoint of the electrical length or the area within a certain range near the above midpoint).
  • the central position 41 of the wire antenna 40 may be the geometric center of the wire antenna, or the midpoint of the electrical length of the radiator, such as the connection point between the feeder line 42 and the wire antenna 40 covering the central position 41 .
  • FIG. 2 shows the current and electric field distribution of the wire antenna 40.
  • the current is distributed symmetrically on both sides of the middle position 41 , for example, in opposite directions; the electric field is distributed in the same direction on both sides of the middle position 41 .
  • the current at the feeder line 42 exhibits a codirectional distribution. Based on the co-directional current distribution at the feed line 42, the feed shown in (a) in FIG. 2 can be called the CM feed of the wire antenna.
  • the line antenna mode shown in (b) in Figure 2 can be called the CM mode of the line antenna (or CM mode for short).
  • the CM mode refers to the CM mode of the wire antenna).
  • the current and electric field shown in (b) in FIG. 2 can be respectively called the current and electric field of the CM mode of the wire antenna.
  • the current and electric field in the CM mode of the wire antenna are generated by the two branches (for example, two horizontal branches) of the wire antenna 40 on both sides of the central position 41 as antennas operating in the quarter-wavelength mode.
  • the current is strong at the middle position 41 of the line antenna 40 and weak at both ends of the line antenna 40 .
  • the electric field is weak at the middle position 41 of the line antenna 40 and is strong at both ends of the line antenna 40 .
  • the two radiators of the wire antenna 50 are connected to the ground (for example, the floor, which may be a PCB) through the feeder line 52 .
  • the wire antenna 50 is connected to the feed unit at the intermediate position 51 between the two radiators, and adopts anti-symmetrical feed.
  • One end of the feed unit is connected to one of the radiators through a feed line 52
  • the other end of the feed unit is connected to the other of the radiators through a feed line 52 .
  • the intermediate position 51 may be the geometric center of the wire antenna, or the gap formed between the radiators.
  • center antisymmetric feeding mentioned in this application can be understood as the positive and negative poles of the feeding unit are respectively connected to two connection points near the above-mentioned midpoint of the radiator.
  • the signals output by the positive and negative poles of the feed unit have the same amplitude but opposite phases, for example, the phase difference is 180° ⁇ 10°.
  • FIG. 3 shows the current and electric field distribution of the wire antenna 50.
  • the current is distributed asymmetrically on both sides of the middle position 51 of the line antenna 50 , for example, in the same direction; the electric field is distributed in opposite directions on both sides of the middle position 51 .
  • the current at the feeder line 52 exhibits reverse distribution. Based on the reverse distribution of current at the feed line 52, this feed shown in (a) in Figure 3 can be called a wire antenna DM feed.
  • the line antenna mode shown in (b) in Figure 3 can be called the DM mode of the line antenna ( It can also be referred to as DM mode.
  • DM mode refers to the DM mode of the line antenna).
  • the current and electric field shown in (b) in FIG. 3 can be respectively called the current and electric field of the DM mode of the wire antenna.
  • the current and electric field of the DM mode of the wire antenna are generated by the entire wire antenna 50 as an antenna operating in the half-wavelength mode.
  • the current is strong at the middle position 51 of the line antenna 50 and weak at both ends of the line antenna 50 .
  • the electric field is weak at the middle position 51 of the line antenna 50 and is strong at both ends of the line antenna 50 .
  • the radiator of the linear antenna can be understood as a metal structural member that generates radiation, and its number can be one One piece, as shown in Figure 2, or two pieces, as shown in Figure 3, which can be adjusted according to actual design or production needs.
  • two radiators can also be used as shown in Figure 3.
  • the two ends of the two radiators are set opposite each other and separated by a gap, and symmetrical feeding is used at the two ends close to each other, for example If the same feed signal is fed into the two ends of the two radiators that are close to each other, an effect similar to the antenna structure shown in Figure 2 can also be obtained.
  • a radiator can also be used as shown in Figure 2.
  • Two feed points are set in the middle of the radiator and an anti-symmetrical feeding method is used. For example, symmetry on the radiator If two feed points feed signals with the same amplitude and opposite phases respectively, similar effects to the antenna structure shown in Figure 3 can also be obtained.
  • the slot antenna 60 shown in (a) of Figure 4 may be formed by having a hollow slot or slit 61 in the radiator of the slot antenna, or it may be that the radiator of the slot antenna is connected to the ground (for example, the floor).
  • PCB surrounds the groove or slot 61.
  • the groove 61 may be formed by cutting a groove in the floor.
  • An opening 62 is provided on one side of the groove 61, and the opening 62 can be specifically opened in the middle position of this side.
  • the middle position of this side of the slot 61 may be, for example, the geometric midpoint of the slot antenna, or the middle point of the electrical length of the radiator, for example, the area where the opening 62 is opened on the radiator covers the middle position of this side.
  • the opening 62 can be connected to a feeding unit, and anti-symmetrical feeding is adopted.
  • anti-symmetrical feeding can be understood as the positive and negative poles of the feeding unit are respectively connected to both ends of the radiator.
  • the signals output by the positive and negative poles of the feed unit have the same amplitude but opposite phases, for example, the phase difference is 180° ⁇ 10°.
  • FIG. 4 shows the current, electric field, and magnetic current distribution of the slot antenna 60.
  • the current is distributed in the same direction around the slot 61 on the conductors (such as the floor, and/or the radiator 60) around the slot 61, and the electric field is reversed on both sides of the middle position of the slot 61.
  • Distribution, the magnetic current is distributed in opposite directions on both sides of the middle position of the slot 61.
  • the electric fields at the opening 62 (for example, the feeding point) are in the same direction, and the magnetic flows at the opening 62 (for example, the feeding point) are in the same direction.
  • the feeding shown in (a) in FIG. 4 can be called slot antenna CM feeding.
  • the slot antenna mode shown in can be called the CM mode of the slot antenna (it can also be referred to as the CM mode for short, for example, for a slot antenna, the CM mode refers to the CM mode of the slot antenna).
  • the electric field, current, and magnetic current distribution shown in (b) of FIG. 4 can be called the electric field, current, and magnetic current of the CM mode of the slot antenna.
  • the current and electric field in the CM mode of the slot antenna are generated by the slot antenna bodies on both sides of the middle position of the slot antenna 60 acting as antennas operating in the half-wavelength mode.
  • the magnetic field is weak at the middle position of the slot antenna 60 and strong at both ends of the slot antenna 60 .
  • the electric field is strong at the middle position of the slot antenna 60 and weak at both ends of the slot antenna 60 .
  • the slot antenna 70 shown in (a) of Figure 5 may be formed by having a hollow slot or slit 72 in the radiator of the slot antenna, or it may be that the radiator of the slot antenna is connected to the ground (for example, the floor).
  • PCB surrounds the groove or groove 72 and is formed.
  • the slot 72 may be formed by slotting in the floor.
  • the middle position 71 of the slot 72 is connected to the feeding unit, and symmetrical feeding is adopted. It should be understood that symmetrical feeding can be understood as one end of the feeding unit is connected to the radiator and the other end is grounded.
  • the connection point (feeding point) between the feeding unit and the radiator is located at the center of the radiator.
  • the center of the radiator may be, for example, a collective structure.
  • the midpoint of the electrical length (or the area within a certain range near the above midpoint).
  • the middle position of one side of the slot 72 is connected to the positive electrode of the feed unit, and the middle position of the other side of the slot 72 is connected to the negative electrode of the feed unit.
  • the middle position of the side of the slot 72 may be, for example, the middle position of the slot antenna 60/the middle position of the ground, such as the geometric midpoint of the slot antenna, or the midpoint of the electrical length of the radiator, such as the midpoint of the feed unit and the radiator.
  • the connection covers the middle position 51 of this side.
  • FIG. 5 shows the current, electric field, and magnetic current distribution of the slot antenna 70.
  • the current is distributed around the slot 72, and is distributed in opposite directions on both sides of the middle position of the slot 72.
  • the electric field is distributed in the same direction on both sides of the intermediate position 71
  • the magnetic current is distributed in the same direction on both sides of the intermediate position 71 .
  • the magnetic current at the feed unit is distributed in reverse direction (not shown). Based on the reverse distribution of magnetic current at the feeding unit, the feeding shown in (a) in Figure 5 can be called slot antenna DM feeding.
  • the slot antenna mode shown may be called the DM mode of the slot antenna (it may also be referred to as the DM mode for short, for example, for a slot antenna, the DM mode refers to the DM mode of the slot antenna).
  • the electric field, current, and magnetic current distribution shown in (b) in FIG. 5 can be called the electric field, current, and magnetic current of the DM mode of the slot antenna.
  • the current and electric field in the slot antenna's DM mode are generated by the entire slot antenna 70 acting as an antenna operating in a one-wavelength mode.
  • the current is weak at the middle position of the slot antenna 70 and strong at both ends of the slot antenna 70 .
  • the electric field is strong at the middle position of the slot antenna 70 and weak at both ends of the slot antenna 70 .
  • antennas working in CM mode and antennas working in DM mode usually have high isolation, and usually the frequency bands of CM mode and DM mode antennas tend to be single-mode resonance, making it difficult to cover the many frequency bands required for communication.
  • the space left for antenna structures in electronic equipment is decreasing day by day.
  • a single antenna structure is required to cover multiple frequency bands. Therefore, multi-mode resonance antennas with high isolation at the same time have high research and practical value.
  • the radiator of the slot antenna can be understood as a metal structural member that generates radiation (for example, including a part of the floor), which may include an opening, as shown in Figure 4, or may be a complete ring, as shown in Figure 5 display, which can be adjusted according to actual design or production needs.
  • a complete ring radiator can also be used as shown in Figure 5.
  • Two feed points are set in the middle of the radiator on one side of the slot 61 and an antisymmetric feeding method is used. , for example, by feeding signals with the same amplitude and opposite phase at both ends of the original opening position, an effect similar to the antenna structure shown in Figure 4 can also be obtained.
  • a radiator including an opening can also be used as shown in Figure 4, and a symmetrical feeding method is used at both ends of the opening position.
  • the two ends of the radiator on both sides of the opening are fed separately.
  • the above antenna structures can produce two working modes (the electric field is symmetrically distributed or antisymmetrically distributed) in which the electric field is orthogonal (the electric field product in the far field is zero (integral orthogonality)), the two working modes of this antenna structure
  • the isolation between modes is good and can be applied to multi-input multi-output (MIMO) antenna systems in electronic equipment.
  • MIMO multi-input multi-output
  • FIGS 6 and 7 are schematic diagrams of antenna structures provided by embodiments of the present application.
  • a gap is opened on the radiator of the antenna structure.
  • the gap can be opened at any position of the radiator, for example, the gap can be opened between the feed point and the end of the radiator
  • the antenna structure equivalent can be increased.
  • the radiation aperture can make the electric field distribution between the radiator and the floor more uniform, reduce dielectric loss and improve radiation efficiency.
  • the slot structure can be equivalent to a series capacitance in the radiator, and the antenna structure shown in Figures 6 and 7 can be called a metamaterial (metaline) structure.
  • the CM mode and DM mode of the antenna structure can be excited at the same time.
  • the feed is asymmetrical, or the radiator structure is asymmetrical.
  • this application only takes as an example the CM mode and the DM mode of the antenna structure that are fed by offset feeding (eccentric feeding) while stimulating the antenna structure.
  • connection point (feed point) between the feeding unit and the radiator is offset from the center of symmetry of the radiator (for example, the center point of the radiator).
  • connection point (feed point) between the feed unit and the radiator is located at the end of the radiator and is within a quarter of an electrical length (excluding one quarter) of the end point of the radiator. (position of the electrical length), or it may be an area within one-eighth of the first electrical length range from the end point of the radiator, where the electrical length may refer to the electrical length of the radiator.
  • Figures 8 and 9 are simulation result diagrams of the antenna structures shown in Figures 6 and 7.
  • the dielectric loss is reduced, and the efficiency of the DM mode of the line antenna and the CM mode of the slot antenna can be improved.
  • the CM mode of the line antenna and the DM mode of the slot antenna can be improved.
  • the efficiency of the model has little impact.
  • the embodiment of the present application provides an electronic device, including a radiator and a floor.
  • the inductor provided between the radiator and the floor is used to make the electric field distribution between the radiator and the floor more uniform, thereby reducing the conductor loss and effectively improving the Radiation efficiency of the antenna structure.
  • FIG. 10 is a schematic diagram of an antenna structure 100 provided by an embodiment of the present application.
  • the antenna structure 100 can be applied to the electronic device shown in FIG. 1 .
  • the antenna structure 100 may include a radiator 110 , a floor 120 , a first inductor 131 and a second inductor 132 .
  • the radiator 110 includes a first end 101 and a second end 102 (the first end 101 and the second end 102 are open ends, and the radiator 110 is not connected to other conductors at the first end 101 and the second end 102) , as well as the ground point 103, the first connection point 111 and the second connection point 112 located between the first end 101 and the second end 102.
  • the ground point 103 may be disposed in the central area 104 of the radiator 110 .
  • Radiator 110 is grounded through floor 120 at ground point 103 .
  • the inductance values of the first inductor 131 and the second inductor 132 are both smaller than the first threshold.
  • the length of the radiator 110 is greater than three-quarters of the first wavelength.
  • the portion of the radiator from the first end 101 to the second end 102 is used to generate the first resonance.
  • the first wavelength is the medium of the first resonance.
  • the first inductor 131 is electrically connected between the first connection point 111 and the floor 120
  • the second inductor 132 is electrically connected between the second connection point 112 and the floor 120 .
  • the distance between the first connection point 111 and the first end 101 is less than a quarter of the first wavelength
  • the second connection point 112 is located between the first connection point 111 and the second end 102 .
  • the central area 104 of the radiator 110 can be understood as being within 5 mm from the center of the radiator 110 In the area, the center of the radiator 110 may be the center of the physical length (geometric center) of the radiator 110 or the center of the electrical length.
  • the radiator 110 may further include a feed point 105, which is used to feed an electrical signal to the antenna structure 100 so that it generates radiation.
  • the technical solution provided by the embodiment of the present application can make use of an inductor provided between the radiator and the floor, so that when the feed point feeds an electrical signal, since the radiator 110 is between the first connection point 111 and the second connection point A first inductor 131 and a second inductor 132 are electrically connected to the floor 120 respectively, and the current on the radiator 110 is reversed in the area near the first connection point 111 and the second connection point 112 .
  • the current on the floor 120 will also be reversed. It can disperse the current density on the radiator (reduce the intensity of a single current strong point and make the current more evenly distributed), thereby reducing the losses caused by the radiator and the conductors set around the radiator, thereby improving the efficiency of the antenna structure.
  • the electric field generated by the radiator is continuous, does not reverse (excluding the electric field reversal area), and has no zero point, which increases the radiation diameter of the antenna structure, reduces conductor losses, and improves the efficiency of the antenna structure.
  • the electric field generated by the radiator is in the same direction from the first end to the second end of the radiator.
  • the inductor (for example, the first inductor 131 and the second inductor 132) connected in series between the radiator 110 and the floor 120 is used to disperse the current density on the radiator to reduce the number of conductors disposed around the radiator and the radiator. losses caused.
  • the first inductor 131 and the second inductor 132 can affect the resonant frequency of the antenna structure to a certain extent, but are different from the tuning circuit that is mainly used to adjust the resonant frequency of the antenna structure.
  • the distance between the first connection point 111 and the first end 101 is less than a quarter of the first wavelength, which can further improve the efficiency of the antenna structure.
  • the feed point 105 is located between the central area 104 and the first end 101 or between the central area 104 and the second end 102 .
  • the antenna structure 100 can feed electrical signals through offset feeding, so that the antenna structure 100 can operate in CM mode and DM mode at the same time, thereby expanding the operating frequency band of the antenna structure 100 .
  • CM mode and DM mode of the antenna structure can be excited through central symmetrical feeding or central antisymmetrical feeding. , this application does not limit this, and can be adjusted according to the internal layout of the electronic device, and can also be understood accordingly in the following embodiments.
  • the inductance values of the first inductor 131 and the second inductor 132 can be designed according to the resonant frequency generated by the antenna structure 100 .
  • the first threshold is 6nH.
  • the first threshold is 4nH.
  • the first threshold is 3nH.
  • the first threshold is 2nH.
  • the electronic device further includes a conductive frame 11.
  • the frame 11 has a first position 141 and a second position 142.
  • the frame 11 between the first position 141 and the second position 142 serves as the radiator 110, as shown in Figure 11 shown. It should be understood that the first position 141 and the second position 142 may correspond to the first end 101 and the second end 102 .
  • gaps may be opened at the first position 141 and the second position 142 of the frame 11 so that the first position 141 and the second position 142 are not connected to other parts of the frame 11 to achieve the first position 141 and the second position 142 .
  • the end of the radiator at the second position 142 is an open end. It should be understood that the first position 141 and the second position 142 can be located on the same side of the frame 11, and the radiator 110 can be linear, or the first position 141 and the second position 142 can also be located on two adjacent sides of the frame 11,
  • the radiator 110 may have a zigzag shape, for example, an L shape.
  • the inductors (the first inductor 131, the second inductor 132 or other inductors described below) described in all embodiments of this application may be lumped elements, or may be distributed elements, or both lumped elements and distributed elements. This application does not limit the combination of components.
  • the first inductor 131 and/or the second inductor 132 may include distributed elements.
  • the first inductor 131 may include a connecting rib provided between the inner frame 11 and the middle frame/PCB 17 of the electronic device.
  • the second inductor 132 may include a section of metal wire on the PCB 14 .
  • the first connection point 111 and the second connection point 112 are respectively disposed on both sides of the ground point 103 .
  • the first connection point 111 is located between the first end 101 and the ground point 103
  • the second connection point 112 is located between the second end 102 and the ground point 103 .
  • the distance between the first connection point 111 and the first end 101 is less than one quarter of the first wavelength.
  • the distance between the second connection point 112 and the second end 102 is less than one quarter of the first wavelength.
  • inductors are electrically connected to both sides of the ground point 103, so that the current on the radiator 110 on both sides of the ground point 103 is affected by the ground inductance, thereby making the current distribution on the radiator 110 more uniform.
  • the electric field generated by the radiator 110 on both sides of the ground point 103 can be prevented from including the electric field reverse area, thereby increasing the radiation diameter of the antenna structure, reducing conductor loss, and improving the efficiency of the antenna structure.
  • the antenna structure 100 may further include at least one third inductor, electrically connected between the corresponding at least one third connection point and the floor 120 , and the at least one third inductor and the at least one third connection point may be one by one.
  • at least one third connection point is located between the ground point 103 and the first connection point 111 .
  • the antenna structure 100 may further include at least one fourth inductor, electrically connected between the corresponding at least one fourth connection point and the floor 120 , and the at least one fourth inductor and the at least one fourth connection point may be one by one.
  • at least one fourth connection point is located between the ground point 103 and the second connection point 112 .
  • the inductance threshold needs to be increased accordingly.
  • the first threshold is 12nH.
  • the first threshold is 8 nH.
  • the first threshold is 6nH.
  • the first threshold is 4nH.
  • one or more slits may be provided on the radiator 110 . It should be understood that providing an inductor between the radiator 110 and the floor 120 can improve the efficiency of the antenna structure 100 in the CM mode, and opening a gap on the radiator 110 can improve the efficiency of the antenna structure 100 in the DM mode. In one embodiment, the gap structure opened on the radiator 110 can be equivalent to a capacitor, so that the radiator 110 is equivalent to a metamaterial structure of a series capacitor.
  • 12 to 14 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGs 12 to 14 they are schematic diagrams of different structures of wire antennas.
  • the difference between the antenna structure shown in Figure 13 and the antenna structure shown in Figure 12 is that there are two slits on the radiator, and the location of the slits (or capacitors) can refer to the previous embodiment.
  • the difference between the antenna structure shown in Figure 14 and the antenna structure shown in Figure 12 is that two inductors are provided between the radiator and the floor. The location of the inductors can refer to the previous embodiment.
  • opening a gap on the radiator can be regarded as an equivalent capacitance (eg, distributed capacitance) provided on the radiator.
  • the width of the gap is greater than or equal to 0.1 mm and less than or equal to 2 mm.
  • capacitors eg, lumped capacitors
  • the antenna structure adopts centrally symmetrical feed as an example for explanation.
  • the antenna structure shown in Figures 12 to 14 operates in the half-wavelength mode in the CM mode, and its operating frequency band includes 1.9 GHz as an example for explanation.
  • the length of the radiator in the antenna structure is adjusted.
  • the length of the radiator is 36mm.
  • the length of the radiator is 60mm, and the equivalent capacitance value of the distributed capacitance at both ends of the gap or the capacitance value of the series lumped capacitance is 0.75pF.
  • the length of the radiator is 58mm, and the inductance values of the series inductors are all 2.7nH.
  • FIG. 15 is an S-parameter diagram of the antenna structure shown in FIGS. 12 to 14 provided by the embodiment of the present application.
  • Figure 16 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 12 to 14 provided by the embodiment of the present application.
  • the antenna structures shown in Figures 12 to 14 work in CM mode, and the operating frequency bands include 1.87GHz to 1.97GHz.
  • the resonance of the antenna structure shown in Figure 13 produces Wider bandwidth.
  • the efficiency (system efficiency and radiation efficiency) of the antenna structure shown in Figure 13 is basically the same as that of the antenna structure shown in Figure 12.
  • the system efficiency of the antenna structure is significantly improved compared to the antenna structure shown in Figure 12, with an improvement of approximately 1dB at 1.92Hz, and the radiation The efficiency is also improved by about 1dB.
  • Figures 17 to 19 are schematic diagrams of current and electric fields of the antenna structures shown in Figures 12 to 14.
  • Fig. 17 is a schematic diagram of the current and electric field of the antenna structure shown in Fig. 12.
  • Figure 18 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 13.
  • Figure 19 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 14.
  • the antenna structure operates in the half-wavelength mode in the CM mode. There is no zero point in the current on the radiator during resonance, and the current is concentrated in the area near the ground point. As shown in (b) of Figure 17, the electric field generated between the radiator and the floor when the antenna structure resonates is concentrated at both ends of the radiator.
  • the antenna structure operates in the half-wavelength mode in the CM mode. There is no zero point in the current on the radiator during resonance, and the current is concentrated in the area near the ground point. As shown in (b) of Figure 18, the electric field generated between the radiator and the floor when the antenna structure resonates is concentrated at both ends of the radiator and the area near the gap.
  • the antenna structure works in the half-wavelength mode in the CM mode, and the radiation during resonance is
  • the current on the radiator has zero points in the area near the connection to the inductor (radiator and floor), and the current density is more dispersed than the simulation diagrams shown in Figures 17 and 18.
  • the current density is more dispersed, the electric field between the radiator and the floor generated when the antenna structure resonates is somewhat different from the simulation diagrams shown in Figures 17 and 18. Weakening can reduce conductor losses, thereby improving the efficiency of the antenna structure.
  • Figure 20 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the location of the inductors can refer to the previous embodiment.
  • the difference from the antenna structure shown in Figure 14 is that four inductors are provided between the radiator and the floor.
  • the antenna structure using centrally symmetrical feed is used as an example for explanation.
  • Figure 14 and Figure 20 work in the same frequency band.
  • the length of the radiator is 35.6mm (approximately half of the first wavelength).
  • the length of the radiator is 51.6mm (about three-quarters of the first wavelength).
  • the inductance values of the two inductors in series are both 2.7nH. The two inductors are located at both sides of the ground point. side.
  • the length of the radiator is 67mm (approximately the first wavelength).
  • the inductance values of the inductors on both sides of the ground point are both 5nH, and the inductors near both ends of the radiator have an inductance value of 5nH.
  • the inductance value is 5.5nH.
  • an inductor of 1.5nH is set between the ground point of the radiator of the antenna structure shown in Figure 14 and the floor.
  • an inductor of 3nH is set between the ground point of the radiator of the antenna structure shown in Figure 20 and the floor.
  • Figures 21 to 23 are simulation result diagrams of the antenna structures shown in Figures 12, 14 and 20.
  • Fig. 21 is an S-parameter diagram of the antenna structure shown in Fig. 12, Fig. 14 and Fig. 20 provided by the embodiment of the present application.
  • Figure 22 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figure 12, Figure 14 and Figure 20 when the radiator conductivity is on the order of 105 provided by the embodiment of the present application.
  • Figure 23 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figure 12, Figure 14 and Figure 20 when the radiator conductivity is on the order of 106 provided by the embodiment of the present application.
  • the antenna structure shown in Figure 12, Figure 14 and Figure 20 works in CM mode, and its resonant frequency band is near 1.85GHz. As the number of inductors increases, its resonant bandwidth gradually broadens.
  • the radiation efficiency of the antenna structure shown in Figure 20 is improved by about 2.3dB compared to the antenna structure shown in Figure 12 , as shown in Figure 22 .
  • the radiation efficiency of the antenna structure shown in Figure 20 is improved by about 1.4dB compared to the antenna structure shown in Figure 12 , as shown in Figure 23 .
  • the radiator length of the antenna structure is expanded from one-half wavelength (the antenna structure shown in Figure 12) to one time the wavelength (the antenna structure shown in Figure 20), and the radiation Increasing the caliber can reduce conductor losses, as shown in Table 1 below.
  • the conductor loss is the radiation loss caused by the material of the radiator (aluminum AL) and the PCB where the floor is located.
  • Dielectric loss is the radiation loss caused by the plastic (ABS) and glass cover (CG) surrounding the radiator.
  • the inductor installed between the radiator and the floor can reduce conductor loss, but the improvement in dielectric loss is not obvious. Moreover, as shown in Figures 22 and 23, after reducing the conductivity of the radiator, the efficiency of the antenna structure is improved more significantly.
  • Figures 24 to 26 are respectively schematic diagrams of current distribution of the antenna structures shown in Figures 12, 14 and 20 operating in the same frequency band (for example, around 1.85GHz).
  • Figure 27 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the placement position of the inductor can refer to the previous embodiment.
  • the difference from the antenna structure shown in Figures 14 and 20 is that the number of inductors provided between the radiator and the floor is greater than or equal to 3 For example, set up 6 inductors.
  • Figures 29 to 32 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGS 29 to 32 they are all schematic diagrams of different structures of wire antennas.
  • the difference between the antenna structure shown in Figure 30 and the antenna structure shown in Figure 29 is that there are two slits on the radiator.
  • the difference between the antenna structure shown in Figure 31 and the antenna structure shown in Figure 30 is that two inductors are provided between the radiator and the floor.
  • the difference between the antenna structure shown in Figure 32 and the antenna structure shown in Figure 29 is that there are two slits on the radiator, and two inductors are provided between the radiator and the floor.
  • opening a gap on the radiator can be regarded as the equivalent capacitance (for example, distributed capacitance), the location of the gap (or capacitance) and the inductor provided on the radiator. Reference may be made to the preceding embodiments.
  • capacitors eg, lumped capacitors
  • the antenna structure uses offset feed to simultaneously excite the CM mode and DM mode as an example for explanation.
  • the antenna structure shown in Figure 29 to Figure 32 works in CM mode and half-wavelength mode in DM.
  • the working frequency band corresponding to CM mode includes 1.95GHz
  • the working frequency band corresponding to DM mode includes 2.25GHz.
  • the length of the radiator in the antenna structure is adjusted. In the antenna structure shown in Figure 29, the length of the radiator is 40mm. In the antenna structure shown in Figure 30, the length of the radiator is 54mm.
  • the equivalent capacitance value of the distributed capacitance or the capacitance value of the lumped capacitance close to the feeding point is 1pF
  • the equivalent capacitance value of the distributed capacitor far away from the feed point or the capacitance value of the lumped capacitor is 1.4pF.
  • the length of the radiator is 50mm
  • the inductance value of the inductor connected in series close to the feed point is 1.5nH
  • the inductance value of the inductor connected in series far from the feed point is 3.3nH.
  • the radiation The length of the radiator is 60mm
  • the equivalent capacitance value of the distributed capacitor or the capacitance value of the lumped capacitor at both ends of the gap close to the feed point is 1pF
  • the inductance value of the inductor close to the feed point is 2.5nH
  • the inductance value far away from the feed point is 2.5nH.
  • the equivalent capacitance value of the distributed capacitance or the capacitance value of the lumped capacitance at both ends of the gap of the electrical point is 1pF
  • the inductance value of the inductor away from the feed point is 4nH.
  • FIG. 33 is an S-parameter diagram of the antenna structure shown in FIGS. 29 to 32 provided by the embodiment of the present application.
  • Figure 34 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 29 to 32 provided by the embodiment of the present application.
  • the antenna structures shown in Figures 29 to 32 work in CM mode and DM mode, and the operating frequency bands include 1.9GHz to 2GHz (CM mode) and 2.2GHz to 2.3GHz respectively. (DM mode), the resonance of the antenna structure shown in Figure 32 produces a wider bandwidth.
  • CM mode 1.9GHz to 2GHz
  • DM mode 2.2GHz to 2.3GHz
  • the antenna structure shown in Figure 30 can improve the performance in DM mode (2.2GHz to 2.3GHz ) efficiency
  • the antenna structure shown in Figure 31 can improve the efficiency in CM mode (1.9GHz to 2GHz). Since the antenna structure shown in Figure 32 combines the characteristics of the antenna structure shown in Figure 30 and the antenna structure shown in Figure 31, the antenna structure can be made using the gap provided on the radiator and the inductance provided between the radiator and the floor. The efficiency is improved in both DM mode (2.2GHz to 2.3GHz) and CM mode (1.9GHz to 2GHz).
  • the SAR values of the antenna structures shown in Figures 29 to 32 are shown in Table 2 below, taking the input power of 24dbm as an example.
  • the antenna structure shown in Figure 30 has a better SAR value at 2.25GHz (DM mode), and the antenna structure shown in Figure 31 has a better SAR value at 1.95GHz (CM mode). ) has a better SAR value. Since the antenna structure shown in Figure 32 combines the characteristics of the antenna structure shown in Figure 30 and the antenna structure shown in Figure 31, its SAR values at 1.95GHz (CM mode) and 2.25GHz (DM mode) both have excellent performance good.
  • Figure 35 is a schematic diagram of the antenna structure 200 provided by the embodiment of the present application.
  • the antenna structure 200 includes a radiator 210 , a floor 220 , a first inductor 231 and a feeding point 205 .
  • the radiator 210 includes a first part 241, and the first part 241 includes a first end 201 and a second end 202 (the second end 202 is an open end, and at the second end 102, the radiator 210 is not connected to other conductors), and A first connection point 211 is located between the first end 201 and the second end 202 .
  • Radiator 210 is grounded through floor 220 at first end 201 .
  • the first inductor 231 is electrically connected between the first connection point 211 and the floor 220, and the inductance value of the first inductor 231 is less than the first threshold.
  • the length of the first part 241 is greater than three-eighths of the first wavelength.
  • the first part is used to generate the first resonance, and the first wavelength is the medium wavelength of the first resonance.
  • the first connection point 211 is provided between the feed point 241 and the first end 201 .
  • the distance between the first connection point 211 and the second end 102 is less than or equal to one quarter of the first wavelength.
  • antenna structure 200 may include second inductor 232 .
  • the second inductor 232 is electrically connected between the second connection point 212 and the floor 220 .
  • the second connection point 212 is located between the first connection point 211 and the first end 201 .
  • the technical solution provided by the embodiment of the present application can be applied to an inverted L antenna (inverted L antenna) or an inverted F antenna (inverted F antenna) (the feed point 205 is close to the first end 201 (ground end)).
  • the embodiment of this application only takes the feed point 205 close to the second end (open end) as an example and applies it to a left-hand antenna.
  • At least one inductor is provided between the first part 241 and the floor 220 , and the current on the first part 241 is reversed in a region near the first connection point 211 , where the current reversal region includes the first connection point 211 .
  • the current on the floor 220 will also reverse. It can disperse the current density on the radiator (reduce the intensity of a single current strong point and make the current evenly distributed), thereby reducing the conductor loss caused by the radiator and the conductors set around the radiator, thereby improving the efficiency of the antenna structure.
  • the electric field generated by the radiator is made continuous, does not reverse (excluding the electric field reversal area), and has no zero point, which increases the radiation diameter of the antenna structure, reduces conductor losses, and improves the efficiency of the antenna structure.
  • the electric field between the first portion 241 of the radiator and the floor 220 is in the same direction.
  • the length of the first portion 241 is greater than one-half the first wavelength, wherein the distance between the first connection point 211 and the second connection point 212 is less than one-half the first wavelength, so that The current density on the radiator is dispersed, improving the efficiency of the antenna structure.
  • the distance between the first connection point 211 and the second connection point 212 may be less than a quarter of the first wavelength, so that the current density on the radiator is more dispersed, further improving the efficiency of the antenna structure.
  • radiator 210 also includes a second portion 242, as shown in Figure 36.
  • the second portion 242 of the radiator 210 includes a third end 203 and a fourth end 204 and a third connection point 213 located between the third end 203 and the fourth end 204 .
  • the first end 201 of the first part 241 is connected to the third end 203 of the second part 242 to form a continuous radiator 210 (the radiator 210 is an integrally formed structure, and the first part 241 of the radiator is in the ground position (first end 201) Continuing with Part II 242).
  • the antenna structure 200 further includes a third inductor 233.
  • the third inductor 233 is electrically connected between the third connection point 213 and the floor 220.
  • the inductance value of the third inductor 233 is less than the second threshold.
  • the first portion 241 has a different length than the second portion 242 .
  • the length of the second part 242 is greater than three-eighths of the second wavelength, the second part is used to generate the second resonance, and the second wavelength is the medium wavelength of the second resonance.
  • the distance between the third connection point 213 and the fourth end 204 is less than or equal to a quarter of the second wavelength.
  • the technical solution provided by the embodiment of the present application can be applied to an asymmetric T-shaped antenna, the length of the first part 241 is different from the length of the second part 242 (for example, the length of the first part 241 and the length of the second part 242 are The difference is greater than 5 mm), the antenna structure 200 can be made to work in two different CM modes from the first part 241 and the second part 242, which can be used to expand the operating frequency band of the antenna structure.
  • the inductor arranged between the first part 241 and the floor 220 determines the inductance value according to the first resonance generated by the first part 241, and the inductor arranged between the second part 242 and the floor 220 determines the inductance value according to the second resonance generated by the second part 242. Determine the inductor value.
  • the first threshold when the frequency of the first resonance is less than or equal to 1 GHz, the first threshold is 6 nH. When the frequency of the first resonance is greater than 1 GHz and less than or equal to 2.2 GHz, the first threshold is 4nH. When the frequency of the first resonance is greater than 2.2GHz and less than or equal to 3GHz, the first threshold is 3nH. When the frequency of the first resonance is greater than 3GHz, the first threshold is 2nH.
  • the second threshold when the frequency of the second resonance is less than or equal to 1 GHz, the second threshold is 6 nH.
  • the second threshold is 4nH.
  • the second threshold is 3nH.
  • the second threshold is 2nH.
  • the electronic device further includes a conductive frame, the frame has a first position, a second position and a third position, and the first position is between the second position and the third position.
  • the border between the first position and the second position can be used as the first part, and the border between the first position and the third position can be used as the second part.
  • the first position may correspond to the above-mentioned first end
  • the second position may correspond to the above-mentioned second end
  • the third position may correspond to the above-mentioned third end.
  • gaps may be opened at the third position and the second position of the frame so that the third position and the second position are not connected to other parts of the frame, so as to realize the separation of the radiators at the third position and the second position.
  • the ends are open.
  • the technical solution shown in Figure 10 can also be used.
  • at least one fourth inductor is provided between the ground point and the first inductor 231, so that the radiator The current density distribution on the radiator is more uniform, thereby reducing the losses caused by the radiator and the medium set around the radiator.
  • the position where each radiator is connected to the inductor includes a current reversal area, so that the electric field cannot reach zero, so that the electric field generated by the radiator is continuous and does not reverse (excluding the electric field reversal area), which increases the antenna structure.
  • the radiation diameter reduces conductor losses and improves the efficiency of the antenna structure.
  • two or three inductors are provided between the radiator and the floor 220 as an example.
  • the technical solution provided by the embodiment of the present application can also be provided between the radiator and the floor 220 with a number of more than 10 inductors. Or an inductor equal to 3 to make the current density distribution on the radiator more uniform, thereby reducing the loss caused by the radiator and the medium/conductor set around the radiator.
  • more than two inductors may be provided between the radiator shown in Figure 36 and the floor.
  • more than two slits may be provided on the radiator.
  • the radiator of the T-shaped antenna has a grounding point directly electrically connected to the floor 220, such as the first end 201 of the first part 241 shown in Figure 36, and/or the third end of the second part 242. 203 places.
  • the first end 201 of the first part 241 and the third end 203 of the second part 242 may be implemented by the same ground component (for example, a conductor extending inside the frame or coupled to the frame).
  • the radiator of the T-shaped antenna may not be provided with a grounding point directly electrically connected to the floor 220, such as the first end 201 of the first part 241 shown in Figure 36, and/or the second part 242.
  • the third terminal 203 can be grounded through an inductor.
  • the first end 201 of the first part 241 and the third end 203 of the second part 242 are connected to ground through the same inductor.
  • Figures 37 to 40 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGS 37 to 40 they are schematic diagrams of different structures of the inverted L-shaped antenna.
  • the antenna junction shown in Figure 38 The difference from the antenna structure shown in Figure 37 is that there is a gap on the radiator. It should be understood that the capacitive devices connected in series in the gap shown in the figure are only examples. In actual applications, the gap can be filled with dielectric, and the equivalent capacitance of the gap can be adjusted through parameters such as the dielectric constant of the medium or the width of the gap. capacitance value. In one embodiment, the width of the slit may be between 0.1 mm and 2 mm.
  • the difference between the antenna structure shown in Figure 39 and the antenna structure shown in Figure 37 is that there is an inductor electrically connected between the radiator and the floor.
  • the difference between the antenna structure shown in Figure 40 and the antenna structure shown in Figure 37 is that a gap is opened on the radiator, and an inductor is provided between the radiator and the floor.
  • the length of the radiator in the antenna structure is adjusted.
  • the length of the radiator is 18.4mm, and a 0.5pF capacitor is connected in series at the feed point.
  • the length of the radiator is 33.4mm, the capacitance value of the capacitor set in the gap (or the equivalent capacitance value of the gap) is 0.65pF, and a 1pF capacitor is connected in series at the feed point.
  • the length of the radiator is 33.4mm
  • the inductance value of the inductor connected in series between the radiator and the floor is 1.7nH
  • a 0.5pF capacitor is connected in series at the feed point.
  • the length of the radiator is 33.4mm
  • the capacitance value of the capacitor set in the gap is 1.1pF
  • the inductance connected in series between the radiator and the floor is The inductor value is 3nH
  • a 0.6pF capacitor is connected in series at the feed point.
  • FIG. 41 is an S-parameter diagram of the antenna structure shown in FIGS. 37 to 40 provided by the embodiment of the present application.
  • Figure 42 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 37 to 40 provided by the embodiment of the present application.
  • the antenna structures shown in Figures 37 to 40 work in CM mode, and the operating frequency bands are all around 1.85GHz.
  • the bandwidth generated by the resonance of the antenna structure shown in Figure 40 is more Width.
  • the efficiency (system efficiency and radiation efficiency) of the antenna structure shown in Figures 38 to 40 is improved compared to the antenna structure shown in Figure 37.
  • the antenna structure shown in Figure 40 due to the increased inductance electrically connected between the radiator and the floor, and the opening of a gap in the radiator (or the series connection of capacitance through the opening of the gap), the system efficiency and radiation efficiency of the antenna structure are compared with those in Figure 37
  • the antenna structure shown has the most obvious improvement.
  • the system efficiency is improved by about 1dB at 1.85Hz, and the radiation efficiency is also improved by about 0.6dB.
  • Figures 43 to 45 are schematic diagrams of current and electric field distribution of the antenna structure shown in Figures 38 to 40 respectively.
  • the antenna structure shown in Figure 40 has the characteristics of the antenna structures shown in Figure 38 and Figure 39, the electric field and current generated by it change compared with the distribution corresponding to the quarter mode, as shown in Figure 45 (a) and (b) As shown, better conductor loss and dielectric loss can be obtained.
  • the conductor loss and dielectric loss of the antenna structure shown in Figures 37 to 40 are shown in Table 3 below.
  • Figures 46 and 47 are schematic diagrams of another antenna structure provided by an embodiment of the present application.
  • the difference between the antenna structure shown in Figures 46 and 47 and the antenna structure shown in Figures 37 and 39 is that the number of inductors electrically connected between the radiator and the floor is different.
  • the length of the radiator is 18.4mm.
  • the length of the radiator is 33.4mm, and the inductance value of the series inductor is 1.5nH.
  • the length of the radiator is 43.4mm.
  • the inductance value of the inductor close to the ground end (first end) is 3nH
  • the inductance value of the inductor far away from the ground end (first end) is 3nH.
  • the inductance value is 3.5nH.
  • the length of the radiator is 53.4mm.
  • the ground end points to the direction of the feed point.
  • the inductance values of the inductors are 3nH, 3nH, and 3.8nH. .
  • Figures 48 to 53 are simulation result diagrams of the antenna structures shown in Figures 37, 39, 46 and 47.
  • Fig. 48 is an S-parameter diagram of the antenna structure shown in Fig. 37, Fig. 39, Fig. 46 and Fig. 47 provided by the embodiment of the present application.
  • Figure 49 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structures shown in Figure 37, Figure 39, Figure 46 and Figure 47 provided by the embodiment of the present application.
  • Figure 50 is a schematic diagram of current distribution of the antenna structure shown in Figure 37.
  • Figure 51 is a schematic diagram of current distribution of the antenna structure shown in Figure 39.
  • Figure 52 is a schematic diagram of current distribution of the antenna structure shown in Figure 46.
  • Figure 53 is a schematic diagram of current distribution of the antenna structure shown in Figure 47.
  • the resonant frequency band of the antenna structure shown in Figure 37, Figure 39, Figure 46 and Figure 47 is around 1.85GHz.
  • the number of inductors set between the radiator and the floor increases, its resonance bandwidth gradually broadens.
  • the radiator length of the antenna structure is expanded from 18.4mm (the antenna structure shown in Figure 37) to 53.4mm (the antenna structure shown in Figure 47), and the radiation aperture is increased, which can Reduce conductor losses as shown in Table 4 below.
  • the inductor installed between the radiator and the floor can reduce conductor loss, but the improvement in dielectric loss is not obvious.
  • Figure 54 is a schematic diagram of an antenna structure 300 provided by an embodiment of the present application.
  • the antenna structure 300 may include a radiator 310 , a floor 320 , a first inductor 331 and a second inductor 332 .
  • the radiator 310 includes a first end 301 and a second end 302, and a first connection point 311 and a second connection point 312 located between the first end 301 and the second end 302.
  • Radiator 310 is grounded through floor 320 at first end 301 and second end 302 .
  • the inductance values of the first inductor 331 and the second inductor 332 are both smaller than the first threshold.
  • the length of the radiator 310 is greater than three-quarters of the first wavelength.
  • the portion of the radiator from the first end 301 to the second end 302 is used to generate the first resonance.
  • the first wavelength is the medium wavelength of the first resonance.
  • the first inductor 331 is electrically connected between the first connection point 311 and the floor 320
  • the second inductor 332 is electrically connected between the second connection point 312 and the floor 320 .
  • the distance between the first connection point 311 and the center of the radiator 310 is less than one-eighth of the first wavelength
  • the second connection point 312 is located between the first connection point 311 and the second end 302 .
  • the center of the radiator 310 can be understood as the midpoint of the physical length of the radiator 310 , or can also be understood as the midpoint of the electrical length of the radiator 310 .
  • the center of the radiator 310 can also be understood as the midpoint of the physical length falling on the gap.
  • the radiator 310 may further include a feed point 303, which is used to feed an electrical signal to the antenna structure 300 so that it generates radiation.
  • the technical solution provided by the embodiment of the present application can utilize the inductor electrically connected between the radiator and the floor, so that when the feed point feeds an electrical signal, since the radiator 310 is connected between the first connection point 311 and the second connection point
  • the first inductor 331 and the second inductor 332 are respectively electrically connected between the point 312 and the floor 320.
  • the current on the radiator 320 is reversed in the vicinity of the first connection point 311 and the second connection point 312.
  • the current reversal region includes a first connection point 311 and a second connection point 312.
  • the current on the floor 320 will also reverse.
  • the current reversal area on the floor includes the connection between the first inductor 331 and the second inductor 332 and the floor 320 . It can disperse the current density on the radiator (reduce the intensity of a single current strong point and make the current evenly distributed), thereby reducing the loss caused by the radiator and the medium set around the radiator, thereby improving the efficiency of the antenna structure.
  • the electric field generated by the radiator is continuous, does not reverse (excluding the electric field reversal area), and has no zero point, which increases the radiation diameter of the antenna structure, reduces conductor losses, and improves the efficiency of the antenna structure.
  • the electric fields between the radiator 320 and the floor 320 between the first end 301 and the second end 302 are in the same direction.
  • the feed point 303 is located between the center of the radiator 310 and the first end 301 or between the center of the radiator 310 and the second end 302 .
  • the antenna structure 300 can feed electrical signals through offset feeding, so that the antenna structure 300 It can work in CM mode and DM mode at the same time, expanding the working frequency band of the antenna structure 300.
  • the DM mode and CM mode of the antenna structure can be excited through central symmetrical feeding or central antisymmetrical feeding. , this application does not limit this, and can be adjusted according to the internal layout of the electronic device, and can also be understood accordingly in the following embodiments.
  • the inductance values of the first inductor 331 and the second inductor 332 can be adjusted according to the resonant frequency generated by the antenna structure 300 .
  • the first threshold is 6nH.
  • the first threshold is 4nH.
  • the first threshold is 3nH.
  • the first threshold is 2nH.
  • designing the inductance values of the first inductor 331 and the second inductor 332 according to the working frequency bands of different antenna structures can make the current distribution on the radiator more uniform in the working frequency band, reduce conductor losses, and thus improve the antenna. Structural efficiency.
  • the electronic device further includes a conductive frame, the frame has a first position and a second position, and the frame between the first position and the second position serves as the radiator 310 .
  • the frame is continuous with the rest of the frame at the first position and the second position, and the frame is not provided with an insulation gap at the first position and the second position.
  • first connection point 311 and the second connection point 312 are respectively disposed on both sides of the center of the radiator 310 .
  • the first connection point 311 is located between the first end 301 and the center of the radiator 310
  • the second connection point 312 is located between the second end 302 and the center of the radiator 310 .
  • the distance between the second connection point 312 and the center of the radiator 310 is less than one-eighth of the first wavelength.
  • inductors are electrically connected to both sides of the center of the radiator 310, so that the current on the radiator 310 on both sides of the center of the radiator 310 is affected by the ground inductance, thereby making the current distribution on the radiator 310 more precise. Evenly. At the same time, the electric field generated by the radiator 310 on both sides of the center does not include the electric field reverse area, thereby increasing the radiation diameter of the antenna structure, reducing conductor loss, and improving the efficiency of the antenna structure.
  • the antenna structure 300 may further include at least one third inductor, electrically connected between the corresponding at least one third connection point and the floor 320.
  • the at least one third inductor and the at least one third connection point may be one by one.
  • at least one third connection point is located between the first end 301 of the radiator 310 and the first connection point 311 .
  • the antenna structure 100 may further include at least one fourth inductor, electrically connected between the corresponding at least one fourth connection point and the floor 320 , and the at least one fourth inductor and the at least one fourth connection point may be one by one.
  • at least one fourth connection point is located between the second end 302 of the radiator 310 and the second connection point 312 .
  • the position where each radiator is connected to the inductor includes a current reversal area, so that the electric field cannot reach zero, so that the electric field generated by the radiator is continuous and does not reverse (excluding the electric field reversal area), which increases the antenna structure.
  • the radiation diameter reduces conductor losses and improves the efficiency of the antenna structure.
  • one or more slits 304 may be provided on the radiator 310.
  • the location of the slits (or capacitors) may refer to the previous embodiment.
  • the slit structure provided on the radiator 310 may be equivalent to a capacitor, so that The radiator 310 is equivalent to a metamaterial structure of a series capacitor. It should be understood that providing an inductor between the radiator 310 and the floor 320 can improve the efficiency of the antenna structure 300 in the DM mode, and opening a gap on the radiator 310 can improve the efficiency of the antenna structure 300 in the CM mode. At the same time, the center of the radiator 310 can fall outside the radiator, for example, when the gap When the lengths of the radiators 310 on both sides of 304 are the same or approximately the same, the center of the radiator 310 is located in the gap.
  • Figures 55 to 57 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGS 55 to 57 they are schematic diagrams of different structures of slot antennas.
  • the antenna structure shown in Figure 55 is a slot antenna with openings.
  • the difference between the antenna structure shown in Figure 56 and the antenna structure shown in Figure 55 is that two gaps are added to the radiator.
  • the difference between the antenna structure shown in Figure 57 and the antenna structure shown in Figure 55 is that two inductors are provided between the radiator and the floor. It should be understood that based on the antenna structure shown in Figure 57, the number of inductors can also be increased. For example, the number of inductors provided between the radiator and the floor is greater than two, for example, six.
  • opening a gap on the radiator can be regarded as an equivalent capacitance (eg, distributed capacitance) provided on the radiator.
  • capacitors eg, lumped capacitors
  • capacitors can be connected in series at both ends of the gap opened on the radiator to form a metamaterial structure of series capacitors.
  • the antenna structure using centrally symmetrical feed is used as an example for explanation.
  • the antenna structure shown in Figures 55 to 57 operates in the half-wavelength mode in the DM mode, and its operating frequency band includes 2.3 GHz as an example for explanation.
  • adjust the length of the radiator in the antenna structure In order to ensure that the antenna structures shown in Figure 55 to Figure 57 work in the same frequency band, adjust the length of the radiator in the antenna structure. In the antenna structure shown in Figure 55, the length of the radiator is 34mm.
  • the length of the radiator is 64mm, and the equivalent capacitance value of the distributed capacitance at both ends of the increased gap or the capacitance value of the series lumped capacitance is 0.1pF.
  • the length of the radiator is 64mm, and the inductance values of the series inductors are both 2.3nH.
  • FIGS. 55 to 57 are simulation result diagrams of the antenna structure shown in Figures 55 to 57.
  • FIG. 58 is an S-parameter diagram of the antenna structure shown in FIGS. 55 to 57 provided by the embodiment of the present application.
  • Figure 59 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 55 to 57 provided by the embodiment of the present application.
  • the antenna structures shown in Figures 55 to 57 work in DM mode, and the operating frequency bands include 2.25GHz to 2.35GHz.
  • the resonance of the antenna structure shown in Figure 57 produces Wider bandwidth.
  • the efficiency (system efficiency and radiation efficiency) of the antenna structure shown in Figure 56 is basically the same as that of the antenna structure shown in Figure 55.
  • the system efficiency of the antenna structure is significantly improved compared to the antenna structure shown in Figure 55, with an improvement of approximately 1.8dB at 2.3Hz, and The radiation efficiency is also improved by about 2.4dB.
  • Figures 60 to 62 are schematic diagrams of current and electric fields of the antenna structures shown in Figures 55 to 57.
  • Fig. 60 is a schematic diagram of the current and electric field of the antenna structure shown in Fig. 55.
  • Figure 61 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 56.
  • Figure 62 is a schematic diagram of the current and electric fields of the antenna structure shown in Figure 57.
  • the antenna structure operates in the half-wavelength mode in the DM mode. During resonance, the current on the radiator is concentrated at the ground positions at both ends. As shown in (b) of Figure 60, the electric field generated between the radiator and the floor when the antenna structure resonates is concentrated at the position of the central symmetrical feed.
  • the antenna structure operates in the half-wavelength mode in the DM mode, and the current on the radiator is concentrated in the area near the ground point during resonance.
  • the electric field generated between the radiator and the floor when the antenna structure resonates is concentrated in the area near the increased gap in the radiator.
  • the antenna structure works in the half-wavelength mode of the DM mode.
  • the current on the radiator has a zero point at the connection inductor.
  • the current density is compared with Figure 60 and Figure 61
  • the simulation plot shown is more diffuse.
  • the electric field between the radiator and the floor generated when the antenna structure resonates is somewhat different from the simulation diagrams shown in Figures 60 and 61. Weakening can reduce conductor losses, thereby improving the efficiency of the antenna structure.
  • Figure 63 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the difference between the antenna structure shown in Figure 63 and the antenna structure shown in Figure 57 is that four inductors are provided between the radiator and the floor.
  • the antenna structure using centrally symmetrical feed is used as an example.
  • adjust the length of the radiator in the antenna structure In the antenna structure shown in Figure 55, the length of the radiator is 35.6mm (approximately half of the first wavelength). In the antenna structure shown in Figure 57, the length of the radiator is 51.6mm (about three-quarters of the first wavelength).
  • the inductance values of the two inductors in series are both 5.5nH. The two inductors are located at both sides of the ground point. side.
  • the length of the radiator is 67.6mm (approximately the first wavelength).
  • the inductance value of the inductor close to the ground point is 5.5nH
  • the inductance of the inductor close to the gap is 5.5nH.
  • the values are all 5.8nH.
  • the length of the radiator is 79mm.
  • the inductance values of the inductors are all 4nH.
  • Figures 64 to 66 are simulation result diagrams of the antenna structures shown in Figure 55, Figure 57 and Figure 63.
  • Fig. 64 is an S-parameter diagram of the antenna structure shown in Fig. 55, Fig. 57 and Fig. 63 provided by the embodiment of the present application.
  • Figure 65 is a diagram of the simulation results of the system efficiency and radiation efficiency of the antenna structure shown in Figure 55, Figure 57 and Figure 63 when the radiator conductivity is on the order of 10 5 provided by the embodiment of the present application.
  • Figure 66 is a diagram of the simulation results of the system efficiency and radiation efficiency of the antenna structure shown in Figure 55, Figure 57 and Figure 63 when the radiator conductivity is on the order of 10 6 provided by the embodiment of the present application.
  • the antenna structure shown in Figure 55, Figure 57 and Figure 63 works in DM mode, and its resonant frequency band is near 2.25GHz. As the number of inductors increases, its resonant bandwidth gradually broadens. When the number of inductors installed between the radiator and the floor is the same, the inductance value of the inductor decreases and the resonance bandwidth gradually broadens.
  • the radiation efficiency of the antenna structure shown in Figure 63 (corresponding to the antenna structure when the inductance value is small) is about 3.6dB compared to the antenna structure shown in Figure 55 improvement, as shown in Figure 65.
  • the radiation efficiency of the antenna structure shown in Figure 63 (corresponding to the antenna structure when the inductance value is small) is about 2.4dB compared to the antenna structure shown in Figure 55 improvement, as shown in Figure 66.
  • the radiator length of the antenna structure is expanded from 35.6mm (the antenna structure shown in Figure 55) to 67.6mm (the antenna structure shown in Figure 63), and the radiation aperture is increased, which can Reduce conductor losses as shown in Table 5 below.
  • the inductance value of the inductor decreases, and the radiator length of the antenna structure can be further extended to 79mm. Increasing the radiation diameter can further improve the efficiency of the antenna structure.
  • the inductor installed between the radiator and the floor can reduce conductor loss, but the improvement in dielectric loss is not obvious. Moreover, as shown in Figures 64 and 66, after reducing the conductivity of the radiator, the efficiency of the antenna structure is improved more significantly.
  • Figures 67 to 70 are schematic diagrams of current distribution of the antenna structures shown in Figure 55, Figure 57 and Figure 63 respectively.
  • Fig. 67 is a schematic diagram of current distribution of the antenna structure shown in Fig. 55.
  • Figure 68 is a schematic diagram of current distribution of the antenna structure shown in Figure 57.
  • Figure 69 is a schematic diagram of current distribution corresponding to the antenna structure shown in Figure 63 when the inductance value is large.
  • Figure 70 is a schematic diagram of current distribution corresponding to the antenna structure shown in Figure 63 when the inductance value is small.
  • Figures 71 to 74 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGS. 71 to Figure 74 they are all schematic diagrams of different structures of slot antennas.
  • the difference from the slot antenna shown in Figure 54 lies in the different feeding methods.
  • the antenna structure shown in Figure 54 adopts a center feeding method.
  • the CM mode of the slot antenna is excited by using the inductance electrically connected between the radiator and the floor to improve the efficiency.
  • the antenna structure shown in Figure 71 to Figure 74 uses an offset feed method to simultaneously excite the CM mode and DM mode, using the electrical
  • the inductor connected between the radiator and the floor and the gap opened in the radiator improve efficiency.
  • the antenna structure shown in Figure 71 is a slot antenna with openings (or slits, slits, etc.).
  • the difference between the antenna structure shown in Figure 72 and the antenna structure shown in Figure 71 is that two gaps are added to the radiator in Figure 71 .
  • the difference between the antenna structure shown in Figure 73 and the antenna structure shown in Figure 71 is that more than or equal to two inductors, such as three inductors, are provided between the radiator and the floor.
  • the difference between the antenna structure shown in Figure 74 and the antenna structure shown in Figure 71 is that two gaps are added to the radiator, and two inductors are provided between the radiator and the floor.
  • two or three inductors are provided between the radiator and the floor 220 as an example.
  • the technical solution provided by the embodiment of the present application can also be provided between the radiator and the floor 220 with a number of more than 10 inductors. Or an inductor equal to 3 to make the current density distribution on the radiator more uniform, thereby reducing the loss caused by the radiator and the medium/conductor set around the radiator.
  • more than two inductors may be provided between the radiator and the floor.
  • more than two slits may be provided on the radiator.
  • opening a gap on the radiator can be regarded as an equivalent capacitance (eg, distributed capacitance) provided on the radiator.
  • capacitors eg, lumped capacitors
  • opening a gap on the radiator can be regarded as an equivalent capacitance (eg, distributed capacitance) provided on the radiator.
  • capacitors eg, lumped capacitors
  • the antenna structure uses offset feed to simultaneously excite the CM mode and the DM mode as an example for explanation.
  • the antenna structures shown in Figures 71 to 74 work in CM mode and half-wavelength mode in DM.
  • the working frequency band corresponding to CM mode includes 1.75GHz
  • the working frequency band corresponding to DM mode includes 2.2GHz.
  • adjust the length of the radiator in the antenna structure In the antenna structure shown in Figure 71, the length of the radiator is 34mm.
  • the length of the radiator is 64mm
  • the equivalent capacitance value of the distributed capacitor 341 or the capacitance value of the lumped capacitance 341 is 0.5pF
  • the equivalent capacitance value or lumped capacitance of the distributed capacitor 342 The capacitance value of 342 is 0.65pF
  • the equivalent capacitance value of the distributed capacitance 343 or the capacitance value of the lumped capacitance 343 is 0.15pF.
  • the length of the radiator is 64mm
  • the equivalent capacitance value of the distributed capacitor 351 or the capacitance value of the lumped capacitor 351 is 0.1pF
  • the inductance value of the inductor 352 is 3.5nH
  • the inductance of the inductor 353 The value is 6.5nH and the inductance value of inductor 354 is 10nH.
  • the length of the radiator is 70mm
  • the equivalent capacitance value of the distributed capacitor 361 or the capacitance value of the lumped capacitance 361 is 0.6pF
  • the equivalent capacitance value or lumped capacitance of the distributed capacitor 362 The capacitance value of 362 is 0.55pF
  • the equivalent capacitance value of distributed capacitance 363 or the capacitance value of lumped capacitance 363 is 0.35pF
  • the inductance value of inductor 364 is 3.5nH
  • the inductance value of inductor 365 is 4.5nH
  • the inductance value of inductor 366 The inductance value is 10nH.
  • FIG. 75 is an S-parameter diagram of the antenna structure shown in FIGS. 71 to 74 provided by the embodiment of the present application.
  • Figure 76 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 71 to 74 provided by the embodiment of the present application.
  • the antenna structures shown in Figures 71 to 74 work in CM mode and DM mode, and the operating frequency bands include 1.68GHz to 1.85GHz (CM mode) and 2.15GHz to 2.3 respectively.
  • CM mode 1.85GHz
  • DM mode GHz
  • the resonance of the antenna structure shown in Figure 74 produces a wider bandwidth.
  • the antenna structure shown in Figure 72 can improve the efficiency in the CM mode (1.68GHz to 1.85GHz ) efficiency
  • the antenna structure shown in Figure 73 can improve the efficiency in DM mode (2.15GHz to 2.3GHz).
  • the antenna structure shown in Figure 74 combines the characteristics of the antenna structure shown in Figure 72 and the antenna structure shown in Figure 73, the antenna structure can be made using the capacitance provided on the radiator and the inductance provided between the radiator and the floor.
  • the efficiency is improved in both CM mode (1.68GHz to 1.85GHz) and DM mode (2.15GHz to 2.3GHz).
  • the system efficiency of the antenna structure at 2.45GHz
  • SAR values of the antenna structures shown in Figures 71 to 74 are shown in Table 6 below, taking the input power of 24dbm as an example.
  • the antenna structure shown in Figure 72 performs well in the SAR values of 1.75GHz (CM mode) and 2.2GHz (DM mode).
  • the antenna structure shown in Figure 73 The antenna structure performs well in SAR values at 1.75GHz (CM mode) and 2.2GHz (DM mode). Since the antenna structure shown in Figure 74 combines the characteristics of the antenna structure shown in Figure 72 and the antenna structure shown in Figure 73, its SAR values at 1.75GHz (CM mode) and 2.2GHz (DM mode) have excellent performance good.
  • Figure 77 is a schematic diagram of an antenna structure 400 provided by an embodiment of the present application.
  • the antenna structure 400 may include a radiator 410 , a floor 420 , a first inductor 431 and a second inductor 432 .
  • the radiator 410 includes a first end 401 and a second end 402, and a first connection point 411 and a second connection point 412 located between the first end 401 and the second end 402.
  • Radiator 410 is grounded through floor 420 at first end 401 and second end 402 .
  • the inductance values of the first inductor 431 and the second inductor 432 are both smaller than the first threshold.
  • the length of the radiator 410 is greater than three-quarters of the first wavelength.
  • the portion of the radiator from the first end 401 to the second end 402 is used to generate the first resonance.
  • the first wavelength is the medium wavelength of the first resonance.
  • the first inductor 431 is electrically connected between the first connection point 411 and the floor 420
  • the second inductor 432 is electrically connected between the second connection point 412 and the floor 420 .
  • the distance between the first connection point 411 and the center of the radiator 410 is less than one-eighth of the first wavelength
  • the second connection point 412 is located between the first connection point 411 and the second end 402 .
  • the difference between the antenna structure 400 shown in FIG. 77(a) and the antenna structure 300 shown in FIG. 54 is that the length of the radiator 310 of the antenna structure 300 is equal to the distance between the first end 301 and the second end 302.
  • the radiator 310 and the floor 320 form a linear (for example, strip) gap.
  • the length of the radiator 410 of the antenna structure 400 is much greater than the distance between the first end 401 and the second end 402.
  • the radiator 410 and the floor are 420 surrounds a non-linear (T-shaped or bent) gap.
  • the antenna structure 300 is a slot antenna.
  • the antenna structure 400 is a loop antenna.
  • the distance L1 between the first end and the second end is approximately the same as the length L2 of the radiator, which can be understood as L2 ⁇ 80% ⁇ L1 ⁇ L2 ⁇ 120%, for example, L2 ⁇ 90% ⁇ L1 ⁇ L2 ⁇ 110%.
  • the length L2 of the radiator is much greater than the distance L1 between the first end and the second end, which can be understood as L1 ⁇ L2 ⁇ 50%, for example, L1 ⁇ L2 ⁇ 30%.
  • the antenna structure can have the characteristics of both a slot antenna and a loop antenna.
  • the radiator 410 can be installed on the antenna bracket in the electronic device through LDS, or can also be installed on the back cover, which is not limited in this application.
  • the first threshold when the frequency of the first resonance is less than or equal to 1 GHz, the first threshold is 20 nH. When the frequency of the first resonance is greater than 1 GHz and less than or equal to 2.2 GHz, the first threshold is 16 nH. When the frequency of the first resonance is greater than 2.2 GHz and less than or equal to 3 GHz, the first threshold is 12 nH. When the frequency of the first resonance is greater than 3 GHz, the first threshold is 10 nH.
  • one or more slits may be provided on the radiator 410.
  • the location of the slits (or capacitors) may refer to the previous embodiment.
  • the slit structure provided on the radiator 410 may be equivalent to a capacitor, so that The radiator 410 is equivalent to a metamaterial structure of a series capacitor. It should be understood that providing an inductor between the radiator 410 and the floor 420 can improve the efficiency of the antenna structure 400 in the DM mode, and opening a gap on the radiator 410 can improve the efficiency of the antenna structure 400 in the CM mode.
  • the center of the radiator 410 may fall outside the radiator. For example, when the lengths of the radiators 410 on both sides of the gap are the same or approximately the same, the center of the radiator 410 may be located within the gap.
  • the radiator 410 may further include a feed point, which is used to feed electrical signals to the antenna structure 400 so that it generates radiation.
  • the first feeding point and the second feeding point are respectively arranged at both ends of the gap of the radiator 410 , or in other words, the first feeding point and the second feeding point are respectively arranged at both ends of the radiator 410 .
  • the third end 403 and the fourth end 404 of 410 provide center anti-symmetry for the radiator 410, or it can also be an asymmetric feed.
  • the first feed point and the second feed point correspond to the same feed source.
  • the signals from the first feed point and the second feed point may be radio frequency signals with equal amplitude and different phases.
  • the first feeding point and the second feeding point are respectively arranged at both ends of the gap of the radiator 410 , or in other words, the first feeding point and the second feeding point are respectively arranged at both ends of the radiator 410 .
  • the third end 403 and the fourth end 404 of 410 provide center-symmetric feeding for the radiator 410 .
  • the first feed point and the second feed point correspond to the same feed source.
  • the first feed point and the second feed point are electrically connected to the same place of the feed source.
  • the feed point is located between the first end 401 or the second end 402 of the radiator 410 .
  • the antenna structure 400 can feed electrical signals through offset feeding, so that the antenna structure 400 can operate in the CM mode and the DM mode at the same time, thereby expanding the operating frequency band of the antenna structure 400 .
  • the CM mode and DM mode of the antenna structure can be excited through central symmetric feed or central anti-symmetric feed. This application does not limit this and can be adjusted according to the internal layout of the electronic device. In the following embodiments can also be understood accordingly.
  • the technical solution provided by the embodiment of the present application can be applied to the loop antenna shown in Figure 77, and the inductor provided between the radiator and the floor can be used, so that when the feed point feeds an electrical signal, due to the radiator 410
  • a first inductor 431 and a second inductor 432 are respectively provided between the first connection point 411 and the second connection point 412 and the floor 420.
  • the current on the radiator 420 is near the first connection point 411 and the second connection point 412. area reverses.
  • the current on the floor 420 will also be reversed. It can disperse the current density on the radiator (reduce the intensity of a single current strong point and make the current evenly distributed), thereby reducing the loss caused by the radiator and the medium set around the radiator, thereby improving the efficiency of the antenna structure.
  • the electric field generated by the radiator is continuous, does not reverse (excluding the electric field reversal area), and has no zero point, which increases the radiation diameter of the antenna structure, reduces conductor losses, and improves the efficiency of the antenna structure.
  • Figures 78 to 81 are schematic diagrams of a set of antenna structures provided by embodiments of the present application.
  • FIGs 78 to 81 they are schematic diagrams of different structures of the loop antenna.
  • the antenna structure shown in Figure 78 is a loop antenna with an opening at the center of the radiator.
  • the difference between the antenna structure shown in Figure 79 and the antenna structure shown in Figure 78 is that two gaps are added to the radiator in Figure 79.
  • the difference between the antenna structure shown in Figure 80 and the antenna structure shown in Figure 78 is that two inductors are provided between the radiator and the floor.
  • the difference between the antenna structure shown in Figure 81 and the antenna structure shown in Figure 78 is that two gaps are added to the radiator, and two inductors are provided between the radiator and the floor.
  • opening a gap on the radiator can be regarded as an equivalent capacitance (eg, distributed capacitance) provided on the radiator.
  • capacitors eg, lumped capacitors
  • capacitors can be connected in series at both ends of the gap opened on the radiator to form a metamaterial structure of series capacitors.
  • FIG. 82 is an S-parameter diagram in the CM mode of the antenna structure shown in FIGS. 78 to 81 provided by the embodiment of the present application.
  • Figure 83 is a diagram of the system efficiency and radiation efficiency in CM mode of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application. Simulation result graph.
  • the antenna structure uses a centrally symmetrical feed method to excite the CM mode as an example for explanation.
  • the antenna structure shown in Figure 82 and Figure 83 operates in the half-wavelength mode of the CM mode.
  • adjust the length of the radiator in the antenna structure In order to ensure that the antenna structures shown in Figure 78 to Figure 81 work in the same frequency band, adjust the length of the radiator in the antenna structure. In the antenna structure shown in Figure 78, the length of the radiator is 42.8mm.
  • the length of the radiator is 62.8mm, and the capacitance values of the distributed or lumped capacitor 441 and the distributed or lumped capacitor 442 are 0.35pF.
  • the length of the radiator is 62.8mm, and the inductance values of inductor 451 and inductor 452 are 15nH.
  • the length of the radiator is 62.8mm, the capacitance value of the distributed or lumped capacitor 461 and the distributed or lumped capacitor 362 is 0.4pF, and the inductance value of the inductor 463 and the inductor 464 is 12nH.
  • the above inductance value is only an example. In the embodiment of the present application, in an antenna structure having both a gap and a ground inductance, the specific value of the ground inductance is not limited.
  • the antenna structure shown in Figure 78 to Figure 81 works in CM mode, and the operating frequency range includes 1.7GHz to 1.78GHz.
  • the resonance of the antenna structure shown in Figure 81 produces Wider bandwidth.
  • the efficiency of the antenna structure shown in Figure 79 is approximately the same as that of the antenna structure shown in Figure 78 .
  • the antenna structures shown in Figure 80 and Figure 81 can both improve the efficiency of the antenna structure.
  • the system efficiency (at 1.75GHz) of the antenna structure shown in Figure 81 is improved by more than 1.1dB.
  • Figures 84 and 85 are simulation results of the antenna structure shown in Figures 78 to 81 operating in DM mode.
  • FIG. 84 is an S-parameter diagram in the DM mode of the antenna structure shown in FIGS. 78 to 81 provided by the embodiment of the present application.
  • Figure 85 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 78 to 81 in the DM mode provided by the embodiment of the present application.
  • the antenna structure uses a central antisymmetric feeding method to excite the DM mode as an example for explanation.
  • the antenna structure shown in Figure 84 and Figure 85 operates in the half-wavelength mode of the DM mode.
  • adjust the length of the radiator in the antenna structure In the antenna structure shown in Figure 78, the length of the radiator is 42.8mm. In the antenna structure shown in Figure 79, the length of the radiator is 62.8mm, and the equivalent capacitance value of capacitor 441 and capacitor 442 is 0.2pF.
  • the length of the radiator is 62.8mm, and the inductance values of inductor 451 and inductor 452 are 2nH.
  • the length of the radiator is 62.8mm, the equivalent capacitance value of capacitor 461 and capacitor 362 is 0.6pF, and the inductance value of inductor 463 and inductor 464 is 3.5nH.
  • the antenna structures shown in Figures 78 to 81 work in DM mode, and the operating frequency bands include 1.7GHz to 1.78GHz.
  • the resonance of the antenna structure shown in Figure 81 produces Wider bandwidth.
  • the antenna structure shown in Figure 79 As shown in Figure 85, in the above frequency band, compared with the efficiency (system efficiency and radiation efficiency) of the antenna structure shown in Figure 78, the antenna structure shown in Figure 79, the antenna structures shown in Figure 80 and Figure 81 are all better.
  • the efficiency of the antenna structure can be improved.
  • the system efficiency (at 1.75GHz) of the antenna structure shown in Figure 81 is improved by more than 2dB.
  • FIG. 86 is an S-parameter diagram of the antenna structure shown in FIGS. 78 to 81 provided by the embodiment of the present application.
  • Figure 87 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure shown in Figures 78 to 81 provided by the embodiment of the present application.
  • the antenna structure uses an offset feed method to simultaneously excite the CM mode and the DM mode as an example for explanation.
  • adjust the length of the radiator in the antenna structure As shown in Figure 78 In the antenna structure, the length of the radiator is 42.8mm.
  • the length of the radiator is 62.8mm
  • the equivalent capacitance value of the distributed capacitor 441 or the capacitance value of the lumped capacitor 441 is 0.4pF
  • the equivalent capacitance value or lumped capacitance value of the distributed capacitor 442 The capacitance value of the capacitor 442 is 0.1pF, and the capacitor is set at the central gap, and its capacitance value is 0.45pF.
  • the length of the radiator is 62.8mm
  • the inductance value of inductor 451 and inductor 452 is 8nH
  • a capacitor is set at the central gap, and its capacitance value is 0.1pF.
  • the length of the radiator is 62.8mm
  • the equivalent capacitance value of the distributed capacitor 461 or the capacitance value of the lumped capacitance 461 is 0.2pF
  • the equivalent capacitance value or the lumped capacitance value of the distributed capacitor 462 The capacitance value of the capacitor 462 is 0.4pF
  • the inductance value of the inductor 463 is 8nH
  • the inductance value of the inductor 464 is 5nH.
  • a distributed capacitance or lumped capacitance is set through the central gap, and its equivalent capacitance value is 0.15pF.
  • the antenna structures shown in Figures 78 to 81 work in CM mode and DM mode.
  • the operating frequency bands corresponding to the CM mode include 2.05GHz to 2.2GHz, and the corresponding operating frequency bands for the DM mode
  • the operating frequency bands include 1.74GHz to 1.8GHz, and the resonance of the antenna structure shown in Figure 81 produces a wider bandwidth.
  • the antenna structure shown in Figure 79 can improve the efficiency of the antenna structure in DM mode, but The efficiency improvement in CM mode is not obvious.
  • the antenna structure shown in Figure 80 and Figure 81 can improve the efficiency of the antenna structure in both CM mode and DM mode.
  • the system efficiency of the antenna structure shown in Figure 81 is improved by more than 1.3dB and 0.7dB in CM mode and DM mode (at 2.1GHz and 1.75GHz) respectively.
  • the SAR values of the antenna structures shown in Figures 78 to 81 are shown in Table 7 below, taking the input power of 24dbm as an example.
  • the antenna structure shown in Figure 79 performs well in the SAR values of 1.75GHz (CM mode) and 2.1GHz (DM mode).
  • the antenna structure shown in Figure 80 The antenna structure performs well in SAR values at 1.75GHz (CM mode) and 2.1GHz (DM mode). Since the antenna structure shown in Figure 81 combines the characteristics of the antenna structure shown in Figure 79 and the antenna structure shown in Figure 80, its SAR values at 1.75GHz (CM mode) and 2.1GHz (DM mode) both have excellent performance Optimal.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or groups.
  • the software can be combined or integrated into another system, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本申请实施例提供了一种电子设备,包括辐射体,地板,第一电感和第二电感。辐射体包括第一端和第二端,以及位于第一端和第二端之间的接地点、第一连接点和第二连接点,接地点设置于辐射体的中心区域。第一电感和第二电感的电感值均小于或等于第一阈值。辐射体的长度大于第一波长的四分之三,其中,所述第一波长为辐射体产生的第一谐振的介质波长。第一电感电连接于第一连接点与地板之间,第二电感电连接于第二连接点与地板之间。第一连接点与第一端之间的距离小于第一波长的四分之一,第二连接点位于第一连接点与第二端之间。利用辐射体和地板之间电连接的电感,可以拓展天线结构的辐射口径,降低了导体损耗,从而有效提升天线结构的辐射效率。

Description

一种电子设备
本申请要求于2022年7月19日提交中国专利局、申请号为202210849062.4、申请名称为“一种电子设备”和2022年4月1日提交中国专利局、申请号为202210348011.3、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种电子设备。
背景技术
随着无线通信技术的快速发展,过去第二代(second generation,2G)移动通信系统主要支持通话功能,电子设备只是人们用于收发简讯以及语音沟通的工具,无线上网功能由于数据传输利用语音信道来传送,速度极为缓慢。现今,电子设备除了用于通话、发送短信、拍照之外,更可用于在线听音乐、观看网络影片、实时视频等,涵盖了人们生活中通话、影视娱乐以及电子商务等各式应用,在这之中,多种功能应用都需要无线网络上传及下载数据,因此,数据的高速传输变得极为重要。
随着人们对于高速数据传输的需求提升,电子设备的工业设计(industrial design,ID)的发展趋势是大屏占比,多摄像头。这造成了天线净空的大幅减小,布局空间越来越受限。同时出现了很多新的通信规格,需要在手机中布局更多的天线。多天线共存设计和单天线性能提升一直天线设计者们一直研究的课题。对于电子设备内的天线设计而言,一种趋势是天线小型化设计,但这种需求与天线本身作为开放系统的特质存在矛盾,制约了天线的性能。
发明内容
本申请实施例提供了一种电子设备,包括辐射体,地板,第一电感和第二电感。利用辐射体和地板之间设置的电感,可以拓展天线结构的辐射口径,降低了导体损耗,从而有效提升天线结构的辐射效率。
第一方面,提供了一种电子设备,包括:辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的接地点、第一连接点和第二连接点,所述接地点设置于所述辐射体的中心区域,其中所述第一端和所述第二端均为开放端;地板,所述辐射体在所述接地点处通过所述地板接地;第一电感和第二电感,所述第一电感和所述第二电感的电感值均小于或等于第一阈值;其中,所述第一端至所述第二端的所述辐射体的长度大于第一波长的四分之三,所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,其中,所述第一波长为所述第一谐振的介质波长;所述第一电感电连接于所述第一连接点与所述地板之间,所述第二电感电连接于所述第二连接点与所述地板之间;所述第一连接点与所述第一端之间的距离小于所述第一波长的四分之一,所述第二连接点位于所述第一连接点与所述第二端之间。
根据本申请实施例,可以利用在辐射体和地板之间设置的电感,从而使馈电点馈入电信号时,由于辐射体在第一连接点和第二连接点处与地板之间分别电连接有第一电感和第二电感,辐射体上的电流在第一连接点和第二连接点附近的区域发生反向。对应的,第一电感和第二电感在地板上的连接处附近区域,地板上的电流也会发生反向。可以分散辐射体上的电流密度(减小单个电流强点的强度,使电流更加均匀地分布)从而减少辐射体和辐射体周围设置的导体所带来的损耗,进而提升天线结构的效率。
结合第一方面,在第一方面的某些实现方式中,当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。
根据本申请实施例,根据不同的天线结构的工作频段设计第一电感和第二电感的电感值,可以使在该工作频段内,辐射体上的电流分布更为均匀,减少导体损耗,从而提升天线结构的效率。
结合第一方面,在第一方面的某些实现方式中,所述第一连接点位于所述第一端和所述接地点之间,所述第二连接点位于所述第二端和所述接地点之间;所述第二连接点与所述第二端之间的距离小于所述第一波长的四分之一。
根据本申请实施例,第一连接点与第一端之间的距离小于第一波长的四分之一,可以进一步提升天线结构的效率。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:第三电感,电连接于第三连接点和地板之间,所述第三连接点位于所述接地点与所述第一连接点之间;和/或第四电感,电连接于第四连接点和地板之间,所述第四连接点位于所述接地点与所述第二连接点之间。
根据本申请实施例,在辐射体和地板增加电连接的电感的数量,可以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的导体所带来的损耗。同时,在每个辐射体连接电感的位置均包括电流反向区域,使电场无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
结合第一方面,在第一方面的某些实现方式中,所述辐射体上开设有一个或多个绝缘缝隙,每个缝隙宽度大于或等于0.1mm且小于或等于2mm。
根据本申请实施例,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括导电边框,所述边框上具有第一位置和第二位置,所述第一位置和所述第二位置之间的边框作为所述辐射体,所述辐射体的中心区域为距离所述辐射体的中心5mm以内的区域,所述边框在所述第一位置和所述第二位置分别设置有绝缘缝隙。
根据本申请实施例,第一位置和第二位置可以位于边框的同一边,辐射体可以为直线型,或者,第一位置和第二位置也可以位于边框的相邻两边上,辐射体可以为折线型,例如,L型。
第二方面,提供了一种电子设备,包括:辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点和第二连接点;地板,所述辐射体在所述第一端 和所述第二端处通过所述地板接地;第一电感和第二电感,所述第一电感和所述第二电感的电感值均小于第一阈值;其中,所述辐射体的长度大于第一波长的四分之三,所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,其中,所述第一波长为所述第一谐振的介质波长;所述第一电感电连接于所述第一连接点与所述地板之间,所述第二电感电连接于所述第二连接点与所述地板之间;所述第一连接点位于所述辐射体的中心与所述第一端之间,并与所述辐射体的中心的距离小于所述第一波长的八分之一,所述第二连接点位于所述第一连接点与所述第二端之间。
结合第二方面,在第二方面的某些实现方式中,所述第一端和所述第二端相隔的距离等于所述辐射体的长度;当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。在一个实施例中,所述第一端和所述第二端相隔的距离等于所述辐射体的长度
结合第二方面,在第二方面的某些实现方式中,所述第二连接点位于所述第二端和所述辐射体的中心之间;所述第二连接点与所述辐射体的中心之间的距离小于所述第一波长的八分之一。
结合第二方面,在第二方面的某些实现方式中,所述第一端和所述第二端相隔的距离小于所述辐射体的长度;当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为20nH;当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为16nH;当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为12nH;当所述第一谐振的频率大于3GHz时,所述第一阈值为10nH。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括:第三电感,电连接于相应的至少一个第三连接点和地板之间,所述第三连接点位于所述辐射体的中心与所述第一连接点之间;和/或第四电感,电连接于相应的至少一个第四连接点和地板之间,所述第四连接点位于所述辐射体的中心与所述第二连接点之间。
结合第二方面,在第二方面的某些实现方式中,所述辐射体开设一个或多个绝缘缝隙,每个缝隙宽度大于或等于0.1mm且小于或等于2mm。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置和所述第二位置之间的边框作为所述辐射体,所述边框在所述第一位置和所述第二位置处与边框的其余部分连续。
第三方面,提供了一种电子设备,包括:辐射体,包括第一部分,所述辐射体的第一部分包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点和馈电点,其中,所述第二端为开放端;地板,所述辐射体在所述第一端处通过所述地板接地;第一电感,所述第一电感的电感值小于第一阈值;其中,所述第一部分的长度大于第一波长的八分之三,所述第一部分用于产生第一谐振,所述第一波长为所述第一谐振的介质波长;所述第一电感电连接于所述第一连接点与所述地板之间,所述第一连接点设置于所述馈电点和所述第一端之间;所述第一连接点与所述第二端的距离小于所述第一波长的四分之一。
结合第三方面,在第三方面的某些实现方式中,所述辐射体还包括位于所述第一连接点和所述第一端之间的第二连接点;所述电子设备还包括第二电感,所述第二电感电连接于所述第一连接点与所述地板之间。
结合第三方面,在第三方面的某些实现方式中,所述辐射体还包括第二部分,所述辐射体的第二部分包括第三端和第四端,以及位于所述第三端和所述第四端之间的第三连接点,所述第一部分的第一端与所述第二部分的第三端连接以形成连续的辐射体,其中,所述第四端为开放端;第三电感,所述第三电感电连接于所述第三连接点与所述地板之间,所述第三电感的电感值小于所述第二阈值;所述第一部分的长度与所述第二部分的长度不同;所述第二部分的长度大于第二波长的八分之三,所述第二部分用于产生第二谐振,所述第二波长为所述第二谐振的介质波长;所述第三连接点与所述第四端的距离小于所述第二波长的四分之一。
结合第三方面,在第三方面的某些实现方式中,当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。
结合第三方面,在第三方面的某些实现方式中,当所述第二谐振的频率小于或等于1GHz时,所述第二阈值为6nH;当所述第二谐振的频率大于1GHz且小于或等于2.2GHz时,所述第二阈值为4nH;当所述第二谐振的频率大于2.2GHz且小于或等于3GHz时,所述第二阈值为3nH;当所述第二谐振的频率大于3GHz时,所述第二阈值为2nH。
结合第三方面,在第三方面的某些实现方式中,所述电子设备还包括:第四电感,电连接于相应的至少一个第四连接点和地板之间,所述第四连接点位于所述第一端与所述第一连接点之间;和/或第五电感,电连接于相应的至少一个第五连接点和地板之间,所述第五连接点位于所述第四端与所述第三连接点之间。
第四方面,提供了一种电子设备,包括:辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点、第二连接点;地板,所述辐射体通过所述地板接地;第一电感,电连接于所述第一连接点与所述地板之间,所述第一电感的电感值小于或等于第一阈值;第二电感,电连接于所述第二连接点与所述地板之间,所述第二电感的电感值小于或等于所述第一阈值;所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,所述辐射体在第一区域的电流和/或所述地板在第二区域的电流包括电流反向区域,所述第一区域包括所述第一连接点和所述第二连接点,所述第二区域包括所述第一电感和所述地板连接处以及所述第二电感和所述地板连接处;和/或所述辐射体产生所述第一谐振时,所述辐射体在所述第一区域与所述地板之间产生的磁场同向。
结合第四方面,在第四方面的某些实现方式中,所述第一电感与所述辐射体或所述地板之间均不包括开关,所述第二电感与所述辐射体或所述地板之间均不包括开关。
结合第四方面,在第四方面的某些实现方式中,当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。
结合第四方面,在第四方面的某些实现方式中,所述辐射体开设绝缘缝隙;所述辐射体产生所述第一谐振时,所述辐射体在第五区域的电流不包括电流反向区域,所述第五区域包括所述绝缘缝隙;和/或所述辐射体产生所述第一谐振时,所述辐射体在所述第五区域的磁场包括磁场反向区域。
附图说明
图1是本申请实施例提供的电子设备的示意图。
图2是本申请提供的一种线天线的共模模式的结构及对应的电流、电场的分布示意图。
图3是本申请提供的一种线天线的差模模式的结构及对应的电流、电场的分布示意图。
图4是本申请提供的槽天线的共模模式的结构及对应的电流、电场、磁流的分布图。
图5是本申请提供的槽天线的差模模式的结构及对应的电流、电场、磁流的分布图。
图6是本申请实施例提供的天线结构的示意图。
图7是本申请实施例提供的天线结构的示意图。
图8是图6所示天线结构的仿真结果图。
图9是图7中的(a)所示天线结构的仿真结果图。
图10是本申请实施例提供的一种天线结构100的示意图。
图11是本申请实施例提供的电子设备的示意图。
图12是本申请实施例提供的一种天线结构的示意图。
图13是本申请实施例提供的一种天线结构的示意图。
图14是本申请实施例提供的一种天线结构的示意图。
图15是本申请实施例提供的图12至图14所示天线结构的S参数图。
图16是本申请实施例提供的图12至图14所示天线结构的系统效率和辐射效率的仿真结果图。
图17是图12所示天线结构的电流和电场示意图。
图18是图13所示天线结构的电流和电场示意图。
图19是图14所示天线结构的电流和电场示意图。
图20是本申请实施例提供的另一种天线结构的示意图。
图21是本申请实施例提供的图12,图14和图20所示天线结构的S参数图。
图22是本申请实施例提供的图12,图14和图20所示天线结构在辐射体导电率为105量级的系统效率和辐射效率的仿真结果图。
图23是本申请实施例提供的图12,图14和图20所示天线结构在辐射体导电率为106量级的系统效率和辐射效率的仿真结果图。
图24是图12所示天线结构的电流分布示意图。
图25是图14所示天线结构的电流分布示意图。
图26是图20所示天线结构的电流分布示意图。
图27是本申请实施例提供的另一种天线结构的示意图。
图28是图27所示天线结构的电流分布示意图。
图29是本申请实施例提供的一种天线结构的示意图。
图30是本申请实施例提供的一种天线结构的示意图。
图31是本申请实施例提供的一种天线结构的示意图。
图32是本申请实施例提供的一种天线结构的示意图。
图33是本申请实施例提供的图29至图32所示天线结构的S参数图。
图34是本申请实施例提供的图29至图32所示天线结构的系统效率和辐射效率的仿真结果图。
图35是本申请实施例提供的天线结构200的示意图。
图36是本申请实施例提供的另一种天线结构200的示意图。
图37是本申请实施例提供的一种天线结构的示意图。
图38是本申请实施例提供的一种天线结构的示意图。
图39是本申请实施例提供的一种天线结构的示意图。
图40是本申请实施例提供的一种天线结构的示意图。
图41是本申请实施例提供的图37至图40所示天线结构的S参数图。
图42是本申请实施例提供的图37至图40所示天线结构的系统效率和辐射效率的仿真结果图。
图43是图38所示天线结构的电流和电场的分布示意图。
图44是图39所示天线结构的电流和电场的分布示意图。
图45是图40所示天线结构的电流和电场的分布示意图。
图46是本申请实施例提供的另一种天线结构的示意图。
图47是本申请实施例提供的另一种天线结构的示意图。
图48是本申请实施例提供的图37,图39,图46和图47所示天线结构的S参数图。
图49是本申请实施例提供的图37,图39,图46和图47所示天线结构的系统效率和辐射效率的仿真结果图。
图50是图37所示天线结构的电流分布示意图。
图51是图39所示天线结构的电流分布示意图。
图52是图46所示天线结构的电流分布示意图。
图53是图47所示天线结构的电流分布示意图。
图54是本申请实施例提供的一种天线结构300的示意图。
图55是本申请实施例提供的一种天线结构的示意图。
图56是本申请实施例提供的一种天线结构的示意图。
图57是本申请实施例提供的一种天线结构的示意图。
图58是本申请实施例提供的图55至图57所示天线结构的S参数图。
图59是本申请实施例提供的图55至图57所示天线结构的系统效率和辐射效率的仿真结果图。
图60是图55所示天线结构的电流和电场示意图。
图61是图56所示天线结构的电流和电场示意图。
图62是图57所示天线结构的电流和电场示意图。
图63是本申请实施例提供的另一种天线结构的示意图。
图64是本申请实施例提供的图55,图57和图63所示天线结构的S参数图。
图65是本申请实施例提供的图55,图57和图63所示天线结构在辐射体导电率为105量级的系统效率和辐射效率的仿真结果图。
图66是本申请实施例提供的图55,图57和图63所示天线结构在辐射体导电率为106量级的系统效率和辐射效率的仿真结果图。
图67是图55所示天线结构的电流分布示意图。
图68是图57所示天线结构的电流分布示意图。
图69是图63所示天线结构在电感值较大时对应的电流分布示意图。
图70是图63所示天线结构在电感值较小时对应的电流分布示意图。
图71是本申请实施例提供的一种天线结构的示意图。
图72是本申请实施例提供的一种天线结构的示意图。
图73是本申请实施例提供的一种天线结构的示意图。
图74是本申请实施例提供的一种天线结构的示意图。
图75是本申请实施例提供的图71至图74所示天线结构的S参数图。
图76是本申请实施例提供的图71至图74所示天线结构的系统效率和辐射效率的仿真结果图。
图77是本申请实施例提供的一种天线结构400的示意图。
图78是本申请实施例提供的一种天线结构的示意图。
图79是本申请实施例提供的一种天线结构的示意图。
图80是本申请实施例提供的一种天线结构的示意图。
图81是本申请实施例提供的一种天线结构的示意图。
图82是本申请实施例提供的图78至图81所示天线结构在CM模式下的S参数图。
图83是本申请实施例提供的图78至图81所示天线结构在CM模式下的系统效率和辐射效率的仿真结果图。
图84是本申请实施例提供的图78至图81所示天线结构在DM模式下的S参数图。
图85是本申请实施例提供的图78至图81所示天线结构在DM模式下的系统效率和辐射效率的仿真结果图。
图86是本申请实施例提供的图78至图81所示天线结构的S参数图。
图87是本申请实施例提供的图78至图81所示天线结构的系统效率和辐射效率的仿真结果图。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)的铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
接通:通过以上“电连接”或“间接耦合”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
电容:可理解为集总电容和/或分布电容。集总电容指的是呈容性的元器件,例如电容元件;分布电容(或分布式电容)指的是两个导电件间隔一定间隙而形成的等效电容。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。应可理解,若没有额 外说明,本申请提到的“天线/辐射体产生谐振”中,应指天线/辐射体所产生的基模谐振,或者,天线/辐射体所产生的频率最低的谐振。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±25%的范围内,例如±10%的范围内。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
应理解,波长(工作波长)可以理解为电磁波在介质中的波长,例如,辐射体产生的电磁波在介质中传输的波长与真空中传输的波长满足以下公式:
其中,λε为电磁波在介质中的波长,λc为电磁波在真空中的波长,εr为介质层中介质的相对介电常数。本申请实施例中的波长,通常指的是介质波长,可以是谐振频率的中心频率对应的介质波长,或者天线所支持的工作频段的中心频率对应的介质波长。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那波长可以为利用1955MHz这个频率计算出来的介质波长。不限于中心频率,“介质波长”也可以是指谐振频率或工作频段的非中心频率对应的介质波长。为便于理解,本申请实施例中提到的介质波长可以简单地通过辐射体的一侧或多侧所填充介质的相对介电常数来计算。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,导体的中间(位置)可以是指导体上包括中点的一段导体部分,例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
天线系统效率(total efficiency):指在天线的端口处输入功率与输出功率的比值。
天线辐射效率(radiation efficiency):指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-损耗功率;损耗功率主要包括回波损耗功率和金属的欧姆损耗功率和/或介质损耗功率。辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗均是辐射效率的影响因素。
本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换 算关系,效率越接近0dB,表征该天线的效率越优。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多,天线的系统效率越高;S11参数越大,表示天线回波损耗越大,天线的系统效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
电磁波吸收比值(specific absorption rate,SAR):是计量多少无线电频率辐射能量被身体所实际吸收的表示单位,称作特殊吸收比率,以瓦特/每千克(W/kg)或毫瓦/每克(mW/g)来表示。SAR的准确定义是:给定的物质密度(ρ—人体组织密度)下的单位体积单元(dv)单位物质(dm)吸收的单位能量(dw)相对于时之间取导数。
目前国际通用的标准有两个,一个是欧洲标准2w/kg,一个是美国标准1.6w/kg,以欧洲标准来讲其具体含义是指,以6分钟为计时,每公斤人体组织吸收的电磁辐射能量不得超过2瓦。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
下面将结合附图,对本申请实施例的技术方案进行描述。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请实施例对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请实施例对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请实施例对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的外围周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
中框19上的边框11可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框19的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框19在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈 电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。在一个实施例中,包括导电材料的后盖21可以替代中框19,与边框11作为一体件,对整机中的电子器件起支撑作用;应可理解,本申请提到的“中框”应包括设置于壳体内用于支撑器件的中框,也包括作为壳体的一部分并用于支撑器件的后盖21中的导电部分。
在一个实施例中,中框19,和/或后盖21中的导电部分,可以作为电子设备10的参考地,其中,电子设备的边框、PCB等可以通过与中框的电连接实现接地。
电子设备10的天线还可以设置于边框11内。当电子设备10的边框11为非导电材料时,天线辐射体可以位于电子设备10内并延边框11设置。例如,天线辐射体贴靠边框11设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备10的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框11设置是指天线辐射体可以紧贴边框11设置,也可以为靠近边框11设置,例如天线辐射体与边框11之间能够具有一定的微小缝隙。
电子设备10的天线还可以设置于外壳内,例如支架天线、毫米波天线等(图1中未示出)。设置于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备10内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线40的形式可以为基于柔性主板(flexible printed circuit,FPC)的天线形式,基于激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备10的屏幕内部的透明结构,使得该天线为嵌设于电子设备10的屏幕内部的透明天线单元。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
首先,由图2至图5来介绍本申请将涉及四个天线模式。其中,图2是本申请提供的一种线天线的共模模式的结构及对应的电流、电场的分布示意图。图3是本申请提供的另一种线天线的差模模式的结构及对应的电流、电场的分布示意图。图4是本申请提供的一种槽天线的共模模式的结构及对应的电流、电场、磁流的分布示意图。图5是本申请提供的另一种槽天线的差模模式的结构及对应的电流、电场、磁流的分布示意图。
1、线天线的共模(common mode,CM)模式
图2中的(a)示出线天线40的辐射体通过馈电线42连接到地(例如地板,可以是 PCB)。线天线40在中间位置41处连接馈电单元(图未示),并采用对称馈电(symmetrical feed)。馈电单元可以通过馈电线42连接在线天线40的中间位置41。应理解,对称馈电可以理解为馈电单元一端连接辐射体,另外一端接地,其中,馈电单元与辐射体连接点(馈电点)位于辐射体中心,辐射体中心,例如可以是集合结构的中点,或者,电长度的中点(或上述中点附近一定范围内的区域)。
线天线40的中间位置41,例如中间位置41可以是线天线的几何中心,或者,辐射体的电长度的中点,例如馈电线42与线天线40连接处覆盖中间位置41。
图2中的(b)示出了线天线40的电流、电场分布。如图2中的(b)所示,电流在中间位置41两侧呈现对称分布,例如反向分布;电场在中间位置41两侧,呈现同向分布。如图2中的(b)所示,馈电线42处的电流呈现同向分布。基于馈电线42处的电流同向分布,图2中的(a)所示的这种馈电可称为线天线的CM馈电。基于电流在辐射体与馈电线42连接处的两侧呈现对称分布,图2中的(b)所示的这种线天线模式,可以称为线天线的CM模式(也可简称为CM模式,例如对于线天线而言,CM模式则指的是线天线的CM模式)。图2中的(b)所示的电流、电场可分别称为线天线的CM模式的电流、电场。
线天线的CM模式的电流、电场是线天线40在中间位置41两侧的两个枝节(例如,两个水平枝节)作为工作在四分之一波长模式的天线产生的。电流在线天线40的中间位置41处强,在线天线40的两端弱。电场在线天线40的中间位置41处弱,在线天线40的两端强。
2、线天线的差模(differential mode,DM)模式
如图3中的(a)示出线天线50的两个辐射体通过馈电线52连接到地(例如地板,可以是PCB)。线天线50在两个辐射体之间的中间位置51处连接馈电单元,并采用反对称馈电(anti-symmetrical feed)。馈电单元的一端通过馈电线52与其中一个辐射体连接,馈电单元的另一端通过馈电线52与其中另一个辐射体连接。中间位置51可以是线天线的几何中心,或者,辐射体之间形成的缝隙。
应理解,本申请中提到的“中心反对称馈电”可以理解为,馈电单元的正负两极分别连接在辐射体的上述中点附近的两个连接点。馈电单元的正负极输出的信号幅度相同,相位相反,例如相位相差180°±10°。
图3中的(b)示出了线天线50的电流、电场分布。如图3中的(b)所示,电流在线天线50的中间位置51两侧呈现非对称分布,例如同向分布;电场在中间位置51两侧呈反向分布。如图3中的(b)所示,馈电线52处的电流呈现反向分布。基于馈电线52处的电流反向分布,图3中的(a)所示的这种馈电可称为线天线DM馈电。基于电流在辐射体与馈电线52连接处的两侧呈现非对称分布(例如,同向分布),图3中的(b)所示的这种线天线模式可以称为线天线的DM模式(也可简称为DM模式,例如对于线天线而言,DM模式则指的是线天线的DM模式)。图3中的(b)所示的电流、电场可分别称为线天线的DM模式的电流、电场。
线天线的DM模式的电流、电场是整个线天线50作为工作在二分之一波长模式的天线产生的。电流在线天线50的中间位置51处强,在线天线50的两端弱。电场在线天线50的中间位置51处弱,在线天线50的两端强。
应理解,对于线天线的辐射体,可以理解为产生辐射的金属结构件,其数量可以是一 件,如图2所示,或者,也可以是两件,如图3所示,可以根据实际的设计或生产需要进行调整。例如,对于线天线的CM模式,也可以如图3所示采用两个辐射体,两个辐射体的两端相对设置并间隔一缝隙,在相互靠近的两端采用对称馈电的方式,例如在两个辐射体相互靠近的两端分别馈入同一馈源信号,也可以获得与图2所示天线结构类似的效果。相应的,对于线天线的DM模式,也可以如图2所示采用一个辐射体,在辐射体的中间位置设置两个馈电点并采用反对称馈电的方式,例如在该辐射体上对称的两个馈电点如分别馈入幅度相同、相位相反的信号,也可以获得与图3所示天线结构类似的效果。
3、槽天线的CM模式
图4中的(a)示出的槽天线60,可以是槽天线的辐射体中具有镂空的槽或缝隙61而形成的,或者可以是,槽天线的辐射体与地(例如地板,可以是PCB)合围出该槽或槽61而形成的。槽61可通过在地板上开槽形成。槽61的一侧设有开口62,开口62可具体开设在该侧的中间位置。槽61的该侧的中间位置例如可以是槽天线的几何中点,或者,辐射体的电长度的中点,例如开口62开设在辐射体上的区域覆盖该侧的中间位置。开口62处可连接馈电单元,并采用反对称馈电。应理解,反对称馈电可以理解为,馈电单元的正负两极分别连接在辐射体的两端。馈电单元的正负极输出的信号幅度相同,相位相反,例如相位相差180°±10°。
图4中的(b)示出了槽天线60的电流、电场、磁流分布。如图4中的(b)所示,电流在槽61周围的导体(如地板,和/或辐射体60)上围绕槽61呈同向分布,电场在槽61的中间位置两侧呈现反向分布,磁流在槽61的中间位置两侧呈反向分布。如图4中的(b)所示,开口62处(例如,馈电处)的电场同向,开口62处(例如,馈电处)的磁流同向。基于开口62处(馈电处)的磁流同向,图4中的(a)所示的这种馈电可称为槽天线CM馈电。基于电流在开口62两侧的辐射体上呈现非对称分布(例如,同向分布),或者,基于电流在槽61周围的导体上围绕槽61呈同向分布,图4中的(b)所示的这种槽天线模式可以称为槽天线的CM模式(也可简称为CM模式,例如对于槽天线而言,CM模式则指的是槽天线的CM模式)。图4中的(b)所示的电场、电流、磁流分布可称为槽天线的CM模式的电场、电流、磁流。
槽天线的CM模式的电流、电场是槽天线60的中间位置两侧的槽天线体作为工作在二分之一波长模式的天线产生的。磁场在槽天线60的中间位置处弱,在槽天线60的两端强。电场在槽天线60的中间位置处强,在槽天线60的两端弱。
4、槽天线的DM模式
如图5中的(a)示出的槽天线70,可以是槽天线的辐射体中具有镂空的槽或缝隙72而形成的,或者可以是,槽天线的辐射体与地(例如地板,可以是PCB)合围出该槽或槽72而形成的。槽72可通过在地板上开槽形成。槽72的中间位置71处连接馈电单元,并采用对称馈电。应理解,对称馈电可以理解为馈电单元一端连接辐射体,另外一端接地,其中,馈电单元与辐射体连接点(馈电点)位于辐射体中心,辐射体中心,例如可以是集合结构的中点,或者,电长度的中点(或上述中点附近一定范围内的区域)。槽72的一侧边的中间位置连接馈电单元的正极,槽72的另一侧边的中间位置连接馈电单元的负极。槽72的侧边的中间位置例如可以是槽天线60的中间位置/地的中间位置,比如槽天线的几何中点,或者,辐射体的电长度的中点,例如馈电单元与辐射体的连接处覆盖该侧的中间位置51。
图5中的(b)示出了槽天线70的电流、电场、磁流分布。如图5中的(b)所示,在槽72周围的导体(如地板,和/或辐射体60)上,电流围绕槽72分布,且在槽72的中间位置两侧呈反向分布,电场在中间位置71两侧呈现同向分布,磁流在中间位置71两侧呈同向分布。馈电单元处的磁流呈反向分布(未示出)。基于馈电单元处的磁流呈反向分布,图5中的(a)所示的这种馈电可称为槽天线DM馈电。基于电流在馈电单元与辐射体的连接处两侧呈现对称分布(例如,反向分布),或者,基于电流围绕缝隙71呈现对称分布(例如,反向分布),图5中的(b)所示的这种槽天线模式可以称为槽天线的DM模式(也可简称为DM模式,例如对于槽天线而言,DM模式则指的是槽天线的DM模式)。图5中的(b)所示的电场、电流、磁流分布可称为槽天线的DM模式的电场、电流、磁流。
槽天线的DM模式的电流、电场是整个槽天线70作为工作在一倍波长模式的天线产生的。电流在槽天线70的中间位置处弱,在槽天线70的两端强。电场在槽天线70的中间位置处强,在槽天线70的两端弱。
在天线领域中,工作在CM模式的天线和工作在DM模式的天线通常具有高隔离,且通常CM模式和DM模式的天线的频段往往是单模式谐振,难以覆盖通信所需要的众多频段。尤其电子设备留给天线结构的空间日益减少,对于MIMO系统而言,需要单个天线结构实现多个频段覆盖,因此,多模式谐振同时具有高隔离的天线,具有很高的研究和实用价值。
应理解,对于槽天线的辐射体,可以理解为产生辐射的金属结构件(例如包括地板的一部分),可以包括开口,如图4所示,或者,也可以为完整的环形,如图5所示,可以根据实际的设计或生产需要进行调整。例如,对于槽天线的CM模式,也可以如图5所示采用完整的环形辐射体,在槽61的一侧上的辐射体的中间位置设置两个馈电点并采用反对称馈电的方式,例如在原本设置开口位置的两端分别馈入幅度相同、相位相反的信号,也可以获得与图4所示天线结构类似的效果。相应的,对于槽天线的DM模式,也可以如图4所示采用包括开口的辐射体,在开口位置的两端采用对称馈电的方式,例如在开口两侧的辐射体的两端分别馈入同一馈源信号,也可以获得与图5所示天线结构类似的效果。
由于上述天线结构均可以产生电场呈正交(电场在远场内积为零(积分正交))的两种工作模式(电场呈对称分布或反对称分布),这种天线结构的两种工作模式之间的隔离度较好,可以应用于电子设备中的多输入多输出(multi-input multi-output,MIMO)天线系统。
图6和图7是本申请实施例提供的天线结构的示意图。
如图6和图7所示,通过在天线结构的辐射体上开设缝隙。通过开设大于或等于缝隙(缝隙可以开设在辐射体的任意位置,例如,缝隙可以开设在馈电点和辐射体的端部之间),随着缝隙数量的增加,可以增大天线结构等效的辐射口径,可以使辐射体和地板之间的电场分布更加均匀,降低了介质损耗,提升辐射效率。在一个实施例中,缝隙结构可以等效为在辐射体中串联电容,图6和图7所示的天线结构可以称为超材料(metaline)结构。
同时,对于图6所示的线天线结构和图7所示的槽天线结构,当槽天线的结构不对称时,可同时激励起天线结构的CM模式和DM模式。例如,采用馈电不对称,或,辐射体结构不对称的方式。为了论述的简洁,本申请仅以采用偏馈(偏心馈电)的方式进行馈电,同时激励起天线结构的CM模式和DM模式为例进行说明。
本申请中提到的“偏馈(偏心馈电)”,可以理解为边馈。一个实施例中,馈电单元与辐射体之间的连接点(馈电点)偏离辐射体的对称中心(例如,辐射体的中心点)。一个实施例中,馈电单元与辐射体之间的连接点(馈电点)位于辐射体的末端并且距离辐射体的末端端点四分之一个电长度范围内(不包括四分之一个电长度的位置)的区域,或者,也可以是距离辐射体的端点八分之一个第一电长度范围内的区域,其中电长度可以是指辐射体的电长度。
图8和图9是图6和图7所示天线结构的仿真结果图。
应理解,为方便对天线结构产生的CM模式和DM模式分别进行仿真,对上述图6和图7所示天线结构均采用中心对称馈电的方式,以及中心反对称馈电的方式进行仿真,以获得图8和图9所示的仿真结果。
如图8中的(a)所示,为图6所示线天线工作在DM模式下的系统效率和辐射效率的仿真结果图。当辐射体上开设缝隙后,在该种模式(DM模式)下,线天线的系统效率和辐射效率获得有效提升。如图8中的(b)所示,为图6所示线天线工作在CM模式下的系统效率和辐射效率的仿真结果图。当辐射体上开设缝隙后,在该种模式(CM模式)下,线天线的系统效率和辐射效率并没有获得有效提升。
如图9中的(a)所示,为图7所示槽天线工作在CM模式下的系统效率和辐射效率的仿真结果图。当辐射体上开设缝隙后,在该种模式(CM模式)下,槽天线的系统效率和辐射效率获得有效提升。如图9中的(b)所示,为图7所示槽天线工作在DM模式下的系统效率和辐射效率的仿真结果图。当辐射体上开设缝隙后,在该种模式(DM模式)下,槽天线的系统效率和辐射效率并没有获得有效提升。
因此,通过对辐射体开设缝隙增大天线结构的辐射体长度,降低了介质损耗,可以提升线天线的DM模式和槽天线的CM模式的效率,但是对线天线的CM模式和槽天线的DM模式的效率影响不大。
本申请实施例提供了一种电子设备,包括辐射体和地板,利用辐射体和地板之间设置的电感,使辐射体和地板之间的电场分布更加均匀,从而降低了导体损耗,可以有效提升天线结构的辐射效率。
图10是本申请实施例提供的一种天线结构100的示意图,天线结构100可以应用于图1所示的电子设备中。
如图10所示,天线结构100可以包括辐射体110,地板120,第一电感131和第二电感132。
其中,辐射体110包括第一端101和第二端102(第一端101和第二端102为开放端,在第一端101和第二端102处,辐射体110不与其他导体连接),以及位于第一端101和第二端102之间的接地点103、第一连接点111和第二连接点112。接地点103可以设置于辐射体110的中心区域104。辐射体110在接地点103处通过地板120接地。第一电感131和第二电感132的电感值均小于第一阈值。辐射体110的长度大于第一波长的四分之三,辐射体从第一端101至第二端102的部分用于产生第一谐振,第一波长为第一谐振的介质。第一电感131电连接于第一连接点111与地板120之间,第二电感132电连接于第二连接点112与地板120之间。第一连接点111与第一端101之间的距离小于第一波长的四分之一,第二连接点112位于第一连接点111与第二端102之间。
应理解,辐射体110的中心区域104可以理解与距离辐射体110的中心5mm以内的 区域,辐射体110的中心可以为辐射体110的物理长度的中心(几何中心)或者,电长度的中心。
在一个实施例中,辐射体110还可以包括馈电点105,馈电点105用于为天线结构100馈入电信号,以使其产生辐射。
应理解,本申请实施例提供的技术方案可以利用在辐射体和地板之间设置的电感,从而使馈电点馈入电信号时,由于辐射体110在第一连接点111和第二连接点112处与地板120之间分别电连接有第一电感131和第二电感132,辐射体110上的电流在第一连接点111和第二连接点112附近的区域发生反向。对应的,第一电感131和第二电感132在地板120上的连接处附近区域,地板120上的电流也会发生反向。可以分散辐射体上的电流密度(减小单个电流强点的强度,使电流更加均匀地分布)从而减少辐射体和辐射体周围设置的导体所带来的损耗,进而提升天线结构的效率。
并且,由于在辐射体110上的电流在第一连接点111和第二连接点112附近的区域发生反向,因此,电场在第一连接点111和第二连接点112处无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),不存在零点,增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。在一个实施例中,辐射体产生的电场从辐射体的第一端至第二端为同向。
在一个实施例中,辐射体110与电感之间未设置有开关(例如,辐射体110的第一连接点111与第一电感131之间未设置有开关),或者,电感与地板120之间未设置有开关(例如,第一电感131与地板120之间未设置有开关)。本申请实施例中串联在辐射体110和地板120之间的电感(例如,第一电感131和第二电感132)用于分散辐射体上的电流密度从而减少辐射体和辐射体周围设置的导体所带来的损耗。在一个实施例中,第一电感131和第二电感132在一定程度上可以影响天线结构的谐振频率,但并不同于主要用来调整天线结构谐振频率的调谐电路。此外在电感处并不设置开关来切换频段,开关会引入额外的插损,损失天线结构的辐射性能。
在一个实施例中,第一连接点111与第一端101之间的距离小于第一波长的四分之一,可以进一步提升天线结构的效率。
在一个实施例中,馈电点105位于中心区域104与第一端101之间或中心区域104与第二端102之间。天线结构100可以通过偏馈的方式馈入电信号,以使天线结构100可以同时工作在CM模式和DM模式,拓展天线结构100的工作频段。
应理解,在本申请实施例中,为了论述的简洁,仅以偏馈的方式进行说明,在实际的应用中可以通过中心对称馈电或中心反对称馈电激励天线结构的CM模式和DM模式,本申请对此并不做限制,可以根据电子设备内部的布局进行调整,在下述实施例中也可以相应理解。
在一个实施例中,第一电感131和第二电感132的电感值可以根据天线结构100产生的谐振频率进行设计。当第一谐振的频率小于或等于1GHz时,第一阈值为6nH。当第一谐振的频率大于1GHz且小于或等于2.2GHz时,第一阈值为4nH。当第一谐振的频率大于2.2GHz且小于或等于3GHz时,第一阈值为3nH。当第一谐振的频率大于3GHz时,第一阈值为2nH。
应理解,根据不同的天线结构的工作频段设计第一电感131和第二电感132的电感值,可以使在该工作频段内,辐射体上的电流分布更为均匀,减少导体损耗,从而提升天线结 构的效率。
在一个实施例中,电子设备还包括导电边框11,边框11上具有第一位置141和第二位置142,第一位置141和第二位置142之间的边框11作为辐射体110,如图11所示。应理解,第一位置141和第二位置142可以对应于第一端101和第二端102。
在一个实施例中,边框11的第一位置141和第二位置142处可以开设缝隙,以使第一位置141和第二位置142不与边框11的其他部分连接,以实现第一位置141和第二位置142的辐射体的端部为开放端。应理解,第一位置141和第二位置142可以位于边框11的同一边,辐射体110可以为直线型,或者,第一位置141和第二位置142也可以位于边框11的相邻两边上,辐射体110可以为折线型,例如,L型。
在本申请所有实施例中所述的电感(第一电感131、第二电感132或下述的其他电感)可以为集总元件,或者,可以为分布式元件,或者为集总元件和分布式元件的组合,本申请对此并不做限制。在一个实施例中,第一电感131和/或第二电感132可以包括分布式元件。例如,边框上向内延伸的导电件;和/或中框上延伸的导电件;和/或PCB上延伸的导电件;和/或PCB上的金属走线等。在一个实施例中,如图11所示,第一电感131可以包括电子设备内边框11和中框/PCB17之间设置的连筋。在一个实施例中,如图11所示,第二电感132可以包括PCB14上的一段金属线。
在一个实施例中,第一连接点111和第二连接点112分别设置于接地点103两侧。第一连接点111位于第一端101和接地点103之间,第二连接点112位于第二端102和接地点103之间。在一个实施例中,第一连接点111与第一端101之间的距离小于第一波长的四分之一。在一个实施例中,第二连接点112与第二端102之间的距离小于第一波长的四分之一。
应理解,在接地点103两侧分别电连接有电感,可以使接地点103两侧的辐射体110上的电流均受到接地电感的影响,从而使辐射体110上的电流分布更均匀。同时,可以使辐射体110在接地点103两侧产生的电场不包括电场反向区域,增大天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
在一个实施例中,天线结构100还可以包括至少一个第三电感,电连接于相应的至少一个第三连接点和地板120之间,至少一个第三电感和至少一个第三连接点可以一一对应,至少一个第三连接点位于接地点103与第一连接点111之间。
在一个实施例中,天线结构100还可以包括至少一个第四电感,电连接于相应的至少一个第四连接点和地板120之间,至少一个第四电感和至少一个第四连接点可以一一对应,至少一个第四连接点位于接地点103与第二连接点112之间。
应理解,在辐射体110和地板120增加电连接的电感的数量,可以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的导体所带来的损耗。同时,在每个辐射体连接电感的位置均包括电流反向区域,使电场无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。设置多个电感值后,电感阈值需相应增大,例如,当辐射体110和地板120之间电连接的电感的数量大于或等于3个时,在第一谐振的频率小于或等于1GHz时,第一阈值为12nH。在第一谐振的频率大于1GHz且小于或等于2.2GHz时,第一阈值为8nH。在第一谐振的频率大于2.2GHz且小于或等于3GHz时,第一阈值为6nH。在第一谐振的频率大于3GHz时,第一阈值为4nH。
在一个实施例中,辐射体110上可以开设有一个或多个缝隙。应理解,在辐射体110与地板120之间设置电感,可以提升天线结构100在CM模式下的效率,在辐射体110上开设缝隙,可以提升天线结构100在DM模式下的效率。在一个实施例中,辐射体110上开设的缝隙结构可以等效为电容,从而使辐射体110等效为串联电容的超材料结构。
图12至图14是本申请实施例提供的一组天线结构的示意图。
如图12至图14所示,均为线天线的不同结构的示意图。如图13所示的天线结构,与图12所示的天线结构的区别在于,在辐射体上开设有两个缝隙,缝隙(或电容)的设置位置可以参照前序实施例。如图14所示的天线结构,与图12所示的天线结构的区别在于,在辐射体与地板之间设置有两个电感,电感的设置位置可以参照前序实施例。
如图13所示,在一个实施例中,在辐射体上开设缝隙可以看作辐射体上设置的等效电容(例如,分布式电容)。在一个实施例中,开设的缝隙的宽度大于或等于0.1mm且小于或等于2mm。在一个实施例中,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。应理解,为便于直观的展示对线天线工作在CM模式下天线效率的对比,以天线结构采用中心对称馈电为例进行说明。同时,如图12至图14所示的天线结构工作在CM模式下的二分之一波长模式,其工作频段包括1.9GHz为例进行说明。为保证如图12至图14所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图12所示的天线结构中,辐射体的长度为36mm。图13所示的天线结构中,辐射体的长度为60mm,缝隙两端的分布式电容的等效电容值或串联的集总电容的电容值均为0.75pF。图14所示的天线结构中,辐射体的长度为58mm,串联的电感的电感值均为2.7nH。
图15和图16是图12至图14所示天线结构的仿真结果图。其中,图15是本申请实施例提供的图12至图14所示天线结构的S参数图。图16是本申请实施例提供的图12至图14所示天线结构的系统效率和辐射效率的仿真结果图。
如图15所示,以S11<-4dB为例,图12至图14所示天线结构工作在CM模式下,工作频段均包括1.87GHz至1.97GHz,图13所示的天线结构的谐振产生的带宽更宽。
如图16所示,在上述频段内,图13所示的天线结构的效率(系统效率和辐射效率)与图12所示的天线结构基本相同。图14所示天线结构,由于增加设置在辐射体和地板之间的电感,天线结构的系统效率相较于图12所示的天线结构提升明显,在1.92Hz处约有1dB的提升,且辐射效率也有约1dB的提升。
图17至图19是图12至图14所示天线结构的电流和电场示意图。其中,图17是图12所示天线结构的电流和电场示意图。图18是图13所示天线结构的电流和电场示意图。图19是图14所示天线结构的电流和电场示意图。
如图17中的(a)所示,天线结构工作在CM模式下的二分之一波长模式,谐振时辐射体上的电流不存在零点,电流集中在接地点附近的区域。如图17中的(b)所示,天线结构谐振时产生的在辐射体与地板之间的电场集中在辐射体的两端。
如图18中的(a)所示,天线结构工作在CM模式下的二分之一波长模式,谐振时辐射体上的电流不存在零点,电流集中在接地点附近的区域。如图18中的(b)所示,天线结构谐振时产生的在辐射体与地板之间的电场集中在辐射体的两端,以及开设的缝隙附近的区域。
如图19中的(a)所示,天线结构工作在CM模式下的二分之一波长模式,谐振时辐 射体上的电流在连接电感处附近的区域(辐射体及地板上)存在零点,电流密度相较于图17和图18所示的仿真图更为分散。如图19中的(b)所示,由于电流密度更为分散,因此,天线结构谐振时产生的在辐射体与地板之间的电场相较于图17和图18所示的仿真图有所减弱,可以降低导体损耗,从而提升天线结构的效率。
图20是本申请实施例提供的另一种天线结构的示意图
如图20所示的天线结构,电感的设置位置可以参照前序实施例,与图14所示的天线结构的区别在于,在辐射体与地板之间设置有4个电感。
为便于直观的展示对线天线工作在CM模式下天线效率的对比,以天线结构采用中心对称馈电为例进行说明。为保证如图12,图14和图20所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图12所示的天线结构中,辐射体的长度为35.6mm(约为第一波长的二分之一)。图14所示的天线结构中,辐射体的长度为51.6mm(约为第一波长的四分之三),串联的两个电感的电感值均为2.7nH,两个电感分别位于接地点两侧。图20所示的天线结构中,辐射体的长度为67mm(约为第一波长),串联的四个电感中,靠近接地点两侧的电感的电感值均为5nH,靠近辐射体两端的电感的电感值均为5.5nH。同时,为保证图14和图20所示的天线结构与图12所示天线结构的谐振频点相同,在图14所示的天线结构的辐射体的接地点和地板之间设置1.5nH的电感,在图20所示的天线结构的辐射体的接地点和地板之间设置3nH的电感。
图21至图23是图12,图14和图20所示天线结构的仿真结果图。其中,图21是本申请实施例提供的图12,图14和图20所示天线结构的S参数图。图22是本申请实施例提供的图12,图14和图20所示天线结构在辐射体导电率为105量级的系统效率和辐射效率的仿真结果图。图23是本申请实施例提供的图12,图14和图20所示天线结构在辐射体导电率为106量级的系统效率和辐射效率的仿真结果图。
如图21所示,以S11<-4dB为例,图12,图14和图20所示天线结构工作在CM模式下,其谐振频段在1.85GHz附近,随着辐射体与地板之间设置的电感的数量增加,其谐振带宽逐渐展宽。
如图22和图23所示,随着辐射体与地板之间设置的电感的数量增加,天线结构的辐射效率和系统效率均有明显增加。
在辐射体导电率为105量级下,在1.85Hz处,图20所示的天线结构相较于图12所示的天线结构的辐射效率约2.3dB的提升,如图22所示。
在辐射体导电率为106量级下,在1.85Hz处,图20所示的天线结构相较于图12所示的天线结构的辐射效率约1.4dB的提升,如图23所示。
应理解,由于辐射体与地板之间设置的电感,使天线结构的辐射体长度由二分之一波长(图12所示天线结构)拓展到一倍波长(图20所示天线结构),辐射口径增加,可降低导体损耗,如下表1所示。其中,导体损耗为辐射体的材质(铝AL)以及地板所在的PCB对辐射产生的损耗。介质损耗为辐射体周围设置的塑料(ABS)和玻璃盖板(CG)对辐射产生的损耗。
表1

如上表1所示,辐射体与地板之间设置的电感可以降低导体损耗,但是对介质损耗的改善并不明显。并且,如图22和23所示,降低辐射体的导电率后,天线结构的效率提升更为明显。
图24至图26分别是图12,图14和图20所示天线结构工作于同频段(例如1.85GHz附近)的电流分布示意图。
如图24至图26所示,随着辐射体与地板之间电连接的电感的数量增加,谐振时辐射体上的电流在连接电感附近的区域(辐射体以及地板上)的零点增加,可以使电流密度更为分散,降低辐射时导体损耗,提升天线结构的效率。
图27是本申请实施例提供的另一种天线结构的示意图。
如图27中的所示天线结构,电感的设置位置可以参照前序实施例,其与图14和图20所示的天线结构的区别在于辐射体与地板之间设置的电感数量大于或等于3个,例如,设置6个电感。
应理解,随着辐射体与地板之间设置的电感的数量的增加,天线结构产生辐射时,电流分布更加均匀,如图28所示。
图29至图32是本申请实施例提供的一组天线结构的示意图。
如图29至图32所示,均为线天线的不同结构的示意图。如图30所示的天线结构,与图29所示的天线结构的区别在于,在辐射体上开设有两个缝隙。如图31所示的天线结构,与图30所示的天线结构的区别在于,在辐射体与地板之间设置有两个电感。如图32所示的天线结构,与图29所示的天线结构的区别在于,在辐射体上开设有两个缝隙,且在辐射体与地板之间设置有两个电感。
如图30和图32所示,在一个实施例中,在辐射体上开设缝隙可以看作辐射体上设置的等效电容(例如,分布式电容),缝隙(或电容)以及电感的设置位置可以参照前序实施例。在一个实施例中,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。
应理解,为便于直观的展示对线天线工作在CM和DM模式下天线效率的对比,以天线结构采用偏馈同时激励起CM模式和DM模式为例进行说明。同时,如图29至图32所示的天线结构工作在CM模式和DM下的二分之一波长模式,CM模式对应的工作频段包括1.95GHz,DM模式对应的工作频段包括2.25GHz为例进行说明。为保证如图29至图32所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图29所示的天线结构中,辐射体的长度为40mm。图30所示的天线结构中,辐射体的长度为54mm,由于天线结构的馈电位置不对称,因此,在靠近馈电点的分布式电容的等效电容值或集总电容的电容值为1pF,在远离馈电点的分布式电容的等效电容值或集总电容的电容值为1.4pF。图31所示的天线结构中,辐射体的长度为50mm,在靠近馈电点串联的电感的电感值为1.5nH,在远离馈电点串联的电感的电感值为3.3nH。图32所示的天线结构中,辐 射体的长度为60mm,在靠近馈电点的缝隙两端的分布式电容的等效电容值或集总电容的电容值为1pF,靠近馈电点的电感的电感值为2.5nH,在远离馈电点的缝隙两端的分布式电容的等效电容值或集总电容的电容值为1pF,远离馈电点的电感的电感值为4nH。
图33和图34是图29至图32所示天线结构的仿真结果图。其中,图33是本申请实施例提供的图29至图32所示天线结构的S参数图。图34是本申请实施例提供的图29至图32所示天线结构的系统效率和辐射效率的仿真结果图。
如图33所示,以S11<-4dB为例,图29至图32所示天线结构工作在CM模式和DM模式下,工作频段分别包括1.9GHz至2GHz(CM模式)以及2.2GHz至2.3GHz(DM模式),图32所示的天线结构的谐振产生的带宽更宽。
如图34所示,在上述频段内,相较于图29所示的天线结构的效率(系统效率和辐射效率),图30所示的天线结构可以提升在DM模式下(2.2GHz至2.3GHz)的效率,图31所示的天线结构可以提升在CM模式下(1.9GHz至2GHz)的效率。由于图32所示的天线结构结合了图30所示的天线结构以及图31所示的天线结构的特点,利用辐射体上设置的缝隙以及辐射体和地板之间设置的电感,可以使天线结构的效率在DM模式下(2.2GHz至2.3GHz)和CM模式下(1.9GHz至2GHz)均获得提升。
图29至图32所示天线结构的SAR值如下表2所示,以输入功率为24dbm为例进行说明。
表2
如上表2所示,相较于图29所示的天线结构,图30所示的天线结构在2.25GHz(DM模式)的SAR值更优,图31所示的天线结构在1.95GHz(CM模式)的SAR值更优。由于图32所示的天线结构结合了图30所示的天线结构以及图31所示的天线结构的特点,因此,其在1.95GHz(CM模式)和2.25GHz(DM模式)的SAR值均表现良好。
图35是本申请实施例提供的天线结构200的示意图。
如图35所示,天线结构200包括辐射体210,地板220,第一电感231和馈电点205。
其中,辐射体210包括第一部分241,第一部分241包括第一端201和第二端202(第二端202为开放端,在第二端102处,辐射体210不与其他导体连接),以及位于第一端201和第二端202之间的第一连接点211。辐射体210在第一端201处通过地板220接地。第一电感231电连接于第一连接点211与地板220之间,第一电感231的电感值小于第一阈值。第一部分241的长度大于第一波长的八分之三,第一部分用于产生第一谐振,第一波长为第一谐振的介质波长。第一连接点211设置于馈电点241和第一端201之间。第一连接点211与第二端102之间的距离小于等于第一波长的四分之一。
在一个实施例中,天线结构200可以包括第二电感232。第二电感232电连接于第二连接点212与地板220之间,第二连接点212位于第一连接点211与第一端201之间。
应理解,本申请实施例提供的技术方案可以应用于倒L型天线(inverted L antenna)或倒F型天线(inverted F antenna)(馈电点205靠近第一端201(接地端)),为了论述的简洁,本申请实施例仅以馈电点205靠近第二端(开放端)为例,应用于左手天线为例进行说明。在第一部分241与地板220之间设置至少一个电感,第一部分241上的电流在第一连接点211的附近区域发生反向,其中,电流反向区域包括第一连接点211。对应的,在第一电感231和第二电感232于地板220的连接处附近区域,其地板220上的电流也会发生反向。可以分散辐射体上的电流密度(减小单个电流强点的强度,使电流均匀分布)从而减少辐射体和辐射体周围设置的导体所带来的导体损耗,进而提升天线结构的效率。并且,由于在第一部分241上的电流在第一连接点211和第二连接点212处的附近区域发生反向,因此,电场在第一连接点211和第二连接点212处无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),不存在零点,增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。在一个实施例中,辐射体的第一部分241与地板220之间的电场同向。
在一个实施例中,第一部分241的长度大于第一波长的二分之一,其中,第一连接点211和第二连接点212之间的距离小于第一波长的二分之一,以使辐射体上的电流密度分散,提升天线结构的效率。在一个实施例中,第一连接点211和第二连接点212之间的距离可以小于第一波长的四分之一,使得辐射体上的电流密度更加分散,进一步提升天线结构的效率。
在一个实施例中,辐射体210还包括第二部分242,如图36所示。辐射体210的第二部分242包括第三端203和第四端204,以及位于第三端203和第四端204之间的第三连接点213。第一部分241的第一端201与第二部分242的第三端203连接以形成连续的辐射体210(辐射体210为一体成型结构,在接地位置(第一端201)辐射体的第一部分241与第二部分242连续)。天线结构200还包括第三电感233,第三电感233电连接于第三连接点213与地板220之间,第三电感233的电感值小于第二阈值。第一部分241的长度与第二部分242的长度不同。第二部分242的长度大于第二波长的八分之三,第二的部分用于产生第二谐振,第二波长为第二谐振的介质波长。第三连接点213与第四端204的距离小于等于第二波长的四分之一。
应理解,本申请实施例提供的技术方案可以应用于不对称的T型天线,第一部分241的长度与第二部分242的长度不同(例如,第一部分241的长度与第二部分242的长度之差大于5mm),可以使天线结构200由第一部分241和第二部分242分别工作在两个不同的CM模式下,可以用于拓展天线结构的工作频段。同时,设置在第一部分241与地板220之间的电感根据第一部分241产生的第一谐振确定电感值,设置在第二部分242与地板220之间的电感根据第二部分242产生的第二谐振确定电感值。
在一个实施例中,当第一谐振的频率小于或等于1GHz时,第一阈值为6nH。当第一谐振的频率大于1GHz且小于或等于2.2GHz时,第一的阈值为4nH。当第一谐振的频率大于2.2GHz且小于或等于3GHz时,第一阈值为3nH。当第一谐振的频率大于3GHz时,第一阈值为2nH。
在一个实施例中,当第二谐振的频率小于或等于1GHz时,第二阈值为6nH。当第二 谐振的频率大于1GHz且小于或等于2.2GHz时,第二阈值为4nH。当第二谐振的频率大于2.2GHz且小于或等于3GHz时,第二阈值为3nH。当第二谐振的频率大于3GHz时,第二阈值为2nH。
应理解,根据不同的天线结构的工作频段设计第一电感231,第二电感232和第三电感233的电感值,可以使在该工作频段内,辐射体上的电流分布更为均匀,减少导体损耗,从而提升天线结构的效率。
在一个实施例中,电子设备还包括导电边框,边框上具有第一位置,第二位置和第三位置,第一位置位于第二位置和第三位置之间。第一位置和第二位置之间的边框可以作为上述第一部分,第一位置和第三位置之间的边框可以作为上述的第二部分。应理解,第一位置可以对应于上述第一端,第二位置可以对应于上述第二端,第三位置可以对应于上述第三端。
在一个实施例中,边框的第三位置和第二位置处可以开设缝隙,以使第三位置和第二位置不与边框的其他部分连接,以实现第三位置和第二位置的辐射体的端部为开放端。
对于图35和图36所示的天线结构200来说,也可以采用上述图10所示的技术方案,例如,在接地点与第一电感231之间设置至少一个第四电感,以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的介质所带来的损耗。同时,在每个辐射体连接电感的位置均包括电流反向区域,使电场无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
应理解,在上述实施例中仅以辐射体与地板220之间设置两个或三个电感为例进行说明,本申请实施例提供的技术方案也可在辐射体与地板220之间设置数量大于或等于3个的电感,以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的介质/导体所带来的损耗。
应理解,在上述实施例中仅以辐射体上设置两个缝隙为例进行说明,本申请实施例提供的技术方案也可在辐射体上设置数量大于两个的缝隙,例如3个,6个等,缝隙(或电容)以及电感的设置位置可以参照前序实施例。
在一个实施例中,图36所示的辐射体与地板之间可以设置数量大于两个的电感。进一步的,在一个实施例中,辐射体上还可以设置数量大于两个的缝隙。
在一个实施例中,T型天线的辐射体上有与地板220直接电连接的接地点,例如图36所示的第一部分241的第一端201,和/或第二部分242的第三端203处。在一个实施例中,第一部分241的第一端201,和第二部分242的第三端203可以由同一接地件(例如,边框内侧延伸或者耦合于边框的导电体)实现。在一个实施例中,T型天线的辐射体上可以不设有与地板220直接电连接的接地点,例如图36所示的第一部分241的第一端201,和/或第二部分242的第三端203均可以通过电感接地。在一个实施例中,第一部分241的第一端201,和第二部分242的第三端203通过同一电感接地。
应理解,在上述实施例中仅以天线结构为对称的T型天线,不对称的T型天线以及倒F型天线为例进行说明,本申请实施例提供的技术方案也可以应用于其他类型的线天线,为论述的简洁本申请实施例仅以这三种线天线为例进行说明,对线天线的类型并不做限制。
图37至图40是本申请实施例提供的一组天线结构的示意图。
如图37至图40所示,均为倒L型天线的不同结构的示意图。如图38所示的天线结 构,与图37所示的天线结构的区别在于,在辐射体上开设有一个缝隙。应理解,图中所示的缝隙内串联的电容器件,仅作为示例,在实际的应用中,可以在缝隙内填充介质,通过介质的介电常数或缝隙的宽度等参数调整缝隙等效的电容的电容值。在一个实施例中,缝隙的宽度可以为0.1mm至2mm之间。如图39所示的天线结构,与图37所示的天线结构的区别在于,在辐射体与地板之间电连接有一个电感。如图40所示的天线结构,与图37所示的天线结构的区别在于,在辐射体上开设有一个缝隙,且在辐射体与地板之间设置有一个电感。
应理解,为保证如图37至图40所示的天线结构工作在相同的频段(例如,1.85GHz附近)内,调整天线结构中辐射体的长度。图37所示的天线结构中,辐射体的长度为18.4mm,馈电点处串联0.5pF的电容。图38所示的天线结构中,辐射体的长度为33.4mm,在缝隙内设置的电容的电容值(或缝隙等效的电容值)为0.65pF,馈电点处串联1pF的电容。图39所示的天线结构中,辐射体的长度为33.4mm,串联在辐射体和地板之间的电感的电感值为1.7nH,馈电点处串联0.5pF的电容。图40所示的天线结构中,辐射体的长度为33.4mm,在缝隙内设置的电容的电容值(或缝隙等效的电容值)为1.1pF,串联在辐射体和地板之间的电感的电感值为3nH,馈电点处串联0.6pF的电容。
图41和图42是图37至图40所示天线结构的仿真结果图。其中,图41是本申请实施例提供的图37至图40所示天线结构的S参数图。图42是本申请实施例提供的图37至图40所示天线结构的系统效率和辐射效率的仿真结果图。
如图41所示,以S11<-4dB为例,图37至图40所示天线结构工作在CM模式下,工作频段均在1.85GHz附近,图40所示的天线结构的谐振产生的带宽更宽。
如图42所示,在上述频段内,图38至图40所示的天线结构的效率(系统效率和辐射效率)相较于图37所示的天线结构均有提升。图40所示天线结构,由于增加电连接在辐射体和地板之间的电感,以及辐射体开设缝隙(或者,通过开设的缝隙串联电容),天线结构的系统效率和辐射效率相较于图37所示的天线结构提升最明显,系统效率在1.85Hz处约有1dB的提升,且辐射效率也有约0.6dB的提升。
图43至图45分别是图38至图40所示天线结构的电流和电场的分布示意图。
如图43中的(a)所示,天线结构产生谐振时,由于辐射体上开设有缝隙(或者,在缝隙内设置有电容),因此,在该位置附近的区域,电场发生反向,使电场在该位置无法达到零点,形成了非自然边界下驻波形态的电场分布,使得电场减弱,天线结构的介质损耗降低,从而提升天线结构的效率。
如图43中的(b)所示,天线结构产生谐振时,电流未发生改变(靠近接地端电流较强),依然为四分之一模式对应的分布,电流密度变化不大,导体损耗仅小幅改善。
如图44中的(a)所示,天线结构产生谐振时,电场未发生改变,依然为四分之一模式对应的分布,电场没有分散,介质损耗未发生变化。
如图44中的(b)所示,天线结构产生谐振时,由于辐射体和地板之间设置有电感,因此辐射体上的电流在连接点附近的区域发生反向,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),不存在零点,增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
由于图40所示的天线结构同时具有图38和图39所示的天线结构的特征,因此,其产生的电场和电流相较于四分之一模式对应的分布均发生变化,如图45中的(a)和(b) 所示,从而可以获得较好的导体损耗和介质损耗。
图37至图40所示的天线结构的导体损耗和介质损耗如下表3所示。
表3
图46和图47是本申请实施例提供的另一种天线结构的示意图。
如图46和图47所示的天线结构,与图37和图39所示的天线结构的区别在于,在辐射体与地板之间电连接的电感的数量不同。
为保证如图37,图39,图46和图47所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图37所示的天线结构中,辐射体的长度为18.4mm。图39所示的天线结构中,辐射体的长度为33.4mm,串联的电感的电感值为1.5nH。图46所示的天线结构中,辐射体的长度为43.4mm,串联的两个电感中,靠近接地端(第一端)的电感的电感值为3nH,远离接地端(第一端)的电感的电感值为3.5nH。图47所示的天线结构中,辐射体的长度为53.4mm,串联的三个电感中,由接地端(第一端)指向馈电点方向,电感的电感值依次为3nH,3nH,3.8nH。
图48至图53是图37,图39,图46和图47所示天线结构的仿真结果图。其中,图48是本申请实施例提供的图37,图39,图46和图47所示天线结构的S参数图。图49是本申请实施例提供的图37,图39,图46和图47所示天线结构的系统效率和辐射效率的仿真结果图。图50是图37所示天线结构的电流分布示意图。图51是图39所示天线结构的电流分布示意图。图52是图46所示天线结构的电流分布示意图。图53是图47所示天线结构的电流分布示意图。
如图48所示,以S11<-4dB为例,图37,图39,图46和图47所示天线结构的谐振频段在1.85GHz附近,随着辐射体与地板之间设置的电感的数量增加,其谐振带宽逐渐展宽。
如图49所示,随着辐射体与地板之间设置的电感的数量增加,天线结构的辐射效率和系统效率均有明显增加。
如图50至图53所示,随着辐射体与地板之间设置的电感的数量的增加,天线结构产生辐射时,电流分布更加均匀。
应理解,由于辐射体与地板之间设置的电感,使天线结构的辐射体长度由18.4mm(图37所示天线结构)拓展到53.4mm(图47所示天线结构),辐射口径增加,可降低导体损耗,如下表4所示。
表4

如上表4所示,辐射体与地板之间设置的电感可以降低导体损耗,但是对介质损耗的改善并不明显。
图54是本申请实施例提供的一种天线结构300的示意图。
如图54所示,天线结构300可以包括辐射体310,地板320,第一电感331和第二电感332。
其中,辐射体310包括第一端301和第二端302,以及位于第一端301和第二端302之间的第一连接点311和第二连接点312。辐射体310在第一端301和第二端302处通过地板320接地。第一电感331和第二电感332的电感值均小于第一阈值。辐射体310的长度大于第一波长的四分之三,辐射体从第一端301至第二端302的部分用于产生第一谐振,第一波长为第一谐振的介质波长。第一电感331电连接于第一连接点311与地板320之间,第二电感332电连接于第二连接点312与地板320之间。第一连接点311与辐射体310的中心之间的距离小于第一波长的八分之一,第二连接点312位于第一连接点311与第二端302之间。
应理解,辐射体310的中心可以理解为辐射体310的物理长度的中点,或者,也可以理解为辐射体310的电长度的中点。当辐射体210在中心区域开设缝隙时,辐射体310的中心也可以理解为落在缝隙上的物理长度的中点。
在一个实施例中,辐射体310还可以包括馈电点303,馈电点303用于为天线结构300馈入电信号,以使其产生辐射。
应理解,本申请实施例提供的技术方案可以利用在辐射体和地板之间电连接的电感,从而使馈电点馈入电信号时,由于辐射体310在第一连接点311和第二连接点312处与地板320之间分别电连接第一电感331和第二电感332,辐射体320上的电流在第一连接点311和第二连接点312处的附近区域发生反向。在一个实施例中,电流反向区域包括第一连接点311和第二连接点312。对应的,在第一电感331和第二电感332与地板320的连接处,其地板320上的电流也会发生反向。在一个实施例中,地板上的电流反向区域包括第一电感331和第二电感332与地板320的连接处。可以分散辐射体上的电流密度(减小单个电流强点的强度,使电流均匀分布)从而减少辐射体和辐射体周围设置的介质所带来的损耗,进而提升天线结构的效率。
并且,由于在辐射体320上的电流在第一连接点311和第二连接点312附近的区域发生反向,因此,电场在第一连接点311和第二连接点312处无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),不存在零点,增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。在一个实施例中,第一端301和第二端302之间的辐射体320与地板320之间,电场同向。
在一个实施例中,馈电点303位于辐射体310的中心与第一端301或辐射体310的中心与第二端302之间。天线结构300可以通过偏馈的方式馈入电信号,以使天线结构300 可以同时工作在CM模式和DM模式,拓展天线结构300的工作频段。
应理解,在本申请实施例中,为了论述的简洁,仅以偏馈的方式进行说明,在实际的应用中可以通过中心对称馈电或中心反对称馈电激励天线结构的DM模式和CM模式,本申请对此并不做限制,可以根据电子设备内部的布局进行调整,在下述实施例中也可以相应理解。
在一个实施例中,第一电感331和第二电感332的电感值可以根据天线结构300产生的谐振频率进行调整。当第一谐振的频率小于或等于1GHz时,第一阈值为6nH。当第一谐振的频率大于1GHz且小于或等于2.2GHz时,第一阈值为4nH。当第一谐振的频率大于2.2GHz且小于或等于3GHz时,第一阈值为3nH。当第一谐振的频率大于3GHz时,第一阈值为2nH。
应理解,根据不同的天线结构的工作频段设计第一电感331和第二电感332的电感值,可以使在该工作频段内,辐射体上的电流分布更为均匀,减少导体损耗,从而提升天线结构的效率。
在一个实施例中,电子设备还包括导电边框,边框上具有第一位置和第二位置,第一位置和第二位置之间的边框作为辐射体310。边框在第一位置和第二位置处与边框的其余部分连续,边框在第一位置和第二位置处并不设置绝缘缝隙。
在一个实施例中,第一连接点311和第二连接点312分别设置于辐射体310的中心两侧。第一连接点311位于第一端301和辐射体310的中心之间,第二连接点312位于第二端302和辐射体310的中心之间。第二连接点312与辐射体310的中心之间的距离小于第一波长的八分之一。
应理解,在辐射体310的中心两侧分别电连接有电感,可以使辐射体310的中心两侧的辐射体310上的电流均受到接地电感的影响,从而使辐射体310上的电流分布更均匀。同时,可以使辐射体310在中心两侧产生的电场不包括电场反向区域,增大天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
在一个实施例中,天线结构300还可以包括至少一个第三电感,电连接于相应的至少一个第三连接点和地板320之间,至少一个第三电感和至少一个第三连接点可以一一对应,至少一个第三连接点位于辐射体310的第一端301与第一连接点311之间。
在一个实施例中,天线结构100还可以包括至少一个第四电感,电连接于相应的至少一个第四连接点和地板320之间,至少一个第四电感和至少一个第四连接点可以一一对应,至少一个第四连接点位于辐射体310的第二端302与第二连接点312之间。
应理解,在辐射体310和地板320增加设置的电感的数量,可以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的导体所带来的损耗。同时,在每个辐射体连接电感的位置均包括电流反向区域,使电场无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
在一个实施例中,辐射体310上可以开设有一个或多个缝隙304,缝隙(或电容)的设置位置可以参照前序实施例,辐射体310上开设的缝隙结构可以等效为电容,从而使辐射体310等效为串联电容的超材料结构。应理解,在辐射体310与地板320之间设置电感,可以提升天线结构300在DM模式下的效率,在辐射体310上开设缝隙,可以提升天线结构300在CM模式下的效率。同时,辐射体310的中心可以落在辐射体外,例如当缝隙 304两侧的辐射体310的长度相同或大致相同时,辐射体310的中心位于缝隙内。
图55至图57是本申请实施例提供的一组天线结构的示意图。
如图55至图57所示,均为槽天线的不同结构的示意图。图55所示的天线结构为开设有开口的槽天线。如图56所示的天线结构,与图55所示的天线结构的区别在于,在辐射体上增加两个缝隙。如图57所示的天线结构,与图55所示的天线结构的区别在于,在辐射体与地板之间设置有两个电感。应理解,在图57所示的天线结构的基础上,还可以增加电感的数量,例如,在辐射体与地板之间设置的电感数量大于两个,例如,6个。
如图56所示,在一个实施例中,在辐射体上开设缝隙可以看作辐射体上设置的等效电容(例如,分布式电容)。在一个实施例中,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。
应理解,为便于直观的展示对槽天线工作在DM模式下天线效率的对比,以天线结构采用中心对称馈电为例进行说明。同时,如图55至图57所示的天线结构工作在DM模式下的二分之一波长模式,其工作频段包括2.3GHz为例进行说明。为保证如图55至图57所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图55所示的天线结构中,辐射体的长度为34mm。图56所示的天线结构中,辐射体的长度为64mm,在增加的缝隙两端的分布式电容的等效电容值或串联的集总电容的电容值均为0.1pF。图57所示的天线结构中,辐射体的长度为64mm,串联的电感的电感值均为2.3nH。
图58和图59是图55至图57所示天线结构的仿真结果图。其中,图58是本申请实施例提供的图55至图57所示天线结构的S参数图。图59是本申请实施例提供的图55至图57所示天线结构的系统效率和辐射效率的仿真结果图。
如图58所示,以S11<-4dB为例,图55至图57所示天线结构工作在DM模式下,工作频段均包括2.25GHz至2.35GHz,图57所示的天线结构的谐振产生的带宽更宽。
如图59所示,在上述频段内,图56所示的天线结构的效率(系统效率和辐射效率)与图55所示的天线结构基本相同。图57所示天线结构,由于增加设置在辐射体和地板之间的电感,天线结构的系统效率相较于图55所示的天线结构提升明显,在2.3Hz处约有1.8dB的提升,且辐射效率也有约2.4dB的提升。
图60至图62是图55至图57所示天线结构的电流和电场示意图。其中,图60是图55所示天线结构的电流和电场示意图。图61是图56所示天线结构的电流和电场示意图。图62是图57所示天线结构的电流和电场示意图。
如图60中的(a)所示,天线结构工作在DM模式下的二分之一波长模式,谐振时辐射体上的电流集中在两端的接地位置处。如图60中的(b)所示,天线结构谐振时产生的在辐射体与地板之间的电场集中在中心对称馈电的位置。
如图61中的(a)所示,天线结构工作在DM模式下的二分之一波长模式,谐振时辐射体上的电流集中在接地点附近的区域。如图61中的(b)所示,天线结构谐振时产生的在辐射体与地板之间的电场集中在辐射体增加的缝隙附近的区域。
如图62中的(a)所示,天线结构工作在DM模式下的二分之一波长模式,谐振时辐射体上的电流在连接电感处存在零点,电流密度相较于图60和图61所示的仿真图更为分散。如图62中的(b)所示,由于电流密度更为分散,因此,天线结构谐振时产生的在辐射体与地板之间的电场相较于图60和图61所示的仿真图有所减弱,可以降低导体损耗,从而提升天线结构的效率。
图63是本申请实施例提供的另一种天线结构的示意图
如图63所示的天线结构,与图57所示的天线结构的区别在于,在辐射体与地板之间设置有4个电感。
为便于直观的展示对缝隙天线工作在DM模式下天线效率的对比,以天线结构采用中心对称馈电为例进行说明。为保证如图55,图57和图63所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图55所示的天线结构中,辐射体的长度为35.6mm(约为第一波长的二分之一)。图57所示的天线结构中,辐射体的长度为51.6mm(约为第一波长的四分之三),串联的两个电感的电感值均为5.5nH,两个电感分别位于接地点两侧。图63所示的天线结构中,辐射体的长度为67.6mm(约为第一波长),串联的四个电感中,靠近接地点的电感的电感值均为5.5nH,靠近缝隙的电感的电感值均为5.8nH。为进一步提升辐射体的长度,拓展辐射口径,降低图63所示的天线结构中的电感值,辐射体的长度为79mm,串联的四个电感中,电感的电感值均为4nH。
图64至图66是图55,图57和图63所示天线结构的仿真结果图。其中,图64是本申请实施例提供的图55,图57和图63所示天线结构的S参数图。图65是本申请实施例提供的图55,图57和图63所示天线结构在辐射体导电率为105量级的系统效率和辐射效率的仿真结果图。图66是本申请实施例提供的图55,图57和图63所示天线结构在辐射体导电率为106量级的系统效率和辐射效率的仿真结果图。
如图64所示,以S11<-4dB为例,图55,图57和图63所示天线结构工作在DM模式下,其谐振频段在2.25GHz附近,随着辐射体与地板之间设置的电感的数量增加,其谐振带宽逐渐展宽。当辐射体与地板之间设置的电感的数量相同时,电感的电感值降低,谐振带宽逐渐展宽。
如图65和图66所示,随着辐射体与地板之间设置的电感的数量增加,天线结构的辐射效率和系统效率均有明显增加。当辐射体与地板之间设置的电感的数量相同时,电感的电感值降低,天线结构的辐射效率和系统效率均有明显增加。
在辐射体导电率为105量级下,在2.25Hz处,图63所示的天线结构(小电感值时对应的天线结构)相较于图55所示的天线结构的辐射效率约3.6dB的提升,如图65所示。
在辐射体导电率为106量级下,在2.25Hz处,图63所示的天线结构(小电感值时对应的天线结构)相较于图55所示的天线结构的辐射效率约2.4dB的提升,如图66所示。
应理解,由于辐射体与地板之间设置的电感,使天线结构的辐射体长度由35.6mm(图55所示天线结构)拓展到67.6mm(图63所示天线结构),辐射口径增加,可降低导体损耗,如下表5所示。当辐射体与地板之间设置的电感的数量相同时,电感的电感值降低,天线结构的辐射体长度可以进一步拓展到79mm,增大辐射口径,可以进一步提升天线结构的效率。
表5

如上表5所示,辐射体与地板之间设置的电感可以降低导体损耗,但是对介质损耗的改善并不明显。并且,如图64和66所示,降低辐射体的导电率后,天线结构的效率提升更为明显。
图67至图70分别是图55,图57和图63所示天线结构的电流分布示意图。其中,图67是图55所示天线结构的电流分布示意图。图68是图57所示天线结构的电流分布示意图。图69是图63所示天线结构在电感值较大时对应的电流分布示意图。图70是图63所示天线结构在电感值较小时对应的电流分布示意图。
如图67至图69所示,随着辐射体与地板之间设置的电感的数量增加,谐振时辐射体上的电流在连接电感附近的区域的零点增加,可以使电流密度更为分散,降低辐射时导体损耗,提升天线结构的效率。
如图69和图70所示,当辐射体与地板之间设置的电感的数量相同时,电感的电感值降低,可以进一步分散电流密度,降低导体损耗。
图71至图74是本申请实施例提供的一组天线结构的示意图。
如图71至图74所示,均为槽天线的不同结构的示意图,其与图54所示的槽天线的区别在于馈电方式的不同,图54所示的天线结构采用中心馈电的方式激励槽天线的CM模式,利用电连接于辐射体与地板之间的电感提升效率,而图71至图74所示的天线结构采用偏馈的方式,同时激励起CM模式和DM模式,利用电连接于辐射体与地板之间的电感和开设在辐射体上的缝隙提升效率。
。图71所示的天线结构为开设有开口(或称,缝隙,断缝等)的槽天线。如图72所示的天线结构,与图71所示的天线结构的区别在于,在图71中的辐射体上增加两个缝隙。如图73所示的天线结构,与图71所示的天线结构的区别在于,在辐射体与地板之间设置有大于等于两个电感,例如三个电感。如图74所示的天线结构,与图71所示的天线结构的区别在于,在辐射体上增加两个缝隙,且在辐射体与地板之间设置有两个电感。
应理解,在上述实施例中仅以辐射体与地板220之间设置两个或三个电感为例进行说明,本申请实施例提供的技术方案也可在辐射体与地板220之间设置数量大于或等于3个的电感,以使辐射体上的电流密度分布更加均匀,从而减少辐射体和辐射体周围设置的介质/导体所带来的损耗。
应理解,在上述实施例中仅以辐射体上设置两个或三个缝隙为例进行说明,本申请实施例提供的技术方案也可在辐射体上设置数量大于两个的缝隙,例如3个,6个等。
在一个实施例中,辐射体与地板之间可以设置数量大于两个的电感。进一步的,在一个实施例中,辐射体上还可以设置数量大于两个的缝隙。
如图71和图74所示,在一个实施例中,在辐射体上开设缝隙可以看作辐射体上设置的等效电容(例如,分布式电容)。在一个实施例中,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。
应理解,为便于直观的展示对槽天线工作在CM和DM模式下天线效率的对比,以天线结构采用偏馈同时激励起CM模式和DM模式为例进行说明。同时,如图71至图74所示的天线结构工作在CM模式和DM下的二分之一波长模式,CM模式对应的工作频段包括1.75GHz,DM模式对应的工作频段包括2.2GHz为例进行说明。为保证如图71至图74所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图71所示的天线结构中,辐射体的长度为34mm。图72所示的天线结构中,辐射体的长度为64mm,分布式电容341的等效电容值或集总电容341的电容值为0.5pF,分布式电容342的等效电容值或集总电容342的电容值为0.65pF,分布式电容343的等效电容值或集总电容343的电容值为0.15pF。图73所示的天线结构中,辐射体的长度为64mm,分布式电容351的等效电容值或集总电容351的电容值为0.1pF,电感352的电感值为3.5nH,电感353的电感值为6.5nH,电感354的电感值为10nH。图74所示的天线结构中,辐射体的长度为70mm,分布式电容361的等效电容值或集总电容361的电容值为0.6pF,分布式电容362的等效电容值或集总电容362的电容值为0.55pF,分布式电容363的等效电容值或集总电容363的电容值为0.35pF,电感364的电感值为3.5nH,电感365的电感值为4.5nH,电感366的电感值为10nH。
图75和图76是图71至图74所示天线结构的仿真结果图。其中,图75是本申请实施例提供的图71至图74所示天线结构的S参数图。图76是本申请实施例提供的图71至图74所示天线结构的系统效率和辐射效率的仿真结果图。
如图75所示,以S11<-4dB为例,图71至图74所示天线结构工作在CM模式和DM模式下,工作频段分别包括1.68GHz至1.85GHz(CM模式)以及2.15GHz至2.3GHz(DM模式),图74所示的天线结构的谐振产生的带宽更宽。
如图76所示,在上述频段内,相较于图71所示的天线结构的效率(系统效率和辐射效率),图72所示的天线结构可以提升在CM模式下(1.68GHz至1.85GHz)的效率,图73所示的天线结构可以提升在DM模式下(2.15GHz至2.3GHz)的效率。由于图74所示的天线结构结合了图72所示的天线结构以及图73所示的天线结构的特点,利用辐射体上设置的电容以及辐射体和地板之间设置的电感,可以使天线结构的效率在CM模式下(1.68GHz至1.85GHz)和DM模式下(2.15GHz至2.3GHz)均获得提升。例如,通过增加辐射体和地板之间设置的电感可以使天线结构的系统效率(在2.45GHz处)提升3dB以上。
图71至图74所示天线结构的SAR值如下表6所示,以输入功率为24dbm为例进行说明。
表6
如上表6所示,相较于图71所示的天线结构,图72所示的天线结构在1.75GHz(CM模式)和2.2GHz(DM模式)的SAR值均表现良好,图73所示的天线结构在1.75GHz(CM模式)和2.2GHz(DM模式)的SAR值均表现良好。由于图74所示的天线结构结合了图72所示的天线结构以及图73所示的天线结构的特点,因此,其在1.75GHz(CM模式)和2.2GHz(DM模式)的SAR值均表现良好。
图77是本申请实施例提供的一种天线结构400的示意图。
如图77所示,天线结构400可以包括辐射体410,地板420,第一电感431和第二电感432。
其中,辐射体410包括第一端401和第二端402,以及位于第一端401和第二端402之间的第一连接点411和第二连接点412。辐射体410在第一端401和第二端402处通过地板420接地。第一电感431和第二电感432的电感值均小于第一阈值。辐射体410的长度大于第一波长的四分之三,辐射体从第一端401至第二端402的部分用于产生第一谐振,第一波长为第一谐振的介质波长。第一电感431电连接于第一连接点411与地板420之间,第二电感432电连接于第二连接点412与地板420之间。第一连接点411与辐射体410的中心之间的距离小于第一波长的八分之一,第二连接点412位于第一连接点411与第二端402之间。
图77的(a)所示的天线结构400与图54所示的天线结构300的区别在于,天线结构300的辐射体310的长度等于第一端301和第二端302之间相隔的距离,辐射体310和地板320围成的直线型(例如条形)缝隙,而天线结构400的辐射体410的长度远大于第一端401和第二端402之间相隔的距离,辐射体410与地板420围成非直线型(T型或弯折型)缝隙。在一个实施例中,天线结构300为槽天线(slot antenna)。在一个实施例中,天线结构400为环天线(loop antenna)。在一个实施例中,第一端和第二端之间的距离L1与辐射体的长度L2大致相同,可以理解为L2×80%≤L1≤L2×120%,例如L2×90%≤L1≤L2×110%。在一个实施例中,辐射体的长度L2远大于第一端和第二端之间的距离L1,可以理解为,L1≤L2×50%,例如L1≤L2×30%。应理解,当第一端和第二端之间的距离L1与辐射体的长度L2的比例介于形成环天线和槽天线的比例时(例如,L2×30%≤L1≤L2×80%,),天线结构可以同时具有槽天线和环天线的特性。
在一个实施例中,辐射体410可以通过LDS设置在电子设备内的天线支架,或者,也可以设置在后盖上,本申请对此并不做限制。
在一个实施例中,当第一谐振的频率小于或等于1GHz时,第一阈值为20nH。当第一谐振的谐振的频率大于1GHz且小于或等于2.2GHz时,第一阈值为16nH。当第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为12nH。当第一谐振的频率大于3GHz时,所述第一阈值为10nH。
在一个实施例中,辐射体410上可以开设有一个或多个缝隙,缝隙(或电容)的设置位置可以参照前序实施例,辐射体410上开设的缝隙结构可以等效为电容,从而使辐射体410等效为串联电容的超材料结构。应理解,在辐射体410与地板420之间设置电感,可以提升天线结构400在DM模式下的效率,在辐射体410上开设缝隙,可以提升天线结构400在CM模式下的效率。同时,辐射体410的中心可以落在辐射体外,例如当缝隙两侧的辐射体410的长度相同或大致相同时,辐射体410的中心位于缝隙内。
在一个实施例中,辐射体410还可以包括馈电点,馈电点用于为天线结构400馈入电信号,以使其产生辐射。
图77的(b)所示,第一馈电点和第二馈电点分别设置在辐射体410的缝隙两端,或者说,第一馈电点和第二馈电点分别设置在辐射体410的第三端403和第四端404,为辐射体410提供中心反对称,或者也可以是不对称馈电。其中,第一馈电点和第二馈电点对应于同一馈源,例如,第一馈电点和第二馈电点的信号可以是幅度相等,相位不同的射频信号。
图77的(c)所示,第一馈电点和第二馈电点分别设置在辐射体410的缝隙两端,或者说,第一馈电点和第二馈电点分别设置在辐射体410的第三端403和第四端404,为辐射体410提供中心对称馈电。其中,第一馈电点和第二馈电点对应于同一馈源,例如,第一馈电点和第二馈电点与馈源的同一处电连接。
在一个实施例中,馈电点位于辐射体410的第一端401或第二端402之间。天线结构400可以通过偏馈的方式馈入电信号,以使天线结构400可以同时工作在CM模式和DM模式,拓展天线结构400的工作频段。在实际的应用中可以通过中心对称馈电或中心反对称馈电激励天线结构的CM模式和DM模式,本申请对此并不做限制,可以根据电子设备内部的布局进行调整,在下述实施例中也可以相应理解。
应理解,本申请实施例提供的技术方案可以应用于图77所示的环天线,可以利用在辐射体和地板之间设置的电感,从而使馈电点馈入电信号时,由于辐射体410在第一连接点411和第二连接点412处与地板420之间分别设置有第一电感431和第二电感432,辐射体420上的电流在第一连接点411和第二连接点412附近的区域发生反向。对应的,在第一电感431和第二电感432于地板420的连接处,其地板420上的电流也会发生反向。可以分散辐射体上的电流密度(减小单个电流强点的强度,使电流均匀分布)从而减少辐射体和辐射体周围设置的介质所带来的损耗,进而提升天线结构的效率。
并且,由于在辐射体420上的电流在第一连接点411和第二连接点412附近的区域发生反向,因此,电场在第一连接点411和第二连接点412处无法达到零点,使辐射体产生的电场连续,不发生反向(不包括电场反向区域),不存在零点,增大了天线结构的辐射口径,降低了导体损耗,提升天线结构的效率。
图78至图81是本申请实施例提供的一组天线结构的示意图。
如图78至图81所示,均为环天线的不同结构的示意图。图78所示的天线结构为辐射体中心位置开设有开口的环天线。如图79所示的天线结构,与图78所示的天线结构的区别在于,在图79中的辐射体上增加两个缝隙。如图80所示的天线结构,与图78所示的天线结构的区别在于,在辐射体与地板之间设置有两个电感。如图81所示的天线结构,与图78所示的天线结构的区别在于,在辐射体上增加两个缝隙,且在辐射体与地板之间设置有两个电感。
如图79和图81所示,在一个实施例中,在辐射体上开设缝隙可以看作辐射体上设置的等效电容(例如,分布式电容)。在一个实施例中,在辐射体上开设的缝隙两端可以串联电容(例如,集总电容),以形成串联电容的超材料结构。
图82和图83是图78至图81所示天线结构工作在CM模式下的仿真结果图。其中,图82是本申请实施例提供的图78至图81所示天线结构在CM模式下的S参数图。图83是本申请实施例提供的图78至图81所示天线结构在CM模式下的系统效率和辐射效率的 仿真结果图。
应理解,为便于直观的展示对环天线工作在CM模式下天线效率的对比,以天线结构采用中心对称馈电的方式激励起CM模式为例进行说明。同时,如图82和图83所示的天线结构工作在CM模式的二分之一波长模式。为保证如图78至图81所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图78所示的天线结构中,辐射体的长度为42.8mm。图79所示的天线结构中,辐射体的长度为62.8mm,分布式或集总电容441和分布式或集总电容442的电容值为0.35pF。图80所示的天线结构中,辐射体的长度为62.8mm,电感451和电感452的电感值为15nH。图81所示的天线结构中,辐射体的长度为62.8mm,分布式或集总电容461和分布式或集总电容362的电容值为0.4pF,电感463和电感464的电感值为12nH。应可理解,上述电感值仅作为示例,本申请的实施例中,在同时具有缝隙和接地电感的天线结构中,对接地电感的具体值不做限定。
如图82所示,以S11<-4dB为例,图78至图81所示天线结构工作在CM模式下,工作频段均包括1.7GHz至1.78GHz,图81所示的天线结构的谐振产生的带宽更宽。
如图83所示,在上述频段内,相较于图78所示的天线结构的效率(系统效率和辐射效率),图79所示的天线结构与图78所示的天线结构的效率大致相同。图80和图81所示的天线结构均可以提升天线结构的效率。例如,图81所示天线结构的系统效率(在1.75GHz处)提升1.1dB以上。
图84和图85是图78至图81所示天线结构工作在DM模式下的仿真结果图。其中,图84是本申请实施例提供的图78至图81所示天线结构在DM模式下的S参数图。图85是本申请实施例提供的图78至图81所示天线结构在DM模式下的系统效率和辐射效率的仿真结果图。
应理解,为便于直观的展示对环天线工作在DM模式下天线效率的对比,以天线结构采用中心反对称馈电的方式激励起DM模式为例进行说明。同时,如图84和图85所示的天线结构工作在DM模式的二分之一波长模式。为保证如图78至图81所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图78所示的天线结构中,辐射体的长度为42.8mm。图79所示的天线结构中,辐射体的长度为62.8mm,电容441和电容442的等效电容值为0.2pF。图80所示的天线结构中,辐射体的长度为62.8mm,电感451和电感452的电感值为2nH。图81所示的天线结构中,辐射体的长度为62.8mm,电容461和电容362的等效电容值为0.6pF,电感463和电感464的电感值为3.5nH。
如图84所示,以S11<-4dB为例,图78至图81所示天线结构工作在DM模式下,工作频段均包括1.7GHz至1.78GHz,图81所示的天线结构的谐振产生的带宽更宽。
如图85所示,在上述频段内,相较于图78所示的天线结构的效率(系统效率和辐射效率),图79所示的天线结构、图80和图81所示的天线结构均可以提升天线结构的效率。例如,图81所示天线结构的系统效率(在1.75GHz处)提升2dB以上。
图86和图87是图78至图81所示天线结构工作在CM和DM模式下的仿真结果图。其中,图86是本申请实施例提供的图78至图81所示天线结构的S参数图。图87是本申请实施例提供的图78至图81所示天线结构的系统效率和辐射效率的仿真结果图。
应理解,为便于直观的展示对环天线工作在CM和DM模式下天线效率的对比,以天线结构采用偏馈的方式同时激励起CM模式和DM模式为例进行说明。为保证如图78至图81所示的天线结构工作在相同的频段内,调整天线结构中辐射体的长度。图78所示的 天线结构中,辐射体的长度为42.8mm。图79所示的天线结构中,辐射体的长度为62.8mm,分布式电容441的等效电容值或集总电容441的电容值为0.4pF,分布式电容442的等效电容值或集总电容442的电容值为0.1pF,并在中心缝隙处设置电容,其电容值为0.45pF。图80所示的天线结构中,辐射体的长度为62.8mm,电感451和电感452的电感值为8nH,并在中心缝隙处设置电容,其电容值为0.1pF。图81所示的天线结构中,辐射体的长度为62.8mm,分布式电容461的等效电容值或集总电容461的电容值为0.2pF,分布式电容462的等效电容值或集总电容462的电容值为0.4pF,电感463的电感值为8nH,电感464的电感值为5nH,并通过中心缝隙设置分布式电容或集总电容,其等效电容值为0.15pF。
如图86所示,以S11<-4dB为例,图78至图81所示天线结构工作在CM模式和DM模式下,CM模式对应的工作频段均包括2.05GHz至2.2GHz,DM模式对应的工作频段均包括1.74GHz至1.8GHz,图81所示的天线结构的谐振产生的带宽更宽。
如图87所示,在上述频段内,相较于图78所示的天线结构的效率(系统效率和辐射效率),图79所示的天线结构可以提升天线结构在DM模式下的效率,但对CM模式下的效率提升不明显。图80和图81所示的天线结构在CM模式和DM模式下均可以提升天线结构的效率。例如,图81所示天线结构在CM模式和DM模式下的系统效率分别(在2.1GHz和1.75GHz处)提升1.3dB和0.7dB以上。
图78至图81所示天线结构的SAR值如下表7所示,以输入功率为24dbm为例进行说明。
表7
如上表7所示,相较于图78所示的天线结构,图79所示的天线结构在1.75GHz(CM模式)和2.1GHz(DM模式)的SAR值均表现良好,图80所示的天线结构在1.75GHz(CM模式)和2.1GHz(DM模式)的SAR值均表现良好。由于图81所示的天线结构结合了图79所示的天线结构以及图80所示的天线结构的特点,因此,其在1.75GHz(CM模式)和2.1GHz(DM模式)的SAR值均表现最优。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种电子设备,其特征在于,包括:
    辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的接地点、第一连接点和第二连接点,所述接地点设置于所述辐射体的中心区域,其中所述第一端和所述第二端均为开放端;
    地板,所述辐射体在所述接地点处通过所述地板接地;
    第一电感和第二电感,所述第一电感和所述第二电感的电感值均小于或等于第一阈值;
    其中,所述第一端至所述第二端的所述辐射体的长度大于第一波长的四分之三,所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,其中,所述第一波长为所述第一谐振的介质波长;
    所述第一电感电连接于所述第一连接点与所述地板之间,所述第二电感电连接于所述第二连接点与所述地板之间;
    所述第一连接点与所述第一端之间的距离小于所述第一波长的四分之一,所述第二连接点位于所述第一连接点与所述第二端之间。
  2. 根据权利要求1所述的电子设备,其特征在于,
    当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;
    当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;
    当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;
    当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。
  3. 根据权利要求1或2所述的电子设备,其特征在于,
    所述第一连接点位于所述第一端和所述接地点之间,所述第二连接点位于所述第二端和所述接地点之间;
    所述第二连接点与所述第二端之间的距离小于所述第一波长的四分之一。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    第三电感,电连接于第三连接点和地板之间,所述第三连接点位于所述接地点与所述第一连接点之间;和/或
    第四电感,电连接于第四连接点和地板之间,所述第四连接点位于所述接地点与所述第二连接点之间。
  5. 根据权利要求1至4中任一项所述的电子设备,其特征在于,所述辐射体上开设有一个或多个绝缘缝隙,每个缝隙宽度大于或等于0.1mm且小于或等于2mm。
  6. 根据权利要求1至5中任一项所述的电子设备,其特征在于,
    所述电子设备还包括导电边框,所述边框上具有第一位置和第二位置,所述第一位置和所述第二位置之间的边框作为所述辐射体,所述辐射体的中心区域为距离所述辐射体的中心5mm以内的区域,所述边框在所述第一位置和所述第二位置分别设置有绝缘缝隙。
  7. 一种电子设备,其特征在于,包括:
    辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点和第二连接点;
    地板,所述辐射体在所述第一端和所述第二端处通过所述地板接地;
    第一电感和第二电感,所述第一电感和所述第二电感的电感值均小于第一阈值;
    其中,所述辐射体的长度大于第一波长的四分之三,所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,其中,所述第一波长为所述第一谐振的介质波长;
    所述第一电感电连接于所述第一连接点与所述地板之间,所述第二电感电连接于所述第二连接点与所述地板之间;
    所述第一连接点位于所述辐射体的中心与所述第一端之间,并与所述辐射体的中心的距离小于所述第一波长的八分之一,所述第二连接点位于所述第一连接点与所述第二端之间。
  8. 根据权利要求7所述的电子设备,其特征在于,
    所述第一端和所述第二端相隔的距离等于所述辐射体的长度,其中
    当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;
    当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;
    当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;
    当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH;
    或者,所述第一端和所述第二端相隔的距离小于所述辐射体的长度,其中;
    当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为20nH;
    当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为16nH;
    当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为12nH;
    当所述第一谐振的频率大于3GHz时,所述第一阈值为10nH。
  9. 根据权利要求7或8所述的电子设备,其特征在于,
    所述第二连接点位于所述第二端和所述辐射体的中心之间;
    所述第二连接点与所述辐射体的中心之间的距离小于所述第一波长的八分之一。
  10. 根据权利要求7至9中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    第三电感,电连接于第三连接点和地板之间,所述第三连接点位于所述辐射体的中心与所述第一连接点之间;和/或
    第四电感,电连接于第四连接点和地板之间,所述第四连接点位于所述辐射体的中心与所述第二连接点之间。
  11. 根据权利要求7至10中任一项所述的电子设备,其特征在于,所述辐射体开设一个或多个绝缘缝隙,每个缝隙宽度大于或等于0.1mm且小于或等于2mm。
  12. 根据权利要求7至11中任一项所述的电子设备,其特征在于,
    所述电子设备还包括导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置和所述第二位置之间的边框作为所述辐射体,所述边框在所述第一位置和所述第二位置处与边框的其余部分连续。
  13. 一种电子设备,其特征在于,包括:
    辐射体,包括第一部分,所述辐射体的第一部分包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点和馈电点,其中,所述第二端为开放端;
    地板,所述辐射体在所述第一端处通过所述地板接地;
    第一电感,所述第一电感的电感值小于第一阈值;
    其中,所述第一部分的长度大于第一波长的八分之三,所述第一部分用于产生第一谐振,所述第一波长为所述第一谐振的介质波长;
    所述第一电感电连接于所述第一连接点与所述地板之间,所述第一连接点设置于所述馈电点和所述第一端之间;
    所述第一连接点与所述第二端的距离小于所述第一波长的四分之一。
  14. 根据权利要求13所述的电子设备,其特征在于,
    所述辐射体还包括位于所述第一连接点和所述第一端之间的第二连接点;
    所述电子设备还包括第二电感,所述第二电感电连接于所述第二连接点与所述地板之间。
  15. 根据权利要求13或14所述的电子设备,其特征在于,
    所述辐射体还包括第二部分,所述辐射体的第二部分包括第三端和第四端,以及位于所述第三端和所述第四端之间的第三连接点,所述第一部分的第一端与所述第二部分的第三端连接以形成连续的辐射体,其中,所述第四端为开放端;
    第三电感,所述第三电感电连接于所述第三连接点与所述地板之间,所述第三电感的电感值小于所述第二阈值;
    所述第一部分的长度与所述第二部分的长度不同;
    所述第二部分的长度大于第二波长的八分之三,所述第二部分用于产生第二谐振,所述第二波长为所述第二谐振的介质波长;
    所述第三连接点与所述第四端的距离小于所述第二波长的四分之一。
  16. 根据权利要求15所述的电子设备,其特征在于,
    当所述第二谐振的频率小于或等于1GHz时,所述第二阈值为6nH;
    当所述第二谐振的频率大于1GHz且小于或等于2.2GHz时,所述第二阈值为4nH;
    当所述第二谐振的频率大于2.2GHz且小于或等于3GHz时,所述第二阈值为3nH;
    当所述第二谐振的频率大于3GHz时,所述第二阈值为2nH。
  17. 根据权利要求13至16中任一项所述的电子设备,其特征在于,
    当所述第一谐振的频率小于或等于1GHz时,所述第一阈值为6nH;
    当所述第一谐振的频率大于1GHz且小于或等于2.2GHz时,所述第一阈值为4nH;
    当所述第一谐振的频率大于2.2GHz且小于或等于3GHz时,所述第一阈值为3nH;
    当所述第一谐振的频率大于3GHz时,所述第一阈值为2nH。
  18. 一种电子设备,其特征在于,包括:
    辐射体,包括第一端和第二端,以及位于所述第一端和所述第二端之间的第一连接点、第二连接点;
    地板,所述辐射体通过所述地板接地;
    第一电感,电连接于所述第一连接点与所述地板之间,所述第一电感的电感值小于或等于第一阈值;
    第二电感,电连接于所述第二连接点与所述地板之间,所述第二电感的电感值小于或等于所述第一阈值;
    所述辐射体从所述第一端至所述第二端的部分用于产生第一谐振,所述辐射体在第一 区域的电流和/或所述地板在第二区域的电流包括电流反向区域,所述第一区域包括所述第一连接点和所述第二连接点,所述第二区域包括所述第一电感和所述地板连接处以及所述第二电感和所述地板连接处;和/或
    所述辐射体产生所述第一谐振时,所述辐射体在所述第一区域与所述地板之间产生的磁场同向。
  19. 根据权利要求18所述的电子设备,其特征在于,所述第一电感与所述辐射体或所述地板之间均不包括开关,所述第二电感与所述辐射体或所述地板之间均不包括开关。
  20. 根据权利要求18或19所述的电子设备,其特征在于,
    所述辐射体开设绝缘缝隙;
    所述辐射体产生所述第一谐振时,所述辐射体在第五区域的电流不包括电流反向区域,所述第五区域包括所述绝缘缝隙;和/或
    所述辐射体产生所述第一谐振时,所述辐射体在所述第五区域的磁场包括磁场反向区域。
PCT/CN2023/084759 2022-04-01 2023-03-29 一种电子设备 WO2023185940A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210348011 2022-04-01
CN202210348011.3 2022-04-01
CN202210849062.4A CN116937136A (zh) 2022-04-01 2022-07-19 一种电子设备
CN202210849062.4 2022-07-19

Publications (1)

Publication Number Publication Date
WO2023185940A1 true WO2023185940A1 (zh) 2023-10-05

Family

ID=88199333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084759 WO2023185940A1 (zh) 2022-04-01 2023-03-29 一种电子设备

Country Status (1)

Country Link
WO (1) WO2023185940A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027751A1 (en) * 2008-09-05 2010-03-11 Rayspan Corporation Frequency-tunable metamaterial antenna apparatus
CN105305098A (zh) * 2015-09-29 2016-02-03 电子科技大学 基于强互耦效应的超宽带共孔径相控阵天线及研制方法
US20210143529A1 (en) * 2019-11-11 2021-05-13 Wistron Neweb Corp. Antenna structure
CN113451741A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 一种天线及终端设备
CN113745832A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 天线和电子设备
CN114122712A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 一种天线结构及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027751A1 (en) * 2008-09-05 2010-03-11 Rayspan Corporation Frequency-tunable metamaterial antenna apparatus
CN105305098A (zh) * 2015-09-29 2016-02-03 电子科技大学 基于强互耦效应的超宽带共孔径相控阵天线及研制方法
US20210143529A1 (en) * 2019-11-11 2021-05-13 Wistron Neweb Corp. Antenna structure
CN113451741A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 一种天线及终端设备
CN113745832A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 天线和电子设备
CN114122712A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 一种天线结构及电子设备

Similar Documents

Publication Publication Date Title
KR102455333B1 (ko) 안테나 시스템 및 단말 기기
WO2021203942A1 (zh) 一种电子设备
WO2022042147A1 (zh) 一种天线结构及电子设备
CN109286077B (zh) 移动装置
WO2021143419A1 (zh) 天线结构及具有该天线结构的电子设备
CN110556621B (zh) 天线架构及通信装置
CN111478016B (zh) 移动装置
WO2024051743A1 (zh) 天线装置和电子设备
WO2023221876A1 (zh) 一种电子设备
TWI724754B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN113140892B (zh) 天线结构及具有该天线结构的无线通信装置
WO2023185940A1 (zh) 一种电子设备
TWI669851B (zh) 行動裝置
WO2023246694A1 (zh) 一种电子设备
CN108432048B (zh) 一种缝隙天线和终端
WO2024055870A1 (zh) 一种天线结构和电子设备
CN116154474A (zh) 终端天线及移动终端设备
WO2023246690A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2024046200A1 (zh) 一种电子设备
Baudha et al. Dual band Microstrip patch antenna with Secondary Patch
CN116937136A (zh) 一种电子设备
WO2023116780A1 (zh) 一种电子设备
CN114156636B (zh) 终端设备及其天线结构
CN108923117A (zh) 一种天线及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778305

Country of ref document: EP

Kind code of ref document: A1