WO2023184340A1 - 显示控制方法及装置、显示设备、电子设备以及介质 - Google Patents

显示控制方法及装置、显示设备、电子设备以及介质 Download PDF

Info

Publication number
WO2023184340A1
WO2023184340A1 PCT/CN2022/084415 CN2022084415W WO2023184340A1 WO 2023184340 A1 WO2023184340 A1 WO 2023184340A1 CN 2022084415 W CN2022084415 W CN 2022084415W WO 2023184340 A1 WO2023184340 A1 WO 2023184340A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight
partition
value
pixel
partitions
Prior art date
Application number
PCT/CN2022/084415
Other languages
English (en)
French (fr)
Inventor
张书国
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000621.2A priority Critical patent/CN117157702A/zh
Priority to PCT/CN2022/084415 priority patent/WO2023184340A1/zh
Publication of WO2023184340A1 publication Critical patent/WO2023184340A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display control device, a display control method, a display device, an electronic device, and a computer-readable medium.
  • LED display products have been widely used in many commercial fields of ultra-large screen high-definition display, such as monitoring and command, high-definition studio, high-end cinema, medical diagnosis, advertising display, conference and exhibition, and office display , virtual reality, etc., achieving better display effects.
  • the present disclosure aims to solve at least one of the technical problems existing in the related art, and provide a display control device, a display control method, a display device, an electronic device, and a computer-readable medium.
  • an embodiment of the present disclosure provides a display control method, which method includes:
  • the multiple backlight partitions of the backlight assembly of the display device perform partition feature extraction on the pixel points of the target image, and determine the first backlight feature values of the multiple backlight partitions;
  • the first pixel value of each pixel point of the target image is compensated respectively to obtain a compensated second pixel value, so that the display device A display component displays the target image based on the second pixel value.
  • the step of performing partition feature extraction on the pixel points of the target image according to the multiple backlight partitions of the backlight component of the display device and determining the first backlight feature values of the multiple backlight partitions includes: In any backlight partition, according to the pixel gray value of each pixel point of the target image in the backlight partition, the average value and the maximum value of the pixel gray value of each pixel point in the backlight partition are determined, wherein, The pixel gray value is the maximum value among the multiple color channels of the first pixel value; the first backlight characteristic value of the backlight partition is determined based on the weighted sum of the average value and the maximum value.
  • the step of filtering the first backlight feature values of the multiple backlight partitions to obtain the first regional brightness values of the multiple backlight partitions includes: for any backlight partition, according to the The first backlight characteristic value of the backlight partition and the first backlight characteristic value of the adjacent partition of the backlight partition determine the second backlight characteristic value of the backlight partition; wherein the adjacent partition includes the space between the backlight partition and the backlight partition.
  • the backlight partition whose partition distance is less than or equal to the partition distance threshold; determine the first area brightness value of the backlight partition according to the second backlight characteristic value of the backlight partition and the preset first lookup table.
  • the step of determining the second backlight characteristic value of the backlight partition based on the first backlight characteristic value of the backlight partition and the first backlight characteristic value of a partition adjacent to the backlight partition includes: : Determine the third backlight characteristic value of the adjacent partition according to the first backlight characteristic value of the adjacent partition and the preset filter coefficient; combine the first backlight characteristic value of the backlight partition and the third backlight characteristic value of each adjacent partition The maximum value among the three backlight characteristic values is determined as the second backlight characteristic value of the backlight partition.
  • the backlight assembly includes a driving component and a backlight of the plurality of backlight partitions
  • the method further includes: based on the first area brightness value of the plurality of backlight partitions and a preset second search table to determine the driving values of the plurality of backlight partitions respectively; when the display conditions of the target image are met, input the driving values of the plurality of backlight partitions into the driving component, so that the driving component drives The backlight lamps of the plurality of backlight partitions emit backlight corresponding to the target image.
  • the backlight of each pixel of the target image is simulated according to the first regional brightness values of the multiple backlight partitions to obtain the first backlight brightness of each pixel of the target image.
  • the step of value includes: for any backlight partition, determine according to the first area brightness value of the backlight partition, the first area brightness value of the diffusion partition of the backlight partition, and the diffusion factor of the diffusion partition of the backlight partition.
  • the second area brightness value of the backlight partition wherein the diffusion partition includes a backlight partition whose partition distance from the backlight partition is less than or equal to a diffusion distance threshold; according to the second area brightness of the plurality of backlight partitions value, respectively simulate the backlight of the pixels in each backlight partition, and obtain the first backlight brightness value of each pixel of the target image.
  • the method before the step of simulating the backlight of each pixel of the target image to obtain the first backlight brightness value of each pixel of the target image, the method further includes: Set the diffusion distance threshold to determine the position and number of virtual partitions outside the multiple backlight partitions; determine the extended brightness value of each virtual partition according to the first area brightness value of the multiple backlight partitions, where, Determine the second area brightness value of the backlight area based on the first area brightness value of the backlight area, the first area brightness value of the diffusion area of the backlight area, and the diffusion factor of the diffusion area of the backlight area.
  • the steps include:
  • the partition distance between the backlight partition and the edge of the display device is less than the diffusion distance threshold
  • the first area brightness of the diffusion partition of the backlight partition value, the extended brightness value of the virtual partition whose partition distance from the backlight partition is less than or equal to the diffusion distance threshold, and the corresponding diffusion factor of the diffusion partition and the virtual partition determine the second area brightness of the backlight partition value.
  • the step of determining the extended brightness value of each virtual partition according to the first area brightness value of the plurality of backlight partitions includes: according to the first area brightness value of the multiple backlight partitions and The influence factor of each virtual partition determines the extended brightness value of each virtual partition respectively.
  • the impact factor is associated with the reflectivity of the side of the backlight assembly.
  • the backlight of the pixels in each backlight partition is simulated according to the second regional brightness values of the plurality of backlight partitions to obtain the first backlight brightness of each pixel of the target image.
  • Value steps include:
  • the second backlight brightness value of the vertex and center point of the target area respectively according to the second area brightness value.
  • the target area has the center point of each backlight partition as the vertex, and the size an area with the same size as the backlight partition; according to the second backlight brightness value of the vertex and center point of the target area, use a preset interpolation method to perform interpolation processing on each pixel point in the target area to obtain the The first backlight brightness value of each pixel in the target area.
  • the interpolation method includes Bezier curve interpolation.
  • the vertices of the target area include a first vertex, a second vertex, a third vertex and a fourth vertex in order, wherein the preset interpolation method is used to calculate each pixel in the target area.
  • the step of performing interpolation processing separately to obtain the first backlight brightness value of each pixel point in the target area includes: based on the brightness value of the first vertex, the brightness value of the second vertex and the brightness value of the center point of the target area.
  • the first pixel value of each pixel point of the target image is compensated respectively according to the first backlight brightness value of each pixel point of the target image, and a compensated second pixel value is obtained.
  • the steps include: for any pixel point, using a non-linear pixel compensation method to determine the compensation factor of the pixel point according to the first backlight brightness value of the pixel point; according to the compensation factor, calculating the compensation factor of the pixel point respectively.
  • Each color channel of the point is compensated to obtain the second pixel value of the pixel point.
  • the step of determining the compensation factor of the pixel point in a nonlinear pixel compensation manner according to the first backlight brightness value of the pixel point includes: according to the first backlight brightness value of the pixel point, Determine the first compensation factor of the pixel point using a non-linear pixel compensation method; determine the second compensation factor of the pixel point according to the pixel gray value of the pixel point; combine the first compensation factor with the The minimum value among the second compensation factors is determined as the compensation factor of the pixel point.
  • the method further includes: when the display conditions of the target image are met, inputting the second pixel value of the target image into the display component, so that the display component performs display.
  • an embodiment of the present disclosure provides a display control device, which includes:
  • a feature extraction module configured to perform partition feature extraction on the target image to be displayed according to multiple backlight partitions of the backlight component of the display device, and determine first backlight feature values of the multiple backlight partitions;
  • a brightness value determination module configured to filter the first backlight feature values of the plurality of backlight partitions to obtain the first regional brightness values of the multiple backlight partitions, so that the backlight assembly is based on the first regional brightness. Value emits a backlight corresponding to the target image;
  • a backlight simulation module configured to simulate the backlight of each pixel of the target image according to the first regional brightness values of the plurality of backlight partitions, and obtain the first backlight brightness value of each pixel of the target image;
  • the pixel compensation module is configured to compensate the first pixel value of each pixel point of the target image according to the first backlight brightness value of each pixel point of the target image, and obtain the compensated second pixel value, so as to obtain the compensated second pixel value. causing a display component of the display device to display the target image based on the second pixel value.
  • an embodiment of the present disclosure provides a display device, which device includes: a backlight assembly, a display assembly, and the above-mentioned display control device.
  • the backlight assembly includes a driving component and a plurality of backlight partitions, and the driving component is configured to operate according to the The driving values of the plurality of backlight partitions drive the plurality of backlight partitions to emit backlight; the display component is used to display according to the input pixel value; the display control device is connected to the backlight component and the display component respectively. , used to determine the drive values of the target image in the plurality of backlight partitions and the compensated pixel values according to the target image to be displayed, input the drive values to the backlight assembly, and input the drive values to the display assembly. The compensated pixel value.
  • embodiments of the present disclosure provide an electronic device, including: one or more processors; a memory for storing one or more programs; when the one or more programs are processed by the one or more The processor is executed, so that the one or more processors implement the above display control method.
  • the processor includes a field programmable gate array FPGA.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, wherein the computer program implements the steps in the above display control method when executed by a processor.
  • FIG. 1 is a flowchart of a display control method according to an embodiment of the present disclosure.
  • FIGS. 2a and 2b are schematic diagrams of backlight partitions and characteristic values according to embodiments of the present disclosure.
  • FIG. 3 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • 6a and 6b are schematic diagrams of backlight partitions and brightness values according to embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a backlight partition according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a display control method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of backlight partition expansion according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a frame of a backlight assembly according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a target area of a display control method according to an embodiment of the present disclosure.
  • Figure 13 is a schematic diagram of a Bezier curve according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of a display control method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of a display control method according to an embodiment of the present disclosure.
  • FIG. 16 is a block diagram of a display control device according to an embodiment of the present disclosure.
  • 17 is a block diagram of a display device according to an embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • Mini_LED display technology refers to the technology that uses LED devices with chip sizes between 50 and 200 ⁇ m for display.
  • LED display systems have certain defects.
  • the contrast of the liquid crystal display cannot meet the requirements of consumers; on the other hand, as the size of the liquid crystal display system continues to increase As the size increases, the power consumption problem becomes more and more obvious.
  • regional dynamic backlight control can be used to dynamically adjust the backlight brightness of the LED display system.
  • regional dynamic backlight control is implemented based on the pixel display principle of the liquid crystal display.
  • LCD display pixels use the electro-optical effect of liquid crystal to control the opening of liquid crystal molecules to change the light flux output by each pixel.
  • backlights of different intensities to display the same image, in theory, as long as the output luminous flux of each pixel remains unchanged, the displayed image can be guaranteed to remain unchanged.
  • the general formula for this principle is as follows:
  • BL 0 is the backlight brightness value of the pixel before dimming
  • g is the pixel gray value of the pixel before dimming (i.e., the maximum value among the R/G/B pixel values of the pixel).
  • is a fixed power exponent, which is determined according to the display device itself. It can be seen from formula (1) that if the backlight brightness value If it decreases, the brightness of the final display screen (that is, the output luminous flux) will also change. In order to reduce the backlight while ensuring that the brightness of the emergent light remains unchanged, the value to increase the transmittance of the emitted light.
  • the regional backlight of the display device can be controlled according to the image through regional dynamic backlight control, and the image can be compensated according to the regional backlight, thereby dynamically adjusting the backlight brightness and brightness of each display area.
  • the image pixel value can improve the display quality and contrast of the image and reduce the power consumption of the display device.
  • FIG. 1 is a flowchart of a display control method according to an embodiment of the present disclosure.
  • the display control method can be applied to a display control device, which can be implemented in software and/or hardware, and can generally be integrated into an electronic device (such as a display device).
  • the display control method includes:
  • Step S11 perform partition feature extraction on the pixel points of the target image according to multiple backlight partitions of the backlight assembly of the display device, and determine first backlight feature values of the multiple backlight partitions;
  • Step S12 Filter the first backlight feature values of the multiple backlight partitions to obtain first regional brightness values of the multiple backlight partitions, so that the backlight assembly emits light corresponding to the first regional brightness value based on the first regional brightness value.
  • the backlight of the target image
  • Step S13 Simulate the backlight of each pixel of the target image according to the first regional brightness values of the multiple backlight partitions to obtain the first backlight brightness value of each pixel of the target image;
  • Step S14 Compensate the first pixel values of each pixel point of the target image respectively according to the first backlight brightness value of each pixel point of the target image to obtain a compensated second pixel value, so that the A display component of the display device displays the target image based on the second pixel value.
  • the display device may be various types of LED display devices, such as Mini-LED display devices.
  • the display device includes a backlight component (for example, including an LED driving component and a backlight panel) and a display component (for example, a liquid crystal panel).
  • the display control device executing the display control method may be connected to the backlight component and the display component respectively, so that the backlight component emits backlight according to the driving value input by the display control device, and causes the display component to display an image according to the pixel value input by the display control device.
  • This disclosure does not limit the specific type of display device.
  • the backlight assembly may include multiple backlight partitions, and the backlight partitions may be arranged in an M*N array (M and N are integers greater than 1).
  • M and N are integers greater than 1.
  • M and N are integers greater than 1.
  • Each backlight partition can have a preset number of Mini_LED lights, such as 4, 16, etc.
  • each backlight partition can correspond to a certain number of pixels of the display component, such as 40*40 pixels.
  • the present disclosure places no restrictions on the number and arrangement of backlight partitions, the preset number of LEDs in each backlight partition, and the number of pixels corresponding to each backlight partition.
  • partition features may be extracted from the pixels of the target image according to multiple backlight partitions of the backlight assembly, and first backlight feature values of the multiple backlight partitions may be determined.
  • the pixels corresponding to the backlight partition for example, 40*40 pixels
  • the grayscale values of the pixels corresponding to the backlight partition can be characterized. extract.
  • Each backlight partition is processed separately to obtain the first backlight characteristic value of each backlight partition.
  • the partition feature extraction method may be to obtain the average value and the maximum value of the gray value, and obtain the weighted sum of the average value and the maximum value to obtain the first backlight feature value of the backlight partition; it may also be Through a neural network (for example, including a convolution layer, a pooling layer, a fully connected layer, etc.), the gray value of the pixel corresponding to the backlight partition is processed to obtain the first backlight feature value of the backlight partition.
  • a neural network for example, including a convolution layer, a pooling layer, a fully connected layer, etc.
  • the obtained first backlight characteristic values of each backlight partition may be of different sizes, and may even be very different between the first backlight characteristic values of adjacent backlight partitions, which affects the final display effect.
  • filtering can be performed to smooth the grayscale values between different partitions.
  • the first backlight feature values of the plurality of backlight partitions may be filtered to obtain the first regional brightness values of the plurality of backlight partitions.
  • the neighboring partitions of the backlight partition can be determined, that is, the backlight whose partition distance from the backlight partition is less than or equal to the preset partition distance threshold p (p is an integer greater than or equal to 1) Partition.
  • the partition distance can be defined as the number of partitions spaced between backlight partitions + 1, that is, the partition distance between adjacent backlight partitions is 1.
  • the partition distance threshold p can be set to 1, for example, that is, the 8 backlight partitions around the backlight partition are regarded as adjacent partitions, plus the backlight partition itself, a total of 9 backlight partitions of 3*3; the partition distance threshold p can be For example, set to 2, that is, the 24 backlight partitions around the backlight partition are regarded as adjacent partitions, plus the backlight partition itself, for a total of 25 backlight partitions of 5*5.
  • This disclosure does not limit the specific value of the partition distance threshold.
  • 2p+1)*(2p+1) backlight partitions centered on the backlight partition can be filtered.
  • 2a and 2b are schematic diagrams of backlight partitions and characteristic values according to embodiments of the present disclosure.
  • its adjacent partitions are 1, 2, 3, 4, 6, 7, 8, 9, a total of 9 backlight partitions of 3*3 ;
  • a, b, c, d, e, f, g, h, i are the first backlight characteristic values of each backlight partition respectively.
  • the filtering method may be: multiply the first backlight feature value of the adjacent partition by a preset filter coefficient to obtain the adjusted regional brightness value (called the third backlight feature value); and then obtain the adjusted regional brightness value from each adjacent partition.
  • the maximum value of the third backlight characteristic value of the partition and the first backlight characteristic value of the backlight partition is selected as the filtered backlight characteristic value of the backlight partition (called the second backlight characteristic value).
  • the filtering method may also be: calculating the average value of the third backlight characteristic value of each adjacent partition and the first backlight characteristic value of the backlight partition as the filtered second backlight characteristic value of the backlight partition.
  • the backlight partition located at the edge of the display device that is, the distance between the backlight partition and the edge of the display device is less than the partition distance threshold p
  • the characteristic value of the expanded partitions can be set to 0 or backlight partition 2, The mirror image of the eigenvalues of 4 and 5 (symmetrical with backlight partition 1 as the center).
  • the second backlight characteristic value can be used as an address to determine the corresponding regional brightness value (called the first area brightness value). Furthermore, the brightness value of the first area can be used as an address to determine the corresponding driving value through the LUT lookup table; the driving value is input to the driving component (such as a driving chip) of the backlight assembly, so that the LED lights of each backlight partition of the backlight panel Emits backlight corresponding to the target image. In this way, the backlight processing process is completed.
  • the driving component such as a driving chip
  • each backlight partition Since the first area brightness value of each backlight partition is often different in size, the backlight light emitted by adjacent partitions will affect each other during the projection and diffusion process in the backlight cavity to the LCD panel.
  • the actual backlight distribution of each partition is not equal to the first area brightness value. . If the influence of light diffusion is not considered and pixel compensation is performed directly based on the extracted brightness value of the first area, not only will the image information not be accurately reproduced, but an obvious block effect will also occur. At the same time, light diffusion will cause crosstalk, causing the brightness of the bright area to decrease. The brightness of dark areas is enhanced, affecting the display effect.
  • the backlight of each pixel of the target image can be simulated based on the first area brightness value obtained in step S12.
  • a diffusion model can be established to project the backlight light in the backlight cavity. The diffusion process is simulated, and the backlight brightness value (called the first backlight brightness value) of each pixel of the target image after the backlight is diffused is determined.
  • This disclosure places no limitations on the specific type of diffusion model.
  • step S14 according to the first backlight brightness value of each pixel point of the target image, various pixel compensation methods, such as a linear pixel compensation method or a non-linear pixel compensation method, can be used to adjust the target image.
  • the first pixel values of each pixel point in the image are compensated respectively to obtain the compensated second pixel value.
  • the second pixel value of each pixel point can be input to the display component, so that the display component displays the target image. This disclosure does not limit the specific method of pixel compensation.
  • partition feature extraction can be performed on the pixel values of image pixels to determine the backlight feature value of each backlight partition; the backlight feature value can be filtered to determine the regional brightness value of each backlight partition; and according to the regional brightness value Perform backlight simulation and pixel compensation on the pixel values of image pixels, thereby improving the display quality and contrast of the image and reducing the power consumption of the display device.
  • step S11 feature extraction can be performed on each backlight partition.
  • FIG. 3 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • step S11 may include:
  • step S111 for any backlight partition, according to the pixel gray value of each pixel point of the target image in the backlight partition, the average value and the pixel gray value of each pixel point in the backlight partition are determined.
  • Maximum value wherein the pixel gray value is the maximum value among the multiple color channels of the first pixel value;
  • step S112 the first backlight characteristic value of the backlight partition is determined based on the weighted sum of the average value and the maximum value.
  • the pixel gray value of each pixel of the target image in the backlight partition can be determined, and the pixel gray value is the pixel value of the pixel (called the first pixel value)
  • the maximum value among multiple color channels ie, R, G, and B color channels.
  • the average and maximum value of the pixel gray value of each pixel can be calculated in step S111. Furthermore, in step S112, the weighted sum of the average value and the maximum value may be determined as the backlight characteristic value of the backlight partition (called the first backlight characteristic value). Calculated as follows:
  • BL 1 P ⁇ BL ave +(1-P) ⁇ BL max (2)
  • BL 1 represents the first backlight characteristic value
  • BL ave is the average pixel gray value of all pixels in the backlight partition
  • BL max is the pixel gray value of all pixels in the backlight partition. the maximum value.
  • P is the weighting coefficient, the value range is 0-1, and can be adjusted dynamically. For example, P can take a value of 0.7 or 0.8, and this disclosure does not limit the specific value of P.
  • the partition feature extraction if only the maximum value of the pixel gray value is used, the image details can be greatly preserved, but the image brightness in the dark field area will not be effectively controlled, the contrast will not be improved enough, and the power consumption reduction will be limited. If only the average value of the pixel gray value is used, the backlight can be reduced to a large extent to reduce power consumption. However, for areas with high contrast, the degree of backlight reduction exceeds the extent that pixel compensation can achieve, resulting in the image not being properly captured. It is difficult to restore the correct display effect.
  • the weighting coefficient P can be set to be greater than 0.5, so that the weighted value P of the average value is greater than the weighted value of the maximum value (1-P), thereby reducing the occurrence of a large maximum value in the backlight partition.
  • the significantly larger backlight feature value makes the backlight feature value represent the pixel gray value of the backlight partition more accurately.
  • the advantages of using the maximum value and the average value of the two processing methods can be retained to a certain extent, that is, image details can be preserved, And reduce the backlight to reduce power consumption; at the same time, it makes up for the shortcomings of the two algorithms to a certain extent, that is, it can improve the contrast and appropriately reduce the backlight so that the image can be restored through pixel compensation later, thereby improving the display quality of the image.
  • the first backlight eigenvalues of each backlight partition obtained in step S11 may be different in size, and even the first backlight eigenvalues of adjacent backlight partitions are very different. Even if backlight diffusion simulation is used, this problem cannot be completely eliminated. Due to this difference, the halo at the junction of light and dark in the final compensated image increases, affecting the final display effect. In this case, filtering processing can be performed in step S12 to smooth the grayscale values between different partitions and improve the display effect of the image.
  • FIG. 4 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • step S12 may include:
  • step S121 for any backlight partition, determine the second backlight characteristic value of the backlight partition according to the first backlight characteristic value of the backlight partition and the first backlight characteristic value of an adjacent partition of the backlight partition;
  • the adjacent partitions include backlight partitions whose partition distance from the backlight partition is less than or equal to a partition distance threshold;
  • step S122 the first area brightness value of the backlight partition is determined based on the second backlight characteristic value of the backlight partition and the preset first lookup table.
  • adjacent partitions of the backlight partition can be determined, that is, the backlight partition whose distance from the backlight partition is less than or equal to the preset partition distance threshold p, where p is greater than or an integer equal to 1.
  • the partition distance can be defined as the number of partitions spaced between backlight partitions + 1, and the partition distance between adjacent backlight partitions is 1.
  • the partition distance threshold p can be set to 1, for example, that is, the 8 backlight partitions around the backlight partition are regarded as adjacent partitions, plus the backlight partition itself, a total of 9 backlight partitions of 3*3; the partition distance threshold p can be For example, set to 2, that is, the 24 backlight partitions around the backlight partition are regarded as adjacent partitions, plus the backlight partition itself, for a total of 25 backlight partitions of 5*5.
  • This disclosure does not limit the specific value of the partition distance threshold.
  • the backlight partition and its adjacent partitions may be filtered, that is, (2p+1)*(2p+1) backlight partitions centered on the backlight partition may be filtered.
  • step S121 may include: determining a third backlight characteristic value of the adjacent partition according to the first backlight characteristic value of the adjacent partition and a preset filter coefficient; The maximum value among the characteristic values and the third backlight characteristic values of each adjacent partition is determined as the second backlight characteristic value of the backlight partition.
  • the filter coefficient Q may be preset.
  • the first backlight characteristic value of the adjacent partition of the backlight partition may be multiplied by the filter coefficient Q to obtain the adjusted third backlight characteristic value.
  • the maximum value is selected from the third backlight characteristic value of each adjacent partition and the first backlight characteristic value of the backlight partition as the filtered second backlight characteristic value of the backlight partition.
  • the first backlight characteristic values a, b, c, d, f, g, h, i in Figure 2b are multiplied by the filter coefficient Q respectively to obtain the third backlight characteristic values a*Q, b*Q, c *Q, d*Q, f*Q, g*Q, h*Q, i*Q; then select a*Q, b*Q, c*Q, d*Q, e, f*Q, g*Q , h*Q, i*Q, the maximum value is used as the second backlight characteristic value.
  • the value range of the filter coefficient Q is [0,1] and is dynamically adjustable, for example, set to 0.6 or 0.7. This disclosure does not limit the specific value of the filter coefficient Q.
  • the second backlight characteristic value of each backlight partition can be obtained. Furthermore, in step S122, the second backlight characteristic value can be used as an address, and the corresponding first region brightness value can be determined through a preset first lookup table.
  • the backlight assembly includes a driving component and backlight lamps of the plurality of backlight partitions.
  • the driving component is, for example, a driver chip
  • the backlight lamp is, for example, a Mini-LED lamp.
  • the display control method according to the embodiment of the present disclosure may further include:
  • the driving values of the plurality of backlight partitions are input to the driving component, so that the driving component drives the backlight lamps of the plurality of backlight partitions to emit light corresponding to the The backlight of the target image.
  • the first area brightness values of multiple backlight partitions can be used as addresses, and the drive values of each backlight partition can be obtained through the preset second lookup table; if the display conditions of the target image are met, the multiple backlight partitions can be The driving values of the partitions are input to the driving component, so that the driving component drives the backlight lamps of the plurality of backlight partitions to emit backlight corresponding to the target image.
  • the display condition of the target image may include, for example: the row synchronization signal VX, the column synchronization signal HX, the data valid signal DE, etc. corresponding to the target image are all valid.
  • Various corresponding signals can be determined according to the frame identification ID and other information of the target image; the display conditions of the target image can be set according to the display mode of the display device. This disclosure does not limit the specific content of the display conditions.
  • each backlight partition can be driven to emit corresponding backlight, thereby completing the entire process of backlight control.
  • the first area brightness value of each backlight partition is often different in size, the backlight light emitted by adjacent partitions will affect each other during the projection and diffusion process in the backlight cavity to the LCD panel.
  • the actual backlight distribution of each partition is not equal to the first area brightness value. . If the influence of light diffusion is not considered and pixel compensation is performed directly based on the extracted brightness value of the first area, not only will the image information not be accurately reproduced, but an obvious block effect will also occur. At the same time, light diffusion will cause crosstalk, causing the brightness of the bright area to decrease. The brightness of dark areas is enhanced, affecting the display effect.
  • the first area brightness value can be used to drive the backlight assembly to emit backlight on the one hand, and can be used to perform backlight simulation to compensate for the image on the other hand.
  • FIG. 5 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • step S13 may include:
  • step S131 for any backlight partition, determine the first area brightness value of the backlight partition, the first area brightness value of the diffusion partition of the backlight partition, and the diffusion factor of the diffusion partition of the backlight partition.
  • the diffusion partition includes a backlight partition whose partition distance from the backlight partition is less than or equal to a diffusion distance threshold;
  • step S132 the backlight of the pixel points in each backlight partition is simulated according to the second regional brightness values of the plurality of backlight partitions to obtain the first backlight brightness value of each pixel point of the target image.
  • the diffusion partition of the backlight partition can be determined.
  • the diffusion partition includes a backlight partition whose partition distance from the backlight partition is less than or equal to the diffusion distance threshold q, where q is an integer greater than 1.
  • the diffusion distance threshold q can, for example, take a value of 3, 4, 5, etc., and the present disclosure does not limit the specific value of the diffusion distance threshold q.
  • the first area brightness value of each diffusion partition can be multiplied by the diffusion factor of the diffusion partition, and then the multiplication result of each diffusion partition and the first area of the backlight partition can be multiplied.
  • the brightness values are accumulated to obtain the second area brightness value of the backlight partition.
  • the backlight diffusion simulation process is similar to the convolution process, and it can be called a convolution diffusion model.
  • FIGS. 6a and 6b are schematic diagrams of backlight partitions and brightness values according to embodiments of the present disclosure.
  • the diffusion distance threshold 4
  • backlight diffusion simulation is performed on 9*9 backlight partitions centered on e5, including a1-a9, b1-b9, c1-c9, d1-d9, e1-e9 , f1-f9, g1-g9, h1-h9, i1-i9;
  • the diffusion factor of these 9*9 backlight partitions is P1-P81.
  • the diffusion factor P41 of the currently processed backlight partition e5 is 1.
  • the diffusion factor may be a pre-measured value determined by the screen characteristics of the display device.
  • those skilled in the art can set the diffusion distance threshold according to the value of the diffusion factor. When the diffusion distance threshold value is larger, the result is more accurate, but the calculation amount increases; when the diffusion distance threshold value is smaller, the result accuracy decreases, but the calculation amount also decreases. It should be understood that those skilled in the art can set the diffusion distance threshold according to actual conditions, and this disclosure does not limit this.
  • the diffusion process of backlight light can be simulated, so that the brightness value of the second area of each backlight partition is closer to the actual backlight value, thereby reducing the block effect of the backlight partition and improving the display effect.
  • the number of diffusion partitions is smaller.
  • FIG. 7 is a schematic diagram of a backlight partition according to an embodiment of the present disclosure.
  • the partitions within the diffusion distance threshold are B12-B15, B21-B25, B31-B35, B41-B45, and B51-B55, a total of 24 diffusion partitions.
  • the edge partition Since the backlight partition at the edge does not fully satisfy the convolution diffusion model, the brightness value of the second area calculated by the backlight partition at the edge is too small. After pixel compensation, the edge partition does not fully satisfy the convolution diffusion model and fully satisfies the convolution The image of the normal partition of the diffusion model shows obvious demarcation phenomenon, and the display effect becomes worse.
  • the number of backlight partitions can be expanded to increase the second area brightness value of the backlight diffusion simulation for the edge backlight partitions.
  • FIG. 8 is a flowchart of a display control method according to an embodiment of the present disclosure. As shown in Figure 8, in some embodiments, before step S13, the display control method according to the embodiment of the present disclosure may further include:
  • step S15 determine the position and number of virtual partitions outside the multiple backlight partitions according to the preset diffusion distance threshold
  • step S16 the extended brightness value of each virtual partition is determined according to the first area brightness values of the plurality of backlight partitions.
  • the number of backlight partitions can be expanded according to the preset diffusion distance threshold q in step S15 to determine the location and number of virtual partitions that need to be expanded. .
  • FIG. 9 is a schematic diagram of backlight partition expansion according to an embodiment of the present disclosure.
  • the unexpanded backlight partition is area 1, including M*N backlight partitions.
  • M and N are integers greater than 1.
  • the number of partitions in the simulation reaches (2q+1)*(2q+1).
  • N*q virtual partitions in area 2 M*q virtual partitions in area 3, and q*q virtual partitions in area 4 can be determined respectively. In this way, each edge of the backlight assembly is expanded respectively.
  • the extended brightness value of each virtual partition may be determined in step S16 by mirroring the first area brightness value of the backlight partition near the edge according to the first area brightness value of each backlight partition.
  • the specific description of the mirroring method is as follows:
  • the corresponding brightness value of the first area the brightness value of the first area corresponding to the four partitions B53, B43, B33, and B23 of the mirror area 1 in the third column, and the four partitions B52, B42, B32, and B22 of the mirror area 1 in the fourth column.
  • Row 3, column 4 mirror the brightness value of the first area in row 2 of area 1.
  • the mirror compensation method for other edge positions is similar to the above method.
  • the first area brightness values of the partitions of each area can be stored separately.
  • BRAM Block RAM
  • area 1, area 2, area 3, and area 4 are each stored in one BRAM. In this way, a total of 9 BRAMs store data to form the first area brightness values of (M+2q)*(N+2q) partitions.
  • step S131 may include:
  • the partition distance between the backlight partition and the edge of the display device is less than the diffusion distance threshold
  • the first area brightness of the diffusion partition of the backlight partition value, the extended brightness value of the virtual partition whose partition distance from the backlight partition is less than or equal to the diffusion distance threshold, and the corresponding diffusion factor of the diffusion partition and the virtual partition determine the second area brightness of the backlight partition value.
  • step S131 backlight diffusion simulation can be performed on (2q+1)*(2q+1) backlight partitions centered on the backlight partition.
  • the first regional brightness value of the backlight partition, the first regional brightness value of the diffusion partition of the backlight partition, and the extended brightness of the virtual partition whose partition distance between the backlight partition is less than or equal to the diffusion distance threshold are The values are multiplied by the diffusion factors of the corresponding diffusion partitions and virtual partitions, and then the multiplication results and the first area brightness value of the backlight partition are accumulated to obtain the second area brightness value of the backlight partition.
  • the brightness value of the second area after simulating the edge partition backlight can be improved, and the accuracy of the backlight simulation can be improved.
  • FIG. 10 is a schematic diagram of a frame of a backlight assembly according to an embodiment of the present disclosure.
  • the backlight assembly is provided on the backplane.
  • a frame is provided on the side of the backlight assembly, and a reflective sheet is provided on the frame to reflect the light emitted to the reflective sheet onto the display assembly. Therefore, without extending the backlight partition, the calculated second area brightness value of the edge backlight partition is too small.
  • the above-mentioned direct mirroring expansion method can be considered as a case where the reflectivity of the reflective sheet is 1.
  • the reflectivity of reflective sheets is usually less than 1.
  • influence factors can be set for each virtual partition to further improve the accuracy of backlight diffusion simulation.
  • step S16 may include: determining the extended brightness value of each virtual partition according to the first area brightness value of the plurality of backlight partitions and the influence factor of each virtual partition.
  • the impact factor is associated with the reflectivity of the side of the backlight assembly.
  • the impact factor is related to the reflectivity of the sides of the backlight assembly.
  • the impact factor of the virtual partition can be calculated based on the reflectivity of the side of the backlight component, or can be determined through actual testing.
  • the same impact factor can be set for each virtual partition, or different impact factors can be set for each virtual partition. This disclosure does not limit the specific determination method or setting method of the impact factor.
  • the backlight partition corresponding to each virtual partition may be determined by mirroring the first area brightness value of the backlight partition near the edge. This mirroring process will not be described again.
  • the first area brightness value of the backlight partition corresponding to the virtual partition is multiplied by the influence factor of the virtual partition, and the result is used as the extended brightness value of the virtual partition. Therefore, the extended brightness value of each virtual partition can be determined.
  • the backlight brightness of the virtual partition can be determined based on the influence factor, further improving the accuracy of the backlight diffusion simulation, thereby improving the display effect of the compensated image.
  • the above-mentioned backlight simulation can effectively remove the blocking effect and make the transition between different partitions of the image smoother.
  • the backlight value of each pixel in the partition can be further calculated.
  • step S132 the backlight of the pixel points in each backlight partition can be simulated to obtain the first backlight brightness value of each pixel point of the target image.
  • FIG. 11 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • step S132 may include:
  • step S1321 for any target area, determine the second backlight brightness value of the vertex and center point of the target area based on the second area brightness value.
  • the target area is based on the center point of each backlight partition. is the vertex and has the same size as the backlight partition;
  • step S1322 according to the second backlight brightness value of the vertex and center point of the target area, a preset interpolation method is used to perform interpolation processing on each pixel point in the target area to obtain each pixel in the target area.
  • the first backlight brightness value of the pixel is used to perform interpolation processing on each pixel point in the target area to obtain each pixel in the target area.
  • the target area is an area with the center point of the backlight partition as a vertex and the same size as the backlight partition.
  • FIG. 12 is a schematic diagram of a target area of a display control method according to an embodiment of the present disclosure.
  • the center points of the four adjacent backlight partitions are B1, B2, B3, and B4 respectively. Using these four center points as vertices, a target area can be determined whose size is the same as the size of the backlight partition. .
  • the center point B5 of the target area is a common vertex of the four adjacent backlight partitions.
  • the second backlight brightness value of the vertex and center point of the target area can be determined according to the second area brightness value of the corresponding backlight partition.
  • the second backlight brightness value of the vertex of the target area is the second area brightness value of the backlight partition where the vertex is located; the second backlight brightness value of the center point of the target area can be the third area brightness value of the four adjacent backlight partitions.
  • a preset interpolation method can be used to perform interpolation processing on each pixel point in the target area, to obtain The first backlight brightness value of each pixel in the target area.
  • the preset interpolation method may include Bezier curve interpolation. It should be understood that the interpolation method may also include bilinear interpolation, bicubic linear interpolation, etc., and this disclosure does not limit the specific interpolation method. The following uses Bezier curve interpolation processing as an example to illustrate.
  • Figure 13 is a schematic diagram of a Bezier curve according to an embodiment of the present disclosure.
  • a and B in the plane are the end points of the curve, and C is the curve control point, connecting AC and BC.
  • Find points D and E on AC and BC respectively, so that AD/AC CE/CB holds.
  • the formula is expressed as follows:
  • x(t) (1-t) 2
  • y(t) t(1-t)
  • t takes the values 0/K, 1/K, ..., K-1 in sequence. /K.
  • the vertices of the target area include a first vertex, a second vertex, a third vertex, and a fourth vertex in sequence.
  • Step S1322 may include:
  • a third interpolation point is constructed through Bezier curve interpolation. Bezier curve;
  • the first backlight brightness value of each pixel in the target area is obtained.
  • the vertices of the target area may sequentially include a first vertex (brightness value B1), a second vertex (brightness value B3), a third vertex (brightness value B2), and a fourth vertex (brightness value B4).
  • the brightness value of the center point is B5.
  • the first interpolation point on the first Bezier curve F1 can be determined respectively according to the brightness values (B1, B3, B5) through Bezier curve interpolation.
  • the value of the first interpolation point can be used as The brightness value of the pixel point on the straight line where the first vertex and the second vertex are located and between the first vertex and the second vertex; for example, if there are 40 pixels between the first vertex and the second vertex, use the second Besser Er curve F1 generates 40 interpolation points, and assigns the values of the above 40 interpolation points to 40 pixels as their brightness values.
  • the second interpolation point on the second Bezier curve F2 can be determined respectively according to the brightness values (B2, B4, B5) through Bezier curve interpolation, and the value of the second interpolation point can be As the brightness value of the pixel point on the straight line where the third vertex and the fourth vertex are located and between the third vertex and the fourth vertex.
  • the third Bezier curve is constructed again with the brightness value B5 of the first interpolation point, the second interpolation point and the center point at the corresponding positions on F1 and F2.
  • the third interpolation point on the third Bezier curve can be determined.
  • multiple interpolation points are determined, and the value of the third interpolation point can be used as the value of the third interpolation point in the target area in addition to the The brightness values of other pixel points other than the brightness value of the pixel point determined by the first Bezier curve and the second Bezier curve.
  • the brightness value i.e. the first backlight brightness value.
  • the final calculation formula for the first backlight brightness value of each pixel is as follows:
  • k, j are the serial numbers of the pixel points
  • Pix(k, j) represents the first backlight brightness value of the pixel point (k, j).
  • the portion beyond the edge can be zero-padded or mirrored.
  • the mirroring method is similar to the method described above.
  • the Bezier curve interpolation method is used to interpolate the target area at the edge of the display device to obtain the first backlight brightness value of all pixels in the target area. This disclosure does not limit the specific processing method of the portion beyond the edge.
  • the backlight simulation of each pixel can be realized, further improving the accuracy of the backlight simulation, thereby making the entire image smoother and achieving better image display effects.
  • step S14 after obtaining the first backlight brightness value of each pixel point of the target image, in step S14, the first pixel value of each pixel point of the target image can be compensated respectively to obtain the compensated second Pixel values.
  • Linear pixel compensation is easy to implement and has low computational complexity, but it is not good at processing high-brightness images. If the backlight brightness is low, it will not only amplify the noise of the image itself, but also cause a halo phenomenon due to excessive compensation, resulting in the loss of image details after compensation and worsening of the image display effect.
  • step S14 may include:
  • each color channel of the pixel point is compensated respectively to obtain a second pixel value of the pixel point.
  • a non-linear pixel compensation method can be used to determine the compensation factor of the pixel.
  • the formula is expressed as follows:
  • factor(u,v) represents the compensation factor of pixel point (u,v);
  • BL pix (u,v) represents the first backlight brightness value of pixel point (u,v);
  • BL base is The actual test constant, for example, takes a value of 3000;
  • ⁇ 1 is a fixed value, for example, takes a value of 2.2.
  • the pixels can be compensated directly according to the compensation factor obtained by formula (5), or a dual determination method of the pixel gray value and the backlight brightness value of the input image can be used to avoid R/ G/B value overflows.
  • the step of determining the compensation factor of the pixel using non-linear pixel compensation according to the first backlight brightness value of the pixel may include:
  • the first backlight brightness value of the pixel point determine the first compensation factor of the pixel point using non-linear pixel compensation
  • the minimum value of the first compensation factor and the second compensation factor is determined as the compensation factor of the pixel point.
  • the compensation factor obtained by formula (5) can be called the first compensation factor; according to the pixel gray value of the pixel, the second compensation factor of the pixel is determined; and the first compensation factor and the second compensation factor are The minimum value among the factors is determined as the final compensation factor for the pixel. Calculated as follows:
  • factor min (u, v) represents the final compensation factor of pixel point (u, v);
  • gray max (u, v) represents the pixel gray value of pixel point (u, v) (i.e. The maximum value among the pixel values of the three color channels R, G, and B).
  • each color channel of the pixel can be compensated respectively, and the second pixel value after compensation of the pixel can be obtained.
  • the calculation formula is as follows:
  • R(u,v), G(u,v), and B(u,v) respectively represent the pixel values (called is the first pixel value);
  • R′(u,v), G′(u,v), and B′(u,v) respectively represent the compensation of the pixel point (u,v) in the three color channels of R, G, and B.
  • the second pixel value after. In this way, all the pixels of the target image are processed separately, and the second pixel values of all the pixels of the target image can be obtained.
  • the display control method according to the embodiment of the present disclosure may further include:
  • the second pixel value of the target image is input to the display component, so that the display component displays it.
  • the second pixel value of the pixel point of the target image is input to the display component, so that the display component displays the target image.
  • the display condition of the target image may include, for example: the row synchronization signal VX, the column synchronization signal HX, the data valid signal DE, etc. corresponding to the target image are all valid.
  • Various corresponding signals can be determined according to the frame identification ID and other information of the target image; the display conditions of the target image can be set according to the display mode of the display device. This disclosure does not limit the specific content of the display conditions.
  • FIG. 14 is a schematic flowchart of a display control method according to an embodiment of the present disclosure.
  • the backlight feature value of each backlight partition can be determined through partition feature extraction; and then the regional brightness value of each backlight partition can be determined through filtering.
  • the corresponding driving value can be determined through a lookup table and input to the driving component of the backlight panel, so that the LED lights of the backlight partition emit backlight corresponding to the target image.
  • backlight diffusion simulation and pixel backlight simulation can be performed on the regional brightness value to determine the backlight brightness value of each pixel of the target image; based on the backlight brightness value, the pixel data of the target image (that is, the pixel value of each pixel) Perform pixel compensation, obtain the compensated pixel data, and input it to the display component for display, thus realizing the entire process of display control.
  • FIG. 15 is a schematic flowchart of a display control method according to an embodiment of the present disclosure.
  • Figure 15 is a further refinement of Figure 14.
  • the first backlight feature value of each backlight partition can be obtained through partition feature extraction; the first backlight feature value of each backlight partition is performed 3*3 Filter to obtain the second backlight feature value; perform brightness extraction through the LUT lookup table to obtain the regional brightness value of each backlight partition.
  • the corresponding driving value is determined through a lookup table and input to the driving component of the backlight panel, so that the LED lights of each backlight partition of the backlight assembly emit backlight corresponding to the target image.
  • backlight diffusion simulation can be performed on the regional brightness value of each backlight partition to determine the regional brightness value of each backlight partition; based on the regional brightness value of each backlight partition, the backlight of the pixels in each backlight partition is simulated.
  • the display control method according to the embodiments of the present disclosure can be applied to various display systems, especially large-screen or ultra-large-screen high-definition display systems.
  • Mini_LED backlight display systems regional dynamic backlight control is adopted, through zoning of grayscale values.
  • Feature extraction, 3x3 filtering, backlight diffusion convolution, Bezier curve interpolation, pixel compensation and other operations can improve the quality of the display system's display screen, improve the display screen contrast, significantly reduce the power consumption of the display system, and be more complete Preserve image details and achieve better visual effects.
  • FIG. 16 is a block diagram of a display control device according to an embodiment of the present disclosure. As shown in Figure 16, the device includes:
  • the feature extraction module 61 is configured to perform partition feature extraction on the target image to be displayed according to multiple backlight partitions of the backlight assembly of the display device, and determine first backlight feature values of the multiple backlight partitions;
  • the brightness value determination module 62 is used to filter the first backlight feature values of the plurality of backlight partitions to obtain the first area brightness values of the multiple backlight partitions, so that the backlight assembly is based on the first area a brightness value emitting a backlight corresponding to the target image;
  • the backlight simulation module 63 is configured to simulate the backlight of each pixel of the target image according to the first regional brightness values of the plurality of backlight partitions, and obtain the first backlight brightness value of each pixel of the target image. ;
  • the pixel compensation module 64 is used to compensate the first pixel value of each pixel point of the target image according to the first backlight brightness value of each pixel point of the target image, and obtain the compensated second pixel value, to cause the display component of the display device to display the target image based on the second pixel value.
  • the feature extraction module 61 is configured to: for any backlight partition, determine each pixel in the backlight partition according to the pixel gray value of each pixel of the target image in the backlight partition. The average value and the maximum value of the pixel gray value of the pixel point, wherein the pixel gray value is the maximum value among the multiple color channels of the first pixel value; according to the average value and the maximum value A weighted sum is used to determine the first backlight characteristic value of the backlight partition.
  • the brightness value determination module 62 is configured to: for any backlight partition, determine the first backlight characteristic value of the backlight partition and the first backlight characteristic value of an adjacent partition of the backlight partition.
  • the second backlight characteristic value of the backlight partition wherein the adjacent partition includes a backlight partition whose partition distance from the backlight partition is less than or equal to a partition distance threshold; according to the second backlight characteristic value of the backlight partition and
  • the preset first lookup table determines the first area brightness value of the backlight partition.
  • determining the second backlight characteristic value of the backlight partition according to the first backlight characteristic value of the backlight partition and the first backlight characteristic value of a partition adjacent to the backlight partition includes: according to The first backlight characteristic value of the adjacent partition and the preset filter coefficient determine the third backlight characteristic value of the adjacent partition; the first backlight characteristic value of the backlight partition and the third backlight characteristic value of each adjacent partition are The maximum value among the characteristic values is determined as the second backlight characteristic value of the backlight partition.
  • the backlight assembly includes a driving component and backlight lamps of the plurality of backlight partitions
  • the device further includes: a driving value determination module configured to determine the first area brightness value of the plurality of backlight partitions according to and a preset second lookup table to respectively determine the drive values of the multiple backlight partitions; a drive value input module used to set the drive values of the multiple backlight partitions when the display conditions of the target image are met.
  • a value is input into the driving component, so that the driving component drives the backlight lamps of the plurality of backlight partitions to emit backlight corresponding to the target image.
  • the backlight simulation module 63 is configured to: for any backlight partition, according to the first regional brightness value of the backlight partition, the first regional brightness value of the diffusion partition of the backlight partition and the The diffusion factor of the diffusion partition of the backlight partition determines the second area brightness value of the backlight partition; wherein the diffusion partition includes a backlight partition whose partition distance from the backlight partition is less than or equal to a diffusion distance threshold; according to the The second regional brightness values of the plurality of backlight partitions are used to simulate the backlight of the pixels in each backlight partition to obtain the first backlight brightness value of each pixel of the target image.
  • the device before the backlight simulation module 63 , the device further includes: a virtual partition determination module, configured to determine virtual partitions outside the multiple backlight partitions according to a preset diffusion distance threshold. Position and quantity; an extended brightness value determination module, configured to determine the extended brightness value of each virtual partition according to the first regional brightness values of the plurality of backlight partitions, wherein the first regional brightness value of the backlight partition is The step of determining the second area brightness value of the backlight partition includes:
  • the partition distance between the backlight partition and the edge of the display device is less than the diffusion distance threshold
  • the first area brightness of the diffusion partition of the backlight partition value, the extended brightness value of the virtual partition whose partition distance from the backlight partition is less than or equal to the diffusion distance threshold, and the corresponding diffusion factor of the diffusion partition and the virtual partition determine the second area brightness of the backlight partition value.
  • the extended brightness value determination module is configured to determine the extended brightness value of each virtual partition according to the first area brightness values of the plurality of backlight partitions and the influence factors of each virtual partition.
  • the impact factor is associated with the reflectivity of the side of the backlight assembly.
  • the backlight of the pixels in each backlight partition is simulated according to the second regional brightness values of the plurality of backlight partitions to obtain the first backlight brightness of each pixel of the target image.
  • value including: for any target area, according to the second area brightness value, determine the second backlight brightness value of the vertex and center point of the target area respectively.
  • the target area is based on the center point of each backlight partition. vertex, and an area with the same size as the backlight partition; according to the vertex of the target area and the second backlight brightness value of the center point, use a preset interpolation method to perform interpolation processing on each pixel in the target area. , obtain the first backlight brightness value of each pixel in the target area.
  • the interpolation method includes Bezier curve interpolation.
  • the vertices of the target area include a first vertex, a second vertex, a third vertex and a fourth vertex in order, wherein the preset interpolation method is used to calculate each pixel in the target area.
  • the step of performing interpolation processing separately to obtain the first backlight brightness value of each pixel point in the target area includes: based on the brightness value of the first vertex, the brightness value of the second vertex and the brightness value of the center point of the target area.
  • the pixel compensation module 64 is configured to: for any pixel point, use non-linear pixel compensation to determine the compensation factor of the pixel point according to the first backlight brightness value of the pixel point; According to the compensation factor, each color channel of the pixel point is compensated respectively to obtain a second pixel value of the pixel point.
  • using a nonlinear pixel compensation method to determine the compensation factor of the pixel according to the first backlight brightness value of the pixel includes: using a non-linear pixel compensation method according to the first backlight brightness value of the pixel. Determine the first compensation factor of the pixel point in a linear pixel compensation manner; determine the second compensation factor of the pixel point according to the pixel gray value of the pixel point; combine the first compensation factor with the second The minimum value among the compensation factors is determined as the compensation factor of the pixel point.
  • the device further includes: an image input module, configured to input the second pixel value of the target image into the display component if the display conditions of the target image are met, so that the The above display component is displayed.
  • a display device is also provided. 17 is a block diagram of a display device according to an embodiment of the present disclosure. As shown in Figure 17, the display device includes: a backlight component 71, a display component 72 and the above-mentioned display control device 73,
  • the backlight assembly includes a driving component and a plurality of backlight partitions, the driving component is used to drive the plurality of backlight partitions to emit backlight according to driving values of the plurality of backlight partitions;
  • the display component is used to display according to the input pixel value
  • the display control device is connected to the backlight component and the display component respectively, and is used to determine the drive values and compensated pixel values of the target image in the plurality of backlight partitions according to the target image to be displayed, and provide the target image to the target image.
  • the backlight component inputs the driving value, and the compensated pixel value is input to the display component.
  • the display control device 73 may be a field programmable gate array FPGA or other types of logic devices, which is not limited by this disclosure.
  • Figure 18 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an electronic device including: one or more processors 101, a memory 102, and one or more I/O interfaces 103.
  • One or more programs are stored on the memory 102.
  • the one or more processors implement the display control method as in any of the above embodiments;
  • one One or more I/O interfaces 103 are connected between the processor and the memory, and are configured to realize information exchange between the processor and the memory.
  • the processor 101 is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.
  • the memory 102 is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically Such as SDRAM, DDR, etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH);
  • the I/O interface (read-write interface) 103 is connected between the processor 101 and the memory 102 , can realize information interaction between the processor 101 and the memory 102, which includes but is not limited to a data bus (Bus), etc.
  • processor 101 memory 102, and I/O interface 103 are connected to each other and, in turn, to other components of the computing device via bus 104.
  • the one or more processors 101 include a field programmable gate array FPGA.
  • a computer-readable medium stores a computer program, wherein when the program is executed by the processor, the steps in the image display control method in any of the above embodiments are implemented.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a machine-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communications component, and/or installed from removable media.
  • CPU central processing unit
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components that implement the specified logical function(s). executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the circuits or sub-circuits described in the embodiments of the present disclosure may be implemented in software or hardware.
  • the described circuit or sub-circuit can also be provided in a processor.
  • a processor including: a receiving circuit and a processing circuit; the processing module includes a writing sub-circuit and a reading sub-circuit.
  • the names of these circuits or sub-circuits do not constitute a limitation on the circuit or sub-circuit itself under certain circumstances.
  • a receiving circuit can also be described as "receiving video signals".

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

提供一种显示控制方法及装置、显示设备、电子设备以及介质。该显示控制方法包括:根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定多个背光分区的第一背光特征值;对多个背光分区的第一背光特征值进行滤波,得到多个背光分区的第一区域亮度值,以使背光组件基于第一区域亮度值发射对应于目标图像的背光;根据多个背光分区的第一区域亮度值,对目标图像的各个像素点的背光进行模拟,得到各个像素点的第一背光亮度值;根据各个像素点的第一背光亮度值,对目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使显示设备的显示组件基于第二像素值显示目标图像。

Description

显示控制方法及装置、显示设备、电子设备以及介质 技术领域
本公开属于显示技术领域,具体涉及一种显示控制装置、显示控制方法、显示设备、电子设备、计算机可读介质。
背景技术
随着LED(发光二极管)显示技术的不断发展,LED显示产品已经广泛应用于超大屏高清显示的众多商用领域,如监控指挥、高清演播、高端影院、医疗诊断、广告显示、会议会展、办公显示、虚拟现实等,实现了比较好的显示效果。
发明内容
本公开旨在至少解决相关技术中存在的技术问题之一,提供一种显示控制装置、显示控制方法、显示设备、电子设备、计算机可读介质。
第一方面,本公开实施例提供一种显示控制方法,该方法包括:
根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征值;
对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
在一些实施例中,所述根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征 值的步骤,包括:针对任一背光分区,根据所述目标图像在所述背光分区内的各像素点的像素灰度值,确定所述背光分区内各像素点的像素灰度值的平均值及最大值,其中,所述像素灰度值为所述第一像素值的多个颜色通道中的最大值;根据所述平均值及所述最大值的加权和,确定所述背光分区的第一背光特征值。
在一些实施例中,所述对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值的步骤,包括:针对任一背光分区,根据所述背光分区的第一背光特征值以及所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值;其中,所述邻近分区包括与所述背光分区之间的分区距离小于或等于分区距离阈值的背光分区;根据所述背光分区的第二背光特征值及预设的第一查找表,确定所述背光分区的第一区域亮度值。
在一些实施例中,所述根据所述背光分区的第一背光特征值以及与所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值的步骤,包括:根据所述邻近分区的第一背光特征值及预设的滤波系数,确定所述邻近分区的第三背光特征值;将所述背光分区的第一背光特征值以及各个所述邻近分区的第三背光特征值中的最大值,确定为所述背光分区的第二背光特征值。
在一些实施例中,所述背光组件包括驱动部件和所述多个背光分区的背光灯,所述方法还包括:根据所述多个背光分区的第一区域亮度值及预设的第二查找表,分别确定所述多个背光分区的驱动值;在满足所述目标图像的显示条件的情况下,将所述多个背光分区的驱动值输入所述驱动部件,以使所述驱动部件驱动所述多个背光分区的背光灯发射对应于所述目标图像的背光。
在一些实施例中,所述根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤,包括:针对任一背光分区,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光 分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值;其中,所述扩散分区包括与所述背光分区之间的分区距离小于或等于扩散距离阈值的背光分区;根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值。
在一些实施例中,在所述对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤之前,所述方法还包括:根据预设的扩散距离阈值,确定在所述多个背光分区之外的虚拟分区的位置及数量;根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值,其中,所述根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值的步骤,包括:
在所述背光分区与所述显示设备边缘之间的分区距离小于所述扩散距离阈值的情况下,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值、与所述背光分区之间的分区距离小于或等于所述扩散距离阈值的虚拟分区的扩展亮度值,以及相应的扩散分区和虚拟分区的扩散因子,确定所述背光分区的第二区域亮度值。
在一些实施例中,所述根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值的步骤,包括:根据所述多个背光分区的第一区域亮度值以及各个虚拟分区的影响因子,分别确定各个虚拟分区的扩展亮度值。
在一些实施例中,所述影响因子与所述背光组件侧面的反射率相关联。
在一些实施例中,所述根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤,包括:
针对任一目标区域,根据所述第二区域亮度值,分别确定所述目标区域的顶点以及中心点的第二背光亮度值,所述目标区域是以各个背光分区的中 心点为顶点,且尺寸与背光分区的尺寸相同的区域;根据所述目标区域的顶点以及中心点的第二背光亮度值,利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值。
在一些实施例中,所述插值方式包括贝塞尔曲线插值。
在一些实施例中,所述目标区域的顶点依次包括第一顶点、第二顶点、第三顶点及第四顶点,其中,所述利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值的步骤,包括:基于所述目标区域的第一顶点的亮度值、第二顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第一贝塞尔曲线;基于所述目标区域的第三顶点的亮度值、第四顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第二贝塞尔曲线;基于所述第一贝塞尔曲线上的第一插值点、所述第二贝塞尔曲线上的第二插值点以及所述中心点的亮度值,通过贝塞尔曲线插值的方式构造第三贝塞尔曲线;基于所述第一贝塞尔曲线、所述第二贝塞尔曲线及所述第三贝塞尔曲线,得到所述目标区域中各个像素点的第一背光亮度值。
在一些实施例中,所述根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值的步骤,包括:针对任一像素点,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子;根据所述补偿因子,分别对所述像素点的各个颜色通道进行补偿,得到所述像素点的第二像素值。
在一些实施例中,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子的步骤,包括:根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的第一补偿因子;根据所述像素点的像素灰度值,确定所述像素点的第二补偿因子;将所述第一补偿因子与所述第二补偿因子中的最小值,确定为所述像素点的补偿因子。
在一些实施例中,所述方法还包括:在满足所述目标图像的显示条件的情况下,将所述目标图像的第二像素值输入所述显示组件,以使所述显示组件进行显示。
第二方面,本公开实施例提供一种显示控制装置,该装置包括:
特征提取模块,用于根据显示设备的背光组件的多个背光分区,对待显示的目标图像进行分区特征提取,确定所述多个背光分区的第一背光特征值;
亮度值确定模块,用于对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
背光模拟模块,用于根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
像素补偿模块,用于根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
第三方面,本公开实施例提供一种显示设备,该设备包括:背光组件、显示组件以及上述的显示控制装置,所述背光组件包括驱动部件和多个背光分区,所述驱动部件用于根据所述多个背光分区的驱动值,驱动所述多个背光分区发射背光;所述显示组件用于根据输入的像素值进行显示;所述显示控制装置分别连接所述背光组件及所述显示组件,用于根据待显示的目标图像,确定所述目标图像在所述多个背光分区的驱动值以及补偿后的像素值,向所述背光组件输入所述驱动值,并向所述显示组件输入所述补偿后的像素值。
第四方面,本公开实施例提供一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多 个处理器执行,使得所述一个或多个处理器实现上述的显示控制方法。
在一些实施例中,所述处理器包括现场可编程门阵列FPGA。
第五方面,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现上述显示控制方法中的步骤。
附图说明
图1为本公开的实施例的显示控制方法的流程图。
图2a和图2b为本公开的实施例的背光分区及特征值的示意图。
图3为本公开的实施例的显示控制方法的部分步骤的流程图。
图4为本公开的实施例的显示控制方法的部分步骤的流程图。
图5为本公开的实施例的显示控制方法的部分步骤的流程图。
图6a和图6b为本公开的实施例的背光分区及亮度值的示意图。
图7为本公开的实施例的背光分区的示意图。
图8为本公开的实施例的显示控制方法的流程图。
图9为本公开的实施例的背光分区扩展的示意图。
图10为本公开的实施例的背光组件的边框的示意图。
图11为本公开的实施例的显示控制方法的部分步骤的流程图。
图12为本公开的实施例的显示控制方法的目标区域的示意图。
图13为本公开的实施例的贝塞尔曲线的示意图。
图14为本公开的实施例的显示控制方法的流程示意图。
图15为本公开的实施例的显示控制方法的流程示意图。
图16为本公开的实施例的显示控制装置的框图。
图17为本公开的实施例的显示设备的框图。
图18为本公开实施例的一种电子设备的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着LED显示技术,尤其是Mini_LED显示技术的迅速发展,LED显示产品已经开始应用于超大屏高清显示的众多商用领域。其中,Mini_LED显示技术是指采用芯片尺寸介于50~200μm之间的LED器件进行显示的技术。
相关技术中,LED显示系统存在一定的缺陷,一方面,由于液晶本身的固有缺陷——漏光问题,导致液晶显示的对比度不能满足消费者的要求;另一方面,随着液晶显示系统尺寸的不断增大,功耗问题越来越明显。
为了克服相关技术中的缺陷,可采用区域动态背光控制的方式,动态地调整LED显示系统的背光亮度。其中,区域动态背光控制是基于液晶显示器的像素显示原理实现的。液晶显示器显示像素是利用液晶的电光效应控制液晶分子的开度,来改变每个像素输出的光通量。当使用不同强度的背光显示相同的图像时,理论上只要保持每个像素的输出光通量不变,就可以保证显示图像不变,这一原理概括公式如下:
Figure PCTCN2022084415-appb-000001
在公式(1)中,BL 0为像素点在调光前的背光亮度值,g为该像素点在调光前的像素灰度值(即像素点R/G/B像素值中的最大值),
Figure PCTCN2022084415-appb-000002
为该像素点在调光后的背光亮度值,
Figure PCTCN2022084415-appb-000003
为该像素点在调光后的像素灰度值,γ为一个定值幂指数,根据显示设备本身确定。由公式(1)看出,如果背光亮度值
Figure PCTCN2022084415-appb-000004
降低,则最终显示画面的亮度(即输出光通量)也会发生变化。为了降低背光的同时保证出射光亮度不变,则应适当增大
Figure PCTCN2022084415-appb-000005
的值以增加出射光的透过率。
根据本公开实施例的显示控制方法,能够通过区域动态背光控制的方式,根据图像对显示设备的区域背光进行控制,并根据区域背光对图像进行补偿,从而动态地调整各个显示区域的背光亮度和图像像素值,能够提升图像画面的显示质量和对比度,并降低显示设备的功耗。
图1为本公开的实施例的显示控制方法的流程图。该显示控制方法可应用于显示控制装置中,该装置可采用软件和/或硬件的方式实现,并一般可集成于电子设备(例如显示设备)中。如图1所示,该显示控制方法包括:
步骤S11,根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征值;
步骤S12,对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
步骤S13,根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
步骤S14,根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
举例来说,显示设备可以为各种类型的LED显示设备,例如Mini_LED显示设备,该显示设备包括背光组件(例如包括LED驱动部件和背光板) 和显示组件(例如为液晶面板)。执行该显示控制方法的显示控制装置可分别连接到背光组件和显示组件,使得背光组件根据显示控制装置输入的驱动值发射背光,并使得显示组件根据显示控制装置输入的像素值显示图像。本公开对显示设备的具体类型不作限制。
在一些实施例中,背光组件可包括多个背光分区,背光分区可以M*N的阵列方式布置(M、N为大于1的整数)。例如,基于Mini_LED技术的某4K显示设备中,布置有96*56个背光分区(即56行*96列),每个背光分区可具有预设数量的Mini_LED灯,例如4个、16个等,以便为显示组件提供背光;每个背光分区可对应于显示组件的一定数量的像素点,例如40*40个像素点。本公开对背光分区的数量、布置方式、每个背光分区中LED的预设数量以及每个背光分区对应的像素点数量均不作限制。
在一些实施例中,可在步骤S11中,根据背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征值。其中,针对任一背光分区,可从所有像素点中确定出与该背光分区对应的像素点(例如40*40个像素点),并对与该背光分区对应的像素点的灰度值进行特征提取。对各个背光分区分别进行处理,即可得到各个背光分区的第一背光特征值。
在一些实施例中,分区特征提取的方式可以为求取灰度值的平均值及最大值,并求平均值及最大值的加权和,得到该背光分区的第一背光特征值;还可以是通过神经网络(例如包括卷积层、池化层、全连接层等),对与该背光分区对应的像素点的灰度值进行处理,得到该背光分区的第一背光特征值。本公开对分区特征提取的具体方式不作限制。
经步骤S11处理后,所得到的各个背光分区的第一背光特征值,可能大小不一,甚至相邻背光分区的第一背光特征值差距悬殊,影响最终的显示效果。该情况下,可进行滤波处理,以使不同分区之间的灰度值趋于平滑。
在一些实施例中,在步骤S12中,可对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值。其中,针对任一 背光分区,可确定该背光分区的邻近分区,也即与该背光分区之间的分区距离小于或等于预设的分区距离阈值p(p为大于或等于1的整数)的背光分区。分区距离可定义为背光分区之间间隔的分区数量+1,也即相邻背光分区之间的分区距离为1。其中,分区距离阈值p可例如设为1,也即将该背光分区周围的8个背光分区作为邻近分区,加上该背光分区本身,共计3*3的9个背光分区;该分区距离阈值p可例如设为2,也即将该背光分区周围的24个背光分区作为邻近分区,加上该背光分区本身,共计5*5的25个背光分区。本公开对分区距离阈值的具体取值不作限制。
在一些实施例中,针对任一背光分区,可对以该背光分区为中心的(2p+1)*(2p+1)个背光分区进行滤波。图2a和图2b为本公开的实施例的背光分区及特征值的示意图。如图2a所示,分区距离阈值p=1,背光分区为5的情况下,其邻近分区为1、2、3、4、6、7、8、9,共3*3的9个背光分区;如图2b所示,a、b、c、d、e、f、g、h、i分别为各个背光分区的第一背光特征值。
在一些实施例中,滤波的方式可以为:将邻近分区的第一背光特征值乘以预设的滤波系数,得到调整后的区域亮度值(称为第三背光特征值);再从各个邻近分区的第三背光特征值与该背光分区的第一背光特征值,选取出最大值,作为该背光分区滤波后的背光特征值(称为第二背光特征值)。滤波的方式还可以为:求取各个邻近分区的第三背光特征值与该背光分区的第一背光特征值的平均值,作为该背光分区滤波后的第二背光特征值。
在一些实施例中,对于处在显示设备边缘的背光分区,也即背光分区与显示设备边缘的距离小于分区距离阈值p,可仅选取分区距离阈值p内的部分分区进行处理,例如,背光分区1为显示设备左上角的分区且p=1时,其邻近分区为2、4、5。可仅对背光分区1、2、4、5进行滤波;或者,也可以向左和向上扩展到3*3的9个分区,扩展出来的分区的特征值可设为0或为背光分区2、4、5的特征值的镜像(以背光分区1为中心对称)。在求取最大值的方案中,不扩展,扩展且特征值补0,或者扩展且镜像特征值的处理方式,均对滤波结果没有影响;在求取平均值的方案中,各种处理方 式可能对滤波结果有一定的影响。
应当理解,本领域技术人员可根据实际情况设定滤波的方式以及对显示设备边缘的背光分区的处理方式,本公开对此不作限制。
在一些实施例中,在得到各个背光分区的第二背光特征值后,可将该第二背光特征值作为地址,通过预设的LUT(Look Up Table)查找表,确定相应的区域亮度值(称为第一区域亮度值)。进而,可将第一区域亮度值作为地址,通过LUT查找表,确定相应的驱动值;将驱动值输入到背光组件的驱动部件(例如驱动芯片),以使背光板的各个背光分区的LED灯发射对应于目标图像的背光。这样,完成背光的处理过程。
由于各个背光分区的第一区域亮度值往往大小不一,相邻分区发出的背光光线在背光腔内向液晶面板投射扩散过程中会相互影响,各个分区的实际背光分布并不等于第一区域亮度值。如果不考虑光扩散的影响,直接根据提取的第一区域亮度值进行像素补偿,不仅无法精确重现图像信息,还会产生明显的块效应,同时光扩散会有串扰,使得亮区域的亮度下降而暗区域亮度增强,影响显示效果。
在一些实施例中,在步骤S13中,可根据步骤S12得到的第一区域亮度值,对目标图像的各个像素点的背光进行模拟,例如,可建立扩散模型,对背光腔内背光光线的投射扩散过程进行模拟,分别确定出目标图像的每个像素点在背光扩散后的背光亮度值(称为第一背光亮度值)。本公开对扩散模型的具体类型不作限制。
在一些实施例中,在步骤S14中,可根据目标图像的各个像素点的第一背光亮度值,可通过各种像素补偿方式,例如线性像素补偿方式或非线性像素补偿方式,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值。进而,可将各个像素点的第二像素值输入到显示组件,以使显示组件显示该目标图像。本公开对像素补偿的具体方式不作限制。
根据本公开的实施例,能够对图像像素点的像素值进行分区特征提 取,确定各个背光分区的背光特征值;对背光特征值进行滤波,确定各个背光分区的区域亮度值;并根据区域亮度值对图像像素点的像素值进行背光模拟及像素补偿,从而提升图像画面的显示质量和对比度,并降低显示设备的功耗。
下面对根据本公开实施例的显示控制方法进行展开说明。
如前所述,可在步骤S11中,对各个背光分区分别进行特征提取。
图3为本公开的实施例的显示控制方法的部分步骤的流程图。在一些实施例中,如图3所示,步骤S11可包括:
在步骤S111中,针对任一背光分区,根据所述目标图像在所述背光分区内的各像素点的像素灰度值,确定所述背光分区内各像素点的像素灰度值的平均值及最大值,其中,所述像素灰度值为所述第一像素值的多个颜色通道中的最大值;
在步骤S112中,根据所述平均值及所述最大值的加权和,确定所述背光分区的第一背光特征值。
举例来说,针对背光组件的任一个背光分区,可确定目标图像在该背光分区内的各像素点的像素灰度值,像素灰度值为像素点的像素值(称为第一像素值)的多个颜色通道(即R、G、B三个颜色通道)中的最大值。
在一些实施例中,根据该背光分区内的各像素点的像素灰度值,可在步骤S111中分别计算出各像素点的像素灰度值的平均值及最大值。进而,可在步骤S112中将该平均值及该最大值的加权和,确定为该背光分区的背光特征值(称为第一背光特征值)。计算公式如下:
BL 1=P×BL ave+(1-P)×BL max        (2)
在公式(2)中,BL 1表示第一背光特征值;BL ave为该背光分区内所有像素点的像素灰度值的平均值,BL max为该背光分区内所有像素点的像素灰度值的最大值。P为加权系数,取值范围为0-1,可动态调节。例如,P可取值为0.7或0.8,本公开对P的具体取值不作限制。
这样,对背光组件的所有背光分区分别进行上述处理,即可得到各个背 光分区的第一背光特征值。
在分区特征提取中,如果仅采用像素灰度值的最大值,则能够极大地保留图像细节,但会造成暗场区域图像亮度未能得到有效控制,对比度提升不足,功耗降低有限。如果仅采用像素灰度值的平均值,则能够较大程度地降低背光,以降低功耗,然而对于对比度高的区域,背光降低程度超出了像素补偿所能达到的程度,导致图像无法被恰当地还原,难以产生正确的显示效果。
在一些实施例中,可将加权系数P设定为大于0.5,使得平均值的加权值P大于最大值的加权值(1-P),从而减少背光分区中出现一个较大的最大值而导致背光特征值明显变大的情况,使得背光特征值对背光分区的像素灰度值的表示更为准确。
根据本公开的实施例,通过采用像素灰度值的最大值和平均值加权的方式,能够在一定程度上保留采用最大值和平均值这两种处理方式的优点,也即能够保留图像细节,并降低背光以降低功耗;同时又在一定程度上弥补两种算法的缺点,也即能够提升对比度,并适当降低背光,以便后续能够通过像素补偿来还原图像,从而提高图像画面的显示质量。
在一些实施例中,步骤S11中得到的各个背光分区的第一背光特征值,可能大小不一,甚至相邻背光分区的第一背光特征值差距悬殊,即使采用背光扩散模拟也无法彻底消除这种差距,最终补偿后的图像亮暗交界处光晕增大,影响最终的显示效果。该情况下,可在步骤S12中进行滤波处理,以使不同分区之间的灰度值趋于平滑,改善图像画面的显示效果。
图4为本公开的实施例的显示控制方法的部分步骤的流程图。在一些实施例中,如图4所示,步骤S12可包括:
在步骤S121中,针对任一背光分区,根据所述背光分区的第一背光特征值以及所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值;
其中,所述邻近分区包括与所述背光分区之间的分区距离小于或等于分 区距离阈值的背光分区;
在步骤S122中,根据所述背光分区的第二背光特征值及预设的第一查找表,确定所述背光分区的第一区域亮度值。
举例来说,针对背光组件的任一个背光分区,可确定该背光分区的邻近分区,也即与该背光分区之间的分区距离小于或等于预设的分区距离阈值p的背光分区,p为大于或等于1的整数。其中,分区距离可定义为背光分区之间间隔的分区数量+1,相邻背光分区之间的分区距离为1。其中,分区距离阈值p可例如设为1,也即将该背光分区周围的8个背光分区作为邻近分区,加上该背光分区本身,共计3*3的9个背光分区;该分区距离阈值p可例如设为2,也即将该背光分区周围的24个背光分区作为邻近分区,加上该背光分区本身,共计5*5的25个背光分区。本公开对分区距离阈值的具体取值不作限制。
在一些实施例中,可对该背光分区及其邻近分区进行滤波,也即对以该背光分区为中心的(2p+1)*(2p+1)个背光分区进行滤波。
在一些实施例中,步骤S121可包括:根据所述邻近分区的第一背光特征值及预设的滤波系数,确定所述邻近分区的第三背光特征值;将所述背光分区的第一背光特征值以及各个所述邻近分区的第三背光特征值中的最大值,确定为所述背光分区的第二背光特征值。
也就是说,可预设有滤波系数Q。在处理中,可将该背光分区的邻近分区的第一背光特征值乘以滤波系数Q,得到调整后的第三背光特征值。再从各个邻近分区的第三背光特征值与该背光分区的第一背光特征值,选取出最大值,作为该背光分区滤波后的第二背光特征值。也即,图2b中的第一背光特征值a、b、c、d、f、g、h、i,分别乘以滤波系数Q,得到第三背光特征值a*Q、b*Q、c*Q、d*Q、f*Q、g*Q、h*Q、i*Q;再选取a*Q、b*Q、c*Q、d*Q、e、f*Q、g*Q、h*Q、i*Q中的最大值,作为第二背光特征值。
其中,滤波系数Q的取值范围为[0,1],动态可调,例如设置为0.6或0.7,本公开对滤波系数Q的具体取值不作限制。
在一些实施例中,对各个背光分区分别进行上述处理,可得到各个背光分区的第二背光特征值。进而,可在步骤S122中将该第二背光特征值作为地址,通过预设的第一查找表,确定相应的第一区域亮度值。
通过这种方式,能够减少相邻区域的背光亮度过于明显的情况,使得不同分区之间的灰度值趋于平滑,从而改善补偿后的图像画面的显示效果。
在一些实施例中,所述背光组件包括驱动部件和所述多个背光分区的背光灯,驱动部件例如为驱动芯片,背光灯例如为Mini-LED灯。
在一些实施例中,在步骤S12之后,根据本公开实施例的显示控制方法还可包括:
根据所述多个背光分区的第一区域亮度值及预设的第二查找表,分别确定所述多个背光分区的驱动值;
在满足所述目标图像的显示条件的情况下,将所述多个背光分区的驱动值输入所述驱动部件,以使所述驱动部件驱动所述多个背光分区的背光灯发射对应于所述目标图像的背光。
也就是说,可将多个背光分区的第一区域亮度值作为地址,通过预设的第二查找表,分别得到各个背光分区的驱动值;如果满足目标图像的显示条件,则将多个背光分区的驱动值输入驱动部件,以使驱动部件驱动多个背光分区的背光灯发射对应于目标图像的背光。
在一些实施例中,目标图像的显示条件可例如包括:对应于该目标图像的行同步信号VX、列同步信号HX、数据有效信号DE等均有效。可根据该目标图像的帧标识ID等信息,确定相应的各种信号;根据显示设备的显示方式,设定目标图像的显示条件。本公开对显示条件的具体内容不作限制。
通过这种方式,能够驱动各个背光分区发射相应的背光,从而完成背光控制的整个过程。
由于各个背光分区的第一区域亮度值往往大小不一,相邻分区发出的背光光线在背光腔内向液晶面板投射扩散过程中会相互影响,各个分区的实际背光分布并不等于第一区域亮度值。如果不考虑光扩散的影响,直接根据提 取的第一区域亮度值进行像素补偿,不仅无法精确重现图像信息,还会产生明显的块效应,同时光扩散会有串扰,使得亮区域的亮度下降而暗区域亮度增强,影响显示效果。该情况下,第一区域亮度值一方面可用于驱动背光组件发射背光,另一方面可用于进行背光模拟,以便对图像进行补偿。
图5为本公开的实施例的显示控制方法的部分步骤的流程图。在一些实施例中,如图5所示,步骤S13可包括:
在步骤S131中,针对任一背光分区,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值;
其中,所述扩散分区包括与所述背光分区之间的分区距离小于或等于扩散距离阈值的背光分区;
在步骤S132中,根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值。
举例来说,针对背光组件的任一个背光分区,可确定该背光分区的扩散分区。其中,扩散分区包括与背光分区之间的分区距离小于或等于扩散距离阈值q的背光分区,q为大于1的整数。扩散距离阈值q可例如取值为3、4、5等,本公开对扩散距离阈值q的具体取值不作限制。
其中,扩散距离阈值q的取值越大则背光扩散模拟的精度越高,但计算量也较大;q的取值越小则背光扩散模拟的精度越低,但计算量较小。通常可根据光扩散模拟的精度需求与计算量需求综合设定扩散距离阈值q。例如,分区距离=4时,扩散因子取值为0.05;分区距离>4时的扩散因子进一步缩小,分区距离>4时的背光扩散可忽略不计,因此可将扩散距离阈值q设为4。
在一些实施例中,可对以该背光分区为中心的(2q+1)*(2q+1)个背光分区进行背光扩散模拟。例如q=4时,对9*9个背光分区进行背光扩散模拟。
在一些实施例中,在背光扩散模拟中,可将各个扩散分区的第一区域亮 度值与该扩散分区的扩散因子相乘,再将各个扩散分区的相乘结果及该背光分区的第一区域亮度值进行累加,得到该背光分区的第二区域亮度值。该背光扩散模拟的过程与卷积过程类似,可将其称为卷积扩散模型。
图6a和图6b为本公开的实施例的背光分区及亮度值的示意图。如图6a所示,扩散距离阈值=4时,对以e5为中心的9*9个背光分区进行背光扩散模拟,包括a1-a9、b1-b9、c1-c9、d1-d9、e1-e9、f1-f9、g1-g9、h1-h9、i1-i9;如图6b所示,这9*9个背光分区的扩散因子为P1-P81。其中,当前处理的背光分区e5的扩散因子P41为1。
在一些实施例中,扩散因子可以为预先测量的得到的值,由显示设备的屏幕特性决定。该扩散因子的取值范围为[0,1],可与分区距离负相关,也即分区距离越大,扩散因子越小。例如,分区距离=4时,扩散因子取值为0.05。
在一些实施例中,本领域技术人员可根据扩散因子的取值来设定扩散距离阈值。扩散距离阈值取值较大时,结果较精确,但计算量增大;扩散距离阈值取值较小时,结果精度下降,但计算量也减小。应当理解,本领域技术人员可根据实际情况设定扩散距离阈值,本公开对此不作限制。
通过这种方式,能够对背光光线的扩散过程进行模拟,使得各个背光分区的第二区域亮度值更接近实际背光值,从而减少背光分区的块效应,提高显示效果。
在一些实施例中,对于处在显示设备边缘的背光分区,也即与显示设备边缘的距离小于扩散距离阈值q的背光分区,其扩散分区的数量较少。
在一些实施例中,可仅选取扩散距离阈值q内的分区进行处理,通过卷积扩散模型得到第二区域亮度值。图7为本公开的实施例的背光分区的示意图。例如,图7中的分区B11,扩散距离阈值q=4时,扩散距离阈值内的分区为B12-B15、B21-B25、B31-B35、B41-B45、B51-B55,共24个扩散分区。
由于边缘的背光分区不完全满足卷积扩散模型,导致边缘的背光分区计算出的第二区域亮度值偏小,在经过像素补偿后,不完全满足卷积扩散模型的边缘分区和完全满足卷积扩散模型的正常分区的图像显示有明显的分 界现象,显示效果变差。
该情况下,可对背光分区的数量进行扩展,以便提高对边缘的背光分区进行背光扩散模拟的第二区域亮度值。
图8为本公开的实施例的显示控制方法的流程图。如图8所示,在一些实施例中,在步骤S13之前,根据本公开实施例的显示控制方法还可包括:
在步骤S15中,根据预设的扩散距离阈值,确定在所述多个背光分区之外的虚拟分区的位置及数量;
在步骤S16中,根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值。
举例来说,在得到多个背光分区的第一区域亮度值后,可在步骤S15中根据预设的扩散距离阈值q,对背光分区的数量进行扩展,确定需要扩展的虚拟分区的位置及数量。
图9为本公开的实施例的背光分区扩展的示意图。如图9所示,设未扩展的背光分区为区域1,包括M*N个背光分区,M、N为大于1的整数,对背光分区的数量进行扩展,需要使得边缘的背光分区在背光扩散模拟中的分区数量达到(2q+1)*(2q+1)。以左上边缘为例,可分别确定区域2的N*q个虚拟分区、区域3的M*q个虚拟分区以及区域4的q*q个虚拟分区。这样,对背光组件的各个边缘分别进行扩展,经扩展后,虚拟分区与背光分区的数量之和为(M+2q)*(N+2q)。例如,区域1包括96*56个背光分区,q=4,则经扩展后,得到总共(96+8)*(56+8)=104*64个分区。
在一些实施例中,可在步骤S16中根据各个背光分区的第一区域亮度值,以对边缘附近的背光分区的第一区域亮度值进行镜像的方式,分别确定各个虚拟分区的扩展亮度值。现对镜像的方式具体说明如下:
对于图9中的各个区域,区域2中的虚拟分区的扩展亮度值,以区域1的第1列为中心进行镜像。即q=4时,区域2第1列镜像区域1的第5列的第一区域亮度值,第2列镜像区域1的第4列的第一区域亮度值,第3列镜像区域1的第3列的第一区域亮度值,第4列镜像区域1的第2列的第一区 域亮度值。
其中,区域3中的虚拟分区的扩展亮度值,以区域1的第1行第1列B11为中心进行镜像。即q=4时,区域3第1列镜像区域1的B55、B45、B35、B25四个分区对应的第一区域亮度值,第2列镜像区域1的B54、B44、B34、B24四个分区对应的第一区域亮度值,第3列镜像区域1的B53、B43、B33、B23四个分区对应的第一区域亮度值,第4列镜像区域1的B52、B42、B32、B22四个分区对应的第一区域亮度值。
其中,区域4中的虚拟分区的扩展亮度值,以区域1的第1行为中心进行镜像。即q=4时,区域4第1行镜像区域1的第5行的第一区域亮度值,第2行镜像区域1的第4行的第一区域亮度值,第3行镜像区域1的第3行,第4列镜像存储区域1的第2行的第一区域亮度值。其他边缘位置的镜像补偿方式和上述方式类似。
在一些实施例中,在采用FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)实现根据本公开实施例的显示控制装置的情况下,可将各个区域的分区的第一区域亮度值分别存储在FPGA的BRAM(Block RAM,块存储器)中,例如区域1、区域2、区域3、区域4分别由一个BRAM存储。这样,由一共9个BRAM存储数据,构成(M+2q)*(N+2q)个分区的第一区域亮度值。
在一些实施例中,步骤S131可包括:
在所述背光分区与所述显示设备边缘之间的分区距离小于所述扩散距离阈值的情况下,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值、与所述背光分区之间的分区距离小于或等于所述扩散距离阈值的虚拟分区的扩展亮度值,以及相应的扩散分区和虚拟分区的扩散因子,确定所述背光分区的第二区域亮度值。
也就是说,对于任一背光分区,如果该背光分区与显示设备边缘的背光分区之间的分区距离小于扩散距离阈值q,则该背光分区为边缘分区,其扩散分区中包括与背光分区之间的分区距离小于或等于扩散距离阈值q的虚 拟分区。这样,在步骤S131中,可对以该背光分区为中心的(2q+1)*(2q+1)个背光分区进行背光扩散模拟。也即,将该背光分区的第一区域亮度值、该背光分区的扩散分区的第一区域亮度值、与该背光分区之间的分区距离小于或等于所述扩散距离阈值的虚拟分区的扩展亮度值,与相应的扩散分区及虚拟分区的扩散因子相乘,再将各个相乘结果及该背光分区的第一区域亮度值进行累加,得到该背光分区的第二区域亮度值。
通过这种方式,能够提高对边缘分区背光模拟后的第二区域亮度值,提高背光模拟的精度。
图10为本公开的实施例的背光组件的边框的示意图。如图10所示,背光组件设置在背板上,背光组件的侧面设置有边框,边框上设置有反射片,能够将发射到反射片的光反射到显示组件上。因此,在不对背光分区进行扩展的情况下,边缘的背光分区计算出的第二区域亮度值偏小。
上述直接进行镜像的扩展方式,可认为是反射片的反射率为1的情况。然而,实际应用中,反射片的反射率通常小于1。该情况下,可为各个虚拟分区设定影响因子,以便进一步提高背光扩散模拟的精度。
在一些实施例中,步骤S16可包括:根据所述多个背光分区的第一区域亮度值以及各个虚拟分区的影响因子,分别确定各个虚拟分区的扩展亮度值。
在一些实施例中,所述影响因子与所述背光组件侧面的反射率相关联。
举例来说,影响因子与背光组件侧面的反射率相关联。可根据背光组件侧面的反射率计算出虚拟分区的影响因子,也可通过实际测试确定出虚拟分区的影响因子。可为各个虚拟分区设定相同的影响因子,也可为各个虚拟分区设定不同的影响因子。本公开对影响因子的具体确定方式及设定方式均不作限制。
在一些实施例中,可以以对边缘附近的背光分区的第一区域亮度值进行镜像的方式,分别确定与各个虚拟分区对应的背光分区,该镜像过程不再赘述。对于任一虚拟分区,将与该虚拟分区对应的背光分区的第一区域亮度值 与该虚拟分区的影响因子相乘,将结果作为该虚拟分区的扩展亮度值。从而,能够确定出各个虚拟分区的扩展亮度值。
通过这种方式,能够基于影响因子确定虚拟分区的背光亮度,进一步提高背光扩散模拟的精度,从而提升补偿后的图像画面的显示效果。
上述的背光模拟能够有效去除块效应,使图像的不同分区之间过渡更加平滑。为了获得更好的图像显示效果,使整幅图像更加平滑,根据本公开的实施例,可进一步计算分区内每个像素点的背光值。
也即,在得到各个背光分区的第二区域亮度值后,可在步骤S132中,分别对各个背光分区内的像素点的背光进行模拟,得到目标图像的各个像素点的第一背光亮度值。
图11为本公开的实施例的显示控制方法的部分步骤的流程图。在一些实施例中,如图11所示,步骤S132可包括:
在步骤S1321中,针对任一目标区域,根据所述第二区域亮度值,分别确定所述目标区域的顶点以及中心点的第二背光亮度值,所述目标区域是以各个背光分区的中心点为顶点,且尺寸与背光分区的尺寸相同的区域;
在步骤S1322中,根据所述目标区域的顶点以及中心点的第二背光亮度值,利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值。
举例来说,可确定多个目标区域,目标区域是以背光分区的中心点为顶点,尺寸与背光分区的尺寸相同的区域。
图12为本公开的实施例的显示控制方法的目标区域的示意图。如图12所示,相邻的四个背光分区的中心点分别为B1、B2、B3、B4,以这四个中心点为顶点,即可确定一个目标区域,其尺寸与背光分区的尺寸相同。该目标区域的中心点B5,即为相邻的四个背光分区的一个共同的顶点。
在一些实施例中,针对任一目标区域,可在步骤S1321中,根据对应的背光分区的第二区域亮度值,分别确定该目标区域的顶点以及中心点的第二背光亮度值。该目标区域的顶点的第二背光亮度值,即为顶点所在的背光分 区的第二区域亮度值;该目标区域的中心点的第二背光亮度值,可为相邻的四个背光分区的第二区域亮度值的平均值,即图12中的亮度值B5=(B1+B2+B3+B4)/4。
在一些实施例中,根据该目标区域的顶点以及中心点的第二背光亮度值,可在步骤S1322中,利用预设的插值方式,对该目标区域中的各个像素点分别进行插值处理,得到该目标区域中各个像素点的第一背光亮度值。
在一些实施例中,预设的插值方式可包括贝塞尔曲线插值。应当理解,插值方式还可包括双线性插值、双三次线性插值等,本公开对具体的插值方式不作限制。下面以采用贝塞尔曲线插值处理为例进行说明。
图13为本公开的实施例的贝塞尔曲线的示意图。如图13所示,平面内A、B为曲线端点,C为曲线控制点,连接AC、BC。在AC和BC上分别找到D点和E点,使得AD/AC=CE/CB成立。连接DE,在DE上找到F点,使得AD/AC=CE/CB=DF/DE,令t=AD/AC=CE/CB=DF/DE,则t取从0到1时F点的轨迹即为二次贝塞尔曲线。公式表示如下:
F(t)=(1-t) 2A+t(1-t)C+t 2B           (3)
对于图12所示的目标区域,可令x(t)=(1-t) 2、y(t)=t(1-t)、z(t)=t 2。设目标区域中像素点的数量为K*K个(K为大于1的整数,例如K=40),则t依次取值0/K、1/K、......、K-1/K。
将其映射到整数域,即令t'=K*t,t'的取值范围为[0,K-1],则有x'(t')=(K-t') 2、y'(t')=t'(K-t')、z'(t')=t' 2,其中,x'(t')、y'(t')、z'(t')需要预先计算,存储于显示控制装置的存储空间内,例如FPGA的BRAM内。
在一些实施例中,所述目标区域的顶点依次包括第一顶点、第二顶点、第三顶点及第四顶点,步骤S1322可包括:
基于所述目标区域的第一顶点的亮度值、第二顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第一贝塞尔曲线;
基于所述目标区域的第三顶点的亮度值、第四顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第二贝塞尔曲线;
基于所述第一贝塞尔曲线上的第一插值点、所述第二贝塞尔曲线上的第二插值点以及所述中心点的亮度值,通过贝塞尔曲线插值的方式构造第三贝塞尔曲线;
基于所述第一贝塞尔曲线、所述第二贝塞尔曲线及所述第三贝塞尔曲线,得到所述目标区域中各个像素点的第一背光亮度值。
举例来说,目标区域的顶点可依次包括第一顶点(亮度值为B1)、第二顶点(亮度值为B3)、第三顶点(亮度值为B2)及第四顶点(亮度值为B4),并且中心点的亮度值为B5。在进行贝塞尔曲线插值时,先分别以亮度值(B1、B3、B5)和亮度值(B2、B4、B5)构造第一贝塞尔曲线F1和第二贝塞尔曲线F2。
其中,可通过贝塞尔曲线插值的方式,根据亮度值(B1、B3、B5),分别确定出第一贝塞尔曲线F1上的第一插值点,第一插值点的取值即可作为第一顶点和第二顶点所在的直线上且位于第一顶点和第二顶点之间的像素点的亮度值;例如第一顶点和第二顶点之间具有40个像素,则利用第二贝塞尔曲线F1生成40个插值点,将上述40个插值点的值赋予40个像素,作为其亮度值。
类似地,可通过贝塞尔曲线插值的方式,根据亮度值(B2、B4、B5),分别确定出第二贝塞尔曲线F2上的第二插值点,第二插值点的取值即可作为第三顶点和第四顶点所在的直线上且位于第三顶点和第四顶点之间的像素点的亮度值。
然后,以F1和F2上的对应位置上的第一插值点、第二插值点和中心点的亮度值B5再次构造第三贝塞尔曲线。类似地,通过贝塞尔曲线插值的方式,可确定第三贝塞尔曲线上的第三插值点,例如确定多个插值点,第三插值点的取值即可作为该目标区域中除了通过第一贝塞尔曲线和第二贝塞尔曲线确定的像素点的亮度值之外的其他像素点的亮度值。
这样,基于第一贝塞尔曲线、第二贝塞尔曲线及第三贝塞尔曲线,对该目标区域中所有像素点分别进行贝塞尔曲线插值,即可得到该目标区域中所 有像素点的亮度值(即第一背光亮度值)。最终每个像素点的第一背光亮度值计算公式如下:
for k in 0 to K-1
for j in 0 to K-1
F1(k)=x'(k)B1+y'(k)B5+z'(k)B3        (4)
F2(k)=x'(k)B2+y'(k)B5+z'(k)B4
Pix(k,j)=x'(j)F1(k)+y'(j)B5+z'(j)F2(k)
在公式(4)中,k,j为像素点的序号,Pix(k,j)表示像素点(k,j)的第一背光亮度值。根据公式(4),可得到目标区域中所有像素点的第一背光亮度值。这样,对各个目标区域分别处理,可得到目标图像的所有像素点的第一背光亮度值。
在一些实施例中,对于处在显示设备边缘的目标区域,可对超出边缘的部分补零,或者进行镜像,镜像的方式与前面描述的方式类似。同样通过贝塞尔曲线插值方式,对显示设备边缘的目标区域进行插值,得到该目标区域中所有像素点的第一背光亮度值。本公开对超出边缘的部分的具体处理方式不作限制。
通过这种方式,能够实现各个像素点的背光模拟,进一步提高背光模拟的精度,从而使整幅图像更加平滑,获得更好的图像显示效果。
在一些实施例中,在得到目标图像的各个像素点的第一背光亮度值后,可在步骤S14中,对目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值。
相关技术中,存在线性像素补偿和非线性像素补偿的方式,线性像素补偿易于实现且计算复杂度低,但是对于高亮度的图像处理不佳。若背光亮度较低,不仅会放大图像本身的噪声,还会因补偿过大引起光晕现象,从而造成补偿后的图像细节丢失,图像画面显示效果变差。
根据本公开的实施例,可采用非线性像素补偿的方式。在一些实施例中,步骤S14可包括:
针对任一像素点,根据所述像素点的第一背光亮度值,采用非线性像素 补偿的方式确定所述像素点的补偿因子;
根据所述补偿因子,分别对所述像素点的各个颜色通道进行补偿,得到所述像素点的第二像素值。
举例来说,针对任一个像素点,根据该像素点的第一背光亮度值及像素灰度值,可采用非线性像素补偿的方式,确定该像素点的补偿因子。公式表示如下:
Figure PCTCN2022084415-appb-000006
在公式(5)中,factor(u,v)表示像素点(u,v)的补偿因子;BL pix(u,v)表示像素点(u,v)的第一背光亮度值;BL base为实际测试的常量,例如取值为3000;γ1为定值,例如取值为2.2。通过公式(5),即可得到各个像素点的补偿因子。
在一些实施例中,可根据公式(5)得到的补偿因子,直接对像素点进行补偿,也可采用输入图像的像素灰度值与背光亮度值双重判定的方式,以避免像素补偿后R/G/B值溢出。
在一些实施例中,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子的步骤,可包括:
根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的第一补偿因子;
根据所述像素点的像素灰度值,确定所述像素点的第二补偿因子;
将所述第一补偿因子与所述第二补偿因子中的最小值,确定为所述像素点的补偿因子。
也就是说,可将公式(5)得到的补偿因子称为第一补偿因子;根据像素点的像素灰度值,确定该像素点的第二补偿因子;并将第一补偿因子与第二补偿因子中的最小值,确定为该像素点的最终的补偿因子。计算公式如下:
Figure PCTCN2022084415-appb-000007
在公式(6)中,factor min(u,v)表示像素点(u,v)最终的补偿因子;gray max(u,v)表示像素点(u,v)的像素灰度值(也即R、G、B三个颜色通道的像素值中的最大值)。
在一些实施例中,根据公式(6)得到的补偿因子,可分别对该像素点的各个颜色通道进行补偿,得到对该像素点补偿后的第二像素值,计算公式如下:
R′(u,v)=R(u,v)×factor min(u,v)
G′(u,v)=G(u,v)×factor min(u,v)           (7)
B′(u,v)=B(u,v)×factor min(u,v)
在公式(7)中R(u,v)、G(u,v)、B(u,v)分别表示像素点(u,v)在R、G、B三个颜色通道的像素值(称为第一像素值);R′(u,v)、G′(u,v)、B′(u,v)分别表示像素点(u,v)在R、G、B三个颜色通道补偿后的第二像素值。这样,对目标图像的所有像素点分别进行处理,可得到目标图像的所有像素点的第二像素值。
通过这种方式,能够实现对目标图像像素点的像素补偿,从而提高图像画面的显示效果。
在一些实施例中,在步骤S14之后,根据本公开实施例的显示控制方法还可包括:
在满足所述目标图像的显示条件的情况下,将所述目标图像的第二像素值输入所述显示组件,以使所述显示组件进行显示。
也就是说,如果满足目标图像的显示条件,则将目标图像的像素点的第二像素值输入显示组件,以使显示组件显示该目标图像。
在一些实施例中,目标图像的显示条件可例如包括:对应于该目标图像的行同步信号VX、列同步信号HX、数据有效信号DE等均有效。可根据该目标图像的帧标识ID等信息,确定相应的各种信号;根据显示设备的显示方式,设定目标图像的显示条件。本公开对显示条件的具体内容不作限制。
通过这种方式,能够实现图像补偿及显示的整个过程。
图14为本公开的实施例的显示控制方法的流程示意图。如图14所示,在本公开的实施例中,对于输入的目标图像,可通过分区特征提取,确定各个背光分区的背光特征值;进而通过滤波确定各个背光分区的区域亮度值。
在示例中,基于区域亮度值,一方面可通过查找表确定相应的驱动值,并输入到背光板的驱动部件,以使背光分区的LED灯发射对应于目标图像的背光。另一方面,可对区域亮度值进行背光扩散模拟及像素点背光模拟,确定目标图像的各像素点的背光亮度值;基于背光亮度值对目标图像的像素数据(即各个像素点的像素值)进行像素补偿,得到补偿后的像素数据,并输入到显示组件进行显示,从而实现了显示控制的整个过程。
图15为本公开的实施例的显示控制方法的流程示意图。图15为图14的进一步细化。如图15所示,在本公开的实施例中,对于输入的目标图像,可通过分区特征提取得到各个背光分区的第一背光特征值;对各个背光分区的第一背光特征值进行3*3滤波,得到第二背光特征值;通过LUT查找表进行亮度提取,得到各个背光分区的区域亮度值。
在示例中,基于区域亮度值,一方面通过查找表确定相应的驱动值,并输入到背光板的驱动部件,以使背光组件的各个背光分区的LED灯发射对应于目标图像的背光。
在示例中,可对各个背光分区的区域亮度值进行背光扩散模拟,确定各个背光分区的区域亮度值;基于各个背光分区的区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到目标图像的所有像素点的背光亮度值;根据目标图像的各个像素点的背光亮度值,分别对各个像素点进行像素补偿,得到补偿后的像素值,并输入到显示组件进行显示,从而实现了显示控制的整个过程。
根据本公开实施例的显示控制方法,能够应用于各种显示系统,尤其是大屏或超大屏高清显示系统,例如Mini_LED背光显示系统中,采用区域动态背光控制的方式,通过灰度值的分区特征提取、3x3滤波、背光扩散卷积、贝塞尔曲线插值、像素补偿等操作,提高显示系统的显示画面的质量、提升 显示画面的对比度,显著降低显示系统的功耗,并且,能够比较完整地保留图像细节,取得更好的视觉效果。
根据本公开的实施例,还提供了一种显示控制装置。图16为本公开的实施例的显示控制装置的框图。如图16所示,该装置包括:
特征提取模块61,用于根据显示设备的背光组件的多个背光分区,对待显示的目标图像进行分区特征提取,确定所述多个背光分区的第一背光特征值;
亮度值确定模块62,用于对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
背光模拟模块63,用于根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
像素补偿模块64,用于根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
在一些实施例中,所述特征提取模块61,用于:针对任一背光分区,根据所述目标图像在所述背光分区内的各像素点的像素灰度值,确定所述背光分区内各像素点的像素灰度值的平均值及最大值,其中,所述像素灰度值为所述第一像素值的多个颜色通道中的最大值;根据所述平均值及所述最大值的加权和,确定所述背光分区的第一背光特征值。
在一些实施例中,所述亮度值确定模块62,用于:针对任一背光分区,根据所述背光分区的第一背光特征值以及所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值;其中,所述邻近分区包括与所述背光分区之间的分区距离小于或等于分区距离阈值的背光分区;根据所述背光分区的第二背光特征值及预设的第一查找表,确定所述背光分区 的第一区域亮度值。
在一些实施例中,所述根据所述背光分区的第一背光特征值以及与所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值,包括:根据所述邻近分区的第一背光特征值及预设的滤波系数,确定所述邻近分区的第三背光特征值;将所述背光分区的第一背光特征值以及各个所述邻近分区的第三背光特征值中的最大值,确定为所述背光分区的第二背光特征值。
在一些实施例中,所述背光组件包括驱动部件和所述多个背光分区的背光灯,所述装置还包括:驱动值确定模块,用于根据所述多个背光分区的第一区域亮度值及预设的第二查找表,分别确定所述多个背光分区的驱动值;驱动值输入模块,用于在满足所述目标图像的显示条件的情况下,将所述多个背光分区的驱动值输入所述驱动部件,以使所述驱动部件驱动所述多个背光分区的背光灯发射对应于所述目标图像的背光。
在一些实施例中,所述背光模拟模块63,用于:针对任一背光分区,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值;其中,所述扩散分区包括与所述背光分区之间的分区距离小于或等于扩散距离阈值的背光分区;根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值。
在一些实施例中,在所述背光模拟模块63之前,所述装置还包括:虚拟分区确定模块,用于根据预设的扩散距离阈值,确定在所述多个背光分区之外的虚拟分区的位置及数量;扩展亮度值确定模块,用于根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值,其中,所述根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值的步骤,包括:
在所述背光分区与所述显示设备边缘之间的分区距离小于所述扩散距离阈值的情况下,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值、与所述背光分区之间的分区距离小于或等于所述扩散距离阈值的虚拟分区的扩展亮度值,以及相应的扩散分区和虚拟分区的扩散因子,确定所述背光分区的第二区域亮度值。
在一些实施例中,所述扩展亮度值确定模块,用于:根据所述多个背光分区的第一区域亮度值以及各个虚拟分区的影响因子,分别确定各个虚拟分区的扩展亮度值。
在一些实施例中,所述影响因子与所述背光组件侧面的反射率相关联。
在一些实施例中,所述根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值,包括:针对任一目标区域,根据所述第二区域亮度值,分别确定所述目标区域的顶点以及中心点的第二背光亮度值,所述目标区域是以各个背光分区的中心点为顶点,且尺寸与背光分区的尺寸相同的区域;根据所述目标区域的顶点以及中心点的第二背光亮度值,利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值。
在一些实施例中,所述插值方式包括贝塞尔曲线插值。
在一些实施例中,所述目标区域的顶点依次包括第一顶点、第二顶点、第三顶点及第四顶点,其中,所述利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值的步骤,包括:基于所述目标区域的第一顶点的亮度值、第二顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第一贝塞尔曲线;基于所述目标区域的第三顶点的亮度值、第四顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第二贝塞尔曲线;基于所述第一贝塞尔曲线上的第一插值点、所述第二贝塞尔曲线上的第二插值点以及所述中心点的亮度值,通过贝塞尔曲线插值的方式构造第三贝塞尔曲线;基于所述 第一贝塞尔曲线、所述第二贝塞尔曲线及所述第三贝塞尔曲线,得到所述目标区域中各个像素点的第一背光亮度值。
在一些实施例中,所述像素补偿模块64,用于:针对任一像素点,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子;根据所述补偿因子,分别对所述像素点的各个颜色通道进行补偿,得到所述像素点的第二像素值。
在一些实施例中,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子,包括:根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的第一补偿因子;根据所述像素点的像素灰度值,确定所述像素点的第二补偿因子;将所述第一补偿因子与所述第二补偿因子中的最小值,确定为所述像素点的补偿因子。
在一些实施例中,所述装置还包括:图像输入模块,用于在满足所述目标图像的显示条件的情况下,将所述目标图像的第二像素值输入所述显示组件,以使所述显示组件进行显示。
根据本公开的实施例,还提供了一种显示设备。图17为本公开的实施例的显示设备的框图。如图17所示,该显示设备包括:背光组件71、显示组件72以及上述的显示控制装置73,
所述背光组件包括驱动部件和多个背光分区,所述驱动部件用于根据所述多个背光分区的驱动值,驱动所述多个背光分区发射背光;
所述显示组件用于根据输入的像素值进行显示;
所述显示控制装置分别连接所述背光组件及所述显示组件,用于根据待显示的目标图像,确定所述目标图像在所述多个背光分区的驱动值以及补偿后的像素值,向所述背光组件输入所述驱动值,并向所述显示组件输入所述补偿后的像素值。
在一些实施例中,显示控制装置73可以为现场可编程门阵列FPGA,也可以为其它类型的逻辑器件,本公开对此不作限制。
图18为本公开实施例的一种电子设备的结构示意图。如图18所示,本 公开实施例提供一种电子设备包括:一个或多个处理器101、存储器102、一个或多个I/O接口103。存储器102上存储有一个或多个程序,当该一个或多个程序被该一个或多个处理器执行,使得该一个或多个处理器实现如上述实施例中任一的显示控制方法;一个或多个I/O接口103连接在处理器与存储器之间,配置为实现处理器与存储器的信息交互。
其中,处理器101为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器102为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)103连接在处理器101与存储器102间,能实现处理器101与存储器102的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施例中,处理器101、存储器102和I/O接口103通过总线104相互连接,进而与计算设备的其它组件连接。
在一些实施例中,该一个或多个处理器101包括现场可编程门阵列FPGA。
根据本公开的实施例,还提供一种计算机可读介质。该计算机可读介质上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例中任一的图像显示控制方法中的步骤。
特别地,根据本公开实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在机器可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被中央处理单元(CPU)执行时,执行本公开的系统中限定的上述功能。
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系 统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的电路或子电路可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的电路或子电路也可以设置在处理器中,例如,可以描述为:一种处理器,包括:接收电路和处理电路, 该处理模块包括写入子电路和读取子电路。其中,这些电路或子电路的名称在某种情况下并不构成对该电路或子电路本身的限定,例如,接收电路还可以被描述为“接收视频信号”。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示控制方法,其特征在于,包括:
    根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征值;
    对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
    根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
    根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
  2. 根据权利要求1所述的显示控制方法,其特征在于,所述根据显示设备的背光组件的多个背光分区,对目标图像的像素点进行分区特征提取,确定所述多个背光分区的第一背光特征值的步骤,包括:
    针对任一背光分区,根据所述目标图像在所述背光分区内的各像素点的像素灰度值,确定所述背光分区内各像素点的像素灰度值的平均值及最大值,其中,所述像素灰度值为所述第一像素值的多个颜色通道中的最大值;
    根据所述平均值及所述最大值的加权和,确定所述背光分区的第一背光特征值。
  3. 根据权利要求1所述的显示控制方法,其特征在于,所述对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值的步骤,包括:
    针对任一背光分区,根据所述背光分区的第一背光特征值以及所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值;
    其中,所述邻近分区包括与所述背光分区之间的分区距离小于或等于分 区距离阈值的背光分区;
    根据所述背光分区的第二背光特征值及预设的第一查找表,确定所述背光分区的第一区域亮度值。
  4. 根据权利要求2所述的显示控制方法,其特征在于,所述根据所述背光分区的第一背光特征值以及与所述背光分区的邻近分区的第一背光特征值,确定所述背光分区的第二背光特征值的步骤,包括:
    根据所述邻近分区的第一背光特征值及预设的滤波系数,确定所述邻近分区的第三背光特征值;
    将所述背光分区的第一背光特征值以及各个所述邻近分区的第三背光特征值中的最大值,确定为所述背光分区的第二背光特征值。
  5. 根据权利要求1-4中任一项所述的显示控制方法,其特征在于,所述背光组件包括驱动部件和所述多个背光分区的背光灯,所述方法还包括:
    根据所述多个背光分区的第一区域亮度值及预设的第二查找表,分别确定所述多个背光分区的驱动值;
    在满足所述目标图像的显示条件的情况下,将所述多个背光分区的驱动值输入所述驱动部件,以使所述驱动部件驱动所述多个背光分区的背光灯发射对应于所述目标图像的背光。
  6. 根据权利要求1所述的显示控制方法,其特征在于,所述根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤,包括:
    针对任一背光分区,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值;
    其中,所述扩散分区包括与所述背光分区之间的分区距离小于或等于扩散距离阈值的背光分区;
    根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像 素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值。
  7. 根据权利要求6所述的显示控制方法,其特征在于,在所述对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤之前,所述方法还包括:
    根据预设的扩散距离阈值,确定在所述多个背光分区之外的虚拟分区的位置及数量;
    根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值,
    其中,所述根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值以及所述背光分区的扩散分区的扩散因子,确定所述背光分区的第二区域亮度值的步骤,包括:
    在所述背光分区与所述显示设备边缘之间的分区距离小于所述扩散距离阈值的情况下,根据所述背光分区的第一区域亮度值、所述背光分区的扩散分区的第一区域亮度值、与所述背光分区之间的分区距离小于或等于所述扩散距离阈值的虚拟分区的扩展亮度值,以及相应的扩散分区和虚拟分区的扩散因子,确定所述背光分区的第二区域亮度值。
  8. 根据权利要求7所述的显示控制方法,其特征在于,所述根据所述多个背光分区的第一区域亮度值,分别确定各个虚拟分区的扩展亮度值的步骤,包括:
    根据所述多个背光分区的第一区域亮度值以及各个虚拟分区的影响因子,分别确定各个虚拟分区的扩展亮度值。
  9. 根据权利要求8所述的显示控制方法,其特征在于,所述影响因子与所述背光组件侧面的反射率相关联。
  10. 根据权利要求6所述的显示控制方法,其特征在于,所述根据所述多个背光分区的第二区域亮度值,分别对各个背光分区内的像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值的步骤,包括:
    针对任一目标区域,根据所述第二区域亮度值,分别确定所述目标区域 的顶点以及中心点的第二背光亮度值,所述目标区域是以各个背光分区的中心点为顶点,且尺寸与背光分区的尺寸相同的区域;
    根据所述目标区域的顶点以及中心点的第二背光亮度值,利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值。
  11. 根据权利要求10所述的显示控制方法,其特征在于,所述插值方式包括贝塞尔曲线插值。
  12. 根据权利要求11所述的显示控制方法,其特征在于,所述目标区域的顶点依次包括第一顶点、第二顶点、第三顶点及第四顶点,
    其中,所述利用预设的插值方式对所述目标区域中的各个像素点分别进行插值处理,得到所述目标区域中各个像素点的第一背光亮度值的步骤,包括:
    基于所述目标区域的第一顶点的亮度值、第二顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第一贝塞尔曲线;
    基于所述目标区域的第三顶点的亮度值、第四顶点的亮度值及中心点的亮度值,通过贝塞尔曲线插值的方式构造第二贝塞尔曲线;
    基于所述第一贝塞尔曲线上的第一插值点、所述第二贝塞尔曲线上的第二插值点以及所述中心点的亮度值,通过贝塞尔曲线插值的方式构造第三贝塞尔曲线;
    基于所述第一贝塞尔曲线、所述第二贝塞尔曲线及所述第三贝塞尔曲线,得到所述目标区域中各个像素点的第一背光亮度值。
  13. 根据权利要求1所述的显示控制方法,其特征在于,所述根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后的第二像素值的步骤,包括:
    针对任一像素点,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子;
    根据所述补偿因子,分别对所述像素点的各个颜色通道进行补偿,得到所述像素点的第二像素值。
  14. 根据权利要求13所述的显示控制方法,其特征在于,根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的补偿因子的步骤,包括:
    根据所述像素点的第一背光亮度值,采用非线性像素补偿的方式确定所述像素点的第一补偿因子;
    根据所述像素点的像素灰度值,确定所述像素点的第二补偿因子;
    将所述第一补偿因子与所述第二补偿因子中的最小值,确定为所述像素点的补偿因子。
  15. 根据权利要求1所述的显示控制方法,其特征在于,所述方法还包括:
    在满足所述目标图像的显示条件的情况下,将所述目标图像的第二像素值输入所述显示组件,以使所述显示组件进行显示。
  16. 一种显示控制装置,其特征在于,包括:
    特征提取模块,用于根据显示设备的背光组件的多个背光分区,对待显示的目标图像进行分区特征提取,确定所述多个背光分区的第一背光特征值;
    亮度值确定模块,用于对所述多个背光分区的第一背光特征值进行滤波,得到所述多个背光分区的第一区域亮度值,以使所述背光组件基于所述第一区域亮度值发射对应于所述目标图像的背光;
    背光模拟模块,用于根据所述多个背光分区的第一区域亮度值,对所述目标图像的各个像素点的背光进行模拟,得到所述目标图像的各个像素点的第一背光亮度值;
    像素补偿模块,用于根据所述目标图像的各个像素点的第一背光亮度值,对所述目标图像的各个像素点的第一像素值分别进行补偿,得到补偿后 的第二像素值,以使所述显示设备的显示组件基于所述第二像素值显示所述目标图像。
  17. 一种显示设备,其特征在于,包括:背光组件、显示组件以及根据权利要求16所述的显示控制装置,
    所述背光组件包括驱动部件和多个背光分区,所述驱动部件用于根据所述多个背光分区的驱动值,驱动所述多个背光分区发射背光;
    所述显示组件用于根据输入的像素值进行显示;
    所述显示控制装置分别连接所述背光组件及所述显示组件,用于根据待显示的目标图像,确定所述目标图像在所述多个背光分区的驱动值以及补偿后的像素值,向所述背光组件输入所述驱动值,并向所述显示组件输入所述补偿后的像素值。
  18. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至15中任一所述的显示控制方法。
  19. 根据权利要求18所述的电子设备,其特征在于,所述处理器包括现场可编程门阵列FPGA。
  20. 一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现如权利要求1至15中任一所述的显示控制方法中的步骤。
PCT/CN2022/084415 2022-03-31 2022-03-31 显示控制方法及装置、显示设备、电子设备以及介质 WO2023184340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000621.2A CN117157702A (zh) 2022-03-31 2022-03-31 显示控制方法及装置、显示设备、电子设备以及介质
PCT/CN2022/084415 WO2023184340A1 (zh) 2022-03-31 2022-03-31 显示控制方法及装置、显示设备、电子设备以及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084415 WO2023184340A1 (zh) 2022-03-31 2022-03-31 显示控制方法及装置、显示设备、电子设备以及介质

Publications (1)

Publication Number Publication Date
WO2023184340A1 true WO2023184340A1 (zh) 2023-10-05

Family

ID=88198637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084415 WO2023184340A1 (zh) 2022-03-31 2022-03-31 显示控制方法及装置、显示设备、电子设备以及介质

Country Status (2)

Country Link
CN (1) CN117157702A (zh)
WO (1) WO2023184340A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117079588A (zh) * 2023-10-17 2023-11-17 深圳蓝普视讯科技有限公司 一种Micro-LED显示屏节能控制方法、系统及存储介质
CN117316117A (zh) * 2023-10-12 2023-12-29 广州昶视电子科技股份有限公司 一种显示器面板背光分区控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799080A (zh) * 2017-11-03 2018-03-13 天津大学 一种基于分段式曲线的液晶像素补偿方法
CN108648700A (zh) * 2018-05-18 2018-10-12 京东方科技集团股份有限公司 一种背光源的动态调光显示控制方法和装置
US20190057659A1 (en) * 2017-08-21 2019-02-21 Novatek Microelectronics Corp. Brightness compensation method and circuit
CN109716427A (zh) * 2017-01-18 2019-05-03 华为技术有限公司 一种亮度调节方法及终端
CN112927654A (zh) * 2019-12-06 2021-06-08 Tcl集团股份有限公司 一种背光控制方法、装置及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716427A (zh) * 2017-01-18 2019-05-03 华为技术有限公司 一种亮度调节方法及终端
US20190057659A1 (en) * 2017-08-21 2019-02-21 Novatek Microelectronics Corp. Brightness compensation method and circuit
CN107799080A (zh) * 2017-11-03 2018-03-13 天津大学 一种基于分段式曲线的液晶像素补偿方法
CN108648700A (zh) * 2018-05-18 2018-10-12 京东方科技集团股份有限公司 一种背光源的动态调光显示控制方法和装置
CN112927654A (zh) * 2019-12-06 2021-06-08 Tcl集团股份有限公司 一种背光控制方法、装置及终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117316117A (zh) * 2023-10-12 2023-12-29 广州昶视电子科技股份有限公司 一种显示器面板背光分区控制系统
CN117316117B (zh) * 2023-10-12 2024-04-16 广州昶视电子科技股份有限公司 一种显示器面板背光分区控制系统
CN117079588A (zh) * 2023-10-17 2023-11-17 深圳蓝普视讯科技有限公司 一种Micro-LED显示屏节能控制方法、系统及存储介质
CN117079588B (zh) * 2023-10-17 2023-12-22 深圳蓝普视讯科技有限公司 一种Micro-LED显示屏节能控制方法、系统及存储介质

Also Published As

Publication number Publication date
CN117157702A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023184340A1 (zh) 显示控制方法及装置、显示设备、电子设备以及介质
WO2023207275A1 (zh) 显示控制方法及装置、显示设备、电子设备以及介质
CN108877694B (zh) 一种双层液晶屏、背光亮度控制方法、装置及电子设备
KR101796718B1 (ko) Led 백라이트의 다이나믹 디밍
JP4806102B2 (ja) 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体
CN101593508B (zh) 基于直方图的动态背光控制系统和方法
CN107993616B (zh) 一种图像显示方法及装置
US11398195B2 (en) Backlight brightness processing method and system, backlight brightness adjustment method, storage medium
WO2017080299A1 (zh) 液晶显示器及其亮度调节方法和装置
CN105047145A (zh) 背光亮度控制方法、背光亮度控制装置及显示终端
WO2019101005A1 (zh) 像素补偿方法、装置和终端设备
CN109243384B (zh) 显示设备及其驱动方法、驱动装置和计算机可读介质
WO2020224366A1 (zh) 背光模组的背光控制方法和装置、显示装置
US20200320941A1 (en) Method of enhancing contrast and a dual-cell display apparatus
US20210225225A1 (en) Display Panel, Control Method and Control Device Thereof
CN109716427A (zh) 一种亮度调节方法及终端
US8044944B2 (en) Defective pixel management for flat panel displays
CN105869579A (zh) 背光亮度调整方法、装置及显示终端
JP2016532885A (ja) Rgbwによるダイナミックな色忠実度の制御
CN114187880B (zh) 图像显示方法、图像显示装置和显示系统
CN113870802B (zh) 显示装置及其控制方法、相关设备
US8098264B2 (en) Method and apparatus for rendering computer graphics primitive
WO2024001502A1 (zh) 屏幕显示方法、屏幕显示装置、电子设备、程序及介质
US9368087B2 (en) Display backlight normalization
CN112368763A (zh) 控制装置、显示装置以及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934186

Country of ref document: EP

Kind code of ref document: A1