WO2023184826A1 - 一种具有滤光功能的隔热温差测试装置 - Google Patents

一种具有滤光功能的隔热温差测试装置 Download PDF

Info

Publication number
WO2023184826A1
WO2023184826A1 PCT/CN2022/113020 CN2022113020W WO2023184826A1 WO 2023184826 A1 WO2023184826 A1 WO 2023184826A1 CN 2022113020 W CN2022113020 W CN 2022113020W WO 2023184826 A1 WO2023184826 A1 WO 2023184826A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
sub
thermal insulation
tested
temperature sensor
Prior art date
Application number
PCT/CN2022/113020
Other languages
English (en)
French (fr)
Inventor
李静
王韩
石明菊
王治
孙健
王文博
赵传鹏
顾蕾
罗娜
陈瑞晓
兰建
Original Assignee
河南建筑材料研究设计院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南建筑材料研究设计院有限责任公司 filed Critical 河南建筑材料研究设计院有限责任公司
Publication of WO2023184826A1 publication Critical patent/WO2023184826A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention relates to the technical field of paint testing equipment, and in particular to a thermal insulation temperature difference testing device with a light filtering function.
  • Thermal insulation coating for buildings integrates thermal insulation, environmental protection, economy, safety and decorative functions. As a supplementary insulation measure for buildings in hot summer and cold winter areas, it can be simply sprayed or brushed on the internal and external surfaces of the building. It can effectively reflect light in summer. Sunlight can reduce the exposure and aging damage of the exterior surface, and at the same time lower the indoor temperature. It can prevent the heat inside the building from quickly dissipating in winter, and plays a good role in heat insulation. Under the general framework of environmental protection, water-based lightweight building insulation coatings have become the current development trend. Water-based coatings mostly achieve autonomous cooling by reflecting indoor and outdoor infrared radiation. They have zero pollution, significant effects, no energy consumption, and one-time investment of funds. They are highly practical, have great market potential, and have high R&D and promotion value.
  • the light source of the existing test equipment usually simulates the full spectrum of natural sunlight.
  • the light source in the patent with publication number CN215415150U only has three light sources: incandescent lamp, infrared lamp or ultraviolet lamp. This option cannot flexibly adjust the wavelength of the incident light, and the experimental environment that can be simulated is very limited.
  • the photon density and heat irradiated by the existing test equipment on the surface of the test piece and the comparison sample are different, which affects the rigor and accuracy of the experiment.
  • the purpose of the invention is to provide a thermal insulation temperature difference testing device with a light filtering function to solve the problems existing in the above-mentioned prior art, realize filtering of light of different wavelengths, and improve the accuracy of thermal insulation temperature difference testing.
  • the present invention provides the following solutions:
  • the invention provides a thermal insulation temperature difference testing device with a light filtering function, which includes a box body.
  • a rotating lamp panel and a test cabin are provided in the box body.
  • the driving device can drive the rotating lamp panel to rotate.
  • the rotating lamp Several irradiation light sources are provided on the disk.
  • the test cabin includes at least two sub-test cabins arranged circumferentially with the rotation axis of the rotating lamp disk as the axis.
  • the two adjacent sub-test cabins are separated by thermal insulation partitions. plates are separated, and a filter is provided on the side of the test cabin close to the irradiation light source. The light emitted by the irradiation light source is filtered by the filter and then illuminates the test cabin.
  • each of the sub-test cabins is provided with a first temperature sensor, a plate to be tested and a second temperature sensor, and the surroundings of the plate to be tested are Sealingly connected to the inner wall of the sub-test chamber, and the plate to be tested is perpendicular to the rotation axis, and the plate to be tested is located between the first temperature sensor and the second temperature sensor;
  • the panel to be tested in the sub-test cabin is a comparison test piece, and the panels to be tested in the other sub-test cabins are respectively coated with coatings to be tested.
  • the driving device includes a drive motor and a reduction gearbox
  • the output shaft of the drive motor is fixedly connected to the input shaft of the reduction gearbox
  • the output shaft of the reduction gearbox is fixedly connected to one end of the screw
  • the rotating light An adjusting nut is fixedly provided on the disk, and the adjusting nut is threadedly connected to the screw, which is coaxial with the rotating shaft;
  • the box is also provided with a speed controller for controlling the driving motor.
  • the box is also provided with a box temperature sensor, several temperature-controlled fans and a box temperature controller for controlling the temperature-controlled fans.
  • the box temperature sensor and the box temperature controller are signal connection, and the box temperature controller has a temperature display function, and the temperature control fan is located outside the test cabin.
  • the box is provided with a temperature display corresponding to the sub-test chamber, and the temperature display is used to display the first temperature sensor and the second temperature sensor in the corresponding sub-test chamber. The temperature detected by the temperature sensor.
  • the optical filter is made of quartz glass.
  • the sub-test cabin is also provided with a metal support piece located on the side of the panel to be tested away from the irradiation light source, and the surroundings of the metal support piece are sealingly connected to the inner wall of the sub-test cabin.
  • the metal support piece is tightly bonded to the plate to be tested through thermal conductive silicone grease; the second temperature sensor is arranged on the side of the metal support piece away from the plate to be tested.
  • the metal support sheet is an aluminum sheet.
  • the panel to be tested is sealingly connected to the sub-test cabin through a silicone sealing ring.
  • the distance between all the plates to be tested and the irradiation light source is equal.
  • insulation materials are arranged on the four walls and bottom of the box, and a door is provided on the box, and the door can be opened and closed.
  • the thermal insulation temperature difference testing device with a light filtering function created by the present invention can filter incident light, thereby improving the accuracy of the thermal insulation temperature difference testing.
  • the insulated temperature difference testing device with light filtering function created by the present invention allows the irradiation light source to rotate by setting a rotating lamp plate, thereby making the illumination energy irradiated in each sub-test cabin equal and controlling the unstable variable of illumination energy.
  • the metal support plate is bonded to the board to be tested through thermal conductive silicone grease, which reduces heat loss and can accurately measure the temperature on the back of the board to be tested; the board to be tested can be individually passed through silica gel
  • the sealing ring is sealed with the sub-test chamber, which on the one hand avoids the loss of irradiation heat, and on the other hand prevents the heat from one side of the panel to be tested from leaking to the other side through gaps, etc., thus improving the accuracy of the test.
  • Figure 1 is a schematic structural diagram of the thermal insulation temperature difference testing device with light filtering function created by the present invention.
  • Figure 2 is a partial enlarged view of point A in Figure 1.
  • Figure 3 is a schematic second structural diagram of the thermal insulation temperature difference testing device with light filtering function created by the present invention.
  • the purpose of the invention is to provide a thermal insulation temperature difference testing device with a light filtering function to solve the problems existing in the above-mentioned prior art, realize filtering of light of different wavelengths, and improve the accuracy of thermal insulation temperature difference testing.
  • This embodiment provides a thermal insulation temperature difference testing device 100 with a light filtering function, which includes a box 14.
  • a rotating lamp panel 6 and a test cabin are provided in the box 14.
  • the driving device can drive the rotating lamp panel 6 to rotate.
  • the rotating lamp panel 6 is provided with a plurality of irradiation light sources 7 .
  • the driving device includes a driving motor 1 and a reduction box 2.
  • the output shaft of the driving motor 1 is fixedly connected to the input shaft of the reduction box 2.
  • the output shaft of the reduction box 2 is fixedly connected to one end of the screw 20.
  • the rotating lamp panel An adjusting nut 21 is fixedly provided on 6.
  • the adjusting nut 21 is threadedly connected to the screw rod 20.
  • the screw rod 20 is coaxial with the rotating shaft.
  • the height of the rotating lamp panel 6 is adjusted to adjust the vertical distance between the irradiation light source 7 and the panel 11 to be tested, thereby adjusting the illumination energy obtained by the upper surface of the panel 11 to be tested.
  • the box 14 is also provided with a rotation speed controller 15 for controlling the driving motor 1.
  • the rotation speed and height of the rotating lamp panel 6 can be continuously adjusted within a predetermined range. It should be noted that the rotating lamp panel 6 rotates at a constant speed and slowly, so when the rotating screw 20 drives the rotating lamp panel 6 to rotate through the adjusting nut 21, due to the friction between the adjusting nut 21 and the screw 20, the adjusting nut 21 There will be no relative rotation with the screw 20, thereby ensuring that the device can work stably.
  • the irradiation light source 7 can rotate, so that the illumination energy irradiated in each sub-test chamber 9 is equal, and the unstable variable of illumination energy is controlled, so that the temperature of the surface of the panel to be tested 11 is uniform. equal, thus improving the accuracy of insulation temperature difference testing.
  • the test cabin includes two sub-test cabins 9 arranged circumferentially with the rotation axis of the rotating lamp panel 6 as the axis, that is, the rotating axis of the rotating lamp panel 6 is located between the two sub-test cabins 9, and each sub-test cabin 9 is equal in size. , to ensure that when the rotating lamp panel 6 rotates, the light energy irradiated into each sub-test cabin 9 is equal.
  • Two adjacent sub-test cabins 9 are separated by a thermal insulation partition 10.
  • a filter 8 is provided on the side of the test cabin close to the irradiation light source 7. The light emitted by the irradiation light source 7 is filtered by the filter 8 and then illuminated to the test.
  • the cabin, the test cabin and the insulation partition 10 are respectively sealed with the filter 8; in this embodiment, the filter 8 is made of quartz glass, and the filter 8 can also be made of other materials.
  • the filter 8 can detect incident light through the filter 8. Filtering is performed to remove unnecessary wavelengths, and simulation of different lighting environments can be achieved by selecting different types of filters 8; when there is a need not to filter light, the filter 8 can also be directly removed.
  • Each sub-test cabin 9 is provided with a first temperature sensor 16, a plate to be tested 11 and a second temperature sensor 12.
  • the periphery of the plate to be tested 11 is sealingly connected to the inner wall of the sub-test cabin 9 through a silicone sealing ring 18, and
  • the plate to be tested 11 is perpendicular to the axis of rotation, and the plate to be tested 11 is located between the first temperature sensor 16 and the second temperature sensor 12 ; the distance between the two plates to be tested and the irradiation light source 7 is equal.
  • the test cabin is provided with a material door 19 that can be opened and closed to facilitate the placement and replacement of the panels 11 to be tested.
  • the panel 11 to be tested in one sub-test chamber 9 is a comparison specimen, and the panel 11 to be tested in the other sub-test chamber 9 is coated with the coating to be tested and serves as the specimen to be tested.
  • the sub-test cabin 9 is also provided with a metal support piece 13 located on the side of the panel to be tested 11 away from the irradiation light source 7.
  • the surroundings of the metal support piece 13 are sealingly connected to the inner wall of the sub-test cabin 9.
  • the metal support piece 13 conducts heat through
  • the silicone grease is tightly bonded to the plate to be tested 11; the second temperature sensor 12 is provided on the side of the metal support piece 13 away from the plate to be tested 11.
  • the metal supporting piece 13 is made of aluminum.
  • Thermal conductive silicone grease has excellent thermal conductivity, electrical insulation, and chemical stability. It fills the gap between the aluminum plate and the plate to be tested 11, achieving smooth and rapid heat conduction and greatly improving the test accuracy.
  • the box 14 is also provided with a box temperature sensor 17, several temperature-controlled fans 3 and a box temperature controller 5 for controlling the temperature-controlled fans 3.
  • the box temperature sensor 17 is signally connected to the box temperature controller 5.
  • the box temperature controller 5 has a temperature display function, and the temperature control fans 3 are located outside the test cabin.
  • the inside of the box 14 is mainly used to promote the air flow in the upper part of the box 14 to avoid excessive temperature, thereby quickly adjusting the temperature inside the box and improving work efficiency.
  • Insulation materials are arranged on the four walls and the bottom of the box 14, and a door is provided on the box 14.
  • the door can be opened and closed to facilitate equipment maintenance and replacement of the irradiation light source 7.
  • the box 14 is provided with a temperature display 4 corresponding to the sub-test cabin 9 one-to-one.
  • the temperature display 4 is used to display the temperature detected by the first temperature sensor 16 and the second temperature sensor 12 in the corresponding sub-test cabin 9 .
  • the specific usage method of the thermal insulation temperature difference testing device 100 with light filtering function in this embodiment is as follows:
  • the first temperature sensor 16 in one sub-test cabin 9 is called the first upper temperature sensor and the first lower temperature sensor, and the first temperature sensor 16 in the other sub-test cabin 9 is called the second temperature sensor.
  • the test piece put the comparison test piece into another sub-test cabin 9, and then place the filter 8.
  • the test cabin will form an independent and airtight test chamber.
  • the space is divided into two independent sub-test chambers 9 by the insulation partition 10.
  • the driving motor 1 drives the rotating lamp panel 6 to rotate, and the irradiation light source 7 is turned on, so that the light from the irradiation light source 7 is evenly emitted into the two sub-test chambers.
  • the irradiation light since the irradiation light is completely uniform, the same light energy is obtained in the two sub-test cabins 9, so the upper surfaces of the test piece and the comparison test piece should have the same temperature, that is, the first upper temperature sensor and the second upper temperature sensor.
  • the upper temperature sensor should capture and display the same value, and at the same time reflect the difference with the box temperature sensor 17, intuitively reflecting the filtering performance of the filter 8.
  • the first lower temperature sensor and the second lower temperature sensor respectively capture the temperature on the back of the test piece and the comparison test piece, the difference between the first upper temperature sensor and the first lower temperature sensor, the second upper temperature sensor and the second lower temperature sensor.
  • the difference can intuitively reflect the insulation performance of building insulation coatings or thermal insulation materials, that is, the greater the temperature difference, the better the insulation effect of the material.

Abstract

一种具有滤光功能的隔热温差测试装置(100),包括箱体(14),箱体(14)内设置有旋转灯盘(6)和测试舱,驱动装置能够驱动旋转灯盘(6)旋转,旋转灯盘(6)上设置有多个辐照光源(7),测试舱包括至少两个以旋转灯盘(6)的旋转轴为轴周向排列的子测试舱(9),相邻的两个子测试舱(9)通过保温隔板(10)相隔,测试舱靠近辐照光源(7)的一侧设置有滤光片(8),辐照光源(7)发出的光经滤光片(8)滤光后照射到测试舱,测试舱和保温隔板(10)分别与滤光片(8)密封连接;每个子测试舱(9)中均设置有第一温度传感器(16)、待测试板件(11)和第二温度传感器(12),待测试板件(11)的四周通过硅胶密封圈(18)与子测试舱(9)的内壁密封连接,且待测试板件(11)垂直于旋转轴,待测试板件(11)位于第一温度传感器(16)和第二温度传感器(12)之间。具有滤光功能的隔热温差测试装置(100)提高了隔热温差测试的准确度。

Description

一种具有滤光功能的隔热温差测试装置 技术领域
本发明创造涉及涂料测试设备技术领域,特别是涉及一种具有滤光功能的隔热温差测试装置。
背景技术
建筑用保温隔热涂料集隔热、环保、经济、安全、装饰功效于一体,作为夏热冬冷地区建筑物的补充保温措施,简单喷涂或刷涂于建筑物的内外表面,夏季可有效反射太阳光、降低外表面的曝光老化伤害、同时降低室内温度,冬季可保建筑物内部热量不快速散失,起到良好的隔热保温作用。在环保的大框架下,水性轻质建筑隔热涂料成为当前的发展趋势。水性涂料多通过反射室内外的红外辐射实现自主降温,零污染、效果显著、无需能源消耗、资金一次性投入,实用性强、市场潜力大、具有较高的研发推广价值。
涂料在生产后还要进行隔热温差测试,现有的测试设备的光源通常为模拟天然日光的全谱照射,例如公开号为CN215415150U的专利中的光源仅有白炽灯、红外灯或紫外灯三种选择,不能灵活调节入射光线的波长,可模拟的实验环境非常有限。另外,现有的测试设备照射在待测试件和对比试件表面的光子密度和热量有所差异,影响实验的严谨性和准确度。
技术问题
本发明创造的目的是提供一种具有滤光功能的隔热温差测试装置,以解决上述现有技术存在的问题,实现对不同波长光线的过滤,并提高隔热温差测试的准确度。
技术解决方案
为实现上述目的,本发明创造提供了如下方案:
本发明创造提供了一种具有滤光功能的隔热温差测试装置,包括箱体,所述箱体内设置有旋转灯盘和测试舱,驱动装置能够驱动所述旋转灯盘旋转,所述旋转灯盘上设置有若干个辐照光源,所述测试舱包括至少两个以所述旋转灯盘的旋转轴为轴周向排列的子测试舱,相邻的两个所述子测试舱通过保温隔板相隔,所述测试舱靠近所述辐照光源的一侧设置有滤光片,所述辐照光源发出的光经所述滤光片滤光后照射到所述测试舱,所述测试舱和所述保温隔板分别与所述滤光片密封连接;每个所述子测试舱中均设置有第一温度传感器、待测试板件和第二温度传感器,所述待测试板件的四周与所述子测试舱的内壁密封连接,且所述待测试板件垂直于所述旋转轴,所述待测试板件位于所述第一温度传感器和所述第二温度传感器之间;一个所述子测试舱中的所述待测试板件为对比试件,其它所述子测试舱中的所述待测试板件上分别涂覆有待测试的涂料。
优选的,所述驱动装置包括驱动电机和减速箱,所述驱动电机的输出轴与所述减速箱的输入轴固连,所述减速箱的输出轴与螺杆的一端固连,所述旋转灯盘上固定设置有调节螺母,所述调节螺母与所述螺杆螺纹连接,所述螺杆与所述旋转轴同轴;所述箱体上还设置有用于控制所述驱动电机的转速控制器。
优选的,所述箱体上还设置有箱体温度传感器、若干个控温风扇和用于控制所述控温风扇的箱体温度控制器,所述箱体温度传感器与所述箱体温度控制器信号连接,且所述箱体温度控制器具有温度显示功能,所述控温风扇位于所述测试舱外。
优选的,所述箱体上设置有与所述子测试舱一一对应的温度显示器,所述温度显示器用于显示对应的所述子测试舱中的所述第一温度传感器和所述第二温度传感器所检测到的温度。
优选的,所述滤光片采用石英玻璃。
优选的,所述子测试舱中还设置有位于所述待测试板件远离所述辐照光源的一侧的金属支撑片,所述金属支撑片的四周与所述子测试舱的内壁密封连接,所述金属支撑片通过导热硅脂与所述待测试板件紧密粘合;所述第二温度传感器设置在所述金属支撑片远离所述待测试板件的一侧。
优选的,所述金属支撑片为铝片。
优选的,所述待测试板件通过硅胶密封圈与所述子测试舱密封连接。
优选的,所有所述待测试板片与所述辐照光源的距离均相等。
优选的,所述箱体的四壁和底板上均布置有保温材料,所述箱体上设置有门,所述门能够开启和关闭。
有益效果
本发明创造相对于现有技术取得了以下技术效果:
本发明创造的具有滤光功能的隔热温差测试装置能够对入射光线进行过滤,提高了隔热温差测试的准确度。本发明创造的具有滤光功能的隔热温差测试装置通过设置旋转灯盘使得辐照光源能够旋转,从而使得照射在每个子测试舱中的光照能量相等,控制了光照能量这一不稳定变量,使得待测试板件的表面的温度均相等,从而提高了隔热温差测试的准确度;通过滤光片对入射光线进行滤光,从而滤去不必要的波长,通过选择不同种类的滤光片能够实现对不同光照环境的模拟;使金属支撑板通过导热硅脂与待测试板件粘合,减少了热损失,能够准确测得待测试板件的背面温度;使待测试板件分别通过硅胶密封圈与子测试舱密封连接,一方面避免了辐照热量的散失,另一方面也避免了待测试板件一侧的热量通过间隙等泄露到另一侧,从而提高了测试的准确度。
附图说明
为了更清楚地说明本发明创造实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明创造的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明创造具有滤光功能的隔热温差测试装置的结构示意图一。
图2为图1中A处的局部放大图。
图3为本发明创造具有滤光功能的隔热温差测试装置的结构示意图二。
其中:100、具有滤光功能的隔热温差测试装置;1、驱动电机;2、减速箱;3、控温风扇;4、温度显示器;5、箱体温度控制器;6、旋转灯盘;7、辐照光源;8、滤光片;9、子测试舱;10、保温隔板;11、待测试板件;12、第二温度传感器;13、金属支撑片;14、箱体;15、转速控制器;16、第一温度传感器;17、箱体温度传感器;18、硅胶密封圈;19、物料门;20、螺杆;21、调节螺母。
本发明的实施方式
下面将结合本发明创造实施例中的附图,对本发明创造实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明创造一部分实施例,而不是全部的实施例。基于本发明创造中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明创造保护的范围。
本发明创造的目的是提供一种具有滤光功能的隔热温差测试装置,以解决上述现有技术存在的问题,实现对不同波长光线的过滤,并提高隔热温差测试的准确度。
为使本发明创造的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明创造作进一步详细的说明。
如图1至图3所示:本实施例提供了一种具有滤光功能的隔热温差测试装置100,包括箱体14,箱体14内设置有旋转灯盘6和测试舱。
驱动装置能够驱动旋转灯盘6旋转,旋转灯盘6上设置有多个辐照光源7。在本实施例中,驱动装置包括驱动电机1和减速箱2,驱动电机1的输出轴与减速箱2的输入轴固连,减速箱2的输出轴与螺杆20的一端固连,旋转灯盘6上固定设置有调节螺母21,调节螺母21与螺杆20螺纹连接,螺杆20与旋转轴同轴,通过手动转动旋转灯盘6来调整调节螺母21在螺杆20螺纹连接的高度位置,能够实现对旋转灯盘6高度的调节,以调整辐照光源7与待测试板件11的垂直距离,进而调节待测试板件11上表面获得的光照能量。箱体14上还设置有用于控制驱动电机1的转速控制器15,旋转灯盘6的转速和高度皆能实现既定范围内的连续可调。需要说明的是,旋转灯盘6是匀速缓慢旋转的,故转动的螺杆20通过调节螺母21带动旋转灯盘6旋转时,由于调节螺母21与螺杆20之间的摩擦力的存在,调节螺母21与螺杆20之间并不会发生相对转动,从而保证装置能够稳定工作。
通过设置旋转灯盘6使得辐照光源7能够旋转,从而使得照射在每个子测试舱9中的光照能量相等,控制了光照能量这一不稳定变量,使得待测试板件11的表面的温度均相等,从而提高了隔热温差测试的准确度。
测试舱包括两个以旋转灯盘6的旋转轴为轴周向排列的子测试舱9,即旋转灯盘6的旋转轴位于两个子测试舱9之间,且每个子测试舱9的大小相等,以保证旋转灯盘6旋转时,照射到每个子测试舱9中的光照能量相等。相邻的两个子测试舱9通过保温隔板10相隔,测试舱靠近辐照光源7的一侧设置有滤光片8,辐照光源7发出的光经滤光片8滤光后照射到测试舱,测试舱和保温隔板10分别与滤光片8密封连接;在本实施例中,滤光片8采用石英玻璃,滤光片8也可以采用其它材质,通过滤光片8对入射光线进行滤光,从而滤去不必要的波长,通过选择不同种类的滤光片8能够实现对不同光照环境的模拟;在有不滤光的需求时也可以直接去掉滤光片8。
每个子测试舱9中均设置有第一温度传感器16、待测试板件11和第二温度传感器12,待测试板件11的四周通过硅胶密封圈18与子测试舱9的内壁密封连接,且待测试板件11垂直于旋转轴,待测试板件11位于第一温度传感器16和第二温度传感器12之间;两个待测试板片与辐照光源7的距离相等。测试舱上设置有能够开启和关闭的物料门19,以便于放置和更换待测试板件11。一个子测试舱9中的待测试板件11为对比试件,另一个子测试舱9中的待测试板件11上涂覆有待测试的涂料,作为待测试件。
子测试舱9中还设置有位于待测试板件11远离辐照光源7的一侧的金属支撑片13,金属支撑片13的四周与子测试舱9的内壁密封连接,金属支撑片13通过导热硅脂与待测试板件11紧密粘合;第二温度传感器12设置在金属支撑片13远离待测试板件11的一侧。于本实施例中,金属支撑片13采用铝片。导热硅脂具有优异的导热性、电绝缘性、化学稳定性,填充了铝板和待测试板件11间的空隙,实现了热量的顺畅迅速传导,极大提高了测试精度。
箱体14上还设置有箱体温度传感器17、若干个控温风扇3和用于控制控温风扇3的箱体温度控制器5,箱体温度传感器17与箱体温度控制器5信号连接,且箱体温度控制器5具有温度显示功能,控温风扇3位于测试舱外,在本实施例中,控温风扇3共有四个,对称分布于箱体14顶部的四个角,且全部朝向箱体14内部,主要用来促进箱体14上部空气流动,避免温度过高,从而快速调节箱内温度、提高工作效率。
箱体14的四壁和底板上均布置有保温材料,箱体14上设置有门,门能够开启和关闭,便于维修设备和更换辐照光源7。
箱体14上设置有与子测试舱9一一对应的温度显示器4,温度显示器4用于显示对应的子测试舱9中的第一温度传感器16和第二温度传感器12所检测到的温度。
本实施例具有滤光功能的隔热温差测试装置100的具体使用方法如下:
在本实施例中将一个子测试舱9中的第一温度传感器16称为第一上温度传感器、第一下温度传感器,将另一个子测试舱9中的第一温度传感器16称为第二上温度传感器、第二下温度传感器;
将待测试件放入一个子测试舱9内,将对比试件放入另一个子测试舱9内,然后放置滤光片8,放置好滤光片8后,测试舱即形成独立、密闭的空间,并被保温隔板10均分为两个独立的子测试舱9,通过驱动电机1驱动旋转灯盘6旋转,并打开辐照光源7,使得辐照光源7的光线均匀射入两个子测试舱9内,由于辐照光线完全均匀,两个子测试舱9中获得了同等的光照能量,故待测试件和对比试件的上表面应具有同样温度,即第一上温度传感器和第二上温度传感器应捕捉并显示相同的数值,同时体现出与箱体温度传感器17之间的差值,直观地反映滤光片8的滤光性能。第一下温度传感器和第二下温度传感器分别捕捉待测试件和对比试件背面的温度,第一上温度传感器与第一下温度传感器的差值、第二上温度传感器与第二下温度传感器的差值能直观地反映建筑隔热涂料或保温隔热材料的隔热性能,即温度差值越大、材料的绝热效果越好。
在本发明创造的描述中,需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本说明书中应用了具体个例对本发明创造的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明创造的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明创造的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明创造的限制。

Claims (10)

  1. 一种具有滤光功能的隔热温差测试装置,其特征在于:包括箱体,所述箱体内设置有旋转灯盘和测试舱,驱动装置能够驱动所述旋转灯盘旋转,所述旋转灯盘上设置有若干个辐照光源,所述测试舱包括至少两个以所述旋转灯盘的旋转轴为轴周向排列的子测试舱,相邻的两个所述子测试舱通过保温隔板相隔,所述测试舱靠近所述辐照光源的一侧设置有滤光片,所述辐照光源发出的光经所述滤光片滤光后照射到所述测试舱,所述测试舱和所述保温隔板分别与所述滤光片密封连接;每个所述子测试舱中均设置有第一温度传感器、待测试板件和第二温度传感器,所述待测试板件的四周与所述子测试舱的内壁密封连接,且所述待测试板件垂直于所述旋转轴,所述待测试板件位于所述第一温度传感器和所述第二温度传感器之间;一个所述子测试舱中的所述待测试板件为对比试件,其它所述子测试舱中的所述待测试板件上分别涂覆有待测试的涂料。
  2. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述驱动装置包括驱动电机和减速箱,所述驱动电机的输出轴与所述减速箱的输入轴固连,所述减速箱的输出轴与螺杆的一端固连,所述旋转灯盘上固定设置有调节螺母,所述调节螺母与所述螺杆螺纹连接,所述螺杆与所述旋转轴同轴;所述箱体上还设置有用于控制所述驱动电机的转速控制器。
  3. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述箱体上还设置有箱体温度传感器、若干个控温风扇和用于控制所述控温风扇的箱体温度控制器,所述箱体温度传感器与所述箱体温度控制器信号连接,且所述箱体温度控制器具有温度显示功能,所述控温风扇位于所述测试舱外。
  4. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述箱体上设置有与所述子测试舱一一对应的温度显示器,所述温度显示器用于显示对应的所述子测试舱中的所述第一温度传感器和所述第二温度传感器所检测到的温度。
  5. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述滤光片采用石英玻璃。
  6. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述子测试舱中还设置有位于所述待测试板件远离所述辐照光源的一侧的金属支撑片,所述金属支撑片的四周与所述子测试舱的内壁密封连接,所述金属支撑片通过导热硅脂与所述待测试板件紧密粘合;所述第二温度传感器设置在所述金属支撑片远离所述待测试板件的一侧。
  7. 根据权利要求6所述的具有滤光功能的隔热温差测试装置,其特征在于:所述金属支撑片为铝片。
  8. 根据权利要求6所述的具有滤光功能的隔热温差测试装置,其特征在于:所述待测试板件通过硅胶密封圈与所述子测试舱密封连接。
  9. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所有所述待测试板片与所述辐照光源的距离均相等。
  10. 根据权利要求1所述的具有滤光功能的隔热温差测试装置,其特征在于:所述箱体的四壁和底板上均布置有保温材料,所述箱体上设置有门,所述门能够开启和关闭。
PCT/CN2022/113020 2022-03-31 2022-08-17 一种具有滤光功能的隔热温差测试装置 WO2023184826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220734254.6 2022-03-31
CN202220734254.6U CN217033728U (zh) 2022-03-31 2022-03-31 一种具有滤光功能的隔热温差测试装置

Publications (1)

Publication Number Publication Date
WO2023184826A1 true WO2023184826A1 (zh) 2023-10-05

Family

ID=82414886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113020 WO2023184826A1 (zh) 2022-03-31 2022-08-17 一种具有滤光功能的隔热温差测试装置

Country Status (2)

Country Link
CN (1) CN217033728U (zh)
WO (1) WO2023184826A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335745A (zh) * 2023-11-29 2024-01-02 龙焱能源科技(杭州)有限公司 电池组件测试装置
CN117538373A (zh) * 2024-01-09 2024-02-09 河北碳禾新材料有限公司 一种碳纤维材料保温性能检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217033728U (zh) * 2022-03-31 2022-07-22 河南建筑材料研究设计院有限责任公司 一种具有滤光功能的隔热温差测试装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886306U (zh) * 2012-09-17 2013-04-17 广州市白云化工实业有限公司 一种节能透明材料隔热性能测试装置
CN107621478A (zh) * 2017-10-25 2018-01-23 青岛科技大学 一种涂料隔热性能检测装置
CN207423853U (zh) * 2017-11-08 2018-05-29 长沙市紫荆花涂料有限公司 隔热涂料测试及展示用装置
JP2020046320A (ja) * 2018-09-19 2020-03-26 有限会社アート住装 塗装板の遮熱効果比較評価装置
CN212255153U (zh) * 2020-06-05 2020-12-29 平阳瑞丰新材料科技有限公司 一种可对温差进行调节的反射隔热涂料的测试装置
CN212808128U (zh) * 2020-07-22 2021-03-26 上海吉丽仕化工有限公司 黑白板隔热温差测试仪
CN214507008U (zh) * 2020-12-16 2021-10-26 普德光伏技术(苏州)有限公司 一种光伏组件性能测试装置
CN215415150U (zh) * 2020-12-31 2022-01-04 中国石油化工股份有限公司 一种涂料隔热温差测量装置
CN114778597A (zh) * 2022-03-31 2022-07-22 河南建筑材料研究设计院有限责任公司 一种具有滤光功能的隔热温差测试装置
CN217033728U (zh) * 2022-03-31 2022-07-22 河南建筑材料研究设计院有限责任公司 一种具有滤光功能的隔热温差测试装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886306U (zh) * 2012-09-17 2013-04-17 广州市白云化工实业有限公司 一种节能透明材料隔热性能测试装置
CN107621478A (zh) * 2017-10-25 2018-01-23 青岛科技大学 一种涂料隔热性能检测装置
CN207423853U (zh) * 2017-11-08 2018-05-29 长沙市紫荆花涂料有限公司 隔热涂料测试及展示用装置
JP2020046320A (ja) * 2018-09-19 2020-03-26 有限会社アート住装 塗装板の遮熱効果比較評価装置
CN212255153U (zh) * 2020-06-05 2020-12-29 平阳瑞丰新材料科技有限公司 一种可对温差进行调节的反射隔热涂料的测试装置
CN212808128U (zh) * 2020-07-22 2021-03-26 上海吉丽仕化工有限公司 黑白板隔热温差测试仪
CN214507008U (zh) * 2020-12-16 2021-10-26 普德光伏技术(苏州)有限公司 一种光伏组件性能测试装置
CN215415150U (zh) * 2020-12-31 2022-01-04 中国石油化工股份有限公司 一种涂料隔热温差测量装置
CN114778597A (zh) * 2022-03-31 2022-07-22 河南建筑材料研究设计院有限责任公司 一种具有滤光功能的隔热温差测试装置
CN217033728U (zh) * 2022-03-31 2022-07-22 河南建筑材料研究设计院有限责任公司 一种具有滤光功能的隔热温差测试装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335745A (zh) * 2023-11-29 2024-01-02 龙焱能源科技(杭州)有限公司 电池组件测试装置
CN117335745B (zh) * 2023-11-29 2024-04-09 龙焱能源科技(杭州)有限公司 电池组件测试装置
CN117538373A (zh) * 2024-01-09 2024-02-09 河北碳禾新材料有限公司 一种碳纤维材料保温性能检测装置

Also Published As

Publication number Publication date
CN217033728U (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023184826A1 (zh) 一种具有滤光功能的隔热温差测试装置
CN202421031U (zh) 可调式紫外老化试验箱
CN202886306U (zh) 一种节能透明材料隔热性能测试装置
CN109507086A (zh) 一种沥青材料隔氧紫外线老化模拟箱
CN104132894B (zh) 一种用于模拟太赫兹大气传播的实验装置及方法
CN114778597A (zh) 一种具有滤光功能的隔热温差测试装置
CN209674686U (zh) 具有模拟风结构和模拟阳光结构的气候仿真实验室
CN205925730U (zh) 一种半球形光化学烟雾箱
JP2005164598A (ja) 材料の風化相関の特性把握のための方法と装置
CN106904292B (zh) 一种实验室再现环境对飞机结构损伤的检测系统
CN214584792U (zh) 一种高性能纤维及其制品测试用紫外和温度老化环境箱
CN103926198B (zh) 一种研究植物光抑制的实验装置和方法
WO2020019729A1 (zh) 基板检查装置
CN204439514U (zh) 沥青专用型紫外线老化试验烘箱
CN111413271A (zh) 一种用于光伏组件紫外老化测试的步入式试验箱
CN104296778B (zh) 地气光模拟器和星敏感器可见光测量系统
CN206132585U (zh) 用于模拟食物成分光照劣变的装置
CN115656661A (zh) 一种汽车用中控显示屏耐光热老化性能测试方法
CN211014077U (zh) 一种用于红外伪装测试的环境模拟试验箱
CN110726747A (zh) 一种用于红外伪装测试的环境模拟试验箱
JP2005077220A (ja) 複合劣化促進装置
CN108801890A (zh) 一种集成化岛礁海洋大气综合模拟加速试验装置
CN208636188U (zh) 一种沥青材料隔氧紫外线老化模拟箱
CN108181430A (zh) 一种模拟建筑涂料施工环境变化的装置与方法
CN2650129Y (zh) 一种日晒色牢度仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934646

Country of ref document: EP

Kind code of ref document: A1