WO2023184885A1 - 一种氢冷发电机氢气参数监控及自动控制系统 - Google Patents

一种氢冷发电机氢气参数监控及自动控制系统 Download PDF

Info

Publication number
WO2023184885A1
WO2023184885A1 PCT/CN2022/119043 CN2022119043W WO2023184885A1 WO 2023184885 A1 WO2023184885 A1 WO 2023184885A1 CN 2022119043 W CN2022119043 W CN 2022119043W WO 2023184885 A1 WO2023184885 A1 WO 2023184885A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
generator
door
manual
control system
Prior art date
Application number
PCT/CN2022/119043
Other languages
English (en)
French (fr)
Inventor
戴文鹏
厉广
程建朝
王强
李宁
Original Assignee
山东日照发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东日照发电有限公司 filed Critical 山东日照发电有限公司
Priority to DE212022000046.3U priority Critical patent/DE212022000046U1/de
Publication of WO2023184885A1 publication Critical patent/WO2023184885A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the utility model belongs to the technical field of parameter monitoring and maintenance automatic control, and relates to a hydrogen parameter monitoring and automatic control system for a hydrogen-cooled generator.
  • this utility model is to provide a hydrogen parameter monitoring and automatic control system for a hydrogen-cooled generator, which is used to solve the problem that the hydrogen parameter monitoring in the generator is not in place, the hydrogen parameters cannot be adjusted in time, and the processing cannot be done properly.
  • Technical problems that can easily cause accidents in a timely manner.
  • the utility model discloses a hydrogen parameter monitoring and automatic control system for a hydrogen-cooled generator, which includes a generator, a DCS control system, an automatic drying module, an automatic purification module, an automatic pressure control module, a hydrogen supply unit and an exhaust unit;
  • the automatic drying module, automatic purification module, automatic pressure control module, hydrogen supply unit and exhaust unit are respectively connected to the generator and DCS control system; the automatic purification module is also connected to the exhaust unit through pipelines.
  • the automatic pressure control module is also connected to the hydrogen supply unit through pipelines.
  • the automatic drying module includes a hydrogen hygrometer, a hydrogen dryer, a hydrogen dryer outlet door and a hydrogen dryer inlet door; the hydrogen dryer outlet door and the hydrogen dryer inlet door are respectively connected to the hydrogen dryer;
  • the generator is connected to the entrance door of the hydrogen dryer through pipelines; the outlet door of the hydrogen dryer is connected to the generator through pipelines;
  • the hydrogen humidity meter is provided with a hydrogen humidity meter outlet door and a hydrogen humidity meter entrance door, so
  • the hydrogen hygrometer is connected to the front pipeline connecting the generator and the hydrogen dryer inlet door through the hydrogen hygrometer inlet door, and the hydrogen hygrometer is connected to the rear pipeline connecting the generator and the hydrogen dryer outlet door through the hydrogen hygrometer outlet door.
  • the hydrogen hygrometer and hydrogen dryer are also connected to the DCS control system.
  • the automatic purification module includes a hydrogen purifier, a first hydrogen purifier inlet door, a second hydrogen purifier inlet door, and a hydrogen purifier exit door; the first hydrogen purifier inlet door, the second hydrogen purifier inlet door, and the second hydrogen purifier inlet door.
  • the entrance door and the outlet door of the hydrogen purifier are respectively connected to the hydrogen purifier, and the hydrogen purifier is connected to the DCS control system; the entrance door of the first hydrogen purifier is connected to the bottom of the generator through a pipeline; the second hydrogen The inlet door of the purifier is connected to the top of the generator through a pipeline; the outlet door of the hydrogen purifier is connected to the exhaust unit.
  • the automatic pressure control module includes a hydrogen replenishment flowmeter, a front manual door of the hydrogen replenishment flowmeter, a rear manual door of the hydrogen replenishment flowmeter, and a manual door for hydrogen replenishment to the top of the generator; the front manual door of the hydrogen replenishment flowmeter, The manual door behind the hydrogen replenishment flowmeter is connected to the hydrogen replenishment flowmeter respectively.
  • the manual door behind the hydrogen replenishment flowmeter passes through the pipeline and the manual door for hydrogen replenishment to the top of the generator; the manual door from the hydrogen replenishment to the top of the generator passes through the pipeline.
  • the front manual door of the hydrogen supply flowmeter is connected to the hydrogen supply unit through a pipeline, and a hydrogen supply valve group is provided between the front manual door of the hydrogen supply flowmeter and the pipeline connected to the hydrogen supply unit.
  • Pressure transmitter, the pressure transmitter behind the hydrogen supply valve group is connected to the DCS control system.
  • the hydrogen supply unit includes a hydrogen supply main door, which is connected to a hydrogen supply solenoid valve, a hydrogen supply differential pressure valve, and a rear manual door of the hydrogen supply differential pressure valve through three pipelines;
  • the hydrogen solenoid valve, the hydrogen supply differential pressure valve and the rear manual door of the hydrogen supply differential pressure valve are respectively connected to the front manual door of the hydrogen supply flow meter;
  • the hydrogen supply solenoid valve is also connected to the DCS control system;
  • the pipelines connected to the hydrogen solenoid valve and the hydrogen replenishment differential pressure valve are respectively provided with a manual door in front of the hydrogen supply solenoid valve and a front manual door of the hydrogen replenishment differential pressure valve;
  • the hydrogen supply solenoid valve, the hydrogen replenishment differential pressure valve and the hydrogen replenishment flow meter The pipelines connected to the front manual door are respectively equipped with a rear manual door of the hydrogen supply solenoid valve and a rear manual door of the hydrogen supply differential pressure valve.
  • the hydrogen supply main door is provided with filters on the three pipelines connected to the hydrogen supply solenoid valve, the hydrogen supply differential pressure valve and the manual door behind the hydrogen supply differential pressure valve; the hydrogen supply main door and the hydrogen supply differential pressure valve
  • the pipeline connected to the manual door after the differential pressure valve is also equipped with a pressure transmitter in front of the hydrogen supply valve group.
  • the hydrogen replenishment flowmeter is connected in parallel with a hydrogen replenishment flowmeter bypass manual door through a pipeline.
  • One end of the hydrogen replenishment flowmeter bypass manual door is connected to the hydrogen supply unit, and the hydrogen replenishment flowmeter bypass manual door is connected to the hydrogen supply unit. The other end is connected to the manual door on the top of the generator for hydrogen supply.
  • the exhaust unit includes a manual door for discharging hydrogen to the atmosphere at the top of the generator, a manual main door for discharging hydrogen to the atmosphere at the bottom of the generator, and a manual door for discharging hydrogen to the atmosphere at the top of the generator.
  • One end is connected to the generator through the hydrogen discharge pipe on the top of the generator, and the other end of the manual door that discharges hydrogen to the atmosphere from the top of the motor is connected to one end of the manual main door that discharges hydrogen from the generator to the atmosphere; the other end of the manual main door to the atmosphere is connected to the hydrogen purity After the instrument is connected to the door, it is connected to the exhaust pipe of the generator to the atmosphere; one end of the manual door for exhausting hydrogen to the atmosphere at the bottom of the generator is connected to the bottom of the generator through the hydrogen exhaust pipe at the bottom of the generator, and the bottom of the generator exhausts hydrogen to The other end of the manual atmospheric door is connected to the generator exhaust to atmospheric pipe.
  • the exhaust unit also includes a solenoid valve for discharging hydrogen from the bottom of the generator to the atmosphere.
  • the solenoid valve for discharging hydrogen from the bottom of the generator to the atmosphere is provided with a manual door in front of the solenoid valve for discharging hydrogen from the bottom of the generator to the atmosphere and a bottom exhaust valve for the generator.
  • the manual door behind the solenoid valve for hydrogen to the atmosphere; the manual door in front of the solenoid valve for discharging hydrogen to the atmosphere from the bottom of the generator is connected to the hydrogen discharge pipe at the bottom of the generator, and the solenoid valve for discharging hydrogen to the atmosphere from the bottom of the generator
  • the valve exhausts hydrogen to the atmosphere through the bottom of the generator, and is connected to the manual door after the solenoid valve and the exhaust pipe of the generator to the atmosphere.
  • the solenoid valve for discharging hydrogen to the atmosphere at the bottom of the generator is also connected to the DCS control system.
  • the utility model discloses a hydrogen parameter monitoring and automatic control system for a hydrogen-cooled generator.
  • the DCS control system is used to control the automatic drying module, automatic purification module and automatic pressure control module in the generator to realize automatic monitoring of hydrogen parameters in the generator. , alarm and adjustment to ensure that hydrogen parameters are always maintained within the normal range during normal operation, and can be automatically adjusted when parameters fluctuate to solve potential safety hazards caused by untimely adjustment of hydrogen parameters during normal operation of the unit or accident handling.
  • the hydrogen parameter monitoring and automatic control system of the hydrogen-cooled generator disclosed by the utility model can monitor changes in hydrogen parameters in real time and has an alarm function, which is convenient for operators to find problems and analyze and process them. It also has automatic hydrogen replacement and automatic maintenance inside the generator.
  • Hydrogen pressure and the function of automatically maintaining hydrogen humidity can effectively avoid generator set safety hazards caused by deviations in hydrogen parameters.
  • automatic opening and closing functions of various solenoid valves manual operation by personnel is replaced.
  • the degree of automation is high, which can reduce the amount of operations performed by operators and avoid the shortcomings of insufficient monitoring of personnel parameters and untimely adjustments.
  • the hydrogen in the generator is automatically purified; the hydrogen humidity in the generator is detected through a hydrogen hygrometer, and The results are sent to the DCS control system in real time, and the hydrogen dryer is used to automatically adjust the internal humidity of the generator and automatically maintain the hydrogen humidity.
  • the hydrogen replenishment flow meter is fed back to the DCS control system to remind the operator to check for leaks in the hydrogen system.
  • the hydrogen supply unit includes a hydrogen supply main door and a pipeline connected to the manual door behind the hydrogen supply differential pressure valve.
  • a pressure transmitter in front of the hydrogen supply valve group, which can feed back the hydrogen supply pressure from the hydrogen supply station to the generator in a timely manner. Monitor to prevent abnormal pressure in the hydrogen supply pipeline.
  • Figure 1 is a schematic diagram of the system structure of the present utility model
  • the utility model discloses a hydrogen parameter monitoring and automatic control system for a hydrogen-cooled generator, including a generator 1, a DCS control system 2, a hydrogen humidity meter 8, a hydrogen dryer 3, a hydrogen purity meter 11, and hydrogen replenishment.
  • Flow meter 24, hydrogen supply unit and exhaust unit; the generator 1, hydrogen humidity meter 8, hydrogen dryer 3, hydrogen purity meter 11, hydrogen replenishment flow meter 24, and hydrogen supply unit are respectively connected to the DCS control system 2;
  • the hydrogen dryer 3 is connected to the high-pressure area of the generator 1 through the hydrogen dryer inlet door 5, and is connected to the low-pressure area of the generator 1 through the hydrogen dryer outlet door 4; the hydrogen hygrometer 8 is connected to the hydrogen hygrometer inlet door. 7 is connected to the front pipeline of the hydrogen dryer inlet door 5.
  • the hydrogen hygrometer 8 is connected to the rear pipeline of the hydrogen dryer outlet door 4 through the hydrogen hygrometer outlet door 6.
  • the hydrogen hygrometer 8 detects the hydrogen humidity in the generator. , and send the results to the DCS control system 2 in real time to form an automatic drying module.
  • the hydrogen purifier 11 is connected to the bottom of the generator 1 through the first hydrogen purifier inlet door 9, and the hydrogen purifier 11 is connected to the top sampling pipe of the generator 1 through the second hydrogen purifier inlet door 10.
  • the instrument outlet door 12 is connected to the exhaust unit.
  • the hydrogen supply flowmeter 24 is connected to the hydrogen supply unit through the pipeline and the hydrogen supply unit through the front manual door 23 of the hydrogen supply flowmeter. There is a hydrogen supply unit between the pipeline connected to the hydrogen supply flowmeter front manual door 23 and the hydrogen supply unit.
  • the pressure transmitter 22 after the valve group, the pressure transmitter 22 after the hydrogen supply valve group is connected to the DCS control system 2; the manual door 25 behind the hydrogen replenishment flowmeter passes through the pipeline and replenishes hydrogen to the manual door at the top of the generator 27; The manual door 27 for replenishing hydrogen to the top of the generator is connected to the top of the generator 1 through a pipeline.
  • the hydrogen purity meter 11 detects the purity of the hydrogen in the generator and sends the results to the DCS control system 2 in real time to form an automatic Purification module.
  • the front manual door 23 of the hydrogen replenishment flow meter and the rear manual door 25 of the hydrogen replenishment flow meter are respectively connected to the hydrogen replenishment flow meter 24.
  • the rear manual door 25 of the hydrogen replenishment flow meter passes through the pipeline and replenishes hydrogen to the top of the generator.
  • Manual door 27; the manual door 27 for hydrogen replenishment to the top of the generator is connected to the top of the generator 1 through a pipeline; the manual door 23 in front of the hydrogen replenishment flowmeter is connected to the hydrogen supply unit through a pipeline, and the hydrogen replenishment flow rate
  • the pressure transmitter 22 behind the hydrogen supply valve group is connected to the DCS control system 2.
  • the hydrogen replenishment flow meter 24 is connected in parallel with a hydrogen replenishment flow meter bypass manual door 26 through a pipeline. One end of the hydrogen replenishment flow meter bypass manual door 26 is connected to the hydrogen supply unit, and the other end of the hydrogen replenishment flow meter bypass manual door 26 One end is connected to the manual door 27 on the top of the hydrogen supply to the generator.
  • the pressure transmitter 22 behind the hydrogen supply valve group feeds back the hydrogen pressure value in the generator to the DCS control system 2 in real time to form an automatic pressure control module; the hydrogen supply flow meter 24 The amount of hydrogen replenishment will be counted to facilitate analysis by operators.
  • the hydrogen supply unit includes a hydrogen supply main door 13, which is connected to a hydrogen supply solenoid valve 16, a hydrogen supply differential pressure valve 19 and a rear manual door 21 of the hydrogen supply differential pressure valve through three pipelines;
  • the hydrogen supply solenoid valve 16, the hydrogen supply differential pressure valve 19 and the rear manual door 21 of the hydrogen supply differential pressure valve are respectively connected to the front manual door 23 of the hydrogen supply flow meter;
  • the hydrogen supply solenoid valve 16 is also connected to the DCS control system 2; so
  • the hydrogen supply main door 13, the hydrogen supply solenoid valve 16, and the hydrogen supply differential pressure valve 19 are respectively provided with a manual door 15 in front of the hydrogen supply solenoid valve and a manual door 18 in front of the hydrogen supply differential pressure valve;
  • the pipeline connected to the valve 16, the hydrogen supply differential pressure valve 19 and the hydrogen supply flow meter front manual door 23 is respectively provided with a rear manual door 17 of the hydrogen supply solenoid valve and a rear manual door 20 of the hydrogen supply differential pressure valve.
  • the hydrogen supply main door 13 Filters 34 are provided on the three pipelines connected to the hydrogen supply solenoid valve 16, the hydrogen supply differential pressure valve 19 and the rear manual door 21 of the hydrogen supply differential pressure valve; the hydrogen supply main door 13 and the hydrogen supply differential pressure valve
  • the pipeline connected to the rear manual door 21 is also provided with a pressure transmitter 14 in front of the hydrogen supply valve group.
  • the exhaust unit includes a manual door 28 for exhausting hydrogen to the atmosphere at the top of the generator, a manual main door 29 for exhausting hydrogen to the atmosphere, and a manual door 30 for exhausting hydrogen to the atmosphere at the bottom of the generator; one end of the manual door 28 for exhausting hydrogen to the atmosphere at the top of the generator It is connected to the generator 1 through the hydrogen exhaust pipe on the top of the generator.
  • the other end of the manual door 28 for exhausting hydrogen to the atmosphere at the top of the motor is connected to one end of the manual general door 29 for the exhaust of the generator to the atmosphere; the other end of the manual general door 29 for the atmosphere After being connected to the hydrogen purifier outlet 12, it is then connected to the generator exhaust to atmosphere pipe 38; one end of the generator bottom hydrogen exhaust to atmosphere manual door 30 is connected to the bottom of the generator 1 through the generator bottom hydrogen exhaust pipe.
  • the other end of the manual door 30 for exhausting hydrogen from the bottom of the generator to the atmosphere is connected to the exhaust pipe 38 of the generator exhaust to the atmosphere;
  • the exhaust unit also includes a solenoid valve 31 for exhausting hydrogen from the bottom of the generator to the atmosphere, and the bottom of the generator discharges hydrogen to the atmosphere.
  • the solenoid valve 31 is provided with a manual door 32 in front of the solenoid valve that discharges hydrogen from the bottom of the generator to the atmosphere and a manual door 33 behind the solenoid valve that discharges hydrogen from the bottom of the generator to the atmosphere; the solenoid valve 31 that discharges hydrogen from the bottom of the generator to the atmosphere is discharged through the bottom of the generator.
  • the front manual door 32 of the hydrogen to atmosphere solenoid valve is connected to the hydrogen discharge pipe at the bottom of the generator.
  • the hydrogen discharge to the atmosphere solenoid valve 31 at the bottom of the generator discharges hydrogen to the atmosphere through the bottom of the generator.
  • the rear manual door 33 of the solenoid valve and the generator exhaust to the atmosphere pipe. 38 is connected; the solenoid valve 31 for discharging hydrogen to the atmosphere at the bottom of the generator is also connected to the DCS control system 2.
  • the hydrogen parameter automatic control system module is equipped with an automatic hydrogen drying mode, an automatic hydrogen purification mode, and an automatic hydrogen pressure control mode.
  • the automatic hydrogen purification mode can be put into place.
  • the automatic hydrogen purification of the generator can be realized; during normal operation, the first hydrogen
  • the entrance door 9 of the purity meter and the exit door 12 of the hydrogen purity meter remain open.
  • the hydrogen purity meter 11 detects the purity of the hydrogen in the generator and sends the results to the DCS control system 2 in real time.
  • the DCS control System 2 sends an alarm signal for low hydrogen purity, and at the same time sends an instruction to open the solenoid valve 31 at the bottom of the generator to discharge hydrogen to the atmosphere to discharge the impurity gas in the generator to the atmosphere.
  • the pressure of the hydrogen in the generator will gradually decrease.
  • the hydrogen supply solenoid valve 16 opens to replenish hydrogen to the generator, and at the same time, the solenoid valve 31 at the bottom of the generator is forcibly closed to discharge hydrogen to the atmosphere.
  • the hydrogen pressure ⁇ 0.515Mpa the hydrogen supply solenoid valve 16 is closed, and at the same time, the bottom of the generator is restored to the state of the hydrogen discharge to the atmosphere solenoid valve 31 to maintain the stability of the hydrogen pressure in the generator.
  • the solenoid valve 31 that discharges hydrogen to the atmosphere at the bottom of the generator is closed, and the impurity gas in the generator is replaced with high-purity qualified hydrogen from the hydrogen production station, thereby improving the purity of the hydrogen in the generator.
  • the unit does not need to maintain hydrogen purity, it can exit the hydrogen automatic purification mode in DCS control system 2.
  • the unit When the unit is running normally, it can be put into the hydrogen pressure automatic control mode, and the pressure transmitter 22 behind the hydrogen supply valve group feeds back the hydrogen pressure value in the generator to the DCS control system 2 in real time.
  • the hydrogen pressure value in the generator can be manually set in the DCS control system 2 hydrogen parameter automatic control system module, and the setting range is 0 ⁇ 0.5Mpa.
  • the DCS control system 2 sends a low hydrogen pressure alarm signal and opens the hydrogen supply solenoid valve 16.
  • the hydrogen supply solenoid valve 16 When the hydrogen pressure in the generator is higher than the set value, the hydrogen supply solenoid valve 16 is closed.
  • the hydrogen pressure automatic control mode can be exited in the DCS control system 2.
  • the hydrogen replenishment flow meter 24 will count the hydrogen replenishment amount to facilitate analysis by the operator.
  • the hydrogen parameter automatic control system module in DCS control system 2 sends a large hydrogen replenishment amount alarm to remind the operator to check for leaks in the hydrogen system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种氢冷发电机氢气参数监控及自动控制系统,属于参数监控及自动控制技术领域,解决了电机中氢气参数监控不到位,不能及时调节氢气参数,处理不及时易造成事故的技术问题。采用DCS控制系统(2)控制发电机(1)内的自动干燥模块、自动提纯模块和压力自动控制模块,实现发电机(1)内氢气参数的自动监视、报警和调整,通过采用各种电磁阀的自动启闭功能,代替了人员手动操作,自动程度高,能有减少运行人员的操作量,规避了人员参数监控不到位调整不及时的缺点。

Description

一种氢冷发电机氢气参数监控及自动控制系统 技术领域
本实用新型属于参数监控及维自动控制技术领域,涉及一种氢冷发电机氢气参数监控及自动控制系统。
背景技术
目前大型发电机普遍以氢气作为冷却介质,氢气控制系统也是发电机最主要的辅助控制系统,氢气纯度、压力、湿度、补氢量是发电机的重要参数。氢气纯度降低导致发电机冷却效率降低,使内部部件过热引发发电机绝缘老化,当氢气浓度达到爆炸极限范围时还会引发发电机爆炸。氢气湿度过低会引起绝缘材料的收缩,造成固定结构松弛,甚至会使绝缘垫块产生裂纹。机内湿度过高时,一方面会使通风摩擦损耗增大,冷却效率降低,另一方面,降低绕组的电气强度,加速转子护环的应力损失,使转子护环出现裂纹,而且会急剧恶化。补氢量异常增大说明发电机氢气系统存在明显漏点,氢气泄漏极易导致爆炸着火事件的发生。所以对氢冷发电机氢气参数的监视调整如果不及时便会引发严重的后果。
现有技术中,普遍靠人工监视发电机内氢气参数,待监视人员发现参数异常后,再派人去就地对发电机内氢气进行手动置换,自动化程度较低,存在参数监视不到位,操作时间长不能及时恢复氢气参数到正常范围的隐患,严重威胁机组安全。
技术问题
为了克服上述现有技术的缺点,本实用新型的目的在于提供一种氢冷发电机氢气参数监控及自动控制系统,用于解决发电机中氢气参数监控不到位,不能及时调节氢气参数,处理不及时易造成事故的技术问题。
技术解决方案
为了达到上述目的,本实用新型采用以下技术方案予以实现:
本实用新型公开了一种氢冷发电机氢气参数监控及自动控制系统,包括发电机、DCS控制系统、自动干燥模块、自动提纯模块、压力自动控制模块、供氢单元和排气单元;
所述自动干燥模块、自动提纯模块、压力自动控制模块、供氢单元均和排气单元分别与发电机和DCS控制系统连接;所述自动提纯模块还和排气单元通过管路连接,所述压力自动控制模块还和供氢单元通过管路连接。
进一步地,所述自动干燥模块包括氢气湿度仪、氢气干燥器、氢气干燥器出口门和氢气干燥器入口门;所述氢气干燥器出口门和氢气干燥器入口门分别与氢气干燥器连接;所述和发电机通过管路和氢气干燥器入口门连接;所述氢气干燥器出口门通过管路和发电机连接;所述氢气湿度仪设有氢气湿度仪出口门和氢气湿度仪入口门,所述氢气湿度仪通过氢气湿度仪入口门连接于发电机和氢气干燥器入口门连接的前管路上,所述氢气湿度仪通过氢气湿度仪出口门发电机和氢气干燥器出口门连接的后管路上;所述氢气湿度仪、氢气干燥器还和DCS控制系统连接。
进一步地,所述自动提纯模块包括氢气纯度仪、第一氢气纯度仪入口门、第二氢气纯度仪入口门和氢气纯度仪出门口;所述第一氢气纯度仪入口门、第二氢气纯度仪入口门、氢气纯度仪出门口分别与氢气纯度仪连接,所述氢气纯度仪和DCS控制系统连接;所述第一氢气纯度仪入口门通过管路和发电机的底部连接;所述第二氢气纯度仪入口门通过管路和发电机的顶部连接;所述氢气纯度仪出门口和排气单元连接。
进一步地,所述压力自动控制模块包括补氢流量计、补氢流量计前手动门、补氢流量计后手动门和补氢至发电机顶部手动门;所述补氢流量计前手动门、补氢流量计后手动门分别和补氢流量计连接,所述补氢流量计后手动门通过管路和补氢至发电机顶部手动门;所述补氢至发电机顶部手动门通过管路和发电机的顶部连接;所述补氢流量计前手动门通过管路和供氢单元连接,所述补氢流量计前手动门和供氢单元连接的管路间设有供氢阀组后压力变送器,所述供氢阀组后压力变送器和DCS控制系统连接。
进一步地,所述供氢单元包括供氢总门,所述供氢总门通过三条管路分别连接有供氢电磁阀、补氢差压阀和补氢差压阀后手动门;所述供氢电磁阀、补氢差压阀和补氢差压阀后手动门分别与补氢流量计前手动门连接;所述供氢电磁阀还与DCS控制系统连接;所述供氢总门和供氢电磁阀、补氢差压阀连接的管路上分别设有供氢电磁阀前手动门、补氢差压阀前手动门;所述供氢电磁阀、补氢差压阀和补氢流量计前手动门连接的管路上分别设有供氢电磁阀后手动门、补氢差压阀后手动门。
进一步地,所述供氢总门分别与供氢电磁阀、补氢差压阀和补氢差压阀后手动门连接的三个管路上设有过滤器;所述供氢总门和补氢差压阀后手动门连接的管路上还设有供氢阀组前压力变送器。
进一步地,所述补氢流量计通过管路并联有补氢流量计旁路手动门,所述补氢流量计旁路手动门的一端和供氢单元连接,补氢流量计旁路手动门的另一端与补氢至发电机顶部手动门连接。
进一步地,所述排气单元包括发电机顶部排氢至大气手动门、发电机排气至大气手动总门和发电机底部排氢至大气手动门;所述电机顶部排氢至大气手动门的一端通过发电机顶部排氢管与发电机连接,电机顶部排氢至大气手动门的另一端与发电机排气至大气手动总门的一端连接;所述大气手动总门的另一端与氢气纯度仪出门口连接之后,再与发电机排气至大气管连接;所述发电机底部排氢至大气手动门的一端通过发电机底部排氢管与发电机的底部连接,发电机底部排氢至大气手动门的另一端与发电机排气至大气管连接。
进一步地,所述排气单元还包括发电机底部排氢至大气电磁阀,所述发电机底部排氢至大气电磁阀设有发电机底部排氢至大气电磁阀前手动门和发电机底部排氢至大气电磁阀后手动门;所述发电机底部排氢至大气电磁阀通过发电机底部排氢至大气电磁阀前手动门和发电机底部排氢管连接,发电机底部排氢至大气电磁阀通过发电机底部排氢至大气电磁阀后手动门和发电机排气至大气管连接。
进一步地,所述发电机底部排氢至大气电磁阀还和DCS控制系统连接。
有益效果
与现有技术相比,本实用新型具有以下有益效果:
本实用新型公开了一种氢冷发电机氢气参数监控及自动控制系统,采用DCS控制系统控制发电机内的自动干燥模块、自动提纯模块和压力自动控制模块,实现发电机内氢气参数的自动监视、报警和调整,保证正常运行时氢气参数始终维持正常范围,当参数波动时能自动进行调整,以解决机组正常运行或事故处理时氢气参数调整不及时造成的安全隐患。本实用新型公开的氢冷发电机氢气参数监控及自动控制系统,可以实时监控氢气参数变化,并具备报警功能,便于运行人员发现问题并进行分析处理,具有自动进行氢气置换,自动维持发电机内部氢气压力,自动维持氢气湿度的功能,能有效避免氢气参数偏离导致的发电机组安全隐患。同时,通过采用各种电磁阀的自动启闭功能,代替了人员手动操作,自动程度高,能有减少运行人员的操作量,规避了人员参数监控不到位调整不及时的缺点。
进一步地,通过氢气纯度仪,DCS控制系统,发电机底部排氢至大气电磁阀、供氢电磁阀的配合,实现发电机氢气自动提纯;通过氢气湿度仪对发电机内氢气湿度进行检测,并将结果实时发送至DCS控制系统,配合氢气干燥器实现对发电机内部湿度情况的自动调节,自动维持氢气湿度;通过补氢流量计反馈至DCS控制系统,可实现提醒运行人员进行氢气系统查漏工作;通过供氢单元和供氢阀组后压力变送器连接,且供氢阀组后压力变送器实时向DCS控制系统反馈发电机内氢气压力值,可实现实时监控发电机内的压力状况,及时调整供氢量,自动维持发电机内部氢气压力。
进一步地,供氢单元包括供氢总门和补氢差压阀后手动门连接的管路上还设有供氢阀组前压力变送器,可以反馈供氢站至发电机供氢压力,及时监控,防止供氢管路压力异常。
附图说明
图1为本实用新型的系统结构示意图;
其中:1-发电机;2-DCS控制系统;3-氢气干燥器;4-氢气干燥器出口门;5-氢气干燥器入口门;6-氢气湿度仪出口门;7-氢气湿度仪入口门;8-氢气湿度仪;9-第一氢气纯度仪入口门;10-第二氢气纯度仪入口门;11-氢气纯度仪;12-氢气纯度仪出门口;13-供氢总门;14-供氢阀组前压力变送器;15-供氢电磁阀前手动门;16-供氢电磁阀;17-供氢电磁阀后手动门;18-补氢差压阀前手动门;19-补氢差压阀;20-补氢差压阀后手动门;21-补氢差压阀后手动门;22-供氢阀组后压力变送器;23-补氢流量计前手动门;24-补氢流量计;25-补氢流量计后手动门;26-补氢流量计旁路手动门;27-补氢至发电机顶部手动门;28-发电机顶部排氢至大气手动门;29-大气手动总门;30-发电机底部排氢至大气手动门;31-发电机底部排氢至大气电磁阀;32-发电机底部排氢至大气电磁阀前手动门;33-发电机底部排氢至大气电磁阀后手动门;34-过滤器;35-主出线盒;36-顶部汇流管;37-底部汇流管;38-发电机排气至大气管。
本发明的最佳实施方式
为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分的实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。
需要说明的是,本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本实用新型的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本实用新型做进一步详细描述:
参见图1,本实用新型公开了一种氢冷发电机氢气参数监控及自动控制系统,包括发电机1、DCS控制系统2、氢气湿度仪8、氢气干燥器3、氢气纯度仪11、补氢流量计24、供氢单元和排气单元;所述发电机1、氢气湿度仪8、氢气干燥器3、氢气纯度仪11、补氢流量计24、供氢单元分别与DCS控制系统2连接;
所述氢气干燥器3通过氢气干燥器入口门5与发电机1的高压区连接,通过氢气干燥器出口门4与发电机1的低压区连接;所述氢气湿度仪8通过氢气湿度仪入口门7连接于氢气干燥器入口门5的前管路,氢气湿度仪8通过氢气湿度仪出口门6连接于氢气干燥器出口门4的后管路,氢气湿度仪8对发电机内氢气湿度进行检测,并将结果实时发送至DCS控制系统2,形成自动干燥模块。
所述氢气纯度仪11通过第一氢气纯度仪入口门9与发电机1的底部连接,氢气纯度仪11通过第二氢气纯度仪入口门10与发电机1的顶部取样管相连,所述氢气纯度仪出门口12和排气单元连接。所述补氢流量计24通过所述补氢流量计前手动门23通过管路和供氢单元连接,所述补氢流量计前手动门23和供氢单元连接的管路间设有供氢阀组后压力变送器22,所述供氢阀组后压力变送器22和DCS控制系统2连接;所述补氢流量计后手动门25通过管路和补氢至发电机顶部手动门27;所述补氢至发电机顶部手动门27通过管路和发电机1的顶部连接,氢气纯度仪11对发电机内氢气纯度进行检测,并将结果实时发送至DCS控制系统2,形成自动提纯模块。
所述所述补氢流量计前手动门23、补氢流量计后手动门25分别和补氢流量计24连接,所述补氢流量计后手动门25通过管路和补氢至发电机顶部手动门27;所述补氢至发电机顶部手动门27通过管路和发电机1的顶部连接;所述补氢流量计前手动门23通过管路和供氢单元连接,所述补氢流量计前手动门23和供氢单元连接的管路间设有供氢阀组后压力变送器22,所述供氢阀组后压力变送器22和DCS控制系统2连接,所述所述补氢流量计24通过管路并联有补氢流量计旁路手动门26,所述补氢流量计旁路手动门26的一端和供氢单元连接,补氢流量计旁路手动门26的另一端与补氢至发电机顶部手动门27连接,供氢阀组后压力变送器22实时向DCS控制系统2反馈发电机内氢气压力值,形成压力自动控制模块;所述补氢流量计24会对补氢量进行统计,便于运行人员分析。
所述供氢单元包括供氢总门13,所述供氢总门通过三条管路分别连接有供氢电磁阀16、补氢差压阀19和补氢差压阀后手动门21;所述供氢电磁阀16、补氢差压阀19和补氢差压阀后手动门21分别与补氢流量计前手动门23连接;所述供氢电磁阀16还与DCS控制系统2连接;所述供氢总门13和供氢电磁阀16、补氢差压阀19连接的管路上分别设有供氢电磁阀前手动门15、补氢差压阀前手动门18;所述供氢电磁阀16、补氢差压阀19和补氢流量计前手动门23连接的管路上分别设有供氢电磁阀后手动门17、补氢差压阀后手动门20,所述供氢总门13分别与供氢电磁阀16、补氢差压阀19和补氢差压阀后手动门21连接的三个管路上设有过滤器34;所述供氢总门13和补氢差压阀后手动门21连接的管路上还设有供氢阀组前压力变送器14。
排气单元包括发电机顶部排氢至大气手动门28、发电机排气至大气手动总门29和发电机底部排氢至大气手动门30;所述电机顶部排氢至大气手动门28的一端通过发电机顶部排氢管与发电机1连接,电机顶部排氢至大气手动门28的另一端与发电机排气至大气手动总门29的一端连接;所述大气手动总门29的另一端与氢气纯度仪出门口12连接之后,再与发电机排气至大气管38连接;所述发电机底部排氢至大气手动门30的一端通过发电机底部排氢管与发电机1的底部连接,发电机底部排氢至大气手动门30的另一端与发电机排气至大气管38连接;排气单元还包括发电机底部排氢至大气电磁阀31,所述发电机底部排氢至大气电磁阀31设有发电机底部排氢至大气电磁阀前手动门32和发电机底部排氢至大气电磁阀后手动门33;所述发电机底部排氢至大气电磁阀31通过发电机底部排氢至大气电磁阀前手动门32和发电机底部排氢管连接,发电机底部排氢至大气电磁阀31通过发电机底部排氢至大气电磁阀后手动门33和发电机排气至大气管38连接;所述发电机底部排氢至大气电磁阀31还和DCS控制系统2连接。
本实用新型公开的一种氢冷发电机氢气参数监控及自动控制系统的工作过程如下:
DCS控制系统2中,氢气参数自动控制系统模块内设置有氢气自动干燥模式,氢气自动提纯模式,氢气压力自动控制模式。
(1)当正常工作时,可投入氢气自动提纯模式,通过氢气纯度仪11、DCS控制系统2、供氢单元和排气单元的配合,实现发电机氢气自动提纯;正常运行时,第一氢气纯度仪入口门9、氢气纯度仪出门口12保持开启状态,氢气纯度仪11对发电机内氢气纯度进行检测,并将结果实时发送至DCS控制系统2,当氢气纯度≤96%时,DCS控制系统2发送氢气纯度低报警信号,同时发送指令开启发电机底部排氢至大气电磁阀31将发电机内杂质气体排放至大气,随着杂质气体的排放发电机内氢气压力会逐渐下降,当压力≤0.5Mpa时,供氢电磁阀16开启对发电机进行补氢,同时强制关闭发电机底部排氢至大气电磁阀31。当氢气压力≥0.515Mpa时供氢电磁阀16关闭,同时恢复发电机底部排氢至大气电磁阀31状态,维持发电机内氢气压力的稳定。当氢气纯度≥98%时,发电机底部排氢至大气电磁阀31关闭,通过用制氢站来的高纯度合格氢气来置换出发电机内杂质气体,实现发电机内氢气纯度提高。机组不需维持氢气纯度时,可在DCS控制系统2内退出氢气自动提纯模式。
(2)机组正常工作时,可投入氢气自动干燥模式,正常运行时氢气湿度仪出口门6和氢气湿度仪入口门7保持开启状态,氢气湿度仪8对发电机内氢气湿度进行检测,并将结果实时发送至DCS控制系统2,当氢气湿度≥-3℃时,DCS控制系统2发送氢气湿度低报警信号,同时发送指令开启氢气干燥器运行,当氢气湿度≤-23℃时,DCS控制系统2发送氢气湿度高报警信号,同时发送指令退出氢气干燥器运行,维持发电机内氢气湿度在-5℃~-25℃的正常范围内。当氢气干燥器(3)和氢气湿度仪8故障需要检修或机组不需维持氢气湿度时,可在DCS控制系统2内退出氢气干燥器自动投停模式。
(3)机组正常运行时,可投入氢气压力自动控制模式,供氢阀组后压力变送器22实时向DCS控制系统2反馈发电机内氢气压力值。为了满足机组各类工况要求,可在DCS控制系统2氢气参数自动控制系统模块内手动设定发电机内氢气压力值,设定范围0~0.5Mpa。当发电机内氢气压力小于设定值时,DCS控制系统2发送氢气压力低报警信号,同时开启供氢电磁阀16,当发电机内氢气压力高于设定值时关闭供氢电磁阀16。不需维持氢气压力时,可在DCS控制系统内2退出氢气氢气压力自动控制模式。机组正常运行时,补氢流量计24会对补氢量进行统计,便于运行人员分析。当日补氢量大于13.4m 3/day时,DCS控制系统2中氢气参数自动控制系统模块发送补氢量大报警,提醒运行人员进行氢气系统查漏工作。
以上内容仅为说明本实用新型的技术思想,不能以此限定本实用新型的保护范围,凡是按照本实用新型提出的技术思想,在技术方案基础上所做的任何改动,均落入本实用新型权利要求书的保护范围之内。

Claims (10)

  1. 一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,包括发电机(1)、DCS控制系统(2)、自动干燥模块、自动提纯模块、压力自动控制模块、供氢单元和排气单元;
    所述自动干燥模块、自动提纯模块、压力自动控制模块、供氢单元均和排气单元分别与发电机(1)和DCS控制系统(2)连接;所述自动提纯模块还和排气单元通过管路连接,所述压力自动控制模块还和供氢单元通过管路连接。
  2. 根据权利要求1所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述自动干燥模块包括氢气湿度仪(8)、氢气干燥器(3)、氢气干燥器出口门(4)和氢气干燥器入口门(5);所述氢气干燥器出口门(4)和氢气干燥器入口门(5)分别与氢气干燥器(3)连接;所述和发电机(1)通过管路和氢气干燥器入口门(5)连接;所述氢气干燥器出口门(4)通过管路和发电机(1)连接;所述氢气湿度仪(8)设有氢气湿度仪出口门(6)和氢气湿度仪入口门(7),所述氢气湿度仪(8)通过氢气湿度仪入口门(7)连接于发电机(1)和氢气干燥器入口门(5)连接的前管路上,所述氢气湿度仪(8)通过氢气湿度仪出口门(6)发电机(1)和氢气干燥器出口门(4)连接的后管路上;所述氢气湿度仪(8)、氢气干燥器(3)还和DCS控制系统(2)连接。
  3. 根据权利要求1所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述自动提纯模块包括氢气纯度仪(11)、第一氢气纯度仪入口门(9)、第二氢气纯度仪入口门(10)和氢气纯度仪出门口(12);所述第一氢气纯度仪入口门(9)、第二氢气纯度仪入口门(10)、氢气纯度仪出门口(12)分别与氢气纯度仪(11)连接,所述氢气纯度仪(11)和DCS控制系统(2)连接;所述第一氢气纯度仪入口门(9)通过管路和发电机(1)的底部连接;所述第二氢气纯度仪入口门(10)通过管路和发电机(1)的顶部连接;所述氢气纯度仪出门口(12)和排气单元连接。
  4. 根据权利要求1所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述压力自动控制模块包括补氢流量计(24)、补氢流量计前手动门(23)、补氢流量计后手动门(25)和补氢至发电机顶部手动门(27);所述补氢流量计前手动门(23)、补氢流量计后手动门(25)分别和补氢流量计(24)连接,所述补氢流量计后手动门(25)通过管路和补氢至发电机顶部手动门(27);所述补氢至发电机顶部手动门(27)通过管路和发电机(1)的顶部连接;所述补氢流量计前手动门(23)通过管路和供氢单元连接,所述补氢流量计前手动门(23)和供氢单元连接的管路间设有供氢阀组后压力变送器(22),所述供氢阀组后压力变送器(22)和DCS控制系统(2)连接。
  5. 根据权利要求4所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述供氢单元包括供氢总门(13),所述供氢总门通过三条管路分别连接有供氢电磁阀(16)、补氢差压阀(19)和补氢差压阀后手动门(21);所述供氢电磁阀(16)、补氢差压阀(19)和补氢差压阀后手动门(21)分别与补氢流量计前手动门(23)连接;所述供氢电磁阀(16)还与DCS控制系统(2)连接;所述供氢总门(13)和供氢电磁阀(16)、补氢差压阀(19)连接的管路上分别设有供氢电磁阀前手动门(15)、补氢差压阀前手动门(18);所述供氢电磁阀(16)、补氢差压阀(19)和补氢流量计前手动门(23)连接的管路上分别设有供氢电磁阀后手动门(17)、补氢差压阀后手动门(20)。
  6. 根据权利要求5所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述供氢总门(13)分别与供氢电磁阀(16)、补氢差压阀(19)和补氢差压阀后手动门(21)连接的三个管路上设有过滤器(34);所述供氢总门(13)和补氢差压阀后手动门(21)连接的管路上还设有供氢阀组前压力变送器(14)。
  7. 根据权利要求4所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述补氢流量计(24)通过管路并联有补氢流量计旁路手动门(26),所述补氢流量计旁路手动门(26)的一端和供氢单元连接,补氢流量计旁路手动门(26)的另一端与补氢至发电机顶部手动门(27)连接。
  8. 根据权利要求3所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述排气单元包括发电机顶部排氢至大气手动门(28)、发电机排气至大气手动总门(29)和发电机底部排氢至大气手动门(30);所述电机顶部排氢至大气手动门(28)的一端通过发电机顶部排氢管与发电机(1)连接,电机顶部排氢至大气手动门(28)的另一端与发电机排气至大气手动总门(29)的一端连接;所述大气手动总门(29)的另一端与氢气纯度仪出门口(12)连接之后,再与发电机排气至大气管(38)连接;所述发电机底部排氢至大气手动门(30)的一端通过发电机底部排氢管与发电机(1)的底部连接,发电机底部排氢至大气手动门(30)的另一端与发电机排气至大气管(38)连接。
  9. 根据权利要求8所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述排气单元还包括发电机底部排氢至大气电磁阀(31),所述发电机底部排氢至大气电磁阀(31)设有发电机底部排氢至大气电磁阀前手动门(32)和发电机底部排氢至大气电磁阀后手动门(33);所述发电机底部排氢至大气电磁阀(31)通过发电机底部排氢至大气电磁阀前手动门(32)和发电机底部排氢管连接,发电机底部排氢至大气电磁阀(31)通过发电机底部排氢至大气电磁阀后手动门(33)和发电机排气至大气管(38)连接。
  10. 根据权利要求9所述的一种氢冷发电机氢气参数监控及自动控制系统,其特征在于,所述发电机底部排氢至大气电磁阀(31)还和DCS控制系统(2)连接。
PCT/CN2022/119043 2022-03-31 2022-09-15 一种氢冷发电机氢气参数监控及自动控制系统 WO2023184885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212022000046.3U DE212022000046U1 (de) 2022-03-31 2022-09-15 Ein System zur Überwachung und automatischen Steuerung derWasserstoffparameter beim wasserstoffgekühlten Generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220734406.2 2022-03-31
CN202220734406.2U CN217386226U (zh) 2022-03-31 2022-03-31 一种氢冷发电机氢气参数监控及自动控制系统

Publications (1)

Publication Number Publication Date
WO2023184885A1 true WO2023184885A1 (zh) 2023-10-05

Family

ID=83104490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119043 WO2023184885A1 (zh) 2022-03-31 2022-09-15 一种氢冷发电机氢气参数监控及自动控制系统

Country Status (2)

Country Link
CN (1) CN217386226U (zh)
WO (1) WO2023184885A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217386226U (zh) * 2022-03-31 2022-09-06 山东日照发电有限公司 一种氢冷发电机氢气参数监控及自动控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209812A (ja) * 1999-01-18 2000-07-28 Hitachi Ltd 回転電機の冷却用水素ガス置換装置
US20030090164A1 (en) * 2001-11-14 2003-05-15 Environment One Corporation Skids, modules, and modular system for monitoring hydrogen-cooled generators
US20160001215A1 (en) * 2014-07-03 2016-01-07 Nuvera Fuel Cells, Inc. System and method for regenerating absorber bed for drying compressed humidified hydrogen
CN209214674U (zh) * 2018-12-29 2019-08-06 河南省日立信股份有限公司 发电机氢系统氢气全参数集成在线监测系统
CN213182396U (zh) * 2020-12-03 2021-05-11 郑州恒博环境科技股份有限公司 一种供氢装置智能控制系统
CN113803638A (zh) * 2021-07-30 2021-12-17 华电电力科学研究院有限公司 一种智能化发电机氢气冷却系统及控制方法
CN217386226U (zh) * 2022-03-31 2022-09-06 山东日照发电有限公司 一种氢冷发电机氢气参数监控及自动控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209812A (ja) * 1999-01-18 2000-07-28 Hitachi Ltd 回転電機の冷却用水素ガス置換装置
US20030090164A1 (en) * 2001-11-14 2003-05-15 Environment One Corporation Skids, modules, and modular system for monitoring hydrogen-cooled generators
US20160001215A1 (en) * 2014-07-03 2016-01-07 Nuvera Fuel Cells, Inc. System and method for regenerating absorber bed for drying compressed humidified hydrogen
CN209214674U (zh) * 2018-12-29 2019-08-06 河南省日立信股份有限公司 发电机氢系统氢气全参数集成在线监测系统
CN213182396U (zh) * 2020-12-03 2021-05-11 郑州恒博环境科技股份有限公司 一种供氢装置智能控制系统
CN113803638A (zh) * 2021-07-30 2021-12-17 华电电力科学研究院有限公司 一种智能化发电机氢气冷却系统及控制方法
CN217386226U (zh) * 2022-03-31 2022-09-06 山东日照发电有限公司 一种氢冷发电机氢气参数监控及自动控制系统

Also Published As

Publication number Publication date
CN217386226U (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023184885A1 (zh) 一种氢冷发电机氢气参数监控及自动控制系统
CN113685840A (zh) 一种电站锅炉水冷壁充氮保养系统及方法
CN113803638A (zh) 一种智能化发电机氢气冷却系统及控制方法
CN114811566B (zh) 一种火电机组启动锅炉智能停炉保护工艺
CN116024576A (zh) 一种电厂发电机组用全自动智能防腐蚀系统及操作方法
CN209762727U (zh) 一种天然气串联调压阀减压装置
CN211829090U (zh) 一种铅酸蓄电池化成系统
CN211987221U (zh) 一种进口带压式密封油真空脱气净化装置
CN214206264U (zh) 一种机柜正压通风装置
CN210631916U (zh) 正压后避免设备损坏的烧结脱硫系统
CN216198990U (zh) 一种空压机喷吹系统
CN212563588U (zh) 一种动力站压缩空气节能控制系统
CN221028517U (zh) 一种长距离高炉冶炼机前富氧系统
CN108397432A (zh) 一种高炉鼓风机液压系统
CN220468021U (zh) 转炉煤气回收装置
CN215892958U (zh) 可缩短空分塔加温吹除时间的空分系统
CN211227188U (zh) 一种带切断装置的高炉炉顶排压阀
CN216919312U (zh) 一种新型高炉炉顶料罐均、排压系统
CN216356362U (zh) 一种智能化发电机氢气冷却系统
CN111623244A (zh) 一种氧氮压缩机在线切换装置及其控制方法
CN211419567U (zh) 氢冷发电机氢气提纯装置
CN216746760U (zh) 一种煤气流量损失的在线监测系统
CN212942814U (zh) 一种反应系统
CN220453443U (zh) 一种氢气氮气自动置换控制装置
CN115683485A (zh) 声纳浮标气密性测试设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934704

Country of ref document: EP

Kind code of ref document: A1