WO2023182573A1 - Detection system for harmful substances in air - Google Patents

Detection system for harmful substances in air Download PDF

Info

Publication number
WO2023182573A1
WO2023182573A1 PCT/KR2022/008148 KR2022008148W WO2023182573A1 WO 2023182573 A1 WO2023182573 A1 WO 2023182573A1 KR 2022008148 W KR2022008148 W KR 2022008148W WO 2023182573 A1 WO2023182573 A1 WO 2023182573A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
collection
sample
hazardous substances
Prior art date
Application number
PCT/KR2022/008148
Other languages
French (fr)
Korean (ko)
Inventor
신용범
조현민
최종민
Original Assignee
재단법인 바이오나노헬스가드연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 바이오나노헬스가드연구단 filed Critical 재단법인 바이오나노헬스가드연구단
Publication of WO2023182573A1 publication Critical patent/WO2023182573A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N2001/002Devices for supplying or distributing samples to an analysing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • G01N2001/2217Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption using a liquid

Definitions

  • the present invention relates to a system for detecting hazardous substances in the air. More specifically, it relates to a system for detecting harmful substances in the air that can monitor infectious pathogens in the air in real time by continuously performing air collection, concentration, pretreatment, and detection processes.
  • the present invention provides a system for detecting harmful substances in the air that can quickly analyze harmful substances in the air in real time by continuously performing the process of air collection, concentration, pretreatment, and detection. The purpose.
  • the present invention includes an air collection module that collects harmful substances in the air and generates a collection liquid; and a preprocessing and detection module including a preprocessing unit that concentrates and purifies the collected liquid to form a sample to be analyzed, and a detection unit that detects hazardous substances from the sample.
  • the system for detecting hazardous substances in the air may further include a sample transfer unit that transfers the collection liquid and the sample.
  • the air collection module includes a fan that introduces harmful substances in the air and a liquefaction unit that accommodates a liquid collection medium, and the harmful substances in the air introduced by the fan collide with the collection medium, thereby containing the harmful substances. Characterized in that the collection liquid is produced.
  • the liquefaction unit includes a collection tank disposed below the fan and accommodating the collection medium therein; and a disk with a plurality of pillars protruding from the upper surface and installed at an angle inside the collection tank to rotate, wherein the disk is arranged to be at least partially exposed to the outside of the collection medium.
  • the liquefaction unit may include a collection tank disposed below the fan and containing the collection medium therein; and a disk with a plurality of pillars protruding from the upper surface and disposed inside the collection tank.
  • a rack gear on one side connected to the disk; a pinion gear that engages and rotates with the rack gear to elevate the disk; and a motor connected to the pinion gear to rotate the pinion gear.
  • the preprocessing unit includes a primary preprocessing unit that forms the sample by concentrating the collected liquid through a cross-flow filtration method; and a secondary preprocessing unit that concentrates and purifies the sample formed in the primary preprocessing unit using magnetic nanoparticles and a buffer.
  • the sample transfer unit includes a peristaltic pump that transfers the collected liquid from the air collection module to the pretreatment unit; and a fully automatic pipette that transfers the sample from the pretreatment unit to the detection unit.
  • the detection unit is characterized in that it performs molecular diagnosis including polymerase chain reaction or polymerase amplification, or immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay.
  • the present invention has the effect of enabling rapid analysis of harmful substances in the air in real time by continuously performing the process of air collection, concentration, pretreatment, and detection.
  • FIG. 1 is a diagram illustrating a system for detecting hazardous substances in the air according to a preferred embodiment of the present invention.
  • Figure 2 is a block diagram of the air collection module, sample transport unit, and pretreatment and detection module.
  • Figure 3 is a diagram showing a first embodiment of a liquefaction unit provided in an air collection module.
  • Figure 4 is a cross-sectional view of Figure 3.
  • Figure 5 is a diagram showing a second embodiment of the liquefaction unit provided in the air collection module.
  • Figure 6 is a diagram showing a fully automatic pipette provided in the sample transfer unit.
  • Figure 7 is a diagram showing the preprocessing and detection module.
  • Figure 8 is a diagram for explaining the sample processing process by the first preprocessing unit.
  • Figure 9 is a graph showing the results of sample processing by the first pretreatment unit.
  • Figure 10 is a diagram to explain the sample processing process by the secondary preprocessing unit.
  • Figure 11 is a graph showing the results of sample processing by the secondary pretreatment unit.
  • Figure 12 is a diagram showing a detection unit.
  • Figure 13 is a graph showing the reaction results by concentration after producing RPA primers and probes for human coronavirus NL63.
  • Figure 14 is a graph showing reaction results by concentration after producing RPA primers and probes for Influenza A virus H1N1.
  • Figure 1 is a diagram showing a system for detecting harmful substances in the air according to a preferred embodiment of the present invention
  • Figure 2 is a block diagram of the air collection module, sample transfer unit, pre-processing and detection module
  • Figure 3 is provided in the air collection module.
  • FIG. 4 is a cross-sectional view of FIG. 3, showing a first embodiment of the liquefaction unit.
  • Figure 5 is a diagram showing a second embodiment of the liquefaction unit provided in the air collection module
  • Figure 6 is a diagram showing a fully automatic pipette provided in the sample transfer unit
  • Figure 7 is a diagram showing the pre-processing and detection module. am.
  • Figures 8 and 9 are diagrams for explaining the sample processing process and results by the first preprocessing unit
  • Figures 10 and 11 are diagrams explaining the sample processing process and results by the secondary preprocessing unit.
  • Figure 12 is a diagram showing a detection unit.
  • FIGS. 1 to 12 a system 10 for detecting hazardous substances in the air according to a preferred embodiment of the present invention will be described with reference to FIGS. 1 to 12.
  • the system 10 for detecting harmful substances in the air includes an air collection module 100, a sample transport unit 200, a pretreatment and detection module 300, and a power unit 400.
  • the system 10 for detecting hazardous substances in the air consists of an air collection module 100, a sample transfer unit 200, and a pre-processing and detection module 300 as one system to collect hazardous substances in the air. , It is configured to continuously perform the preprocessing and analysis processes, and power is supplied to each unit through the power supply unit 400.
  • the air collection module 100 serves to collect harmful substances in the air and generate a collection liquid.
  • the air collection module 100 is provided with a fan 110 and a liquefaction unit 120.
  • the fan 110 serves to suck air and introduce harmful substances in the air into the liquefaction unit 120, and is configured to respond to flow rates ranging from hundreds of LPM to thousands of LPM.
  • the liquefaction unit 120 is provided with a collection tank 122 that accommodates a liquid collection medium (L) such as distilled water, and harmful substances in the air introduced by the fan 110 enter the collection medium (L), thereby causing harmful substances. A collection liquid containing the substance is produced.
  • a liquid collection medium such as distilled water
  • This liquefaction unit 120 can be formed according to two embodiments as shown in FIGS. 3 to 5.
  • the liquefaction unit 120 includes a disk 126 that is tilted and rotates inside the collection tank 122.
  • the liquefaction unit 120 is disposed below the fan 110, includes a collection tank 122 in which the collection medium L is accommodated, and is inclined inside the collection tank 122. It is provided with a disk 126 that is installed and rotates around the rotation axis 124.
  • the disk 126 which is installed at an angle inside the collection tank 122, is arranged so that at least a portion is exposed to the outside of the collection medium (L) and the remaining portion rotates while being locked in the collection medium (L).
  • a plurality of pillars 127 are protruding from the upper surface of the disk 126.
  • the plurality of pillars 127 exposed to the outside of the collection medium (L) during the rotation of the disk 126 contain the collection medium (L). ) is formed, and the harmful substances in the air introduced by the fan 110 collide with the exposed pillar 127, thereby improving the collection efficiency of the harmful substances.
  • the portion of the disk 126 that was exposed to the outside of the collection medium (L) is immersed into the inside of the collection medium (L) by the rotation of the disk 126, and the hazardous substances are immersed in the collection medium (L).
  • a plurality of teeth 128 are provided on the edge of the disk 126 to rotate the disk 126, and a driving gear 130 that rotates in engagement with the teeth 128 is provided on one side of the collection tank 122. It is provided.
  • the liquefaction unit 120 is provided so that the disk 126 disposed inside the collection tank 122 is raised and lowered.
  • a rack gear 140 is connected to the disk 126, and a pinion gear 142 that engages and rotates the rack gear 140 to elevate and lower the disk 126 is connected to the pinion gear 142 and is connected to the pinion gear 142. ) is provided with a motor 144 that rotates.
  • the disk 126 has a plurality of pillars 127 formed on its upper surface as in the first embodiment.
  • the disk 126 repeats the lifting and lowering operation by the rack gear 140 and the pinion gear 142.
  • the pillars 127 are exposed above the water surface of the collection medium (L)
  • the pillars 127 are exposed to the water surface of the collection medium (L).
  • Harmful substances in the air that collide with the pillars 127 exposed to the outside of the collection medium (L) as the disk 126 rises are drawn into the collection medium (L) while the disk 126 is lowered, and the collection liquid is collected. is created.
  • the sample transfer unit 200 serves to transfer the collection liquid and sample, and is equipped with a peristaltic pump 210 and a fully automatic pipette 220 operated by a 3-axis stage.
  • the peristaltic pump 210 serves to transport the collected liquid generated in the liquefaction unit 120 of the air collection module 100 to the pretreatment unit 310.
  • the fully automatic pipette 220 transfers the sample formed in the preprocessing unit 310 from the preprocessing unit 310 to the detection unit 320, and injects reagents and buffers into the tube T in the secondary preprocessing unit 314. It plays a role in removing
  • the fully automatic pipette 220 can be automatically cleaned by using a general-purpose pipette rather than a dedicated tip exclusively used for a specific device, and contaminated pipette tips can be replaced for easy maintenance. You can manage it.
  • the preprocessing and detection module 300 consists of a preprocessing unit 310 that concentrates and purifies the collection liquid to form a sample to be analyzed, and a detection unit 320 that detects harmful substances from the sample.
  • the pretreatment unit 310 includes a primary pretreatment unit 312 that forms a sample by concentrating the collected liquid through tangential flow filtration, and a primary pretreatment unit (312) using silica magnetic nanoparticles and a buffer. It includes a secondary preprocessing unit 314 that again concentrates and purifies the sample formed in 312).
  • the first pretreatment unit 312 concentrates 200 ml of the collected solution about 10 times to 20 ml in less than 5 minutes through a membrane filter of the cross-flow filtration method. It is possible, and the loss of pathogens in the collected liquid can be minimized through this rapid concentration process.
  • the secondary preprocessing unit 314 secondarily concentrates and purifies the sample concentrated in the first preprocessing unit 312 so that it can be analyzed in the detection unit 320, resulting in a loss rate of 10. It is possible to concentrate more than 200 times to less than %.
  • This secondary preprocessing unit 314 includes a magnet 316 that applies magnetic force to the tube (T) containing the silica magnetic nanoparticles and a servomotor 318 that positions the magnet 316 to the lower part of the tube (T). It is provided (see Figure 7).
  • the fully automatic pipette 220 transfers the sample concentrated in the first pretreatment unit 312 to the tube T, and injects binding buffer and silica magnetic nanoparticles into the concentrated sample.
  • the servo motor 318 is driven to position the magnet 316 at the bottom of the tube T and magnetic force is applied for a certain period of time to separate the solution.
  • the supernatant in the tube (T) is removed using the fully automatic pipette 220, and the magnet 316 is returned to its original position to obtain concentrated magnetic nanoparticles. Thereafter, the obtained magnetic nanoparticles are purified to obtain a concentrated sample for molecular diagnosis in the detection unit 320.
  • the detection unit 320 performs molecular diagnosis using Polymerase Chain Reaction (PCR) or Recombinase Polymerase Amplification (RPA), or immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay. This detects harmful substances such as pathogens contained in the sample.
  • PCR Polymerase Chain Reaction
  • RPA Recombinase Polymerase Amplification
  • immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay. This detects harmful substances such as pathogens contained in the sample.
  • the detection unit 320 may be equipped with a known analysis means such as a 96 well-plate.
  • the detection unit 320 of the present invention can be used by loading multiple well plates. It is provided so that completed well plates can be replaced.
  • a TPW (Two Phase Washing) step can be additionally performed to remove solvents such as ethanol, which act as an inhibitor to molecular diagnosis, and through this, any residue remaining in the automation process can be removed. Inhibition of residues can be minimized.
  • Figure 13 is a graph showing the reaction results by concentration after producing RPA primers and probes for human corona virus NL63
  • Figure 14 is a graph showing reaction results by concentration after producing RPA primers and probes for Influenza A virus H1N1.
  • the system for detecting hazardous substances in the air (10) is capable of quickly analyzing hazardous substances in the air in real time by continuously performing the process of collecting, concentrating, pre-processing, and detecting the air. It is very useful because it has the advantage of being able to detect and monitor hazardous substances in a specific location over a long period of time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Plasma & Fusion (AREA)
  • Cell Biology (AREA)
  • Optics & Photonics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention relates to a detection system for harmful substances in the air, comprising: an air collection module for collecting harmful substances in the air to generate a collection liquid; and a pre-processing and detection module including a pre-processing unit for concentrating and purifying the collection liquid to form a sample to be analyzed, and a detection unit for detecting harmful substances from the sample. The present invention has an effect of quickly analyzing harmful substances in the air in real time by continuously performing processes ranging from air collection, concentration, pre-processing, and detection.

Description

공기 중 유해물질 검출 시스템System for detecting hazardous substances in the air
본 발명은 공기 중 유해물질 검출 시스템에 관한 것이다. 더욱 상세하게는 공기 포집, 농축 및 전처리, 검출 과정을 연속적으로 수행하여 공기 중의 감염성 병원체를 실시간으로 모니터링 할 수 있는 공기 중 유해물질 검출 시스템에 관한 것이다.The present invention relates to a system for detecting hazardous substances in the air. More specifically, it relates to a system for detecting harmful substances in the air that can monitor infectious pathogens in the air in real time by continuously performing air collection, concentration, pretreatment, and detection processes.
산업이 발달함에 따라 생활의 편의성이 증대된 반면 산업체에서 발생되는 각종 오염원에 의한 환경 파괴가 광범위하게 일어나고 있으며, 인체에 각종 질환을 유발시킬 수 있는 악취나 휘발성 유기화합물(Volatile Organic Compounds:VOC) 등에 의한 대기오염은 심각한 실정이다.While the convenience of life has increased with the development of industry, environmental destruction due to various pollutants generated by industry is occurring widely, and odors and volatile organic compounds (VOCs) that can cause various diseases in the human body are occurring. Air pollution is a serious situation.
아울러 공기 중에 부유하여 인체의 건강에 악영향을 미치는 미생물 및 바이러스 등과 같은 다양한 유해인자들이 밝혀지면서 공기 중의 유해 물질에 대한 분석 필요성이 대두되고 있다.In addition, as various harmful factors such as microorganisms and viruses that float in the air and have a negative impact on human health are revealed, the need for analysis of harmful substances in the air is emerging.
이에 따라 공기 중의 유해 물질의 분석을 위해 공기를 포집하는 장치가 개발되기도 하였다.Accordingly, devices for collecting air were developed to analyze harmful substances in the air.
그러나, 종래 기술의 경우 공기 중의 유해 물질을 포집하여 시료를 제작한 후에는 이를 분석하기 위해 별도의 분석 장치를 활용하여야 하기 때문에 공기 중의 유해 물질을 분석하기까지 상당한 시간이 소요되는 단점이 있다.However, in the case of the prior art, after collecting hazardous substances in the air and producing a sample, a separate analysis device must be used to analyze the samples, so there is a disadvantage in that it takes a considerable amount of time to analyze the hazardous substances in the air.
이처럼 공기 중 물질이 포집된 후 시료의 분석이 수행되기까지 상당한 시간이 소요되고 별도의 장치로 시료가 이재되는 과정에서 시료가 변질되거나 오염되는 문제가 나타나기도 한다.In this way, it takes a considerable amount of time to analyze the sample after the airborne substances are collected, and problems of deterioration or contamination of the sample may occur during the process of transferring the sample to a separate device.
상기한 문제를 해결하기 위해 본 발명은 공기의 포집, 농축 및 전처리, 검출에 이르는 과정이 연속적으로 수행되어 공기 중 유해 물질을 실시간으로 신속하게 분석할 수 있는 공기 중 유해물질 검출 시스템을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention provides a system for detecting harmful substances in the air that can quickly analyze harmful substances in the air in real time by continuously performing the process of air collection, concentration, pretreatment, and detection. The purpose.
상기한 목적을 달성하기 위해 본 발명은 공기 중의 유해물질을 포집하여 포집액을 생성하는 공기포집 모듈; 및 상기 포집액을 농축 및 정제하여 분석대상 샘플을 형성하는 전처리부와, 상기 샘플로부터 유해물질을 검출하는 검출부를 구비하는 전처리 및 검출모듈을 포함하는 공기 중 유해물질 검출 시스템을 제공한다.In order to achieve the above object, the present invention includes an air collection module that collects harmful substances in the air and generates a collection liquid; and a preprocessing and detection module including a preprocessing unit that concentrates and purifies the collected liquid to form a sample to be analyzed, and a detection unit that detects hazardous substances from the sample.
상기 공기 중 유해물질 검출 시스템은 상기 포집액 및 상기 샘플을 이송하는 시료 이송부를 더 포함할 수 있다.The system for detecting hazardous substances in the air may further include a sample transfer unit that transfers the collection liquid and the sample.
또한, 상기 공기포집 모듈은 공기 중의 유해물질을 유입시키는 팬과, 액상의 포집매체가 수용되는 액상화부를 구비하고, 상기 팬에 의해 유입된 공기 중의 유해물질이 상기 포집매체에 충돌됨으로써 유해물질을 포함하는 상기 포집액이 생성되는 것을 특징으로 한다.In addition, the air collection module includes a fan that introduces harmful substances in the air and a liquefaction unit that accommodates a liquid collection medium, and the harmful substances in the air introduced by the fan collide with the collection medium, thereby containing the harmful substances. Characterized in that the collection liquid is produced.
이때, 상기 액상화부는 상기 팬의 하부에 배치되고 내부에 상기 포집매체가 수용되는 포집조; 및 상부면에 복수의 필라가 돌출형성되고, 상기 포집조의 내부에 경사지게 설치되어 회전하는 디스크를 구비하며, 상기 디스크는 적어도 부분적으로 상기 포집매체의 외부로 노출되도록 배치되는 것을 특징으로 한다.At this time, the liquefaction unit includes a collection tank disposed below the fan and accommodating the collection medium therein; and a disk with a plurality of pillars protruding from the upper surface and installed at an angle inside the collection tank to rotate, wherein the disk is arranged to be at least partially exposed to the outside of the collection medium.
또는 상기 액상화부는 상기 팬의 하부에 배치되고 내부에 상기 포집매체가 수용되는 포집조; 및 상부면에 복수의 필라가 돌출형성되고, 상기 포집조의 내부에 배치되는 디스크; 일측이 상기 디스크에 연결되는 랙기어; 상기 랙기어에 맞물려 회전함으로써 상기 디스크를 승강시키는 피니언기어; 및 상기 피니언기어에 연결되어 상기 피니언기어를 회전시키는 모터를 구비할 수 있다.Alternatively, the liquefaction unit may include a collection tank disposed below the fan and containing the collection medium therein; and a disk with a plurality of pillars protruding from the upper surface and disposed inside the collection tank. A rack gear on one side connected to the disk; a pinion gear that engages and rotates with the rack gear to elevate the disk; and a motor connected to the pinion gear to rotate the pinion gear.
또한, 상기 전처리부는 횡류여과방식을 통해 상기 포집액을 농축시켜 상기 샘플을 형성하는 1차 전처리부; 및 자성 나노입자 및 버퍼를 이용하여 상기 1차 전처리부에서 형성된 상기 샘플을 농축 및 정제하는 2차 전처리부를 포함하는 것을 특징으로 한다.In addition, the preprocessing unit includes a primary preprocessing unit that forms the sample by concentrating the collected liquid through a cross-flow filtration method; and a secondary preprocessing unit that concentrates and purifies the sample formed in the primary preprocessing unit using magnetic nanoparticles and a buffer.
또한, 상기 시료 이송부는 상기 포집액을 상기 공기포집 모듈로부터 상기 전처리부로 이송시키는 연동펌프; 및 상기 샘플을 상기 전처리부로부터 상기 검출부로 이송시키는 전자동 피펫을 포함하는 것을 특징으로 한다.In addition, the sample transfer unit includes a peristaltic pump that transfers the collected liquid from the air collection module to the pretreatment unit; and a fully automatic pipette that transfers the sample from the pretreatment unit to the detection unit.
또한, 상기 검출부는 중합효소연쇄반응법 또는 중합효소 증폭법을 포함하는 분자 진단 또는 형광면역분석법 또는 효소발광측정법을 포함하는 면역진단을 수행하는 것을 특징으로 한다.In addition, the detection unit is characterized in that it performs molecular diagnosis including polymerase chain reaction or polymerase amplification, or immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay.
본 발명은 공기의 포집, 농축 및 전처리, 검출에 이르는 과정이 연속적으로 수행되어 공기 중 유해 물질을 실시간으로 신속하게 분석할 수 있는 효과가 있다.The present invention has the effect of enabling rapid analysis of harmful substances in the air in real time by continuously performing the process of air collection, concentration, pretreatment, and detection.
또한, 장기간에 걸쳐 특정 장소의 유해물질 검출 및 모니터링이 가능하다는 장점이 있다.Additionally, it has the advantage of being able to detect and monitor hazardous substances in a specific location over a long period of time.
도 1은 본 발명의 바람직한 실시예에 따른 공기 중 유해물질 검출 시스템을 도시한 도면이다.1 is a diagram illustrating a system for detecting hazardous substances in the air according to a preferred embodiment of the present invention.
도 2는 공기포집 모듈, 시료 이송부, 전처리 및 검출 모듈의 블럭도이다.Figure 2 is a block diagram of the air collection module, sample transport unit, and pretreatment and detection module.
도 3은 공기포집 모듈에 구비되는 액상화부의 제1 실시예를 도시한 도면이다.Figure 3 is a diagram showing a first embodiment of a liquefaction unit provided in an air collection module.
도 4는 도 3의 단면도이다.Figure 4 is a cross-sectional view of Figure 3.
도 5는 공기포집 모듈에 구비되는 액상화부의 제2 실시예를 도시한 도면이다.Figure 5 is a diagram showing a second embodiment of the liquefaction unit provided in the air collection module.
도 6은 시료 이송부에 구비되는 전자동 피펫을 도시한 도면이다.Figure 6 is a diagram showing a fully automatic pipette provided in the sample transfer unit.
도 7은 전처리 및 검출 모듈을 도시한 도면이다.Figure 7 is a diagram showing the preprocessing and detection module.
도 8는 1차 전처리부에 의한 시료 처리과정을 설명하기 위한 도면이다.Figure 8 is a diagram for explaining the sample processing process by the first preprocessing unit.
도 9는 1차 전처리부에 의해 시료가 처리된 결과를 나타낸 그래프이다.Figure 9 is a graph showing the results of sample processing by the first pretreatment unit.
도 10은 2차 전처리부에 의한 시료 처리과정을 설명하기 위한 도면이다.Figure 10 is a diagram to explain the sample processing process by the secondary preprocessing unit.
도 11은 2차 전처리부에 의해 시료가 처리된 결과를 나타낸 그래프이다.Figure 11 is a graph showing the results of sample processing by the secondary pretreatment unit.
도 12는 검출부를 도시한 도면이다.Figure 12 is a diagram showing a detection unit.
도 13은 Human corona virus NL63에 대한 RPA 프라이머 및 프로브 제작 후 농도별 반응결과를 나타낸 그래프이다.Figure 13 is a graph showing the reaction results by concentration after producing RPA primers and probes for human coronavirus NL63.
도 14는 Influenza A virus H1N1에 대한 RPA 프라이머 및 프로브 제작 후 농도별 반응결과를 나타낸 그래프이다.Figure 14 is a graph showing reaction results by concentration after producing RPA primers and probes for Influenza A virus H1N1.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 첨가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 실시될 수 있음은 물론이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. First, when adding reference signs to components in each drawing, it should be noted that the same components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, if it is judged that it may obscure the gist of the present invention, the detailed description will be omitted. In addition, preferred embodiments of the present invention will be described below, but of course, the technical idea of the present invention is not limited or limited thereto and can be practiced by those skilled in the art.
도 1은 본 발명의 바람직한 실시예에 따른 공기 중 유해물질 검출 시스템을 도시한 도면이고, 도 2는 공기포집 모듈, 시료 이송부, 전처리 및 검출 모듈의 블럭도이며, 도 3은 공기포집 모듈에 구비되는 액상화부의 제1 실시예를 도시한 도면, 도 4는 도 3의 단면도이다. 또한, 도 5는 공기포집 모듈에 구비되는 액상화부의 제2 실시예를 도시한 도면이고, 도 6은 시료 이송부에 구비되는 전자동 피펫을 도시한 도면이며, 도 7은 전처리 및 검출 모듈을 도시한 도면이다. 또한, 도 8 및 도 9는 1차 전처리부에 의한 시료 처리과정과 그 결과를 설명하기 위한 도면이고, 도 10 및 도11은 2차 전처리부에 의한 시료 처리과정과 그 결과를 설명하기 위한 도면이다. 또한, 도 12는 검출부를 도시한 도면이다.Figure 1 is a diagram showing a system for detecting harmful substances in the air according to a preferred embodiment of the present invention, Figure 2 is a block diagram of the air collection module, sample transfer unit, pre-processing and detection module, and Figure 3 is provided in the air collection module. FIG. 4 is a cross-sectional view of FIG. 3, showing a first embodiment of the liquefaction unit. In addition, Figure 5 is a diagram showing a second embodiment of the liquefaction unit provided in the air collection module, Figure 6 is a diagram showing a fully automatic pipette provided in the sample transfer unit, and Figure 7 is a diagram showing the pre-processing and detection module. am. In addition, Figures 8 and 9 are diagrams for explaining the sample processing process and results by the first preprocessing unit, and Figures 10 and 11 are diagrams explaining the sample processing process and results by the secondary preprocessing unit. am. Additionally, Figure 12 is a diagram showing a detection unit.
이하, 도 1 내지 도 12를 참고하여 본 발명의 바람직한 실시예에 따른 공기 중 유해물질 검출 시스템(10)을 설명한다.Hereinafter, a system 10 for detecting hazardous substances in the air according to a preferred embodiment of the present invention will be described with reference to FIGS. 1 to 12.
본 발명의 바람직한 실시예에 따른 공기 중 유해물질 검출 시스템(10)은 공기포집 모듈(100), 시료 이송부(200), 전처리 및 검출 모듈(300) 및 전원부(400)를 포함한다.The system 10 for detecting harmful substances in the air according to a preferred embodiment of the present invention includes an air collection module 100, a sample transport unit 200, a pretreatment and detection module 300, and a power unit 400.
이러한 공기 중 유해물질 검출 시스템(10)은 도 1에 도시된 바와 같이 공기포집 모듈(100), 시료 이송부(200), 전처리 및 검출 모듈(300)이 하나의 시스템으로 이루어져 공기 중의 유해물질을 포집, 전처리 및 분석의 과정을 연속적으로 수행할 수 있도록 구성되고, 전원부(400)를 통해 각각에 전원이 공급된다.As shown in FIG. 1, the system 10 for detecting hazardous substances in the air consists of an air collection module 100, a sample transfer unit 200, and a pre-processing and detection module 300 as one system to collect hazardous substances in the air. , It is configured to continuously perform the preprocessing and analysis processes, and power is supplied to each unit through the power supply unit 400.
구체적으로 공기포집 모듈(100)은 공기 중의 유해물질을 포집하여 포집액을 생성하는 역할을 한다. Specifically, the air collection module 100 serves to collect harmful substances in the air and generate a collection liquid.
더욱 상세하게 공기포집 모듈(100) 팬(110)과 액상화부(120)를 구비한다.In more detail, the air collection module 100 is provided with a fan 110 and a liquefaction unit 120.
팬(110)은 공기를 흡입하여 공기 중의 유해물질을 액상화부(120) 내부로 유입시키는 역할을 하며, 수백 LPM에서 수천 LPM까지의 유량에 대응이 가능하도록 구성된다.The fan 110 serves to suck air and introduce harmful substances in the air into the liquefaction unit 120, and is configured to respond to flow rates ranging from hundreds of LPM to thousands of LPM.
액상화부(120)는 증류수와 같은 액상의 포집매체(L)가 수용되는 포집조(122)를 구비하고, 팬(110)에 의해 유입된 공기 중의 유해물질이 포집매체(L)에 인입됨으로써 유해물질을 포함하는 포집액이 생성된다.The liquefaction unit 120 is provided with a collection tank 122 that accommodates a liquid collection medium (L) such as distilled water, and harmful substances in the air introduced by the fan 110 enter the collection medium (L), thereby causing harmful substances. A collection liquid containing the substance is produced.
이러한 액상화부(120)는 도 3 내지 도 5에 도시된 바와 같이 2가지의 실시예에 따라 형성될 수 있다.This liquefaction unit 120 can be formed according to two embodiments as shown in FIGS. 3 to 5.
먼저, 도 3 및 도 4에 도시된 바와 같이 제1 실시예에 따른 액상화부(120)는 포집조(122)의 내부에 경사지게 설치되어 회전하는 디스크(126)를 구비한다.First, as shown in FIGS. 3 and 4, the liquefaction unit 120 according to the first embodiment includes a disk 126 that is tilted and rotates inside the collection tank 122.
구체적으로, 제1 실시예에 따른 액상화부(120)는 팬(110)의 하부에 배치되고 내부에 포집매체(L)가 수용되는 포집조(122)와, 포집조(122)의 내부에 경사지게 설치되어 회전축(124)을 중심으로 회전하는 디스크(126)를 구비한다.Specifically, the liquefaction unit 120 according to the first embodiment is disposed below the fan 110, includes a collection tank 122 in which the collection medium L is accommodated, and is inclined inside the collection tank 122. It is provided with a disk 126 that is installed and rotates around the rotation axis 124.
이와 같이 포집조(122) 내부에서 경사지게 설치되는 디스크(126)는 적어도 어느 일부분이 포집매체(L)의 외부로 노출되고, 나머지 부분은 포집매체(L)에 잠긴 상태로 회전하도록 배치된다.In this way, the disk 126, which is installed at an angle inside the collection tank 122, is arranged so that at least a portion is exposed to the outside of the collection medium (L) and the remaining portion rotates while being locked in the collection medium (L).
또한, 디스크(126)의 상부면에는 복수의 필라(127)가 돌출형성되는데, 디스크(126)의 회전과정에서 포집매체(L)의 외부로 노출된 복수의 필라(127)에는 포집매체(L)의 막이 형성되고, 팬(110)에 의해 유입된 공기 중의 유해물질이 노출된 필라(127)에 충돌하여 유해물질의 포집효율이 향상된다.In addition, a plurality of pillars 127 are protruding from the upper surface of the disk 126. The plurality of pillars 127 exposed to the outside of the collection medium (L) during the rotation of the disk 126 contain the collection medium (L). ) is formed, and the harmful substances in the air introduced by the fan 110 collide with the exposed pillar 127, thereby improving the collection efficiency of the harmful substances.
디스크(126)의 포집매체(L) 외부로 노출되었던 부분은 디스크(126)의 회전에 의해 포집매체(L)의 내부로 잠기게 되면서 유해물질이 포집매체(L)에 잠기게 된다.The portion of the disk 126 that was exposed to the outside of the collection medium (L) is immersed into the inside of the collection medium (L) by the rotation of the disk 126, and the hazardous substances are immersed in the collection medium (L).
바람직하게 디스크(126)의 회전을 위해 디스크(126)의 테두리에는 복수의 톱니(128)들이 구비되고, 포집조(122)의 일측에는 톱니(128)들에 맞물려 회전하는 구동기어(130)가 구비된다.Preferably, a plurality of teeth 128 are provided on the edge of the disk 126 to rotate the disk 126, and a driving gear 130 that rotates in engagement with the teeth 128 is provided on one side of the collection tank 122. It is provided.
제2 실시예에 따른 액상화부(120)는 포집조(122) 내부에 배치되는 디스크(126)가 승강되도록 구비된다.The liquefaction unit 120 according to the second embodiment is provided so that the disk 126 disposed inside the collection tank 122 is raised and lowered.
이를 위해 디스크(126)에는 랙기어(140)가 연결되고, 랙기어(140)에 맞물려 회전함으로써 디스크(126)를 승강시키는 피니언기어(142)와 피니언기어(142)에 연결되어 피니언기어(142)를 회전시키는 모터(144)가 구비된다.For this purpose, a rack gear 140 is connected to the disk 126, and a pinion gear 142 that engages and rotates the rack gear 140 to elevate and lower the disk 126 is connected to the pinion gear 142 and is connected to the pinion gear 142. ) is provided with a motor 144 that rotates.
이때, 디스크(126)는 제1 실시예에서와 같이 상부면에 복수의 필라(127)가 형성된다.At this time, the disk 126 has a plurality of pillars 127 formed on its upper surface as in the first embodiment.
디스크(126)는 랙기어(140) 및 피니언기어(142)에 의해 승강동작을 반복하는데, 상승된 상태에서는 필라(127)들이 포집매체(L)의 수면 위로 노출되고 하강한 상태에서는 필라(127)들이 포집매체(L)의 내부로 잠기게 된다.The disk 126 repeats the lifting and lowering operation by the rack gear 140 and the pinion gear 142. In the raised state, the pillars 127 are exposed above the water surface of the collection medium (L), and in the lowered state, the pillars 127 are exposed to the water surface of the collection medium (L). ) are submerged into the interior of the collection medium (L).
디스크(126)가 상승하여 포집매채(L)의 외부로 노출된 필라(127)들에 충돌한 공기 중의 유해물질은 디스크(126)가 하강한 상태에서 포집매체(L)로 인입되어 포집액이 생성된다.Harmful substances in the air that collide with the pillars 127 exposed to the outside of the collection medium (L) as the disk 126 rises are drawn into the collection medium (L) while the disk 126 is lowered, and the collection liquid is collected. is created.
시료 이송부(200)는 포집액 및 샘플을 이송하는 역할을 하며, 연동펌프(210) 및 3축 스테이지에 의해 작동되는 전자동 피펫(220)을 구비한다.The sample transfer unit 200 serves to transfer the collection liquid and sample, and is equipped with a peristaltic pump 210 and a fully automatic pipette 220 operated by a 3-axis stage.
구체적으로 연동펌프(210)는 공기포집 모듈(100)의 액상화부(120)에서 생성된 포집액을 전처리부(310)로 이송시키는 역할을 한다.Specifically, the peristaltic pump 210 serves to transport the collected liquid generated in the liquefaction unit 120 of the air collection module 100 to the pretreatment unit 310.
또한, 전자동 피펫(220)은 전처리부(310)에서 형성된 샘플을 전처리부(310)로부터 검출부(320)로 이송시키고, 2차 전처리부(314)에서 시약 및 버퍼를 튜브(T)로 주입하거나 제거하는 역할을 한다.In addition, the fully automatic pipette 220 transfers the sample formed in the preprocessing unit 310 from the preprocessing unit 310 to the detection unit 320, and injects reagents and buffers into the tube T in the secondary preprocessing unit 314. It plays a role in removing
이러한 전자동 피펫(220)을 사용함으로써 불필요한 버퍼 등을 제거할 수 있고, 수십 마이크로리터 수준의 정밀함을 가짐으로써 검출부(320)에서 정밀도가 향상된 분석결과를 얻을 수 있다. By using this fully automatic pipette 220, unnecessary buffers, etc. can be removed, and analysis results with improved precision can be obtained in the detection unit 320 with a precision of several tens of microliters.
이때, 전자동 피펫(220)은 도 6에 도시된 바와 같이 특정 장치에 전용으로 사용되는 전용 팁이 아닌 일반적인 범용 피펫을 이용함으로써 자동 세척이 가능하고, 오염된 피펫 팁을 교체할 수 있어 용이하게 유지관리를 할 수 있다.At this time, as shown in FIG. 6, the fully automatic pipette 220 can be automatically cleaned by using a general-purpose pipette rather than a dedicated tip exclusively used for a specific device, and contaminated pipette tips can be replaced for easy maintenance. You can manage it.
전처리 및 검출 모듈(300)은 포집액을 농축 및 정제하여 분석대상 샘플을 형성하는 전처리부(310)와, 샘플로부터 유해물질을 검출하는 검출부(320)로 이루어진다.The preprocessing and detection module 300 consists of a preprocessing unit 310 that concentrates and purifies the collection liquid to form a sample to be analyzed, and a detection unit 320 that detects harmful substances from the sample.
구체적으로 전처리부(310)는 횡류여과방식(tangential flow filtration)을 통해 포집액을 농축시켜 샘플을 형성하는 1차 전처리부(312)와, 실리카 자성 나노입자 및 버퍼를 이용하여 1차 전처리부(312)에서 형성된 샘플을 다시 농축 및 정제하는 2차 전처리부(314)를 포함한다.Specifically, the pretreatment unit 310 includes a primary pretreatment unit 312 that forms a sample by concentrating the collected liquid through tangential flow filtration, and a primary pretreatment unit (312) using silica magnetic nanoparticles and a buffer. It includes a secondary preprocessing unit 314 that again concentrates and purifies the sample formed in 312).
이때, 1차 전처리부(312)는 도 8 및 도 9에 도시된 바와 같이 횡류여과방식의 멤브레인 필터를 통해 200㎖의 포집액을 대략 5분 이내의 빠른시간에 20㎖로 약 10배 농축이 가능하며, 이와 같은 신속한 농축과정을 통해 포집액 내의 병원체 손실을 최소화할 수 있다.At this time, as shown in FIGS. 8 and 9, the first pretreatment unit 312 concentrates 200 ml of the collected solution about 10 times to 20 ml in less than 5 minutes through a membrane filter of the cross-flow filtration method. It is possible, and the loss of pathogens in the collected liquid can be minimized through this rapid concentration process.
또한, 2차 전처리부(314)는 도 10 및 도 11에 도시된 바와 같이 1차 전처리부(312)에서 농축되어 형성된 샘플을 검출부(320)에서 분석할 수 있도록 2차 농축하고 정제하여 손실율 10% 이하로 약 200배 이상 농축이 가능하다.In addition, as shown in FIGS. 10 and 11, the secondary preprocessing unit 314 secondarily concentrates and purifies the sample concentrated in the first preprocessing unit 312 so that it can be analyzed in the detection unit 320, resulting in a loss rate of 10. It is possible to concentrate more than 200 times to less than %.
이와 같은 2차 전처리부(314)는 실리카 자성 나노 입자가 수용된 튜브(T)에 자력을 인가하는 마그넷(316)과 마그넷(316)을 튜브(T)의 하부로 위치시키는 서보모터(318)를 구비한다(도 7 참고).This secondary preprocessing unit 314 includes a magnet 316 that applies magnetic force to the tube (T) containing the silica magnetic nanoparticles and a servomotor 318 that positions the magnet 316 to the lower part of the tube (T). It is provided (see Figure 7).
구체적으로 도 10을 참고하여 2차 전처리부(314)에서의 처리과정을 설명하면 다음과 같다.Specifically, with reference to FIG. 10, the processing process in the secondary preprocessing unit 314 is explained as follows.
먼저, 전자동 피펫(220)은 1차 전처리부(312)에서 농축된 샘플을 튜브(T)로 이송시키고, 농축된 샘플에 바인딩 버퍼와 실리카 자성 나노 입자를 주입한다. 이후, 서보모터(318)를 구동하여 마그넷(316)을 튜브(T)의 하부로 위치시켜 일정 시간동안 자력을 인가하여 용액을 분리시킨다. 일정 시간이 지나 용액의 분리가 완료되면 전자동 피펫(220)을 이용하여 튜브(T) 내의 상등액을 제거하고, 마그넷(316)을 원위치시킴으로써 농축된 자성 나노 입자를 획득한다. 이후, 획득한 자성 나노 입자를 정제하여 검출부(320)에서의 분자진단을 위한 농축된 샘플을 얻게 된다.First, the fully automatic pipette 220 transfers the sample concentrated in the first pretreatment unit 312 to the tube T, and injects binding buffer and silica magnetic nanoparticles into the concentrated sample. Afterwards, the servo motor 318 is driven to position the magnet 316 at the bottom of the tube T and magnetic force is applied for a certain period of time to separate the solution. When separation of the solution is completed after a certain period of time, the supernatant in the tube (T) is removed using the fully automatic pipette 220, and the magnet 316 is returned to its original position to obtain concentrated magnetic nanoparticles. Thereafter, the obtained magnetic nanoparticles are purified to obtain a concentrated sample for molecular diagnosis in the detection unit 320.
검출부(320)는 중합효소연쇄반응법(Polymerase Chain Reaction; PCR) 또는 중합효소 증폭법(Recombinase Polymerase Amplification; RPA) 등을 이용한 분자 진단이나, 형광면역분석법 또는 효소발광측정법을 포함하는 면역진단을 수행함으로써 샘플에 포함된 병원체 등의 유해물질을 검출한다.The detection unit 320 performs molecular diagnosis using Polymerase Chain Reaction (PCR) or Recombinase Polymerase Amplification (RPA), or immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay. This detects harmful substances such as pathogens contained in the sample.
이를 위해 검출부(320)는 96 웰-플레이트(96 well-plate)와 같은 공지된 분석 수단을 구비할 수 있다. For this purpose, the detection unit 320 may be equipped with a known analysis means such as a 96 well-plate.
일반적인 경우 1회 측정을 위해서는 2 내지 3개의 웰을 사용하게 되고 다채널 및 여러 검체를 측정하게 되면 더 많은 웰을 사용하게 되는데, 본 발명의 검출부(320)는 웰 플레이트를 복수 개 적재하여 사용이 완료된 웰 플레이트를 교체할 수 있도록 구비된다.In general, 2 to 3 wells are used for one measurement, and when measuring multiple channels and multiple samples, more wells are used. The detection unit 320 of the present invention can be used by loading multiple well plates. It is provided so that completed well plates can be replaced.
한편, 검출부(320)에서의 분자진단 과정에서는 분자진단에 저해 요소로 작용하는 에탄올 등의 용매를 제거하기 위해 TPW(Two Phase Washing) 스텝을 추가로 수행할 수 있으며, 이를 통해 자동화 과정에서 남게 되는 잔여물에 대한 인히비션(inhibition)을 최소화할 수 있다.Meanwhile, in the molecular diagnosis process in the detection unit 320, a TPW (Two Phase Washing) step can be additionally performed to remove solvents such as ethanol, which act as an inhibitor to molecular diagnosis, and through this, any residue remaining in the automation process can be removed. Inhibition of residues can be minimized.
도 13은 Human corona virus NL63에 대한 RPA 프라이머 및 프로브 제작 후 농도별 반응결과를 나타낸 그래프이고, 도 14는 Influenza A virus H1N1에 대한 RPA 프라이머 및 프로브 제작 후 농도별 반응결과를 나타낸 그래프이다.Figure 13 is a graph showing the reaction results by concentration after producing RPA primers and probes for human corona virus NL63, and Figure 14 is a graph showing reaction results by concentration after producing RPA primers and probes for Influenza A virus H1N1.
본 발명의 공기 중 유해물질 검출 시스템(10)을 통해서 등온 핵산 증폭을 위한 RPA 프라이머 및 프로브 제작 및 민감도를 확인한 결과 휴먼 코로나 바이러스 NL63(Human corona virus NL63) 및 인플루엔자 A 바이러스 H1N1(Influenza A virus H1N1)에 대한 RPA 프라이머 및 프로브 제작 후 농도별 반응결과 1*10^2 TCID50/reaction 이하로 검출 가능함을 확인하였다. 이때, 40°C 등온으로 검출 시간은 RT 반응 포함 20분 이내 시그널을 확인할 수 있었다.As a result of confirming the production and sensitivity of RPA primers and probes for isothermal nucleic acid amplification through the airborne hazardous substance detection system (10) of the present invention, human coronavirus NL63 (Human corona virus NL63) and Influenza A virus H1N1 (Influenza A virus H1N1) After producing RPA primers and probes, it was confirmed that the reaction results at each concentration could be detected below 1*10^2 TCID50/reaction. At this time, the detection time at 40°C isotherm was able to confirm the signal within 20 minutes including the RT reaction.
상술한 바와 같이 본 발명의 바람직한 실시예에 따른 공기 중 유해물질 검출 시스템(10)은 공기의 포집, 농축 및 전처리, 검출에 이르는 과정이 연속적으로 수행되어 공기 중 유해 물질을 실시간으로 신속하게 분석할 수 있으며, 장기간에 걸쳐 특정 장소의 유해물질 검출 및 모니터링이 가능하다는 장점이 있어 매우 유용한 것이다.As described above, the system for detecting hazardous substances in the air (10) according to a preferred embodiment of the present invention is capable of quickly analyzing hazardous substances in the air in real time by continuously performing the process of collecting, concentrating, pre-processing, and detecting the air. It is very useful because it has the advantage of being able to detect and monitor hazardous substances in a specific location over a long period of time.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications, changes, and substitutions can be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the attached drawings are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments and the attached drawings. The scope of protection of the present invention should be interpreted in accordance with the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of the present invention.

Claims (8)

  1. 공기 중의 유해물질을 포집하여 포집액을 생성하는 공기포집 모듈; 및An air collection module that collects harmful substances in the air and generates a collection liquid; and
    상기 포집액을 농축 및 정제하여 분석대상 샘플을 형성하는 전처리부와,A preprocessing unit that concentrates and purifies the collected liquid to form a sample to be analyzed,
    상기 샘플로부터 유해물질을 검출하는 검출부를 구비하는 전처리 및 검출모듈을 포함하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, comprising a preprocessing and detection module having a detection unit for detecting hazardous substances from the sample.
  2. 제1항에 있어서,According to paragraph 1,
    상기 포집액 및 상기 샘플을 이송하는 시료 이송부를 더 포함하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, further comprising a sample transfer unit that transfers the collected liquid and the sample.
  3. 제1항에 있어서,According to paragraph 1,
    상기 공기포집 모듈은The air collection module is
    공기 중의 유해물질을 유입시키는 팬과, 액상의 포집매체가 수용되는 액상화부를 구비하고,It is provided with a fan that introduces harmful substances in the air and a liquefaction unit that accommodates a liquid collection medium,
    상기 팬에 의해 유입된 공기 중의 유해물질이 상기 포집매체에 인입됨으로써 유해물질을 포함하는 상기 포집액이 생성되는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, wherein the collection liquid containing the hazardous substances is generated as the hazardous substances in the air introduced by the fan enter the collection medium.
  4. 제3항에 있어서,According to paragraph 3,
    상기 액상화부는The liquefaction unit
    상기 팬의 하부에 배치되고 내부에 상기 포집매체가 수용되는 포집조; 및a collection tank disposed below the fan and containing the collection medium therein; and
    상부면에 복수의 필라가 돌출형성되고, 상기 포집조의 내부에 경사지게 설치되어 회전하는 디스크를 구비하며,A plurality of pillars are protruding from the upper surface, and a disk is installed at an angle and rotates inside the collection tank,
    상기 디스크는 적어도 부분적으로 상기 포집매체의 외부로 노출되도록 배치되는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, wherein the disk is disposed to be at least partially exposed to the outside of the collection medium.
  5. 제3항에 있어서,According to paragraph 3,
    상기 액상화부는The liquefaction unit
    상기 팬의 하부에 배치되고 내부에 상기 포집매체가 수용되는 포집조; 및a collection tank disposed below the fan and containing the collection medium therein; and
    상부면에 복수의 필라가 돌출형성되고, 상기 포집조의 내부에 배치되는 디스크;A disk with a plurality of pillars protruding from the upper surface and disposed inside the collection tank;
    일측이 상기 디스크에 연결되는 랙기어;A rack gear on one side connected to the disk;
    상기 랙기어에 맞물려 회전함으로써 상기 디스크를 승강시키는 피니언기어; 및a pinion gear that engages and rotates with the rack gear to elevate the disk; and
    상기 피니언기어에 연결되어 상기 피니언기어를 회전시키는 모터를 구비하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, comprising a motor connected to the pinion gear and rotating the pinion gear.
  6. 제1항에 있어서,According to paragraph 1,
    상기 전처리부는The preprocessing unit
    횡류여과방식을 통해 상기 포집액을 농축시켜 상기 샘플을 형성하는 1차 전처리부; 및A primary pretreatment unit that forms the sample by concentrating the collected liquid through a cross-flow filtration method; and
    자성 나노입자 및 버퍼를 이용하여 상기 1차 전처리부에서 형성된 상기 샘플을 농축 및 정제하는 2차 전처리부를 포함하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, comprising a secondary preprocessing unit that concentrates and purifies the sample formed in the primary preprocessing unit using magnetic nanoparticles and a buffer.
  7. 제1항에 있어서,According to paragraph 1,
    상기 시료 이송부는The sample transport unit
    상기 포집액을 상기 공기포집 모듈로부터 상기 전처리부로 이송시키는 연동펌프; 및A peristaltic pump that transfers the collected liquid from the air collection module to the pretreatment unit; and
    상기 샘플을 상기 전처리부로부터 상기 검출부로 이송시키는 전자동 피펫을 포함하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting hazardous substances in the air, comprising a fully automatic pipette for transferring the sample from the pretreatment unit to the detection unit.
  8. 제1항에 있어서,According to paragraph 1,
    상기 검출부는 중합효소연쇄반응법 또는 중합효소 증폭법을 포함하는 분자 진단 또는 형광면역분석법 또는 효소발광측정법을 포함하는 면역진단을 수행하는 것을 특징으로 하는 공기 중 유해물질 검출 시스템.A system for detecting harmful substances in the air, wherein the detection unit performs molecular diagnosis including polymerase chain reaction method or polymerase amplification method, or immunodiagnosis including fluorescence immunoassay or enzyme luminescence assay.
PCT/KR2022/008148 2022-03-24 2022-06-09 Detection system for harmful substances in air WO2023182573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220036964A KR20230139400A (en) 2022-03-24 2022-03-24 System for detection of harmful substances in air
KR10-2022-0036964 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182573A1 true WO2023182573A1 (en) 2023-09-28

Family

ID=88101201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008148 WO2023182573A1 (en) 2022-03-24 2022-06-09 Detection system for harmful substances in air

Country Status (2)

Country Link
KR (1) KR20230139400A (en)
WO (1) WO2023182573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314691B2 (en) * 1997-10-13 2002-08-12 株式会社大林組 Formaldehyde analysis method in air
KR20100008726A (en) * 2008-07-16 2010-01-26 (주)바이오니아 Collecting apparatus of biological material for mounting on remotely piloted vehicle
KR101860066B1 (en) * 2016-10-06 2018-05-24 주식회사 미로 Air cleaner
JPWO2019193878A1 (en) * 2018-04-06 2021-05-20 パナソニックIpマネジメント株式会社 Pathogen detection device and pathogen detection method
KR102294469B1 (en) * 2021-01-22 2021-08-25 연세대학교 산학협력단 Apparatus for gently sampling bio-particles in air

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY158484A (en) 2010-02-26 2016-10-14 Sharp Kk Detection apparatus and method for detecting airbone biological particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314691B2 (en) * 1997-10-13 2002-08-12 株式会社大林組 Formaldehyde analysis method in air
KR20100008726A (en) * 2008-07-16 2010-01-26 (주)바이오니아 Collecting apparatus of biological material for mounting on remotely piloted vehicle
KR101860066B1 (en) * 2016-10-06 2018-05-24 주식회사 미로 Air cleaner
JPWO2019193878A1 (en) * 2018-04-06 2021-05-20 パナソニックIpマネジメント株式会社 Pathogen detection device and pathogen detection method
KR102294469B1 (en) * 2021-01-22 2021-08-25 연세대학교 산학협력단 Apparatus for gently sampling bio-particles in air

Also Published As

Publication number Publication date
KR20230139400A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
RU2610687C2 (en) Device and method for automatic analysis of biological samples
CN103399162B (en) For separating of, amplify and detect the automated system of target nucleic acid sequence
CN1950520A (en) Method and assembly for DNA isolation with dry reagents
US12023678B2 (en) Genetic testing device
CN108220396B (en) Biological sample processing device
US9360404B2 (en) Filtering member and filtering method
CN104152349B (en) A kind of detection reagent cartridge automatically
CN105349530A (en) New type nucleic acid detection method and detector tube
CN112410204A (en) Full-automatic nucleic acid detecting system
CN214167961U (en) Full-automatic nucleic acid detecting system
WO2015130000A1 (en) Airborne microbial measurement apparatus and method
CN107760676B (en) Full-automatic extraction instrument for paramagnetic particles
CN101788556A (en) Biosafety biochemical analyzer
CN111269808A (en) Automatic safety detection method for high-pollution high-infection-risk biological samples
WO2023182573A1 (en) Detection system for harmful substances in air
CN115927550A (en) Full-automatic nucleic acid sample detection pretreatment method
WO2022124672A1 (en) Molecular diagnostic cartridge and molecular diagnostic device using same
WO2019216533A1 (en) Method for measuring viruses and mold in air
CN113916618A (en) Online virus monitoring and early warning device
EP4189113A1 (en) Apparatus and method for sampling and detecting a pathogen in air
CN114755067B (en) Aerosol particulate matter collecting device and collecting method
WO2023287082A1 (en) Cartridge system for extraction of complex sample, and complex sample extracting method
CN115369016A (en) Nucleic acid detection device and method
CN201628714U (en) Biosafety biochemical analyzer
CN218298273U (en) Sample liquid-transferring capping device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933745

Country of ref document: EP

Kind code of ref document: A1