WO2023184727A1 - Pcb磨板方法、pcb返磨装置及pcb - Google Patents

Pcb磨板方法、pcb返磨装置及pcb Download PDF

Info

Publication number
WO2023184727A1
WO2023184727A1 PCT/CN2022/099834 CN2022099834W WO2023184727A1 WO 2023184727 A1 WO2023184727 A1 WO 2023184727A1 CN 2022099834 W CN2022099834 W CN 2022099834W WO 2023184727 A1 WO2023184727 A1 WO 2023184727A1
Authority
WO
WIPO (PCT)
Prior art keywords
plug hole
hole area
pcb
plate thickness
grinding
Prior art date
Application number
PCT/CN2022/099834
Other languages
English (en)
French (fr)
Inventor
宋文斌
刘梦茹
唐海波
张志远
李恢海
Original Assignee
生益电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生益电子股份有限公司 filed Critical 生益电子股份有限公司
Publication of WO2023184727A1 publication Critical patent/WO2023184727A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • This application relates to the technical field of PCB (Printed Circuit Boards), such as a PCB grinding method and a PCB back-grinding device.
  • PCB Printed Circuit Boards
  • resin plugging technology is used: drilling ⁇ electroplating ⁇ resin plugging ⁇ grinding plate ⁇ outer layer circuit production (exposure, etching).
  • the grinding process has two functions:
  • the commonly used grinding device is: placing straight grinding rollers up and down, and using horizontal transmission to transmit the PCB through the gap between the upper and lower grinding rollers to realize the grinding operation of the PCB by the straight grinding rollers.
  • different plate grinding effects can be obtained by adjusting the grinding plate parameters (such as the upper and lower grinding wheel clearance values, grinding wheel speed, and plate moving speed) according to the plate thickness.
  • the grinding plate parameters such as the upper and lower grinding wheel clearance values, grinding wheel speed, and plate moving speed
  • This application provides a PCB grinding method and a PCB regrinding device to overcome the shortcomings of related technologies such as low manual regrinding efficiency, high cost, and poor consistency of grinding plate quality.
  • a PCB grinding method includes:
  • the plate thickness data model includes: after copper plating in the hole and before resin plugging the hole, the pre-hole plate thickness of each plug-hole area on the PCB;
  • the board thickness after rough grinding of each plug hole area is detected; at least based on the corresponding board thickness after rough grinding and the board thickness before plug holes, from multiple plug hole areas Screen out target plug hole areas with excessive residual resin; automatically perform backgrinding operations on the target plug hole areas.
  • screening out target plug hole areas with excessive residual resin from multiple plug hole areas includes: for each plug hole area,
  • the pre-plug hole plate thickness of the current plug hole area determines the pre-plug hole plate thickness of the current plug hole area, and calculate the plate thickness difference between the pre-plug hole plate thickness of the current plug hole area and the plate thickness after rough grinding ;
  • the current plug hole area is The hole area is marked as the target plug hole area.
  • the PCB grinding method also includes: collecting optical scanning images or historical image data of the sample after rough grinding, including at least one of a normal reference image in which the residual resin does not exceed the standard and an abnormal reference image in which the residual resin exceeds the standard, Establish a standard image library;
  • Determining whether there is residual resin in the current plug hole area through image analysis includes: comparing and analyzing the scanned image of the current plug hole area with at least one of the normal reference image and the abnormal reference image to determine whether the current plug hole area exists. Residual resin.
  • the PCB grinding method further includes: storing the scanned image of the current plug hole area into the standard database as a normal reference image or an abnormal reference image according to the comparative analysis results.
  • the PCB grinding method also includes: for each target plug hole area, calculate the plate thickness difference between the plate thickness before plug holes and the plate thickness after rough grinding in the current target plug hole area, and determine it as the current target plug hole area. Residual resin thickness in hole area;
  • the corresponding backgrinding working parameters are respectively set;
  • the first distance is less than the residual resin thickness
  • the second distance the residual resin thickness-the first distance
  • the back-grinding working parameters include brush rotation speed and falling speed; the back-grinding working parameter value of the third stage is smaller than the back-grinding working parameter values of the second stage and the first stage.
  • a scanned image of the target plug hole area after regrinding is collected, and image analysis is used to determine whether residual resin in the target plug hole area still exceeds the standard, based on If the residual resin in the target plug hole area still exceeds the standard, perform the backgrinding operation again.
  • a PCB regrinding device including:
  • the target positioning device is configured to identify the target on the PCB and determine the coordinate position of each plug hole area on the PCB according to the target;
  • a plate thickness measuring device configured to measure the plate thickness of each plug hole area
  • an image scanning device configured to collect a scanned image of each plug hole area
  • the backgrinding device is set to grind and brush the target plug hole area
  • the control system is configured to control the target positioning device, plate thickness measuring device, image scanning device and back-grinding device according to any of the above PCB grinding methods.
  • a PCB the PCB is produced according to any of the above PCB grinding methods.
  • the embodiments of the present application can accurately identify target plug hole areas with excessive residual resin, and perform automatic backgrinding operations on these target plughole areas.
  • the entire backgrinding process is automated, which not only improves the backgrinding efficiency but also reduces labor costs. , and improved the quality of regrinding.
  • Figure 1 is a flow chart of a PCB grinding method provided by an embodiment of the present application.
  • embodiments of the present application provide a PCB grinding method and device, which can perform intelligent automatic back-grinding on the rough-ground PCB, which can effectively improve work efficiency and reduce labor costs. It can also effectively improve the quality of regrinding.
  • the PCB grinding method provided by the embodiment of the present application includes:
  • Step 101 Establish a plate thickness data model; the plate thickness data model includes: the pre-hole plate thickness of each plug hole area on the PCB after copper plating in the hole and before resin plugging.
  • Step 102 After resin plugging and rough grinding of the PCB, detect the board thickness after rough grinding of each plug hole area.
  • the thickness of the plate after grinding is recorded, and the target position and corresponding plate thickness information are recorded for subsequent query.
  • Step 103 Screen out target plug hole areas with excessive residual resin from multiple plug hole areas based on at least the corresponding plate thickness after rough grinding and plate thickness before plugging.
  • this step uses the plate thickness after rough grinding and the plate thickness before plug holes as a basis to determine the target plug hole area that needs to be regrinded. Since the amount of residual resin is an important factor affecting the plate thickness after rough grinding, and the plate thickness before plugging holes is the best ideal thickness that can be achieved in the grinding area after grinding, the embodiments of this application can based on these two pieces of information. Accurately identifying the target plug hole area also lays the foundation for ensuring the accuracy of the next regrinding operation.
  • Step 104 Automatically perform a backgrinding operation on the target plug hole area.
  • the embodiments of the present application can accurately identify target plug hole areas with excessive residual resin, and perform automatic regrinding operations on these target plug hole areas.
  • the entire regrinding process is automated, which not only improves the regrinding efficiency, but also improves the regrinding efficiency. Grinding quality.
  • the method of screening out the target plug hole area with excessive residual resin from multiple plug hole areas in step 103 includes: for each plug hole area plug hole area,
  • the plate thickness data model determine the plate thickness before the plug hole in the current plug hole area, and calculate the thickness difference between the plate thickness before the plug hole and the plate thickness after rough grinding in the current plug hole area;
  • the current plug hole area is The hole area is marked as the target plug hole area.
  • This screening method first determines whether the difference in plate thickness between the plate thickness before plugging and the plate thickness after rough grinding exceeds the preset standard range. Based on the difference in plate thickness between the plate thickness before plugging and the plate thickness after rough grinding exceeds the preset standard The range judgment structure is then judged through image analysis. This two-step judgment method can not only effectively improve the accuracy of the judgment results, but also reduce the amount of image analysis calculations and improve processing efficiency.
  • the preset standard range can be determined based on the processing accuracy in the actual scenario.
  • embodiments of the present application also include: pre-collecting multiple optical scanning images or historical image data of the sample after rough grinding, including normal reference images where the residual resin does not exceed the standard and Establish a standard image library for at least one of the abnormal reference images with excessive residual resin;
  • determining whether there is residual resin in the current plug hole area through image analysis includes: comparing and analyzing the scanned image of the current plug hole area with at least one of the normal reference image and the abnormal reference image to determine whether there is residual resin in the current plug hole area. resin.
  • This image analysis method because the reference sample is collected in advance, which contains a variety of favorable feature information such as size, color, and shape, can quickly and accurately identify whether the target plug hole area is covered by comparison during analysis. To reduce residual resin and reduce the adverse effects of some possible interference factors.
  • the scanned image of the current plug hole area can be stored in the standard database as a normal reference image or an abnormal reference image to expand and improve the storage information of the standard database.
  • step 104 the actual backgrinding working parameters can be set based on the plate thickness after rough grinding and the plate thickness before plugging obtained in the previous step.
  • the plate thickness difference between the plate thickness before plug hole and the plate thickness after rough grinding of the current target plug hole area is calculated, and the plate thickness difference is determined as the current target plug hole. Residual resin thickness in the area.
  • the backgrinding working parameters of the current target plug hole area according to the thickness of the residual resin: for the first stage when the brush head moves downward from the initial position until it contacts the top of the residual resin, the brushing The second stage in which the head starts to descend a first distance from the top of the residual resin, and the third stage in which the brush head continues to descend a second distance from the end position of the second stage, respectively set corresponding backgrinding working parameters.
  • the first distance is less than the residual resin thickness
  • the second distance the residual resin thickness - the first distance.
  • This backgrinding control operation divides the entire downward process of the brush head into three stages, which can be abbreviated as: the ungrinding stage (at this stage, the brush head has not yet contacted the residual resin), and the early grinding stage (at this stage, the brush head has not yet contacted the residual resin).
  • the grinding brush head scrubs the upper part of the residual resin) and the later grinding stage (in this stage, the grinding brush head scrubs the lower part of the residual resin). Since the actual requirements for the brush grinding head may be different at different stages, the embodiment of the present application reasonably divides the entire downward process to set the brush grinding working parameters of each stage separately to meet the different needs of different stages.
  • the working parameters of backgrinding include brush rotation speed and falling speed.
  • a larger brushing speed and speed can be set in the first and second stages away from the copper layer on the board surface.
  • the falling speed is set to a smaller brushing speed and falling speed in the third stage close to the copper layer on the board surface.
  • the scanned image of the target plug hole area after regrinding can be collected again, and image analysis can be used to determine whether the resin remaining in the target plug hole area exceeds the standard. Based on the target plug hole area still remaining resin If the resin exceeds the standard, the regrinding operation can be performed again until the test result meets the standard.
  • the embodiment of the present application also provides a PCB regrinding device, which includes:
  • the target positioning device is configured to identify the target on the PCB and determine the coordinate position of each plug hole area on the PCB according to the target;
  • a plate thickness measuring device configured to measure the plate thickness of each plug hole area
  • an image scanning device configured to collect a scanned image of each plug hole area
  • the backgrinding device is set to grind and brush the target plug hole area
  • the control system is configured to control the target positioning device, the plate thickness measuring device, the image scanning device and the back-grinding device according to any of the above PCB grinding methods.
  • embodiments of the present application also provide a PCB, which is produced according to any of the above PCB grinding methods. Due to the use of automatic back-grinding technology, the amount of residual resin on the surface of each plug hole area of the produced PCB can be effectively and accurately controlled, greatly improving the processing quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

一种PCB磨板方法、PCB返磨装置及PCB,PCB磨板方法包括:建立板厚数据模型;板厚数据模型包括:在孔内镀铜后且树脂塞孔前,PCB上每个塞孔区域的塞孔前板厚;在对PCB进行树脂塞孔及粗磨后,检测每个塞孔区域的粗磨后板厚;至少依据对应的粗磨后板厚和塞孔前板厚,从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域;针对目标塞孔区域自动执行返磨操作。

Description

PCB磨板方法、PCB返磨装置及PCB
本申请要求在2022年03月31日提交中国专利局、申请号为202210335135.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及PCB(Printed Circuit Boards,印制电路板)技术领域,例如一种PCB磨板方法及PCB返磨装置。
背景技术
在PCB孔金属化工艺中,为保护孔内镀铜,会采用树脂塞孔技术:钻孔→电镀→树脂塞孔→磨板→外层线路制作(曝光、蚀刻)。
其中,磨板工艺有两个作用:
一、清除板面塞孔树脂,避免残留树脂破坏外层精密线路的蚀刻成型。
二、粗化铜箔表面,提高铜箔和干膜的结合力,避免干膜脱落导致蚀刻不良。
相关技术中,常用磨板装置为:上下放置平直磨辊,采用水平传动方式将PCB传送通过上下磨辊间隙,实现平直磨辊对PCB的磨板操作。
在磨板操作中,根据板厚,通过调整磨板参数(例如:上下磨轮间隙值、磨轮转速、走板速度)来获得不同的磨板效果。
由于产品需求迭代更新,PCB板厚不均的现象日渐严重,导致局部凹陷区域(该区域的板厚较薄)难以被平直磨辊打磨,容易残留树脂。
为此,往往会耗费大量人工进行返磨,该人工返磨方式不仅工作效率低,耗费较大的人工成本,因粉尘多而影响人员健康,而且磨板精度可控性弱,容易导致磨板效果一致性差。
发明内容
本申请提供一种PCB磨板方法及PCB返磨装置,以克服相关技术存在的人工返磨效率低、成本高以及磨板品质一致性差等缺陷。
本申请提供
一种PCB磨板方法,包括:
建立板厚数据模型;所述板厚数据模型包括:在孔内镀铜后且树脂塞孔前,PCB上每个塞孔区域的塞孔前板厚;
在对所述PCB进行树脂塞孔及粗磨后,检测每个塞孔区域的粗磨后板厚;至少依据对应的粗磨后板厚和塞孔前板厚,从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域;针对所述目标塞孔区域自动执行返磨操作。
可选的,所述从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域,包括:针对每个所述塞孔区域,
根据当前塞孔区域的坐标位置和所述板厚数据模型,确定当前塞孔区域的塞孔前板厚,计算当前塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值;
在板厚差值超出预设标准范围的情况下,采集当前塞孔区域的扫描图像,通过图像分析判定当前塞孔区域是否存在残留树脂,基于当前塞孔区域存在残留树脂的判定结果将当前塞孔区域标记为所述目标塞孔区域。
可选的,所述PCB磨板方法还包括:收集样本在粗磨后的光学扫描图像或历史图像数据,包括残留树脂未超标的正常参考图像和残留树脂超标的异常参考图像中的至少一个,建立标准图像库;
所述通过图像分析判定当前塞孔区域是否存在残留树脂,包括:将当前塞孔区域的扫描图像与所述正常参考图像和异常参考图像中的至少一个对比分析,以确定当前塞孔区域是否存在残留树脂。
可选的,所述PCB磨板方法还包括:根据所述对比分析结果,将当前塞孔区域的扫描图像作为正常参考图像或异常参考图像存储至所述标准数据库。
可选的,所述PCB磨板方法还包括:针对每个目标塞孔区域,计算当前目标塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值,确定为当前目标塞孔区域的残留树脂厚度;
在针对所述目标塞孔区域自动执行返磨操作前,根据所述残留树脂厚度设定当前目标塞孔区域的返磨工作参数:
针对磨刷头由初始位置下行直至接触残留树脂顶端的第一阶段、磨刷头由残留树脂顶端开始下行第一距离的第二阶段、以及磨刷头由所述第二阶段的终点位置继续下行第二距离的第三阶段,分别设定对应的返磨工作参数;
其中,所述第一距离小于所述残留树脂厚度,所述第二距离=所述残留树脂厚度-所述第一距离。
可选的,所述返磨工作参数包括磨刷转速和落速;所述第三阶段的返磨工作参数值小于所述第二阶段和所述第一阶段的返磨工作参数值。
可选的,通过激光测距方式测量所述塞孔前板厚和所述粗磨后板厚。
可选的,在针对所述目标塞孔区域自动执行返磨操作之后,采集返磨后所述目标塞孔区域的扫描图像,通过图像分析判定所述目标塞孔区域是否仍然残留树脂超标,基于所述目标塞孔区域仍然残留树脂超标的判定结果,再次执行返磨操作。
一种PCB返磨装置,包括:
标靶定位装置,被设置为对PCB上的标靶进行识别,根据标靶确定PCB上每个塞孔区域的坐标位置;
板厚测量装置,被设置为测量每个塞孔区域的板厚;
图像扫描装置,被设置为采集每个塞孔区域的扫描图像;
返磨装置,被设置为对目标塞孔区域进行磨刷;
控制系统,被设置为按照以上任一项所述的PCB磨板方法,对所述标靶定位装置、板厚测量装置、图像扫描装置和返磨装置进行控制操作。
一种PCB,所述PCB按照以上任一项所述的PCB磨板方法制得。
本申请实施例能够准确的识别出残留树脂超标的目标塞孔区域,并针对这些目标塞孔区域进行自动返磨操作,整个返磨过程均自动化实现,既提高了返磨效率,降低了人工成本,又提升了返磨品质。
附图说明
下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的PCB磨板方法流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中进行清楚、完整地描述,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
为克服人工返磨存在的缺陷,本申请实施例提供了一种PCB磨板方法及装置,能够对粗磨后的PCB进行智能化的自动返磨,既能够有效提高工作效率,降低人工成本,还能够有效提高返磨品质。
在一实施例中,请参阅图1所示,本申请实施例提供的PCB磨板方法,包括:
步骤101、建立板厚数据模型;板厚数据模型包括:在孔内镀铜后、且树脂塞孔前,PCB上每个塞孔区域的塞孔前板厚。
需要说明的是,针对不同的PCB,可分别建立对应的板厚数据模型。这是由于,不同PCB之间,需要树脂塞孔的过孔数量、过孔排布方式以及板厚等之间均存在差异。
步骤102、在对PCB进行树脂塞孔及粗磨后,检测每个塞孔区域的粗磨后板厚。
上述步骤中,可先识别PCB上标靶,以该标靶作为原点来确定每个塞孔区域的坐标位置,进而采用通过激光测距方式测量每个塞孔区域的塞孔前板厚和粗磨后板厚,并进行目标位置和对应板厚信息的数据记录,以供后续查询。
步骤103、至少依据对应的粗磨后板厚和塞孔前板厚,从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域。
可以理解的,在PCB的板面平整度较差,部分塞孔区域存在凹陷的情况下,在粗磨后不同塞孔区域的粗磨效果会存在差异,即每个塞孔区域的残留树脂量可能存在差异,导致其中的部分塞孔区域的残留树脂量超标,需要对其进行返磨操作,以使其符合标准。
为此,本步骤通过粗磨后板厚和塞孔前板厚作为依据,以判断需要进行返磨的目标塞孔区域。由于残留树脂量是影响粗磨后板厚的重要影响因素,而塞孔前板厚是磨板后磨板区域所能达到的最佳理想厚度,因此本申请实施例依据这两个信息,能够准确的识别出目标塞孔区域,也为确保下一步的返磨操作的精准度奠定了基础。
步骤104、针对目标塞孔区域自动执行返磨操作。
本申请实施例能够准确的识别出残留树脂超标的目标塞孔区域,并针对这 些目标塞孔区域进行自动返磨操作,整个返磨过程均自动化实现,既提高了返磨效率,又提升了返磨品质。
在一种可选的实施方式中,为了提升目标塞孔区域的识别准确度,上述步骤103中从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域的方法,包括:针对每个塞孔区域,
根据当前塞孔区域的坐标位置和板厚数据模型,确定当前塞孔区域的塞孔前板厚,计算当前塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值;
在板厚差值超出预设标准范围的情况下,采集当前塞孔区域的扫描图像,通过图像分析判定当前塞孔区域是否存在残留树脂,基于当前塞孔区域存在残留树脂的判定结果将当前塞孔区域标记为所述目标塞孔区域。
该筛选方法,先判断塞孔前板厚与粗磨后板厚的板厚差值是否超出预设标准范围,基于塞孔前板厚与粗磨后板厚的板厚差值超出预设标准范围的判断结构,再通过图像分析判断,这种两步判断方式既能够有效提高判断结果的准确性,又能够减少图像分析运算量,提高处理效率。
可以理解的是,预设标准范围,可以依据实际场景中的加工精度来确定。
在采用图像分析方式时,为了提高分析速率和准确性,本申请实施例还包括:预先收集样本在粗磨后的多个光学扫描图像或历史图像数据,包括残留树脂未超标的正常参考图像和残留树脂超标的异常参考图像中的至少一个,建立标准图像库;
基于此,通过图像分析判定当前塞孔区域是否存在残留树脂,包括:将当前塞孔区域的扫描图像与正常参考图像和异常参考图像中的至少一个对比分析,以确定当前塞孔区域是否存在残留树脂。
该图像分析方法,由于预先采集了参考样本,其中包含了尺寸、颜色和形状等多种有利的特征信息,在分析时通过比对的方式即可快速准确识别出目标塞孔区域的覆盖物是否为残留树脂,降低可能存在的一些干扰因素的不良影响。
可选的,根据对比分析结果,可以将当前塞孔区域的扫描图像作为正常参考图像或异常参考图像存储至标准数据库,以对标准数据库的存储信息进行扩充完善。
另外,在步骤104中,可根据前一步骤获得的粗磨后板厚和塞孔前板厚,来设定实际的返磨工作参数。
在一实施例中,针对每个目标塞孔区域,计算当前目标塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值,将该板厚差值确定为当前目标塞孔区域的残留 树脂厚度。
在针对目标塞孔区域自动执行返磨操作前,根据残留树脂厚度设定当前目标塞孔区域的返磨工作参数:针对磨刷头由初始位置下行直至接触残留树脂顶端的第一阶段、磨刷头由残留树脂顶端开始下行第一距离的第二阶段、以及磨刷头由第二阶段的终点位置继续下行第二距离的第三阶段,分别设定对应的返磨工作参数。其中,第一距离小于残留树脂厚度,第二距离=残留树脂厚度-第一距离。
该返磨控制操作,将磨刷头的整个下行过程划分为三个阶段,可以简称为:尚未磨刷阶段(此阶段,磨刷头尚未接触残留树脂)、前期磨刷阶段(在此阶段,磨刷头对残留树脂的上层部分进行磨刷)和后期磨刷阶段(此阶段,磨刷头对残留树脂的下层部分进行磨刷)。由于不同阶段对磨刷头的实际需求可能不同,因此本申请实施例对整个下行过程进行了合理划分,以分别设定每个阶段的磨刷工作参数,以满足不同阶段的不同需求。
通常,返磨工作参数包括磨刷转速和落速。示例性的,为了提高磨刷效率,同时避免磨刷造成位于残留树脂下层的板面铜层损伤,可以在远离板面铜层的第一阶段和第二阶段设定较大的磨刷转速和落速,而在靠近板面铜层的第三阶段设定较小的磨刷转速和落速。
在针对目标塞孔区域自动执行返磨操作之后,可再次采集返磨后目标塞孔区域的扫描图像,通过图像分析判定目标塞孔区域是否仍然残留树脂超标,基于所述目标塞孔区域仍然残留树脂超标的判定结果,可以再次执行返磨操作,直至检测结果符合标准。
本申请实施例还提供了一种PCB返磨装置,其包括:
标靶定位装置,被设置为对PCB上的标靶进行识别,根据标靶确定PCB上每个塞孔区域的坐标位置;
板厚测量装置,被设置为测量每个塞孔区域的板厚;
图像扫描装置,被设置为采集每个塞孔区域的扫描图像;
返磨装置,被设置为对目标塞孔区域进行磨刷;
控制系统,被设置为按照以上任一项所述的PCB磨板方法,对标靶定位装置、板厚测量装置、图像扫描装置和返磨装置进行控制操作。
需要说明的是,上述PCB返磨装置中的多个组成部分的排布位置和数量可以按照上述的返磨工艺来进行设置。
另一方面,本申请实施例还提供了一种PCB,该PCB按照以上任一项所述 的PCB磨板方法制得。由于采用了自动返磨技术,制得的PCB的每个塞孔区域表面的残留树脂量可以得到有效精确的控制,大大提升了加工品质。

Claims (10)

  1. 一种PCB磨板方法,包括:
    建立板厚数据模型;所述板厚数据模型包括:在孔内镀铜后且树脂塞孔前,PCB上每个塞孔区域的塞孔前板厚;
    在对所述PCB进行树脂塞孔及粗磨后,检测每个塞孔区域的粗磨后板厚;至少依据对应的粗磨后板厚和塞孔前板厚,从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域;针对所述目标塞孔区域自动执行返磨操作。
  2. 根据权利要求1所述的PCB磨板方法,其中,所述从多个塞孔区域中筛选出残留树脂超标的目标塞孔区域,包括:针对每个所述塞孔区域,
    根据当前塞孔区域的坐标位置和所述板厚数据模型,确定当前塞孔区域的塞孔前板厚,计算当前塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值;
    在板厚差值超出预设标准范围的情况下,采集当前塞孔区域的扫描图像,通过图像分析判定当前塞孔区域是否存在残留树脂,基于当前塞孔区域存在残留树脂的判定结果将当前塞孔区域标记为所述目标塞孔区域。
  3. 根据权利要求2所述的PCB磨板方法,还包括:收集样本在粗磨后的光学扫描图像或历史图像数据,包括残留树脂未超标的正常参考图像和残留树脂超标的异常参考图像中的至少一个,建立标准图像库;
    所述通过图像分析判定当前塞孔区域是否存在残留树脂,包括:将当前塞孔区域的扫描图像与所述正常参考图像和异常参考图像中的至少一个对比分析,以确定当前塞孔区域是否存在残留树脂。
  4. 根据权利要求3所述的PCB磨板方法,还包括:根据所述对比分析结果,将当前塞孔区域的扫描图像作为正常参考图像或异常参考图像存储至所述标准数据库。
  5. 根据权利要求1所述的PCB磨板方法,还包括:针对每个目标塞孔区域,计算当前目标塞孔区域的塞孔前板厚与粗磨后板厚的板厚差值,确定为当前目标塞孔区域的残留树脂厚度;
    在针对所述目标塞孔区域自动执行返磨操作前,根据所述残留树脂厚度设定当前目标塞孔区域的返磨工作参数:
    针对磨刷头由初始位置下行直至接触残留树脂顶端的第一阶段、磨刷头由残留树脂顶端开始下行第一距离的第二阶段、以及磨刷头由所述第二阶段的终点位置继续下行第二距离的第三阶段,分别设定对应的返磨工作参数;
    其中,所述第一距离小于所述残留树脂厚度,所述第二距离=所述残留树脂厚度-所述第一距离。
  6. 根据权利要求5所述的PCB磨板方法,其中,所述返磨工作参数包括磨刷转速和落速;所述第三阶段的返磨工作参数值小于所述第二阶段和所述第一阶段的返磨工作参数值。
  7. 根据权利要求1所述的PCB磨板方法,还包括,通过激光测距方式测量所述塞孔前板厚和所述粗磨后板厚。
  8. 根据权利要求1所述的PCB磨板方法,其特征在于,在针对所述目标塞孔区域自动执行返磨操作之后,还包括:采集返磨后所述目标塞孔区域的扫描图像,通过图像分析判定所述目标塞孔区域是否仍然残留树脂超标,基于所述目标塞孔区域仍然残留树脂超标的判定结果,再次执行返磨操作。
  9. 一种PCB返磨装置,包括:
    标靶定位装置,被设置为对PCB上的标靶进行识别,根据标靶确定PCB上每个塞孔区域的坐标位置;
    板厚测量装置,被设置为测量每个塞孔区域的板厚;
    图像扫描装置,被设置为采集每个塞孔区域的扫描图像;
    返磨装置,被设置为对目标塞孔区域进行磨刷;
    控制系统,被设置为按照权利要求1至8任一项所述的PCB磨板方法,对所述标靶定位装置、板厚测量装置、图像扫描装置和返磨装置进行控制操作。
  10. 一种PCB,所述PCB按照权利要求1至8任一项所述的PCB磨板方法制得。
PCT/CN2022/099834 2022-03-31 2022-06-20 Pcb磨板方法、pcb返磨装置及pcb WO2023184727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210335135.8A CN114603417B (zh) 2022-03-31 2022-03-31 一种pcb磨板方法、pcb返磨装置及pcb
CN202210335135.8 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023184727A1 true WO2023184727A1 (zh) 2023-10-05

Family

ID=81867357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099834 WO2023184727A1 (zh) 2022-03-31 2022-06-20 Pcb磨板方法、pcb返磨装置及pcb

Country Status (2)

Country Link
CN (1) CN114603417B (zh)
WO (1) WO2023184727A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156449A (ja) * 1999-11-24 2001-06-08 Nec Corp 多層印刷配線板の製造方法
US20110212574A1 (en) * 2010-03-01 2011-09-01 Disco Corporation Processing method for package substrate
CN105228375A (zh) * 2015-08-21 2016-01-06 深圳崇达多层线路板有限公司 一种软硬结合线路板树脂塞孔的制作方法
CN111093330A (zh) * 2020-01-06 2020-05-01 东莞市五株电子科技有限公司 一种线路板埋孔树脂塞孔的方法
CN112512218A (zh) * 2020-11-18 2021-03-16 深圳崇达多层线路板有限公司 一种改善线路板压接孔小的制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967882A (en) * 1997-03-06 1999-10-19 Keltech Engineering Lapping apparatus and process with two opposed lapping platens
CN101462249B (zh) * 2009-01-14 2012-08-08 高德(无锡)电子有限公司 高密度互联线路板塞孔树脂研磨加工工艺
CN103517564B (zh) * 2013-11-08 2016-04-20 东莞生益电子有限公司 电路板制作中的塞孔方法
RU2551339C1 (ru) * 2013-11-21 2015-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия" Способ восстановления изношенного отверстия поршня под поршневой палец и устройство для его осуществления
CN103732009B (zh) * 2013-12-24 2017-10-17 广州兴森快捷电路科技有限公司 线路板盘中孔的树脂塞孔方法及盘中孔的制作方法
CN108012421A (zh) * 2017-11-09 2018-05-08 建业科技电子(惠州)有限公司 控制独立孔孔径和独立线厚度制作方法
CN110497303B (zh) * 2018-05-16 2024-06-07 长鑫存储技术有限公司 化学机械研磨制程方法及系统
CN110809370B (zh) * 2019-11-08 2020-08-07 深圳市文德丰科技有限公司 一种树脂塞孔工艺技术处理

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156449A (ja) * 1999-11-24 2001-06-08 Nec Corp 多層印刷配線板の製造方法
US20110212574A1 (en) * 2010-03-01 2011-09-01 Disco Corporation Processing method for package substrate
CN105228375A (zh) * 2015-08-21 2016-01-06 深圳崇达多层线路板有限公司 一种软硬结合线路板树脂塞孔的制作方法
CN111093330A (zh) * 2020-01-06 2020-05-01 东莞市五株电子科技有限公司 一种线路板埋孔树脂塞孔的方法
CN112512218A (zh) * 2020-11-18 2021-03-16 深圳崇达多层线路板有限公司 一种改善线路板压接孔小的制作方法

Also Published As

Publication number Publication date
CN114603417A (zh) 2022-06-10
CN114603417B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN105510348A (zh) 一种印制电路板的缺陷检测方法、装置及检测设备
CN108156762B (zh) 一种pcb生产方法
CN113240674A (zh) 基于三维点云和二维图像融合的共面度检测方法
CN109449093A (zh) 晶圆检测方法
CN114485450B (zh) 一种pcb板翘曲检测装置、方法和系统
CN112387604B (zh) 一种avi检测机与自动找点机联网检测封装基板的方法
CN113030123B (zh) 一种基于物联网的aoi检测反馈系统
CN109840856B (zh) 管理系统、管理装置、管理方法及计算机可读记录介质
CN108161048B (zh) 一种一体化pcb自动钻孔方法
TWI632968B (zh) Prediction method of electrical discharge machining accuracy
CN116258682A (zh) 基于PSPNet和改进YOLOv7的PCB锡膏缺陷检测方法
WO2023184727A1 (zh) Pcb磨板方法、pcb返磨装置及pcb
CN105136818B (zh) 印刷基板的影像检测方法
TWI628021B (zh) 用於放電加工機之精度預測的特徵萃取方法及預測方法
CN111310402B (zh) 一种基于面面平行的印刷电路板裸板缺陷检测方法
CN115615992B (zh) 一种耐火砖尺寸测量及缺陷检测方法
TWI674826B (zh) 電路板的背鑽孔方法
CN105759196B (zh) 具有补偿校准功能的自动定位首件电路板检测系统
CN112288782A (zh) 一种基于边界段数数值pcb缺陷检测方法
WO2000028309A1 (en) Method for inspecting inferiority in shape
CN115170476B (zh) 基于图像处理的印制线路板缺陷检测方法
KR101296164B1 (ko) 평판형 가공대상물의 홀 가공방법
CN115980061A (zh) 一种基于点云数据的电路板针脚高度检测装置和方法
CN105277569B (zh) 基于三维特征的线路板检测方法
CN103237414B (zh) 一种按键线路板生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934550

Country of ref document: EP

Kind code of ref document: A1