WO2023184696A1 - 于光学膜片上设计多个锥状结构的背光模组及显示装置 - Google Patents

于光学膜片上设计多个锥状结构的背光模组及显示装置 Download PDF

Info

Publication number
WO2023184696A1
WO2023184696A1 PCT/CN2022/096165 CN2022096165W WO2023184696A1 WO 2023184696 A1 WO2023184696 A1 WO 2023184696A1 CN 2022096165 W CN2022096165 W CN 2022096165W WO 2023184696 A1 WO2023184696 A1 WO 2023184696A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical film
backlight module
prism
designed
Prior art date
Application number
PCT/CN2022/096165
Other languages
English (en)
French (fr)
Inventor
张嘉尹
黄柏菖
林坤政
Original Assignee
瑞仪光电(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪光电(南京)有限公司 filed Critical 瑞仪光电(南京)有限公司
Publication of WO2023184696A1 publication Critical patent/WO2023184696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a backlight module and a display device in which a plurality of conical structures are designed on an optical film, and in particular to a side-lit backlight module and a display device including the side-lit backlight module. display device.
  • Existing backlight modules usually have diffusers to homogenize light.
  • diffusers have multiple scattering particles, and these scattering particles can scatter light so that the light is dispersed and emitted, thereby homogenizing the light.
  • the above-mentioned diffusers with scattering particles are usually used to cover blemishes, and have low optical directivity, which destroys the high directivity of the light guide plate.
  • the haze of the diffuser must be reduced, but the haze of the diffuser must be reduced to cover blemishes. will get worse.
  • the haze of the upper and lower diffusion sheets used in the backlight module will affect the brightness and optical taste appearance, making it difficult to further improve the luminance of the existing backlight module. promote. Therefore, how to maintain the ability to cover defects while still increasing the light concentration at the light emission viewing angle and the brightness at the front viewing angle has become the focus of the design of the backlight module.
  • One embodiment of the present invention provides a backlight module, which includes an optical film that can improve the light concentration at the outgoing viewing angle and the brightness at the front viewing angle.
  • Another embodiment of the present invention provides a display device including the above-mentioned backlight module.
  • a backlight module includes a light guide plate, a light source and a first optical film.
  • the light guide plate has a light entrance surface and a light exit surface, and the light exit surface has a normal line.
  • the light source is located adjacent to the light incident surface.
  • the first optical film is arranged relative to the light-emitting surface and includes a plurality of juxtaposed prisms and a plurality of microstructures. The extension direction of each prism is perpendicular to the normal line, and each prism faces the light exit surface of the light guide plate.
  • Each microstructure is located on the surface of the first optical film facing away from the light guide plate, wherein each microstructure is a cone-shaped structure with multiple facets. These prisms are located between these microstructures and the light-emitting surface.
  • the above-mentioned backlight module further includes a plurality of second optical films, wherein the first optical films are located between the second optical films and the light-emitting surface, and the second optical films include Multiple prism sheets.
  • each prism sheet includes a plurality of juxtaposed prism strips, wherein the extending direction of the prism strips of one prism sheet is perpendicular to the extending direction of the prism strips of the other prism sheet.
  • the above-mentioned light-emitting surface is connected to one side of the light-incident surface.
  • the light source has a plurality of light-emitting diodes arranged along a straight line.
  • the extending direction of the prism bars of one prism sheet is parallel to the straight line, and the extending direction of the prism bars of the other prism sheet is perpendicular to the straight line.
  • the extending direction of these prisms is perpendicular to the above-mentioned straight line.
  • the above-mentioned light-emitting surface is connected to one side of the light-incident surface, and the light source has a plurality of light-emitting diodes arranged along a straight line, wherein the extending direction of the prism bars of each prism sheet is not parallel to the straight line. Not vertical either.
  • the extending direction of these prisms is parallel to the above-mentioned straight line.
  • these microstructures are a plurality of pyramid-shaped concave holes adjacent to each other.
  • these microstructures are a plurality of pyramidal bumps adjacent to each other.
  • these microstructures are arranged in an oblique array relative to one side length of the first optical film.
  • the above-mentioned light guide plate has a bottom surface opposite to the light-emitting surface and a plurality of light guide structures formed on the bottom surface, wherein each light guide structure has a light-facing surface and a non-light-facing surface connected to each other.
  • the light-facing surface faces the light traveling direction of the light source, wherein a first included angle is formed between the light-facing surface and the bottom surface, and a second included angle is formed between the non-light-facing surface and the bottom surface.
  • the first included angle and the second included angle are both acute angles, and the first included angle is smaller than the second included angle.
  • a display device provided by another embodiment of the present invention includes the above-mentioned backlight module and a display panel, wherein the display panel is arranged relative to the backlight module.
  • these prisms and these microstructures are used to allow the light emitted by the light source to first pass through the prisms of the first optical film to produce an effect of improving directivity, and then pass through the microstructures of the first optical film. structure to maintain coverage.
  • the first optical film can maintain the ability to cover defects while still promoting the concentrated emission of light, thereby improving the light concentration at the light emission viewing angle and the brightness at the front viewing angle of the backlight module.
  • FIG. 1A is a schematic top view of a backlight module according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view taken along line 1B-1B in FIG. 1A.
  • FIG. 1C is a partial top view of the first optical film in FIG. 1B .
  • FIG. 1D is a partial top view of the first optical film according to another embodiment of the present invention.
  • FIG. 2A is a schematic top view of a backlight module according to another embodiment of the present invention.
  • FIG. 2B is a schematic cross-sectional view drawn along line 2B-2B in FIG. 2A.
  • FIG. 2C is a perspective view of the backlight module of FIG. 2B.
  • 2D and 2E are schematic top views of some of the second optical films in FIG. 2B.
  • 3A and 3B are schematic top views of multiple prism sheets in another embodiment of the present invention.
  • 4A and 4B are spatial luminance distribution diagrams of the backlight module of the comparative example and the backlight module shown in FIG. 1B respectively.
  • Figure 5A is a spatial luminance distribution diagram of the backlight module of the comparative example.
  • 5B to 5E are spatial luminance distribution diagrams of backlight modules according to multiple embodiments of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a backlight module according to another embodiment of the present invention.
  • FIG. 7 is a schematic side view of a display device according to an embodiment of the present invention.
  • the allowable deviation range can be determined by the error generated during measurement, and this error is caused by limitations of the measurement system or process conditions, for example.
  • “about” may mean within one or more standard deviations of the above numerical value, such as within ⁇ 30%, ⁇ 20%, ⁇ 10%, or ⁇ 5%.
  • FIG. 1A is a schematic top view of a backlight module according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view drawn along line 1B-1B in FIG. 1A
  • the backlight module 100 includes a first optical film 110 , a light guide plate 130 and a light source 190 .
  • the light guide plate 130 has a light incident surface 131 and a light exit surface 132.
  • the light exit surface 132 has a normal line N1 and can be connected to one side of the light incident surface 131.
  • the light source 190 is located adjacent to the light incident surface 131 and can emit light L1 toward the light incident surface 131 .
  • the first optical film 110 is arranged relative to the light-emitting surface 132 and includes a plurality of parallel prisms 111 and a plurality of microstructures 112 .
  • each prism 111 The extension direction E1 of each prism 111 is perpendicular to the normal line N1, and each prism 111 faces the light emitting surface 132 of the light guide plate 130.
  • Each microstructure 112 is located on the surface of the first optical film 110 facing away from the light guide plate 130 , wherein each microstructure 112 is a cone-shaped structure with a plurality of facets 112 s , and these prisms 111 are located between these microstructures 112 and the light-emitting surface 132 between.
  • the microstructure 112 is omitted in FIG. 1A to clearly show the direction of the prisms 111 .
  • the thick dotted line represents the trough between two adjacent prisms 111
  • the thin dotted line represents the crest of each prism 111 .
  • the light guide plate 130 may also have a bottom surface 133, where the light exit surface 132 and the bottom surface 133 are opposite to each other, and the bottom surface 133 and the light exit surface 132 may be two surfaces of the light guide plate 130 that are opposite to each other, as shown in FIG. 1B.
  • the light source 190 emits light L1 toward the light incident surface 131
  • the light L1 enters the light guide plate 130 from the light incident surface 131
  • part of the light L1 will be incident on the bottom surface 133 from the light incident surface 131 .
  • the bottom surface 133 can reflect part of the light L1.
  • the bottom surface 133 can continuously reflect light in the light guide plate 130 through total reflection (Total Internal Reflection, TIR) to transmit the light to the rear of the light guide plate 130 .
  • TIR Total Internal Reflection
  • Another part of the light L1 is completely reflected by the microstructure arranged on the bottom surface 133 to change the reflection angle, leaves the light guide plate 130 from the light exit surface 132, and is incident on the prism 111 of the first optical film 110. Utilizing these prisms 111 can cause the light L1 to be emitted in a concentrated manner, thereby producing the effect of improving directivity.
  • the light L1 enters the first optical film 110 from the prism 111 and can leave the first optical film 110 through the microstructure 112 to maintain coverage.
  • the concealing effect is mainly due to the fact that the microstructure 112 has multiple facets 112s.
  • the multiple facets 112s can deflect the light L1 and guide it to multiple light emission directions to avoid excessive concentration of light energy on the microstructure 112. directly above the base, thus retaining the concealer effect.
  • the general dot microstructure or diffusion particles will scatter light in uncertain directions, making it impossible to effectively control the direction of concealment.
  • the prisms 111 and the microstructures 112 can refract the light L1, so that the exit angle of the light L1 at the first optical film 110 is different. It is equal to the exit angle of the light L1 on the light guide plate 130, and the first optical film 110 can also cause the light L1 to be deflected and emitted in the direction of the normal line N1, so as to improve the light concentration at the viewing angle and the brightness at the front viewing angle of the backlight module.
  • the backlight module of the conventional technology adopts a structure of, for example, two diffusion sheets and two prism sheets. Its light emission viewing angle is approximately 60 degrees skewed from the vertical direction of the light emission surface 132 of the light guide plate 130, and it is also relatively deficient. Directivity, the overall light energy is not limited to a specific angle, resulting in poor anti-peeping effect.
  • the first optical film 110 is used to replace the lower diffuser in the conventional technology, its directivity can be improved, and the overall light energy is more concentrated, so that the light is more biased in the vertical direction of the light exit surface 132 of the light guide plate 130, and the light exit angle is improved. About 40 to 50 degrees.
  • this kind of first optical film 110 has the characteristics of high directivity and maintenance of blemishes, and the brightness at the front viewing angle can be further improved to save energy, increase battery life, and conform to the future trend of improving brightness.
  • the light source 190 has a plurality of light emitting diodes 191 arranged along the straight line SL1.
  • these light-emitting diodes 191 can be installed on a strip-shaped circuit substrate, so that these light-emitting diodes 191 can be arranged in a straight line, that is, arranged along the straight line SL1, wherein these light-emitting diodes 191 and the above-mentioned circuit substrate can be integrated into one line.
  • Light bar (light bar) and the circuit substrate can be a Printed Circuit Board (PCB) or a Flexible Printed Circuit (FPC).
  • the extension direction E1 of the prisms 111 of the first optical film 110 may be parallel to the straight line SL1, as shown in FIG. 1A.
  • FIG. 1C is a partial top view of the first optical film in FIG. 1B , in which the first optical film 110 shown in FIG. 1B can be drawn along the section line CR1 in FIG. 1C .
  • these microstructures 112 may be a plurality of pyramidal recessed holes adjacent to each other, and the facets 112 s may be sidewalls of the pyramidal recessed holes.
  • each microstructure 112 may be a pyramid-shaped recessed hole, so each microstructure 112 may have four facets 112s (ie, sidewalls), wherein the angle between two opposite facets 112s may be approximately 90 degrees.
  • these microstructures 112 can be regular pyramids that are symmetrical along the X-axis and Y-axis, or asymmetrical pyramids that are symmetrical along one of the X-axis and the Y-axis and the other is asymmetrical. , which can produce different degrees of light deflection in different directions to effectively control the concealing effect in different directions.
  • these microstructures 112 can also be a plurality of pyramidal bumps adjacent to each other, and their shape can be pyramidal, and the facets 112s can be the side surfaces of the pyramidal bumps. Therefore, the microstructure 112 may be a bump or a concave hole, and FIG. 1B and FIG.
  • microstructures 112 are arranged in a matrix along one of the side length directions of the first optical film 110 .
  • the first optical film in FIG. 1D can also be arranged in an oblique array relative to one side length of the first optical film 110.
  • FIG. 2A is a schematic top view of a backlight module according to another embodiment of the present invention
  • FIG. 2B is a schematic cross-sectional view drawn along line 2B-2B in FIG. 2A
  • the backlight module 200 of this embodiment is similar to the backlight module 100 of the previous embodiment.
  • the backlight module 200 also includes a first optical film 110, a light guide plate 130 and a light source 190.
  • the following mainly describes the differences between the backlight modules 100 and 200. Basically, the similarities between the backlight modules 200 and 100 will not be repeated.
  • the light-emitting diodes 191 in the light source 190 are also arranged along the straight line SL1.
  • the prisms 111 of the first optical film 110 extend along the extension direction E2, where the extension direction E2 is perpendicular to the straight line SL1, as shown in FIG. 2A. Since the extending direction E1 may be parallel to the straight line SL1, the extending direction E1 may be perpendicular to the extending direction E2.
  • FIG. 2C is a perspective view of the backlight module of FIG. 2B.
  • the backlight module 200 also includes a plurality of second optical films 221 and diffusion sheets 222 , in which the first optical film 110 is located on the second optical films 221 , the diffusion sheets 222 and the light-emitting surface 132 between.
  • These second optical films 221 may include a plurality of prism sheets.
  • the second optical films 221 are prism sheets, and these second optical films 221 are located between the diffusion sheet 222 and the first optical film 110 .
  • FIG. 2A omits drawing the second optical film 221 , the diffusion sheet 222 and the microstructure 112 to clearly show the extension direction E2 of these prisms 111 of the first optical film 110 .
  • each second optical film 221 (ie, prism sheet) includes a plurality of juxtaposed prism strips 221s.
  • the thick line represents the wave trough between two adjacent prism bars 221s
  • the thin line represents the wave peak of each prism bar 221s.
  • the extending direction of the prism strips 221s of one of the second optical films 221 is perpendicular to the extending direction of the prism strips 221s of the other second optical film 221, so that the second optical films 221 can guide most of the light.
  • L1 is emitted in a direction parallel to the normal line N1.
  • the prism strips 221s of the upper second optical film 221 extend along the extension direction E2 (as shown in FIG. 2D ), while the prism strips 221s of the lower second optical film 221 extend along the extension direction E2 (as shown in FIG. 2D ).
  • the strips 221s extend along the extension direction E1 (as shown in FIG. 2E ). Therefore, the extension direction E2 of the prism strips 221s of the upper second optical film 221 is consistent with the extension direction E1 of the prism strips 221s of the lower second optical film 221 . vertical.
  • the extension direction E1 is parallel to the straight line SL1 and the extension direction E2 is perpendicular to the straight line SL1
  • the extension direction E1 of the prism bars 221s of the lower second optical film 221 is parallel to the straight line SL1
  • the extension direction E1 of the upper second optical film 221 is parallel to the straight line SL1.
  • the extending direction E2 of the prism bar 221s is perpendicular to the straight line SL1.
  • the extending direction E1 of the prism bars 221s of one prism sheet is parallel to the straight line SL1
  • the other prism sheet for example, the upper second optical film 221
  • the extending direction E2 of these prism bars 221s is perpendicular to the straight line SL1.
  • the extending directions E1 and E2 of the prism bars 221s of the two second optical films 221 are parallel and perpendicular to the straight line SL1 respectively.
  • the extending direction of the prism bars 221s of each of the second optical films 221 may be neither parallel nor perpendicular to the straight line SL1.
  • the second optical films 321a and 321b shown in FIG. 3A and FIG. 3B are both the same as the second optical film 221, and both include a plurality of juxtaposed prism bars 221s.
  • the only difference between the second optical film 221 and the second optical film 221 is that the extending directions of the prism bars 221s of the second optical films 321a and 321b are different from the second optical film 221.
  • the second optical films 321a and 321b shown in FIG. 3A and FIG. 3B can be applied to the backlight module 200 in FIG. 2B.
  • the second optical film 321a shown in FIG. 3A can replace the upper second optical film 221 in FIG. 2B
  • the second optical film 321b shown in FIG. 3B can replace the lower second optical film 221 in FIG. 2B.
  • the above structure can combine the arrangement direction of the light-emitting diodes 191 of the light source 190 and the prisms 111 on the first optical film 110 under the high directivity and maintenance of the concealment characteristics produced by using the first optical film 110.
  • the extending direction of the prism strips of each prism sheet is parallel to the arrangement direction of the light emitting diodes 191 of the light source 190 .
  • the extending directions of the prism bars 221s of each of the second optical films 221 are neither parallel nor perpendicular to the straight line SL1 (equivalent to the straight line SL1 shown in FIGS. 3A and 3B Extension direction E1).
  • extension directions E31 and E32 extends along the extension direction E31
  • the second optical film 221 shown in FIG. 3B extends along the extension direction E32, wherein the extension directions E31 and E32 are not parallel. are not perpendicular to or perpendicular to the extension direction E1, and the extension directions E31 and E32 are perpendicular to each other.
  • the angle A31 between the extension directions E31 and E1 in FIG. 3A may be approximately 45 degrees, and the angle A31 between the extension directions E32 and E1 in FIG. 3B may be approximately 135 degrees.
  • the angle between the extension directions E31 and E32 can be approximately 90 degrees, that is, the extension directions E31 and E32 are perpendicular to each other.
  • the direction of the light-emitting viewing angle can even be further adjusted to the vertical direction of the light-emitting surface 132 of the light guide plate 130.
  • the light-emitting viewing angle is about 0 degrees, and the brightness can be further improved.
  • the full width at half maximum of the light-emitting energy can be Abbreviated as FWHM) can be further concentrated to help improve the privacy protection effect.
  • the second optical film 221 and the diffusion sheet 222 shown in FIG. 2B can be applied to the backlight module 100 in the aforementioned embodiment.
  • the backlight module 100 in FIG. 1B may also include the second optical films 221 and diffusion sheets 222 in FIG. 2B.
  • the first optical film 110 in FIG. 2B can be replaced with the first optical film 110 in FIG. 1B. Therefore, both the backlight modules 100 and 200 can include these second optical films 221 and diffusion sheets 222 .
  • FIGS. 4A and 4B are spatial luminance distribution diagrams of the backlight module of the comparative example and the backlight module shown in FIG. 1B respectively.
  • the spatial luminance distribution diagrams ie, Figure 4A, Figure 4B, and Figure 5A to Figure 5E
  • the spatial luminance distribution map is presented as a grayscale map, where the grayscale from light to dark represents the trend change of luminance from small to large.
  • the spatial luminance distribution diagram of this case the lighter the gray scale, the higher the luminance.
  • the darker the gray scale the lower the brightness.
  • FIGS. 4A and 4B and FIGS. 5A to 5E are all computer simulation diagrams.
  • FIG. 4A represents a comparative example backlight module, which includes a light source, a light guide plate and an existing diffuser sheet containing scattering particles, but does not include any prism sheet.
  • FIG. 4B represents the backlight module 100 shown in FIG. 1B , where the backlight module 100 represented by FIG. 4B does not include the second optical film 221 .
  • the light source and the light guide plate included in the backlight module of the comparative example may be the same as the light source 190 and the light guide plate 130 respectively, as shown in FIG. 1B .
  • FIGS. 4A and 4B simulate observing the luminance distribution by overlooking the backlight module of the comparative example and the backlight module 100 , in which the vertical and horizontal axes in FIGS. 4A and 4B both represent angle, and the center where the vertical axis and the horizontal axis intersect can represent the central axis of the light exit surface of the light guide plate (for example, the light exit surface 132 of the light guide plate 130 ).
  • FIGS. 1A, 1B and 4B Please refer to FIGS. 1A, 1B and 4B.
  • the vertical axis angle in Figure 4B is equivalent to the observation angle SA1 shown in Figure 1B.
  • the observation angle SA1 is the angle between the central axis OB1 and the observation direction OD1, and the absolute value of the observation angle SA1 is between 0 degrees and 90 degrees.
  • the vertical axis angle in FIG. 4B is zero, it means that the angle between the observation direction OD1 and the central axis OB1 is zero. That is, the zero vertical axis angle means that the brightness of the backlight module 100 is observed from the central axis OB1.
  • the observation direction OD1 When the vertical axis angle in FIG. 4B is a negative value, the observation direction OD1 will be biased toward the light incident surface 131 of the light guide plate 130 , that is, the negative vertical axis angle means that the backlight module is observed from the side of the light exit surface 132 adjacent to the light incident surface 131 Set 100 brightness.
  • the vertical axis angle in FIG. 4B when the vertical axis angle in FIG. 4B is a positive value, the observation direction OD1 will deviate from the light incident surface 131 of the light guide plate 130 , that is, a positive vertical axis angle represents observation from the side of the light exit surface 132 away from the light incident surface 131
  • the brightness of the backlight module 100 is at the observation angle SA1 shown in FIG. 1B .
  • the brightness change on the horizontal axis in FIG. 4B represents the brightness distribution between the left and right sides of the backlight module 100 in FIG. 1A .
  • the viewing angle of the backlight module of the comparative example represented by FIG. 4A is approximately 61 degrees, while the viewing angle of the backlight module 100 represented by FIG. 4B is approximately 40 degrees, where the viewing angle refers to the angle of the light peak.
  • Most of the area in Figure 4A has a fairly light gray scale, while most of the area in Figure 4B has a quite dark gray scale. Only a specific small area produces a lighter gray scale, and within it The darkest grayscale color. It can be seen that by using the first optical film 110, the light directivity of the backlight module 100 is higher than that of the backlight module of the comparative example.
  • the luminance half-maximum (FWHM) of the comparative example backlight module in Figure 4A is approximately 69 degrees on the vertical axis, and is approximately 40 degrees on the horizontal axis.
  • the backlight module 100 in FIG. 4B has a luminance half-maximum width of about 40 degrees on the vertical axis, and a luminance half-maximum width of about 10 degrees on the horizontal axis. Therefore, the half-width of the backlight module 100 in FIG. 4B is smaller than the half-width of the backlight module of the comparative example in FIG. 4A , so the light directivity of the backlight module 100 in FIG. 4B is higher than that of the comparative example in FIG. 4A The light directivity of the backlight module means that the backlight module 100 represented in FIG. 4B can better concentrate the light output.
  • FIGS. 5A is a spatial luminance distribution diagram of a backlight module of a comparative example
  • FIGS. 5B to 5E are spatial luminance distribution diagrams of backlight modules according to multiple embodiments of the present invention, in which the vertical axis in FIGS. 5A to 5E is The definitions of the horizontal axis are the same as the definitions of the vertical axis and the horizontal axis in FIGS. 4A and 4B and will not be repeated here.
  • the comparative example backlight module represented by FIG. 5A not only includes a light guide plate and a diffusion sheet, but also includes two prism sheets, but does not include the first optical film 110 .
  • Figure 5B represents the backlight module 100 with the first optical film 110, two prism sheets (ie, the second optical film 221) and the diffusion sheet 222 installed. The arrangement of the two prism sheets is as shown in Figure 2B and Figure 2D respectively. As shown in FIG.
  • the extending direction of the prism bars of one prism sheet is parallel to the extending direction of the prisms 111 of the first optical film 110 (both are extension directions E1 ), while the extending direction of the prism bars of the other prism sheet is parallel to that of the prism bars 111 of the first optical film 110 . It is perpendicular to the extension direction of the prism 111 (the extension directions E1 and E2 respectively).
  • These prism sheets can guide light, so that most of the light from the backlight module can emit along the normal line (eg, the normal line N1 in FIG. 1B). Therefore, the viewing angle of the backlight module in both FIG. 5A and FIG. 5B is approximately 0 degrees.
  • the luminance half-maximum width on the vertical axis and the horizontal axis of the comparative example backlight module in Figure 5A is both approximately 45 degrees.
  • the backlight module in Figure 5B has a luminance half-maximum width of about 38 degrees on the vertical axis, and a luminance half-maximum width of about 31 degrees on the horizontal axis.
  • the backlight module in Figure 5B is more capable of concentrating light emission, has higher light directivity than the backlight module of the comparative example in Figure 5A, and can increase the brightness by about 15%.
  • the microstructures 112 shown in FIG. 1D are arranged in an oblique array with respect to one side length of the first optical film 110, and then the prisms 111 of the first optical film 110 in FIG. 2A are arranged along the The extension direction E2 extends.
  • the energy of the FWHM can be more concentrated and the brightness can be further improved.
  • FIG. 5C is a spatial luminance distribution diagram of the backlight module according to another embodiment of the present invention shown in FIGS. 3A and 3B. Please refer to FIG. 5C .
  • FIG. 5C also represents the backlight module 100 after adding the first optical film 110 , two prism sheets (ie, the second optical film 221 ) and the diffusion sheet 222 .
  • the two prism sheets are arranged as shown in Figure 3A and Figure 3B respectively, that is, the extending directions of the prism bars of the two prism sheets are different. It is parallel to and not perpendicular to the extension direction E1 of the prism 111 of the first optical film 110.
  • the direction of the prism strips of one prism sheet is 45 degrees
  • the direction of the prism strips of the other prism sheet is 45 degrees. is 135 degrees.
  • these prism sheets can guide light to emit along the normal line (such as the normal line N1 in FIG. 1B ), so the backlight module in FIG. 5C
  • the viewing angle is approximately 0 degrees.
  • the luminance half-maximum width of the backlight module in Figure 5C is about 34 degrees on the vertical axis, and the luminance half-maximum width on the horizontal axis is about 30 degrees. Therefore, compared with the backlight module of the comparative example in FIG. 5A , the backlight module in FIG. 5C can better concentrate the light output and has better light directivity, and can increase the brightness by about 20%.
  • Figures 5D and 5E are spatial luminance distribution diagrams of a backlight module according to another embodiment of the present invention.
  • Figures 5D and 5E both represent the backlight module 200 shown in Figures 2A and 2B, that is, the first optical film. These prisms 111 of 110 extend along the extension direction E2.
  • the backlight module 200 represented by Figure 5D is equipped with the first optical film 110, but does not include the second optical film 221 and the diffuser 222, while Figure 5E represents the complete backlight module 200, and one of the prisms
  • the direction of the prism strips of one sheet is 0 degrees, and the direction of the prism strips of the other prism sheet is 90 degrees, as shown in Figure 2A.
  • the backlight module 200 represented by FIG. 5D has better light direction without the prism sheet (ie, the second optical film 221 ) and the diffusion sheet 222 . It is flexible and can produce a light splitting effect, so that the left and right viewing angles (the light areas on both sides and the dark and white areas in the light areas) can have sufficient brightness.
  • the viewing angle of the backlight module 200 (including the second optical films 221 and the diffusion sheet 222 ) is approximately 0 degrees.
  • the luminance half-width of the backlight module 200 represented in FIG. 5E is about 34 degrees on the vertical axis, and the luminance half-width on the horizontal axis is about 27 degrees.
  • the backlight module 200 in FIG. 5E has good light directivity, and the light splitting effect in the original FIG. 5D is concentrated to the front viewing angle (the light area in the middle and the dark area in the light area). color, white area), and can increase the brightness by about 20%.
  • FIG. 6 is a schematic cross-sectional view of a backlight module according to another embodiment of the present invention. Please refer to FIG. 6 .
  • the backlight module 600 of this embodiment is similar to the backlight module 100 of the previous embodiment.
  • the difference between the backlight module 600 and the backlight module 100 is that the light guide plate 630 included in the backlight module 600 is different from that of the previous embodiment.
  • the light guide plate 130 in this example The following mainly describes the differences between the backlight modules 600 and 100, and basically the same features between the two will not be repeatedly described.
  • the light guide plate 630 has a bottom surface 633 and a plurality of light guide structures 639 formed on the bottom surface 633.
  • Each light guide structure 639 has a light-facing surface 639a and a non-light-facing surface 639b that are connected to each other.
  • the light-facing surface 639a The traveling direction of light L1 facing the light source 190 .
  • a first included angle A61 is formed between the light-facing surface 639a and the bottom surface 633
  • a second included angle A62 is formed between the non-light-facing surface 639b and the bottom surface 633, where both the first included angle A61 and the second included angle A62 are acute angles.
  • the first included angle A61 is smaller than the second included angle A62, as shown in Figure 6 .
  • the light source 190 emits light L1 toward the light incident surface 631 of the light guide plate 630
  • the light L1 enters the light guide plate 630 from the light incident surface 631, and part of the light L1 will be incident on the light guide structure 639, such as the light incident surface 639a.
  • the light L1 can be reflected by the light guide structure 639 (for example, the light facing surface 639a), so that the light L1 is emitted from the light exit surface 632 of the light guide plate 630.
  • the area of the light-facing surface 639a can be enlarged and the area of the non-light-facing surface 639b can be reduced, so that the light-facing surface 639a has a higher probability of reflecting light and causing the light to be emitted from the light exit surface 632 of the light guide plate 630 for the third time.
  • the use of an optical film 110 helps to improve the directivity effect.
  • the backlight module 600 may further include a reflective sheet 680 , where the reflective sheet 680 is located below the light guide plate 630 and faces the bottom surface 633 , and the light guide plate 630 is located between the reflective sheet 680 and the first optical film 110 .
  • the light guide structure 639 can not only reflect the light L1, but also refract the light L1, as shown in FIG. 6 .
  • the light guide structure 639 refracts the light L1, the light L1 will be incident on the reflective sheet 680.
  • the reflective sheet 680 can reflect the light L1 so that the light L1 can enter the light guide plate 630 again, thereby allowing more light L1 to emit from the light emitting surface 632 . In this way, it helps to improve the brightness of the backlight module 600 .
  • the backlight module 600 in FIG. 6 may also include a plurality of second optical films 221 and a diffusion sheet 222 (as shown in FIG. 2B), or a plurality of second optical films 321a and 321b (as shown in FIG. 2B).
  • the light guide plate 130 can be replaced by the light guide plate 630 shown in FIG. 6 .
  • the first optical film 110 in FIG. 6 can also be replaced with the first optical film 110 in FIG. 2B. That is to say, in FIG. 6 , the prisms 111 of the first optical film 110 may extend along the extension direction E1 or E2.
  • FIG. 7 is a schematic side view of a display device according to an embodiment of the present invention.
  • the display device 700 includes a backlight module 710 and a display panel 720 .
  • the display panel 720 is arranged relative to the backlight module 710 and is located above the light emitting surface of the backlight module 710 so that the backlight module 710 can face the display. Panel 720 emits light.
  • the backlight module 710 may be the backlight module 100, 200 or 600 in the aforementioned embodiments, or any combination of these backlight modules 100, 200 and 600, such as one including a plurality of second optical films 221 and a diffusion sheet 222.
  • the display panel 720 may be a transmissive display panel, such as a liquid crystal display panel. Since the first optical film 110 can maintain the blemish-shielding ability while still prompting the light L1 to be emitted concentratedly to improve the light directivity of the backlight module 710, the backlight module 710 can evenly emit high-brightness light to improve the light directivity of the backlight module 710. The light concentration at the light emission viewing angle and the brightness at the front viewing angle also have a concealing effect, thereby improving the brightness and uniformity of the display panel 720 .

Abstract

一种于光学膜片上设计多个锥状结构的背光模组(100,200,600,710)和显示装置(700),背光模组(100,200,600,710)包括导光板(130,630)、光源(190)与第一光学膜片(110,110')。导光板(130,630)具有入光面(131,631)与出光面(132,632),出光面(132,632)具有法线(N1)。光源(190)邻设于入光面(131,631)。第一光学膜片(110,110')相对于出光面(132,632)设置,并包括并列的棱柱(111)与多个微结构(112)。各个棱柱(111)的延伸方向与法线(N1)垂直,且各个棱柱(111)面向导光板(130,630)的出光面(132,632)。各个微结构(112)位于第一光学膜片(110,110')的背向导光板(130,630)的表面上。各个微结构(112)为具有多个刻面(112s)的锥状结构。多条棱柱(111)位于多个微结构(112)与出光面(132,632)之间。

Description

于光学膜片上设计多个锥状结构的背光模组及显示装置 技术领域
本发明涉及一种于光学膜片上设计多个锥状结构的背光模组及显示装置,且特别是涉及一种侧边入光式背光模组及包括此侧边入光式背光模组的显示装置。
背景技术
现有的背光模组通常具有扩散片来均匀化光线。一般而言,目前常见的扩散片具有多个散射粒子,而这些散射粒子能散射光线,以使光线分散出射,从而均匀化光线。然而,上述具有散射粒子的扩散片通常用来遮瑕,并且具有偏低的光学指向性(optical directivity)来破坏导光板的高指向性,若要提升指向性就须降低扩散片雾度,但遮瑕就会变差。至于增光片虽然有利于提升辉度,但是背光模组所使用的上、下扩散片的雾度又会影响辉度与光学品味外观,导致现有背光模组的辉度(luminance)难以进一步地提升。因此,如何在维持遮瑕能力的同时仍能增加出光视角集光性与正视角辉度,便成为背光模组的设计重点。
发明内容
本发明一实施例提出一种背光模组,其所包括的光学膜片能提升出光视角集光性与正视角辉度。
本发明另一实施例提出一种显示装置,其包括上述背光模组。
本发明一实施例所提出的背光模组包括导光板、光源与第一光学膜片。导光板具有入光面与出光面,出光面具有法线。光源邻设于入光面。第一光学膜片相对于出光面设置,并包括多条并列的棱柱与多个微结构。各个棱柱的延伸方向与法线垂直,且各个棱柱面向导光板的出光面。各个微结构位于第一光学膜片的背向导光板的表面上,其中各个微结构为具有多个 刻面的锥状结构。这些棱柱位于这些微结构与出光面之间。
在本发明一实施例中,上述背光模组还包括多个第二光学膜片,其中这些第一光学膜片位于这些第二光学膜片与出光面之间,而这些第二光学膜片包括多个棱镜片。
在本发明一实施例中,各个棱镜片包括多个并列的棱镜条,其中一个棱镜片的这些棱镜条的延伸方向与另一个棱镜片的这些棱镜条的延伸方向垂直。
在本发明一实施例中,上述出光面连接于入光面的一侧。光源具有沿着直线排列设置的多个发光二极管,其中一个棱镜片的这些棱镜条的延伸方向与直线平行,另一个棱镜片的这些棱镜条的延伸方向与直线垂直。
在本发明一实施例中,这些棱柱的延伸方向垂直于上述直线。
在本发明一实施例中,上述出光面连接于入光面的一侧,而光源具有沿着直线排列设置的多个发光二极管,其中各个棱镜片的这些棱镜条的延伸方向与直线不平行,也不垂直。
在本发明一实施例中,这些棱柱的延伸方向平行于上述直线。
在本发明一实施例中,这些微结构为多个彼此邻接的棱锥形凹孔。
在本发明一实施例中,这些微结构为多个彼此邻接的棱锥形凸块。
在本发明一实施例中,这些微结构相对于第一光学膜片的其中一个边长以倾斜方式阵列排列。
在本发明一实施例中,上述导光板具有与出光面相对的底面及多个形成在底面的导光结构,其中每一个导光结构具有互相连接的迎光面及非迎光面。迎光面面向光源的光行进方向,其中迎光面与底面之间形成第一夹角,而非迎光面与底面之间形成第二夹角。第一夹角与第二夹角皆为锐角且第一夹角小于第二夹角。
本发明另一实施例所提出的显示装置包括上述背光模组以及显示面板,其中显示面板相对于背光模组设置。
基于上述,利用这些棱柱与这些微结构,让光源所发出的光线,先通过该第一光学膜片的该些棱柱,产生提高指向性的效果,然后再通过该第一光学膜片的该些微结构,来维持遮瑕。如此一来,第一光学膜片在维持 遮瑕能力的同时仍能促使光线集中出射,以提升背光模组的出光视角集光性与正视角辉度。
附图说明
为了更完整地了解实施例及其优点,现在参照附图做出下列描述。
图1A是本发明一实施例的背光模组的俯视示意图。
图1B是图1A中沿线1B-1B剖面而绘制的剖面示意图。
图1C是图1B中的第一光学膜片的局部俯视示意图。
图1D是本发明另一实施例的第一光学膜片的局部俯视示意图。
图2A是本发明另一实施例的背光模组的俯视示意图。
图2B是图2A中沿线2B-2B剖面而绘制的剖面示意图。
图2C是图2B的背光模组的立体示意图。
图2D与图2E是图2B中其中一些第二光学膜片的俯视示意图。
图3A与图3B是本发明另一实施例中的多个棱镜片的俯视示意图。
图4A与图4B分别是对照例背光模组与图1B所示的背光模组两者的空间辉度分布图。
图5A是对照例背光模组的空间辉度分布图。
图5B至图5E是本发明多个实施例的背光模组的空间辉度分布图。
图6是本发明另一实施例的背光模组的剖面示意图。
图7是本发明一实施例的显示装置的侧视示意图。
具体实施方式
在以下的描述中,为了清楚呈现本案的技术特征,附图中的元件(例如层、膜、基板以及区域等)的尺寸(例如长度、宽度、厚度与深度)会以不等比例的方式放大,且有的元件数量会减少。因此,下文实施例的说明与解释不限于附图中的元件数量以及元件所呈现的尺寸与形状,而应涵盖如实际制程及/或公差所导致的尺寸、形状以及两者的偏差。例如,附图所示的平坦表面可具有粗糙及/或非线性的特征,而附图所示的角可以是圆角。所以,本案附图所呈示的元件主要是用于示意,并非旨在精准地描绘 出元件的实际形状,也并非用于限制本案的权利要求书的保护范围。
其次,本案内容中所出现的「约」、「近似」或「实质上」等这类用语不仅涵盖明确记载的数值与数值范围,而且也涵盖发明所属技术领域中具有通常知识者所能理解的可允许偏差范围,其中此偏差范围可由测量时所产生的误差来决定,而此误差例如起因于测量系统或制程条件两者的限制。此外,「约」可表示在上述数值的一个或多个标准偏差内,例如±30%、±20%、±10%或±5%内。本案中所出现的「约」、「近似」或「实质上」等这类用语可依光学性质、蚀刻性质、机械性质或其他性质来选择可以接受的偏差范围或标准偏差,并非单以一个标准偏差来套用以上光学性质、蚀刻性质、机械性质以及其他性质等所有性质。
图1A是本发明一实施例的背光模组的俯视示意图,而图1B是图1A中沿线1B-1B剖面而绘制的剖面示意图。请参阅图1A与图1B,背光模组100包括第一光学膜片110、导光板130与光源190。导光板130具有入光面131与出光面132,其中出光面132具有法线N1,并可连接于入光面131的一侧。光源190邻设于入光面131,并能朝向入光面131发出光线L1。第一光学膜片110相对于出光面132设置,并包括多条并列的棱柱111与多个微结构112。
各条棱柱111的延伸方向E1与法线N1垂直,且各条棱柱111面向导光板130的出光面132。各个微结构112位于第一光学膜片110的背向导光板130的表面上,其中各个微结构112为具有多个刻面112s的锥状结构,而这些棱柱111位于这些微结构112与出光面132之间。此外,图1A省略了微结构112,以清楚呈现棱柱111的走向,其中在图1A中,粗虚线代表相邻两条棱柱111之间的波谷,而细虚线代表各条棱柱111的波峰。
导光板130还可具有底面133,其中出光面132与底面133彼此相对,而底面133与出光面132可为导光板130彼此相对的两面,如图1B所示。当光源190朝向入光面131发出光线L1时,光线L1从入光面131进入导光板130内,其中一部分光线L1会从入光面131入射于底面133。底面133能反射一部分光线L1。例如,底面133可通过全反射(Total Internal Reflection,TIR)在导光板130内不断反射光线而使光线向导光板130的 后方传递。另外一部分光线L1则被布设在底面133的微结构破坏全反射,以改变反射角度,而从出光面132离开导光板130,并入射至第一光学膜片110的棱柱111。利用这些棱柱111,可促使光线L1集中出射,从而产生提高指向性的效果。
之后,光线L1从棱柱111进入第一光学膜片110内,并可从微结构112离开第一光学膜片110来维持遮瑕。其遮瑕效果的产生,主要是因为微结构112具有多个刻面112s,经由多个刻面112s可将光线L1进行偏折而导引至多个出光方向,以避免光线能量过于集中至微结构112的正上方,而藉此保有遮瑕效果。而一般的网点微结构或扩散粒子,则会将光线产生方向不定的散射,无法有效控制遮瑕方向。
当光线L1依序通过导光板130与第一光学膜片110而离开背光模组100时,棱柱111与微结构112能折射光线L1,以使光线L1在第一光学膜片110的出射角不等于光线L1在导光板130的出射角,而且第一光学膜片110还能促使光线L1朝向法线N1的方向偏折出射,以提升背光模组的出光视角集光性与正视角辉度。
习知技术的背光模组采用例如两张扩散片、两张棱镜片的架构,其出光视角相较于导光板130的出光面132的垂直方向约有60度左右的偏斜,而且也较欠缺指向性,整体出光能量并不局限在特定角度,造成防窥效果较差。而使用第一光学膜片110来取代习知技术中的下扩散片时,其指向性可以提高,整体出光能量也较为集中,使光线更偏向导光板130的出光面132的垂直方向,出光视角约为40至50度。
也就是说,此种第一光学膜片110具有高指向性与维持遮瑕的特性,正视角辉度能进一步提升,以节省能源,增加续航力,并且符合提升辉度的未来趋势。
再更进一步说,光源190具有沿着直线SL1排列设置的多个发光二极管191。具体而言,这些发光二极管191可以装设于一块条状的电路基板,以使这些发光二极管191能排列成一直线,即沿着直线SL1排列,其中这些发光二极管191与上述电路基板可以整合成一条光条(light bar),而电路基板可以是印刷电路板(Printed Circuit Board。PCB)或可挠式电路板 (Flexible Printed Circuit,FPC)。此外,第一光学膜片110的这些棱柱111的延伸方向E1可以平行于直线SL1,如图1A所示。
图1C是图1B中的第一光学膜片的局部俯视示意图,其中图1B所示的第一光学膜片110可以沿着图1C中的剖面线CR1剖面而绘制。请参阅图1B与图1C,这些微结构112可以是多个彼此邻接的棱锥形凹孔,而刻面112s可以是棱锥形凹孔的侧壁。例如,各个微结构112可以是金字塔型的凹孔,所以各个微结构112可具有四面刻面112s(即侧壁),其中相对的两面刻面112s之间的夹角可约为90度。因此,这些微结构112可以是沿X轴向、Y轴向皆对称的正金字塔,或是沿X轴向、Y轴向的其中一者为对称,而另一者为非对称的非对称金字塔,由此可在不同方向上产生程度不同的光线偏折,以有效控制不同方向的遮瑕效果。此外,在其他实施例中,这些微结构112也可以是多个彼此邻接的棱锥形凸块,其形状可以是金字塔形,而刻面112s可为棱锥形凸块的侧面。因此,微结构112可以是凸块或凹孔,而图1B与图1C仅供举例说明,并不限制本发明。在图1B与图1C中,这些微结构112沿着第一光学膜片110的其中一个边长方向矩阵排列,而在图1D所示的其他实施例中,图1D中的第一光学膜片110’的这些微结构112也可以相对于第一光学膜片110的其中一个边长以倾斜方式阵列排列。
图2A是本发明另一实施例的背光模组的俯视示意图,而图2B是图2A中沿线2B-2B剖面而绘制的剖面示意图。请参阅图2A与图2B,本实施例的背光模组200相似于前述实施例的背光模组100。例如,背光模组200也包括第一光学膜片110、导光板130与光源190。以下主要叙述背光模组100与200之间的差异。背光模组200与100两者相同之处基本上不再重复叙述。
在本实施例中,光源190中的这些发光二极管191也沿着直线SL1排列设置。不过,有别于前述实施例中的背光模组200,第一光学膜片110的这些棱柱111沿着延伸方向E2延伸,其中延伸方向E2垂直于直线SL1,如图2A所示。由于延伸方向E1可平行于直线SL1,所以延伸方向E1可垂直于延伸方向E2。
图2C是图2B的背光模组的立体示意图。请参阅图2B与图2C,背光模组200还包括多个第二光学膜片221与扩散片222,其中第一光学膜片110位于这些第二光学膜片221、扩散片222与出光面132之间。这些第二光学膜片221可包括多个棱镜片。在图2B所示的实施例中,第二光学膜片221为棱镜片,其中这些第二光学膜片221位于扩散片222与第一光学膜片110之间。另外,图2A省略绘制第二光学膜片221、扩散片222与微结构112,以清楚呈现第一光学膜片110的这些棱柱111的延伸方向E2。
图2D与图2E是图2B中这些棱镜片(即第二光学膜片221)的俯视示意图,其中图2D所示的第二光学膜片221为图2B中位于下方的第二光学膜片221,而图2E所示的第二光学膜片221为图2B中位于上方的第二光学膜片221。请参阅图2B至图2E,各个第二光学膜片221(即棱镜片)包括多个并列的棱镜条221s。在图2D与图2E中,粗线代表相邻两条棱镜条221s之间的波谷,而细线代表各条棱镜条221s的波峰。
其中一片第二光学膜片221的这些棱镜条221s的延伸方向与另一片第二光学膜片221的这些棱镜条221s的延伸方向垂直,以使这些第二光学膜片221能引导大部分的光线L1沿着平行法线N1的方向出射。在图2D与图2E所示的实施例中,上方的第二光学膜片221的棱镜条221s沿着延伸方向E2延伸(如图2D所示),而下方的第二光学膜片221的棱镜条221s沿着延伸方向E1延伸(如图2E所示),因此上方的第二光学膜片221的棱镜条221s的延伸方向E2与下方的第二光学膜片221的棱镜条221s的延伸方向E1垂直。
由于延伸方向E1平行于直线SL1,而延伸方向E2垂直于直线SL1,所以下方的第二光学膜片221的棱镜条221s的延伸方向E1与直线SL1平行,而上方的第二光学膜片221的棱镜条221s的延伸方向E2与直线SL1垂直。因此,在本实施例中,其中一片棱镜片(例如下方第二光学膜片221)的这些棱镜条221s的延伸方向E1与直线SL1平行,而另一片棱镜片(例如上方第二光学膜片221)的这些棱镜条221s的延伸方向E2与直线SL1垂直。
特别一提的是,在图2D与图2E所示的实施例中,两片第二光学膜片 221的棱镜条221s的延伸方向E1与E2分别与直线SL1平行与垂直。然而,在其他实施例中,这些第二光学膜片221中的每一者的这些棱镜条221s的延伸方向可以与直线SL1既不平行,也不垂直。
请参阅图3A与图3B。图3A与图3B所示的第二光学膜片321a与321b皆与第二光学膜片221相同,并且皆包括多个并列的棱镜条221s。不同之处仅在于第二光学膜片221之处仅在于:第二光学膜片321a与321b两者的棱镜条221s的延伸方向不同于第二光学膜片221。
具体而言,图3A与图3B所示的第二光学膜片321a与321b可以应用于图2B中的背光模组200。例如,图3A所示的第二光学膜片321a可替换图2B中上方的第二光学膜片221,而图3B所示的第二光学膜片321b可替换图2B中下方的第二光学膜片221。
上述架构则可以在使用第一光学膜片110时所产生的高指向性与维持遮瑕的特性效果下,再配合光源190的发光二极管191的排列方向与第一光学膜片110上的这些棱柱111的延伸方向平行,来对应设计各棱镜片的这些棱镜条的延伸方向与光源190的发光二极管191的排列方向不平行,也不垂直。如图3A与图3B所示的这些第二光学膜片221中每一者的这些棱镜条221s的延伸方向皆不平行于、也不垂直于直线SL1(相当于图3A与图3B所示的延伸方向E1)。举例而言,图3A所示的第二光学膜片221沿着延伸方向E31延伸,而图3B所示的第二光学膜片221沿着延伸方向E32延伸,其中延伸方向E31与E32皆不平行于、也不垂直于延伸方向E1,且延伸方向E31与E32彼此垂直。
例如,图3A中的延伸方向E31与E1两者之间的夹角A31可约为45度,而图3B中的延伸方向E32与E1两者之间的夹角A31可约为135度。如此,不仅延伸方向E31与E32皆不平行于、也不垂直于延伸方向E1,而且延伸方向E31与E32两者之间的夹角可约为90度,即延伸方向E31与E32两者彼此垂直。据此甚至可以进一步将出光视角的方向调整成为导光板130的出光面132的垂直方向,出光视角约为0度,辉度也能进一步提升,出光能量的半高宽(Full width at half maximum,缩写为FWHM)可以进一步集中,有助于防窥效果的提升。
值得一提的是,图2B所示的这些第二光学膜片221与扩散片222皆可应用于前述实施例中的背光模组100。具体而言,图1B中的背光模组100还可包括图2B中的这些第二光学膜片221与扩散片222。换句话说,图2B中的第一光学膜片110可以替换成图1B中的第一光学膜片110。因此,背光模组100与200皆可以包括这些第二光学膜片221与扩散片222。
图4A与图4B分别是对照例背光模组与图1B所示的背光模组两者的空间辉度分布图。须说明的是,空间辉度分布图(即图4A、图4B与图5A至图5E)原本是彩色图。在本案中,空间辉度分布图以灰阶图呈现,其中灰阶度由浅至深代表辉度由小到大的趋势变化。换句话说,在本案的空间辉度分布图中,灰阶越浅,代表辉度越高。反之,灰阶越深,代表辉度越低。此外,图4A、图4B与图5A至图5E所示的空间辉度分布图皆为计算机仿真图。
请参阅图4A与图4B,图4A代表对照例背光模组,其包括光源、导光板与现有含散射粒子的扩散片,但不包括任何棱镜片。图4B代表图1B所示的背光模组100,其中图4B所代表的背光模组100不包括第二光学膜片221。此外,对照例背光模组所包括的光源与导光板可分别相同于光源190与导光板130,如图1B所示。
在图4A与图4B中,图4A与图4B是模拟以俯瞰对照例背光模组与背光模组100的方式来观测辉度分布,其中图4A与图4B中的纵轴与横轴皆代表角度,而纵轴与横轴两者相交的中心可以代表导光板出光面(例如导光板130的出光面132)的中心轴。
请参阅图1A、图1B与图4B,以背光模组100为例,图4B中的纵轴与横轴相交的中心等同于图1A中出光面132的中心轴OB1。图4B中的纵轴角度等同于图1B所示的观测角度SA1。观测角度SA1为中心轴OB1与观测方向OD1之间的夹角,而观测角度SA1的绝对值介于0度至90度之间。当图4B中的纵轴角度为零时,代表观测方向OD1与中心轴OB1之间的夹角为零,即零纵轴角度代表从中心轴OB1观测背光模组100的辉度。
当图4B中的纵轴角度为负值时,观测方向OD1会偏向导光板130的入光面131,即负值的纵轴角度代表从出光面132邻近入光面131的一侧观 测背光模组100的辉度。反之,当图4B中的纵轴角度为正值时,观测方向OD1会偏离导光板130的入光面131,即正值的纵轴角度代表从出光面132远离入光面131的一侧观测背光模组100的辉度,如图1B所示的观测角度SA1。同样地,图4B中在横轴上的辉度变化代表在图1A中的背光模组100左右两侧之间的辉度分布。
图4A所代表的对照例背光模组的视角约为61度,而图4B所代表的背光模组100的视角约为40度,其中视角是指光线峰值的角度。图4A中的大部分区域具有相当浅的灰阶,而图4B中的大部分区域具有相当深的灰阶,只有在特定的一小块区块产生灰阶较浅的灰阶,以及其内部的颜色最深的灰阶。由此可见,利用第一光学膜片110,背光模组100的光指向性高于对照例背光模组的光指向性。
此外,图4A中的对照例背光模组在纵轴上的辉度半高宽(Full Width at Half Maximum,FWHM)约为69度,在横轴上的辉度半高宽约为40度。图4B中的背光模组100在纵轴上的辉度半高宽约为40度,在横轴上的辉度半高宽约为10度。因此,图4B中的背光模组100的半高宽小于图4A中的对照例背光模组的半高宽,所以图4B中的背光模组100的光指向性高于图4A中的对照例背光模组的光指向性,即图4B所代表的背光模组100较能集中光线出射。
图5A是对照例背光模组的空间辉度分布图,而图5B至图5E是本发明多个实施例的背光模组的空间辉度分布图,其中图5A至图5E中的纵轴与横轴的定义皆相同于图4A与图4B中的纵轴与横轴的定义,在此不重复叙述。
请参阅图5A与图5B,图5A所代表的对照例背光模组不仅包括导光板与扩散片,而且还包括两片棱镜片,但不包括第一光学膜片110。图5B代表加装第一光学膜片110、两片棱镜片(即第二光学膜片221)与扩散片222的背光模组100,其中前述两片棱镜片的设置分别如同图2B、图2D与图2E所示,即其中一片棱镜片的棱镜条的延伸方向与第一光学膜片110的棱柱111的延伸方向(皆为延伸方向E1)平行,而另一片棱镜片的棱镜条的延伸方向与棱柱111的延伸方向(分别为延伸方向E1与E2)垂直。
这些棱镜片(例如第二光学膜片221)可以导引光线,以使背光模组的大部分光线能沿着法线(例如图1B中的法线N1)出射。因此,图5A与图5B两者中的背光模组的视角皆约为0度。其次,图5A中的对照例背光模组在纵轴上与在横轴上的辉度半高宽皆约为45度。图5B中的背光模组在纵轴上的辉度半高宽约为38度,在横轴上的辉度半高宽约为31度。由此可见,图5B中的背光模组较能集中光线出射,并且具有高于图5A中的对照例背光模组的光指向性,而且可以将辉度提升约15%。在此架构下,使用图1D所示的微结构112相对于第一光学膜片110的其中一个边长以倾斜方式阵列排列,再搭配图2A的第一光学膜片110的这些棱柱111沿着延伸方向E2延伸,相较于图1A的第一光学膜片110的这些棱柱111沿着延伸方向E1延伸的实施方式,可以使得FWHM的能量更为集中,辉度更进一步提高。
图5C是本发明的图3A、3B所示的另一实施例的背光模组的空间辉度分布图。请参阅图5C,图5C也代表加装第一光学膜片110、两片棱镜片(即第二光学膜片221)与扩散片222后的背光模组100。不过,有别于图5B,在图5C所代表的背光模组中,这两片棱镜片的设置分别如同图3A与图3B所示,即这两片棱镜片的棱镜条的延伸方向皆不平行于、也不垂直于第一光学膜片110的棱柱111延伸方向E1,以图3A、3B所示,其中一个棱镜片的棱镜条的方向为45度,另一棱镜片的棱镜条的方向为135度。
在图5C所示的实施例中,这些棱镜片(例如第二光学膜片221)能导引光线沿着法线(例如图1B中的法线N1)出射,所以图5C中的背光模组的视角约为0度。其次,图5C中的背光模组在纵轴上的辉度半高宽约为34度,在横轴上的辉度半高宽约为30度。因此,相较于图5A中的对照例背光模组,图5C中的背光模组较能集中光线出射而具有较佳的光指向性,而且可以将辉度提升约20%。
图5D与图5E是本发明另一实施例的背光模组的空间辉度分布图,其中图5D与图5E皆代表图2A与图2B所示的背光模组200,即第一光学膜片110的这些棱柱111沿着延伸方向E2延伸。不过,图5D所代表的背光模组200加装第一光学膜片110,但不包括第二光学膜片221与扩散片222, 而图5E则代表完整的背光模组200,且其中一个棱镜片的棱镜条的方向为0度,另一棱镜片的棱镜条的方向为90度,如图2A所示。图5D中的背光模组200的视角约为52度,且在纵轴上的辉度半高宽约为24度,在横轴上的辉度半高宽约为20度。因此,相较于图4A的对照例背光模组,在没有棱镜片(即第二光学膜片221)与扩散片222的条件下,图5D所代表的背光模组200具有较佳的光指向性,而且可以产生分光效果,让左右两侧视野角(两侧浅色区域与浅色区域中的深色、白色区域)都能有足够的辉度。
在图5E中,通过这些第二光学膜片221(即棱镜片)对光线的导引,背光模组200(包括第二光学膜片221与扩散片222)的视角约为0度。其次,图5E所代表的背光模组200在纵轴上的辉度半高宽约为34度,在横轴上的辉度半高宽约为27度。相较于图5A中的对照例,图5E中的背光模组200具有良好的光指向性,将原本图5D中的分光效果集中至正视角(正中间浅色区域与浅色区域中的深色、白色区域),而且可以将辉度提升约20%。
图6是本发明另一实施例的背光模组的剖面示意图。请参阅图6,本实施例的背光模组600相似于前述实施例的背光模组100,而背光模组600与100之间的差异在于背光模组600所包括的导光板630不同于前述实施例中的导光板130。以下主要叙述背光模组600与100之间的差异,两者的相同特征基本上不再重复叙述。
具体而言,导光板630具有底面633以及形成在底面633的多个导光结构639,其中每个导光结构639具有互相连接的迎光面639a及非迎光面639b,而迎光面639a面向光源190的光线L1的行进方向。迎光面639a与底面633之间形成第一夹角A61,而非迎光面639b与底面633之间形成第二夹角A62,其中第一夹角A61与第二夹角A62皆为锐角,且第一夹角A61小于第二夹角A62,如图6所示。
当光源190朝向导光板630的入光面631发出光线L1时,光线L1从入光面631进入导光板630内,其中一部分光线L1会入射于导光结构639,例如入射于迎光面639a。光线L1能被导光结构639(例如迎光面639a) 反射,以促使光线L1从导光板630的出光面632出射。经由此设计,可以扩大迎光面639a的面积,缩小非迎光面639b的面积,使得迎光面639a有更高的机率反射光线而使光线从导光板630的出光面632射出,以供第一光学膜片110使用,有助于提高指向性的效果。
背光模组600还可包括反光片680,其中反光片680位于导光板630下方,并面向底面633,而导光板630位于反光片680与第一光学膜片110之间。当光线L1入射于导光结构639时,导光结构639不仅可以反射光线L1,也能折射光线L1,如图6所示。当导光结构639折射光线L1时,光线L1会入射于反光片680。反光片680能反射光线L1,以使光线L1能再次进入导光板630内,从而能让更多光线L1从出光面632出射。如此,有助于提升背光模组600的辉度。
值得一提的是,图6中的背光模组600还可包括多个第二光学膜片221与扩散片222(如图2B所示),或包括多个第二光学膜片321a与321b(如图3A与图3B所示)。换句话说,在图2B所示的背光模组200中,导光板130可以替换成图6所示的导光板630。此外,图6中的第一光学膜片110也可替换成图2B中的第一光学膜片110。也就是说,在图6中,第一光学膜片110的这些棱柱111可沿着延伸方向E1或E2延伸。
图7是本发明一实施例的显示装置的侧视示意图。请参阅图7,显示装置700包括背光模组710以及显示面板720,其中显示面板720相对于背光模组710设置,并位于背光模组710的出光面上方,以使背光模组710能朝向显示面板720发出光线。
背光模组710可以是前述实施例中的背光模组100、200或600,或是这些背光模组100、200与600的任意组合,例如包括多个第二光学膜片221与扩散片222的背光模组100。因此,背光模组710包括第一光学膜片110。显示面板720可以是穿透式显示面板,例如液晶显示面板。由于第一光学膜片110能在维持遮瑕能力的同时仍能促使光线L1集中出射,以提升背光模组710的光指向性,因此背光模组710能均匀地发出高辉度的光线,以提高出光视角集光性与正视角辉度,同时兼具有遮瑕效果,从而提升显示面板720的亮度与均匀度。
虽然本发明的实施例已揭露如上,然而其并非用以限定本发明,本发明所属技术领域的技术人员,在不脱离本发明精神和范围内,应当可以做出些许更动与润饰,因此本发明保护范围应当以所附的权利要求书所界定的保护范围为准。
【附图标记列表】
100、200、600、710:背光模组
110、110’:第一光学膜片
111:棱柱
112:微结构
112s:刻面
130、630:导光板
131、631:入光面
132、632:出光面
133、633:底面
190:光源
191:发光二极管
221、321a、321b:第二光学膜片
221s:棱镜条
222:扩散片
639:导光结构
639a:迎光面
639b:非迎光面
680:反光片
700:显示装置
720:显示面板
A31:夹角
A61:第一夹角
A62:第二夹角
CR1:剖面线
E1、E2、E31、E32:延伸方向
L1:光线
N1:法线
OB1:中心轴
OD1:观测方向
SA1:观测角度
SL1:直线。

Claims (12)

  1. 一种于光学膜片上设计多个锥状结构的背光模组,包括:
    导光板,其具有入光面与出光面,其中所述出光面具有法线;
    光源,其邻设于所述入光面;以及
    第一光学膜片,其相对于所述出光面设置,并包括:
    多条并列的棱柱,其中各所述棱柱的延伸方向与所述法线垂直,且各所述棱柱面向所述导光板的所述出光面;
    多个微结构,其中各所述微结构位于所述第一光学膜片的背向所述导光板的表面上,其中各所述微结构为具有多个刻面的锥状结构,多条所述棱柱位于多个所述微结构与所述出光面之间。
  2. 根据权利要求1所述的于光学膜片上设计多个锥状结构的背光模组,还包括多个第二光学膜片,其中所述第一光学膜片位于所述多个第二光学膜片与所述出光面之间,而所述多个第二光学膜片包括多个棱镜片。
  3. 根据权利要求2所述的于光学膜片上设计多个锥状结构的背光模组,其中,各所述棱镜片包括并列的多个棱镜条,其中所述棱镜片的所述多个棱镜条的延伸方向与另一所述棱镜片的所述多个棱镜条的延伸方向垂直。
  4. 根据权利要求3所述的于光学膜片上设计多个锥状结构的背光模组,其中,所述出光面连接于所述入光面的一侧,所述光源具有沿着直线排列设置的多个发光二极管,其中所述棱镜片的所述多个棱镜条的延伸方向与所述直线平行,另一所述棱镜片的所述多个棱镜条的延伸方向与所述直线垂直。
  5. 根据权利要求4所述的于光学膜片上设计多个锥状结构的背光模组,其中,所述棱柱的延伸方向垂直于所述直线。
  6. 根据权利要求3所述的于光学膜片上设计多个锥状结构的背光模组,其中,所述出光面连接于所述入光面的一侧,所述光源具有沿着直线排列设置的多个发光二极管,其中各所述棱镜片的所述多个棱镜条的延伸方向与所述直线不平行,也不垂直。
  7. 根据权利要求6所述的于光学膜片上设计多个锥状结构的背光模组, 其中,所述棱柱的延伸方向平行于所述直线。
  8. 根据权利要求1至7中任一项所述的于光学膜片上设计多个锥状结构的背光模组,其中,多个所述微结构为多个彼此邻接的棱锥形凹孔。
  9. 根据权利要求1至7中任一项所述的于光学膜片上设计多个锥状结构的背光模组,其中,多个所述微结构为多个彼此邻接的棱锥形凸块。
  10. 根据权利要求1至7中任一项所述的于光学膜片上设计多个锥状结构的背光模组,其中,多个所述微结构相对于所述第一光学膜片的其中一个边长以倾斜方式阵列排列。
  11. 根据权利要求1至7中任一项所述的于光学膜片上设计多个锥状结构的背光模组,其中,所述导光板具有与所述出光面相对的底面及形成在所述底面的多个导光结构,其中每一所述导光结构具有互相连接的迎光面及非迎光面,所述迎光面面向所述光源的光行进方向,所述迎光面与所述底面之间形成第一夹角,所述非迎光面与所述底面之间形成第二夹角,所述第一夹角与所述第二夹角皆为锐角且所述第一夹角小于所述第二夹角。
  12. 一种显示装置,包括:
    根据权利要求1至11中任一项所述的于光学膜片上设计多个锥状结构的背光模组;以及
    显示面板,其相对于所述背光模组设置。
PCT/CN2022/096165 2022-04-01 2022-05-31 于光学膜片上设计多个锥状结构的背光模组及显示装置 WO2023184696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336674 2022-04-01
CN202210336674.3 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023184696A1 true WO2023184696A1 (zh) 2023-10-05

Family

ID=84959693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096165 WO2023184696A1 (zh) 2022-04-01 2022-05-31 于光学膜片上设计多个锥状结构的背光模组及显示装置

Country Status (4)

Country Link
US (1) US11921314B2 (zh)
CN (2) CN116931160A (zh)
TW (1) TWI815497B (zh)
WO (1) WO2023184696A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230228920A1 (en) * 2021-07-07 2023-07-20 Ubright Optronics Corporation Composite Optical Film
US11933999B2 (en) * 2021-12-27 2024-03-19 Coretronic Corporation Optical structure film and light source module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192502A1 (en) * 2007-02-09 2008-08-14 Au Optronics Corp. Optical Film Assembly, as Well as Backlight Module and LCD Apparatus Comprising the Same
CN101545998A (zh) * 2008-03-28 2009-09-30 鸿富锦精密工业(深圳)有限公司 棱镜片
CN101545997A (zh) * 2008-03-28 2009-09-30 鸿富锦精密工业(深圳)有限公司 棱镜片
CN101625482A (zh) * 2008-07-10 2010-01-13 鸿富锦精密工业(深圳)有限公司 背光模组及其光学板
JP2012103495A (ja) * 2010-11-10 2012-05-31 Asahi Kasei Corp 光線制御ユニット、直下型バックライト装置及び液晶表示装置
CN105700049A (zh) * 2016-04-26 2016-06-22 京东方科技集团股份有限公司 一种棱镜片及其制作方法、背光模组及vr显示装置
JP2016177902A (ja) * 2015-03-18 2016-10-06 大日本印刷株式会社 面光源装置、映像源ユニット、液晶表示装置及び光学シート
CN211478819U (zh) * 2020-01-22 2020-09-11 台湾扬昕股份有限公司 背光模块

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682313B2 (ja) * 1995-03-08 2005-08-10 日東樹脂工業株式会社 面光源装置及び液晶ディスプレイ
US7282272B2 (en) * 2003-09-12 2007-10-16 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
US20060103777A1 (en) * 2004-11-15 2006-05-18 3M Innovative Properties Company Optical film having a structured surface with rectangular based prisms
KR101571576B1 (ko) * 2008-02-07 2015-11-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 구조화된 필름을 구비한 중공형 백라이트
CN101551479A (zh) * 2008-04-01 2009-10-07 鸿富锦精密工业(深圳)有限公司 棱镜片
CN102707370A (zh) * 2012-06-21 2012-10-03 深圳市华星光电技术有限公司 导光板及应用该导光板的侧入式背光模组
CN108051879B (zh) * 2012-11-21 2020-09-08 3M创新有限公司 光学扩散膜及其制备方法
CN104848052A (zh) * 2014-02-13 2015-08-19 扬升照明股份有限公司 背光模块
CN108692221B (zh) * 2017-04-11 2020-09-11 台湾扬昕股份有限公司 光源模块及其棱镜片
KR20190041049A (ko) * 2017-10-11 2019-04-22 삼성디스플레이 주식회사 백라이트 유닛
TWI729839B (zh) * 2020-06-05 2021-06-01 瑞儀光電股份有限公司 導光板、背光模組及顯示裝置
KR102599217B1 (ko) * 2021-09-23 2023-11-08 주식회사 엘엠에스 광학 필름 및 이를 포함하는 백라이트 유닛

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192502A1 (en) * 2007-02-09 2008-08-14 Au Optronics Corp. Optical Film Assembly, as Well as Backlight Module and LCD Apparatus Comprising the Same
CN101545998A (zh) * 2008-03-28 2009-09-30 鸿富锦精密工业(深圳)有限公司 棱镜片
CN101545997A (zh) * 2008-03-28 2009-09-30 鸿富锦精密工业(深圳)有限公司 棱镜片
CN101625482A (zh) * 2008-07-10 2010-01-13 鸿富锦精密工业(深圳)有限公司 背光模组及其光学板
JP2012103495A (ja) * 2010-11-10 2012-05-31 Asahi Kasei Corp 光線制御ユニット、直下型バックライト装置及び液晶表示装置
JP2016177902A (ja) * 2015-03-18 2016-10-06 大日本印刷株式会社 面光源装置、映像源ユニット、液晶表示装置及び光学シート
CN105700049A (zh) * 2016-04-26 2016-06-22 京东方科技集团股份有限公司 一种棱镜片及其制作方法、背光模组及vr显示装置
CN211478819U (zh) * 2020-01-22 2020-09-11 台湾扬昕股份有限公司 背光模块

Also Published As

Publication number Publication date
CN218383371U (zh) 2023-01-24
US20230324597A1 (en) 2023-10-12
TWI815497B (zh) 2023-09-11
CN116931160A (zh) 2023-10-24
TW202340642A (zh) 2023-10-16
US11921314B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2023184696A1 (zh) 于光学膜片上设计多个锥状结构的背光模组及显示装置
US7385653B2 (en) LED package and backlight assembly for LCD comprising the same
US11150509B2 (en) Backlight module
CN101749595B (zh) 背光组件
CN112526785B (zh) 光学膜片与背光模块
US20220113591A1 (en) Diffusion plate and backlight module
JP2007280952A (ja) 導光板及びこれを有する液晶ディスプレー装置
CN211979374U (zh) 调光组件、背光模组及液晶显示装置
US7311433B2 (en) Backlight module for an LCD (Liquid Crystal Display) system
TWI421549B (zh) 導光板及背光模組
US8405796B2 (en) Illumination device, surface light source device, and liquid crystal display device
JP2008198376A (ja) 導光板及び画像表示装置
JP2010108601A (ja) 面状光源及び液晶表示装置
US20080136997A1 (en) Liquid crystal display device
US20170023827A1 (en) Reflective element, backlight module and display device having the same
TWI407162B (zh) 導光板及背光模組
US9086592B2 (en) Direct illumination type backlight module, bottom reflector and liquid crystal display
TWM276217U (en) Backlight module and liquid crystal display
WO2024051048A1 (zh) 背光模组及显示装置
US20050024846A1 (en) Reflective plate and illumination module with same
US8917366B2 (en) Liquid crystal display device
US11320580B2 (en) Light directing sheet, backlight module, and display device
US20230400732A1 (en) Light emitting module and display module
CN220105473U (zh) 背光模块以及显示装置
CN114624799B (zh) 扩散板及具扩散板的背光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934521

Country of ref document: EP

Kind code of ref document: A1