WO2023185033A1 - 一种防漏热装置及单晶炉系统 - Google Patents

一种防漏热装置及单晶炉系统 Download PDF

Info

Publication number
WO2023185033A1
WO2023185033A1 PCT/CN2022/134546 CN2022134546W WO2023185033A1 WO 2023185033 A1 WO2023185033 A1 WO 2023185033A1 CN 2022134546 W CN2022134546 W CN 2022134546W WO 2023185033 A1 WO2023185033 A1 WO 2023185033A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal field
single crystal
crystal furnace
insulation layer
main body
Prior art date
Application number
PCT/CN2022/134546
Other languages
English (en)
French (fr)
Inventor
李晓东
安磊
Original Assignee
Tcl中环新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl中环新能源科技股份有限公司 filed Critical Tcl中环新能源科技股份有限公司
Priority to US18/040,114 priority Critical patent/US20240247401A1/en
Publication of WO2023185033A1 publication Critical patent/WO2023185033A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present disclosure belongs to the technical field of single crystal production, and in particular relates to a heat leakage prevention device that avoids degradation of thermal insulation performance when an external re-injection device is used for feeding, and a single crystal furnace system equipped with the heat leakage prevention device.
  • the photovoltaic industry has developed rapidly in recent years. In the environment where the photovoltaic industry pursues low cost and high efficiency, reducing the waste of working hours and improving the utilization rate of working hours can effectively increase production capacity, thereby reducing costs and improving market competitiveness.
  • the main cost reduction methods are: high pulling speed, large charge, multiple crystal pulling and other new technologies, new processes and the application of supporting new thermal field materials.
  • the existing 36-inch thermal field re-starting hours account for 12.6%-15.4% of the total operating time.
  • the single-crystal slow cooling and re-starting hours are invalid hours (no output), and the current single-barrel re-starting hours (excluding slow cooling and stabilization time) ) is 1.92h. Resumption requires more personnel and high labor intensity. Reducing resumption working hours and labor intensity can effectively increase theoretical production capacity.
  • holes need to be opened in the thermal field (such as insulation cylinders and insulation felts). Opening holes will lead to poor thermal insulation, heat loss and changes in air flow direction, affecting power consumption and crystallization.
  • the present disclosure provides a heat leakage prevention device and a single crystal furnace system suitable for single crystal furnaces to solve the above or other former problems existing in the prior art.
  • the technical solution adopted by the present disclosure is: a heat leakage prevention device for a single crystal furnace, wherein the heat leakage prevention device includes a thermal field structure and a sealing device arranged outside the single crystal furnace.
  • the thermal field structure is provided with a thermal field opening for feeding the single crystal furnace
  • the sealing device is disposed on a side of the thermal field structure close to the single crystal furnace
  • the sealing device is movably arranged to expose or completely block the thermal field opening.
  • the blocking device includes a blocking member.
  • the blocking member includes a main body and a protruding portion connected to the main body.
  • the protruding portion is provided on a side of the main body. side so that the main body is positioned at the thermal field opening, and the shape of the main body matches the shape of the corresponding side of the thermal field structure to completely block the thermal field opening.
  • the area of the side of the main body facing the thermal field opening is larger than the area of the thermal field opening.
  • the protruding portion is provided at the lower end of the main body.
  • the protruding portion is in contact with the thermal field structure.
  • the part below the thermal field opening is in close contact.
  • the protruding portion is concave in a direction away from the thermal field opening.
  • the thermal field structure includes an upper thermal insulation layer and a middle thermal insulation layer located below the upper thermal insulation layer, wherein the thermal field openings are disposed between the upper thermal insulation layer and the middle thermal insulation layer. between the thermal insulation layers; wherein relative to the upper thermal insulation layer, the middle thermal insulation layer protrudes toward the single crystal furnace.
  • the recessed portion of the protruding portion matches the protruding portion of the middle insulation layer, and the length of the recessed portion is equal to the length of the protruding portion.
  • the blocking device further includes a connecting piece.
  • One end of the connecting piece is connected to the device for moving it, and the other end is connected to the blocking piece.
  • the connecting piece is at Extends in the vertical direction to guide the blocking device to move in the vertical direction.
  • the material of the blocking member is consistent with the material of the upper thermal insulation layer.
  • the invention also provides a single crystal furnace system, which includes a guide tube lifting device, a heat leakage prevention device and a single crystal furnace, wherein: the heat leakage prevention device includes a thermal field structure arranged outside the single crystal furnace. and a blocking device, the thermal field structure is provided with a thermal field opening for feeding the single crystal furnace, and the blocking device is provided on a side of the thermal field structure close to the single crystal furnace, The blocking device is movably disposed to expose or completely block the thermal field opening, wherein the guide tube lifting device is disposed at the upper end of the heat leakage prevention device and is connected to the blocking device to Guide the movement of the blocking device, wherein the single crystal furnace is provided inside the heat leakage prevention device and is provided with a first opening, and the position of the first opening is consistent with the position of the thermal field opening. The location corresponds.
  • the blocking device includes a blocking member.
  • the blocking member includes a main body and a protruding portion connected to the main body.
  • the protruding portion is provided on a side of the main body. side so that the main body is positioned at the thermal field opening, and the shape of the side of the main body facing the thermal field opening matches the shape of the corresponding side of the thermal field structure to completely block the Thermal field opening.
  • the area of the side of the main body facing the thermal field opening is larger than the area of the thermal field opening.
  • the protruding portion is provided at the lower end of the main body.
  • the protruding portion is in contact with the thermal field structure.
  • the part below the thermal field opening is in close contact.
  • the protruding portion is concave in a direction away from the thermal field opening.
  • the thermal field structure includes an upper thermal insulation layer and a middle thermal insulation layer located below the upper thermal insulation layer, wherein the thermal field openings are disposed between the upper thermal insulation layer and the middle thermal insulation layer. between the thermal insulation layers; wherein relative to the upper thermal insulation layer, the middle thermal insulation layer protrudes toward the single crystal furnace.
  • the recessed portion of the protruding portion matches the protruding portion of the middle insulation layer, and the length of the recessed portion is equal to the length of the protruding portion.
  • the blocking device further includes a connecting piece.
  • One end of the connecting piece is connected to the device for moving it, and the other end is connected to the blocking piece.
  • the connecting piece is at Extends in the vertical direction to guide the blocking device to move in the vertical direction.
  • the material of the blocking member is the same as the material of the upper thermal insulation layer.
  • the invention also provides a heat leakage prevention device for use in a single crystal furnace to prevent heat loss.
  • the heat leakage prevention device includes a thermal field structure and a blocking device arranged outside the single crystal furnace.
  • the thermal field structure is provided with a device for feeding materials into the single crystal furnace.
  • the thermal field opening is disposed on a side of the thermal field structure close to the single crystal furnace, and the blocking device is movably disposed to expose or completely block the thermal field opening. .
  • the heat leakage prevention device has a simple structure and is easy to use.
  • the blocking device of the heat leakage prevention device is connected to the guide tube lifting mechanism, so that the blocking device can move under the action of the guide tube lifting mechanism. , can be raised or lowered.
  • the blocking device blocks the opening of the thermal field to avoid the loss of heat during the crystal pulling process and the change of the gas direction in the single crystal furnace, ensuring the efficiency of the crystal pulling process. The consumption and crystal formation will not be affected.
  • the blocking device When re-investment is required, the blocking device is lifted under the action of the guide tube lifting mechanism, so that the external re-investment device can enter the single crystal furnace for re-investment, and the external re-investment device The re-injection device will not come into contact with the guide tube, and the guide tube lifting mechanism can simultaneously drive the guide tube and the blocking device to ensure the re-injection action;
  • the blocking device has a main body and a protruding part.
  • the area of the main body is larger than the area of the thermal field opening, so that the main body can completely block the thermal field opening.
  • the main body overlaps with the side wall of the upper insulation layer to avoid heat. It is lost from the gap between the thermal field opening and the main body; the protruding part seals the contact gap between the main body and the middle insulation layer to prevent heat from being lost from the contact gap, without causing heat leakage, and at the same time ensuring the single crystal furnace The direction of airflow inside will not change.
  • Figure 1 is a schematic structural diagram of a heat leakage prevention device and a single crystal furnace installed according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of the blocking device in the heat leakage prevention device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of the thermal field structure in the heat leakage prevention device according to an embodiment of the present disclosure.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection or mutual communication; it can It can be directly connected, or it can be indirectly connected through an intermediate medium. It can be the internal connection between two elements or the interaction between two elements.
  • the single crystal furnace is re-injected through an external re-injection device (that is, the single crystal furnace is re-injected into the single crystal furnace again in the subsequent process)
  • materials to the furnace wall and thermal field structure of the single crystal furnace for example,
  • the insulation layer structure surrounding the periphery of the single crystal furnace such as insulation cylinder, insulation felt, etc.
  • the insulation layer structure surrounding the periphery of the single crystal furnace has holes to facilitate the transfer of materials into the single crystal furnace through the external re-injection device, thereby realizing re-injection of materials.
  • the openings in the thermal field structure will lead to poor thermal insulation of the insulation layer structure and cause heat loss. At the same time, it will change the direction of air flow in the single crystal furnace, affecting power consumption and crystallization.
  • the present disclosure provides a heat leakage prevention device.
  • the blocking device in the anti-leakage heat device is movably arranged on one side of the opening of the thermal field structure. After the material is re-injected, the blocking device seals the opening on the thermal field structure so that the The thermal field structure is the same as the thermal field structure without openings, which avoids the deterioration of the thermal insulation properties of the thermal field structure caused by the openings, avoids heat loss, and ensures that the direction of the air flow in the single crystal furnace does not change.
  • FIG. 1 shows the installation of the heat leakage prevention device according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic structural view of a blocking device of a heat leakage prevention device according to an embodiment of the present disclosure.
  • Figure 3 shows a heat leakage prevention device according to an embodiment of the present disclosure. Structural diagram of the thermal field structure in . Referring to Figures 1 and 3, the heat leakage prevention device is provided on the periphery of the single crystal furnace 7 and includes a thermal field structure 10 and a blocking device 11.
  • the blocking device 11 includes a blocking part 2 and a connecting part 1.
  • the blocking part 2 is connected to one end of the connecting part 1, and the other end of the connecting part 1 is connected to the guide tube lifting mechanism 9.
  • the thermal field structure 10 is provided with a thermal field opening 3, and the blocking member 2 is located on one side of the thermal field opening 3 for blocking or exposing the thermal field opening 3.
  • the blocking member 2 moves under the action of the guide tube lifting mechanism 9.
  • the blocking member 2 is away from the hot field opening 3.
  • the blocking member 2 does not block the hot field opening 3. External re-injection is required.
  • the device 6 re-throws materials through the hot field opening 3.
  • the blocking member 2 moves under the action of the guide tube lifting mechanism 9, close to the hot field opening 3, and moves to one side of the hot field opening 3.
  • the thermal field opening 3 is blocked to ensure that the heat preservation of the thermal field structure remains unchanged during the crystal pulling process, to avoid heat loss, and to ensure that the direction of the air flow in the single crystal furnace 7 remains unchanged and will not affect the crystal pulling process. power consumption and crystal formation.
  • the blocking member 2 includes a main body 100 and a protruding part 101.
  • the main body 100 is connected to the protruding part 101.
  • the protruding part 101 is provided on one side of the main body 100.
  • the connecting part 1 and the main body 100 are provided with protruding parts.
  • One side of the portion 101 is connected to the other side.
  • the main body 100 has a first side 100a close to the single crystal furnace 7, a second side 100b facing the thermal field opening 3, a third side 100c provided with the protruding portion 101, and a fourth side l00d connected to the connecting rod 1. .
  • the main body 100 blocks the hot field opening 3, and the protruding portion 101 is positioned during the movement of the blocking device 11, so that the blocking device 11 can accurately move to one side of the hot field opening 3. side, the thermal field opening 3 is blocked.
  • the protruding portion 101 and the connector 1 are respectively located on a set of oppositely arranged side surfaces of the main body 100. When the blocking device 11 moves in the direction of the thermal field opening 3, the protruding portion 101 and the connecting piece 1 are protruded.
  • the part 101 first contacts the thermal field structure 10 until the main body 100 contacts the thermal field structure 10, so that the main body 100 blocks the thermal field opening 3.
  • the second side 100b of the main body 100 is The shape is consistent with the shape of the corresponding side wall of the thermal field structure 10, so that when the blocking member 2 blocks the thermal field opening 3, the second side 100b of the main body 100 is closely connected to the side wall of the thermal field structure 10 Contact, without gaps, avoid heat loss during the crystal pulling process, and ensure that the direction of the air flow in the single crystal furnace 7 remains unchanged during the crystal pulling process.
  • the main body 100 can have various structures, for example, it can be a block structure, and its cross-sectional shape can be square, rectangular, curved, or other shapes, which can be selected according to actual needs. Settings, there are no specific requirements here.
  • the main body 100 is a curved block structure, so that the main body 100 is in close contact with the corresponding side of the thermal field structure 10 .
  • the protruding portion 101 is protrudingly provided on the third side 100 c of the main body 100 .
  • the protruding portion 101 and the main body 100 can be fixedly connected.
  • the protruding portion 101 and the main body 100 are integrally formed, so that the blocking member 2 has a stable structure and a long service life.
  • One side of the protruding portion 101 is flush with the first side 100a of the main body 100 . For example, referring to FIG.
  • the first side 101 a of the protruding part 101 faces the single crystal furnace 7
  • the second side 101 b of the protruding part 101 faces the thermal field opening 3
  • the first side 101 a of the protruding part 101 is in contact with the main body 100
  • the first side 100a of the main body 100 is flush, so that the protruding portion 101 and the third side of the main body 100 are arranged in an L shape.
  • the area of the second side 100b of the main body 100 is larger than the area of the thermal field opening 3, so that the blocking member 2 can completely block the thermal field opening 3.
  • the side 100b of the blocking member 2 overlaps with the side wall of the thermal field structure 10 above the thermal field opening 3 to a certain length, completely blocking the thermal field opening 3, and the thermal field opening 3 There will be no gap between the main body 100 and the heat field opening 3 to avoid heat loss.
  • the above-mentioned thermal field structure 10 includes an upper insulation layer 4 and a middle insulation layer 5 .
  • the thermal field opening 3 is provided at the lower end of the upper insulation layer 4 and exposes the upper surface of the middle insulation layer 5 .
  • the first side 4a of the upper thermal insulation layer 4 faces the single crystal furnace 7, and the first side 5a of the middle thermal insulation layer 5 faces the single crystal furnace 7. Relative to the first side surface 4a of the upper thermal insulation layer 4, the first side surface 5a of the middle thermal insulation layer 5 protrudes toward the single crystal furnace 7.
  • the thickness of the main body 100 (that is, the length in the horizontal direction) is greater than the protruding length of the first side 5a of the middle insulation layer 5, so that when the blocking member 2 blocks the thermal field opening 3, the protruding portion 101 is in contact with the middle insulation layer.
  • the first side 5a of the main body 100 is in contact with the middle insulation layer 5 to seal the gap between the main body 100 and the middle insulation layer 5 to avoid heat loss.
  • the main body 100 blocks the thermal field opening 3
  • the second side 100b of the main body 100 and the upper insulation layer 4 The side walls are in contact and partially overlap.
  • the third side 100c of the main body 100 with the protruding portion 101 is in contact with the middle thermal insulation layer 5, and the main body 100 is located on the top of the middle thermal insulation layer 5.
  • the protruding portion 101 is in contact with the middle thermal insulation layer 5.
  • the first side 5a of 5 is in contact with each other to achieve complete sealing of the thermal field opening 3, without causing heat loss due to the gaps between the sealing member 2 and the upper insulation layer 4 and the middle insulation layer 5 respectively.
  • the material of the blocking member 2 can be consistent with the material of the upper insulation layer 4 so that new impurities will not be introduced during the single crystal drawing process and affect the quality of the single crystal.
  • the main body 100 In order to enable the main body 100 to completely block the thermal field opening 3, the main body 100 is in close contact with the upper insulation layer 4 and the middle insulation layer 5. In the embodiment of the present disclosure, the main body 100 is arranged vertically and parallel to the upper insulation layer 4 .
  • the connector 1 may have various structures.
  • the above-mentioned connecting member 1 is a rod-shaped structure, including a first connecting rod 200 and a second connecting rod 201.
  • One end of the first connecting rod 200 is connected to one end of the second connecting rod 201.
  • the first connecting rod 200 is connected to an end of the second connecting rod 201.
  • the other end of 200 is connected to the guide tube lifting structure 9, and the other end of the second connecting rod 201 is connected to the blocking member 2.
  • the upper insulation layer 4 will not be damaged.
  • the second connecting rod 201 is arranged vertically, the first connecting rod 200 and the second connecting rod 201 are arranged to intersect, so that the first connecting rod 200 can be connected with the guide tube lifting mechanism 9, in this embodiment, the first connecting rod 200 and the second connecting rod 201 are arranged vertically.
  • the specific structure of the connector of the present disclosure is not limited thereto, but covers any structure known to those skilled in the art that can achieve this function.
  • the first connecting rod 200 When the first connecting rod 200 is connected to the guide tube lifting mechanism 9, the first connecting rod 200 is connected to the cover plate 91 of the guide tube lifting mechanism 9, so that the blocking device can be lifted as the cover plate 91 is lifted.
  • the present disclosure also provides a single crystal furnace system, including a guide tube lifting mechanism 9, a single crystal furnace 7 and the above-mentioned heat leakage prevention device.
  • the thermal field structure 10 is provided with a thermal field opening 3, and a first opening 8 is provided on the side wall of the single crystal furnace 7.
  • the position of the first opening 8 corresponds to the position of the thermal field opening 3. This is so that the external re-injection device 6 can sequentially supply materials into the single crystal furnace 7 through the thermal field opening 3 and the first opening 8 for re-injection of the materials.
  • the blocking device 11 is connected to the guide tube lifting mechanism 9 to block the thermal field opening 3 after the material is re-injected.
  • the blocking device 11 lifts as the guide tube lifting mechanism 9 rises, and descends as the guide tube lifting structure 9 descends.
  • the structure is simple, and the space volume occupied by the blocking device 11 in the single crystal furnace 7 is reduced, so no need is required. Improve the structure and thermal field structure of the single crystal furnace 7 to reduce production costs.
  • the blocking device 11 provided by the present disclosure is disposed between the thermal field structure 10 and the side wall of the single crystal furnace 7 and will not come into contact with the guide tube.
  • the blocking device 11 when there is no need to re-inject materials, the blocking device 11 is used to block the hot field opening 3; when it is necessary to re-inject materials, the guide tube lifting mechanism 9 operates to drive the blocking device 11 rises, the blocking member 2 is away from the hot field opening 3, and the hot field opening 3 is not blocked, and then the external re-injection device 6 is operated to make the material pass through the hot field opening 3 and the furnace wall of the single crystal furnace 7 in sequence The first opening 8 of the external re-injection device 6 supplies materials into the single crystal furnace 7 for re-injection.
  • the guide tube lifting mechanism 9 continues to operate, driving the blocking device 11 to descend, so that the blocking member 2 descends, and the blocking member 2 moves to the thermal field opening 3.
  • the second side 100b of the main body 100 is in contact with the side wall of the upper insulation layer 4.
  • the third side 100c of the main body 100 is in contact with the side wall of the middle insulation layer 5.
  • the top is in contact, and the second side 101b of the protruding part 101 is in contact with the side wall of the middle insulation layer 5, thereby achieving the sealing of the thermal field opening 3, avoiding the heat loss of the thermal field structure 10 during the crystal pulling process, and ensuring a single
  • the air flow in the crystal furnace 7 will not change direction during the crystal pulling process, and will not affect the power consumption and crystal formation during the crystal pulling process.
  • the heat leakage prevention device has a simple structure and is easy to use.
  • the blocking device 11 in the heat leakage prevention device is connected to the guide tube lifting mechanism 9 so that the blocking device 11 can be lifted on the guide tube lifting mechanism. It moves under the action of 9 and can move up or down.
  • the blocking device 11 blocks the hot field opening 3 to avoid the loss of heat during the crystal pulling process and the change of the gas direction in the single crystal furnace 7 Change to ensure that the power consumption and crystal formation during the crystal pulling process will not be affected.
  • the blocking device 11 When re-investment is required, the blocking device 11 is lifted under the action of the guide tube lifting mechanism 9 so that the external re-investment device 6 can Materials are supplied to the single crystal furnace for re-injection, and the external re-injection device 6 will not come into contact with the guide tube.
  • the guide tube lifting mechanism 9 can drive the guide tube and the blocking device 11 to act at the same time to ensure the re-injection action. conduct.
  • the blocking device 11 has a main body 100 and a protruding portion 101.
  • the area of the second side 100b of the main body 100 is larger than the area of the thermal field opening 3, so that the main body 100 can block the thermal field opening 3.
  • Complete sealing is carried out, and the main body 100 and the first side 4a of the upper insulation layer 4 have overlapping portions to avoid heat loss from the gap between the thermal field opening 3 and the main body 100; the protruding portion 101 has a strong impact on the main body 100 and the middle insulation layer.
  • the contact gap between the single crystal furnace 7 and the single crystal furnace 7 is blocked to prevent heat from being lost from the contact gap, and heat leakage will not occur. At the same time, it is ensured that the air flow direction in the single crystal furnace 7 will not change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种用于单晶炉的防漏热装置及包括该放漏热装置的单晶炉系统,其中所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔。

Description

一种防漏热装置及单晶炉系统
相关申请的交叉引用
本申请要求于2022年3月31日在中国国家知识产权局提交的第202220731303.0号中国专利申请的优先权和权益,所述中国专利申请的公开内容通过引用全部包含于此。
技术领域
本公开属于单晶生产技术领域,尤其是涉及一种在应用外置复投装置进行投料时避免保温性能下降的防漏热装置,以及装配有所述防漏热装置的单晶炉系统。
背景技术
光伏行业近年来发展迅速,光伏行业追求低成本高效率的环境下,降低工时浪费,提升工时利用率,可以有效提升产能,进而降低成本,提高市场竞争力。单晶方面,降本手段主要是:高拉速、大装料、多次拉晶等新技术、新工艺及配套新型热场材料的应用。现有36寸热场复投工时占总运行时间的12.6%-15.4%,单晶缓降温及复投工时为无效工时(无产出),且目前单桶复投工时(不包含缓降稳时间)为1.92h,复投所需人员较多,劳动强度大,减少复投工时和劳动强度可有效提高理论产能。
然而,在配合外置复投装置时,热场(例如,保温筒和保温毡)需开孔,开孔会导致保温性变差热量流失及气流方向改变,影响功耗及成晶。
发明内容
鉴于上述问题,本公开提供一种适用于单晶炉的防漏热装置及单晶炉系统,以解决现有技术存在的以上或者其他前者问题。
为解决上述技术问题,本公开采用的技术方案是:一种用于单晶炉的防漏热装置,其中所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封 堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔。
根据本发明实施方式的另一特征,所述封堵装置包括封堵件,所述封堵件包括主体和与所述主体连接的凸出部,所述凸出部设置在所述主体的一侧以使所述主体定位在所述热场开孔处,所述主体的形状与所述热场结构的对应侧面的形状匹配,以完全封堵所述热场开孔。
根据本发明实施方式的另一特征,所述主体的面向所述热场开孔的侧面面积大于所述热场开孔的面积。
根据本发明实施方式的另一特征,所述凸出部设置在所述主体的下端,所述封堵装置在竖直方向上移动时,所述凸出部与所述热场结构的在所述热场开孔下方的部分紧密接触。
根据本发明实施方式的另一特征,相对于所述主体,所述凸出部朝向远离所述热场开孔的方向上凹入。
根据本发明实施方式的另一特征,所述热场结构包括上部保温层和位于所述上部保温层下方的中部保温层,其中所述热场开孔设置于所述上部保温层与所述中部保温层之间;其中相对于所述上部保温层,所述中部保温层朝向所述单晶炉突出。
根据本发明实施方式的另一特征,所述凸出部的凹入部分与所述中部保温层的突出部分匹配,并且所述凹入部分的长度等于所述突出部分的长度。
根据本发明实施方式的另一特征,所述封堵装置还包括连接件,所述连接件的一端连接于使其移动的装置上,另一端与所述封堵件连接,所述连接件在竖直方向上延伸,以引导所述封堵装置在竖直方向上移动。
根据本发明实施方式的另一特征,所述封堵件的材质与所述上部保温层的材质相一致。
本发明还提供了一种单晶炉系统,其包括导流筒提升装置、防漏热装置和单晶炉,其中:所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔,其中所述导流筒提升装置设置在所述防漏热装置的上端,并连接于所述封堵装置以引导所述封堵装置移动,其中,所述单晶炉设置在所述防漏热装置的内侧,并设置有第一开孔,所述第一开孔的位置与所述热场开孔的位置相对应。
根据本发明实施方式的另一特征,所述封堵装置包括封堵件,所述封堵件包括主体和与所述主体连接的凸出部,所述凸出部设置在所述主体的一侧以使所述主体定位在所述热场开孔处,所述主体的面向所述热场开孔的侧面的形状与所述热场结构的对应侧面的形状匹配,以完全封堵所述热场开孔。
根据本发明实施方式的另一特征,所述主体的面向所述热场开孔的侧面面积大于所述热场开孔的面积。
根据本发明实施方式的另一特征,所述凸出部设置在所述主体的下端,所述封堵装置在竖直方向上移动时,所述凸出部与所述热场结构的在所述热场开孔下方的部分紧密接触。
根据本发明实施方式的另一特征,相对于所述主体,所述凸出部朝向远离所述热场开孔的方向上凹入。
根据本发明实施方式的另一特征,所述热场结构包括上部保温层和位于所述上部保温层下方的中部保温层,其中所述热场开孔设置于所述上部保温层与所述中部保温层之间;其中相对于所述上部保温层,所述中部保温层朝向所述单晶炉突出。
根据本发明实施方式的另一特征,所述凸出部的凹入部分与所述中部保温层的突出部分匹配,并且所述凹入部分的长度等于所述突出部分的长度。
根据本发明实施方式的另一特征,所述封堵装置还包括连接件,所述连接件的一端连接于使其移动的装置上,另一端与所述封堵件连接,所述连接件在竖直方向上延伸,以引导所述封堵装置在竖直方向上移动。
根据本发明实施方式的另一特征,所述封堵件的材料与所述上部保温层的材料相同。
本发明还提供了一种防漏热装置在单晶炉中用于防止热量流失的用途。
根据本发明实施方式的另一特征,所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔。
由于采用上述技术方案,该防漏热装置结构简单,使用方便,该防漏热装置的封堵装置与导流筒提升机构连接,以使得封堵装置能够在导流筒提升机构的作用下移动,能够进行上升或下降,在不进行复投时,封堵装置对热场开孔进行封堵,避免拉晶过程中热量的流失及单晶炉内气体方向的改变,保证拉晶过程中功耗及成晶不会受到影响,在需要进行复投时,封堵装置在导流筒提升机构的作用下提升,以使得外置复投装置能够进入单晶炉内进行复投,且外置复投装置不会与导流筒接触,导流筒提升机构能够同时带动导流筒和封堵装置动作,保证复投动作的进行;
该封堵装置具有主体和凸出部,主体的面积大于热场开孔的面积,以使得主体能够对热场开孔进行完全封堵,且主体与上部保温层的侧壁具有重合,避免热量从热场开孔与主体之间的缝隙流失;凸出部对主体与中部保温层之间的接触缝隙进行封堵,避免热量从该接触缝隙流失,不会产生漏热,同时保证单晶炉内的气流方向不会发生改变。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中 所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一实施例的防漏热装置与单晶炉安装时的结构示意图;
图2是本公开的一实施例的防漏热装置中的封堵装置的结构示意图;
图3是本公开的一实施例的防漏热装置中的热场结构的结构示意图。
图中:
1、连接件             2、封堵件           3、热场开孔
4、上部保温层         5、中部保温层       6、外置复投装置
7、单晶炉             8、第一开孔         100、主体
101、凸出部           200、第一连接杆     201、第二连接杆
9-导流筒提升机构      10-热场结构         11-封堵装置
91-盖板
具体实施方式
在本申请中,除非另有明确的规定和限定,术语“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“安装”“相连”“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
应当明白的是,在本公开的实施例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明的描述变得晦涩。因此,本发明并非旨在限于所示的实施例,而是与符合本发明所公开的原理和特征的最广范围相一致。
通常,在单晶炉通过外部设置的外置复投装置进行复投(即在后续工艺中再次向单晶炉中投料)时,需要在单晶炉的炉壁上及热场结构(例如,围绕在单晶炉外周的保温层结构,例如保温筒、保温毡等)上开孔,以便于将物料通过所述外置复投装置传送到单晶炉内,从而实现物料复投。但是,热场结构上的开孔会导致保温层结构的保温性变差,会造成热量流失,同时会改变单晶炉内气流方向,影响功耗及成晶。为了解决上述问题,本公开提供了一种防漏热装置。该防漏热装置中的封堵装置可移动地设置在热场结构的开孔的一侧,在物料复投之后,该封堵装置对热场结构上的开孔进行封堵,以使得此时的热场结构与未开孔时的热场结构相同,避免通过该开孔造成热场结构的保温性变差,避免热量流失,同时保证单晶炉内气流的方向不发生改变。
在本公开的实施例中,提供了一种适用于单晶炉的防漏热装置,如图1至图3所示,其中图1示出了根据本公开一实施例的防漏热装置安装在单晶炉内时的结构示意图,图2示出了根据本公开一实施例的防漏热装置的封堵装置的结构示意图,图3示出了本公开的一实施例的防漏热装置中的热场结构的结构示意图。参考图1和图3,防漏热装置设于单晶炉7外周,并且包括热场结构10和封堵装置11。其中封堵装置11包括封堵件2和连接件1,封堵件2与连接件1的一端连接,连接件1的另一端与导流筒提升机构9连接。热场结构10设置有热场开孔3,封堵件2位于热场开孔3的一侧,用于封堵或暴露热场开孔3。在进行复投时封堵件2在导流筒提升机构9的作用下移动,封堵件2远离热场开孔3,封堵件2不对热场开孔3进行封堵,外 置复投装置6通过热场开孔3进行复投物料,复投完成后,封堵件2在导流筒提升机构9的作用下移动,靠近热场开孔3,移动至热场开孔3的一侧,对热场开孔3进行封堵,保证拉晶过程中热场结构的保温性不变,避免热量流失,且保证单晶炉7内气流的方向不变,不会影响拉晶过程中的功耗及成晶。
参见图2,封堵件2包括主体100和凸出部101,主体100与凸出部101连接,凸出部101设于主体100的一侧面上,连接件1与主体100的设有凸出部101的一侧面的相对另一侧面连接。例如,主体100具有靠近单晶炉7的第一侧面100a,面向热场开孔3的第二侧面100b,设置有凸出部101的第三侧面100c,与连接杆1连接的第四侧面l00d。在复投物料之后,主体100对热场开孔3进行封堵,凸出部101在封堵装置11移动过程中进行定位,以使得封堵装置11能够准确移动至热场开孔3的一侧,对热场开孔3进行封堵,凸出部101与连接件1分别位于主体100的一组相对设置的侧面上,在封堵装置11向热场开孔3方向移动时,凸出部101先与热场结构10接触,直至主体100与热场结构10接触,实现主体100对热场开孔3进行封堵。为使得主体100能够与热场结构10的侧壁紧密接触,以对热场开孔3封堵严实,以避免热量流失,保证热场结构10的保温性不变,主体100的第二侧面100b的形状与热场结构10的对应的侧壁的形状相一致,以使得封堵件2对热场开孔3进行封堵时,主体100的第二侧面100b与热场结构10的侧壁紧密接触,不具有缝隙,避免拉晶过程中热量流失,保证拉晶过程中单晶炉7内气流的方向保持不变。
在本公开的实施例中,主体100可以具有各种结构,例如,可以为块状结构,其截面形状可以是正方形,也可以是长方形,或者是曲面,或者是其他形状,根据实际需求进行选择设置,这里不做具体要求。优选的,在本实施例中,该主体100为曲面形状的块状结构,以使得主体100与热场结构10 的对应侧面紧密接触。
参见图2,凸出部101凸出设置在主体100的第三侧面100c上。该凸出部101与主体100可以固定连接。优选地,凸出部101与主体100一体成型,使得封堵件2的结构稳定,使用寿命长。凸出部101的一侧面与主体100的第一侧面100a平齐。例如,参考图2,凸出部101的第一侧面101a面向单晶炉7,凸出部101的第二侧面101b朝向热场开孔3,并且凸出部101的第一侧面101a与主体100的第一侧面100a平齐,使得该凸出部101与主体100的第三侧面呈L型设置。
在本公开的实施例中,主体100的第二侧面100b面积大于热场开孔3的面积,以使得封堵件2可对热场开孔3进行完全封堵。例如,参见图1,封堵件2的侧面100b与热场开孔3上方的热场结构10的侧壁具有一定长度的重合,对热场开孔3进行完全封堵,热场开孔3与主体100之间不会存在缝隙,避免热量从热场开孔3处流失。
参见图3,上述的热场结构10包括上部保温层4和中部保温层5。该热场开孔3设置在上部保温层4的下端,并暴露中部保温层5的上表面。所述上部保温层4的第一侧面4a面向单晶炉7,中部保温层5的第一侧面5a面向单晶炉7。相对于上部保温层4的第一侧面4a,中部保温层5的第一侧面5a朝向单晶炉7突出。
主体100的厚度(即在水平方向上的长度)大于中部保温层5的第一侧面5a突出的长度,以使得在封堵件2封堵热场开孔3时凸出部101与中部保温层5的第一侧面5a相接触,对主体100与中部保温层5的接触处的缝隙进行封堵,避免热量流失。
在本公开的实施例中,封堵件2在对热场开孔3进行封堵时,主体100对热场开孔3进行封堵,且主体100的第二侧面100b与上部保温层4的侧壁相接触,且有部分重合,主体100的设有凸出部101的第三侧面100c与 中部保温层5接触,且主体100位于中部保温层5的顶部,凸出部101与中部保温层5的第一侧面5a相接触,实现对热场开孔3的完全封堵,不会由于封堵件2分别与上部保温层4和中部保温层5相接触的缝隙而造成热量的流失。
优选地,封堵件2的材质可以与上部保温层4的材质相一致,使得不会在单晶拉制过程中引入新的杂质而对单晶的品质造成影响。
为使得主体100能够完全对热场开孔3进行封堵,主体100与上部保温层4和中部保温层5紧密接触。在本公开的实施例中,主体100竖直设置,与上部保温层4平行设置。
在本公开的实施例中,连接件1可以具有各种结构。例如,参见图2,上述的连接件1为杆状结构,包括第一连接杆200和第二连接杆201,第一连接杆200的一端与第二连接杆201的一端连接,第一连接杆200的另一端与导流筒提升结构9连接,第二连接杆201的另一端与封堵件2连接,为使得封堵件2在竖直方向上进行上下移动,不会对上部保温层4和单晶炉7造成损伤,该第二连接杆201竖直设置,第一连接杆200与第二连接杆201相交设置,以便于第一连接杆200能够与导流筒提升机构9连接,在本实施例中,第一连接杆200与第二连接杆201垂直设置。应注意,本公开的连接件的具体结构并不限于此,而是涵盖了本领域技术人员所知晓的能够实现该功能的任何结构。
第一连接杆200在与导流筒提升机构9连接时,第一连接杆200与导流筒提升机构9的盖板91连接,以使得封堵装置能够随着盖板91的提升而提升。
本公开还提供了一种单晶炉系统,包括导流筒提升机构9、单晶炉7和如上述的防漏热装置。参见图1,热场结构10设有热场开孔3,单晶炉7的侧壁上设置有第一开孔8,第一开孔8的位置与热场开孔3的位置相对应, 以便于外置复投装置6能够依次通过热场开孔3和第一开孔8将物料供应到单晶炉7内,进行物料的复投。封堵装置11与导流筒提升机构9连接,以便于在物料复投结束后对热场开孔3进行封堵。封堵装置11随着导流筒提升机构9的提升而提升,随着导流筒提升结构9的下降而下降,结构简单,减少封堵装置11占用单晶炉7内的空间体积,因此无需对单晶炉7的结构及热场结构进行改进,降低生产成本。
本公开提供的封堵装置11设于热场结构10与单晶炉7的侧壁之间,不会与导流筒接触。
根据本公开的实施例,在不需复投物料时,该封堵装置11用来封堵热场开孔3;当需要进行物料复投时,导流筒提升机构9运行,带动封堵装置11上升,封堵件2远离热场开孔3,不对热场开孔3进行封堵,然后外置复投装置6运行,使物料依次通过热场开孔3及单晶炉7炉壁上的第一开孔8,外置复投装置6供给物料进入单晶炉7内部进行复投,复投完成后,导流筒提升机构9继续运行,带动封堵装置11下降,使得封堵件2下降,封堵件2运动至热场开孔3处,此时主体100的第二侧面100b与上部保温层4的侧壁接触,同时,主体100的第三侧面100c与中部保温层5的顶部接触,凸出部101的第二侧面101b与中部保温层5的侧壁接触,从而实现对热场开孔3进行封堵,避免在拉晶过程中热场结构10的热量流失,保证单晶炉7内的气流在拉晶过程中不会改变方向,不会对拉晶过程中的功耗及成晶造成影响。
由于采用上述技术方案,该防漏热装置结构简单,使用方便,该防漏热装置中的封堵装置11与导流筒提升机构9连接,以使得封堵装置11能够在导流筒提升机构9的作用下移动,能够进行上升或下降,在不进行复投时,封堵装置11对热场开孔3进行封堵,避免拉晶过程中热量的流失及单晶炉7内气体方向的改变,保证拉晶过程中功耗及成晶不会受到影响,在需要进行 复投时,封堵装置11在导流筒提升机构9的作用下提升,以使得外置复投装置6能够将物料供给到单晶炉内进行复投,且外置复投装置6不会与导流筒接触,导流筒提升机构9能够同时带动导流筒和封堵装置11动作,保证复投动作的进行。
根据本公开的实施例,该封堵装置11具有主体100和凸出部101,主体100的第二侧面100b的面积大于热场开孔3的面积,以使得主体100能够对热场开孔3进行完全封堵,且主体100与上部保温层4的第一侧面4a具有重合部分,避免热量从热场开孔3与主体100之间的缝隙流失;凸出部101对主体100与中部保温层5之间的接触缝隙进行封堵,避免热量从该接触缝隙流失,不会产生漏热,同时保证单晶炉7内的气流方向不会发生改变。
以上对本公开的实施例进行了详细说明,但所述内容仅为本公开的较佳实施例,不能被认为用于限定本公开的实施范围。凡依本公开申请范围所作的均等变化与改进等,均应仍归属于本公开的专利涵盖范围之内。

Claims (20)

  1. 一种用于单晶炉的防漏热装置,其中所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔。
  2. 根据权利要求1所述的防漏热装置,其中:所述封堵装置包括封堵件,所述封堵件包括主体和与所述主体连接的凸出部,所述凸出部设置在所述主体的一侧以使所述主体定位在所述热场开孔处,所述主体的形状与所述热场结构的对应侧面的形状匹配,以完全封堵所述热场开孔。
  3. 根据权利要求2所述的防漏热装置,其中:所述主体的面向所述热场开孔的侧面面积大于所述热场开孔的面积。
  4. 根据权利要求2所述的防漏热装置,其中:所述凸出部设置在所述主体的下端,所述封堵装置在竖直方向上移动时,所述凸出部与所述热场结构的在所述热场开孔下方的部分紧密接触。
  5. 根据权利要求4所述的防漏热装置,其中:相对于所述主体,所述凸出部朝向远离所述热场开孔的方向上凹入。
  6. 根据权利要求5所述的防漏热装置,其中:所述热场结构包括上部保温层和位于所述上部保温层下方的中部保温层,其中所述热场开孔设置于所述上部保温层与所述中部保温层之间;其中相对于所述上部保温层,所述中部保温层朝向所述单晶炉突出。
  7. 根据权利要求6所述的防漏热装置,其中:所述凸出部的凹入部分与所述中部保温层的突出部分匹配,并且所述凹入部分的长度等于所述突出部分的长度。
  8. 根据权利要求1所述的防漏热装置,其中:所述封堵装置还包括连接 件,所述连接件的一端连接于使其移动的装置上,另一端与所述封堵件连接,所述连接件在竖直方向上延伸,以引导所述封堵装置在竖直方向上移动。
  9. 根据权利要求6所述的防漏热装置,其中:所述封堵件的材质与所述上部保温层的材质相一致。
  10. 一种单晶炉系统,包括导流筒提升装置、防漏热装置和单晶炉,其中:所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔,
    其中所述导流筒提升装置设置在所述防漏热装置的上端,并连接于所述封堵装置以引导所述封堵装置移动,
    其中,所述单晶炉设置在所述防漏热装置的内侧,并设置有第一开孔,所述第一开孔的位置与所述热场开孔的位置相对应。
  11. 根据权利要求10所述的单晶炉系统,其中:所述封堵装置包括封堵件,所述封堵件包括主体和与所述主体连接的凸出部,所述凸出部设置在所述主体的一侧以使所述主体定位在所述热场开孔处,所述主体的面向所述热场开孔的侧面的形状与所述热场结构的对应侧面的形状匹配,以完全封堵所述热场开孔。
  12. 根据权利要求11所述的单晶炉系统,其中:所述主体的面向所述热场开孔的侧面面积大于所述热场开孔的面积。
  13. 根据权利要求11所述的单晶炉系统,其中:所述凸出部设置在所述主体的下端,所述封堵装置在竖直方向上移动时,所述凸出部与所述热场结构的在所述热场开孔下方的部分紧密接触。
  14. 根据权利要求13所述的单晶炉系统,其中:相对于所述主体,所述凸出部朝向远离所述热场开孔的方向上凹入。
  15. 根据权利要求14所述的单晶炉系统,其中:所述热场结构包括上部保温层和位于所述上部保温层下方的中部保温层,其中所述热场开孔设置于所述上部保温层与所述中部保温层之间;其中相对于所述上部保温层,所述中部保温层朝向所述单晶炉突出。
  16. 根据权利要求15所述的单晶炉系统,其中:所述凸出部的凹入部分与所述中部保温层的突出部分匹配,并且所述凹入部分的长度等于所述突出部分的长度。
  17. 根据权利要求10所述的单晶炉系统,其中:所述封堵装置还包括连接件,所述连接件的一端连接于使其移动的装置上,另一端与所述封堵件连接,所述连接件在竖直方向上延伸,以引导所述封堵装置在竖直方向上移动。
  18. 根据权利要求15所述的单晶炉系统,其中所述封堵件的材料与所述上部保温层的材料相同。
  19. 一种防漏热装置在单晶炉中用于防止热量流失的用途。
  20. 根据权利要求19所述的用途,其中:所述防漏热装置包括设置在所述单晶炉外侧的热场结构和封堵装置,所述热场结构上设置有用于向所述单晶炉加料的热场开孔,所述封堵装置设置在所述热场结构的靠近所述单晶炉的一侧,所述封堵装置可移动地设置以暴露或完全封堵所述热场开孔。
PCT/CN2022/134546 2022-03-31 2022-11-28 一种防漏热装置及单晶炉系统 WO2023185033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/040,114 US20240247401A1 (en) 2022-03-31 2022-11-28 Heat leakage prevention device and single crystal furnace system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220731303.0U CN217077852U (zh) 2022-03-31 2022-03-31 一种适用于外置复投装置的防漏热装置及单晶炉系统
CN202220731303.0 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185033A1 true WO2023185033A1 (zh) 2023-10-05

Family

ID=82553445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134546 WO2023185033A1 (zh) 2022-03-31 2022-11-28 一种防漏热装置及单晶炉系统

Country Status (3)

Country Link
US (1) US20240247401A1 (zh)
CN (1) CN217077852U (zh)
WO (1) WO2023185033A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217077852U (zh) * 2022-03-31 2022-07-29 内蒙古中环协鑫光伏材料有限公司 一种适用于外置复投装置的防漏热装置及单晶炉系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212128337U (zh) * 2020-03-03 2020-12-11 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN113337884A (zh) * 2020-03-03 2021-09-03 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN215800033U (zh) * 2021-07-15 2022-02-11 隆基绿能科技股份有限公司 一种侧向加料的单晶炉
CN217077852U (zh) * 2022-03-31 2022-07-29 内蒙古中环协鑫光伏材料有限公司 一种适用于外置复投装置的防漏热装置及单晶炉系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212128337U (zh) * 2020-03-03 2020-12-11 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN113337884A (zh) * 2020-03-03 2021-09-03 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN215800033U (zh) * 2021-07-15 2022-02-11 隆基绿能科技股份有限公司 一种侧向加料的单晶炉
CN217077852U (zh) * 2022-03-31 2022-07-29 内蒙古中环协鑫光伏材料有限公司 一种适用于外置复投装置的防漏热装置及单晶炉系统

Also Published As

Publication number Publication date
US20240247401A1 (en) 2024-07-25
CN217077852U (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023185033A1 (zh) 一种防漏热装置及单晶炉系统
US11680749B2 (en) Feeder device utilized in electric arc furnace, and flue gas and temperature control method
CN217052488U (zh) 一种单晶炉的冷却结构
CN105957925A (zh) 一种链式传输系统
WO2023165473A1 (zh) 一种单晶炉用降功耗导气装置及单晶炉
CN212955436U (zh) 一种用于晶体生长的单晶炉系统
CN208331293U (zh) 一种调节渣口流通面积的装置
CN218115661U (zh) 一种单晶炉用上筒
CN108168311A (zh) 一种具有密封内腔的氧化铝空心球辊孔砖
CN2654964Y (zh) 倒置板式双密封双启闭高温烟气、空气换向阀
CN104402194A (zh) 一种用于低膨胀微晶玻璃制造的全氧燃烧窑炉
CN212293647U (zh) 一种用于电炉连续加料装置的动态密封装置
CN208368530U (zh) 一种电注入式抗光衰机台轴承系统
CN211012473U (zh) 一种新型溜槽盖板
CN219586235U (zh) 一种单晶炉热场保温筒
CN220246289U (zh) 一种铝电解槽的间隙密封装置
CN220649097U (zh) 一种一体式台车炉门结构
CN201126317Y (zh) 节能型篦冷机篦板
CN112226811A (zh) 一种单晶炉用的热场及其单晶炉
CN219829503U (zh) 一种电熔镁炉用炉盖
CN211875148U (zh) 一种双层棒条闸门
CN220151902U (zh) 一种双阀板结构的提升阀
CN216752622U (zh) 一种双层防尘型散热机柜
CN217691231U (zh) 一种面向高效能量梯级利用的sofc热电联供装置
CN219045906U (zh) 一种连续退火炉的炉门隔离密封结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18040114

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523450458

Country of ref document: SA