WO2023184687A1 - 燃烧器的控制方法、装置、燃烧器及沥青搅拌站 - Google Patents

燃烧器的控制方法、装置、燃烧器及沥青搅拌站 Download PDF

Info

Publication number
WO2023184687A1
WO2023184687A1 PCT/CN2022/095573 CN2022095573W WO2023184687A1 WO 2023184687 A1 WO2023184687 A1 WO 2023184687A1 CN 2022095573 W CN2022095573 W CN 2022095573W WO 2023184687 A1 WO2023184687 A1 WO 2023184687A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
ignition
drying drum
knock detection
control method
Prior art date
Application number
PCT/CN2022/095573
Other languages
English (en)
French (fr)
Inventor
雷林韬
Original Assignee
常德市三一机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常德市三一机械有限公司 filed Critical 常德市三一机械有限公司
Publication of WO2023184687A1 publication Critical patent/WO2023184687A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/009Alarm systems; Safety sytems, e.g. preventing fire and explosions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • This application relates to the field of automatic control technology, and in particular to a burner control method, device, burner and asphalt mixing station.
  • This application provides a burner control method, device, burner and asphalt mixing station to solve the problem in the prior art that the burner easily causes deflagration during the ignition stage and achieve safe operation of the burner.
  • this application provides a burner control method, which method includes:
  • anti-knock detection is performed on the burner before ignition to obtain the result of the anti-knock detection; wherein the anti-knock detection includes performing status information on the drying drum and/or the fuel injection valve. detection;
  • determining that the result of the anti-knock detection meets the ignition conditions of the burner includes:
  • the target components include a drying drum and/or a fuel injection valve.
  • the ignition conditions corresponding to the drying drum include: the actual measured negative pressure value inside the drying drum included in the status information of the drying drum is greater than or equal to the preset value. Negative pressure value.
  • the ignition condition corresponding to the fuel injection valve includes: the opening and closing state included in the status information of the fuel injection valve is a closed state.
  • the method also includes:
  • the burner When a flameout command is received, the burner is controlled to flameout, and the burner is controlled to withdraw the remaining fuel in the pipeline and/or blow the remaining fuel in the pipeline in the burner into the drying drum.
  • controlling the remaining fuel in the pipeline in the burner to blow into the drying drum includes:
  • the purge valve in the burner is controlled to be opened in multiple time periods. In at least one of the time periods, the purge valve is first opened for a preset opening time and then closed for a preset closing time.
  • the control of the remaining fuel in the burner withdrawal pipeline includes:
  • the oil pump in the burner is controlled to reverse for a preset period of time to pump the remaining fuel in the pipeline back into the oil tank.
  • this application also provides a burner control device, which includes:
  • the first processing module is configured to perform anti-knock detection on the burner before ignition when receiving the ignition start command, and obtain the result of the anti-knock detection; wherein the anti-knock detection includes testing the drying drum and/or Detect the status information of the fuel injection valve;
  • the second processing module is configured to control the ignition of the burner when it is determined that the result of the point anti-knock detection meets the ignition condition of the burner.
  • the present application also provides a burner that uses any one of the above control methods for the burner.
  • this application also provides an asphalt mixing station, which includes the above-mentioned burner.
  • the burner control method, device, burner and asphalt mixing station provided by this application can specifically detect the status information of the drying drum and/or the fuel injection valve by performing anti-knock detection before ignition, and perform anti-knock detection during the anti-knock test.
  • controlling the ignition of the burner can avoid deflagration problems caused by excessive fuel concentration in the drying drum during the ignition stage, and improve the safety of the burner during use.
  • FIG 1 is one of the schematic flow diagrams of the burner control method provided by this application.
  • Figure 2 is a schematic diagram of the piping structure principle of the burner
  • FIG. 3 is the second schematic flow chart of the burner control method provided by this application.
  • FIG. 4 is a schematic structural diagram of a burner control device provided by this application.
  • Figure 5 is a schematic structural diagram of an electronic device provided by this application.
  • embodiments of the present application provide an air-conditioning sterilizing machine function display device that can demonstrate the disinfection and purification functions and effects of the air-conditioning sterilizing machine to users.
  • Figure 1 shows a burner control method provided by an embodiment of the present application. This method can be applied to a burner controller and specifically includes:
  • Step 101 When receiving the ignition start command, perform anti-knock detection on the burner before ignition and obtain the anti-knock detection result; wherein, the anti-knock detection includes detecting the status information of the drying drum and/or the fuel injection valve. ;
  • Step 102 If it is determined that the anti-knock detection result meets the ignition conditions of the burner, control the ignition of the burner.
  • the anti-knock detection in this embodiment mainly refers to detecting the status of relevant components of the burner before ignition, such as detecting the status information of the drying drum and/or the fuel injection valve, which can prevent the ignition of the burner. Deflagration occurred before.
  • the main purpose of anti-deflagration detection is to prevent fuel from entering the drying drum before ignition, resulting in excessive fuel concentration in the drying drum, and deflagration caused by high internal temperature of the drum or the instant of ignition.
  • this embodiment takes a heavy oil burner as an example, that is, the fuel of the burner is heavy oil, and the burner extracts heavy oil from the heavy oil tank 201 through the oil pump 203. After the heavy oil passes through the heavy oil tank 201 and the filter tank 202 in sequence, it flows to the oil pump 203, and then can flow to the spray gun 212 through the fuel injection valve 205. At the same time, the air compressor 206 also delivers the compressed air to the atomization valve 207, and then to the spray gun 212 through the atomization valve 207. After ignition, the heavy oil passes through After atomization, it is burned and sprayed into the drying drum 213 through the spray gun 212.
  • the purge valve 208 and the atomization valve 207 can be opened, and the compressed air is delivered to the front end of the fuel injection valve 205 through the purge valve 208 to purge the heavy oil remaining at the front end of the fuel injection valve 205.
  • a first one-way valve 209 is installed at the front end of the purge valve 208, and a second one-way valve 210 is installed at the front end of the atomization valve 207.
  • a first pressure sensor 204 is installed between the oil pump 203 and the fuel injection valve 205, and a second pressure sensor 211 is installed between the air compressor 206 and the atomization valve 207. .
  • heating equipment is also provided on the outside of the pipeline between the heavy oil tank 201 and the fuel injection valve 205.
  • the fuel injection valve 205 is also connected with the connection between the oil pump 203 and the filter tank 202.
  • the pipeline is connected, so that when the fuel injection valve 205 is closed, the channel with the spray gun 212 can be blocked, and the channel with the filter tank 202 can be opened to facilitate the inspection of the pipeline between the heavy oil tank and the fuel injection valve 205 before the burner is ignited.
  • the heavy oil is circulated and heated.
  • the process of determining that the result of the anti-knock detection meets the ignition conditions of the burner may specifically include:
  • the above-mentioned target components may include a drying drum and/or a fuel injection valve.
  • the target component mainly refers to the component before ignition of the burner.
  • Working parts related to deflagration problems such as burner injection valves, drying drums, etc.
  • the ignition conditions corresponding to the drying drum may include: the measured negative pressure value inside the drying drum included in the status information of the drying drum is greater than or equal to the preset negative pressure value.
  • the ignition condition corresponding to the fuel injection valve may include: the opening and closing state included in the status information of the fuel injection valve is a closed state.
  • the process of controlling the ignition of the burner may include:
  • the burner is controlled to ignite.
  • the duration of the cyclic heating can be preset. When the duration is reached, it is determined that the cyclic heating process is over. Other methods can also be used to confirm the end time of the cyclic heating, which can be reasonably set according to actual needs.
  • the burner is in the ignition stage, if the fuel injection valve cannot be reset due to stuck failure or other reasons during the cycle heating of the fuel, that is to say, the fuel injection valve is in an open state, and the fuel will be injected through the spray gun at this time. into the drying drum, it is easy for the gas concentration in the drying drum to be too high, causing deflagration at the moment of ignition, causing safety accidents.
  • this embodiment first detects the opening and closing status of the fuel injection valve, and then controls the fuel circulation heating when the fuel injection valve is closed, which can effectively avoid the above safety problems.
  • a limit switch is installed on the fuel injection valve.
  • the limit switch is used to detect the position of the three-way valve body of the fuel injection valve.
  • the limit switch When the three-way valve body is in the correct position, that is, when the fuel injection valve is closed, the limit switch The actuating part of the limit switch is in contact with the rocker arm of the three-way valve body, so that the limit switch signal can be detected; when the three-way valve body is in the wrong position, that is, when the fuel injection valve is in the open state, the actuating part of the limit switch is in contact with the rocker arm of the three-way valve body. The rocker arm of the three-way valve body cannot come into contact. At this time, the limit switch signal cannot be detected. At this time, the automatic flameout mode can be entered. At the same time, an alarm signal can also be output to provide a timely alarm reminder to remind the staff of abnormal status of the fuel injection valve.
  • this embodiment can use the limit switch to detect whether the fuel injection valve is in an open or closed state. At this time, the fuel injection valve needs to be in a closed state. If it is detected that the fuel injection valve is in an open state, it can directly enter the automatic flameout mode to avoid Risk of explosion due to burner ignition.
  • the fuel of the burner mainly refers to heavy oil. Because heavy oil has a large viscosity and poor fluidity at room temperature, the heavy oil needs to be heated before ignition and its viscosity can be reduced before it can be used. In order to improve the heating efficiency of heavy oil, To save heating time, it is usually necessary to circulate the heavy oil while heating so that it flows and is heated at the same time.
  • the fuel injection valve is a three-way valve. When heavy oil circulates, the fuel injection valve must be in a closed state (that is, the normal state after a power outage). If the fuel injection valve meets the closed state, the oil pump and heating equipment are controlled to be turned on. At this time, the heavy oil begins to circulate and heat. .
  • the heavy oil flow route is: heavy oil tank - oil pump - injection valve - heavy oil tank.
  • the heavy oil cannot reach the burner's spray gun.
  • the fuel injection valve cannot be reset due to stuck valve).
  • the heavy oil flow route is: heavy oil tank - oil pump - fuel injection valve - spray gun.
  • the heavy oil enters the inside of the drying drum through the spray gun, which may cause deflagration at the moment of ignition.
  • the negative pressure value inside the drying drum that is, the measured negative pressure value
  • the measured negative pressure value can be detected in real time.
  • it can be judged whether the ignition conditions are met.
  • an alarm signal can also be output to issue an alarm prompt in time.
  • the negative pressure device installed on the discharge box of the drying drum can be used to detect the gas in the drying drum.
  • the negative pressure value is the measured negative pressure value P.
  • the preset negative pressure value can be set to 8mmHg.
  • the anti-knock detection process before ignition can be seen in Figure 3.
  • the process specifically includes:
  • Step 301 Determine whether the fuel injection valve is closed
  • Step 302 If yes, further determine whether the actual measured negative pressure value in the drying drum exceeds the preset negative pressure value
  • Step 303 If the measured negative pressure value exceeds the preset negative pressure value, light a small fire, and further determine whether the small fire ignition is successful. In this embodiment, whether the ignition is successful or not can be specifically determined by flame detection;
  • Step 304 If the small fire ignition is successful, open the atomization valve and the fuel injection valve;
  • Step 305 Delay and detect whether there is a flame signal
  • Step 306 If there is a flame signal, the fire is successfully ignited and operates normally;
  • Step 307 If it is determined that the fuel injection valve is not closed, the measured negative pressure value is lower than the preset negative pressure value, small fire ignition failure and high fire ignition failure occur, a fault alarm is issued to indicate the abnormal state, and Control the burner to turn off automatically.
  • the above process of anti-knock detection includes both the status detection of the fuel injection valve and the negative pressure detection of the drying drum.
  • the target component contains both the fuel injection valve and the drying drum
  • the status of the fuel injection valve can be judged first, and then the The drying drum performs negative pressure detection, thereby realizing the negative pressure interlock protection function.
  • this embodiment also introduces a control scheme after flameout in the control method of the burner.
  • the burner control method provided by this embodiment may also include:
  • the burner When receiving the flameout command, the burner is controlled to flameout, and the burner is controlled to withdraw the remaining fuel in the pipeline and/or blow the remaining fuel in the pipeline in the burner into the drying drum.
  • the process of controlling the burner to withdraw the remaining fuel in the pipeline may specifically include:
  • the process of controlling the remaining fuel in the pipeline in the burner to be blown into the drying drum may specifically include:
  • the purge valve in the burner is controlled to be opened in multiple periods. In at least one period, it is first opened for a preset opening time and then closed for a preset closing time.
  • the purge valve in the burner is controlled to be opened in multiple periods.
  • the process of first opening for a preset opening time and then closing for a preset closing time may include:
  • both the first preset opening duration and the second preset opening duration may be less than the third preset opening duration.
  • the above-mentioned preset on-time duration can be specifically set as follows: the first preset on-time duration ⁇ the second preset on-time duration ⁇ the third preset on-time duration. That is to say, in the segmented blowing During the purging process, gradually increase the purging time to ensure the safety of the purging process.
  • the oil pump and atomization valve are closed at this time, and then the oil pump frequency converter is controlled to make the oil pump reversely rotate at a certain frequency for a certain period of time and then close, and most of the fuel in the pipe at the front of the fuel injection valve will flow back into the filter tank, that is, the burner is controlled to withdraw the remaining fuel in the pipeline.
  • control burner withdraws the remaining fuel in the pipeline and/or blows the remaining fuel in the pipeline in the burner into the drying drum, if the two processes exist at the same time, the burner can be controlled to withdraw the pipeline. After removing the remaining fuel in the burner, blow the remaining fuel in the pipeline in the burner into the drying drum, thereby improving the cleaning efficiency of the residual fuel in the pipeline and more thoroughly cleaning the remaining fuel in the pipeline.
  • compressed air can be used to purge the remaining fuel in the pipeline to avoid clogging of the spray gun and pipeline.
  • the process of blowing the remaining fuel in the pipeline in the burner into the drying drum may be as follows:
  • the atomization valve is opened, the purge valve is opened after a delay of 2s, and after 50ms of opening the purge valve, the purge valve is closed;
  • segmented purging is used after the oil pump reverses and stops.
  • the first purge valve opens for 50ms, the second for 300ms, and the third continuous purge.
  • the first two purge times are shorter.
  • the purpose It is to control the amount of heavy oil sprayed to avoid spraying out too much heavy oil at one time and causing deflagration after entering the drying drum.
  • the process of controlling the burner to flame out, controlling the burner to withdraw the remaining fuel in the pipeline, and blowing the remaining fuel in the pipeline in the burner into the drying drum can be seen in Figure 3.
  • the process specifically includes:
  • Step 308 After manual flameout or automatic flameout, the oil pump and atomization valve are closed;
  • Step 309 The oil pump reverses and delays, that is, the oil pump reverses for a certain period of time to perform the residual oil return task. This period of time can be reasonably set according to actual needs;
  • Step 310 After the oil pump reverse rotation is completed, the oil pump is closed;
  • Step 311 Open the atomization valve and delay, that is, open the atomization valve for a certain period of time;
  • Step 312 Then the purge valve is opened in stages and delayed, that is, the purge valve in the burner is controlled to be opened in multiple periods. In at least one period, it is first opened for a preset opening time and then closed for a preset closing time;
  • Step 313 After the two processes of controlling the burner to withdraw the remaining fuel in the pipeline and blowing the remaining fuel in the pipeline into the drying drum are completed, the flameout ends.
  • the purge valve in this embodiment can be a diaphragm valve.
  • the diaphragm valve is sensitive and can control the opening time and closing time well, thereby improving the control accuracy of the segmented purging process.
  • the burner control method provided in this embodiment can effectively reduce the probability of the burner deflagration during the ignition and flameout processes by optimizing the control logic of the burner ignition and flameout processes.
  • the control method of the entire burner includes two aspects: the control part before the burner is ignited and the control part after the flameout.
  • the oil pump is first used to reverse the flow to return most of the fuel in the pipeline to the main oil pipeline, and then compressed air is used to purge in sections. Purge the remaining fuel in the pipes. Since the oil pump can be reversed for cleaning first, and then the segmented purging method can be used for further cleaning, so that there is only a small amount of heavy oil during the purging process, which is not enough to cause deflagration. At the same time, the segmented purging method can further reduce the probability of deflagration. , higher security.
  • control device of the burner provided by the present application will be described below.
  • the control device of the burner described below and the control method of the burner described above can be referred to correspondingly.
  • Figure 4 shows a control device for a burner provided by an embodiment of the present application.
  • the device includes:
  • the first processing module 401 is used to perform anti-knock detection on the burner before ignition when receiving the ignition start command, and obtain the results of the anti-knock detection; wherein the anti-knock detection includes testing the drying drum and/or the fuel injection valve. status information for detection;
  • the second processing module 402 is used to control the ignition of the burner when it is determined that the result of the point anti-knock detection meets the ignition conditions of the burner.
  • the above-mentioned second processing module 402 can be specifically used to:
  • the above-mentioned target components may include a drying drum and/or a fuel injection valve.
  • the ignition conditions corresponding to the drying drum may include: the measured negative pressure value inside the drying drum included in the status information of the drying drum is greater than or equal to the preset negative pressure value.
  • the ignition condition corresponding to the fuel injection valve may include: the opening and closing state included in the status information of the fuel injection valve is a closed state.
  • the second processing module 402 may be specifically used to:
  • the burner is controlled to ignite.
  • the burner control device provided by the embodiment of the present application may also include:
  • the third processing module is used to control the burner to flameout when receiving the flameout command, and control the burner to withdraw the remaining fuel in the pipeline and/or blow the remaining fuel in the pipeline in the burner into the drying drum. .
  • third processing module can be specifically used for:
  • the purge valve in the burner is controlled to be opened in multiple periods. In at least one period, it is first opened for a preset opening time and then closed for a preset closing time.
  • third processing module can be specifically used for:
  • the burner control device provided by the embodiment of the present application can avoid abnormal state of the injection valve and drying out during the ignition stage by executing the self-test task before ignition and controlling the burner ignition according to the execution result of the self-test task. Poor gas circulation inside the drum causes deflagration problems.
  • An embodiment of the present application also provides a burner that uses the above control method for the burner.
  • the burner can effectively avoid the problem of deflagration caused by the burner during the ignition and flameout stages, and the use process is safer.
  • the above-mentioned burner may specifically include: an oil tank, an oil pump, a fuel injection valve, a fuel injection gun, and a controller.
  • One end of the fuel injection valve is connected to the oil pump, the oil pump is connected to the oil tank, and the other end of the fuel injection valve is connected to the oil tank.
  • One end is connected to the fuel injection gun.
  • the fuel injection gun also extends into the drying drum to discharge the material from the drying drum.
  • a negative pressure device is installed on the box. The negative pressure device is used to detect the negative pressure value in the drying drum.
  • the limit switch, oil pump and negative pressure device are all connected to the controller;
  • the controller is used to receive the position information of the three-way valve body of the fuel injection valve sent by the limit switch and/or the negative pressure value in the drying drum sent by the negative pressure device, and perform explosion protection based on the obtained position information and/or negative pressure value. Combustion detection, the burner ignition is controlled based on the results of the anti-knock detection.
  • the above-mentioned burner can also include an atomization valve and a purge valve.
  • One end of the atomization valve and the purge valve is connected to the air compressor respectively.
  • the other end of the atomization valve is connected to the fuel injection gun.
  • the other end of the purge valve Connected to the pipeline between the fuel injection gun and the fuel injection valve;
  • the controller is also used to control the burner flameout when receiving the flameout command, and control the reverse rotation of the oil pump to withdraw the remaining fuel in the pipeline, and/or control the action of the atomization valve and purge valve to burn the fuel through the fuel injection gun.
  • the remaining fuel in the pipeline in the device is blown into the drying drum.
  • this embodiment also provides an asphalt mixing station, which includes the above burner.
  • the asphalt mixing plant can effectively improve the safety of the production process.
  • the burner control method provided in this embodiment can also be applied to other scenarios that require the use of burners, such as the field of steel smelting.
  • the burner implemented based on this control method can also be applied to other than asphalt mixing plants. in other application scenarios.
  • Figure 5 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 501, a communications interface (Communications Interface) 502, a memory (memory) 503 and a communication bus 504.
  • the processor 501, the communication interface 502, and the memory 503 complete communication with each other through the communication bus 504.
  • the processor 501 can call the logic instructions in the memory 503 to execute the control method of the burner.
  • the method includes: when receiving the ignition start command, performing anti-knock detection on the burner before ignition, and obtaining the result of the anti-knock detection;
  • the anti-knock detection includes detecting the status information of the drying drum and/or the fuel injection valve; if it is determined that the result of the anti-knock detection meets the ignition conditions of the burner, the burner ignition is controlled.
  • the above-mentioned logical instructions in the memory 503 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are read by a computer, When executed, the computer can execute the burner control method provided by each of the above methods.
  • the method includes: when receiving the ignition start command, performing anti-knock detection on the burner before ignition, and obtaining the anti-knock detection result; wherein,
  • the anti-knock detection includes detecting the status information of the drying drum and/or the fuel injection valve; if it is determined that the result of the anti-knock detection meets the ignition conditions of the burner, the burner ignition is controlled.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by the processor to execute the control method of the burner provided above.
  • the method includes : When receiving the ignition start command, perform anti-knock detection on the burner before ignition to obtain the anti-knock detection result; wherein, the anti-knock detection includes detecting the status information of the drying drum and/or the fuel injection valve; if Make sure that the anti-knock detection result meets the ignition conditions of the burner and control the ignition of the burner.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

一种燃烧器的控制方法、装置、燃烧器及沥青搅拌站,燃烧器的控制方法包括:当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;防爆燃检测包括对烘干滚筒(213)和/或喷油阀(205)的状态信息进行检测;若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火。通过进行点火前的防爆燃检测,具体可以对烘干滚筒(213)和/或喷油阀(205)的状态信息进行检测,并在防爆燃检测的结果满足燃烧器的点火条件时,控制燃烧器点火,可以避免点火阶段易因烘干滚筒(213)内燃油浓度过高而引发爆燃的问题,提高了燃烧器使用过程中的安全性,解决了燃烧器在点火阶段易发生爆燃的问题。

Description

燃烧器的控制方法、装置、燃烧器及沥青搅拌站
相关申请的交叉引用
本申请要求于2022年3月30日提交的申请号为2022103341977,发明名称为“燃烧器的控制方法、装置、燃烧器及沥青搅拌站”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及自动控制技术领域,尤其涉及一种燃烧器的控制方法、装置、燃烧器及沥青搅拌站。
背景技术
燃烧器在使用过程中,尤其在点火阶段,会因为烘干滚筒内燃油浓度过高而引发爆燃的问题,导致燃烧器在使用过程中存在较高的安全隐患。
因此,防止燃烧器在点火阶段出现爆燃是目前业界亟待解决的重要课题。
发明内容
本申请提供一种燃烧器的控制方法、装置、燃烧器及沥青搅拌站,用以解决现有技术中燃烧器在点火阶段易引发爆燃的缺陷,实现燃烧器的安全运行。
第一方面,本申请提供一种燃烧器的控制方法,该方法包括:
当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到所述防爆燃检测的结果;其中,所述防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
若确定所述防爆燃检测的结果满足所述燃烧器的点火条件,控制所述燃烧器点火。
根据本申请提供的燃烧器的控制方法,所述确定所述防爆燃检测的结果满足所述燃烧器的点火条件,包括:
若确定所述防爆燃检测的结果中每个目标部件的状态信息均满足所 述目标部件对应的点火条件,确定所述防爆燃检测的结果满足所述燃烧器的点火条件;
其中,所述目标部件包括烘干滚筒和/或喷油阀。
根据本申请提供的燃烧器的控制方法,所述烘干滚筒对应的点火条件包括:所述烘干滚筒的状态信息中所包括的所述烘干滚筒内部的实测负压值大于或等于预设负压值。
根据本申请提供的燃烧器的控制方法,所述喷油阀对应的点火条件包括:所述喷油阀的状态信息中所包括的开闭状态为关闭状态。
根据本申请提供的燃烧器的控制方法,该方法还包括:
当接收到熄火指令时,控制所述燃烧器熄火,并控制所述燃烧器抽回管路内剩余的燃油和/或将所述燃烧器中管路内剩余的燃油吹进烘干滚筒中。
根据本申请提供的燃烧器的控制方法,所述控制所述燃烧器中管路内剩余的燃油吹进烘干滚筒中,包括:
控制所述燃烧器中的吹扫阀分多个时段开启,在至少一个所述时段内,先开启预设开启时长然后关闭预设关闭时长。
根据本申请提供的燃烧器的控制方法,所述控制所述燃烧器抽回管路内剩余的燃油,包括:
控制所述燃烧器中的油泵反转预设时长,以将所述管路内剩余的燃油抽回油罐中。
第二方面,本申请还提供一种燃烧器的控制装置,该装置包括:
第一处理模块,用于在接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到所述防爆燃检测的结果;其中,所述防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
第二处理模块,用于在确定所述点防爆燃检测的结果满足所述燃烧器的点火条件时,控制所述燃烧器点火。
第三方面,本申请还提供一种燃烧器,所述燃烧器使用上述任一种所述燃烧器的控制方法。
第四方面,本申请还提供一种沥青搅拌站,所述沥青搅拌站包括上述的燃烧器。
本申请提供的燃烧器的控制方法、装置、燃烧器及沥青搅拌站,通过进行点火前的防爆燃检测,具体可以对烘干滚筒和/或喷油阀的状态信息进行检测,并在防爆燃检测的结果满足燃烧器的点火条件时,控制燃烧器点火,可以避免点火阶段因烘干滚筒内燃油浓度过高而引发爆燃的问题发生,提高了燃烧器使用过程中的安全性。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的燃烧器的控制方法的流程示意图之一;
图2是燃烧器的管路结构原理示意图;
图3是本申请提供的燃烧器的控制方法的流程示意图之二;
图4是本申请提供的燃烧器的控制装置的结构示意图;
图5是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
由于目前有些用户并不知晓空调消毒机的存在或者不能明确空调消毒机的效果,因此如何将空调消毒机的效果在卖场展示出来,让用户可以直观地看到空调消毒机的功能至关重要。为此,本申请实施例中提供了一种能够向用户展示空调消毒机的消毒净化功能及效果的空调消毒机功能展示装置。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的 实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图5描述本申请实施例提供的燃烧器的控制方法、燃烧器的控制装置、燃烧器及沥青搅拌站,以及使用上述燃烧器的控制方法的电子设备。
图1示出了本申请实施例提供的燃烧器的控制方法,该方法可以应用于燃烧器的控制器中,具体包括:
步骤101:当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;其中,防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
步骤102:若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火。
可以理解的是,本实施例中防爆燃检测主要指的是通过点火前对燃烧器相关部件进行状态检测,比如对烘干滚筒和/或喷油阀的状态信息进行检测,可以防止燃烧器点火前发生爆燃。
因此,防爆燃检测的主要目的在于,避免点火前燃油进入烘干滚筒内,导致烘干滚筒内燃油浓度过高,因滚筒内部温度较高或者点火瞬间而引发爆燃。
首先对本实施例中燃烧器的主要结构以及工作相关的结构进行说明,并说明燃烧器的工作原理。
参见附图2,本实施例以重油燃烧器为例,即燃烧器的燃油为重油,燃烧器通过油泵203从重油罐201中抽取重油,重油依次经重油罐201和过滤罐202后,流至油泵203,之后可以通过喷油阀205流至喷枪212处,同时,空气压缩机206还将压缩空气输送至雾化阀207处,经雾化阀207输送至喷枪212处,点火后重油经过雾化后燃烧,通过喷枪212喷射至烘干滚筒213内。
在燃烧器熄火后,可以打开吹扫阀208和雾化阀207,压缩空气经吹扫阀208输送至喷油阀205的前端,对喷油阀205前端残留的重油进行吹扫,同时,为保证气流单方向流动,吹扫阀208前端安装有第一单向阀209, 雾化阀207前端安装有第二单向阀210。
为了能够实时获知管路内的压力信息,在油泵203和喷油阀205之间还安装有第一压力传感器204,在空气压缩机206和雾化阀207之间还安装有第二压力传感器211。
同时,考虑到重油常温下粘度大、流动性差,在重油罐201至喷油阀205之间的管路外侧还设有加热设备,喷油阀205还与油泵203和过滤罐202之间的管路连通,从而可以在喷油阀205关闭时,阻断与喷枪212的通路,打开与过滤罐202的通路,便于在燃烧器点火前对重油罐到喷油阀205之间管路内的重油进行循环加热。
在示例性实施例中,确定防爆燃检测的结果满足燃烧器的点火条件的过程,具体可以包括:
若确定防爆燃检测的结果中每个目标部件的状态信息均满足目标部件对应的点火条件,确定防爆燃检测的结果满足燃烧器的点火条件;
其中,上述目标部件可以包括烘干滚筒和/或喷油阀。
可以理解的是,当接收到点火启动指令时,首先需要检测燃烧器中至少一个目标部件的状态信息,以得到防爆燃检测的结果,本实施例中目标部件主要指的是与燃烧器点火前发生爆燃问题相关的工作部件,比如燃烧器的喷油阀、烘干滚筒等。
进一步地,本实施例中烘干滚筒对应的点火条件可以包括:烘干滚筒的状态信息中所包括的烘干滚筒内部的实测负压值大于或等于预设负压值。
进一步地,本实施例中喷油阀对应的点火条件可以包括:喷油阀的状态信息中所包括的开闭状态为关闭状态。
更近一步地,若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火的过程,具体可以包括:
控制燃烧器中油泵和加热设备启动,对燃烧器中管路内的燃油进行循环加热;
在确定循环加热结束后,控制燃烧器点火。
在本实施例中,可以通过预先设定循环加热持续时长,当到达该时长时,即判定循环加热过程结束,也可以采用其他方式确认循环加热结束时 刻,具体可以根据实际需求合理设定。
考虑到燃烧器在点火阶段,如果在对燃油进行循环加热的过程中,喷油阀因卡滞失效或者其他原因不能复位,也就是说,喷油阀处于开启状态,此时燃油将通过喷枪喷射至烘干滚筒内,容易使烘干滚筒内燃气浓度过高,点火瞬间出现爆燃现象,引发安全事故。
为此,本实施例先检测喷油阀的开闭状态,在喷油阀关闭时,再控制燃油循环加热,可以有效避免上述安全问题发生。
在实际应用过程中,喷油阀上装有限位开关,限位开关用于检测喷油阀三通阀体的位置,当三通阀体处于正确位置时,即喷油阀为关闭状态时,限位开关的执行部件与三通阀体的摇臂接触,从而能够检测到限位开关信号;当三通阀体处于错误位置时,即喷油阀处于开启状态时,限位开关的执行部件与三通阀体的摇臂不能接触,此时检测不到限位开关信号,此时可以进入自动熄火模式,同时也可以输出报警信号,以及时进行报警提醒,提示工作人员喷油阀状态异常。
因此,本实施例可以通过限位开关来检测喷油阀处于开启或者关闭状态,此时喷油阀需处于关闭状态,若检测到喷油阀处于开启状态,则可以直接进入自动熄火模式,避免燃烧器点火引发爆燃危险。
本实施例中燃烧器的燃油主要指的是重油,因重油在常温下的粘度较大,流动性差,在点火前需对重油进行加热,降低其粘度后才能使用,为了提高重油的加热效率,节省加热时间,通常情况下需在加热的同时对重油进行循环,使其边流动边加热。
喷油阀为三通阀,重油循环时喷油阀需处于关闭状态(即断电后的正常状态),若喷油阀满足关闭状态,则控制油泵和加热设备开启,此时重油开始循环加热。
此时重油流动路线为:重油罐—油泵—喷油阀—重油罐,重油不能到达燃烧器的喷枪,若喷油阀处于开启状态(即异常状态,如因喷油阀卡滞或者电磁阀卡滞导致喷油阀不能复位),循环过程中重油流动路线为:重油罐—油泵—喷油阀—喷枪,重油通过喷枪进入烘干滚筒内部,在点火瞬间可能会造成爆燃。
在对重油进行循环加热的同时,可以实时检测烘干滚筒内部的负压值, 即实测负压值,通过将该实测负压值与预设负压值进行比较,判断是否满足点火条件,在检测到烘干滚筒内部的负压异常时,此时不满足点火条件,应自动熄火,同时,还可以输出报警信号,及时发出警报提示。
在实际应用过程中,为了确保烘干滚筒内部气体可顺利流通,避免烘干滚筒内部形成密封空间从而导致爆燃,可以通过烘干滚筒出料箱上安装的负压装置来检测烘干滚筒内的负压值,即实测负压值P,本实施例中预设负压值可以设为8mmHg,当实测负压值不满足P≥8mmHg时,此时烘干滚筒内部气体流通不畅,在点火时存在爆燃隐患,则直接进入自动熄火模式;若满足上述条件,则开始点小火,小火点着之后,开启雾化阀和喷油阀,此时重油的流动路线为:重油罐—油泵—喷油阀—喷枪,大火点着之后,可以正常运行。
在示例性实施例中,点火前的防爆燃检测过程可以参见附图3,该过程具体包括:
步骤301:判断喷油阀是否关闭;
步骤302:若是,则进一步判断烘干滚筒内的实测负压值是否超过预设负压值;
步骤303:若实测负压值超过预设负压值,则点小火,并进一步判断小火点火是否成功;本实施例中点火成功与否,具体可以通过火焰检测方式进行判断;
步骤304:若小火点火成功,则开启雾化阀和喷油阀;
步骤305:延时并检测是否有火焰信号;
步骤306:若有火焰信号,则大火点火成功,正常运行;
步骤307:若判定喷油阀未关闭、实测负压值低于预设负压值、小火点火失败和大火点火失败中至少存在其中一种情况,则发出故障报警,以提示异常状态,并控制燃烧器自动熄火。
上述防爆燃检测的过程同时包含了喷油阀的状态检测和烘干滚筒的负压检测,当目标部件既包含喷油阀又包含烘干滚筒时,可以先判断喷油阀的状态,再对烘干滚筒进行负压检测,从而可以实现负压联锁保护功能。
考虑到燃烧器熄火后,由于管路内残留部分燃油,存在爆燃隐患,不够安全可靠。为此本实施例在燃烧器的控制方法中还引入了熄火后的控制 方案。
更优地,本实施例提供的燃烧器的控制方法,还可以包括:
当接收到熄火指令时,控制燃烧器熄火,并控制燃烧器抽回管路内剩余的燃油和/或将燃烧器中管路内剩余的燃油吹进烘干滚筒中。
在示例性实施例中,控制燃烧器抽回管路内剩余的燃油的过程,具体可以包括:
控制燃烧器中的油泵反转预设时长,以将管路内剩余的燃油抽回油罐中。
在示例性实施例中,控制燃烧器中管路内剩余的燃油吹进烘干滚筒中的过程,具体可以包括:
控制燃烧器中的吹扫阀分多个时段开启,在至少一个时段内,先开启预设开启时长然后关闭预设关闭时长。
进一步地,控制燃烧器中的吹扫阀分多个时段开启,在至少一个时段内,先开启预设开启时长然后关闭预设关闭时长的过程,具体可以包括:
控制吹扫阀开启至满足第一预设开启时长后,关闭吹扫阀并延时预设关闭时长;
控制吹扫阀开启至满足第二预设开启时长后,关闭吹扫阀并延时预设关闭时长;
控制吹扫阀开启至满足第三预设开启时长后,关闭吹扫阀;
其中,第一预设开启时长和第二预设开启时长均可以小于第三预设开启时长。
需要说明的是,上述预设开启时长在设定时,可以具体设定为:第一预设开启时长<第二预设开启时长<第三预设开启时长,也就是说,在分段吹扫过程中,逐步增加吹扫时间,以保证吹扫过程的安全性。
燃烧器熄火(手动熄火或自动熄火)后,此时油泵和雾化阀关闭,随后控制油泵变频器使油泵以某频率反向转动一定时间后关闭,将喷油阀前端管道中大部分燃油回流到过滤罐中,即控制燃烧器抽回管路内剩余的燃油。
如果上述控制燃烧器抽回管路内剩余的燃油和/或将燃烧器中管路内剩余的燃油吹进烘干滚筒中,两个处理过程同时存在的话,可以在控制燃 烧器抽回管路内剩余的燃油后,再将燃烧器中管路内剩余的燃油吹进烘干滚筒中,从而能够提高管路内残留燃油的清理效率,也能够更彻底的清理管路内残留的燃油。
在将燃烧器中管路内剩余的燃油吹进烘干滚筒中时,可以利用压缩空气进行吹扫,将管道中剩余的燃油吹扫干净,避免喷枪和管道堵塞。
在示例性实施例中,控制燃烧器抽回管路内剩余的燃油后,将燃烧器中管路内剩余的燃油吹进烘干滚筒中的过程具体可以如下:
油泵反转结束后油泵停止,随后开启雾化阀,延时2s后开启吹扫阀,开启吹扫阀50ms后,关闭吹扫阀;
再延时2s后,开启吹扫阀,开启吹扫阀300ms后,关闭吹扫阀;
最后,延时2s后,开启吹扫阀,直到熄火结束。
考虑到油泵反转后喷油阀前端管道中仍然可能残留一部分重油,因此还需对其吹扫,若直接将吹扫阀和雾化阀开启,残留的重油被压缩空气通过喷枪迅速吹扫进入烘干滚筒,仍然有可能会生产爆燃。
本实施例在油泵反转停止后采用分段吹扫的方式,第一次吹扫阀开启时间50ms,第二次开启300ms,第三次连续吹扫,前两次吹扫时间较短,目的是控制重油喷出量,避免一次性喷出较多的重油,进入烘干滚筒后引起爆燃。
在示例性实施例中,控制燃烧器熄火,并控制燃烧器抽回管路内剩余的燃油和将燃烧器中管路内剩余的燃油吹进烘干滚筒中的过程,可以参见附图3,该过程具体包括:
步骤308:在手动熄火或自动熄火后,油泵和雾化阀关闭;
步骤309:油泵反转并延时,即油泵反转一定时长,以执行余油回流任务,该时长可以根据实际需要合理设定;
步骤310:油泵反转结束后,油泵关闭;
步骤311:雾化阀开启并延时,即开启雾化阀一定时长;
步骤312:之后吹扫阀分段开启并延时,即控制燃烧器中的吹扫阀分多个时段开启,在至少一个时段内,先开启预设开启时长然后关闭预设关闭时长;
步骤313:控制燃烧器抽回管路内剩余的燃油和将燃烧器中管路内剩 余的燃油吹进烘干滚筒中两个过程完成后,熄火结束。
在实际应用过程中,本实施例中吹扫阀可以采用膜片阀,膜片阀反应灵敏,可以很好的控制开启时间和关闭时间,从而提高分段吹扫过程的控制精度。
由此可见,本实施例提供的燃烧器的控制方法,通过优化燃烧器点火和熄火过程的控制逻辑,可以有效降低燃烧器在点火和熄火过程中爆燃现象发生的概率。整个燃烧器的控制方法包括燃烧器点火前控制部分和熄火后控制部分两方面。
一方面,燃烧器点火前需要进行燃油循环来提高重油加热效率,在此过程中,通过采集限位开关信号,并可以通过负压联锁保护,来避免点火阶段易引发爆燃的问题。
另一方面,燃烧器熄火后需要清理管路内残留的重油,具体地,首先采用油泵反转,将管道中大部分燃油回流到主油管路中,然后再采用压缩空气分段吹扫,将管道中剩余的燃油吹扫干净。由于可以先采用油泵反转方式进行清理,再采用分段吹扫方式进一步清理,使吹扫过程中只有少量重油,不足以引发爆燃,同时分段吹扫的方式也可以进一步降低爆燃的发生概率,安全性更高。
下面对本申请提供的燃烧器的控制装置进行描述,下文描述的燃烧器的控制装置与上文描述的燃烧器的控制方法可相互对应参照。
图4示出了本申请实施例提供的燃烧器的控制装置,该装置包括:
第一处理模块401,用于在接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;其中,防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
第二处理模块402,用于在确定点防爆燃检测的结果满足燃烧器的点火条件时,控制燃烧器点火。
在示例性实施例中,上述第二处理模块402,具体可以用于:
若确定防爆燃检测的结果中每个目标部件的状态信息均满足目标部件对应的点火条件,确定防爆燃检测的结果满足燃烧器的点火条件;
其中,上述目标部件可以包括烘干滚筒和/或喷油阀。
进一步地,烘干滚筒对应的点火条件可以包括:烘干滚筒的状态信息 中所包括的烘干滚筒内部的实测负压值大于或等于预设负压值。
进一步地,喷油阀对应的点火条件可以包括:喷油阀的状态信息中所包括的开闭状态为关闭状态。
在上述示例性实施例中,第二处理模块402具体可以用于:
控制燃烧器中油泵和加热设备启动,对燃烧器中管路内的燃油进行循环加热;
在确定循环加热结束后,控制燃烧器点火。
更优地,本申请实施例提供的燃烧器的控制装置,还可以包括:
第三处理模块,用于当接收到熄火指令时,控制燃烧器熄火,并控制燃烧器抽回管路内剩余的燃油和/或将燃烧器中管路内剩余的燃油吹进烘干滚筒中。
进一步地,上述第三处理模块具体可以用于:
控制燃烧器中的吹扫阀分多个时段开启,在至少一个时段内,先开启预设开启时长然后关闭预设关闭时长。
进一步地,上述第三处理模块具体可以用于:
控制燃烧器中的油泵反转预设时长,以将管路内剩余的燃油抽回油罐中。
由此可见,本申请实施例提供的燃烧器的控制装置,通过执行点火前的自检任务,并根据自检任务的执行结果控制燃烧器点火,可以避免点火阶段喷油阀状态异常以及烘干滚筒内部气体流通不畅引发爆燃的问题。
同时,通过熄火后控制燃烧器抽回管路内剩余的燃油和/或将燃烧器中管路内剩余的燃油吹进烘干滚筒中,可以避免熄火阶段易引发爆燃的问题,提高了燃烧器使用过程中的安全性。
本申请实施例还提供一种燃烧器,该燃烧器使用上述燃烧器的控制方法。该燃烧器通过上述控制方法可以有效避免燃烧器在点火和熄火阶段易引起爆燃现象的问题,使用过程的安全性更高。
在示例性实施例中,上述燃烧器具体可以包括:油罐、油泵、喷油阀、喷油枪以及控制器,喷油阀的一端与油泵连接,油泵与油罐连通,喷油阀的另一端与喷油枪连接,喷油阀上设有限位开关,限位开关用于检测喷油阀三通阀体的位置信息,喷油枪还伸入烘干滚筒内,烘干滚筒的出料箱上 安装有负压装置,负压装置用于检测烘干滚筒内的负压值,限位开关、油泵和负压装置均与控制器连接;
控制器用于接收限位开关发送的喷油阀三通阀体的位置信息和/或负压装置发送的烘干滚筒内的负压值,并基于得到的位置信息和/或负压值进行防爆燃检测,根据防爆燃检测的结果控制燃烧器点火。
同时,上述燃烧器还可以包括雾化阀和吹扫阀,雾化阀和吹扫阀的一端分别与空气压缩机连接,雾化阀的另一端与喷油枪连接,吹扫阀的另一端与喷油枪和喷油阀之间的管路连通;
控制器还用于在接收到熄火指令时,控制燃烧器熄火,并控制油泵反转抽回管路内剩余的燃油,和/或控制雾化阀和吹扫阀动作,通过喷油枪将燃烧器中管路内剩余的燃油吹进烘干滚筒中。
此外,本实施例还提供一种沥青搅拌站,该沥青搅拌站包括上述燃烧器。该沥青搅拌站通过配置上述燃烧器,可以有效提高生产过程的安全性。
当然,本实施例提供的燃烧器的控制方法也可以应用于其他需要使用燃烧器的场景中,例如冶钢领域,同样地,基于该控制方法实现的燃烧器也可以适用于除沥青搅拌站以外的其他应用场景中。
图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(processor)501、通信接口(Communications Interface)502、存储器(memory)503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信。处理器501可以调用存储器503中的逻辑指令,以执行燃烧器的控制方法,该方法包括:当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;其中,防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火。
此外,上述的存储器503中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个 实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的燃烧器的控制方法,该方法包括:当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;其中,防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的燃烧器的控制方法,该方法包括:当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到防爆燃检测的结果;其中,防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;若确定防爆燃检测的结果满足燃烧器的点火条件,控制燃烧器点火。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对 其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种燃烧器的控制方法,包括:
    当接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到所述防爆燃检测的结果;其中,所述防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
    若确定所述防爆燃检测的结果满足所述燃烧器的点火条件,控制所述燃烧器点火。
  2. 根据权利要求1所述的燃烧器的控制方法,其中,所述确定所述防爆燃检测的结果满足所述燃烧器的点火条件,包括:
    若确定所述防爆燃检测的结果中每个目标部件的状态信息均满足所述目标部件对应的点火条件,确定所述防爆燃检测的结果满足所述燃烧器的点火条件;
    其中,所述目标部件包括烘干滚筒和/或喷油阀。
  3. 根据权利要求2所述的燃烧器的控制方法,其中,所述烘干滚筒对应的点火条件包括:所述烘干滚筒的状态信息中所包括的所述烘干滚筒内部的实测负压值大于或等于预设负压值。
  4. 根据权利要求2所述的燃烧器的控制方法,其中,所述喷油阀对应的点火条件包括:所述喷油阀的状态信息中所包括的开闭状态为关闭状态。
  5. 根据权利要求1至4任一项所述的燃烧器的控制方法,还包括:
    当接收到熄火指令时,控制所述燃烧器熄火,并控制所述燃烧器抽回管路内剩余的燃油和/或将所述燃烧器中管路内剩余的燃油吹进烘干滚筒中。
  6. 根据权利要求5所述的燃烧器的控制方法,其中,所述控制所述燃烧器中管路内剩余的燃油吹进烘干滚筒中,包括:
    控制所述燃烧器中的吹扫阀分多个时段开启,在至少一个所述时段内,先开启预设开启时长然后关闭预设关闭时长。
  7. 根据权利要求5所述的燃烧器的控制方法,其中,所述控制所述燃烧器抽回管路内剩余的燃油,包括:
    控制所述燃烧器中的油泵反转预设时长,以将所述管路内剩余的燃油抽回油罐中。
  8. 一种燃烧器的控制装置,包括:
    第一处理模块,用于在接收到点火启动指令时,对燃烧器进行点火前的防爆燃检测,得到所述防爆燃检测的结果;其中,所述防爆燃检测包括对烘干滚筒和/或喷油阀的状态信息进行检测;
    第二处理模块,用于在确定所述点防爆燃检测的结果满足所述燃烧器的点火条件时,控制所述燃烧器点火。
  9. 一种燃烧器,其中,所述燃烧器使用如权利要求1至7任一项所述燃烧器的控制方法。
  10. 一种沥青搅拌站,其中,所述沥青搅拌站包括如权利要求9所述的燃烧器。
PCT/CN2022/095573 2022-03-30 2022-05-27 燃烧器的控制方法、装置、燃烧器及沥青搅拌站 WO2023184687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210334197.7A CN114923198B (zh) 2022-03-30 2022-03-30 燃烧器的控制方法、装置、燃烧器及沥青搅拌站
CN202210334197.7 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023184687A1 true WO2023184687A1 (zh) 2023-10-05

Family

ID=82805595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095573 WO2023184687A1 (zh) 2022-03-30 2022-05-27 燃烧器的控制方法、装置、燃烧器及沥青搅拌站

Country Status (2)

Country Link
CN (1) CN114923198B (zh)
WO (1) WO2023184687A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083595A (ja) * 2003-09-04 2005-03-31 Osaka Gas Co Ltd 燃焼装置
CN201993637U (zh) * 2011-03-31 2011-09-28 广东冠粤路桥有限公司 一种沥青搅拌设备的燃烧控制系统
CN104006384A (zh) * 2014-05-22 2014-08-27 李延新 一种数字控制燃油燃烧机及其自检方法
CN104075316A (zh) * 2014-06-25 2014-10-01 湖南三一路面机械有限公司 一种燃烧器和沥青搅拌站
CN106287692A (zh) * 2015-06-02 2017-01-04 无锡市万方能源设备有限公司 一种新型一体式燃烧器及其工作原理
CN107166430A (zh) * 2017-07-12 2017-09-15 山东省特种设备检验研究院临沂分院 一种气体液体燃料锅炉炉膛防爆测控装置及检测方法
JP2018169158A (ja) * 2018-08-09 2018-11-01 株式会社トヨトミ 石油燃焼器の点火制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872818A (ja) * 1981-10-26 1983-04-30 Matsushita Electric Ind Co Ltd ガス燃焼機器の爆轟防止装置
KR20090098018A (ko) * 2008-03-13 2009-09-17 현대자동차주식회사 하이브리드 차량의 잔류 연료 회수 시스템
CN101576313B (zh) * 2008-05-07 2011-07-06 中冶焦耐自动化有限公司 管式炉自动点火控制方法
CN204372972U (zh) * 2015-01-04 2015-06-03 湖北中烟工业有限责任公司 燃油锅炉防爆燃装置
JP2017166755A (ja) * 2016-03-16 2017-09-21 株式会社ガスター 燃焼装置
CN105782970A (zh) * 2016-04-26 2016-07-20 鄢碧珠 一种醇基燃料燃烧器
CN208500822U (zh) * 2018-06-15 2019-02-15 韩城黑猫炭黑有限责任公司 炭黑生产供油系统
CN111829004B (zh) * 2020-06-02 2023-06-02 浙江迈欧科技有限公司 一种电子比例调节燃烧控制方法和控制装置
CN113551914B (zh) * 2021-07-08 2022-04-22 中国航发湖南动力机械研究所 一种燃油喷嘴试验件防积碳结构及方法
CN113513409B (zh) * 2021-08-20 2022-12-20 中国联合重型燃气轮机技术有限公司 用于燃气轮机的吹扫系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083595A (ja) * 2003-09-04 2005-03-31 Osaka Gas Co Ltd 燃焼装置
CN201993637U (zh) * 2011-03-31 2011-09-28 广东冠粤路桥有限公司 一种沥青搅拌设备的燃烧控制系统
CN104006384A (zh) * 2014-05-22 2014-08-27 李延新 一种数字控制燃油燃烧机及其自检方法
CN104075316A (zh) * 2014-06-25 2014-10-01 湖南三一路面机械有限公司 一种燃烧器和沥青搅拌站
CN106287692A (zh) * 2015-06-02 2017-01-04 无锡市万方能源设备有限公司 一种新型一体式燃烧器及其工作原理
CN107166430A (zh) * 2017-07-12 2017-09-15 山东省特种设备检验研究院临沂分院 一种气体液体燃料锅炉炉膛防爆测控装置及检测方法
JP2018169158A (ja) * 2018-08-09 2018-11-01 株式会社トヨトミ 石油燃焼器の点火制御装置

Also Published As

Publication number Publication date
CN114923198A (zh) 2022-08-19
CN114923198B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN103900103B (zh) 一种鼓风式燃烧器的控制方法
CN108826700B (zh) 用于燃气热水器安全保护的控制方法、装置及燃气热水器
KR101562241B1 (ko) 연소기기의 배기온도 검출센서 빠짐 검지방법
CN111503900A (zh) 一种壁挂炉前清扫控制方法
CN103357136A (zh) 消防作业控制装置及方法
JP2007170924A (ja) ガスメータ
WO2023184687A1 (zh) 燃烧器的控制方法、装置、燃烧器及沥青搅拌站
CN112680591B (zh) 烧嘴故障处理方法、装置及烧嘴
JP2000257858A (ja) 開放型ガス燃焼器具
KR101506987B1 (ko) 보일러와 각방 제어기 연동 시운전방법
CN107014088B (zh) 一种燃气热水炉的点火保护方法和系统
CN110822720B (zh) 一种壁挂炉安全故障的控制方法
CN107726362B (zh) 一种密闭燃烧炉自动点火控制方法
CN106439894A (zh) 一种燃机及其启动节能控制方法
CN109341090A (zh) 燃气壁挂炉残火故障的控制方法及其控制装置
CN114264469A (zh) 一种工业用燃烧器的故障检查方法、装置及系统
KR101607119B1 (ko) 보일러의 도중실화 검지방법
CN204227633U (zh) 可燃制冷剂空调器防火系统和空调器
CN110513718A (zh) 一种无焰燃烧控制系统的方法
CN203425436U (zh) 消防作业控制装置
CN213452880U (zh) 一种明火加热炉检漏装置
CN109340887B (zh) 燃气壁挂炉控制方法、装置、控制设备及燃气壁挂炉
CN111609460B (zh) 壁挂炉智能点火控制方法和装置
CN113341911B (zh) 一种自身预热式烧嘴的故障诊断方法及装置
JP3603074B2 (ja) 燃焼機器の安全制御装置および燃焼機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934512

Country of ref document: EP

Kind code of ref document: A1