WO2023184182A1 - Electrochemical device and electronic device - Google Patents

Electrochemical device and electronic device Download PDF

Info

Publication number
WO2023184182A1
WO2023184182A1 PCT/CN2022/083833 CN2022083833W WO2023184182A1 WO 2023184182 A1 WO2023184182 A1 WO 2023184182A1 CN 2022083833 W CN2022083833 W CN 2022083833W WO 2023184182 A1 WO2023184182 A1 WO 2023184182A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric material
polymer dielectric
material layer
negative electrode
carbonate
Prior art date
Application number
PCT/CN2022/083833
Other languages
French (fr)
Chinese (zh)
Inventor
关文浩
陈茂华
谢远森
鲁宇浩
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2022/083833 priority Critical patent/WO2023184182A1/en
Priority to CN202280052319.1A priority patent/CN117730426A/en
Publication of WO2023184182A1 publication Critical patent/WO2023184182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

An electrochemical device (200) and an electronic device. The electrochemical device (200) comprises a negative electrode sheet (120), a positive electrode sheet (110), isolation membranes (130) and an electrolyte, the negative electrode sheet (120) comprising polymeric dielectric material layers (123), and the electrolyte comprising carbonate. By means of providing the polymeric dielectric material layers (123), the surface potential of the negative electrode sheet (120) can be increased, so that the surface potential thereof is higher than the nucleation potential of metal cations, and metal cation deposition of the negative electrode sheet (120) is inhibited; and meanwhile, a carbonate compound in the electrolyte can form on the surface of the negative electrode sheet (120) a stable SEI film having a low impedance, thereby reducing the internal resistance generated by intercalation/deintercalation of metal cations with respect to the negative electrode sheet (120) during a circulation process.

Description

电化学装置及电子装置Electrochemical devices and electronic devices 技术领域Technical field
本申请涉及电化学领域,尤其涉及一种电化学装置及电子装置。The present application relates to the field of electrochemistry, and in particular, to an electrochemical device and an electronic device.
背景技术Background technique
电化学装置例如锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等优势,在电子领域具有广泛的应用。随着电动汽车和可移动电子设备的高速发展,人们对电池的能量密度、安全性、循环性能等相关需求越来越高。Electrochemical devices such as lithium-ion batteries have the advantages of large specific energy, high operating voltage, low self-discharge rate, small size, and light weight, and are widely used in the electronic field. With the rapid development of electric vehicles and mobile electronic devices, people have higher and higher demands for battery energy density, safety, cycle performance and other related requirements.
其中,电化学装置的快充性能越来越受用户欢迎,电化学装置的负极极片作为提升快充性能的主要技术点之一,在电化学装置的充放电倍率性能方面发挥着重要的作用。以锂离子电池为例,在快速充电过程中,大量锂离子从正极极片快速脱出,经过电解液传质通过隔离膜,并嵌入负极极片的材料中,但当电化学装置设计存在缺陷、电化学装置结构变化等异常情况发生时,来自正极极片的锂离子可能无法快速嵌入负极极片的材料中,锂离子在负极极片表面析出,导致严重的容量损失,甚至造成短路的风险。Among them, the fast charging performance of electrochemical devices is becoming more and more popular among users. As one of the main technical points to improve fast charging performance, the negative electrode plate of electrochemical devices plays an important role in the charge and discharge rate performance of electrochemical devices. . Taking lithium-ion batteries as an example, during the fast charging process, a large number of lithium ions are quickly released from the positive electrode plate, pass through the isolation membrane through mass transfer through the electrolyte, and are embedded in the material of the negative electrode plate. However, when there are flaws in the design of the electrochemical device, When abnormal conditions such as changes in the structure of the electrochemical device occur, lithium ions from the positive electrode sheet may not be quickly embedded into the material of the negative electrode sheet, and lithium ions precipitate on the surface of the negative electrode sheet, resulting in severe capacity loss and even the risk of short circuit.
发明内容Contents of the invention
本申请提供一种电化学装置及电子装置,能够解决电化学装置中负极极片的金属阳离子析出问题及降低电化学装置在循环过程中的内阻。The present application provides an electrochemical device and an electronic device, which can solve the problem of metal cation precipitation from the negative electrode plate in the electrochemical device and reduce the internal resistance of the electrochemical device during the cycle.
第一方面,本申请提供了一种电化学装置,包括负极极片、正极极片和电解液,所述负极极片包括高分子介电材料层,所述电解液包括碳酸酯。In a first aspect, the present application provides an electrochemical device, including a negative electrode piece, a positive electrode piece, and an electrolyte. The negative electrode piece includes a polymer dielectric material layer, and the electrolyte includes carbonate.
在一些示例性的实施例中,当将所述高分子介电材料层放置于电场强度为10kV/mm至200kV/mm的电场中极化,撤去电场后,所述高分子介电材料层的剩余极化强度为50mC/m 2~100mC/m 2In some exemplary embodiments, when the polymer dielectric material layer is placed in an electric field with an electric field intensity of 10 kV/mm to 200 kV/mm for polarization, after the electric field is removed, the polymer dielectric material layer The residual polarization intensity is 50mC/m 2 ~ 100mC/m 2 .
在一些示例性的实施例中,所述高分子介电材料层包括高分子介电材料,所述高分子介电材料的分子链段中包括具有极性官能团的结构单元,且所述极性官能团在所述结构单元中不对称分布。In some exemplary embodiments, the polymer dielectric material layer includes a polymer dielectric material, the molecular segments of the polymer dielectric material include structural units with polar functional groups, and the polar The functional groups are asymmetrically distributed in the structural units.
在一些示例性的实施例中,所述极性官能团包括酰胺基、氟、氯、溴、羧酸基、酯基、氰基的至少一种。In some exemplary embodiments, the polar functional group includes at least one of amide group, fluorine, chlorine, bromine, carboxylic acid group, ester group, and cyano group.
在一些示例性的实施例中,所述高分子介电材料包括具有介电效应的聚偏氟乙烯的共聚物、聚偏氟乙烯与三氟乙烯的共聚物、聚偏氟乙烯与四氟乙烯的共聚物、奇数尼龙系介电聚合物和非晶态介电聚合物中的至少一种;In some exemplary embodiments, the polymer dielectric material includes a copolymer of polyvinylidene fluoride with dielectric effect, a copolymer of polyvinylidene fluoride and trifluoroethylene, and a copolymer of polyvinylidene fluoride and tetrafluoroethylene. At least one of copolymers, odd-numbered nylon dielectric polymers and amorphous dielectric polymers;
所述奇数尼龙系介电聚合物分子式为-(HN-(CH 2) x-CO-)n-,x为偶数,n为任意正整数; The molecular formula of the odd-numbered nylon dielectric polymer is -(HN-(CH 2 ) x -CO-)n-, x is an even number, and n is any positive integer;
所述非晶态介电聚合物包括亚乙烯基二氰/醋酸乙烯共聚物、亚乙烯基二氰/苯甲酸乙烯共聚物、亚乙烯基二氰/丙酸乙烯共聚物、亚乙烯基二氰/新戊酸乙烯共聚物、亚乙烯基二氰/甲基丙烯酸甲酯共聚物和亚乙烯基二氰/异丁烯共聚物中的至少一种。The amorphous dielectric polymer includes vinylidene dicyanide/vinyl acetate copolymer, vinylidene dicyanide/vinyl benzoate copolymer, vinylidene dicyanide/vinyl propionate copolymer, vinylidene dicyanide/vinyl propionate copolymer, and vinylidene dicyanide/vinyl benzoate copolymer. /At least one of vinylene pivalate copolymer, vinylidene dicyanide/methyl methacrylate copolymer, and vinylidene dicyanide/isobutylene copolymer.
在一些示例性的实施例中,所述高分子介电材料满足以下条件之一:In some exemplary embodiments, the polymer dielectric material satisfies one of the following conditions:
(Ⅰ)所述聚偏氟乙烯与聚三氟乙烯的共聚物中,所述聚三氟乙烯的共聚比例为20mol%~70mol%;(I) In the copolymer of polyvinylidene fluoride and polytrifluoroethylene, the copolymerization ratio of polytrifluoroethylene is 20 mol% to 70 mol%;
(Ⅱ)所述聚偏氟乙烯与聚四氟乙烯的共聚物中,所述聚四氟乙烯单体的共聚比例为30mol%以下;(II) In the copolymer of polyvinylidene fluoride and polytetrafluoroethylene, the copolymerization ratio of the polytetrafluoroethylene monomer is 30 mol% or less;
(Ⅲ)所述非晶态介电聚合物中,所述亚乙烯基二氰的共聚比例为30mol%~80mol%。(III) In the amorphous dielectric polymer, the copolymerization ratio of vinylidene dicyanide is 30 mol% to 80 mol%.
在一些示例性的实施例中,所述高分子介电材料在25℃下的矫顽场强度大于30kV/mm且小于200kV/mm。In some exemplary embodiments, the coercive field strength of the polymer dielectric material at 25° C. is greater than 30 kV/mm and less than 200 kV/mm.
在一些示例性的实施例中,所述高分子介电材料层的厚度为0.1μm至5μm。In some exemplary embodiments, the thickness of the polymer dielectric material layer is 0.1 μm to 5 μm.
在一些示例性的实施例中,所述碳酸酯包括饱和碳酸酯或不饱和碳酸酯化中的至少一种。In some exemplary embodiments, the carbonate includes at least one of saturated carbonate or unsaturated carbonate.
在一些示例性的实施例中,所述饱和碳酸酯包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯中的至少一种。In some exemplary embodiments, the saturated carbonate includes at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate.
在一些示例性的实施例中,所述不饱和碳酸酯包括碳酸亚乙烯酯、氟代碳酸乙烯酯中的至少一种。In some exemplary embodiments, the unsaturated carbonate includes at least one of vinylene carbonate and fluoroethylene carbonate.
在一些示例性的实施例中,所述电化学装置满足以下条件之一:In some exemplary embodiments, the electrochemical device satisfies one of the following conditions:
(a)当将所述高分子介电材料层放置于电场强度为10kV/mm至200kV/mm的电场中极化,撤去电场后,所述高分子介电材料层的剩余极化强度为70mC/m 2~100mC/m 2(a) When the polymer dielectric material layer is placed in an electric field with an electric field intensity of 10kV/mm to 200kV/mm for polarization, after the electric field is removed, the residual polarization intensity of the polymer dielectric material layer is 70mC /m 2 ~100mC/m 2 ;
(b)所述高分子介电材料在25℃下的矫顽场强度30kV/mm~50kV/mm。(b) The coercive field strength of the polymer dielectric material at 25°C is 30kV/mm to 50kV/mm.
(c)所述高分子介电材料层的厚度为0.1μm~3μm。(c) The thickness of the polymer dielectric material layer is 0.1 μm to 3 μm.
第二方面,本申请提供一种电化学装置的制备方法,包括:In a second aspect, this application provides a method for preparing an electrochemical device, including:
将高分子介电材料先涂覆在负极极片的表面,然后再进行极化处理,以得到高分子介电材料层;或,The polymer dielectric material is first coated on the surface of the negative electrode piece, and then polarized to obtain a polymer dielectric material layer; or,
将高分子介电材料层先进行极化处理,然后将经过极化处理的高分子介电材料层贴附在负极极片的表面,以得到高分子介电材料层。The polymer dielectric material layer is first subjected to polarization treatment, and then the polarized polymer dielectric material layer is attached to the surface of the negative electrode plate to obtain a polymer dielectric material layer.
在一些示例性的实施例中,将所述高分子介电材料置于平行电场中进行极化处理,所述平行电场的场强的范围为所述高分子介电材料在25℃下的矫顽场强度的0.1倍至6倍。In some exemplary embodiments, the polymer dielectric material is placed in a parallel electric field for polarization treatment, and the range of the field strength of the parallel electric field is the correction value of the polymer dielectric material at 25°C. 0.1 times to 6 times the refractory field strength.
第三方面,本申请提供一种电子装置,包括如上所述的电化学装置。In a third aspect, the present application provides an electronic device, including the electrochemical device as described above.
基于本申请的电化学装置及电子装置,电化学装置包括负极极片、正极极片和电解液,负极极片包括高分子介电材料层,电解液包括碳酸酯。在负极极片表层设置高分子介电材料层可提高负极极片表面电位,使其表面电位高于金属阳离子形核电位,抑制负极极片金属阳离子析出,同时电解液中的碳酸酯化合物可在负极极片表面形成稳定且具有低阻抗的SEI膜,降低循环过程中因金属阳离子在负极极片的嵌入/脱出产生的内阻。Based on the electrochemical device and electronic device of the present application, the electrochemical device includes a negative electrode piece, a positive electrode piece, and an electrolyte. The negative electrode piece includes a polymer dielectric material layer, and the electrolyte includes carbonate. Setting a polymer dielectric material layer on the surface of the negative electrode piece can increase the surface potential of the negative electrode piece, making its surface potential higher than the nucleation potential of metal cations, inhibiting the precipitation of metal cations from the negative electrode piece, and at the same time, the carbonate compound in the electrolyte can A stable and low-resistance SEI film is formed on the surface of the negative electrode piece, which reduces the internal resistance caused by the insertion/extraction of metal cations in the negative electrode piece during the cycle.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present application or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those skilled in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本申请一种实施的电化学装置的局部剖视图;Figure 1 is a partial cross-sectional view of an electrochemical device implemented in the present application;
图2为本申请一种实施的电极组件的正极极片与负极极片层叠设置的剖视图;Figure 2 is a cross-sectional view of a stacked positive electrode piece and a negative electrode piece of an electrode assembly according to an implementation of the present application;
图3为本申请一种实施的高分子介电材料层设于隔离膜表面的剖视图;Figure 3 is a cross-sectional view of a polymer dielectric material layer disposed on the surface of an isolation film according to one implementation of the present application;
图4为本申请一种实施的高分子介电材料层设于隔离膜表面和负极极片表层的剖视图;Figure 4 is a cross-sectional view of a polymer dielectric material layer disposed on the surface of the isolation film and the surface of the negative electrode sheet in one implementation of the present application;
图5为本申请一种实施的高分子介电材料层设于负极极片表层的剖视图;Figure 5 is a cross-sectional view of a polymer dielectric material layer disposed on the surface of the negative electrode plate in one implementation of the present application;
图6a为本申请一种实施的极化前α相PVDF分子链示意图;Figure 6a is a schematic diagram of the α-phase PVDF molecular chain before polarization in one implementation of the present application;
图6b为本申请一种实施的极化前β相PVDF分子链示意图;Figure 6b is a schematic diagram of the β-phase PVDF molecular chain before polarization in one implementation of the present application;
附图标记:Reference signs:
100、电极组件;100. Electrode assembly;
110、正极极片;111、正极集流体;112、正极活性材料层;110. Positive electrode piece; 111. Positive current collector; 112. Positive active material layer;
120、负极极片;121、负极集流体;122、负极活性材料层;123、高分子介电材料层;120. Negative electrode plate; 121. Negative electrode current collector; 122. Negative electrode active material layer; 123. Polymer dielectric material layer;
130、隔离膜;130. Isolation film;
200、电化学装置;200. Electrochemical device;
210、外包装;210a、内部空间。210. Outer packaging; 210a. Internal space.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.
如图1所示,为本申请一种实施例的电化学装置200的结构示意图,电化学装置200包括外包装210、电解液以及电极组件100。本申请中,电极组件100包括负极极片120、正极极片110和隔离膜130。电极组件100设于外包装210的内部空间210a,电解液填充于外包装210内部空间210a。本申请对电化学装置200没有特别限制,例如可以包括但不限于锂离子电池或钠离子电池。As shown in FIG. 1 , it is a schematic structural diagram of an electrochemical device 200 according to an embodiment of the present application. The electrochemical device 200 includes an outer package 210 , an electrolyte, and an electrode assembly 100 . In this application, the electrode assembly 100 includes a negative electrode piece 120 , a positive electrode piece 110 and an isolation film 130 . The electrode assembly 100 is disposed in the inner space 210a of the outer package 210, and the electrolyte is filled in the inner space 210a of the outer package 210. The electrochemical device 200 is not particularly limited in this application, and may include, but is not limited to, lithium-ion batteries or sodium-ion batteries.
如图2所示,为本申请一种实施例的电极组件100的结构示意图,电极组件100包括正极极片110、负极极片120和隔离膜130,隔离膜130设于正极极片110和负极极片120之间,以将正极极片110与负极极片120间隔开来,隔离膜130具有离子绝缘性,防止正极极片110与负极极片120接触后短接。As shown in FIG. 2 , it is a schematic structural diagram of an electrode assembly 100 according to an embodiment of the present application. The electrode assembly 100 includes a positive electrode piece 110 , a negative electrode piece 120 and an isolation film 130 . The isolation film 130 is disposed between the positive electrode piece 110 and the negative electrode. Between the pole pieces 120 to separate the positive pole piece 110 and the negative pole piece 120, the isolation film 130 has ion insulation to prevent the positive pole piece 110 and the negative pole piece 120 from being short-circuited after contact.
负极极片120包括高分子介电材料层123,高分子介电材料层123设于隔离膜130和负极极片120之间。如图2-图5所示,高分子介电材料层123的数量为至少一层,高分子介电材料层123可连接于隔离膜130和负极极片120中至少一个的表面。例如,可设置高分子介电材料层123位于负极极片120表面,并与隔离膜130贴合或间隔设置;或者,设置高分子介电材料层123位于隔离膜130朝向负极极片120的表面,并与负极极片120贴合或间隔设置。The negative electrode piece 120 includes a polymer dielectric material layer 123 , and the polymer dielectric material layer 123 is disposed between the isolation film 130 and the negative electrode piece 120 . As shown in FIGS. 2 to 5 , there is at least one polymer dielectric material layer 123 , and the polymer dielectric material layer 123 can be connected to the surface of at least one of the isolation film 130 and the negative electrode piece 120 . For example, the polymer dielectric material layer 123 can be disposed on the surface of the negative electrode plate 120 and attached to or spaced apart from the isolation film 130; or the polymer dielectric material layer 123 can be disposed on the surface of the isolation film 130 facing the negative electrode plate 120. , and are attached to or spaced apart from the negative electrode piece 120 .
高分子介电材料层123包括具有介电性的高分子介电材料,将高分子介电材料层123设于隔离膜130和负极极片120之间,可辅助改变负极极片120表面电位,例如,将高分子介电材料层123带正电荷的一侧朝向负极极片120设置时,可以在宏观上使负极极片120表面带正电,强制提高负极极片120表面电位,使其表面电位高于金属阳离子形核电位,抑制负极极片120析金属阳离子。当金属阳离子到达高分子介电材料层123表面,高分子介电材料层123内部的自建电场对局域出现的集中金属阳离子流进行负反馈,削弱局部出现的大电流,提前均匀化负极极片120表面电流密度,抑制金属阳离子在负极极片120析出。The polymer dielectric material layer 123 includes a polymer dielectric material with dielectric properties. The polymer dielectric material layer 123 is disposed between the isolation film 130 and the negative electrode piece 120 to assist in changing the surface potential of the negative electrode piece 120. For example, when the positively charged side of the polymer dielectric material layer 123 is placed toward the negative electrode piece 120, the surface of the negative electrode piece 120 can be macroscopically charged with positive charge, and the surface potential of the negative electrode piece 120 can be forcibly increased, so that the surface potential of the negative electrode piece 120 can be increased. The potential is higher than the nucleation potential of metal cations, which inhibits the negative electrode plate 120 from dissolving metal cations. When the metal cations reach the surface of the polymer dielectric material layer 123, the self-built electric field inside the polymer dielectric material layer 123 performs negative feedback on the local concentrated metal cation flow, weakening the local large current and uniformizing the negative electrode in advance. The current density on the surface of the sheet 120 suppresses the precipitation of metal cations on the negative electrode sheet 120 .
本申请中选择具有介电效应的高分子介电材料应用于高分子介电材料层中,当将高分子介电材料层放置于电场强度为10kV/mm至200kV/mm的电场中极化,撤去电场后,高分子介电材料层具有剩余极化强度,且剩余极化强度范围为大于等于50mC/m 2且小于等于100mC/m 2。高分子介电材料层的剩余极化强度可使用标准电滞回线测量仪(型号:BZ-MTF-DH1)测试:将尺寸为10cm×10cm的高分子介电材料层放入测试样品盒中,介电材料层通过与样品盒中的探针接触连接至测试主机信号接入端,关闭样品盒,接通样品盒电源,调节极化电压至电场强度为10kV/mm至200kV/mm,点击开始测试,可获得材料电滞回线,读取剩余极化强度。 In this application, a polymer dielectric material with a dielectric effect is selected to be used in the polymer dielectric material layer. When the polymer dielectric material layer is placed in an electric field with an electric field intensity of 10kV/mm to 200kV/mm for polarization, After the electric field is removed, the polymer dielectric material layer has residual polarization intensity, and the range of the residual polarization intensity is greater than or equal to 50mC/m 2 and less than or equal to 100mC/m 2 . The residual polarization strength of the polymer dielectric material layer can be tested using a standard hysteresis loop measuring instrument (model: BZ-MTF-DH1): Place the polymer dielectric material layer with a size of 10cm × 10cm into the test sample box , the dielectric material layer is connected to the signal access terminal of the test host through contact with the probe in the sample box, close the sample box, turn on the power supply of the sample box, adjust the polarization voltage to the electric field strength of 10kV/mm to 200kV/mm, click Start the test, obtain the hysteresis loop of the material, and read the residual polarization intensity.
其中,高分子介电材料的高分子链段中包括具有极性官能团的结构单元,各结构单元包括至少一个极性官能团。其中,极性官能团在结构单元中不对称分布,使得各结构单元中正电荷中心和负电荷中心空间不对称,从而使多个结构单元聚合后形成的高分子链段将具有介电极化效应,进一步地,多个结构单元在高分子链段中不对称分布。当高分子介电材料置于电场中极化时,呈不对称分布的极性官能团在外部电场作用下,被改变取向方向,并且带有相同极性的官能团具相同空间取向,由此产生较大的偶极矩,高分子介电材料的分子链段上极性基团越多,高分子介电材料在外部电场作用下越容易产生空间极化。Wherein, the polymer chain segment of the polymer dielectric material includes structural units with polar functional groups, and each structural unit includes at least one polar functional group. Among them, the polar functional groups are asymmetrically distributed in the structural units, making the positive charge center and negative charge center in each structural unit spatially asymmetrical, so that the polymer chain segment formed after the polymerization of multiple structural units will have a dielectric polarization effect. Furthermore, multiple structural units are asymmetrically distributed in the polymer chain segments. When a polymer dielectric material is polarized in an electric field, the asymmetrically distributed polar functional groups are changed in orientation under the action of an external electric field, and functional groups with the same polarity have the same spatial orientation, resulting in a relatively The larger the dipole moment and the more polar groups on the molecular segments of the polymer dielectric material, the easier it is for the polymer dielectric material to produce spatial polarization under the action of an external electric field.
在一些示例性的实施例中,极性官能团包括酰胺基、氟、氯、溴、羧酸基、酯基、氰基的至少一种。以高分子介电材料包括聚偏氟乙烯(PVDF)为例,如图6a所示,为极化前α相PVDF分子链示意图,如图6b所示,为极化前β相PVDF分子链示意图,图6a和图6b中箭头所指方向为极性官能团电偶极矩方向。α相PVDF和β相PVDF经极化处理,分子链上的极性基团氟被改变取向方向,且取向趋于相同,从而提高α相PVDF和β相PVDF的偶极矩,使得撤去电场后α相PVDF和β相PVDF仍存在剩余极化强度。In some exemplary embodiments, the polar functional group includes at least one of amide group, fluorine, chlorine, bromine, carboxylic acid group, ester group, and cyano group. Taking polymer dielectric materials including polyvinylidene fluoride (PVDF) as an example, Figure 6a is a schematic diagram of the α-phase PVDF molecular chain before polarization, and Figure 6b is a schematic diagram of the β-phase PVDF molecular chain before polarization. , the direction pointed by the arrow in Figure 6a and Figure 6b is the direction of the electric dipole moment of the polar functional group. After the polarization treatment of α-phase PVDF and β-phase PVDF, the polar group fluorine on the molecular chain is changed in the orientation direction, and the orientation tends to be the same, thereby increasing the dipole moment of α-phase PVDF and β-phase PVDF, so that after the electric field is removed There is still residual polarization intensity in α-phase PVDF and β-phase PVDF.
在一些示例性的实施例中,高分子介电材料包括具有介电效应的聚偏氟乙烯的共聚物、具有介电效应的聚偏氟乙烯与三氟乙烯的共聚物、具有介电效应的聚偏氟乙烯与四氟乙烯的共聚物、具有介电效应的奇数尼龙系介电聚合物和具有介电效应的非晶态介电聚合物中的至少一种。In some exemplary embodiments, the polymer dielectric material includes a copolymer of polyvinylidene fluoride with dielectric effect, a copolymer of polyvinylidene fluoride and trifluoroethylene with dielectric effect, a copolymer of polyvinylidene fluoride with dielectric effect, At least one of a copolymer of polyvinylidene fluoride and tetrafluoroethylene, an odd-numbered nylon-based dielectric polymer with dielectric effect, and an amorphous dielectric polymer with dielectric effect.
奇数尼龙系介电聚合物分子式为-(HN-(CH 2) x-CO-)n-,x为偶数,n为任意正整数。 The molecular formula of the odd-numbered nylon dielectric polymer is -(HN-(CH 2 ) x -CO-)n-, x is an even number, and n is any positive integer.
非晶态介电聚合物包括亚乙烯基二氰/醋酸乙烯共聚物P(VDCN-VAC)、亚乙烯基二氰/苯甲酸乙烯共聚物P(VDCN-VBz)、亚乙烯基二氰/丙酸乙烯共聚物P(VDCN-VPr)、亚乙烯基二氰/新戊酸乙烯共聚物P(VDCN-VPiv)、亚乙烯基二氰/甲基丙烯酸甲酯共聚物P(VDCN-MMA)和亚乙烯基二氰/异丁烯共聚物P(VDCN-IB)中的至少一种。Amorphous dielectric polymers include vinylidene dicyanide/vinyl acetate copolymer P (VDCN-VAC), vinylidene dicyanide/vinyl benzoate copolymer P (VDCN-VBz), vinylidene dicyanide/propylene Vinyl acid copolymer P (VDCN-VPr), vinylidene dicyanide/vinyl pivalate copolymer P (VDCN-VPiv), vinylidene dicyanide/methyl methacrylate copolymer P (VDCN-MMA) and At least one of vinylidene dicyanotriene/isobutylene copolymer P (VDCN-IB).
聚偏氟乙烯与聚三氟乙烯的共聚物中,聚三氟乙烯的共聚比例为20mol%~70mol%;聚偏氟乙烯与聚四氟乙烯的共聚物中,聚四氟乙烯单体的共聚比例为30mol%以下。In the copolymer of polyvinylidene fluoride and polytrifluoroethylene, the copolymerization ratio of polytrifluoroethylene is 20 mol% to 70 mol%; in the copolymer of polyvinylidene fluoride and polytetrafluoroethylene, the copolymerization ratio of polytetrafluoroethylene monomer The proportion is 30 mol% or less.
非晶态介电聚合物中,亚乙烯基二氰的共聚比例为大于或等于30mol%且小于或等于80mol%。In the amorphous dielectric polymer, the copolymerization ratio of vinylidene dicyanide is greater than or equal to 30 mol% and less than or equal to 80 mol%.
在一些示例性的实施例中,高分子介电材料在25℃下的矫顽场强度大于30kV/mm且小于200kV/mm。通过选择满足上述矫顽场强度范围的高分子介电材料,将高分子介电材料进行极化处理后,可使高分子介电材料层123内形成能够均匀负极极片120表面电流的内建电场。优选地,高分子介电材料在25℃下的矫顽场强度30kV/mm~50kV/mm,例如,矫顽场强度为30kV/mm、35kV/mm、40kV/mm、45kV/mm或50kV/mm等。In some exemplary embodiments, the coercive field strength of the polymer dielectric material at 25° C. is greater than 30 kV/mm and less than 200 kV/mm. By selecting a polymer dielectric material that satisfies the above-mentioned coercive field strength range and performing polarization treatment on the polymer dielectric material, a built-in layer capable of uniformizing the surface current of the negative electrode plate 120 can be formed in the polymer dielectric material layer 123 . electric field. Preferably, the coercive field strength of the polymer dielectric material at 25°C is 30kV/mm to 50kV/mm. For example, the coercive field strength is 30kV/mm, 35kV/mm, 40kV/mm, 45kV/mm or 50kV/mm. mm etc.
在一些示例性的实施例中,高分子介电材料层123的厚度为0.1μm至5μm,例如,高分 子介电材料层123的厚度为可为0.1μm、1μm、3μm、4μm、或5μm等。高分子介电材料层123厚度过薄难以在高分子介电材料层123内形成有效的内建电场来均匀负极极片120表面的电流;当高分子介电材料层123的厚度大于0.1μm时,高分子介电材料层123厚度过厚,金属阳离子难以穿透高分子介电材料层123迁移至负极极片120内,同时高分子介电材料层123过厚将占用较多的电化学装置200内部空间210a,导致电化学装置200内的非活性物质占比增大。另外,高分子介电材料层123过厚或过薄,均不利于高分子介电材料层123随负极极片120或隔离膜130弯折加工,限制高分子介电材料层123在电化学装置200中的应用。优选地,高分子介电材料层123的厚度为0.1μm至3μm。优选地,高分子介电材料层123的厚度为0.1μm~3μm。In some exemplary embodiments, the thickness of the polymer dielectric material layer 123 is 0.1 μm to 5 μm. For example, the thickness of the polymer dielectric material layer 123 may be 0.1 μm, 1 μm, 3 μm, 4 μm, or 5 μm, etc. . If the thickness of the polymer dielectric material layer 123 is too thin, it is difficult to form an effective built-in electric field in the polymer dielectric material layer 123 to uniform the current on the surface of the negative electrode piece 120; when the thickness of the polymer dielectric material layer 123 is greater than 0.1 μm. If the polymer dielectric material layer 123 is too thick, it is difficult for metal cations to penetrate the polymer dielectric material layer 123 and migrate into the negative electrode piece 120. At the same time, if the polymer dielectric material layer 123 is too thick, it will occupy more electrochemical devices. 200 internal space 210a, resulting in an increase in the proportion of inactive substances in the electrochemical device 200. In addition, if the polymer dielectric material layer 123 is too thick or too thin, it is not conducive to the bending process of the polymer dielectric material layer 123 with the negative electrode plate 120 or the isolation film 130, and limits the polymer dielectric material layer 123 in the electrochemical device. 200 applications. Preferably, the thickness of the polymer dielectric material layer 123 is 0.1 μm to 3 μm. Preferably, the thickness of the polymer dielectric material layer 123 is 0.1 μm˜3 μm.
在一些示例性的实施例中,高分子介电材料层123还包括粘接剂,高分子介电材料与粘接剂的重量比为0.05~0.15:1。粘接剂包括N-甲基吡咯烷酮、丙二醇、丙三醇或甘二醇中的至少一种。In some exemplary embodiments, the polymer dielectric material layer 123 further includes an adhesive, and the weight ratio of the polymer dielectric material to the adhesive is 0.05˜0.15:1. The adhesive includes at least one of N-methylpyrrolidone, propylene glycol, glycerol or glycol.
本申请中,电解液包括碳酸酯,碳酸酯包括饱和碳酸酯或不饱和碳酸酯中的至少一种。电解液中的碳酸酯可在负极极片120表面形成稳定且具有低阻抗的SEI膜(solid electrolyte interface,固体电解质界面膜),降低循环过程中因金属阳离子在负极极片120的嵌入/脱出而产生的内阻,降低电化学装置的循环过程中的内阻,可进一步提升电化学装置的性能。In this application, the electrolyte includes carbonate, and the carbonate includes at least one of saturated carbonate or unsaturated carbonate. The carbonate in the electrolyte can form a stable and low-resistance SEI film (solid electrolyte interface, solid electrolyte interface film) on the surface of the negative electrode piece 120, reducing the risk of metal cations intercalating/extracting from the negative electrode piece 120 during the cycle. The internal resistance generated reduces the internal resistance during the circulation process of the electrochemical device, which can further improve the performance of the electrochemical device.
在一些示例性的实施例中,饱和碳酸酯包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯中的至少一种。在一些示例性的实施例中,不饱和碳酸酯包括碳酸亚乙烯酯、氟代碳酸乙烯酯中的至少一种。In some exemplary embodiments, the saturated carbonate includes at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate. In some exemplary embodiments, the unsaturated carbonate includes at least one of vinylene carbonate and fluoroethylene carbonate.
本申请中的电解液还包括锂盐,本申请对锂盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可,例如,锂盐可以包括LiTFSI、LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3或LiPO 2F 2等中的至少一种。 The electrolyte in this application also includes lithium salts. This application has no special restrictions on lithium salts. Any lithium salt known in the art can be used, as long as the purpose of this application can be achieved. For example, the lithium salts can include LiTFSI, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 or LiPO 2 F At least one of 2 etc.
本申请中的电解液还包括其他非水溶剂,其他非水溶剂没有特别限定,只要能实现本申请的目的即可,例如,非水溶剂可以包括羧酸酯化合物、醚化合物、腈化合物或其它有机溶剂等中的至少一种,例如,可以包括,但不限于乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸仲丁酯、乙酸异丁酯或乙酸叔丁酯中的至少一种。The electrolyte in this application also includes other non-aqueous solvents. Other non-aqueous solvents are not particularly limited as long as they can achieve the purpose of this application. For example, the non-aqueous solvents may include carboxylate compounds, ether compounds, nitrile compounds or other At least one of organic solvents and the like, for example, may include, but is not limited to, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate or tert-acetate. At least one of butyl esters.
正极极片110包括正极集流体111和正极活性材料层112,正极活性材料层112设于正极集流体111的至少一个表面。负极极片120包括负极集流体121和负极活性材料层122,负极活性材料层122设于负极集流体121的至少一个表面。负极活性材料层122具有孔隙结构,以形成金属阳离子嵌入的空间。高分子介电材料层123设于负极活性材料层122表面。The positive electrode sheet 110 includes a positive current collector 111 and a positive active material layer 112 . The positive active material layer 112 is provided on at least one surface of the positive current collector 111 . The negative electrode sheet 120 includes a negative electrode current collector 121 and a negative electrode active material layer 122 . The negative electrode active material layer 122 is provided on at least one surface of the negative electrode current collector 121 . The negative active material layer 122 has a pore structure to form spaces where metal cations are embedded. The polymer dielectric material layer 123 is provided on the surface of the negative active material layer 122 .
本申请的负极极片120没有特别限制,负极活性材料层122可以为现有技术的任何负极活 性材料层122,负极活性材料层122包括天然石墨、人造石墨、硬碳、软碳、硅、硅碳或硅氧化物等中的至少一种;负极集流体121可以为本领域公知的任何负极集流体121,如铜箔、铝箔、铝合金箔或复合集流体等。The negative electrode sheet 120 of the present application is not particularly limited. The negative active material layer 122 can be any negative active material layer 122 in the prior art. The negative active material layer 122 includes natural graphite, artificial graphite, hard carbon, soft carbon, silicon, and silicon. At least one of carbon or silicon oxide; the negative electrode current collector 121 can be any negative electrode current collector 121 known in the art, such as copper foil, aluminum foil, aluminum alloy foil or composite current collector.
本申请的隔离膜130没有特别限制,例如,隔离膜130可包括由对本申请的电解液稳定的材料制得,使电解液内的离子可从隔离膜130穿过,以使电解液内的离子能够在正极极片110和负极极片120之间活动,例如隔离膜130可包括聚乙烯(PE)等。The isolation membrane 130 of the present application is not particularly limited. For example, the isolation membrane 130 may be made of a material that is stable to the electrolyte of the present application, so that the ions in the electrolyte can pass through the isolation membrane 130, so that the ions in the electrolyte can It can move between the positive electrode piece 110 and the negative electrode piece 120. For example, the isolation film 130 may include polyethylene (PE) or the like.
高分子介电材料层123设于负极活性材料层122表面或设于隔离膜130表面时,高分子介电材料层123内的高分子介电材料能够与负极活性材料层122和隔离膜130稳定地连接,不易被剥离。When the polymer dielectric material layer 123 is disposed on the surface of the negative electrode active material layer 122 or the surface of the isolation film 130, the polymer dielectric material in the polymer dielectric material layer 123 can be stable with the negative electrode active material layer 122 and the isolation film 130. Ground connection, not easy to be stripped.
在负极极片120的厚度方向X,高分子介电材料层123全部覆盖负极活性材料层122。In the thickness direction X of the negative electrode sheet 120 , the polymer dielectric material layer 123 completely covers the negative electrode active material layer 122 .
隔离膜130设于正极极片110和负极极片120之间,其中,负极极片120、隔离膜130和正极极片110可沿负极极片120厚度方向X依次层叠设置或绕卷设置。The isolation film 130 is disposed between the positive electrode piece 110 and the negative electrode piece 120 . The negative electrode piece 120 , the isolation film 130 and the positive electrode piece 110 can be stacked or wound in sequence along the thickness direction X of the negative electrode piece 120 .
本申请的正极极片110没有特别限制,正极活性材料层112包括镍钴锰三元材料、镍钴铝材料、磷酸铁锂、钴酸锂、锰酸锂、磷酸锰铁锂或钛酸锂中的至少一种;正极集流体111可以为本领域公知的任何正极集流体111,如铝箔、铝合金箔或复合集流体等,正极活性材料层112可以为现有技术的任何正极活性材料层112。The positive electrode sheet 110 of the present application is not particularly limited. The positive active material layer 112 includes nickel cobalt manganese ternary material, nickel cobalt aluminum material, lithium iron phosphate, lithium cobalt oxide, lithium manganate, lithium iron manganese phosphate or lithium titanate. At least one of; the positive electrode current collector 111 can be any positive electrode current collector 111 known in the art, such as aluminum foil, aluminum alloy foil or composite current collector, etc., and the positive electrode active material layer 112 can be any positive electrode active material layer 112 in the prior art. .
电极组件100还包括正极耳和负极耳,正极耳与正极集流体111电性连接,负极耳与负极集流体121电性连接。当电极组件100设于电化学装置200内时,正极耳和负极耳用于与外部电路电性连接,以对电化学装置200进行充放电,以及用于监测电化学装置200内部工作状态。The electrode assembly 100 also includes a positive electrode tab and a negative electrode tab. The positive electrode tab is electrically connected to the positive electrode current collector 111 , and the negative electrode tab is electrically connected to the negative electrode current collector 121 . When the electrode assembly 100 is disposed in the electrochemical device 200, the positive electrode tab and the negative electrode tab are used to electrically connect with the external circuit to charge and discharge the electrochemical device 200, and to monitor the internal working status of the electrochemical device 200.
本申请实施例还提供一种电极组件100的制备方法,用于制备如上所述的电极组件100。制备方法包括:An embodiment of the present application also provides a method for preparing the electrode assembly 100, which is used to prepare the electrode assembly 100 as described above. Preparation methods include:
将高分子介电材料先涂覆在隔离膜130和负极极片120中至少一个的表面,然后再进行极化处理,即得到高分子介电材料层123;或者,将高分子介电材料先进行极化处理,然后将经过极化处理的高分子介电材料贴附在隔离膜130和负极极片120中至少一个的表面,即得到高分子介电材料层123;高分子介电材料层123内具有的极化电场可有效改善负极极片120表面电位,从而改善负极极片120表面析金属阳离子的状态。The polymer dielectric material is first coated on the surface of at least one of the isolation film 130 and the negative electrode piece 120, and then polarized to obtain the polymer dielectric material layer 123; or, the polymer dielectric material is first coated on the surface of at least one of the isolation film 130 and the negative electrode piece 120. Perform polarization treatment, and then attach the polarized polymer dielectric material to the surface of at least one of the isolation film 130 and the negative electrode piece 120 to obtain the polymer dielectric material layer 123; the polymer dielectric material layer The polarization electric field in 123 can effectively improve the surface potential of the negative electrode piece 120, thereby improving the state of metal cations deposited on the surface of the negative electrode piece 120.
电极组件100的制备方法还包括将高分子介电材料层123设于隔离膜130和负极极片120之间,以及将隔离膜130设于负极极片120和正极极片110之间,获得电极组件100。其中,对高分子介电材料进行极化处理后,还使形成的高分子介电材料层123相对的两侧的电荷不同,并在组装后的电极组件100中,高分子介电材料层123带正电荷的一侧朝向负极极片120设置,从而能够在宏观上使负极极片120表面带正电,强制提高负极极片120表面电位,使其表面电 位高于金属阳离子形核电位,抑制负极极片120析金属阳离子。The preparation method of the electrode assembly 100 also includes disposing the polymer dielectric material layer 123 between the isolation film 130 and the negative electrode piece 120, and disposing the isolation film 130 between the negative electrode piece 120 and the positive electrode piece 110 to obtain an electrode. Components 100. Among them, after the polymer dielectric material is polarized, the charges on opposite sides of the formed polymer dielectric material layer 123 are also made different, and in the assembled electrode assembly 100, the polymer dielectric material layer 123 The positively charged side is disposed toward the negative electrode piece 120, so that the surface of the negative electrode piece 120 can be positively charged macroscopically, and the surface potential of the negative electrode piece 120 is forcibly increased, making its surface potential higher than the nucleation potential of metal cations, inhibiting The negative electrode piece 120 precipitates metal cations.
在一些示例性的实施例中,将高分子介电材料进行极化处理的方法包括:将高分子介电材料置于平行电场中进行极化处理,平行电场的场强范围为高分子介电材料在25℃下的矫顽场强度的0.1倍至6倍。将高分子介电材料置于平行电场进行极化处理的时间范围可为30min。In some exemplary embodiments, a method for polarizing a polymer dielectric material includes: placing the polymer dielectric material in a parallel electric field for polarization treatment, and the field strength range of the parallel electric field is the polymer dielectric 0.1 times to 6 times the coercive field strength of the material at 25°C. The time range for placing the polymer dielectric material in a parallel electric field for polarization treatment can be 30 minutes.
高分子介电材料可在不定型的状态设于隔离膜130或负极极片120表面,再进行极化处理,例如,不定型的状态包括粉末状或浆料状等。高分子介电材料也可在定型状态并极化处理后,设于隔离膜130或负极极片120表面,例如,定型的状态包括呈薄膜、片状等。The polymer dielectric material can be disposed on the surface of the isolation film 130 or the negative electrode piece 120 in an amorphous state, and then undergoes polarization treatment. For example, the amorphous state includes powder or slurry. The polymer dielectric material can also be disposed on the surface of the isolation film 130 or the negative electrode piece 120 in a shaped state and after polarization treatment. For example, the shaped state includes a film, a sheet, etc.
当高分子介电材料在不定型状态设于隔离膜130或负极极片120表面时,可与粘接剂混合后,涂覆在隔离膜130或负极极片120的表面并干燥,再进行极化处理,形成高分子介电材料层123。When the polymer dielectric material is disposed on the surface of the isolation film 130 or the negative electrode piece 120 in an amorphous state, it can be mixed with an adhesive, coated on the surface of the isolation film 130 or the negative electrode piece 120 and dried, and then polarized. chemical treatment to form a polymer dielectric material layer 123.
当将高分子介电材料加工成定型的状态时,可粘接于隔离膜130或负极极片120表面,或者,初步连接于隔离膜130或负极极片120表面,极化处理形成高分子介电材料层123后,在后续电化学装置200加工过程中,例如在电化学装置200的化成步骤中,进行施加压力和热处理中的至少一种处理方法作用于高分子介电材料层123,将高分子介电材料层123固定于隔离膜130或负极极片120。When the polymer dielectric material is processed into a finalized state, it can be bonded to the surface of the isolation film 130 or the negative electrode piece 120, or it can be initially connected to the surface of the isolation film 130 or the negative electrode piece 120, and then polarized to form a polymer dielectric material. After the electrical material layer 123 is formed, during the subsequent processing of the electrochemical device 200, for example, in the formation step of the electrochemical device 200, at least one of pressure and heat treatment is performed on the polymer dielectric material layer 123, so that The polymer dielectric material layer 123 is fixed on the isolation film 130 or the negative electrode piece 120 .
本申请中的外包装没有特别限制,可以使用本领域公知的外包装,例如可以是硬壳,例如硬塑料壳、铝壳、钢壳等;也可以是软包,例如袋式软包,软包的材质可以是铝塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)中的至少一种。The outer packaging in this application is not particularly limited, and any well-known outer packaging in the art can be used. For example, it can be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.; it can also be a soft bag, such as a bag-type soft bag, a soft bag, etc. The bag may be made of aluminum plastic, such as at least one of polypropylene (PP), polybutylene terephthalate (PBT), and polybutylene succinate (PBS).
本申请还提供了一种电子装置,包括如上的电化学装置200,例如,可包括汽车、手机等。This application also provides an electronic device, including the above electrochemical device 200, which may include, for example, a car, a mobile phone, etc.
以下将以电化学装置200为锂离子电池为例,结合具体实施例对本申请作进一步详细的说明。Taking the electrochemical device 200 as a lithium-ion battery as an example, the present application will be described in further detail below with reference to specific embodiments.
实施例1Example 1
高分子介电材料层123的制备:Preparation of polymer dielectric material layer 123:
(1)提供粉末状的α相聚偏氟乙烯(PVDF)作为高分子介电材料、N-甲基吡咯烷酮(NMP)作为粘接剂,α相PVDF高分子介电材料25℃下矫顽场强度为50kV/mm,将粉末状的α相PVDF高分子介电材料分散于N-甲基吡咯烷酮中,搅拌使α相PVDF分散均匀,获得介电浆料,其中,α相PVDF与NMP的重量比为0.12,即介电浆料的固含量为12%。(1) Provide powdered α-phase polyvinylidene fluoride (PVDF) as a polymer dielectric material and N-methylpyrrolidone (NMP) as a binder. The α-phase PVDF polymer dielectric material has a coercive field strength at 25°C. is 50kV/mm, disperse the powdery α-phase PVDF polymer dielectric material in N-methylpyrrolidone, stir to disperse the α-phase PVDF evenly, and obtain a dielectric slurry, in which the weight ratio of α-phase PVDF to NMP is 0.12, that is, the solid content of the dielectric slurry is 12%.
(2)采用刮刀将介电浆料均匀涂覆于厚度15μm的聚乙烯(PE)隔离膜130其中一个表面,置于真空干燥箱中80℃烘干。其中,烘干后,附着于隔离膜130表面的高分子介电材料的厚度为1μm(也即后续获得的附着于隔离膜130表面的高分子介电材料层123的厚度为1μm)。(2) Use a scraper to evenly apply the dielectric slurry on one surface of the polyethylene (PE) isolation film 130 with a thickness of 15 μm, and place it in a vacuum drying oven to dry at 80°C. After drying, the thickness of the polymer dielectric material attached to the surface of the isolation film 130 is 1 μm (that is, the thickness of the subsequently obtained polymer dielectric material layer 123 attached to the surface of the isolation film 130 is 1 μm).
(3)将表面附着有高分子介电材料的隔离膜130放置于极化装置的平行电场中进行极化, 极化装置包括用于产生平行电场的正极压板和负极压板,正极压板和负极压板之间的平行电场方向由正极压板指向负极压板,高分子介电材料贴合负极压板放置,平行电场场强为50kV/mm,极化时间为30min,极化后的α相聚偏氟乙烯和N-甲基吡咯烷酮形成设于隔离膜130表面的高分子介电材料层123,将高分子介电材料层123和隔离膜130裁切成(42mm×62mm)的规格待用。高分子介电材料层123的剩余极化强度为53mC/m 2(3) The isolation film 130 with the polymer dielectric material attached to the surface is placed in the parallel electric field of the polarization device for polarization. The polarization device includes a positive pressure plate and a negative pressure plate for generating a parallel electric field. The positive pressure plate and the negative pressure plate are used to generate parallel electric fields. The parallel electric field direction is from the positive pressure plate to the negative pressure plate. The polymer dielectric material is placed close to the negative pressure plate. The parallel electric field strength is 50kV/mm and the polarization time is 30 minutes. After polarization, the α-phase polyvinylidene fluoride and N - Methyl pyrrolidone forms a polymer dielectric material layer 123 on the surface of the isolation film 130, and the polymer dielectric material layer 123 and the isolation film 130 are cut into specifications of (42mm×62mm) for use. The residual polarization intensity of the polymer dielectric material layer 123 is 53 mC/m 2 .
正极极片110的制备:Preparation of positive electrode piece 110:
将正极活性材料(LiNi 0.8Co 0.1Mn 0.1O 2)、导电炭黑(Super P)、聚偏氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。将浆料均匀涂覆在正极集流体111铝箔上,90℃条件下烘干,得到单面涂布的正极极片110,涂布厚度为70μm,将单面涂布的正极极片110裁切成(38mm×58mm)的规格待用。 Mix the cathode active material (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) in a weight ratio of 97.5:1.0:1.5, and add N-methylpyrrolidone (NMP) As a solvent, prepare a slurry with a solid content of 0.75 and stir evenly. The slurry is evenly coated on the positive electrode current collector 111 aluminum foil, and dried at 90°C to obtain a single-sided coated positive electrode piece 110 with a coating thickness of 70 μm. Cut the single-sided coated positive electrode piece 110 The specifications of (38mm×58mm) are ready for use.
负极极片120的制备:Preparation of negative electrode piece 120:
将人造石墨、导电炭黑(Super P)、聚偏氟乙烯(PVDF)按照重量比97:1.0:2.0进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.8的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体121铜箔相对的两个表面上,80℃条件下烘干,得到双面设有负极活性材料层122的负极集流体121,并裁切成(40mm×60mm)的规格待用,其中,各层负极活性材料层122厚度为100μm。在后续锂离子电池的制备工序中,将高分子介电材料层123朝向负极活性材料层122设置,即形成包括有高分子介电材料层123、负极活性材料层122和负极集流体121的负极极片120。Mix artificial graphite, conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) at a weight ratio of 97:1.0:2.0, add N-methylpyrrolidone (NMP) as a solvent, and prepare a slurry with a solid content of 0.8 ingredients and stir evenly. The slurry is evenly coated on the two opposite surfaces of the copper foil of the negative electrode current collector 121, and dried at 80°C to obtain the negative electrode current collector 121 with negative electrode active material layers 122 on both sides, and cut into (40mm× 60mm) specification is ready for use, in which the thickness of each negative active material layer 122 is 100 μm. In the subsequent preparation process of the lithium ion battery, the polymer dielectric material layer 123 is disposed toward the negative electrode active material layer 122 , that is, a negative electrode including the polymer dielectric material layer 123 , the negative electrode active material layer 122 and the negative electrode current collector 121 is formed. Pole piece 120.
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到基础电解液,向基础电解液中加入碳酸亚乙烯酯和氟代碳酸乙烯酯,混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%,碳酸亚乙烯酯的质量百分含量为1.5%,氟代碳酸乙烯酯的质量百分含量为5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix uniformly to obtain a basic electrolyte, add vinylene carbonate and fluoroethylene carbonate to the basic electrolyte, and mix uniformly to obtain an electrolyte, in which the mass percentage of lithium salt is 12.5%, and the mass percentage of vinylene carbonate is 12.5%. The mass percentage is 1.5%, and the mass percentage of fluoroethylene carbonate is 5%.
锂离子电池的制备:Preparation of lithium-ion batteries:
将上述裁切后的双面设有负极活性材料层122的负极集流体121置于中间,并在其两侧分别设置上述裁切后的正极极片110,以及在各正极极片110和负极活性材料层122之间设置上述附着有高分子介电材料层123的隔离膜130,且高分子介电材料层123朝向负极活性材料层122,将负极极片120、两层正极极片110和两层隔离膜130沿负极极片120厚度方向X层叠,用胶带将层叠后的负极极片120、正极极片110和隔离膜130的四个角固定后,将负极极片120 与负极耳电连接、正极极片110与正极耳电连接,获得电极组件100,将电极组件100置入铝塑膜外包装210的内部空间210a,经外包装210的开口处向外包装210的内部空间210a注入电解液后,封装外包装210的开口,获得叠片锂离子电池。The above-mentioned cut negative electrode current collector 121 with the negative electrode active material layer 122 on both sides is placed in the middle, and the above-mentioned cut positive electrode tabs 110 are respectively arranged on both sides of it, and between each positive electrode tab 110 and the negative electrode The above-mentioned isolation film 130 with the polymer dielectric material layer 123 attached is disposed between the active material layers 122, and the polymer dielectric material layer 123 faces the negative electrode active material layer 122. The negative electrode tab 120, the two layers of positive electrode tabs 110 and Two layers of isolation films 130 are laminated along the thickness direction The positive electrode piece 110 is electrically connected to the positive ear to obtain the electrode assembly 100. The electrode assembly 100 is placed into the inner space 210a of the aluminum-plastic film outer package 210, and is injected into the inner space 210a of the outer package 210 through the opening of the outer package 210. After the electrolyte is added, the opening of the outer package 210 is sealed to obtain a laminated lithium-ion battery.
实施例2Example 2
与实施例1的区别为:提供粉末状的β相聚偏氟乙烯(PVDF)作为高分子介电材料。β相PVDF高分子介电材料25℃下矫顽场强度为30kV/mm。高分子介电材料层123的剩余极化强度为92mC/m 2The difference from Example 1 is that powdery β-phase polyvinylidene fluoride (PVDF) is provided as the polymer dielectric material. The coercive field strength of β-phase PVDF polymer dielectric material is 30kV/mm at 25℃. The residual polarization intensity of the polymer dielectric material layer 123 is 92mC/m 2 .
实施例3Example 3
与实施例1的区别为:提供粉末状的聚偏氟乙烯与聚四氟乙烯的共聚物(PVDF-PTFE,其中聚四氟乙烯单体的共聚比例为25mol%)作为高分子介电材料。聚偏氟乙烯共聚物25℃下矫顽场强度为30kV/mm。高分子介电材料层123的剩余极化强度为98mC/m 2The difference from Example 1 is that a powdery copolymer of polyvinylidene fluoride and polytetrafluoroethylene (PVDF-PTFE, in which the copolymerization ratio of polytetrafluoroethylene monomer is 25 mol%) is provided as a polymer dielectric material. The coercive field strength of polyvinylidene fluoride copolymer is 30kV/mm at 25℃. The residual polarization intensity of the polymer dielectric material layer 123 is 98 mC/m 2 .
实施例4Example 4
与实施例3的区别为:高分子介电材料层123的厚度为0.1μm。高分子介电材料层123的剩余极化强度为94mC/m 2The difference from Embodiment 3 is that the thickness of the polymer dielectric material layer 123 is 0.1 μm. The residual polarization intensity of the polymer dielectric material layer 123 is 94mC/m 2 .
实施例5Example 5
与实施例3的区别为:高分子介电材料层123的厚度为3μm。高分子介电材料层123的剩余极化强度为95mC/m 2The difference from Embodiment 3 is that the thickness of the polymer dielectric material layer 123 is 3 μm. The residual polarization intensity of the polymer dielectric material layer 123 is 95 mC/m 2 .
实施例6Example 6
与实施例3的区别为:高分子介电材料层123的厚度为5μm。高分子介电材料层123的剩余极化强度为93mC/m 2The difference from Embodiment 3 is that the thickness of the polymer dielectric material layer 123 is 5 μm. The residual polarization intensity of the polymer dielectric material layer 123 is 93mC/m 2 .
实施例7Example 7
与实施例1的区别为:The differences from Example 1 are:
负极极片120的制备:Preparation of negative electrode piece 120:
将人造石墨、导电炭黑(Super P)、聚偏氟乙烯(PVDF)按照重量比97:1.0:2.0进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.8的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体121铜箔相对的两个表面上,80℃条件下烘干,得到双面设有负极活性材料层122的负极极片120,并采用如下制备方法将高分子介电材料层123设于负极活性材料层122背离负极集流体121的表面,获得负极极片120。Mix artificial graphite, conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) at a weight ratio of 97:1.0:2.0, add N-methylpyrrolidone (NMP) as a solvent, and prepare a slurry with a solid content of 0.8 ingredients and stir evenly. The slurry is evenly coated on the two opposite surfaces of the copper foil of the negative electrode current collector 121, and dried at 80°C to obtain the negative electrode sheet 120 with the negative electrode active material layer 122 on both sides, and the following preparation method is used to prepare the high The molecular dielectric material layer 123 is disposed on the surface of the negative active material layer 122 facing away from the negative current collector 121 to obtain the negative electrode piece 120 .
其中,高分子介电材料层123的制备包括:Among them, the preparation of the polymer dielectric material layer 123 includes:
(1)提供粉末状的聚偏氟乙烯与聚四氟乙烯的共聚物(PVDF-PTFE,其中聚四氟乙烯单体的共聚比例为25mol%)作为高分子介电材料、N-甲基吡咯烷酮(NMP)作为粘接剂,粉末 状的PVDF-PTFE在25℃下矫顽场强度为50KV/mm,将粉末状的PVDF-PTFE分散于N-甲基吡咯烷酮(NMP)中,搅拌使PVDF-PTFE分散均匀,获得固含量为12%的介电浆料。采用刮刀将介电浆料均匀涂覆于各负极活性材料层122背离负极集流体121的表面,置于真空干燥箱中80℃烘干后,各层高分子介电材料和粘接剂形成的层结构的厚度均为0.1μm(也即后续获得的高分子介电材料层123的厚度为0.1μm)。(1) Provide powdered copolymer of polyvinylidene fluoride and polytetrafluoroethylene (PVDF-PTFE, in which the copolymerization ratio of polytetrafluoroethylene monomer is 25 mol%) as a polymer dielectric material, N-methylpyrrolidone (NMP) As a binder, powdered PVDF-PTFE has a coercive field strength of 50KV/mm at 25°C. Disperse powdered PVDF-PTFE in N-methylpyrrolidone (NMP) and stir to make PVDF- The PTFE is dispersed evenly, and a dielectric slurry with a solid content of 12% is obtained. Use a scraper to evenly apply the dielectric slurry on the surface of each negative active material layer 122 facing away from the negative current collector 121. After drying in a vacuum drying oven at 80°C, each layer of polymer dielectric material and adhesive will form The thickness of the layer structure is all 0.1 μm (that is, the thickness of the subsequently obtained polymer dielectric material layer 123 is 0.1 μm).
(2)将上述双面设有高分子介电材料和粘接剂的负极极片120放置于极化装置的平行电场中,进行极化,将高分子介电材料贴合极化装置的正极压板放置,平行电场场强为100kV/mm,极化时间为30min,然后翻转负极极片120,将负极极片120另一侧的高分子介电材料贴合极化装置的正极压板放置,极化时间为30min,高分子介电材料和粘接剂形成设于负极极片120表面的高分子介电材料层123,将负极极片120裁切成(42mm×62mm)的规格待用。高分子介电材料层123的剩余极化强度为95mC/m 2(2) Place the above-mentioned negative electrode piece 120 with polymer dielectric material and adhesive on both sides in the parallel electric field of the polarization device, perform polarization, and attach the polymer dielectric material to the positive electrode of the polarization device. Place the pressure plate with the parallel electric field strength of 100kV/mm and the polarization time of 30 minutes. Then flip the negative electrode piece 120 and place the polymer dielectric material on the other side of the negative electrode piece 120 against the positive pressure plate of the polarization device. The curing time is 30 minutes. The polymer dielectric material and the adhesive form the polymer dielectric material layer 123 on the surface of the negative electrode piece 120. The negative electrode piece 120 is cut into (42mm×62mm) specifications for use. The residual polarization intensity of the polymer dielectric material layer 123 is 95 mC/m 2 .
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到基础电解液,向基础电解液中加入氟代碳酸乙烯酯,混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%,氟代碳酸乙烯酯的质量百分含量为5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix evenly to obtain a basic electrolyte, add fluorinated ethylene carbonate to the basic electrolyte, and mix evenly to obtain an electrolyte, in which the mass percentage of lithium salt is 12.5%, and the mass percentage of fluorinated ethylene carbonate is 12.5%. is 5%.
锂离子电池的制备:Preparation of lithium-ion batteries:
将上述裁切后的双面设有高分子介电材料层123的负极极片120置于中间,负极极片120厚度方向X相对的两侧分别设置裁切后的正极极片110,并在各正极极片110和负极极片120之间设置厚度15μm的聚乙烯(PE)隔离膜130,将双面设有高分子介电材料层123的负极极片120、两层正极极片110和两层隔离膜130沿负极极片120厚度方向X层叠,用胶带将层叠后的负极极片120、正极极片110和隔离膜130的四个角固定后,将负极耳与负极极片120电连接,正极耳与正极极片110电连接,获得电极组件100,将电极组件100置入铝塑膜外包装210的内部空间210a,经外包装210的开口处向外包装210的内部空间210a注入电解液后,封装外包装210的开口,获得叠片锂离子电池。The above-mentioned cut negative electrode piece 120 with the polymer dielectric material layer 123 on both sides is placed in the middle, and the cut positive electrode pieces 110 are respectively placed on both sides of the negative electrode piece 120 in the thickness direction X. A polyethylene (PE) isolation film 130 with a thickness of 15 μm is placed between each positive electrode piece 110 and the negative electrode piece 120. The negative electrode piece 120 with a polymer dielectric material layer 123 on both sides, the two layers of the positive electrode piece 110 and Two layers of isolation films 130 are laminated along the thickness direction Connect, the positive electrode lug is electrically connected to the positive electrode piece 110 to obtain the electrode assembly 100. Place the electrode assembly 100 into the inner space 210a of the aluminum-plastic film outer package 210, and inject it into the inner space 210a of the outer package 210 through the opening of the outer package 210. After the electrolyte is added, the opening of the outer package 210 is sealed to obtain a laminated lithium-ion battery.
实施例8Example 8
与实施例7的区别为:高分子介电材料层123的厚度为1μm,高分子介电材料层123的剩余极化强度为92mC/m 2The difference from Embodiment 7 is that the thickness of the polymer dielectric material layer 123 is 1 μm, and the residual polarization intensity of the polymer dielectric material layer 123 is 92 mC/m 2 .
实施例9Example 9
与实施例7的区别为:高分子介电材料层123的厚度为3μm,高分子介电材料层123的剩余极化强度为90mC/m 2The difference from Embodiment 7 is that the thickness of the polymer dielectric material layer 123 is 3 μm, and the residual polarization intensity of the polymer dielectric material layer 123 is 90 mC/m 2 .
实施例10Example 10
与实施例7的区别为:高分子介电材料层123的厚度为5μm,高分子介电材料层123的剩余极化强度为90mC/m 2The difference from Embodiment 7 is that: the thickness of the polymer dielectric material layer 123 is 5 μm, and the residual polarization intensity of the polymer dielectric material layer 123 is 90 mC/m 2 ;
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1:1 to obtain an organic solvent, and add lithium salt to the organic solvent LiPF 6 is dissolved and mixed evenly to obtain an electrolyte, in which the mass percentage of lithium salt is 12.5%.
实施例11Example 11
与实施例7的区别为:The differences from Embodiment 7 are:
高分子介电材料层123的制备:高分子介电材料为尼龙7,尼龙7在25℃下矫顽场强度为97KV/mm。将尼龙7制备成厚度为5μm的尼龙7薄膜(分子式为-(HN-(CH 2) 6-CO-) n-,品牌:台湾化学纤维股份有限公司,牌号:NP4000),将尼龙7薄膜放置于平行电场中进行空气极化,平行电场场强为280kV/mm,极化时间为30min,极化完成后,尼龙7薄膜形成高分子介电材料层123,将高分子介电材料层123带正电荷的表面贴合在负极活性材料层122背离负极集流体121的表面。高分子介电材料层123的剩余极化强度为98mC/m 2Preparation of the polymer dielectric material layer 123: The polymer dielectric material is nylon 7, and the coercive field strength of nylon 7 is 97KV/mm at 25°C. Prepare nylon 7 into a nylon 7 film with a thickness of 5 μm (molecular formula is -(HN-(CH 2 ) 6 -CO-) n -, brand: Taiwan Chemical Fiber Co., Ltd., grade: NP4000), place the nylon 7 film Air polarization is performed in a parallel electric field, the parallel electric field strength is 280kV/mm, and the polarization time is 30 minutes. After the polarization is completed, the nylon 7 film forms a polymer dielectric material layer 123, and the polymer dielectric material layer 123 is The positively charged surface is attached to the surface of the negative active material layer 122 facing away from the negative current collector 121 . The residual polarization intensity of the polymer dielectric material layer 123 is 98 mC/m 2 .
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix evenly to obtain an electrolyte solution, in which the mass percentage of lithium salt is 12.5%.
实施例12Example 12
与实施例1的区别为:The differences from Example 1 are:
高分子介电材料层123的制备:高分子介电材料为粉末状的亚乙烯基二氰与醋酸乙烯共聚物(P(VDCN-VAC)),P(VDCN-VAC)在25℃下矫顽场强度为200KV/mm。粉末状的P(VDCN-VAC)分散于N-甲基吡咯烷酮(NMP)中,搅拌使P(VDCN-VAC)分散均匀,获得固含量为12%的介电浆料。采用刮刀将介电浆料均匀涂覆于隔离膜130其中一个表面,置于真空干燥箱中80℃烘干后,置于平行电场中进行极化,平行电场场强为300kV/mm,极化时间为30min,极化完成后,P(VDCN-VAC)和N-甲基吡咯烷酮形成高分子介电材料层123。高分子介电材料层123的剩余极化强度为76mC/m 2Preparation of the polymer dielectric material layer 123: The polymer dielectric material is powdered vinylidene dicyanide and vinyl acetate copolymer (P(VDCN-VAC)). P(VDCN-VAC) is coercive at 25°C. The field intensity is 200KV/mm. Powdered P(VDCN-VAC) is dispersed in N-methylpyrrolidone (NMP), and the P(VDCN-VAC) is dispersed evenly by stirring to obtain a dielectric slurry with a solid content of 12%. Use a scraper to evenly coat one surface of the isolation film 130 with the dielectric slurry, place it in a vacuum drying oven to dry at 80°C, and then place it in a parallel electric field for polarization. The parallel electric field field strength is 300kV/mm. The time is 30 minutes. After the polarization is completed, P(VDCN-VAC) and N-methylpyrrolidone form the polymer dielectric material layer 123. The residual polarization intensity of the polymer dielectric material layer 123 is 76 mC/m 2 .
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到基础电解液, 向基础电解液中加入碳酸亚乙烯酯,混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%,碳酸亚乙烯酯的质量百分含量为1.5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix uniformly to obtain a basic electrolyte, add vinylene carbonate to the basic electrolyte, and mix uniformly to obtain an electrolyte, in which the mass percentage of lithium salt is 12.5% and the mass percentage of vinylene carbonate is 1.5 %.
实施例13Example 13
与实施例1的区别为:The differences from Example 1 are:
高分子介电材料为粉末状的亚乙烯基二氰与甲基丙烯酸甲酯共聚物(P(VDCN-MMA)),P(VDCN-MMA)在25℃下矫顽场强度为200KV/mm。粉末状的P(VDCN-MMA)分散于N-甲基吡咯烷酮中,搅拌使P(VDCN-MMA)分散均匀,获得固含量为12%的介电浆料。采用刮刀将介电浆料均匀涂覆于隔离膜130表面,置于真空干燥箱中80℃烘干后,置于平行电场中进行空气极化,平行电场场强为300kV/mm,极化时间为30min,极化完成后,P(VDCN-MMA)和N-甲基吡咯烷酮形成高分子介电材料层123。高分子介电材料层123的剩余极化强度为88mC/m 2The polymer dielectric material is a powdery copolymer of vinylidene dicyanide and methyl methacrylate (P(VDCN-MMA)). The coercive field strength of P(VDCN-MMA) at 25°C is 200KV/mm. Powdered P(VDCN-MMA) is dispersed in N-methylpyrrolidone, and stirred to disperse P(VDCN-MMA) evenly to obtain a dielectric slurry with a solid content of 12%. Use a scraper to evenly coat the dielectric slurry on the surface of the isolation film 130, place it in a vacuum drying oven to dry at 80°C, and then place it in a parallel electric field for air polarization. The parallel electric field field strength is 300kV/mm, and the polarization time for 30 minutes. After the polarization is completed, P(VDCN-MMA) and N-methylpyrrolidone form the polymer dielectric material layer 123. The residual polarization intensity of the polymer dielectric material layer 123 is 88 mC/m 2 .
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到基础电解液,向基础电解液中加入碳酸亚乙烯酯,混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%,碳酸亚乙烯酯的质量百分含量为1.5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix uniformly to obtain a basic electrolyte, add vinylene carbonate to the basic electrolyte, and mix uniformly to obtain an electrolyte, in which the mass percentage of lithium salt is 12.5% and the mass percentage of vinylene carbonate is 1.5 %.
对比例1Comparative example 1
与实施例1的区别为:The differences from Example 1 are:
未在隔膜和负极极片120之间设置高分子介电材料;No polymer dielectric material is provided between the separator and the negative electrode piece 120;
电解液的制备:Preparation of electrolyte:
在干燥氩气气氛中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯以质量比1:1:1:1混合,获得有机溶剂,向有机溶剂中加入锂盐LiPF 6溶解并混合均匀得到电解液,其中,锂盐的质量百分含量为12.5%。 In a dry argon atmosphere, mix ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate in a mass ratio of 1:1:1:1 to obtain an organic solvent. Add lithium salt LiPF 6 to the organic solvent. Dissolve and mix evenly to obtain an electrolyte solution, in which the mass percentage of lithium salt is 12.5%.
使用下述方法对各实施例和对比例中的电极组件100和电化学装置200进行测试:The electrode assembly 100 and the electrochemical device 200 in each embodiment and comparative example were tested using the following methods:
负极极片120析锂倍率: Negative electrode piece 120 lithium precipitation rate:
在测试温度为25℃条件下,以一定倍率恒流充电到4.3V,倍率不小于3C,再恒压充电到0.05C,静置5分钟后以1C放电到2.8V。以上步骤得到的容量即为锂离子电池的初始容量,进行与前一步相同倍率充电1C放电对锂离子电池进行循环测试,循环10圈后拆解电池观察负极极片120是否析锂,以观察到负极极片120析锂的倍率作为负极极片120析锂倍率。Under the condition that the test temperature is 25℃, charge to 4.3V with a constant current at a certain rate, the rate is not less than 3C, then charge with a constant voltage to 0.05C, let it stand for 5 minutes and then discharge to 2.8V at 1C. The capacity obtained in the above steps is the initial capacity of the lithium-ion battery. Charge and discharge the lithium-ion battery at the same rate as the previous step for a cycle test. After 10 cycles, disassemble the battery and observe whether lithium is precipitated from the negative electrode plate 120. The lithium deposition rate of the negative electrode piece 120 is regarded as the lithium deposition rate of the negative electrode piece 120 .
内阻(mΩ):Internal resistance (mΩ):
采用直流放电法测试锂离子电池的内阻,采用40A大电流对锂离子电池进行3s瞬间放电, 测定此时的电压降U,通过U/40A即可得到电芯内阻值。Use the DC discharge method to test the internal resistance of the lithium-ion battery. Use a large current of 40A to instantly discharge the lithium-ion battery for 3 seconds. Measure the voltage drop U at this time. The internal resistance value of the cell can be obtained through U/40A.
实施例1-13和对比例1中分别对应地包括表1中4种电解液。Examples 1-13 and Comparative Example 1 respectively include the four electrolyte solutions in Table 1.
表1Table 1
Figure PCTCN2022083833-appb-000001
Figure PCTCN2022083833-appb-000001
上述实施例1-19、对比例1的参数设置和测试结果请见表2。The parameter settings and test results of the above-mentioned Examples 1-19 and Comparative Example 1 are shown in Table 2.
表2Table 2
Figure PCTCN2022083833-appb-000002
Figure PCTCN2022083833-appb-000002
Figure PCTCN2022083833-appb-000003
Figure PCTCN2022083833-appb-000003
从实施例1-13和对比例1可看出,锂离子电池中包括高分子介电材料层123,且电解液中包括碳酸酯时,高分子介电材料层123可提高负极极片120表面电位,抑制负极极片120金属阳离子析出,同时电解液中的碳酸酯化合物可在负极极片120表面形成稳定且具有低阻抗的SEI膜,降低循环过程中因金属阳离子在负极极片120的嵌入/脱出产生的内阻,因此可提高负极极片120析锂倍率和降低锂离子电池循环过程中的内阻,提升锂离子电池的性能。It can be seen from Examples 1-13 and Comparative Example 1 that the polymer dielectric material layer 123 is included in the lithium ion battery, and when the electrolyte includes carbonate, the polymer dielectric material layer 123 can improve the surface of the negative electrode plate 120 potential, inhibiting the precipitation of metal cations on the negative electrode piece 120. At the same time, the carbonate compound in the electrolyte can form a stable and low-impedance SEI film on the surface of the negative electrode piece 120, reducing the embedding of metal cations in the negative electrode piece 120 during the cycle. /The internal resistance generated by the disengagement can therefore increase the lithium elution rate of the negative electrode plate 120 and reduce the internal resistance during the lithium-ion battery cycle, thereby improving the performance of the lithium-ion battery.
从表2中还可看出,高分子介电材料层123无论位于隔离膜朝向负极活性材料层122的一侧,还是位于负极活性材料层122表面,均可以改善负极极片120析锂问题;在本申请范围内优化高分子介电材料层123的厚度,可进一步改善负极极片120析锂,提升锂离子电池的综合性能。It can also be seen from Table 2 that whether the polymer dielectric material layer 123 is located on the side of the isolation film facing the negative active material layer 122 or on the surface of the negative active material layer 122, it can improve the lithium deposition problem of the negative electrode piece 120; Optimizing the thickness of the polymer dielectric material layer 123 within the scope of this application can further improve the lithium elution from the negative electrode plate 120 and enhance the overall performance of the lithium-ion battery.
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the drawings of this embodiment, the same or similar numbers correspond to the same or similar components; in the description of this application, it should be understood that if there are terms such as "upper", "lower", "left", "right", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings. It is only for the convenience of describing the present application and simplifying the description. It does not indicate or imply that the device or element referred to must have a specific orientation or a specific orientation. Construction and operation, therefore the terms describing the positional relationships in the drawings are only for illustrative purposes and cannot be understood as limitations of the patent. For those of ordinary skill in the art, the specific meanings of the above terms can be understood according to specific circumstances.
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present application shall be included in the protection of the present application. within the range.

Claims (10)

  1. 一种电化学装置,其特征在于,包括负极极片、正极极片、隔离膜和电解液,所述负极极片包括高分子介电材料层,所述电解液包括碳酸酯。An electrochemical device is characterized in that it includes a negative electrode piece, a positive electrode piece, a separation film and an electrolyte. The negative electrode piece includes a polymer dielectric material layer, and the electrolyte includes carbonate.
  2. 根据权利要求1所述的电化学装置,其特征在于,当将所述高分子介电材料层放置于电场强度为10kV/mm至200kV/mm的电场中极化,撤去电场后,所述高分子介电材料层的剩余极化强度为50mC/m 2~100mC/m 2The electrochemical device according to claim 1, characterized in that when the polymer dielectric material layer is placed in an electric field with an electric field intensity of 10 kV/mm to 200 kV/mm for polarization, and the electric field is removed, the high polymer dielectric material layer The residual polarization intensity of the molecular dielectric material layer is 50mC/m 2 ~ 100mC/m 2 .
  3. 根据权利要求1所述的电化学装置,其特征在于,所述高分子介电材料层包括高分子介电材料,所述高分子介电材料的分子链段中包括具有极性官能团的结构单元,且所述极性官能团在所述结构单元中不对称分布。The electrochemical device according to claim 1, wherein the polymer dielectric material layer includes a polymer dielectric material, and the molecular segments of the polymer dielectric material include structural units with polar functional groups. , and the polar functional groups are asymmetrically distributed in the structural unit.
  4. 根据权利要求3所述的电化学装置,其特征在于,The electrochemical device according to claim 3, characterized in that
    所述极性官能团包括酰胺基、氟、氯、溴、羧酸基、酯基、氰基中的至少一种。The polar functional group includes at least one of amide group, fluorine, chlorine, bromine, carboxylic acid group, ester group and cyano group.
  5. 根据权利要求3所述的电化学装置,其特征在于,The electrochemical device according to claim 3, characterized in that
    所述高分子介电材料包括具有介电效应的聚偏氟乙烯的共聚物、聚偏氟乙烯与三氟乙烯的共聚物、聚偏氟乙烯与四氟乙烯的共聚物、奇数尼龙系介电聚合物和非晶态介电聚合物中的至少一种;The polymer dielectric materials include copolymers of polyvinylidene fluoride with dielectric effect, copolymers of polyvinylidene fluoride and trifluoroethylene, copolymers of polyvinylidene fluoride and tetrafluoroethylene, and odd-numbered nylon dielectric materials. at least one of a polymer and an amorphous dielectric polymer;
    所述奇数尼龙系介电聚合物分子式为-(HN-(CH 2) x-CO-)n-,x为偶数,n为任意正整数; The molecular formula of the odd-numbered nylon dielectric polymer is -(HN-(CH 2 ) x -CO-)n-, x is an even number, and n is any positive integer;
    所述非晶态介电聚合物包括亚乙烯基二氰/醋酸乙烯共聚物、亚乙烯基二氰/苯甲酸乙烯共聚物、亚乙烯基二氰/丙酸乙烯共聚物、亚乙烯基二氰/新戊酸乙烯共聚物、亚乙烯基二氰/甲基丙烯酸甲酯共聚物和亚乙烯基二氰/异丁烯共聚物中的至少一种。The amorphous dielectric polymer includes vinylidene dicyanide/vinyl acetate copolymer, vinylidene dicyanide/vinyl benzoate copolymer, vinylidene dicyanide/vinyl propionate copolymer, vinylidene dicyanide/vinyl propionate copolymer, and vinylidene dicyanide/vinyl benzoate copolymer. /At least one of vinylene pivalate copolymer, vinylidene dicyanide/methyl methacrylate copolymer, and vinylidene dicyanide/isobutylene copolymer.
  6. 根据权利要求5所述的电化学装置,其特征在于,所述高分子介电材料满足以下条件之一:The electrochemical device according to claim 5, characterized in that the polymer dielectric material satisfies one of the following conditions:
    (Ⅰ)所述聚偏氟乙烯与聚三氟乙烯的共聚物中,所述聚三氟乙烯的共聚比例为20mol%~70mol%;(I) In the copolymer of polyvinylidene fluoride and polytrifluoroethylene, the copolymerization ratio of polytrifluoroethylene is 20 mol% to 70 mol%;
    (Ⅱ)所述聚偏氟乙烯与聚四氟乙烯的共聚物中,所述聚四氟乙烯单体的共聚比例为30mol%以下;(II) In the copolymer of polyvinylidene fluoride and polytetrafluoroethylene, the copolymerization ratio of the polytetrafluoroethylene monomer is 30 mol% or less;
    (Ⅲ)所述非晶态介电聚合物中,所述亚乙烯基二氰的共聚比例为30mol%~80mol%。(III) In the amorphous dielectric polymer, the copolymerization ratio of vinylidene dicyanide is 30 mol% to 80 mol%.
  7. 根根据权利要求1所述的电化学装置,其特征在于,所述高分子介电材料在25℃下的矫顽场强度大于30kV/mm且小于200kV/mm。The electrochemical device according to claim 1, wherein the coercive field strength of the polymer dielectric material at 25° C. is greater than 30 kV/mm and less than 200 kV/mm.
  8. 根据权利要求1所述的电化学装置,其特征在于,所述高分子介电材料层的厚度为0.1μm至5μm。The electrochemical device according to claim 1, wherein the thickness of the polymer dielectric material layer is 0.1 μm to 5 μm.
  9. 根据权利要求1所述的电化学装置,其特征在于,所述碳酸酯包括饱和碳酸酯或不饱和碳酸酯中的至少一种;The electrochemical device according to claim 1, wherein the carbonate includes at least one of saturated carbonate or unsaturated carbonate;
    所述饱和碳酸酯包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯中的至少一种;The saturated carbonate includes at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate;
    所述不饱和碳酸酯包括碳酸亚乙烯酯、氟代碳酸乙烯酯中的至少一种。The unsaturated carbonate includes at least one of vinylene carbonate and fluoroethylene carbonate.
  10. 一种电子装置,其特征在于,包括权利要求1至9中任一项所述的电化学装置。An electronic device, characterized by comprising the electrochemical device according to any one of claims 1 to 9.
PCT/CN2022/083833 2022-03-29 2022-03-29 Electrochemical device and electronic device WO2023184182A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083833 WO2023184182A1 (en) 2022-03-29 2022-03-29 Electrochemical device and electronic device
CN202280052319.1A CN117730426A (en) 2022-03-29 2022-03-29 Electrochemical device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083833 WO2023184182A1 (en) 2022-03-29 2022-03-29 Electrochemical device and electronic device

Publications (1)

Publication Number Publication Date
WO2023184182A1 true WO2023184182A1 (en) 2023-10-05

Family

ID=88198481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083833 WO2023184182A1 (en) 2022-03-29 2022-03-29 Electrochemical device and electronic device

Country Status (2)

Country Link
CN (1) CN117730426A (en)
WO (1) WO2023184182A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003192A1 (en) * 2012-06-25 2014-01-03 帝人株式会社 Fine fiber structure
US20140035540A1 (en) * 2012-02-08 2014-02-06 Dais Analytic Corporation Energy storage device and methods
KR20200018902A (en) * 2018-08-13 2020-02-21 주식회사 엘지화학 A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
CN114175304A (en) * 2021-03-31 2022-03-11 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035540A1 (en) * 2012-02-08 2014-02-06 Dais Analytic Corporation Energy storage device and methods
WO2014003192A1 (en) * 2012-06-25 2014-01-03 帝人株式会社 Fine fiber structure
KR20200018902A (en) * 2018-08-13 2020-02-21 주식회사 엘지화학 A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
CN114175304A (en) * 2021-03-31 2022-03-11 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device

Also Published As

Publication number Publication date
CN117730426A (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11605837B2 (en) Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
US9005820B2 (en) Lithium secondary battery using ionic liquid
US6451480B1 (en) Polyimide-based lithium ion battery
US8399132B2 (en) Niobium oxide-containing electrode and lithium battery including the same
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
KR101105342B1 (en) Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
US7514182B2 (en) Organic electrolytic solution and lithium battery using the same
WO2006134684A1 (en) Lithium secondary battery
JP2018510459A (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
JP2009043737A (en) High-performance lithium, or lithium ion cell
WO2022141448A1 (en) Electrochemical device, electronic device and electrochemical device manufacturing method
US7252908B2 (en) Organic electrolytic solution and lithium battery using the same
WO2018036309A1 (en) Positive electrode additive and preparation method therefor, positive electrode plate and secondary lithium ion battery
US20240047827A1 (en) Battery, Electronic Device, and Mobile Apparatus
WO2007083405A1 (en) Lithium secondary battery
WO2022205136A1 (en) Negative electrode plate, electrochemical apparatus including negative electrode plate, and electronic apparatus
US20120015255A1 (en) Gel polymer electrolyte, lithium battery including gel polymer electrolyte, and method of preparing gel polymer electrolyte
WO2022141508A1 (en) Electrochemical device and electronic device
WO2022000328A1 (en) Electrochemical device and electronic device
US20150155561A1 (en) Anode and lithium battery including the same
WO2022120833A1 (en) Electrochemical device and electronic device
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
WO2022000309A1 (en) Current collector, electrochemical device comprising same, and electronic device
WO2023208007A1 (en) Composite material, preparation method therefor and application thereof
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934037

Country of ref document: EP

Kind code of ref document: A1