WO2023182522A1 - Epoxy resin, cured body of same and method for producing epoxy resin - Google Patents
Epoxy resin, cured body of same and method for producing epoxy resin Download PDFInfo
- Publication number
- WO2023182522A1 WO2023182522A1 PCT/JP2023/012033 JP2023012033W WO2023182522A1 WO 2023182522 A1 WO2023182522 A1 WO 2023182522A1 JP 2023012033 W JP2023012033 W JP 2023012033W WO 2023182522 A1 WO2023182522 A1 WO 2023182522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- formula
- hydrogen atom
- group
- compound
- Prior art date
Links
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 196
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 195
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 73
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims abstract description 18
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims description 132
- 125000004432 carbon atom Chemical group C* 0.000 claims description 44
- 125000005842 heteroatom Chemical group 0.000 claims description 41
- 239000002028 Biomass Substances 0.000 claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 8
- 239000003795 chemical substances by application Substances 0.000 description 66
- 239000000203 mixture Substances 0.000 description 55
- 150000002430 hydrocarbons Chemical group 0.000 description 38
- 229920005989 resin Polymers 0.000 description 33
- 239000011347 resin Substances 0.000 description 33
- 238000006243 chemical reaction Methods 0.000 description 29
- -1 glycidyl furfuryl ether Chemical compound 0.000 description 27
- 239000000853 adhesive Substances 0.000 description 26
- 230000001070 adhesive effect Effects 0.000 description 26
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical compound OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 description 25
- 239000002253 acid Substances 0.000 description 25
- 239000000047 product Substances 0.000 description 25
- 239000000306 component Substances 0.000 description 22
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- 239000000463 material Substances 0.000 description 21
- 239000004593 Epoxy Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000000945 filler Substances 0.000 description 14
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 14
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 13
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000001412 amines Chemical class 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000008199 coating composition Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 230000009477 glass transition Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 229920000768 polyamine Polymers 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 8
- 150000007514 bases Chemical class 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 239000011256 inorganic filler Substances 0.000 description 7
- 229910003475 inorganic filler Inorganic materials 0.000 description 7
- 239000004645 polyester resin Substances 0.000 description 7
- 229930195734 saturated hydrocarbon Natural products 0.000 description 7
- 238000004513 sizing Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 6
- 239000012772 electrical insulation material Substances 0.000 description 6
- 230000032050 esterification Effects 0.000 description 6
- 238000005886 esterification reaction Methods 0.000 description 6
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 6
- 229920000126 latex Polymers 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920001225 polyester resin Polymers 0.000 description 6
- DOKHEARVIDLSFF-UHFFFAOYSA-N prop-1-en-1-ol Chemical group CC=CO DOKHEARVIDLSFF-UHFFFAOYSA-N 0.000 description 6
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 5
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 5
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000011258 core-shell material Substances 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 5
- 235000001785 ferulic acid Nutrition 0.000 description 5
- 229940114124 ferulic acid Drugs 0.000 description 5
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 229920006174 synthetic rubber latex Polymers 0.000 description 5
- 125000003396 thiol group Chemical class [H]S* 0.000 description 5
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 5
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 235000004883 caffeic acid Nutrition 0.000 description 4
- 229940074360 caffeic acid Drugs 0.000 description 4
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 238000006471 dimerization reaction Methods 0.000 description 4
- 230000000447 dimerizing effect Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 150000002440 hydroxy compounds Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 150000004702 methyl esters Chemical class 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 150000001718 carbodiimides Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- LLPKQRMDOFYSGZ-UHFFFAOYSA-N 2,5-dimethyl-1h-imidazole Chemical compound CC1=CN=C(C)N1 LLPKQRMDOFYSGZ-UHFFFAOYSA-N 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- QCOGKXLOEWLIDC-UHFFFAOYSA-N N-methylbutylamine Chemical compound CCCCNC QCOGKXLOEWLIDC-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- RUEBPOOTFCZRBC-UHFFFAOYSA-N (5-methyl-2-phenyl-1h-imidazol-4-yl)methanol Chemical compound OCC1=C(C)NC(C=2C=CC=CC=2)=N1 RUEBPOOTFCZRBC-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- OQSQRYMTDPLPNY-UHFFFAOYSA-N 1,2-diethylimidazole Chemical compound CCC1=NC=CN1CC OQSQRYMTDPLPNY-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- CWKVFRNCODQPDB-UHFFFAOYSA-N 1-(2-aminoethylamino)propan-2-ol Chemical compound CC(O)CNCCN CWKVFRNCODQPDB-UHFFFAOYSA-N 0.000 description 1
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 description 1
- XZKLXPPYISZJCV-UHFFFAOYSA-N 1-benzyl-2-phenylimidazole Chemical compound C1=CN=C(C=2C=CC=CC=2)N1CC1=CC=CC=C1 XZKLXPPYISZJCV-UHFFFAOYSA-N 0.000 description 1
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical class CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 1
- ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 1H-imidazole silane Chemical class [SiH4].N1C=NC=C1 ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- RNIPJYFZGXJSDD-UHFFFAOYSA-N 2,4,5-triphenyl-1h-imidazole Chemical compound C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 RNIPJYFZGXJSDD-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- OIFAHDAXIUURLN-UHFFFAOYSA-N 2-(fluoromethyl)oxirane Chemical compound FCC1CO1 OIFAHDAXIUURLN-UHFFFAOYSA-N 0.000 description 1
- AGIBHMPYXXPGAX-UHFFFAOYSA-N 2-(iodomethyl)oxirane Chemical compound ICC1CO1 AGIBHMPYXXPGAX-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- AZMMSEASPQHHTC-UHFFFAOYSA-N 2-[1,1-bis(2-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=CC=C(O)C=1C(C=1C(=CC=CC=1)O)(C)C1=CC=CC=C1O AZMMSEASPQHHTC-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- HVOBSBRYQIYZNY-UHFFFAOYSA-N 2-[2-(2-aminoethylamino)ethylamino]ethanol Chemical compound NCCNCCNCCO HVOBSBRYQIYZNY-UHFFFAOYSA-N 0.000 description 1
- LJBWJFWNFUKAGS-UHFFFAOYSA-N 2-[bis(2-hydroxyphenyl)methyl]phenol Chemical compound OC1=CC=CC=C1C(C=1C(=CC=CC=1)O)C1=CC=CC=C1O LJBWJFWNFUKAGS-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 1
- SZUPZARBRLCVCB-UHFFFAOYSA-N 3-(2-undecylimidazol-1-yl)propanenitrile Chemical compound CCCCCCCCCCCC1=NC=CN1CCC#N SZUPZARBRLCVCB-UHFFFAOYSA-N 0.000 description 1
- JCEZOHLWDIONSP-UHFFFAOYSA-N 3-[2-[2-(3-aminopropoxy)ethoxy]ethoxy]propan-1-amine Chemical compound NCCCOCCOCCOCCCN JCEZOHLWDIONSP-UHFFFAOYSA-N 0.000 description 1
- AERZMMNNWVZSNB-UHFFFAOYSA-N 3-dodec-1-ynyloxolane-2,5-dione Chemical compound CCCCCCCCCCC#CC1CC(=O)OC1=O AERZMMNNWVZSNB-UHFFFAOYSA-N 0.000 description 1
- BFLWXPJTAKXXKT-UHFFFAOYSA-N 3-methoxybenzene-1,2-diamine Chemical compound COC1=CC=CC(N)=C1N BFLWXPJTAKXXKT-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 1
- LABQKWYHWCYABU-UHFFFAOYSA-N 4-(3-sulfanylbutanoyloxy)butyl 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCCCCOC(=O)CC(C)S LABQKWYHWCYABU-UHFFFAOYSA-N 0.000 description 1
- BMTZEAOGFDXDAD-UHFFFAOYSA-M 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium;chloride Chemical compound [Cl-].COC1=NC(OC)=NC([N+]2(C)CCOCC2)=N1 BMTZEAOGFDXDAD-UHFFFAOYSA-M 0.000 description 1
- NGSWKAQJJWESNS-ZZXKWVIFSA-M 4-Hydroxycinnamate Natural products OC1=CC=C(\C=C\C([O-])=O)C=C1 NGSWKAQJJWESNS-ZZXKWVIFSA-M 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- DFYRUELUNQRZTB-UHFFFAOYSA-N Acetovanillone Natural products COC1=CC(C(C)=O)=CC=C1O DFYRUELUNQRZTB-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- XNPOFXIBHOVFFH-UHFFFAOYSA-N N-cyclohexyl-N'-(2-(4-morpholinyl)ethyl)carbodiimide Chemical compound C1CCCCC1N=C=NCCN1CCOCC1 XNPOFXIBHOVFFH-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- VTLHIRNKQSFSJS-UHFFFAOYSA-N [3-(3-sulfanylbutanoyloxy)-2,2-bis(3-sulfanylbutanoyloxymethyl)propyl] 3-sulfanylbutanoate Chemical group CC(S)CC(=O)OCC(COC(=O)CC(C)S)(COC(=O)CC(C)S)COC(=O)CC(C)S VTLHIRNKQSFSJS-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- UUQQGGWZVKUCBD-UHFFFAOYSA-N [4-(hydroxymethyl)-2-phenyl-1h-imidazol-5-yl]methanol Chemical compound N1C(CO)=C(CO)N=C1C1=CC=CC=C1 UUQQGGWZVKUCBD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- CHQVQXZFZHACQQ-UHFFFAOYSA-M benzyl(triethyl)azanium;bromide Chemical compound [Br-].CC[N+](CC)(CC)CC1=CC=CC=C1 CHQVQXZFZHACQQ-UHFFFAOYSA-M 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- QUEICCDHEFTIQD-UHFFFAOYSA-N buta-1,3-diene;2-ethenylpyridine;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=N1 QUEICCDHEFTIQD-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 125000001651 cyanato group Chemical group [*]OC#N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- VSSAZBXXNIABDN-UHFFFAOYSA-N cyclohexylmethanol Chemical compound OCC1CCCCC1 VSSAZBXXNIABDN-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical class CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- DEDGUGJNLNLJSR-UHFFFAOYSA-N hydroxycinnamic acid group Chemical group OC(C(=O)O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000004658 ketimines Chemical group 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- ITZPOSYADVYECJ-UHFFFAOYSA-N n'-cyclohexylpropane-1,3-diamine Chemical compound NCCCNC1CCCCC1 ITZPOSYADVYECJ-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- BOTNYLSAWDQNEX-UHFFFAOYSA-N phenoxymethylbenzene Chemical compound C=1C=CC=CC=1COC1=CC=CC=C1 BOTNYLSAWDQNEX-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 125000005920 sec-butoxy group Chemical group 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- PVEFEIWVJKUCLJ-UHFFFAOYSA-N sulfuric acid;toluene Chemical compound OS(O)(=O)=O.CC1=CC=CC=C1 PVEFEIWVJKUCLJ-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N xylylenediamine group Chemical group C=1(C(=CC=CC1)CN)CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/27—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
- C07D301/28—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/27—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
- C07D301/30—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with carboxyl radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/48—Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/12—Polycondensates containing more than one epoxy group per molecule of polycarboxylic acids with epihalohydrins or precursors thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
Definitions
- the present invention relates to an epoxy resin having a truxylate structure and a cured product thereof.
- Non-Patent Document 1 a bifunctional epoxy resin obtained using ferulic acid, which can be obtained by depolymerizing lignin, has a higher glass transition temperature and excellent tensile strength than conventional bisphenol A epoxy resins. It has been disclosed that it exhibits strength, and it has also been shown that performance is improved by compounding glycidyl ether of furfuryl alcohol.
- microorganisms In addition, in recent years, consideration has been given to producing valuable materials using microorganisms. For example, using microorganisms to produce compounds with a hydroxycinnamic acid structure such as p-coumaric acid from biomass-derived compounds such as L-tyrosine. known to be synthesized. Generally, microbial reactions are highly efficient and can be carried out in a mild environment.
- an epoxy resin is synthesized by reacting epichlorohydrin with p-hydroxycinnamic acid, and the obtained epoxy resin is cured with a curing agent together with glycidyl furfuryl ether, thereby achieving a high glass transition temperature and It is disclosed that it has excellent mechanical strength.
- an object of the present invention is to provide an epoxy resin that is a compound that can be obtained from biomass, can be easily produced, and has good thermal performance.
- the present inventors have discovered that an epoxy resin obtained from dihydroxytruxylic acid, which is a dimer of paracoumaric acid that can be easily produced by microorganisms, can solve the above problems, and have completed the present invention.
- the present invention provides the following [1] to [13].
- R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure.
- G represents a glycidyl group.
- R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a heteroatom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom.
- R 4 and R 5 is a hydrogen atom
- the other is a hydrogen atom, -OCH 3 or -OG.
- n is an integer from 0 to 100.
- R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom.
- n is an integer from 0 to 100.
- R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
- R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom.
- one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH.
- m is an integer from 0 to 100.
- R 14 and R 15 are a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH.
- R 16 is a hydrogen atom or -COOR 11
- R 17 is a hydrogen atom or -COOR 13 .
- R 11 and R 13 are each independently a hydrogen atom or an alkyl group.
- the present invention can provide an epoxy resin that is a compound that can be obtained from biomass, is easily produced, and has good thermal performance.
- Example 1 shows a 1 H-NMR spectrum of dimethyl 4,4'-dihydroxytruxylate synthesized in Example 1.
- 1 shows a 1 H-NMR spectrum of the epoxy resin synthesized in Example 1.
- the epoxy resin of the present invention has a skeleton represented by the following formula (1).
- the epoxy resin having the skeleton of the following formula (1) is a compound that can be obtained from biomass, it can be easily produced and has good thermal performance.
- R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure.
- G represents a glycidyl group.
- the alkoxy groups of R 4 and R 5 may be, for example, alkoxy groups having 1 to 4 carbon atoms, such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group. , sec-butoxy group, tert-butoxy group, etc. Among these, methoxy group (-OCH 3 ) is preferred.
- R 4 and R 5 in each benzene ring may be the same or different, but in each benzene ring, either one of R 4 and R 5 independently It is preferable that one is a hydrogen atom and the other is a hydrogen atom, an alkoxy group, or -OG.
- R 4 and R 5 in one molecule is preferably the same group.
- either one of R 4 and R 5 is a hydrogen atom, it can be easily produced using coumaric acid or a compound obtained from coumaric acid by reaction using an enzyme, as described below.
- * becomes a bonding site it may be bonded to another skeleton shown in formula (1) via a linking group (for example, -COO-R 2 -COO-, which will be described later), or it may be bonded to another functional group.
- a linking group for example, -COO-R 2 -COO-, which will be described later
- functional groups represented by -COOR 1 and -COOR 3 which will be described later.
- it may serve as a site that bonds to two hydrogen atoms.
- the epoxy resin of the present invention is preferably a compound having a structure represented by the following formula (1-1).
- R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is a hetero atom. It is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have .
- n is an integer from 0 to 100.
- G represents a glycidyl group.
- R 4 and R 5 are the same as above.
- one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 and -OG.
- the other of R 4 and R 5 in one molecule is the same group.
- both R 4 and R 5 are preferably hydrogen atoms from the viewpoint of easy synthesis from biomass. Therefore, the epoxy resin of the present invention preferably has a structure represented by the following formula (1-2).
- R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group
- R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom.
- n is an integer from 0 to 100.
- G represents a glycidyl group.
- the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 and R 3 may be an aliphatic hydrocarbon group or an aromatic ring. It may be an aromatic hydrocarbon group having These may or may not have heteroatoms. Further, examples of the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom, and a phosphorus atom. Heteroatoms include, but are not particularly limited to, oxygen atoms forming ether bonds, ester bonds, keto groups, alkoxy groups, etc., sulfur atoms forming sulfonyl groups, thiol bonds, etc., and hydrogen atoms substituted for hydrocarbon groups. Examples include halogen atoms.
- the monovalent hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
- the aliphatic hydrocarbon group in R 1 and R 3 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, and examples thereof include an alkyl group and an alkenyl group.
- the monovalent hydrocarbon group in R 1 and R 3 is preferably an alkyl group because it is easy to manufacture and tends to improve thermal stability.
- the alkyl group may be linear, have a branched structure, or have a cyclic structure.
- alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, and various heptyl groups. group, and various octyl groups.
- “various” means various isomers including sec-, tert-, iso-, etc. in addition to linear (n-), and the same applies below.
- the alkyl group may have a cyclic structure such as a cyclohexyl group.
- the alkyl groups in R 1 and R 3 each independently preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, even more preferably 1 to 3 carbon atoms, and most preferably both are methyl groups. preferable.
- n is 0 to 100 as described above, preferably 0 to 50, more preferably 0 to 10, still more preferably 0 to 5, particularly preferably It is 0.
- the divalent hydrocarbon group having 2 to 20 carbon atoms in R 2 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring. These may or may not have a heteroatom. Details of the heteroatom are as described for R 1 and R 3 .
- the aliphatic hydrocarbon group in R 2 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, but a saturated hydrocarbon group is preferable.
- the saturated hydrocarbon group in R 2 may be linear, have a branched structure, or have a cyclic structure. As mentioned above, the saturated hydrocarbon group may or may not have a heteroatom, but it is preferable that it does not have a heteroatom.
- the number of carbon atoms in the divalent hydrocarbon group in R 2 is preferably 2 to 10, more preferably 2 to 6, and still more preferably 2 to 4.
- the aliphatic hydrocarbon group which may have a heteroatom in R 2 is also preferably a hydroxypropylene group.
- a hydroxypropylene group is a functional group obtained by removing two hydrogen atoms bonded to a carbon atom from hydroxypropane, and is also called a hydroxypropanediyl group.
- the hydroxypropylene group is a structural unit derived from epihalohydrin, which will be described later.
- the position of the hydrogen atom to be removed and the position of the hydroxyl group are arbitrary, but typically it is a 2-hydroxypropane-1,3-diyl group (-CH 2 CHOHCH 2 -).
- the compounds represented by formulas (1-1) and (1-2) each have a 2-hydroxypropane-1,3-diyl group in which R 2 is a 2-hydroxypropane-1,3-diyl group.
- R 2 is a 2-hydroxypropane-1,3-diyl group.
- it can be easily synthesized from compounds shown in formulas (2-4) to (2-6).
- the plurality of R 2 in one molecule may be the same or different.
- R 2 is preferably a hydroxypropylene group.
- both R 1 and R 3 are preferably glycidyl groups.
- Epoxy resins in which both R 1 and R 3 are glycidyl groups make it easier to obtain an epoxy cured product with a high crosslinking density.
- R 2 and n are as described above in the epoxy resin having the structures shown in formulas (1-1) and (1-2), respectively. Therefore, in the epoxy resin in which both R 1 and R 3 are glycidyl groups, it is particularly preferable that n is 0.
- both R 1 and R 3 are monovalent hydrocarbon groups which may have a heteroatom.
- R 2 and n are as described above, and even if R 1 and R 3 have a heteroatom, Preferred embodiments of the monovalent hydrocarbon group are also as described above. Therefore, in this embodiment, R 1 and R 3 are both preferably alkyl groups, and the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms. most preferably both R 1 and R 3 are methyl groups. Also in this embodiment, n is particularly preferably 0 as described above. The epoxy resin in this embodiment makes it easier to obtain a cured epoxy product with relatively excellent flexibility.
- n is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (1-3).
- R 6 is a hydrogen atom or -COOR 1
- R 7 is a hydrogen atom or -COOR 3 .
- R 1 , R 3 , R 4 and R 5 are as described above.
- R 4 and R 5 Details of preferred embodiments of R 4 and R 5 are as described above. Therefore, in formula (1-3), in each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OG. is preferable, and in this case, it is more preferable that the other of R 4 and R 5 in one molecule is the same functional group. More preferably, both R 4 and R 5 are hydrogen atoms. Further, preferred embodiments of R 1 and R 3 are also as described above.
- R 6 is a hydrogen atom, -COOG, or -COOR 1
- R 7 is a hydrogen atom, -COOG, or -COOR 3
- R 1 and R 3 are preferably alkyl groups.
- R 6 and R 7 are both a hydrogen atom, -COOG, or -COOR.
- compounds having the structures represented by the following formulas (1-4) to (1-10) are preferable, and among them, compounds having the structure represented by the formula (1-4) are preferred. More preferred are compounds exhibiting the following structure.
- Compounds having structures represented by the following formulas (1-4) to (1-10) are coumaric acid, ferulic acid obtained by enzymatic conversion of coumaric acid, caffeic acid, or caffeic acid obtained by enzymatic conversion of coumaric acid. , and can be easily synthesized from 4-vinylphenol obtained by decarbonizing reaction, so it can be easily produced from biomass raw materials.
- R is an alkyl group. Details of the alkyl group are as above.
- the epoxy resin of the present invention can be synthesized by reacting a compound having a skeleton represented by the following formula (2) (hereinafter also referred to as a raw material compound) with epihalohydrin.
- R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure.
- the alkoxy groups of R 14 and R 15 are the same as the alkoxy groups of R 4 and R 5 described above, and are preferably methoxy groups.
- R 14 and R 15 in each benzene ring may be the same or different, but in each benzene ring, either one of R 14 and R 15 is independently selected. is a hydrogen atom, and the other is preferably a hydrogen atom, an alkoxy group such as a methoxy group, or -OH. Note that the other of R 14 and R 15 in one molecule is preferably the same group.
- R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
- R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. The details of the monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom and the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a hetero atom are as described above. be.
- the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom is usually a structural unit derived from a dihydroxy compound described below, and therefore is usually other than a hydroxypropylene group, for example, A saturated hydrocarbon group having no heteroatom or a saturated hydrocarbon group having an ether bond as a heteroatom is preferred.
- R 14 and R 15 are as described above.
- m is an integer of 0 to 100, preferably 0 to 50, more preferably 0 to 10, still more preferably 0 to 5, particularly preferably 0.
- both R 14 and R 15 are preferably hydrogen atoms. Therefore, the raw material compound preferably has a structure represented by the following formula (2-2).
- R 11 , R 12 , R 13 and m are as described above.
- m is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (2-3).
- R 16 is a hydrogen atom or -COOR 11
- R 17 is a hydrogen atom or -COOR 13 .
- R 11 , R 13 , R 14 and R 15 are as described above.
- R 14 and R 15 are as described above. Therefore, in formula (2-3), in each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OH. is preferable, and in this case, it is more preferable that the other of R 14 and R 15 is the same functional group. More preferably, both R 14 and R 15 are hydrogen atoms. Further, preferred embodiments of R 11 and R 13 are also as described above. Also in formula (2-3), R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group. Among these, it is more preferable that R 16 and R 17 are both a hydrogen atom, -COOH, or -COOR (R is an alkyl group).
- the raw material compound is preferably dihydroxytruxylic acid represented by the following formula (2-4) or an ester compound thereof.
- Dihydroxytruxylic acid represented by the above formula (2-4) is a paracoumaric acid dimer, and can be obtained by dimerizing paracoumaric acid.
- the method of dimerizing paracoumaric acid is not particularly limited, but examples include a method of dimerizing paracoumaric acid by light irradiation such as ultraviolet irradiation.
- Paracoumaric acid is dimerized by the double bond at the beta position of paracoumaric acid being cleaved by UV irradiation and the molecules recombining with each other, and paracoumaric acid dimer having the structure shown in the above formula (2-4). You can get a body.
- the raw material compound may be a compound represented by any of the following formulas (2-5) to (2-7), or an ester compound of a compound represented by (2-5) or (2-6).
- the compounds of formulas (2-5) to (2-7) below can be obtained by dimerizing ferulic acid, caffeic acid, and 4-vinylphenol, respectively.
- the method of dimerization is not particularly limited, but may include a method of dimerization by light irradiation such as ultraviolet irradiation, similar to paracoumaric acid.
- Ferulic acid, caffeic acid, and 4-vinylphenol are obtained by enzymatic conversion reaction of coumaric acid, or by enzymatic conversion of coumaric acid and decarbonization reaction, so the formula (2-4) Similar to dihydroxytruxylic acid shown in , it can be easily produced from biomass raw materials.
- the ester compound of dihydroxytruxylic acid shown in the above formula (2-4) is preferably a compound having the structure shown in the following formula (2-8), which is obtained by esterifying the above dihydroxytruxylic acid with a monohydroxy compound. can be mentioned.
- R 18 and R 19 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. Details of the monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a heteroatom are as described above. Therefore, R 18 and R 19 are each independently preferably an alkyl group, more preferably an alkyl group having 1 to 10 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, even more preferably a carbon alkyl group. It is an alkyl group of number 1 to 3, and R 18 and R 19 are most preferably both methyl groups.
- ester compound of the compound represented by the above formula (2-5) or formula (2-6) preferably a compound having the structure represented by formula (2-9) or a structure represented by formula (2-10) is used.
- Examples include compounds having the following.
- R 18 and R 19 are as described in the above formula (2-8).
- the paracoumaric acid ester compound represented by formula (2-4) may be a compound obtained by esterifying the above-mentioned dihydroxytruxylic acid with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound.
- the compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2).
- dihydroxytruxylic acid may be esterified with a dihydroxy compound and then further esterified with a monohydroxy compound, or after esterification with a monohydroxy compound, it may be esterified with a dihydroxy compound.
- esterification with a dihydroxy compound and esterification with a monohydroxy compound may be performed in parallel.
- m is 1 or more in formula (2-1) or (2-2), and at least one of R 11 and R 13 may have a hetero atom.
- R 11 and R 13 may have a hetero atom.
- it is a monovalent hydrocarbon group, it is preferable that both R 11 and R 13 are monovalent hydrocarbon groups that may have a heteroatom.
- the method of esterifying dihydroxytruxylic acid with a hydroxy compound is not particularly limited, but includes a method of condensing a carboxylic acid and a hydroxy compound with an acid catalyst, a method of esterifying dihydroxytruxylic acid with a hydroxy compound, Examples include, but are not limited to, a method in which an acid halide such as an acid chloride is reacted with a hydroxy compound.
- the monohydroxy compound used in the above esterification may be an aromatic monohydroxy compound or an aliphatic monohydroxy compound, but an aliphatic monohydroxy compound is preferable, and an alkyl monoalcohol is more preferable among them.
- the alkyl monoalcohol may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure.
- the alkyl monoalcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, various octanols, Examples include various nonanol, various decanol, cyclopentanol, cyclohexanol, methylcyclohexanol, cyclohexane methanol, and among these, metal is particularly preferred.
- the dihydroxy compound used for esterification may be an aromatic dihydroxy compound or an aliphatic dihydroxy compound, but aliphatic dihydroxy compounds are preferable, and among them, alkyl diols are more preferable.
- the aliphatic dihydroxy compound may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure. Specific examples of aliphatic dihydroxy compounds include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl.
- neopentyl glycol 1,4 -cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
- ethylene glycol is preferred.
- the ester compound of the compound represented by formula (2-5) or formula (2-6) can be used as a dihydroxy compound, or a dihydroxy compound and It may also be a compound esterified with a monohydroxy compound.
- the compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2). Details of the compound obtained by esterifying the compound represented by formula (2-5) or formula (2-6) with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound are the same as those for the compound represented by formula (2-4). Therefore, the explanation will be omitted.
- Epihalohydrins that can be used in the synthesis of epoxy resins include epifluorohydrin, epichlorohydrin, epibromohydrin, and epiiodohydrin, and among these, epichlorohydrin is preferred in terms of reactivity and economy.
- the epoxy resin of the present invention can be obtained by reacting a compound having the skeleton shown in formula (2) with epihalohydrin.
- a compound having the skeleton shown in formula (2) and epihalohydrin are preferably mixed and reacted, for example, in a reactor.
- the amount of epihalohydrin added to the compound having the skeleton shown in formula (2) in the reaction system is preferably 1 equivalent or more.
- the compound represented by formula (1) can be synthesized.
- the term “equivalent” refers to the molar equivalent to the functional groups (hydroxyl group and carboxy group) possessed by the compound having the skeleton shown in formula (2), and the same applies below.
- the amount of epihalohydrin added is in large excess. Specifically, it is preferably 2 equivalents or more, more preferably 5 equivalents or more, and still more preferably 8 equivalents or more.
- the amount of epihalohydrin added is preferably 50 equivalents or less with respect to the functional group of the compound shown in formula (2), It is more preferably 30 equivalents or less, still more preferably 20 equivalents or less, even more preferably 15 equivalents or less.
- formula (2-1), formula (2-2) or formula (2-3) (however, in formula (2-3), R 16 and R 17 are -COOR 11 and -COOR 13 , respectively) ), R 11 and R 13 are hydrogen atoms (especially when using any of the compounds of formulas (2-4) to (2-6) as raw materials), and n
- the amount of epihalohydrin added may be reduced, for example, 2 equivalents or less.
- R 11 and R 13 are hydrogen atoms, if the amount of epihalohydrin added is reduced, oligomerization of the compound having the skeleton shown in formula (2) and epihalohydrin will proceed more easily.
- -1) or the compound represented by formula (1-2) can be easily obtained.
- the reaction between the compound having the skeleton shown in formula (2) above and epihalohydrin is preferably carried out in the presence of a catalyst.
- the catalyst include quaternary ammonium salts such as benzyltriethylammonium chloride, benzyltriethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium bromide.
- One type of catalyst may be used alone, or two or more types may be used in combination.
- the amount of the catalyst added is preferably 0.01 to 2 mol, more preferably 0.05 to 1 mol, and still more preferably 0.1 to 0.0 mol, per mol of the compound having the skeleton shown in formula (2). It is 5 moles.
- the above reaction may be carried out in the presence of a solvent, or may be carried out without a solvent.
- the compound having the skeleton shown in formula (2) can be appropriately diluted with epihalohydrin by using a large excess of epihalohydrin as described above, and the above reaction can be carried out appropriately even if the reaction is carried out without a solvent or with a small amount of solvent. can proceed.
- As the reaction solvent aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, etc. can be used.
- the reaction in the presence of the above catalyst is carried out at, for example, 40 to 150°C, preferably 60 to 120°C, for example, for 30 minutes to 24 hours, preferably for 2 to 12 hours.
- a basic compound to the reaction system in addition to the above catalyst.
- a basic compound By adding a basic compound, dehydrohalogenation progresses more easily, making it possible to improve the yield of the desired epoxy resin.
- the basic compound is reacted for a certain period of time in the presence of the above-mentioned catalyst, then added to the reaction system, and further reacted for a certain period of time.
- the reaction after addition of the basic compound is carried out at, for example, -10 to 30°C, preferably 0 to 15°C, for example, 10 minutes to 24 hours, preferably 30 minutes to 12 hours.
- the basic compound used is not particularly limited as long as it functions as a base. Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, lithium hydride, sodium hydride, potassium hydride, lithium carbonate, sodium carbonate. , potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium alkoxide, sodium alkoxide, potassium alkoxide, and other metal bases. Among these, it is preferable to use at least one of sodium hydroxide and potassium hydroxide in terms of economy and availability.
- the basic compound is not particularly limited, but may be added to the reaction system, for example, in the form of an aqueous solution. The amount of the basic compound added may be, for example, more than 1 equivalent, preferably 1.5 to 20 equivalents, and more preferably It is 2 to 15 equivalents.
- the target epoxy resin is purified by distilling off epihalohydrin, distilling off the reaction solvent used as necessary, and extracting the target epoxy resin and water-soluble mixture using water and a hydrophobic solvent.
- General unit operations such as separation of chemical compounds, distillation of extraction solvent, distillation, etc., or a suitable combination of these can be carried out.
- the raw materials can be produced from biomass, and an epoxy resin with a high biomass ratio can be obtained.
- dihydroxytruxylic acid represented by formula (2-4) is obtained by obtaining paracoumaric acid from a biomass-derived compound such as L-tyrosine through microbial synthesis, and photodimerizing paracoumaric acid as described above. Obtainable.
- the compounds represented by formulas (2-5) to (2-7) can also be produced from biomass as described above. Therefore, the skeleton represented by formula (1) of the present invention can be derived from biomass, particularly from a compound synthesized by microorganisms.
- the structural unit derived from dihydroxytruxylic acid in formula (1-2) be derived from biomass, particularly from a compound synthesized by microorganisms.
- the method for obtaining paracoumaric acid by microbial synthesis has stereoselectivity and can obtain paracoumaric acid in high yield, and the subsequent dimerization and epoxidation are also relatively simple.
- the epoxy resin having the skeleton represented by formula (1) can be easily produced even though it is a compound that can be obtained from biomass.
- R 1 and R 3 may be derived from a monohydroxy compound, and R 2 may be derived from a dihydroxy compound; It is preferable that the monohydroxy compound and the dihydroxy compound are derived from biomass.
- biomass-derived epoxy resins it is possible to obtain epoxy resins with even higher biomass content.
- biomass-derived methanol, ethanol, and butanol are known as monohydroxy compounds
- biomass-derived ethylene glycol, 1,3-propanediol, and 1,4-butanediol are known as dihydroxy compounds. etc. are known, and by using these, the biorate of epoxy resin can be further improved.
- the cured product of the present invention (hereinafter also referred to as "epoxy cured product") is obtained by curing the above-mentioned epoxy resin.
- the epoxy cured product is generally cured with a curing agent, and therefore is preferably a cured product of a curable composition containing an epoxy resin and a curing agent.
- the curing agent that can be used in the epoxy cured product is not particularly limited as long as it can cure the epoxy resin, but compounds that react with the epoxy resin to form a three-dimensional network structure (network polymer) are preferred.
- Specific curing agents include amine-based curing agents, acid anhydride-based curing agents, polyamide resins that are condensates of dimer or trimer acids and polyamines, Lewis acids such as boron trifluoride-amine complexes, phenol or its like. Examples include derivatives. Further, as the curing agent, a mercapto curing agent can also be used.
- Examples of the amine curing agent include polyamines such as aliphatic polyamines and aromatic polyamines.
- the aliphatic polyamines include ethylenediamine, diethylenetriamine, triethylenetetramine, dipropylenetriamine, tetraethylenepentamine, dimethylaminopropylamine, bishexamylenetriamine, cyclohexylaminopropylamine, aminoethylethanolamine, and monohydroxyethyl Diethylenetriamine, bishydroxyethyldiethylenetriamine, N-(2-hydroxypropyl)ethylenediamine, hexamethylenediamine, diethylene glycol bis(3-aminopropyl)ether, diethylaminopropylamine, 3,9-bis(3-aminopropyl)-2,4 , 8,10-tetrasoxaspiro[5,5]undecane, menthanediamine, isophoronediamine, 4,4'-methylenebis(cyclohex
- Aromatic polyamines are amines having an aromatic ring, and specifically include various xylylene diamines such as phenylene diamine, diaminodiphenylmethane, diaminoanisole, toluene diamine, metaxylylene diamine, and diaminodiphenylsulfone.
- the amine curing agent may be an imidazole curing agent, an amidoamine curing agent, or the like.
- imidazole curing agents include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2,4-dimethylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, and 1,2-diethylimidazole.
- acid anhydride curing agents examples include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, chlorendic anhydride, dodecynyl succinic anhydride, and methyltetrahydro
- acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, chlorendic anhydride, dodecynyl succinic anhydride, and methyltetrahydro
- examples include phthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride represented by 4-methylhexahydro
- phenol derivatives include bisphenols and their derivatives such as bisphenol F and bisphenol A, trifunctional phenols and their derivatives such as tri(hydroxyphenyl)methane and tri(hydroxyphenyl)ethane, phenols such as phenol novolak, and formaldehyde.
- examples include compounds obtained by reacting with.
- Examples of mercapto curing agents include compounds with two mercapto groups in the molecule such as 1,4-bis(3-mercaptobutyryloxy)butane, and compounds with mercapto groups such as pentaerythritol tetrakis (3-mercaptobutyrate). Compounds having three or more can also be used.
- the curing agents may be used alone or in combination of two or more.
- the polyamines preferably have a total of two or more primary amino groups and secondary amino groups in one molecule, and preferably have at least one primary amino group, and more preferably have a primary amino group. Have two or more.
- the total number of primary amino groups and secondary amino groups in one molecule of polyamines is not particularly limited, but is, for example, 8 or less, preferably 5 or less, more preferably 3 or less.
- the blending amount of the curing agent is, for example, 1 to 100 parts by weight, preferably 2 to 50 parts by weight, based on 100 parts by weight of the epoxy resin. If it is above these lower limits, it can be properly cured. For example, when a three-dimensional network structure is formed, the structure becomes strong and mechanical properties and thermal properties tend to be good. In addition, by setting the amount to be below these upper limits, the amount of the curing agent can be prevented from increasing more than necessary, and mechanical properties and thermal properties tend to be good.
- the blending amount of the curing agent should be adjusted according to the epoxy equivalent of the epoxy resin and, if an amine curing agent is used, the amount of active hydrogen in the amine curing agent (i.e., the hydrogen atom bonded to the nitrogen atom in the amino group). You can adjust it as appropriate.
- the ratio of the number of active hydrogens to the number of epoxy groups may be adjusted to 1 or close to 1, specifically 0.5 to 2, preferably 0.75 to 1.5, more preferably It is 0.9 to 1.1.
- the glass transition temperature (Tg) of the epoxy cured product measured with a differential scanning calorimeter is preferably 150° C. or higher. When the temperature is 150° C. or higher, thermal performance can be improved, and the heat resistance of the cured epoxy product can be improved. Further, the glass transition temperature (Tg) of the epoxy cured product is more preferably 160°C or higher, and still more preferably 170°C or higher. The glass transition temperature (Tg) of the epoxy cured product is not particularly limited, but is, for example, 300° C. or lower.
- the glass transition temperature (Tg) of the epoxy cured product measured with a dynamic viscoelasticity device is preferably 150°C or higher, more preferably 160°C or higher, and even more preferably 170°C or higher. , for example, 300°C or less.
- the epoxy cured product is not particularly limited, it can be produced by mixing an epoxy resin and a curing agent to obtain a curable composition, and heating as necessary.
- the heating temperature is not particularly limited, but is, for example, room temperature (23°C) to 300°C, preferably 40°C to 250°C, and heating within the above temperature range is for example 10 minutes to 13 hours, preferably 1 to 6 hours. good.
- the heating temperature may be increased stepwise as curing progresses.
- the curable composition containing an epoxy resin and a curing agent may be diluted by adding a solvent or the like, or may contain other components as appropriate. In the case of diluting with a solvent, the solvent may be removed by appropriately drying the solvent by the above-mentioned heating.
- the curable composition may contain a curing accelerator in addition to the epoxy resin and curing agent of the present invention.
- a curing accelerator is a component that accelerates curing by a curing agent.
- the curing agents dicyandiamide and the like have a high curing temperature when used alone, so a curing accelerator can be used to increase the curing activity of dicyandiamide and the like.
- the curing accelerator for dicyandiamide include urea-based, imidazole-based, tertiary amine-based, caprolactam, and the like.
- urea-based and imidazole-based are preferred, including 2,4-diamino-6-(2-methylimidazolyl-(1))-ethyl-s-triazine, 3-(3,4-dichlorophenyl)-1,1 -dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea) are more preferred.
- the content of the curing accelerator is, for example, about 0.1 to 10 parts by mass based on 100 parts by mass of the epoxy resin.
- the epoxy resin and epoxy cured product of the present invention can be used in various fields, including, but not limited to, electrical fields, transportation fields, civil engineering fields, architecture fields, mechanical fields, medical fields, etc. be.
- the epoxy resin and epoxy cured product of the present invention can be used in various forms such as various molded products, adhesives, paints, fillers, films, powders, composite materials, and foams. More specifically, adhesives for dissimilar materials, rubber-resin adhesives, well bonding applications, bonding between substrates and semiconductor elements such as die attach, flexible substrate adhesives such as bonding films, and various construction and civil engineering applications.
- adhesives such as adhesives, anti-fog paints, electrodeposition paints, anti-corrosion paints, floor coatings, other paints for architecture and civil engineering, sealing for covered electric wires, etc. It can be used for various purposes such as fiber reinforcement materials, fiber sizing agents, prepregs, electrical insulation materials and protective materials for electronic components, photosensitive resins, lens applications, and dental materials, but is not limited to these applications.
- the epoxy resin-containing composition containing the epoxy resin of the present invention can contain various components depending on the intended use.
- such components include resins other than the epoxy resin of the present invention, latex, fillers, pigments, silane coupling agents, surfactants, ultraviolet absorbers, and antioxidants. , stabilizers, plasticizers, leveling agents, antifoaming agents, antistatic agents, flame retardants, lubricants, dispersants and the like.
- epoxy resin-containing compositions used for various purposes
- compositions containing components derived from the epoxy resin of the present invention will be explained in more detail. However, each of the following compositions may contain components other than those specifically explained below, as necessary.
- the epoxy resin-containing composition when used as an adhesive, may contain an epoxy resin and a curing agent. From this point of view, for example, polymer fine particles may be contained.
- the adhesive is preferably used for dissimilar material adhesive applications in fields such as automobiles, and for well bond applications.
- the dissimilar materials used in dissimilar adhesive applications include two types selected from various materials such as various steel materials, aluminum, aluminum alloys, fiber reinforced plastic (FRP) plates such as carbon fiber and glass fiber, and carbon fiber reinforced plastic (CFRP). Examples include combinations.
- the epoxy resin-containing composition used for the adhesive application may contain an epoxy resin other than the epoxy resin of the present invention.
- the polymer fine particles are preferably polymer fine particles having a core-shell structure.
- a polymer particle having a core-shell structure refers to a polymer particle in which the molecular structure is different between the central part (core part) and the outer peripheral part (shell part).
- the components constituting the core part of the polymer fine particles having a core-shell structure include butadiene rubber (BR), acrylic rubber (ACM), silicone rubber (Si), butyl rubber (IIR), nitrile rubber (NBR), and styrene-butadiene rubber. (SBR), isoprene rubber (IR), ethylene propylene rubber (EPR), and the like. Among them, butadiene rubber is preferred.
- the component constituting the shell part of the polymer fine particles having a core-shell structure is graft-polymerized to the above-mentioned core part and covalently bonded to the polymer constituting the core component.
- the components constituting the shell portion include acrylic ester monomers, methacrylic ester monomers, and aromatic vinyl monomers.
- the content of the polymer fine particles is, for example, 1 to 100 parts by weight, preferably 2 to 80 parts by weight, and more preferably 4 to 60 parts by weight, based on 100 parts by weight of the epoxy resin contained in the curable composition.
- Polymer fine particles having a core-shell structure may be used alone, or two or more types may be used in combination.
- the epoxy resin-containing composition preferably contains dicyandiamide, although the curing agents listed above are used as appropriate.
- the content of the curing agent is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 25 parts by weight, and even more preferably 1 to 20 parts by weight, based on 100 parts by weight of the epoxy resin.
- the epoxy resin containing composition contains blocked urethane.
- Blocked urethane is an elastomer type compound containing a urethane group and/or a urea group, and has an isocyanate group at the end of various blocks in which all or part of the terminal isocyanate group has an active hydrogen group.
- Compounds capped with agents are contemplated. Particularly preferred is a compound in which all of the terminal isocyanate groups are capped with a blocking agent.
- Specific examples of blocked urethanes include compounds described in International Publication No. 2016/163491.
- the content of blocked urethane in the epoxy resin-containing composition is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, and even more preferably 5 to 30 parts by weight, based on 100 parts by weight of the epoxy resin.
- the epoxy resin-containing composition may also be used as a rubber-resin adhesive in tires and the like.
- An example of the rubber-resin adhesive includes, in addition to the epoxy resin of the present invention, a curable composition containing synthetic rubber latex.
- Synthetic rubber latexes include, but are not particularly limited to, those containing unsaturated dienes, such as styrene-butadiene copolymer rubber latex, vinylpyridine-styrene-butadiene copolymer rubber latex, and carboxyl group-modified styrene.
- -Butadiene copolymer rubber latex, nitrile rubber latex, chloroprene rubber latex, etc. can be mentioned.
- the content of the synthetic rubber latex is not particularly limited, but is, for example, 25 to 80% by mass, preferably 35% by mass, based on solid content. ⁇ 75% by weight, more preferably 55-75% by weight.
- the curable composition containing the synthetic rubber latex preferably further contains a water-soluble carbodiimide.
- Water-soluble carbodiimide refers to a carbodiimide that is soluble in water, and includes carbodiimides that are water-based and partially water-soluble.
- Water-soluble carbodiimide can be used as a dehydration condensation agent capable of forming an ester bond or an amide bond between a COOH group and an OH group or an amino group of a compound contained in an aqueous solution.
- 1-ethyl-3-(3-(dimethylaminopropyl)carbodiimide (WSC) activates carboxyl groups, and its active intermediates can react with amino and hydroxyl groups to form amides and esters.
- WSC 1-ethyl-3-(3-(dimethylaminopropyl)carbodiimide
- the water-soluble carbodiimide can coat the surface of synthetic rubber latex containing an unsaturated diene while crosslinking, and can be combined with the epoxy resin of the present invention to bond the resin of the adherend to the rubber.
- Ru The water-soluble carbodiimide is preferably a water-soluble salt such as a hydrochloride or a sulfate.
- the water-soluble carbodiimide includes 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC); 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide-meth-p -Water-soluble salts of 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide such as toluene sulfate; 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmol Examples include triazine condensing agents such as phorinium chloride (DMT-MM), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) is preferably used.
- EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
- DMT-MM 1-ethyl-3-(
- the content of water-soluble carbodiimide is not particularly limited, but is preferably 0.1 to 15% by mass on a solid content basis. It is more preferably 0.3 to 10% by weight, even more preferably 0.5 to 7% by weight, even more preferably 0.5 to 5% by weight.
- the epoxy resin of the present invention used in the rubber-resin adhesive may have two or more epoxy groups in one molecule, but preferably contains four or more epoxy groups in one molecule. It's good to do that.
- the content of the epoxy resin is not particularly limited, but is preferably 0.1 to 40% by mass on a solid content basis, and It is preferably 0.4 to 40% by weight, particularly preferably 1.0 to 30% by weight.
- the epoxy resin-containing composition for the rubber-resin adhesive is not particularly limited, but each component is preferably dispersed or dissolved in water and used as a dispersion.
- the epoxy resin-containing composition may include silver particles, the epoxy resin of the present invention, and a curing agent, and the composition is used after being diluted with a solvent. Good.
- the epoxy resin-containing composition may contain epoxy resins other than the epoxy resin of the present invention. Further, as the curing agent, phenol derivatives and dicyandiamide are preferable, and these may be used in combination.
- the content of silver particles is, for example, 70 to 98% by mass, preferably 75 to 95% by mass, based on solid content. Further, the content of the epoxy resin is, for example, 1 to 20% by mass, preferably 2 to 15% by mass, based on solid content. Further, the content of the curing agent is, for example, 0.1 to 1.5% by mass, preferably 0.2 to 1.0% by mass.
- the epoxy resin-containing composition for flexible substrates is preferably a curable resin composition containing the epoxy resin of the present invention and a curing agent, and may also contain epoxy resins other than the epoxy resin of the present invention, or epoxy resins other than the epoxy resin of the present invention. It may contain a resin, and such resins include polyester polymers such as polyester polyurethane resins.
- the polyester polyurethane resin is preferably a resin obtained by reacting at least a polyester polyol, a polyisocyanate, and a chain extender such as a diol compound other than the polyester polyol as raw materials.
- a resin having a carboxy group or a carboxylic acid anhydride structure may be contained.
- the curing agent those mentioned above may be used as appropriate, but imidazole derivatives such as imidazole silane compounds may also be used in addition to those mentioned above.
- the above-described epoxy resin-containing composition for flexible substrates may contain an organic filler, a metal filler, an inorganic filler other than the metal filler, and the like.
- the content of the epoxy resin is preferably 1 to 60% by mass, and preferably 2 to 40% by mass, based on the total amount of components other than the filler. %, and even more preferably 3 to 20% by mass.
- the epoxy resin of the present invention may be used for paint purposes, or may be used as a binder resin for paints.
- a coating composition containing the epoxy resin of the present invention and silica particles.
- the present coating composition may contain a silane coupling agent and the like as appropriate.
- the coating composition is preferably used as a dispersion by dispersing or dissolving each component in a liquid medium such as water.
- the binder resin may include an epoxy resin other than the epoxy resin of the present invention or a resin other than the epoxy resin.
- the silica particles water-dispersed silica is preferred, and colloidal silica or the like is preferably used.
- the liquid medium include water and organic solvents, preferably water or a mixed solvent of water and an organic solvent.
- the organic solvent may be any organic solvent as long as it can disperse silica.
- ethylene glycol monobutyl ether may be used.
- the content of the epoxy resin may be 0.1 to 1000 parts by mass, 0.5 to 500 parts by mass, and 1 to 100 parts by mass, based on 100 parts by mass of silica particles. It may be up to 100 parts by mass.
- an epoxy resin when used in electrodeposition coating applications, an epoxy resin may be reacted with an amine and used as an aminated epoxy resin.
- amines include primary amines such as butylamine, octylamine, and monoethanolamine; secondary amines such as diethylamine, dibutylamine, methylbutylamine, diethanolamine, and N-methylethanolamine; and complex amines such as diethylenetriamine.
- the reaction of the above-mentioned primary amine can be controlled by forming a ketimine group using a ketone compound and forming a so-called block.
- the coating composition for electrodeposition coating may contain, for example, an aminated epoxy resin and a curing agent such as a blocked polyisocyanate curing agent, and may further contain a pigment dispersion paste if necessary.
- the pigment dispersion paste includes a pigment dispersion resin and a pigment.
- the coating composition for electrodeposition coating may be used as an emulsion or the like.
- the coating composition may be a cured composition containing the epoxy resin of the present invention and a curing agent.
- a coating composition may contain an epoxy resin other than the epoxy resin of the present invention, a pigment or a pigment dispersant, and a silane coupling agent or the like to improve adhesion. May contain. Further, it may generally be used after being diluted with an organic solvent.
- a coating composition containing an epoxy resin and a curing agent is preferably used, for example, as an anticorrosive coating composition, and particularly preferably used for anticorrosion of ships.
- the content of the epoxy resin is preferably 1 to 60% by mass, more preferably 5 to 50% by mass, based on solid content.
- the epoxy resin of the present invention may be used in architecture and civil engineering applications, for example, as a floor coating agent.
- the epoxy resin-containing composition used as a floor coating agent preferably contains the epoxy resin of the present invention and a curing agent, and further preferably contains an inorganic filler.
- known inorganic fillers used as flooring agents such as carbon nanotubes, silica, silica sand, barite, calcium carbonate, and talc may be used.
- pigments used as colorants may also be appropriately blended.
- the epoxy resin may contain epoxy resins other than those of the present invention.
- the content of the inorganic filler is, for example, about 1 to 1000 parts by mass, preferably 10 to 200 parts by mass, more preferably 20 to 200 parts by mass, based on 100 parts by mass of the epoxy resin. It is 100 parts by mass.
- the epoxy resin-containing composition may be used in construction and civil engineering applications other than as a floor coating, and may also be used as a tank paint, a pipe interior paint, an exterior paint, and the like. It may also be used as an adhesive in architecture and civil engineering applications, for example, for bonding various structures.
- the epoxy resin of the present invention when used as a sealing material, preferably for sealing a covered electric wire, it may be used, for example, as a curable composition containing an epoxy resin and a curing agent.
- the curing agent used in the sealant application the above-mentioned curing agents can be used as appropriate, but amine-based curing agents and mercapto-based curing agents can be preferably used.
- the curable composition used as a sealant contains a silane coupling agent.
- the epoxy resin of the present invention When the epoxy resin of the present invention is used as a fiber sizing agent, it may be used in combination with a polyester resin having a sulfonic acid group.
- a polyester resin having a sulfonic acid group an aromatic polyester resin, an aliphatic polyester resin, etc. can be used, but it is preferable to use an aromatic polyester resin.
- the aromatic polyester resin preferably has a structural unit derived from an aromatic dicarboxylic acid such as isophthalic acid or terephthalic acid.
- the epoxy resin-containing composition for the fiber sizing agent preferably contains a surfactant in addition to the above-mentioned epoxy resin and polyester resin having a sulfonic acid group. Surfactants are preferred.
- Aromatic nonionic surfactants include polyoxyalkylene alkylphenyl ether, polyoxyalkylene styrenated phenyl ether, polyoxyalkylene benzylphenyl ether, polyoxyalkylene cumyl phenyl ether, polyoxyalkylene naphthylphenyl ether, polyoxyalkylene Examples include styrenated phenyl ethers (alkylphenyl ethers), and among these, polyoxyalkylene styrenated phenyl ethers such as polyoxyethylene styrenated phenyl ethers are preferred.
- the epoxy resin-containing composition for fiber sizing agent may contain epoxy resins other than the epoxy resin of the present invention.
- the epoxy resin-containing composition for a fiber sizing agent is preferably used as an aqueous composition, for example, as an aqueous dispersant.
- the content of the epoxy resin is, for example, 75 to 95% by mass, and preferably 80 to 95% by mass, based on the solid content.
- the epoxy resin of the present invention may be used for prepreg applications, and is preferably used as a matrix resin to be impregnated into fiber materials such as reinforcing fibers used for prepreg applications.
- the epoxy resin-containing composition may be a curable composition and may contain the epoxy resin of the present invention and a curing agent.
- the epoxy resin of the present invention may be used alone as a resin component, but it may also be used in combination with other resin components, and epoxy resins other than the epoxy resin of the present invention, polyfunctional A (meth)acrylate compound, a cyanate ester resin containing two or more cyanato groups, etc. may be contained.
- the epoxy resin-containing composition contains a thermoplastic resin.
- the epoxy resin-containing composition used for prepreg applications may contain a flame retardant.
- the flame retardant include phosphorus-containing compounds such as phosphoric acid esters, nitrogen-containing compounds such as red phosphorus, melamine, melamine cyanurate, and melamine isocyanurate, metal hydroxides, metal oxides, and the like.
- the content of epoxy resin is preferably about 20 to 99% by mass, more preferably about 50 to 80% by mass.
- the content of the curing agent is preferably 1 to 25% by mass, more preferably 2 to 20% by mass.
- the epoxy resin of the present invention may be used in electronic substrates and the like, and specifically, it may be used as a protective material and an electrically insulating material for forming an electrically insulating layer.
- a curable resin composition containing a filler in addition to the epoxy resin of the present invention and a curing agent is preferable.
- the filler is preferably insulating.
- Such fillers include silica, alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, and the like.
- fillers other than the above-mentioned inorganic fillers may be used, or organic fillers may be used.
- the filler content is, for example, 50 to 90% by mass, preferably 65 to 85% by mass, based on solid content.
- Curable resin compositions used for electrical insulation materials and protective materials may contain resins other than the epoxy resin of the present invention, for example, may contain rubbery polymer compounds such as conjugated diene rubber. Good too.
- the content of the rubbery polymer compound is, for example, 30 to 70% by mass, preferably 40 to 60% by mass, based on the solid content of all components other than the filler.
- it may contain an epoxy resin other than the epoxy resin of the present invention, and may contain a thermosetting resin other than the epoxy resin, such as a phenoxy resin. It may also contain a silane coupling agent.
- the content of epoxy resin is, for example, 20 to 70% by mass, preferably 25 to 40% by mass, based on the solid content of the total amount of components other than fillers. .
- the epoxy resin-containing composition When used as an electrical insulation material or protective material for electronic boards, the epoxy resin-containing composition may be used as a photosensitive resin composition, and in such a case, in addition to the epoxy resin, It may be a composition containing a photosensitive resin such as a carboxyl group-containing photosensitive resin, a photopolymerization initiator, a reactive diluent, a photosensitive monomer, a filler, and the like. Furthermore, when used as a photosensitive resin composition, it may be used for purposes other than the above-mentioned protective material for electronic substrates and electrical insulating material.
- a photosensitive resin such as a carboxyl group-containing photosensitive resin, a photopolymerization initiator, a reactive diluent, a photosensitive monomer, a filler, and the like.
- the epoxy resin of the present invention may be used in combination with a photoacid generator such as iodonium salts, sulfonium salts, and pyridinium salts.
- the photoacid generator is an agent that generates acid upon irradiation with light, and the epoxy resin is preferably polymerized by the acid generated by decomposition of the photoacid generator.
- applications include, but are not limited to, dental applications, and more specifically, filling and restoring materials used for repairing damaged teeth. , lining materials for denture bases, hybrid ceramics for dental crown restorations, etc. Further, it may be used for lens applications as described below.
- the epoxy resin of the present invention may be used in combination with resin components such as epoxy resins other than the epoxy resin of the present invention and oxtacene compounds.
- resin components such as epoxy resins other than the epoxy resin of the present invention and oxtacene compounds.
- other epoxy resins, oxtacene compounds, etc. may be contained.
- other epoxy resins include diglycidyl ether compounds having a bisphenol skeleton, bifunctional alicyclic epoxy compounds having no bisphenol skeleton, and trifunctional or higher functional epoxy compounds having an isocyanurate ring structure.
- the epoxy resin-containing composition is preferably a photosensitive resin composition, and may contain, for example, the above-mentioned photoacid generator.
- the uses and specific formulations for each use explained above are only examples, and may be used for purposes other than those explained above, and the formulation of each composition for each use may be different from the above-mentioned formulation. Anything other than that is fine.
- Glass transition temperature (Tg) Using a differential scanning calorimeter (product name: "DSC-60”) manufactured by Shimadzu Corporation, measurements were performed under argon atmosphere at a heating rate of 10°C/min, and the midpoint of the baseline displacement was determined as the glass transition temperature. did. At this time, the temperature was raised to 250°C at a rate of 10°C/min, the temperature was lowered to 30°C, and the glass transition temperature was measured when the temperature was raised again. Using a dynamic viscoelasticity device (trade name "Rheogel-E4000”) manufactured by UBM Co., Ltd., it was measured under a nitrogen atmosphere at a temperature increase of 3°C/min, and the peak top temperature of tan ⁇ was taken as the glass transition temperature. .
- DSC-60 differential scanning calorimeter
- Synthesis example 1 [Synthesis of paracoumaric acid dimer] Paracoumaric acid (manufactured by Tokyo Kasei Co., Ltd.) was suspended in hexane, and the suspended solution was irradiated with UV light using an incandescent mercury lamp. The double bond at the beta position of paracoumaric acid was cleaved by UV irradiation, and the molecules recombined with each other, resulting in dimerization. After removing hexane from the reaction solution, it was resuspended in ethanol and filtered. The powder remaining on the filtration membrane was obtained as paracoumaric acid dimer. In addition, when the powder remaining on the filter membrane was subjected to 1 H-NMR measurement, it was confirmed that it was paracoumaric acid dimer (4,4'-dihydroxytruxylic acid) shown by formula (2-1). did it.
- Example 1 5 g of the paracoumaric acid dimer obtained in Synthesis Example 1 was suspended in 50 ml of methanol and 0.3 ml of concentrated sulfuric acid, and reacted at 80° C. for 6 hours. After the reaction was completed, methanol was removed and the mixture was dried. The dried methyl ester was dissolved in 50 ml of ethyl acetate, and then washed twice with 5% by mass NaHCO 3 solution. It was further washed twice with saturated brine, and the ethyl acetate layer was collected.
- Example 2 4.64 g of the epoxy resin obtained in Example 1 and 0.85 g of isophorone diamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and its Tg was measured using a differential scanning calorimeter (DSC), the Tg was 165° C., indicating good heat resistance.
- DSC differential scanning calorimeter
- Example 3 [Synthesis of epoxy resin] 5 g of the paracoumaric acid dimer obtained in Synthesis Example 1, 56.4 g of epichlorohydrin (10 equivalents to the paracoumaric acid dimer), and 1 g of tetrabutylammonium bromide were reacted at 100° C. for 5 hours. After the reaction was completed, 2.5 ml of a 40% by mass aqueous sodium hydroxide solution was added dropwise to the solution while cooling it with ice, and then the reaction was allowed to proceed in ice-cold water for 1 hour.
- Example 4 5.52 g of the epoxy resin obtained in Example 3 and 1.70 g of isophoronediamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and the Tg was measured using a differential scanning calorimeter (DSC), no clear Tg could be shown. Therefore, measurement was performed using a dynamic viscoelasticity method (DMA), and the Tg could be read as 251° C. from the peak top temperature of tan ⁇ . It showed good heat resistance.
- DMA dynamic viscoelasticity method
- Comparative example 1 A petroleum-derived bisphenol A epoxy resin (trade name "jER828", manufactured by Mitsubishi Chemical Corporation) was mixed with isophorone diamine as a curing agent so that the ratio of epoxy group to NH group was 1:1. Curing was performed under the same conditions to produce a cured product. The obtained cured product was cut into pieces and the Tg was measured using a differential scanning calorimeter (DSC), and the result was that the Tg was 152°C.
- DSC differential scanning calorimeter
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epoxy Compounds (AREA)
Abstract
The present invention provides an epoxy resin which has a skeleton represented by formula (1). In formula (1), each of R4 and R5 independently represents a hydrogen atom, an alkoxy group or -OG; * may be a binding site to be bonded with another structure; n represents an integer of 0 to 100; and G represents a glycidyl group.
Description
本発明は、トルキシル酸エステル構造を有するエポキシ樹脂、及びその硬化体に関する。
The present invention relates to an epoxy resin having a truxylate structure and a cured product thereof.
石油は、限りある資源であること、また、二酸化炭素の排出などの地球規模の環境問題が生じることから、代替資源の利用が近年求められている。石油の代替資源としては、バイオマスの利用が注目されている。バイオマスを利用した樹脂としては、ポリ乳酸やポリヒドロキシ酪酸が商業化しており、特にEUを中心とした需要拡大に生産量を増加している。
Since petroleum is a limited resource and causes global environmental problems such as carbon dioxide emissions, there has been a demand in recent years for the use of alternative resources. The use of biomass is attracting attention as an alternative resource to oil. Polylactic acid and polyhydroxybutyric acid have been commercialized as resins made from biomass, and production volumes are increasing in response to expanding demand, particularly in the EU.
バイオマスとしては、取扱い性の観点などから可食性のバイオマスが主に利用されているが、可食性のバイオマスは食物としての利用と競合するため非可食性のバイオマスを利用することが求められつつあり、様々な研究がなされている。例えば、非特許文献1では、リグニンの解重合等により得ることが可能なフェルラ酸を用いて得られる二官能のエポキシ樹脂が、従来のビスフェノールA型エポキシ樹脂よりも高いガラス転移温度と優れた引張強度を示すことが開示されており、さらにフルフリルアルコールのグリシジルエーテルを複合化させることで性能が向上することが示されている。
As for biomass, edible biomass is mainly used from the viewpoint of ease of handling, but as edible biomass competes with use as food, there is a growing demand for the use of non-edible biomass. , various studies have been conducted. For example, in Non-Patent Document 1, a bifunctional epoxy resin obtained using ferulic acid, which can be obtained by depolymerizing lignin, has a higher glass transition temperature and excellent tensile strength than conventional bisphenol A epoxy resins. It has been disclosed that it exhibits strength, and it has also been shown that performance is improved by compounding glycidyl ether of furfuryl alcohol.
また、近年、微生物により有価物を生産することも検討されつつあり、例えば、p-クマル酸などのヒドロキシケイ皮酸構造を有する化合物をL-チロシンなどのバイオマス由来の化合物から微生物を使用して合成することが知られている。一般的に微生物反応は、高効率の反応でありながら、温和な環境で実施できる。
In addition, in recent years, consideration has been given to producing valuable materials using microorganisms. For example, using microorganisms to produce compounds with a hydroxycinnamic acid structure such as p-coumaric acid from biomass-derived compounds such as L-tyrosine. known to be synthesized. Generally, microbial reactions are highly efficient and can be carried out in a mild environment.
微生物により合成可能な化合物は、樹脂製造に利用することも検討されている。例えば、特許文献1では、p-ヒドロキシケイ皮酸にエピクロルヒドリンを反応させてエポキシ樹脂を合成し、得られたエポキシ樹脂をグリシジルフルフリルエーテルとともに、硬化剤により硬化することで、高いガラス転移温度、及び優れた機械強度を有することが開示されている。
Compounds that can be synthesized by microorganisms are also being considered for use in resin production. For example, in Patent Document 1, an epoxy resin is synthesized by reacting epichlorohydrin with p-hydroxycinnamic acid, and the obtained epoxy resin is cured with a curing agent together with glycidyl furfuryl ether, thereby achieving a high glass transition temperature and It is disclosed that it has excellent mechanical strength.
しかしながら、リグニンなどの非可食性のバイオマス由来の成分は分解性が低いことから、原料となる化合物を効率よく得ることが難しく、エポキシ樹脂を合成するためのプロセスが複雑になりやすい。また、バイオマスから得られる化合物は、一般的に石油化学品由来の重合物に比べると性能が劣るという問題がある。
However, since components derived from non-edible biomass such as lignin have low degradability, it is difficult to efficiently obtain raw material compounds, and the process for synthesizing epoxy resins tends to be complicated. Furthermore, there is a problem that compounds obtained from biomass generally have inferior performance compared to polymers derived from petrochemicals.
そこで、本発明は、バイオマスから得ることができる化合物でありながらも、容易に製造でき、かつ熱的性能も良好なエポキシ樹脂を提供することを課題とする。
Therefore, an object of the present invention is to provide an epoxy resin that is a compound that can be obtained from biomass, can be easily produced, and has good thermal performance.
本発明者は、微生物による生産が容易なパラクマル酸の二量体であるジヒドロキシトルキシル酸から得られるエポキシ樹脂が上記課題を解決しうることを見いだし、本発明を完成させた。本発明は、以下の[1]~[13]を提供する。
[1]以下の式(1)で表される骨格を有するエポキシ樹脂。
なお、式(1)において、R4及びR5はそれぞれ独立に、水素原子、アルコキシ基、及び-OGのいずれかである。*は他の構造との結合部位となってもよい。Gはグリシジル基を表す。
[2]以下の式(1-1)で表される構造を有する上記[1]に記載のエポキシ樹脂。
なお、式(1-1)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。nは0~100の整数である。
[3]以下の式(1-2)で表される構造を有する上記[1]に記載のエポキシ樹脂。
なお、式(1-2)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。
[4]R1及びR3がグリシジル基であり、nが0である上記[2]又は[3]に記載のエポキシ樹脂。
[5]R1及びR3が炭素数1~6のアルキル基であり、nが0である上記[2]又は[3]に記載のエポキシ樹脂。
[6]R1及びR3がメチル基である上記[2]又は[3]に記載のエポキシ樹脂。
[7]以下の式(1-3)で表される構造を有する上記[1]に記載のエポキシ樹脂。
式(1-3)の各ベンゼン環において、それぞれ独立にR4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。また、R6が水素原子、-COOG、及び-COOR1のいずれかであり、R7が水素原子、-COOG、及び-COOR3のいずれかである。R1及びR3はアルキル基である。
[8]式(1)で表される骨格が、バイオマス由来である、上記[1]~[7]のいずれか1項に記載のエポキシ樹脂。
[9]上記[1]~[8]のいずれか1項に記載のエポキシ樹脂を硬化させて得られた硬化体。
[10]以下の式(2)に示す骨格を有する化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、エポキシ樹脂の製造方法。
なお、式(2)において、R14及びR15はそれぞれ独立に、水素原子、アルコキシ基、及び-OHのいずれかである。*は他の構造との結合部位となってもよい。
[11]以下の式(2-1)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
上記式(2-1)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。mは0~100の整数である。
[12]以下の式(2-2)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
上記式(2-2)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。mは0~100の整数である。
[13]以下の式(2-3)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
式(2-3)の各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。R16が水素原子又は-COOR11であり、かつR17が水素原子又は-COOR13である。R11、R13は、それぞれ独立に水素原子、又はアルキル基である。 The present inventors have discovered that an epoxy resin obtained from dihydroxytruxylic acid, which is a dimer of paracoumaric acid that can be easily produced by microorganisms, can solve the above problems, and have completed the present invention. The present invention provides the following [1] to [13].
[1] An epoxy resin having a skeleton represented by the following formula (1).
In addition, in formula (1), R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure. G represents a glycidyl group.
[2] The epoxy resin according to [1] above, which has a structure represented by the following formula (1-1).
In addition, in formula (1-1), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a heteroatom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. In each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. n is an integer from 0 to 100.
[3] The epoxy resin according to [1] above, which has a structure represented by the following formula (1-2).
In addition, in formula (1-2), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. n is an integer from 0 to 100.
[4] The epoxy resin according to [2] or [3] above, wherein R 1 and R 3 are glycidyl groups, and n is 0.
[5] The epoxy resin according to [2] or [3] above, wherein R 1 and R 3 are alkyl groups having 1 to 6 carbon atoms, and n is 0.
[6] The epoxy resin according to the above [2] or [3], wherein R 1 and R 3 are methyl groups.
[7] The epoxy resin according to the above [1], which has a structure represented by the following formula (1-3).
In each benzene ring of formula (1-3), one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. Further, R 6 is a hydrogen atom, -COOG, or -COOR 1 , and R 7 is a hydrogen atom, -COOG, or -COOR 3 . R 1 and R 3 are alkyl groups.
[8] The epoxy resin according to any one of [1] to [7] above, wherein the skeleton represented by formula (1) is derived from biomass.
[9] A cured product obtained by curing the epoxy resin according to any one of [1] to [8] above.
[10] A method for producing an epoxy resin, which comprises reacting a compound having a skeleton represented by the following formula (2) with epihalohydrin to obtain an epoxy resin.
In addition, in formula (2), R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure.
[11] The method for producing an epoxy resin according to [10] above, wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-1) with epihalohydrin.
In the above formula (2-1), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. In each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. m is an integer from 0 to 100.
[12] The method for producing an epoxy resin according to the above [10], wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-2) with epihalohydrin.
In the above formula (2-2), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. m is an integer from 0 to 100.
[13] The method for producing an epoxy resin according to the above [10], wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-3) with epihalohydrin.
In each benzene ring of formula (2-3), one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group.
[1]以下の式(1)で表される骨格を有するエポキシ樹脂。
なお、式(1)において、R4及びR5はそれぞれ独立に、水素原子、アルコキシ基、及び-OGのいずれかである。*は他の構造との結合部位となってもよい。Gはグリシジル基を表す。
[2]以下の式(1-1)で表される構造を有する上記[1]に記載のエポキシ樹脂。
なお、式(1-1)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。nは0~100の整数である。
[3]以下の式(1-2)で表される構造を有する上記[1]に記載のエポキシ樹脂。
なお、式(1-2)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。
[4]R1及びR3がグリシジル基であり、nが0である上記[2]又は[3]に記載のエポキシ樹脂。
[5]R1及びR3が炭素数1~6のアルキル基であり、nが0である上記[2]又は[3]に記載のエポキシ樹脂。
[6]R1及びR3がメチル基である上記[2]又は[3]に記載のエポキシ樹脂。
[7]以下の式(1-3)で表される構造を有する上記[1]に記載のエポキシ樹脂。
式(1-3)の各ベンゼン環において、それぞれ独立にR4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。また、R6が水素原子、-COOG、及び-COOR1のいずれかであり、R7が水素原子、-COOG、及び-COOR3のいずれかである。R1及びR3はアルキル基である。
[8]式(1)で表される骨格が、バイオマス由来である、上記[1]~[7]のいずれか1項に記載のエポキシ樹脂。
[9]上記[1]~[8]のいずれか1項に記載のエポキシ樹脂を硬化させて得られた硬化体。
[10]以下の式(2)に示す骨格を有する化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、エポキシ樹脂の製造方法。
なお、式(2)において、R14及びR15はそれぞれ独立に、水素原子、アルコキシ基、及び-OHのいずれかである。*は他の構造との結合部位となってもよい。
[11]以下の式(2-1)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
上記式(2-1)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。mは0~100の整数である。
[12]以下の式(2-2)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
上記式(2-2)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。mは0~100の整数である。
[13]以下の式(2-3)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、上記[10]に記載のエポキシ樹脂の製造方法。
式(2-3)の各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。R16が水素原子又は-COOR11であり、かつR17が水素原子又は-COOR13である。R11、R13は、それぞれ独立に水素原子、又はアルキル基である。 The present inventors have discovered that an epoxy resin obtained from dihydroxytruxylic acid, which is a dimer of paracoumaric acid that can be easily produced by microorganisms, can solve the above problems, and have completed the present invention. The present invention provides the following [1] to [13].
[1] An epoxy resin having a skeleton represented by the following formula (1).
In addition, in formula (1), R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure. G represents a glycidyl group.
[2] The epoxy resin according to [1] above, which has a structure represented by the following formula (1-1).
In addition, in formula (1-1), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a heteroatom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. In each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. n is an integer from 0 to 100.
[3] The epoxy resin according to [1] above, which has a structure represented by the following formula (1-2).
In addition, in formula (1-2), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. n is an integer from 0 to 100.
[4] The epoxy resin according to [2] or [3] above, wherein R 1 and R 3 are glycidyl groups, and n is 0.
[5] The epoxy resin according to [2] or [3] above, wherein R 1 and R 3 are alkyl groups having 1 to 6 carbon atoms, and n is 0.
[6] The epoxy resin according to the above [2] or [3], wherein R 1 and R 3 are methyl groups.
[7] The epoxy resin according to the above [1], which has a structure represented by the following formula (1-3).
In each benzene ring of formula (1-3), one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. Further, R 6 is a hydrogen atom, -COOG, or -COOR 1 , and R 7 is a hydrogen atom, -COOG, or -COOR 3 . R 1 and R 3 are alkyl groups.
[8] The epoxy resin according to any one of [1] to [7] above, wherein the skeleton represented by formula (1) is derived from biomass.
[9] A cured product obtained by curing the epoxy resin according to any one of [1] to [8] above.
[10] A method for producing an epoxy resin, which comprises reacting a compound having a skeleton represented by the following formula (2) with epihalohydrin to obtain an epoxy resin.
In addition, in formula (2), R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure.
[11] The method for producing an epoxy resin according to [10] above, wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-1) with epihalohydrin.
In the above formula (2-1), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. In each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. m is an integer from 0 to 100.
[12] The method for producing an epoxy resin according to the above [10], wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-2) with epihalohydrin.
In the above formula (2-2), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. m is an integer from 0 to 100.
[13] The method for producing an epoxy resin according to the above [10], wherein an epoxy resin is obtained by reacting a compound represented by the following formula (2-3) with epihalohydrin.
In each benzene ring of formula (2-3), one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group.
本発明では、バイオマスから得ることができる化合物でありながらも、容易に製造でき、かつ熱的性能も良好なエポキシ樹脂を提供できる。
The present invention can provide an epoxy resin that is a compound that can be obtained from biomass, is easily produced, and has good thermal performance.
<エポキシ樹脂>
以下、本発明について実施形態を用いてさらに詳細に説明する。
本発明のエポキシ樹脂は、以下の式(1)で表される骨格を有する。以下の式(1)の骨格を有するエポキシ樹脂は、バイオマスから得ることができる化合物でありながらも、容易に製造でき、かつ熱的性能も良好である。 <Epoxy resin>
Hereinafter, the present invention will be described in more detail using embodiments.
The epoxy resin of the present invention has a skeleton represented by the following formula (1). Although the epoxy resin having the skeleton of the following formula (1) is a compound that can be obtained from biomass, it can be easily produced and has good thermal performance.
以下、本発明について実施形態を用いてさらに詳細に説明する。
本発明のエポキシ樹脂は、以下の式(1)で表される骨格を有する。以下の式(1)の骨格を有するエポキシ樹脂は、バイオマスから得ることができる化合物でありながらも、容易に製造でき、かつ熱的性能も良好である。 <Epoxy resin>
Hereinafter, the present invention will be described in more detail using embodiments.
The epoxy resin of the present invention has a skeleton represented by the following formula (1). Although the epoxy resin having the skeleton of the following formula (1) is a compound that can be obtained from biomass, it can be easily produced and has good thermal performance.
式(1)において、R4及びR5はそれぞれ独立に、水素原子、アルコキシ基、及び-OGのいずれかである。*は他の構造との結合部位となってもよい。Gはグリシジル基を表す。
In formula (1), R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure. G represents a glycidyl group.
上記式(1)において、R4及びR5のアルコキシ基は、例えば炭素数1~4のアルコキシ基であればよく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基などが挙げられ、これらの中でもメトキシ基(-OCH3)が好ましい。
式(1)において、各ベンゼン環においてR4及びR5は、互いに同一であってもよいし、異なってもよいが、各ベンゼン環においてそれぞれ独立に、R4及びR5のうちいずれか一方が水素原子で、他方が水素原子、アルコキシ基、又は-OGのいずれかであることが好ましい。なお、一分子中においてR4及びR5のうちの他方は、同じ基であることが好ましい。
R4及びR5のうちいずれか一方を水素原子とすると、後述する通りクマル酸又はクマル酸から酵素を用いた反応により得られた化合物により容易に製造することができる。 In the above formula (1), the alkoxy groups of R 4 and R 5 may be, for example, alkoxy groups having 1 to 4 carbon atoms, such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group. , sec-butoxy group, tert-butoxy group, etc. Among these, methoxy group (-OCH 3 ) is preferred.
In formula (1), R 4 and R 5 in each benzene ring may be the same or different, but in each benzene ring, either one of R 4 and R 5 independently It is preferable that one is a hydrogen atom and the other is a hydrogen atom, an alkoxy group, or -OG. Note that the other of R 4 and R 5 in one molecule is preferably the same group.
When either one of R 4 and R 5 is a hydrogen atom, it can be easily produced using coumaric acid or a compound obtained from coumaric acid by reaction using an enzyme, as described below.
式(1)において、各ベンゼン環においてR4及びR5は、互いに同一であってもよいし、異なってもよいが、各ベンゼン環においてそれぞれ独立に、R4及びR5のうちいずれか一方が水素原子で、他方が水素原子、アルコキシ基、又は-OGのいずれかであることが好ましい。なお、一分子中においてR4及びR5のうちの他方は、同じ基であることが好ましい。
R4及びR5のうちいずれか一方を水素原子とすると、後述する通りクマル酸又はクマル酸から酵素を用いた反応により得られた化合物により容易に製造することができる。 In the above formula (1), the alkoxy groups of R 4 and R 5 may be, for example, alkoxy groups having 1 to 4 carbon atoms, such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group. , sec-butoxy group, tert-butoxy group, etc. Among these, methoxy group (-OCH 3 ) is preferred.
In formula (1), R 4 and R 5 in each benzene ring may be the same or different, but in each benzene ring, either one of R 4 and R 5 independently It is preferable that one is a hydrogen atom and the other is a hydrogen atom, an alkoxy group, or -OG. Note that the other of R 4 and R 5 in one molecule is preferably the same group.
When either one of R 4 and R 5 is a hydrogen atom, it can be easily produced using coumaric acid or a compound obtained from coumaric acid by reaction using an enzyme, as described below.
*は、結合部位となる場合、連結基(例えば、後述する-COO-R2-COO-)を介して、別の式(1)に示す骨格に結合されてもよいし、他の官能基(例えば、後述する-COOR1,-COOR3で示される官能基)に結合されてもよい。また、結合部位とならない場合には、2つの水素原子に結合する部位となるとよい。
When * becomes a bonding site, it may be bonded to another skeleton shown in formula (1) via a linking group (for example, -COO-R 2 -COO-, which will be described later), or it may be bonded to another functional group. (For example, functional groups represented by -COOR 1 and -COOR 3 , which will be described later). Furthermore, if it does not serve as a bonding site, it may serve as a site that bonds to two hydrogen atoms.
本発明のエポキシ樹脂は、以下の式(1-1)で表される構造を有する化合物であることが好ましい。
式(1-1)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。Gはグリシジル基を表す。
また、R4及びR5は、上記と同一である。したがって、各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかであることが好ましい。なお、一分子中においてR4及びR5のうちの他方は、全て同じ基であることが好ましい。 The epoxy resin of the present invention is preferably a compound having a structure represented by the following formula (1-1).
In formula (1-1), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is a hetero atom. It is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have . n is an integer from 0 to 100. G represents a glycidyl group.
Moreover, R 4 and R 5 are the same as above. Therefore, it is preferable that in each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 and -OG. In addition, it is preferable that the other of R 4 and R 5 in one molecule is the same group.
式(1-1)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。Gはグリシジル基を表す。
また、R4及びR5は、上記と同一である。したがって、各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかであることが好ましい。なお、一分子中においてR4及びR5のうちの他方は、全て同じ基であることが好ましい。 The epoxy resin of the present invention is preferably a compound having a structure represented by the following formula (1-1).
In formula (1-1), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is a hetero atom. It is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have . n is an integer from 0 to 100. G represents a glycidyl group.
Moreover, R 4 and R 5 are the same as above. Therefore, it is preferable that in each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 and -OG. In addition, it is preferable that the other of R 4 and R 5 in one molecule is the same group.
また、式(1)、(1-1)において、バイオマスから容易に合成できる観点から、R4及びR5の両方が水素原子であることが好ましい。したがって、本発明のエポキシ樹脂は、以下の式(1-2)で表される構造を有することが好ましい。
Furthermore, in formulas (1) and (1-1), both R 4 and R 5 are preferably hydrogen atoms from the viewpoint of easy synthesis from biomass. Therefore, the epoxy resin of the present invention preferably has a structure represented by the following formula (1-2).
なお、式(1-2)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。Gはグリシジル基を表す。
In addition, in formula (1-2), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. n is an integer from 0 to 100. G represents a glycidyl group.
上記式(1-1)及び(1-2)それぞれにおいて、R1及びR3における炭素数1~20の1価の炭化水素基は、脂肪族炭化水素基であってもよいし、芳香環を有する芳香族炭化水素基であってもよい。これらはヘテロ原子を有してもよいし、有さなくてもよい。また、ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、ハロゲン原子及びリン原子が挙げられる。ヘテロ原子としては、特に限定されないが、例えば、エーテル結合、エステル結合、ケト基、アルコシキ基などを構成する酸素原子、スルホニル基、チオール結合などを構成する硫黄原子、炭化水素基の水素原子に置換されるハロゲン原子などが挙げられる。
1価の炭化水素基の炭素数は、好ましくは1~10、より好ましくは1~6、更に好ましくは1~3である。 In each of the above formulas (1-1) and (1-2), the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 and R 3 may be an aliphatic hydrocarbon group or an aromatic ring. It may be an aromatic hydrocarbon group having These may or may not have heteroatoms. Further, examples of the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom, and a phosphorus atom. Heteroatoms include, but are not particularly limited to, oxygen atoms forming ether bonds, ester bonds, keto groups, alkoxy groups, etc., sulfur atoms forming sulfonyl groups, thiol bonds, etc., and hydrogen atoms substituted for hydrocarbon groups. Examples include halogen atoms.
The monovalent hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
1価の炭化水素基の炭素数は、好ましくは1~10、より好ましくは1~6、更に好ましくは1~3である。 In each of the above formulas (1-1) and (1-2), the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 and R 3 may be an aliphatic hydrocarbon group or an aromatic ring. It may be an aromatic hydrocarbon group having These may or may not have heteroatoms. Further, examples of the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom, and a phosphorus atom. Heteroatoms include, but are not particularly limited to, oxygen atoms forming ether bonds, ester bonds, keto groups, alkoxy groups, etc., sulfur atoms forming sulfonyl groups, thiol bonds, etc., and hydrogen atoms substituted for hydrocarbon groups. Examples include halogen atoms.
The monovalent hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
R1及びR3における脂肪族炭化水素基は、飽和炭化水素基、不飽和炭化水素基のいずれでもよく、アルキル基、アルケニル基などが挙げられる。R1及びR3における1価の炭化水素基は、製造が容易であり、熱安定性なども向上しやすいことから、アルキル基であることが好ましい。アルキル基は、直鎖であってもよいし、分岐構造を有してもよいし、環状構造を有してもよい。具体的なアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、及び各種オクチル基等が挙げられる。なお、「各種」とは、直鎖(n-)に加え、sec-、tert-、iso-などを含む各種異性体を意味し、以下も同様である。また、アルキル基としては、シクロヘキシル基などの環状構造を有するものでもよい。
R1及びR3におけるアルキル基は、それぞれ独立に、炭素数1~10が好ましく、炭素数1~6がより好ましく、炭素数1~3がさらに好ましく、いずれもがメチル基であることが最も好ましい。 The aliphatic hydrocarbon group in R 1 and R 3 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, and examples thereof include an alkyl group and an alkenyl group. The monovalent hydrocarbon group in R 1 and R 3 is preferably an alkyl group because it is easy to manufacture and tends to improve thermal stability. The alkyl group may be linear, have a branched structure, or have a cyclic structure. Specific alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, and various heptyl groups. group, and various octyl groups. In addition, "various" means various isomers including sec-, tert-, iso-, etc. in addition to linear (n-), and the same applies below. Further, the alkyl group may have a cyclic structure such as a cyclohexyl group.
The alkyl groups in R 1 and R 3 each independently preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, even more preferably 1 to 3 carbon atoms, and most preferably both are methyl groups. preferable.
R1及びR3におけるアルキル基は、それぞれ独立に、炭素数1~10が好ましく、炭素数1~6がより好ましく、炭素数1~3がさらに好ましく、いずれもがメチル基であることが最も好ましい。 The aliphatic hydrocarbon group in R 1 and R 3 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, and examples thereof include an alkyl group and an alkenyl group. The monovalent hydrocarbon group in R 1 and R 3 is preferably an alkyl group because it is easy to manufacture and tends to improve thermal stability. The alkyl group may be linear, have a branched structure, or have a cyclic structure. Specific alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, and various heptyl groups. group, and various octyl groups. In addition, "various" means various isomers including sec-, tert-, iso-, etc. in addition to linear (n-), and the same applies below. Further, the alkyl group may have a cyclic structure such as a cyclohexyl group.
The alkyl groups in R 1 and R 3 each independently preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, even more preferably 1 to 3 carbon atoms, and most preferably both are methyl groups. preferable.
式(1-1)及び(1-2)それぞれにおいて、nは上記の通り0~100であるが、好ましくは0~50、より好ましくは0~10、さらに好ましくは0~5、特に好ましくは0である。nの数を小さくすることで、エポキシ樹脂が高分子量化することを防止でき、品質のばらつきが抑制され、取扱い性なども良好となる。
In each of formulas (1-1) and (1-2), n is 0 to 100 as described above, preferably 0 to 50, more preferably 0 to 10, still more preferably 0 to 5, particularly preferably It is 0. By reducing the number of n, it is possible to prevent the epoxy resin from increasing in molecular weight, suppressing variations in quality, and improving handleability.
R2における炭素数2~20の2価の炭化水素基は、脂肪族炭化水素基であってもよいし、芳香環を有する芳香族炭化水素基であってもよい。これらはヘテロ原子を有してもよいし、ヘテロ原子を有さなくてもよい。ヘテロ原子の詳細はR1、R3において述べた通りである。
R2における脂肪族炭化水素基は、飽和炭化水素基、不飽和炭化水素基のいずれでもよいが、飽和炭化水素基が好ましい。R2における飽和炭化水素基は、直鎖状であってもよいし、分岐構造を有してもよいし、環状構造を有してもよい。上記の通り飽和炭化水素基はヘテロ原子を有してもよいし、有さなくてもよいが、有さないことが好ましい。R2における2価の炭化水素基における炭素数は、好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4である。 The divalent hydrocarbon group having 2 to 20 carbon atoms in R 2 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring. These may or may not have a heteroatom. Details of the heteroatom are as described for R 1 and R 3 .
The aliphatic hydrocarbon group in R 2 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, but a saturated hydrocarbon group is preferable. The saturated hydrocarbon group in R 2 may be linear, have a branched structure, or have a cyclic structure. As mentioned above, the saturated hydrocarbon group may or may not have a heteroatom, but it is preferable that it does not have a heteroatom. The number of carbon atoms in the divalent hydrocarbon group in R 2 is preferably 2 to 10, more preferably 2 to 6, and still more preferably 2 to 4.
R2における脂肪族炭化水素基は、飽和炭化水素基、不飽和炭化水素基のいずれでもよいが、飽和炭化水素基が好ましい。R2における飽和炭化水素基は、直鎖状であってもよいし、分岐構造を有してもよいし、環状構造を有してもよい。上記の通り飽和炭化水素基はヘテロ原子を有してもよいし、有さなくてもよいが、有さないことが好ましい。R2における2価の炭化水素基における炭素数は、好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4である。 The divalent hydrocarbon group having 2 to 20 carbon atoms in R 2 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring. These may or may not have a heteroatom. Details of the heteroatom are as described for R 1 and R 3 .
The aliphatic hydrocarbon group in R 2 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, but a saturated hydrocarbon group is preferable. The saturated hydrocarbon group in R 2 may be linear, have a branched structure, or have a cyclic structure. As mentioned above, the saturated hydrocarbon group may or may not have a heteroatom, but it is preferable that it does not have a heteroatom. The number of carbon atoms in the divalent hydrocarbon group in R 2 is preferably 2 to 10, more preferably 2 to 6, and still more preferably 2 to 4.
また、R2におけるヘテロ原子を有してもよい脂肪族炭化水素基は、上記以外にヒドロキシプロピレン基であることも好ましい。ヒドロキシプロピレン基とは、ヒドロキシプロパンから、炭素原子に結合する2個の水素原子を除去した官能基であり、ヒドロキシプロパンジイル基とも呼ばれる。ヒドロキシプロピレン基は、後述するエピハロヒドリン由来の構造単位である。
ヒドロキシプロピレン基は、除去する水素原子の位置、及び水酸基の位置は任意であるが、典型的には、2-ヒドロキシプロパン-1,3-ジイル基(-CH2CHOHCH2-)である。式(1-1)及び(1-2)それぞれに示す化合物は、R2が2-ヒドロキシプロパン-1,3-ジイル基であることで、後述するエピハロヒドリンと、式(2)に示す化合物(特に式(2-4)~(2-6)に示す化合物)から、容易に合成することができる。
なお、一分子中に複数のR2がある場合、一分子中の複数のR2は、互いに同一であってもよいし、異なってもよい。R2は、上記の中ではヒドロキシプロピレン基であることが好ましい。 In addition to the above, the aliphatic hydrocarbon group which may have a heteroatom in R 2 is also preferably a hydroxypropylene group. A hydroxypropylene group is a functional group obtained by removing two hydrogen atoms bonded to a carbon atom from hydroxypropane, and is also called a hydroxypropanediyl group. The hydroxypropylene group is a structural unit derived from epihalohydrin, which will be described later.
In the hydroxypropylene group, the position of the hydrogen atom to be removed and the position of the hydroxyl group are arbitrary, but typically it is a 2-hydroxypropane-1,3-diyl group (-CH 2 CHOHCH 2 -). The compounds represented by formulas (1-1) and (1-2) each have a 2-hydroxypropane-1,3-diyl group in which R 2 is a 2-hydroxypropane-1,3-diyl group. In particular, it can be easily synthesized from compounds shown in formulas (2-4) to (2-6).
In addition, when there is a plurality of R 2 in one molecule, the plurality of R 2 in one molecule may be the same or different. Among the above, R 2 is preferably a hydroxypropylene group.
ヒドロキシプロピレン基は、除去する水素原子の位置、及び水酸基の位置は任意であるが、典型的には、2-ヒドロキシプロパン-1,3-ジイル基(-CH2CHOHCH2-)である。式(1-1)及び(1-2)それぞれに示す化合物は、R2が2-ヒドロキシプロパン-1,3-ジイル基であることで、後述するエピハロヒドリンと、式(2)に示す化合物(特に式(2-4)~(2-6)に示す化合物)から、容易に合成することができる。
なお、一分子中に複数のR2がある場合、一分子中の複数のR2は、互いに同一であってもよいし、異なってもよい。R2は、上記の中ではヒドロキシプロピレン基であることが好ましい。 In addition to the above, the aliphatic hydrocarbon group which may have a heteroatom in R 2 is also preferably a hydroxypropylene group. A hydroxypropylene group is a functional group obtained by removing two hydrogen atoms bonded to a carbon atom from hydroxypropane, and is also called a hydroxypropanediyl group. The hydroxypropylene group is a structural unit derived from epihalohydrin, which will be described later.
In the hydroxypropylene group, the position of the hydrogen atom to be removed and the position of the hydroxyl group are arbitrary, but typically it is a 2-hydroxypropane-1,3-diyl group (-CH 2 CHOHCH 2 -). The compounds represented by formulas (1-1) and (1-2) each have a 2-hydroxypropane-1,3-diyl group in which R 2 is a 2-hydroxypropane-1,3-diyl group. In particular, it can be easily synthesized from compounds shown in formulas (2-4) to (2-6).
In addition, when there is a plurality of R 2 in one molecule, the plurality of R 2 in one molecule may be the same or different. Among the above, R 2 is preferably a hydroxypropylene group.
本発明において、式(1-1)及び(1-2)それぞれで示す構造は、R1及びR3の両方が、グリシジル基あることが好ましい。R1及びR3の両方が、グリシジル基あるエポキシ樹脂は、架橋密度が高いエポキシ硬化体を得やすくなる。R1及びR3の両方がグリシジル基である場合も、式(1-1)及び(1-2)それぞれに示す構造を有するエポキシ樹脂において、R2、nは上記の通りである。したがって、R1及びR3の両方がグリシジル基あるエポキシ樹脂は、nが0であることが特に好ましい。
In the present invention, in the structures represented by formulas (1-1) and (1-2), both R 1 and R 3 are preferably glycidyl groups. Epoxy resins in which both R 1 and R 3 are glycidyl groups make it easier to obtain an epoxy cured product with a high crosslinking density. Even when both R 1 and R 3 are glycidyl groups, R 2 and n are as described above in the epoxy resin having the structures shown in formulas (1-1) and (1-2), respectively. Therefore, in the epoxy resin in which both R 1 and R 3 are glycidyl groups, it is particularly preferable that n is 0.
本発明において、式(1-1)及び(1-2)それぞれを示す化合物は、R1及びR3の両方が、ヘテロ原子を有してもよい1価の炭化水素基である態様も好ましい。本態様に係る式(1-1)及び(1-2)それぞれに示す構造を有するエポキシ樹脂において、R2、nは上記の通りであり、R1及びR3におけるヘテロ原子を有してもよい1価の炭化水素基の好ましい態様も上記の通りである。したがって、本態様において、R1及びR3は、いずれもがアルキル基であることが好ましく、アルキル基の炭素数は1~10が好ましく、より好ましくは1~6、さらに好ましくは1~3であり、最も好ましくはR1及びR3の両方がメチル基である。そして、本態様においても、nは上記のとおり0であることが特に好ましい。本態様におけるエポキシ樹脂は、比較的柔軟性に優れるエポキシ硬化体を得やすくなる。
In the present invention, it is also preferable that in the compounds having formulas (1-1) and (1-2), both R 1 and R 3 are monovalent hydrocarbon groups which may have a heteroatom. . In the epoxy resin having the structures shown in formulas (1-1) and (1-2) according to this embodiment, R 2 and n are as described above, and even if R 1 and R 3 have a heteroatom, Preferred embodiments of the monovalent hydrocarbon group are also as described above. Therefore, in this embodiment, R 1 and R 3 are both preferably alkyl groups, and the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms. most preferably both R 1 and R 3 are methyl groups. Also in this embodiment, n is particularly preferably 0 as described above. The epoxy resin in this embodiment makes it easier to obtain a cured epoxy product with relatively excellent flexibility.
本発明のエポキシ樹脂は、上記のとおりnが0であることが好ましく、したがって、以下の式(1-3)に示す構造を有する化合物であることも好ましい。
式(1-3)において、R6は水素原子又は-COOR1であり、かつR7は水素原子又は-COOR3である。R1、R3、R4及びR5は上記の通りである。 In the epoxy resin of the present invention, n is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (1-3).
In formula (1-3), R 6 is a hydrogen atom or -COOR 1 , and R 7 is a hydrogen atom or -COOR 3 . R 1 , R 3 , R 4 and R 5 are as described above.
式(1-3)において、R6は水素原子又は-COOR1であり、かつR7は水素原子又は-COOR3である。R1、R3、R4及びR5は上記の通りである。 In the epoxy resin of the present invention, n is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (1-3).
In formula (1-3), R 6 is a hydrogen atom or -COOR 1 , and R 7 is a hydrogen atom or -COOR 3 . R 1 , R 3 , R 4 and R 5 are as described above.
R4及びR5の好ましい態様の詳細は、上記のとおりである。したがって、式(1-3)において、各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかであることが好ましく、この際、一分子中においてR4及びR5の他方は、同じ官能基であることがより好ましい。そして、さらに好ましくはR4及びR5の両方が水素原子である。
また、R1及びR3の好ましい態様も上記の通りである。したがって、式(1-3)においても、R6が水素原子、-COOG、及び-COOR1のいずれかであり、R7が水素原子、-COOG、及び-COOR3のいずれかであり、R1及びR3はアルキル基であることが好ましい。中でも、R6及びR7は、いずれもが水素原子、-COOG、又は-COORであることがより好ましい。 Details of preferred embodiments of R 4 and R 5 are as described above. Therefore, in formula (1-3), in each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OG. is preferable, and in this case, it is more preferable that the other of R 4 and R 5 in one molecule is the same functional group. More preferably, both R 4 and R 5 are hydrogen atoms.
Further, preferred embodiments of R 1 and R 3 are also as described above. Therefore, also in formula (1-3), R 6 is a hydrogen atom, -COOG, or -COOR 1 , R 7 is a hydrogen atom, -COOG, or -COOR 3 , and R 1 and R 3 are preferably alkyl groups. Among these, it is more preferable that R 6 and R 7 are both a hydrogen atom, -COOG, or -COOR.
また、R1及びR3の好ましい態様も上記の通りである。したがって、式(1-3)においても、R6が水素原子、-COOG、及び-COOR1のいずれかであり、R7が水素原子、-COOG、及び-COOR3のいずれかであり、R1及びR3はアルキル基であることが好ましい。中でも、R6及びR7は、いずれもが水素原子、-COOG、又は-COORであることがより好ましい。 Details of preferred embodiments of R 4 and R 5 are as described above. Therefore, in formula (1-3), in each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OG. is preferable, and in this case, it is more preferable that the other of R 4 and R 5 in one molecule is the same functional group. More preferably, both R 4 and R 5 are hydrogen atoms.
Further, preferred embodiments of R 1 and R 3 are also as described above. Therefore, also in formula (1-3), R 6 is a hydrogen atom, -COOG, or -COOR 1 , R 7 is a hydrogen atom, -COOG, or -COOR 3 , and R 1 and R 3 are preferably alkyl groups. Among these, it is more preferable that R 6 and R 7 are both a hydrogen atom, -COOG, or -COOR.
上記式(1-3)の構造を示すエポキシ樹脂としては、以下の式(1-4)~(1-10)で表される構造を有する化合物が好ましく、中でも式(1-4)で表される構造を示す化合物がより好ましい。以下の式(1-4)~(1-10)で表される構造を有する化合物は、クマル酸、又はクマル酸を酵素変換反応して得られるフェルラ酸又はカフェ酸、クマル酸を酵素変換し、且つ脱炭素反応をすることで得られる4-ビニルフェノールから容易に合成することができるので、バイオマス原料から容易に製造することができる。
As the epoxy resin having the structure of the above formula (1-3), compounds having the structures represented by the following formulas (1-4) to (1-10) are preferable, and among them, compounds having the structure represented by the formula (1-4) are preferred. More preferred are compounds exhibiting the following structure. Compounds having structures represented by the following formulas (1-4) to (1-10) are coumaric acid, ferulic acid obtained by enzymatic conversion of coumaric acid, caffeic acid, or caffeic acid obtained by enzymatic conversion of coumaric acid. , and can be easily synthesized from 4-vinylphenol obtained by decarbonizing reaction, so it can be easily produced from biomass raw materials.
(なお、式(1-8)、(1-9)、及び(1-10)において、Rはアルキル基である。アルキル基の詳細は上記の通りである。)
(In formulas (1-8), (1-9), and (1-10), R is an alkyl group. Details of the alkyl group are as above.)
<エポキシ樹脂の製造方法>
本発明のエポキシ樹脂は、以下の式(2)で表される骨格を有する化合物(以下、原料化合物ともいう)と、エピハロヒドリンを反応させることで合成することができる。
なお、式(2)において、R14及びR15はそれぞれ独立に、水素原子、アルコキシ基、及び-OHのいずれかである。*は他の構造との結合部位となってもよい。
上記式(2)において、R14及びR15のアルコキシ基は、上記したR4及びR5におけるアルコキシ基と同じであり、好ましくはメトキシ基である。
式(2)において、各ベンゼン環においてR14及びR15は、互いに同一であってもよいし、異なってもよいが、各ベンゼン環においてそれぞれ独立に、R14及びR15のうちいずれか一方が水素原子で、他方が水素原子、メトキシ基などのアルコキシ基、-OHのいずれかであることが好ましい。なお、一分子中においてR14及びR15のうちの他方は、同じ基であることが好ましい。 <Production method of epoxy resin>
The epoxy resin of the present invention can be synthesized by reacting a compound having a skeleton represented by the following formula (2) (hereinafter also referred to as a raw material compound) with epihalohydrin.
In addition, in formula (2), R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure.
In the above formula (2), the alkoxy groups of R 14 and R 15 are the same as the alkoxy groups of R 4 and R 5 described above, and are preferably methoxy groups.
In formula (2), R 14 and R 15 in each benzene ring may be the same or different, but in each benzene ring, either one of R 14 and R 15 is independently selected. is a hydrogen atom, and the other is preferably a hydrogen atom, an alkoxy group such as a methoxy group, or -OH. Note that the other of R 14 and R 15 in one molecule is preferably the same group.
本発明のエポキシ樹脂は、以下の式(2)で表される骨格を有する化合物(以下、原料化合物ともいう)と、エピハロヒドリンを反応させることで合成することができる。
なお、式(2)において、R14及びR15はそれぞれ独立に、水素原子、アルコキシ基、及び-OHのいずれかである。*は他の構造との結合部位となってもよい。
上記式(2)において、R14及びR15のアルコキシ基は、上記したR4及びR5におけるアルコキシ基と同じであり、好ましくはメトキシ基である。
式(2)において、各ベンゼン環においてR14及びR15は、互いに同一であってもよいし、異なってもよいが、各ベンゼン環においてそれぞれ独立に、R14及びR15のうちいずれか一方が水素原子で、他方が水素原子、メトキシ基などのアルコキシ基、-OHのいずれかであることが好ましい。なお、一分子中においてR14及びR15のうちの他方は、同じ基であることが好ましい。 <Production method of epoxy resin>
The epoxy resin of the present invention can be synthesized by reacting a compound having a skeleton represented by the following formula (2) (hereinafter also referred to as a raw material compound) with epihalohydrin.
In addition, in formula (2), R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure.
In the above formula (2), the alkoxy groups of R 14 and R 15 are the same as the alkoxy groups of R 4 and R 5 described above, and are preferably methoxy groups.
In formula (2), R 14 and R 15 in each benzene ring may be the same or different, but in each benzene ring, either one of R 14 and R 15 is independently selected. is a hydrogen atom, and the other is preferably a hydrogen atom, an alkoxy group such as a methoxy group, or -OH. Note that the other of R 14 and R 15 in one molecule is preferably the same group.
上記式(2-1)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。ヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、及びヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基の詳細は、上記の通りである。ただし、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基は、通常は後述するジヒドロキシ化合物由来の構造単位であり、したがって、通常はヒドロキシプロピレン基以外であり、例えば、ヘテロ原子を有しない飽和炭化水素基や、ヘテロ原子としてエーテル結合を有する飽和炭化水素基などが好ましい。
R14及びR15は、上記で述べたとおりである。
式(2-1)において、mは0~100の整数であり、好ましくは0~50、より好ましくは0~10、さらに好ましくは0~5、特に好ましくは0である。 In the above formula (2-1), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. The details of the monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom and the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a hetero atom are as described above. be. However, the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom is usually a structural unit derived from a dihydroxy compound described below, and therefore is usually other than a hydroxypropylene group, for example, A saturated hydrocarbon group having no heteroatom or a saturated hydrocarbon group having an ether bond as a heteroatom is preferred.
R 14 and R 15 are as described above.
In formula (2-1), m is an integer of 0 to 100, preferably 0 to 50, more preferably 0 to 10, still more preferably 0 to 5, particularly preferably 0.
R14及びR15は、上記で述べたとおりである。
式(2-1)において、mは0~100の整数であり、好ましくは0~50、より好ましくは0~10、さらに好ましくは0~5、特に好ましくは0である。 In the above formula (2-1), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. The details of the monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom and the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a hetero atom are as described above. be. However, the divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom is usually a structural unit derived from a dihydroxy compound described below, and therefore is usually other than a hydroxypropylene group, for example, A saturated hydrocarbon group having no heteroatom or a saturated hydrocarbon group having an ether bond as a heteroatom is preferred.
R 14 and R 15 are as described above.
In formula (2-1), m is an integer of 0 to 100, preferably 0 to 50, more preferably 0 to 10, still more preferably 0 to 5, particularly preferably 0.
また、式(2)、(2-1)において、R14及びR15の両方が水素原子であることが好ましい。したがって、原料化合物は、以下の式(2-2)で表される構造を有することが好ましい。
Furthermore, in formulas (2) and (2-1), both R 14 and R 15 are preferably hydrogen atoms. Therefore, the raw material compound preferably has a structure represented by the following formula (2-2).
式(2-2)に示す化合物において、R11、R12、R13及びmは、上記で述べたとおりである。
In the compound represented by formula (2-2), R 11 , R 12 , R 13 and m are as described above.
また、本発明の原料化合物は、上記のとおりmが0であることが好ましく、したがって、以下の式(2-3)に示す構造を有する化合物であることも好ましい。
式(2-3)において、R16は水素原子又は-COOR11であり、かつR17は水素原子又は-COOR13である。R11、R13、R14及びR15は上記の通りである。 Further, in the raw material compound of the present invention, m is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (2-3).
In formula (2-3), R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 , R 13 , R 14 and R 15 are as described above.
式(2-3)において、R16は水素原子又は-COOR11であり、かつR17は水素原子又は-COOR13である。R11、R13、R14及びR15は上記の通りである。 Further, in the raw material compound of the present invention, m is preferably 0 as described above, and therefore, it is also preferably a compound having the structure shown in the following formula (2-3).
In formula (2-3), R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 , R 13 , R 14 and R 15 are as described above.
R14及びR15の好ましい態様は、上記のとおりである。したがって、式(2-3)において、各ベンゼン環においてそれぞれ独立に、R14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかであることが好ましく、この際、R14及びR15の他方は、同じ官能基であることがより好ましい。そして、さらに好ましくはR14及びR15の両方が水素原子である。
また、R11及びR13の好ましい態様も上記の通りである。そして、式(2-3)においても、R16は水素原子又は-COOR11であり、かつR17は水素原子又は-COOR13である。R11、R13は、それぞれ独立に水素原子、又はアルキル基である。中でも、R16及びR17は、いずれもが水素原子、-COOH、又は-COOR(Rはアルキル基)であることがより好ましい。 Preferred embodiments of R 14 and R 15 are as described above. Therefore, in formula (2-3), in each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OH. is preferable, and in this case, it is more preferable that the other of R 14 and R 15 is the same functional group. More preferably, both R 14 and R 15 are hydrogen atoms.
Further, preferred embodiments of R 11 and R 13 are also as described above. Also in formula (2-3), R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group. Among these, it is more preferable that R 16 and R 17 are both a hydrogen atom, -COOH, or -COOR (R is an alkyl group).
また、R11及びR13の好ましい態様も上記の通りである。そして、式(2-3)においても、R16は水素原子又は-COOR11であり、かつR17は水素原子又は-COOR13である。R11、R13は、それぞれ独立に水素原子、又はアルキル基である。中でも、R16及びR17は、いずれもが水素原子、-COOH、又は-COOR(Rはアルキル基)であることがより好ましい。 Preferred embodiments of R 14 and R 15 are as described above. Therefore, in formula (2-3), in each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is one of a hydrogen atom, -OCH 3 , and -OH. is preferable, and in this case, it is more preferable that the other of R 14 and R 15 is the same functional group. More preferably, both R 14 and R 15 are hydrogen atoms.
Further, preferred embodiments of R 11 and R 13 are also as described above. Also in formula (2-3), R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group. Among these, it is more preferable that R 16 and R 17 are both a hydrogen atom, -COOH, or -COOR (R is an alkyl group).
原料化合物は、より具体的には、以下の式(2-4)に示すジヒドロキシトルキシル酸、又はそのエステル化合物であることが好ましい。
More specifically, the raw material compound is preferably dihydroxytruxylic acid represented by the following formula (2-4) or an ester compound thereof.
上記式(2-4)に示すジヒドロキシトルキシル酸は、パラクマル酸二量体であり、パラクマル酸を二量化することで得ることができる。パラクマル酸を二量化する方法は、特に限定されないが、紫外線照射などの光照射により二量化する方法が挙げられる。パラクマル酸は、UV照射によりパラクマル酸のベータ位にある二重結合が開裂し、その分子同士が再結合することで二量化され、上記式(2-4)に示す構造を有するパラクマル酸二量体を得ることができる。
Dihydroxytruxylic acid represented by the above formula (2-4) is a paracoumaric acid dimer, and can be obtained by dimerizing paracoumaric acid. The method of dimerizing paracoumaric acid is not particularly limited, but examples include a method of dimerizing paracoumaric acid by light irradiation such as ultraviolet irradiation. Paracoumaric acid is dimerized by the double bond at the beta position of paracoumaric acid being cleaved by UV irradiation and the molecules recombining with each other, and paracoumaric acid dimer having the structure shown in the above formula (2-4). You can get a body.
また、原料化合物は、以下の式(2-5)~(2-7)のいずれかに示す化合物、又は(2-5)又は(2-6)に示す化合物のエステル化合物であってもよい。以下の式(2-5)~(2-7)の化合物はそれぞれ、フェルラ酸、カフェ酸及び4-ビニルフェノールを二量化することで得ることができるものである。二量化する方法は、特に限定されないが、パラクマル酸と同様に、紫外線照射などの光照射により二量化する方法が挙げられる。フェルラ酸、カフェ酸及び4-ビニルフェノールは、クマル酸を酵素変換反応して得られ、或いは、クマル酸を酵素変換し、且つ脱炭素反応をすることで得られるので、式(2-4)に示すジヒドロキシトルキシル酸と同様に、バイオマス原料から容易に製造できる。
Further, the raw material compound may be a compound represented by any of the following formulas (2-5) to (2-7), or an ester compound of a compound represented by (2-5) or (2-6). . The compounds of formulas (2-5) to (2-7) below can be obtained by dimerizing ferulic acid, caffeic acid, and 4-vinylphenol, respectively. The method of dimerization is not particularly limited, but may include a method of dimerization by light irradiation such as ultraviolet irradiation, similar to paracoumaric acid. Ferulic acid, caffeic acid, and 4-vinylphenol are obtained by enzymatic conversion reaction of coumaric acid, or by enzymatic conversion of coumaric acid and decarbonization reaction, so the formula (2-4) Similar to dihydroxytruxylic acid shown in , it can be easily produced from biomass raw materials.
上記した式(2-4)に示すジヒドロキシトルキシル酸のエステル化合物としては、好ましくは上記のジヒドロキシトルキシル酸をモノヒドロキシ化合物によりエステル化した以下の式(2-8)に示す構造を有する化合物が挙げられる。
The ester compound of dihydroxytruxylic acid shown in the above formula (2-4) is preferably a compound having the structure shown in the following formula (2-8), which is obtained by esterifying the above dihydroxytruxylic acid with a monohydroxy compound. can be mentioned.
上記式(2-8)において、R18、R19は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。ヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基の詳細は、上記の通りである。したがって、R18、R19は、それぞれ独立にアルキル基であることが好ましく、中でもより好ましくは炭素数1~10のアルキル基、さらに好ましくは炭素数1~6のアルキル基、よりさらに好ましくは炭素数1~3のアルキル基であり、R18、R19は、最も好ましくはいずれもメチル基である。
In the above formula (2-8), R 18 and R 19 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. Details of the monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a heteroatom are as described above. Therefore, R 18 and R 19 are each independently preferably an alkyl group, more preferably an alkyl group having 1 to 10 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, even more preferably a carbon alkyl group. It is an alkyl group of number 1 to 3, and R 18 and R 19 are most preferably both methyl groups.
また、上記した式(2-5)又は式(2-6)に示す化合物のエステル化合物としては、好ましくは式(2-9)に示す構造を有する化合物、式(2-10)に示す構造を有する化合物が挙げられる。
上記式(2-9)、(2-10)において、R18、R19は、上記式(2-8)で述べたとおりである。 Further, as the ester compound of the compound represented by the above formula (2-5) or formula (2-6), preferably a compound having the structure represented by formula (2-9) or a structure represented by formula (2-10) is used. Examples include compounds having the following.
In the above formulas (2-9) and (2-10), R 18 and R 19 are as described in the above formula (2-8).
上記式(2-9)、(2-10)において、R18、R19は、上記式(2-8)で述べたとおりである。 Further, as the ester compound of the compound represented by the above formula (2-5) or formula (2-6), preferably a compound having the structure represented by formula (2-9) or a structure represented by formula (2-10) is used. Examples include compounds having the following.
In the above formulas (2-9) and (2-10), R 18 and R 19 are as described in the above formula (2-8).
また、式(2-4)に示すパラクマル酸のエステル化合物としては、上記のジヒドロキシトルキシル酸をジヒドロキシ化合物、又はジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化した化合物であってもよい。このように少なくともジヒドロキシ化合物によりエステル化した化合物は、式(2-1)又は式(2-2)においてmが1以上となる化合物である。
ジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化する場合、ジヒドロキシトルキシル酸をジヒドロキシ化合物によりエステル化した後に、モノヒドロキシ化合物によりさらにエステル化してもよいし、モノヒドロキシ化合物によりエステル化した後、ジヒドロキシ化合物によりエステル化してもよいし、ジヒドロキシ化合物によるエステル化と、モノヒドロキシ化合物によるエステル化を並行して行ってもよい。
ジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化する場合、式(2-1)又は(2-2)においてmが1以上となり、かつR11、R13のうち少なくとも一方がヘテロ原子を有してもよい1価の炭化水素基となるが、R11、R13の両方がヘテロ原子を有してもよい1価の炭化水素基であることが好ましい。 Further, the paracoumaric acid ester compound represented by formula (2-4) may be a compound obtained by esterifying the above-mentioned dihydroxytruxylic acid with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound. The compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2).
In the case of esterification with a dihydroxy compound and a monohydroxy compound, dihydroxytruxylic acid may be esterified with a dihydroxy compound and then further esterified with a monohydroxy compound, or after esterification with a monohydroxy compound, it may be esterified with a dihydroxy compound. or esterification with a dihydroxy compound and esterification with a monohydroxy compound may be performed in parallel.
When esterifying with a dihydroxy compound and a monohydroxy compound, m is 1 or more in formula (2-1) or (2-2), and at least one of R 11 and R 13 may have a hetero atom. Although it is a monovalent hydrocarbon group, it is preferable that both R 11 and R 13 are monovalent hydrocarbon groups that may have a heteroatom.
ジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化する場合、ジヒドロキシトルキシル酸をジヒドロキシ化合物によりエステル化した後に、モノヒドロキシ化合物によりさらにエステル化してもよいし、モノヒドロキシ化合物によりエステル化した後、ジヒドロキシ化合物によりエステル化してもよいし、ジヒドロキシ化合物によるエステル化と、モノヒドロキシ化合物によるエステル化を並行して行ってもよい。
ジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化する場合、式(2-1)又は(2-2)においてmが1以上となり、かつR11、R13のうち少なくとも一方がヘテロ原子を有してもよい1価の炭化水素基となるが、R11、R13の両方がヘテロ原子を有してもよい1価の炭化水素基であることが好ましい。 Further, the paracoumaric acid ester compound represented by formula (2-4) may be a compound obtained by esterifying the above-mentioned dihydroxytruxylic acid with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound. The compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2).
In the case of esterification with a dihydroxy compound and a monohydroxy compound, dihydroxytruxylic acid may be esterified with a dihydroxy compound and then further esterified with a monohydroxy compound, or after esterification with a monohydroxy compound, it may be esterified with a dihydroxy compound. or esterification with a dihydroxy compound and esterification with a monohydroxy compound may be performed in parallel.
When esterifying with a dihydroxy compound and a monohydroxy compound, m is 1 or more in formula (2-1) or (2-2), and at least one of R 11 and R 13 may have a hetero atom. Although it is a monovalent hydrocarbon group, it is preferable that both R 11 and R 13 are monovalent hydrocarbon groups that may have a heteroatom.
ジヒドロキシトルキシル酸をヒドロキシ化合物(モノヒドロキシ化合物、ジヒドロキシ化合物、又はこれらの両方)によりエステル化する方法は、特に限定されないが、カルボン酸とヒドロキシ化合物を酸触媒で縮合させる方法、ジヒドロキシトルキシル酸を酸塩化物などの酸ハロゲン化物にしてヒドロキシ化合物と反応させる方法などが挙げられるが、これらに限定されない。
The method of esterifying dihydroxytruxylic acid with a hydroxy compound (monohydroxy compound, dihydroxy compound, or both) is not particularly limited, but includes a method of condensing a carboxylic acid and a hydroxy compound with an acid catalyst, a method of esterifying dihydroxytruxylic acid with a hydroxy compound, Examples include, but are not limited to, a method in which an acid halide such as an acid chloride is reacted with a hydroxy compound.
上記エステル化に使用するモノヒドロキシ化合物としては、芳香族モノヒドロキシ化合物でもよいし、脂肪族モノヒドロキシ化合物であってもよいが、脂肪族モノヒドロキシ化合物が好ましく、中でもアルキルモノアルコールがより好ましい。アルキルモノアルコールは、直鎖アルコールであってもよいが、分岐構造を有してもよいし、環状構造を有していてもよい。
アルキルモノアルコールとしては、具体的には、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種へプタノール、各種オクタノール、各種ノナノール、各種デカノール、シクロペンタノール、シクロヘキサノール、メチルシクロヘキサノール、シクロヘキサンメタノールなどが挙げられ、これらの中ではメタールが特に好ましい。 The monohydroxy compound used in the above esterification may be an aromatic monohydroxy compound or an aliphatic monohydroxy compound, but an aliphatic monohydroxy compound is preferable, and an alkyl monoalcohol is more preferable among them. The alkyl monoalcohol may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure.
Specifically, the alkyl monoalcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, various octanols, Examples include various nonanol, various decanol, cyclopentanol, cyclohexanol, methylcyclohexanol, cyclohexane methanol, and among these, metal is particularly preferred.
アルキルモノアルコールとしては、具体的には、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種へプタノール、各種オクタノール、各種ノナノール、各種デカノール、シクロペンタノール、シクロヘキサノール、メチルシクロヘキサノール、シクロヘキサンメタノールなどが挙げられ、これらの中ではメタールが特に好ましい。 The monohydroxy compound used in the above esterification may be an aromatic monohydroxy compound or an aliphatic monohydroxy compound, but an aliphatic monohydroxy compound is preferable, and an alkyl monoalcohol is more preferable among them. The alkyl monoalcohol may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure.
Specifically, the alkyl monoalcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, various octanols, Examples include various nonanol, various decanol, cyclopentanol, cyclohexanol, methylcyclohexanol, cyclohexane methanol, and among these, metal is particularly preferred.
また、エステル化に使用するジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物でもよいし、脂肪族ジヒドロキシ化合物であってもよいが、脂肪族ジヒドロキシ化合物が好ましく、中でもアルキルジオールがより好ましい。脂肪族ジヒドロキシ化合物は、直鎖アルコールであってもよいが、分岐構造を有してもよいし、環状構造を有していてもよい。
脂肪族ジヒドロキシ化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中では、エチレングリコールが好ましい。 Further, the dihydroxy compound used for esterification may be an aromatic dihydroxy compound or an aliphatic dihydroxy compound, but aliphatic dihydroxy compounds are preferable, and among them, alkyl diols are more preferable. The aliphatic dihydroxy compound may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure.
Specific examples of aliphatic dihydroxy compounds include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl. -1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol, 1,4 -cyclohexanediol, 1,4-cyclohexanedimethanol and the like. Among these, ethylene glycol is preferred.
脂肪族ジヒドロキシ化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中では、エチレングリコールが好ましい。 Further, the dihydroxy compound used for esterification may be an aromatic dihydroxy compound or an aliphatic dihydroxy compound, but aliphatic dihydroxy compounds are preferable, and among them, alkyl diols are more preferable. The aliphatic dihydroxy compound may be a straight-chain alcohol, but may also have a branched structure or a cyclic structure.
Specific examples of aliphatic dihydroxy compounds include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl. -1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol, 1,4 -cyclohexanediol, 1,4-cyclohexanedimethanol and the like. Among these, ethylene glycol is preferred.
また、式(2-5)又は式(2-6)に示す化合物のエステル化合物としては、上記の式(2-5)又は式(2-6)に示す化合物をジヒドロキシ化合物、又はジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化した化合物であってもよい。このように少なくともジヒドロキシ化合物によりエステル化した化合物は、式(2-1)又は式(2-2)においてmが1以上となる化合物である。
式(2-5)又は式(2-6)に示す化合物をジヒドロキシ化合物、又はジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化した化合物の詳細は、式(2-4)に示す化合物の場合と同様であるので、その説明は省略する。 Furthermore, as the ester compound of the compound represented by formula (2-5) or formula (2-6), the compound represented by formula (2-5) or formula (2-6) above can be used as a dihydroxy compound, or a dihydroxy compound and It may also be a compound esterified with a monohydroxy compound. The compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2).
Details of the compound obtained by esterifying the compound represented by formula (2-5) or formula (2-6) with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound are the same as those for the compound represented by formula (2-4). Therefore, the explanation will be omitted.
式(2-5)又は式(2-6)に示す化合物をジヒドロキシ化合物、又はジヒドロキシ化合物及びモノヒドロキシ化合物によりエステル化した化合物の詳細は、式(2-4)に示す化合物の場合と同様であるので、その説明は省略する。 Furthermore, as the ester compound of the compound represented by formula (2-5) or formula (2-6), the compound represented by formula (2-5) or formula (2-6) above can be used as a dihydroxy compound, or a dihydroxy compound and It may also be a compound esterified with a monohydroxy compound. The compound esterified with at least a dihydroxy compound in this way is a compound in which m is 1 or more in formula (2-1) or formula (2-2).
Details of the compound obtained by esterifying the compound represented by formula (2-5) or formula (2-6) with a dihydroxy compound, or a dihydroxy compound and a monohydroxy compound are the same as those for the compound represented by formula (2-4). Therefore, the explanation will be omitted.
エポキシ樹脂の合成において使用できるエピハロヒドリンとしては、エピフルオロヒドリン、エピクロルヒドリン、エピブロモヒドリン、及びエピヨードヒドリンが挙げられ、これらの中では反応性及び経済性の点でエピクロルヒドリンが好ましい。
Epihalohydrins that can be used in the synthesis of epoxy resins include epifluorohydrin, epichlorohydrin, epibromohydrin, and epiiodohydrin, and among these, epichlorohydrin is preferred in terms of reactivity and economy.
上記の通り、本発明のエポキシ樹脂は、式(2)に示す骨格を有する化合物と、エピハロヒドリンを反応させることで得ることができる。エポキシ樹脂は、式(2)に示す骨格を有する化合物と、エピハロヒドリンとは例えば反応器において混合させて反応させるとよい。
本製造方法では、反応系における式(2)に示す骨格を有する化合物に対する、エピハロヒドリンの添加量は、1当量以上とするとよい。エピハロヒドリンの添加量を1当量以上とすることで、式(1)に示す化合物を合成することができる。なお、当量とは、式(2)に示す骨格を有する化合物が有する官能基(水酸基及びカルボキシ基)に対する、モル当量であり、以下も同様である。
また、nの数を小さくし、nが小さい、好ましくはnが0の式(1)に示す化合物を高収率で合成するする観点から、上記エピハロヒドリンの添加量は大過剰とすることが好ましい。具体的には、2当量以上とすることが好ましく、より好ましくは5当量以上であり、さらに好ましくは8当量以上である。
また、反応後に未反応のエピハロヒドリンを除去しやすくし、また、生産効率を高める観点から、上記エピハロヒドリンの添加量は、式(2)に示す化合物の官能基に対して、好ましくは50当量以下、より好ましくは30当量以下、さらに好ましくは20当量以下、よりさらに好ましくは15当量以下である。 As mentioned above, the epoxy resin of the present invention can be obtained by reacting a compound having the skeleton shown in formula (2) with epihalohydrin. For the epoxy resin, a compound having the skeleton shown in formula (2) and epihalohydrin are preferably mixed and reacted, for example, in a reactor.
In this production method, the amount of epihalohydrin added to the compound having the skeleton shown in formula (2) in the reaction system is preferably 1 equivalent or more. By adding 1 equivalent or more of epihalohydrin, the compound represented by formula (1) can be synthesized. Note that the term "equivalent" refers to the molar equivalent to the functional groups (hydroxyl group and carboxy group) possessed by the compound having the skeleton shown in formula (2), and the same applies below.
Furthermore, from the viewpoint of reducing the number of n and synthesizing the compound represented by formula (1) where n is small, preferably 0, in a high yield, it is preferable that the amount of epihalohydrin added is in large excess. . Specifically, it is preferably 2 equivalents or more, more preferably 5 equivalents or more, and still more preferably 8 equivalents or more.
In addition, from the viewpoint of making it easier to remove unreacted epihalohydrin after the reaction and increasing production efficiency, the amount of epihalohydrin added is preferably 50 equivalents or less with respect to the functional group of the compound shown in formula (2), It is more preferably 30 equivalents or less, still more preferably 20 equivalents or less, even more preferably 15 equivalents or less.
本製造方法では、反応系における式(2)に示す骨格を有する化合物に対する、エピハロヒドリンの添加量は、1当量以上とするとよい。エピハロヒドリンの添加量を1当量以上とすることで、式(1)に示す化合物を合成することができる。なお、当量とは、式(2)に示す骨格を有する化合物が有する官能基(水酸基及びカルボキシ基)に対する、モル当量であり、以下も同様である。
また、nの数を小さくし、nが小さい、好ましくはnが0の式(1)に示す化合物を高収率で合成するする観点から、上記エピハロヒドリンの添加量は大過剰とすることが好ましい。具体的には、2当量以上とすることが好ましく、より好ましくは5当量以上であり、さらに好ましくは8当量以上である。
また、反応後に未反応のエピハロヒドリンを除去しやすくし、また、生産効率を高める観点から、上記エピハロヒドリンの添加量は、式(2)に示す化合物の官能基に対して、好ましくは50当量以下、より好ましくは30当量以下、さらに好ましくは20当量以下、よりさらに好ましくは15当量以下である。 As mentioned above, the epoxy resin of the present invention can be obtained by reacting a compound having the skeleton shown in formula (2) with epihalohydrin. For the epoxy resin, a compound having the skeleton shown in formula (2) and epihalohydrin are preferably mixed and reacted, for example, in a reactor.
In this production method, the amount of epihalohydrin added to the compound having the skeleton shown in formula (2) in the reaction system is preferably 1 equivalent or more. By adding 1 equivalent or more of epihalohydrin, the compound represented by formula (1) can be synthesized. Note that the term "equivalent" refers to the molar equivalent to the functional groups (hydroxyl group and carboxy group) possessed by the compound having the skeleton shown in formula (2), and the same applies below.
Furthermore, from the viewpoint of reducing the number of n and synthesizing the compound represented by formula (1) where n is small, preferably 0, in a high yield, it is preferable that the amount of epihalohydrin added is in large excess. . Specifically, it is preferably 2 equivalents or more, more preferably 5 equivalents or more, and still more preferably 8 equivalents or more.
In addition, from the viewpoint of making it easier to remove unreacted epihalohydrin after the reaction and increasing production efficiency, the amount of epihalohydrin added is preferably 50 equivalents or less with respect to the functional group of the compound shown in formula (2), It is more preferably 30 equivalents or less, still more preferably 20 equivalents or less, even more preferably 15 equivalents or less.
原料化合物として、式(2-1)、式(2-2)又は式(2-3)(ただし、式(2-3)においては、R16、R17がそれぞれ-COOR11、-COOR13である場合)に示す化合物を使用し、R11、R13が水素原子であり(特に、原料として式(2-4)~(2-6)のいずれかの化合物を使用するとき)、nの数を大きくする場合には、エピハロヒドリンの添加量は、少なくしてもよく、例えば2当量以下としてもよい。R11、R13が水素原子である場合に、エピハロヒドリンの添加量を少なくすると、式(2)に示す骨格を有する化合物と、エピハロヒドリンのオリゴマー化が進みやすくなり、nの数が大きい式(1-1)又は式(1-2)に示す化合物が得やすくなる。
As a raw material compound, formula (2-1), formula (2-2) or formula (2-3) (however, in formula (2-3), R 16 and R 17 are -COOR 11 and -COOR 13 , respectively) ), R 11 and R 13 are hydrogen atoms (especially when using any of the compounds of formulas (2-4) to (2-6) as raw materials), and n When increasing the number of epihalohydrin, the amount of epihalohydrin added may be reduced, for example, 2 equivalents or less. When R 11 and R 13 are hydrogen atoms, if the amount of epihalohydrin added is reduced, oligomerization of the compound having the skeleton shown in formula (2) and epihalohydrin will proceed more easily. -1) or the compound represented by formula (1-2) can be easily obtained.
上記式(2)に示す骨格を有する化合物と、エピハロヒドリンの反応は、触媒存在下で行うことが好ましい。触媒としては、ベンジルトリエチルアンモニウムクロリド、ベンジルトリエチルアンモニウムブロミド、テトラブチルアンモニウムフルオリド、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩等が挙げられる。触媒は、1種単独で使用してもよいし、2種以上を併用してもよい。触媒の添加量は、式(2)に示す骨格を有する化合物1モルに対して、好ましくは0.01~2モル、より好ましくは0.05~1モル、さらに好ましくは0.1~0.5モルである。
The reaction between the compound having the skeleton shown in formula (2) above and epihalohydrin is preferably carried out in the presence of a catalyst. Examples of the catalyst include quaternary ammonium salts such as benzyltriethylammonium chloride, benzyltriethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium bromide. One type of catalyst may be used alone, or two or more types may be used in combination. The amount of the catalyst added is preferably 0.01 to 2 mol, more preferably 0.05 to 1 mol, and still more preferably 0.1 to 0.0 mol, per mol of the compound having the skeleton shown in formula (2). It is 5 moles.
上記反応は、溶媒存在下でも実施してもよいが、無溶媒で実施してもよい。式(2)に示す骨格を有する化合物は、エピハロヒドリンを上記のとおり大過剰とすることで、エピハロヒドリンにより適度に希釈され、無溶媒で実施し、または溶媒を少量で実施しても適切に上記反応を進行させることができる。反応溶媒としては、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒などが利用可能である。
上記触媒存在下における反応は、例えば40~150℃、好ましくは60~120℃で、例えば30分~24時間、好ましくは2~12時間行う。 The above reaction may be carried out in the presence of a solvent, or may be carried out without a solvent. The compound having the skeleton shown in formula (2) can be appropriately diluted with epihalohydrin by using a large excess of epihalohydrin as described above, and the above reaction can be carried out appropriately even if the reaction is carried out without a solvent or with a small amount of solvent. can proceed. As the reaction solvent, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, etc. can be used.
The reaction in the presence of the above catalyst is carried out at, for example, 40 to 150°C, preferably 60 to 120°C, for example, for 30 minutes to 24 hours, preferably for 2 to 12 hours.
上記触媒存在下における反応は、例えば40~150℃、好ましくは60~120℃で、例えば30分~24時間、好ましくは2~12時間行う。 The above reaction may be carried out in the presence of a solvent, or may be carried out without a solvent. The compound having the skeleton shown in formula (2) can be appropriately diluted with epihalohydrin by using a large excess of epihalohydrin as described above, and the above reaction can be carried out appropriately even if the reaction is carried out without a solvent or with a small amount of solvent. can proceed. As the reaction solvent, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, etc. can be used.
The reaction in the presence of the above catalyst is carried out at, for example, 40 to 150°C, preferably 60 to 120°C, for example, for 30 minutes to 24 hours, preferably for 2 to 12 hours.
また、本製造方法では、上記触媒に加えて反応系に塩基性化合物を添加することが好ましい。塩基性化合物を添加することで、脱ハロゲン化水素が進行しやすくなり、目的のエポキシ樹脂の収率を向上させることが可能になる。塩基性化合物は、上記した触媒存在下で一定時間反応した後に、反応系に添加し、さらに一定時間反応させることが好ましい。塩基性化合物添加後の反応は、例えば-10~30℃、好ましくは0~15℃で、例えば10分~24時間、好ましくは30分~12時間行う。
Furthermore, in this production method, it is preferable to add a basic compound to the reaction system in addition to the above catalyst. By adding a basic compound, dehydrohalogenation progresses more easily, making it possible to improve the yield of the desired epoxy resin. It is preferable that the basic compound is reacted for a certain period of time in the presence of the above-mentioned catalyst, then added to the reaction system, and further reacted for a certain period of time. The reaction after addition of the basic compound is carried out at, for example, -10 to 30°C, preferably 0 to 15°C, for example, 10 minutes to 24 hours, preferably 30 minutes to 12 hours.
使用される塩基性化合物としては、塩基として働く化合物であれば特に限定されない。具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、リチウムアルコキシド、ナトリウムアルコキシド、カリウムアルコキシド等の金属塩基が挙げられる。中でも、経済性及び入手容易性から、水酸化ナトリウム及び水酸化カリウムの少なくともいずれかを使用することが好ましい。
塩基性化合物は特に限定されないが、例えば水溶液として反応系に添加されてもよい。
前記塩基性化合物の添加量は、式(2)に示す骨格を有する化合物が有する官能基に対して、例えば1当量より多くすればよく、好ましくは1.5~20当量であり、より好ましくは2~15当量である。 The basic compound used is not particularly limited as long as it functions as a base. Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, lithium hydride, sodium hydride, potassium hydride, lithium carbonate, sodium carbonate. , potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium alkoxide, sodium alkoxide, potassium alkoxide, and other metal bases. Among these, it is preferable to use at least one of sodium hydroxide and potassium hydroxide in terms of economy and availability.
The basic compound is not particularly limited, but may be added to the reaction system, for example, in the form of an aqueous solution.
The amount of the basic compound added may be, for example, more than 1 equivalent, preferably 1.5 to 20 equivalents, and more preferably It is 2 to 15 equivalents.
塩基性化合物は特に限定されないが、例えば水溶液として反応系に添加されてもよい。
前記塩基性化合物の添加量は、式(2)に示す骨格を有する化合物が有する官能基に対して、例えば1当量より多くすればよく、好ましくは1.5~20当量であり、より好ましくは2~15当量である。 The basic compound used is not particularly limited as long as it functions as a base. Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, lithium hydride, sodium hydride, potassium hydride, lithium carbonate, sodium carbonate. , potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium alkoxide, sodium alkoxide, potassium alkoxide, and other metal bases. Among these, it is preferable to use at least one of sodium hydroxide and potassium hydroxide in terms of economy and availability.
The basic compound is not particularly limited, but may be added to the reaction system, for example, in the form of an aqueous solution.
The amount of the basic compound added may be, for example, more than 1 equivalent, preferably 1.5 to 20 equivalents, and more preferably It is 2 to 15 equivalents.
本製造方法において、目的物であるエポキシ樹脂の精製は、エピハロヒドリンの留去、必要に応じて使用される反応溶媒の留去、水と疎水性溶媒を用いた抽出操作による目的のエポキシ樹脂と水溶性化合物の分離、抽出溶媒の留去、蒸留等の一般的な単位操作、又はこれらを適宜組み合わせて行うことができる。
In this production method, the target epoxy resin is purified by distilling off epihalohydrin, distilling off the reaction solvent used as necessary, and extracting the target epoxy resin and water-soluble mixture using water and a hydrophobic solvent. General unit operations such as separation of chemical compounds, distillation of extraction solvent, distillation, etc., or a suitable combination of these can be carried out.
本発明のエポキシ樹脂は、少なくとも一部の原料がバイオマスから製造可能であり、バイオ率の高いエポキシ樹脂を得ることができる。具体的には、式(2-4)で示すジヒドロキシトルキシル酸は、バイオマス由来の化合物であるL-チロシンなどから微生物合成によりパラクマル酸を得て、パラクマル酸を上記の通り光二量化することで得ることができる。同様に、式(2-5)~(2-7)に示す化合物も上記の通りバイオマスから製造可能である。したがって、本発明の式(1)で示す骨格は、バイオマス由来、特に微生物により合成した化合物由来とすることができる。中でも、式(1-2)におけるジヒドロキシトルキシル酸由来の構造単位をバイオマス由来、特に微生物により合成した化合物由来とすることが好ましい。
また、微生物合成によりパラクマル酸を得る方法は、立体選択性があり、高収率でパラクマル酸を得ることができ、また、その後の二量化及びエポキシ化も比較的簡便であるので、本発明の式(1)で示す骨格を有するエポキシ樹脂は、バイオマスから得ることができる化合物でありながらも容易に製造できる。 In the epoxy resin of the present invention, at least a part of the raw materials can be produced from biomass, and an epoxy resin with a high biomass ratio can be obtained. Specifically, dihydroxytruxylic acid represented by formula (2-4) is obtained by obtaining paracoumaric acid from a biomass-derived compound such as L-tyrosine through microbial synthesis, and photodimerizing paracoumaric acid as described above. Obtainable. Similarly, the compounds represented by formulas (2-5) to (2-7) can also be produced from biomass as described above. Therefore, the skeleton represented by formula (1) of the present invention can be derived from biomass, particularly from a compound synthesized by microorganisms. Among these, it is preferable that the structural unit derived from dihydroxytruxylic acid in formula (1-2) be derived from biomass, particularly from a compound synthesized by microorganisms.
In addition, the method for obtaining paracoumaric acid by microbial synthesis has stereoselectivity and can obtain paracoumaric acid in high yield, and the subsequent dimerization and epoxidation are also relatively simple. The epoxy resin having the skeleton represented by formula (1) can be easily produced even though it is a compound that can be obtained from biomass.
また、微生物合成によりパラクマル酸を得る方法は、立体選択性があり、高収率でパラクマル酸を得ることができ、また、その後の二量化及びエポキシ化も比較的簡便であるので、本発明の式(1)で示す骨格を有するエポキシ樹脂は、バイオマスから得ることができる化合物でありながらも容易に製造できる。 In the epoxy resin of the present invention, at least a part of the raw materials can be produced from biomass, and an epoxy resin with a high biomass ratio can be obtained. Specifically, dihydroxytruxylic acid represented by formula (2-4) is obtained by obtaining paracoumaric acid from a biomass-derived compound such as L-tyrosine through microbial synthesis, and photodimerizing paracoumaric acid as described above. Obtainable. Similarly, the compounds represented by formulas (2-5) to (2-7) can also be produced from biomass as described above. Therefore, the skeleton represented by formula (1) of the present invention can be derived from biomass, particularly from a compound synthesized by microorganisms. Among these, it is preferable that the structural unit derived from dihydroxytruxylic acid in formula (1-2) be derived from biomass, particularly from a compound synthesized by microorganisms.
In addition, the method for obtaining paracoumaric acid by microbial synthesis has stereoselectivity and can obtain paracoumaric acid in high yield, and the subsequent dimerization and epoxidation are also relatively simple. The epoxy resin having the skeleton represented by formula (1) can be easily produced even though it is a compound that can be obtained from biomass.
さらに、式(1-1)~(1-3)に示す化合物は、R1及びR3がモノヒドロキシ化合物由来であり、また、R2がジヒドロキシ化合物由来であることがあるが、原料となるモノヒドロキシ化合物、及びジヒドロキシ化合物をバイオマス由来とすることが好ましい。これらをバイオマス由来とすることでより一層バイオ率の高いエポキシ樹脂を得ることができる。具体的には、モノヒドロキシ化合物としては、バイオマス由来のメタノール、エタノール、ブタノールが知られており、また、ジヒドロキシ化合物としてもバイオマス由来のエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールなどが知られており、これらを使用することで、エポキシ樹脂のバイオ率をより一層向上させることができる。
Furthermore, in the compounds shown in formulas (1-1) to (1-3), R 1 and R 3 may be derived from a monohydroxy compound, and R 2 may be derived from a dihydroxy compound; It is preferable that the monohydroxy compound and the dihydroxy compound are derived from biomass. By using these as biomass-derived epoxy resins, it is possible to obtain epoxy resins with even higher biomass content. Specifically, biomass-derived methanol, ethanol, and butanol are known as monohydroxy compounds, and biomass-derived ethylene glycol, 1,3-propanediol, and 1,4-butanediol are known as dihydroxy compounds. etc. are known, and by using these, the biorate of epoxy resin can be further improved.
<硬化体>
本発明の硬化体(以下、「エポキシ硬化体」ともいう)は、上記のエポキシ樹脂を硬化させて得られるものである。エポキシ硬化体は、一般的に硬化剤により硬化されるとよく、したがって、エポキシ樹脂と硬化剤とを含む硬化性組成物の硬化体であるとよい。
エポキシ硬化体において使用できる硬化剤は、エポキシ樹脂を硬化させることが可能なものであれば特に制限はないが、エポキシ樹脂と反応して3次元網目構造(ネットワークポリマー)を形成する化合物が好ましい。
具体的な硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ダイマー又はトリマー酸とポリアミンの縮合物であるポリアミド樹脂類、三フッ化ホウ素-アミン錯体等のルイス酸類、フェノールまたはその誘導体等が挙げられる。また、硬化剤としては、メルカプト系硬化剤も使用できる。 <Cured body>
The cured product of the present invention (hereinafter also referred to as "epoxy cured product") is obtained by curing the above-mentioned epoxy resin. The epoxy cured product is generally cured with a curing agent, and therefore is preferably a cured product of a curable composition containing an epoxy resin and a curing agent.
The curing agent that can be used in the epoxy cured product is not particularly limited as long as it can cure the epoxy resin, but compounds that react with the epoxy resin to form a three-dimensional network structure (network polymer) are preferred.
Specific curing agents include amine-based curing agents, acid anhydride-based curing agents, polyamide resins that are condensates of dimer or trimer acids and polyamines, Lewis acids such as boron trifluoride-amine complexes, phenol or its like. Examples include derivatives. Further, as the curing agent, a mercapto curing agent can also be used.
本発明の硬化体(以下、「エポキシ硬化体」ともいう)は、上記のエポキシ樹脂を硬化させて得られるものである。エポキシ硬化体は、一般的に硬化剤により硬化されるとよく、したがって、エポキシ樹脂と硬化剤とを含む硬化性組成物の硬化体であるとよい。
エポキシ硬化体において使用できる硬化剤は、エポキシ樹脂を硬化させることが可能なものであれば特に制限はないが、エポキシ樹脂と反応して3次元網目構造(ネットワークポリマー)を形成する化合物が好ましい。
具体的な硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ダイマー又はトリマー酸とポリアミンの縮合物であるポリアミド樹脂類、三フッ化ホウ素-アミン錯体等のルイス酸類、フェノールまたはその誘導体等が挙げられる。また、硬化剤としては、メルカプト系硬化剤も使用できる。 <Cured body>
The cured product of the present invention (hereinafter also referred to as "epoxy cured product") is obtained by curing the above-mentioned epoxy resin. The epoxy cured product is generally cured with a curing agent, and therefore is preferably a cured product of a curable composition containing an epoxy resin and a curing agent.
The curing agent that can be used in the epoxy cured product is not particularly limited as long as it can cure the epoxy resin, but compounds that react with the epoxy resin to form a three-dimensional network structure (network polymer) are preferred.
Specific curing agents include amine-based curing agents, acid anhydride-based curing agents, polyamide resins that are condensates of dimer or trimer acids and polyamines, Lewis acids such as boron trifluoride-amine complexes, phenol or its like. Examples include derivatives. Further, as the curing agent, a mercapto curing agent can also be used.
アミン系硬化剤は、例えば、脂肪族ポリアミン、及び芳香族ポリアミン等のポリアミン類が挙げられる。上記脂肪族ポリアミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ジプロピレントリアミン、テトラエチレンペンタミン、ジメチルアミノプロピルアミン、ビスヘキサミチレントリアミン、シクロヘキシルアミノプロピルアミン、アミノエチルエタノールアミン、モノヒドロキシエチルジエチレントリアミン、ビスヒドロキシエチルジエチレントリアミン、N-(2-ヒドロキシプロピル)エチレンジアミン、ヘキサメチレンジアミン、ジエチレングリコールビス(3-アミノプロピル)エーテル、ジエチルアミノプロピルアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスオキサスピロ[5,5]ウンデカン、メンタンジアミン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、N-アミノエチルピペラジン等が挙げられる。
芳香族ポリアミンは、芳香環を有するアミンであり、具体的には、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノアニソール、トルエンジアミン、メタキシリレンジアミン等の各種のキシリレンジアミン、及びジアミノジフェニルスルフォンが挙げられる。 Examples of the amine curing agent include polyamines such as aliphatic polyamines and aromatic polyamines. Examples of the aliphatic polyamines include ethylenediamine, diethylenetriamine, triethylenetetramine, dipropylenetriamine, tetraethylenepentamine, dimethylaminopropylamine, bishexamylenetriamine, cyclohexylaminopropylamine, aminoethylethanolamine, and monohydroxyethyl Diethylenetriamine, bishydroxyethyldiethylenetriamine, N-(2-hydroxypropyl)ethylenediamine, hexamethylenediamine, diethylene glycol bis(3-aminopropyl)ether, diethylaminopropylamine, 3,9-bis(3-aminopropyl)-2,4 , 8,10-tetrasoxaspiro[5,5]undecane, menthanediamine, isophoronediamine, 4,4'-methylenebis(cyclohexylamine), bis(4-amino-3-methylcyclohexyl)methane, N-aminoethyl Examples include piperazine.
Aromatic polyamines are amines having an aromatic ring, and specifically include various xylylene diamines such as phenylene diamine, diaminodiphenylmethane, diaminoanisole, toluene diamine, metaxylylene diamine, and diaminodiphenylsulfone.
芳香族ポリアミンは、芳香環を有するアミンであり、具体的には、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノアニソール、トルエンジアミン、メタキシリレンジアミン等の各種のキシリレンジアミン、及びジアミノジフェニルスルフォンが挙げられる。 Examples of the amine curing agent include polyamines such as aliphatic polyamines and aromatic polyamines. Examples of the aliphatic polyamines include ethylenediamine, diethylenetriamine, triethylenetetramine, dipropylenetriamine, tetraethylenepentamine, dimethylaminopropylamine, bishexamylenetriamine, cyclohexylaminopropylamine, aminoethylethanolamine, and monohydroxyethyl Diethylenetriamine, bishydroxyethyldiethylenetriamine, N-(2-hydroxypropyl)ethylenediamine, hexamethylenediamine, diethylene glycol bis(3-aminopropyl)ether, diethylaminopropylamine, 3,9-bis(3-aminopropyl)-2,4 , 8,10-tetrasoxaspiro[5,5]undecane, menthanediamine, isophoronediamine, 4,4'-methylenebis(cyclohexylamine), bis(4-amino-3-methylcyclohexyl)methane, N-aminoethyl Examples include piperazine.
Aromatic polyamines are amines having an aromatic ring, and specifically include various xylylene diamines such as phenylene diamine, diaminodiphenylmethane, diaminoanisole, toluene diamine, metaxylylene diamine, and diaminodiphenylsulfone.
また、アミン系硬化剤は、イミダゾール系硬化剤、アミドアミン系硬化剤などであってもよい。イミダゾール系硬化剤としては、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2,4-ジメチルイミダゾール、2-へプタデシルイミダゾール、1,2-ジメチルイミダゾール、1,2-ジエチルイミダゾール、2-フェニル-4-メチルイミダゾール、2,4,5-トリフェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-アリール-4,5-ジフェニルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1)’]-エチル-S-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1)’]-エチル-S-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1)’]-エチル-S-トリアジンイソシアヌール酸付加物、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられる。アミドアミン系硬化剤としては、ジシアンジアミドなども挙げられる。
Further, the amine curing agent may be an imidazole curing agent, an amidoamine curing agent, or the like. Examples of imidazole curing agents include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2,4-dimethylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, and 1,2-diethylimidazole. , 2-phenyl-4-methylimidazole, 2,4,5-triphenylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methyl Imidazole, 1-cyanoethyl-2-undecylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-aryl-4,5-diphenylimidazole, 2,4-diamino- 6-[2'-Methylimidazolyl-(1)']-ethyl-S-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1)']-ethyl-S -triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1)']-ethyl-S-triazine isocyanuric acid adduct, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc. Can be mentioned. Examples of amidoamine curing agents include dicyandiamide and the like.
酸無水物系硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノン無水テトラカルボン酸、無水クロレンド酸、ドデシニル無水コハク酸、メチルテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸で代表されるメチルヘキサヒドロ無水フタル酸等が挙げられる。
フェノール誘導体としては、ビスフェノールF、ビスフェノールAなどのビスフェノール類及びその誘導体、トリ(ヒドロキシフェニル)メタン、トリ(ヒドロキシフェニル)エタンなどの3官能のフェノール類及びその誘導体、フェノールノボラックなどのフェノール類とホルムアルデヒドとを反応させることで得られる化合物が挙げられる。
メルカプト系硬化剤としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタンなどの分子内にメルカプト基を2つ有する化合物や、ペンタエリスリトールテトラキス(3-メルカプトブチレート)などのメルカプト基を3つ以上有する化合物も使用できる。
硬化剤は、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, chlorendic anhydride, dodecynyl succinic anhydride, and methyltetrahydro Examples include phthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride represented by 4-methylhexahydrophthalic anhydride.
Examples of phenol derivatives include bisphenols and their derivatives such as bisphenol F and bisphenol A, trifunctional phenols and their derivatives such as tri(hydroxyphenyl)methane and tri(hydroxyphenyl)ethane, phenols such as phenol novolak, and formaldehyde. Examples include compounds obtained by reacting with.
Examples of mercapto curing agents include compounds with two mercapto groups in the molecule such as 1,4-bis(3-mercaptobutyryloxy)butane, and compounds with mercapto groups such as pentaerythritol tetrakis (3-mercaptobutyrate). Compounds having three or more can also be used.
The curing agents may be used alone or in combination of two or more.
フェノール誘導体としては、ビスフェノールF、ビスフェノールAなどのビスフェノール類及びその誘導体、トリ(ヒドロキシフェニル)メタン、トリ(ヒドロキシフェニル)エタンなどの3官能のフェノール類及びその誘導体、フェノールノボラックなどのフェノール類とホルムアルデヒドとを反応させることで得られる化合物が挙げられる。
メルカプト系硬化剤としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタンなどの分子内にメルカプト基を2つ有する化合物や、ペンタエリスリトールテトラキス(3-メルカプトブチレート)などのメルカプト基を3つ以上有する化合物も使用できる。
硬化剤は、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, chlorendic anhydride, dodecynyl succinic anhydride, and methyltetrahydro Examples include phthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride represented by 4-methylhexahydrophthalic anhydride.
Examples of phenol derivatives include bisphenols and their derivatives such as bisphenol F and bisphenol A, trifunctional phenols and their derivatives such as tri(hydroxyphenyl)methane and tri(hydroxyphenyl)ethane, phenols such as phenol novolak, and formaldehyde. Examples include compounds obtained by reacting with.
Examples of mercapto curing agents include compounds with two mercapto groups in the molecule such as 1,4-bis(3-mercaptobutyryloxy)butane, and compounds with mercapto groups such as pentaerythritol tetrakis (3-mercaptobutyrate). Compounds having three or more can also be used.
The curing agents may be used alone or in combination of two or more.
硬化剤としては、上記した中では、アミン系硬化剤が好ましく、中でもポリアミン類が好ましい。ポリアミン類は、一分子中に1級アミノ基及び2級アミノ基を合計で2つ以上有することが好ましく、また、1級アミノ基を少なくとも1つ有することが好ましく、より好ましく1級アミノ基を2つ以上有する。ポリアミン類における一分子中の1級アミノ基及び2級アミノ基の合計数は、特に限定されないが、例えば8以下、好ましくは5以下、より好ましくは3以下である。
Among the curing agents mentioned above, amine curing agents are preferred, and polyamines are particularly preferred. The polyamines preferably have a total of two or more primary amino groups and secondary amino groups in one molecule, and preferably have at least one primary amino group, and more preferably have a primary amino group. Have two or more. The total number of primary amino groups and secondary amino groups in one molecule of polyamines is not particularly limited, but is, for example, 8 or less, preferably 5 or less, more preferably 3 or less.
硬化剤の配合量は、エポキシ樹脂100質量部に対して、例えば、1~100質量部、好ましくは2~50質量部である。これら下限値以上とすると適切に硬化でき、例えば、三次元網目構造が形成される場合、その構造が強固となり、機械的物性、熱的性質が良好となりやすい。また、これら上限値以下とすることで、硬化剤の量が必要以上に多くなることを防止して、機械的物性、熱的性質が良好となりやすい。
硬化剤の配合量は、エポキシ樹脂のエポキシ当量、さらにはアミン系硬化剤を使用する場合には、アミン系硬化剤の活性水素量(すなわち、アミノ基において窒素原子に結合する水素原子)にあわせて適宜調整すればよい。例えば、エポキシ基の数に対する活性水素量の数の比が1又は1に近似するように調整するとよく、具体的には0.5~2、好ましくは0.75~1.5、より好ましくは0.9~1.1である。 The blending amount of the curing agent is, for example, 1 to 100 parts by weight, preferably 2 to 50 parts by weight, based on 100 parts by weight of the epoxy resin. If it is above these lower limits, it can be properly cured. For example, when a three-dimensional network structure is formed, the structure becomes strong and mechanical properties and thermal properties tend to be good. In addition, by setting the amount to be below these upper limits, the amount of the curing agent can be prevented from increasing more than necessary, and mechanical properties and thermal properties tend to be good.
The blending amount of the curing agent should be adjusted according to the epoxy equivalent of the epoxy resin and, if an amine curing agent is used, the amount of active hydrogen in the amine curing agent (i.e., the hydrogen atom bonded to the nitrogen atom in the amino group). You can adjust it as appropriate. For example, the ratio of the number of active hydrogens to the number of epoxy groups may be adjusted to 1 or close to 1, specifically 0.5 to 2, preferably 0.75 to 1.5, more preferably It is 0.9 to 1.1.
硬化剤の配合量は、エポキシ樹脂のエポキシ当量、さらにはアミン系硬化剤を使用する場合には、アミン系硬化剤の活性水素量(すなわち、アミノ基において窒素原子に結合する水素原子)にあわせて適宜調整すればよい。例えば、エポキシ基の数に対する活性水素量の数の比が1又は1に近似するように調整するとよく、具体的には0.5~2、好ましくは0.75~1.5、より好ましくは0.9~1.1である。 The blending amount of the curing agent is, for example, 1 to 100 parts by weight, preferably 2 to 50 parts by weight, based on 100 parts by weight of the epoxy resin. If it is above these lower limits, it can be properly cured. For example, when a three-dimensional network structure is formed, the structure becomes strong and mechanical properties and thermal properties tend to be good. In addition, by setting the amount to be below these upper limits, the amount of the curing agent can be prevented from increasing more than necessary, and mechanical properties and thermal properties tend to be good.
The blending amount of the curing agent should be adjusted according to the epoxy equivalent of the epoxy resin and, if an amine curing agent is used, the amount of active hydrogen in the amine curing agent (i.e., the hydrogen atom bonded to the nitrogen atom in the amino group). You can adjust it as appropriate. For example, the ratio of the number of active hydrogens to the number of epoxy groups may be adjusted to 1 or close to 1, specifically 0.5 to 2, preferably 0.75 to 1.5, more preferably It is 0.9 to 1.1.
エポキシ硬化体の示差走査熱量計で測定したガラス転移温度(Tg)は、好ましくは150℃以上である。150℃以上とすることで、熱的性能を良好にでき、エポキシ硬化体の耐熱性が良好となる。また、エポキシ硬化体のガラス転移温度(Tg)は、より好ましくは160℃以上、さらに好ましくは170℃以上である。エポキシ硬化体のガラス転移温度(Tg)は、特に限定されないが、例えば300℃以下である。
また、エポキシ硬化体の動的粘弾性装置で測定したガラス転移温度(Tg)は、同様の観点から、好ましくは150℃以上、より好ましくは160℃以上、さらに好ましくは170℃以上であり、また、例えば300℃以下である。 The glass transition temperature (Tg) of the epoxy cured product measured with a differential scanning calorimeter is preferably 150° C. or higher. When the temperature is 150° C. or higher, thermal performance can be improved, and the heat resistance of the cured epoxy product can be improved. Further, the glass transition temperature (Tg) of the epoxy cured product is more preferably 160°C or higher, and still more preferably 170°C or higher. The glass transition temperature (Tg) of the epoxy cured product is not particularly limited, but is, for example, 300° C. or lower.
Further, from the same viewpoint, the glass transition temperature (Tg) of the epoxy cured product measured with a dynamic viscoelasticity device is preferably 150°C or higher, more preferably 160°C or higher, and even more preferably 170°C or higher. , for example, 300°C or less.
また、エポキシ硬化体の動的粘弾性装置で測定したガラス転移温度(Tg)は、同様の観点から、好ましくは150℃以上、より好ましくは160℃以上、さらに好ましくは170℃以上であり、また、例えば300℃以下である。 The glass transition temperature (Tg) of the epoxy cured product measured with a differential scanning calorimeter is preferably 150° C. or higher. When the temperature is 150° C. or higher, thermal performance can be improved, and the heat resistance of the cured epoxy product can be improved. Further, the glass transition temperature (Tg) of the epoxy cured product is more preferably 160°C or higher, and still more preferably 170°C or higher. The glass transition temperature (Tg) of the epoxy cured product is not particularly limited, but is, for example, 300° C. or lower.
Further, from the same viewpoint, the glass transition temperature (Tg) of the epoxy cured product measured with a dynamic viscoelasticity device is preferably 150°C or higher, more preferably 160°C or higher, and even more preferably 170°C or higher. , for example, 300°C or less.
エポキシ硬化体は、特に限定されないが、エポキシ樹脂と、硬化剤とを混合することで硬化性組成物を得て、必要に応じて加熱することで製造できる。加熱温度は、特に限定されないが、例えば室温(23℃)~300℃、好ましくは40℃~250℃であり、上記温度範囲内で例えば10分~13時間、好ましくは1~6時間加熱すればよい。加熱温度は、硬化が進むにつれて、段階的に上昇させてもよい。また、エポキシ樹脂と、硬化剤とを含む硬化性組成物は、溶剤などを添加して希釈してもよいし、適宜他の成分を含有してもよい。溶剤により希釈される場合、上記加熱により溶剤を適宜乾燥させて除去すればよい。
Although the epoxy cured product is not particularly limited, it can be produced by mixing an epoxy resin and a curing agent to obtain a curable composition, and heating as necessary. The heating temperature is not particularly limited, but is, for example, room temperature (23°C) to 300°C, preferably 40°C to 250°C, and heating within the above temperature range is for example 10 minutes to 13 hours, preferably 1 to 6 hours. good. The heating temperature may be increased stepwise as curing progresses. Further, the curable composition containing an epoxy resin and a curing agent may be diluted by adding a solvent or the like, or may contain other components as appropriate. In the case of diluting with a solvent, the solvent may be removed by appropriately drying the solvent by the above-mentioned heating.
硬化性組成物には、本発明のエポキシ樹脂、硬化剤以外にも硬化促進剤が含有されてもよい。
硬化促進剤は、硬化剤による硬化を促進する成分である。例えば、硬化剤のうちジシアンジアミド等は単独では硬化温度が高いため、ジシアンジアミド等の硬化活性を高めるために、硬化促進剤を用いることができる。ジシアンジアミドの硬化促進剤としては、例えば尿素系、イミダゾール系、3級アミン系、カプロラクタム等が挙げられる。これらの中でも、尿素系、イミダゾール系が好ましく、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-s-トリアジン、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)がより好ましい。硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、例えば0.1~10質量部程度である。 The curable composition may contain a curing accelerator in addition to the epoxy resin and curing agent of the present invention.
A curing accelerator is a component that accelerates curing by a curing agent. For example, among the curing agents, dicyandiamide and the like have a high curing temperature when used alone, so a curing accelerator can be used to increase the curing activity of dicyandiamide and the like. Examples of the curing accelerator for dicyandiamide include urea-based, imidazole-based, tertiary amine-based, caprolactam, and the like. Among these, urea-based and imidazole-based are preferred, including 2,4-diamino-6-(2-methylimidazolyl-(1))-ethyl-s-triazine, 3-(3,4-dichlorophenyl)-1,1 -dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea) are more preferred. The content of the curing accelerator is, for example, about 0.1 to 10 parts by mass based on 100 parts by mass of the epoxy resin.
硬化促進剤は、硬化剤による硬化を促進する成分である。例えば、硬化剤のうちジシアンジアミド等は単独では硬化温度が高いため、ジシアンジアミド等の硬化活性を高めるために、硬化促進剤を用いることができる。ジシアンジアミドの硬化促進剤としては、例えば尿素系、イミダゾール系、3級アミン系、カプロラクタム等が挙げられる。これらの中でも、尿素系、イミダゾール系が好ましく、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-s-トリアジン、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)がより好ましい。硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、例えば0.1~10質量部程度である。 The curable composition may contain a curing accelerator in addition to the epoxy resin and curing agent of the present invention.
A curing accelerator is a component that accelerates curing by a curing agent. For example, among the curing agents, dicyandiamide and the like have a high curing temperature when used alone, so a curing accelerator can be used to increase the curing activity of dicyandiamide and the like. Examples of the curing accelerator for dicyandiamide include urea-based, imidazole-based, tertiary amine-based, caprolactam, and the like. Among these, urea-based and imidazole-based are preferred, including 2,4-diamino-6-(2-methylimidazolyl-(1))-ethyl-s-triazine, 3-(3,4-dichlorophenyl)-1,1 -dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea) are more preferred. The content of the curing accelerator is, for example, about 0.1 to 10 parts by mass based on 100 parts by mass of the epoxy resin.
本発明のエポキシ樹脂及びエポキシ硬化体は、様々な分野で使用可能であり、特に限定されないが、電気分野、輸送分野、土木分野、建築分野、機械分野、医療分野等のいかなる分野でも使用可能である。本発明のエポキシ樹脂及びエポキシ硬化体は、例えば各種成形品、接着剤、塗料、充填材、フィルム、粉体、複合材、発泡体など様々な形態で使用可能である。
より具体的には、異種材料接着剤、ゴム-樹脂間接着剤、ウエルボンド用途、ダイアタッチなどの基板と半導体素子との接合用、ボンディングフィルムなどのフレキシブル基板接着用、建築、土木用途の各種接着剤などの接着剤用途、防曇用塗料、電着塗装用塗料、防食用塗料、塗り床剤、その他の建築、土木用途の塗料などの各種塗料用途、被覆電線封止用などの封止材、繊維集束剤、プリプレグ用などの繊維強化用、電子部品用の電気絶縁材料や保護材料、感光性樹脂、レンズ用途、歯科用材料などの各種用途に使用できるが、これら用途に限定されない。 The epoxy resin and epoxy cured product of the present invention can be used in various fields, including, but not limited to, electrical fields, transportation fields, civil engineering fields, architecture fields, mechanical fields, medical fields, etc. be. The epoxy resin and epoxy cured product of the present invention can be used in various forms such as various molded products, adhesives, paints, fillers, films, powders, composite materials, and foams.
More specifically, adhesives for dissimilar materials, rubber-resin adhesives, well bonding applications, bonding between substrates and semiconductor elements such as die attach, flexible substrate adhesives such as bonding films, and various construction and civil engineering applications. Applications for adhesives such as adhesives, anti-fog paints, electrodeposition paints, anti-corrosion paints, floor coatings, other paints for architecture and civil engineering, sealing for covered electric wires, etc. It can be used for various purposes such as fiber reinforcement materials, fiber sizing agents, prepregs, electrical insulation materials and protective materials for electronic components, photosensitive resins, lens applications, and dental materials, but is not limited to these applications.
より具体的には、異種材料接着剤、ゴム-樹脂間接着剤、ウエルボンド用途、ダイアタッチなどの基板と半導体素子との接合用、ボンディングフィルムなどのフレキシブル基板接着用、建築、土木用途の各種接着剤などの接着剤用途、防曇用塗料、電着塗装用塗料、防食用塗料、塗り床剤、その他の建築、土木用途の塗料などの各種塗料用途、被覆電線封止用などの封止材、繊維集束剤、プリプレグ用などの繊維強化用、電子部品用の電気絶縁材料や保護材料、感光性樹脂、レンズ用途、歯科用材料などの各種用途に使用できるが、これら用途に限定されない。 The epoxy resin and epoxy cured product of the present invention can be used in various fields, including, but not limited to, electrical fields, transportation fields, civil engineering fields, architecture fields, mechanical fields, medical fields, etc. be. The epoxy resin and epoxy cured product of the present invention can be used in various forms such as various molded products, adhesives, paints, fillers, films, powders, composite materials, and foams.
More specifically, adhesives for dissimilar materials, rubber-resin adhesives, well bonding applications, bonding between substrates and semiconductor elements such as die attach, flexible substrate adhesives such as bonding films, and various construction and civil engineering applications. Applications for adhesives such as adhesives, anti-fog paints, electrodeposition paints, anti-corrosion paints, floor coatings, other paints for architecture and civil engineering, sealing for covered electric wires, etc. It can be used for various purposes such as fiber reinforcement materials, fiber sizing agents, prepregs, electrical insulation materials and protective materials for electronic components, photosensitive resins, lens applications, and dental materials, but is not limited to these applications.
本発明のエポキシ樹脂を含むエポキシ樹脂含有組成物は、用途に応じて様々な成分を配合することが可能である。そのような成分としては、上記した硬化剤、硬化促進剤以外にも、本発明のエポキシ樹脂以外の樹脂、ラテックス、フィラー、顔料、シランカップリング剤、界面活性剤、紫外線吸収剤、酸化防止剤、安定化剤、可塑剤、レベリング剤、消泡剤、帯電防止剤、難燃剤、滑剤、分散剤などが挙げられる。
以下、各用途に使用される本発明のエポキシ樹脂を含有する組成物(以下「エポキシ樹脂含有組成物」ともいう)、及び本発明のエポキシ樹脂由来の成分を有する組成物についてさらに詳細に説明するが、以下の各組成物は、必要に応じて、以下で具体的に説明した成分以外の成分を適宜含有してもよい。 The epoxy resin-containing composition containing the epoxy resin of the present invention can contain various components depending on the intended use. In addition to the above-mentioned curing agents and curing accelerators, such components include resins other than the epoxy resin of the present invention, latex, fillers, pigments, silane coupling agents, surfactants, ultraviolet absorbers, and antioxidants. , stabilizers, plasticizers, leveling agents, antifoaming agents, antistatic agents, flame retardants, lubricants, dispersants and the like.
Below, compositions containing the epoxy resin of the present invention used for various purposes (hereinafter also referred to as "epoxy resin-containing compositions") and compositions containing components derived from the epoxy resin of the present invention will be explained in more detail. However, each of the following compositions may contain components other than those specifically explained below, as necessary.
以下、各用途に使用される本発明のエポキシ樹脂を含有する組成物(以下「エポキシ樹脂含有組成物」ともいう)、及び本発明のエポキシ樹脂由来の成分を有する組成物についてさらに詳細に説明するが、以下の各組成物は、必要に応じて、以下で具体的に説明した成分以外の成分を適宜含有してもよい。 The epoxy resin-containing composition containing the epoxy resin of the present invention can contain various components depending on the intended use. In addition to the above-mentioned curing agents and curing accelerators, such components include resins other than the epoxy resin of the present invention, latex, fillers, pigments, silane coupling agents, surfactants, ultraviolet absorbers, and antioxidants. , stabilizers, plasticizers, leveling agents, antifoaming agents, antistatic agents, flame retardants, lubricants, dispersants and the like.
Below, compositions containing the epoxy resin of the present invention used for various purposes (hereinafter also referred to as "epoxy resin-containing compositions") and compositions containing components derived from the epoxy resin of the present invention will be explained in more detail. However, each of the following compositions may contain components other than those specifically explained below, as necessary.
(接着剤用途)
例えば、接着剤として使用される場合、エポキシ樹脂含有組成物は、エポキシ樹脂及び硬化剤を含有すればよいが、これらに加えて、フィラー成分として、接着剤の接着強度の向上や衝撃特性の付与の観点から、例えば、ポリマー微粒子を含有してもよい。ポリマー微粒子を含有する場合、接着剤は自動車などの分野における異種材料接着剤用途や、ウエルボンド用途に使用されることが好ましい。異種接着剤用途における異種材料としては、各種鋼材、アルミニウム、アルミニウム合金、炭素繊維やガラス繊維等の繊維強化プラスチック(FRP)板や炭素繊維強化プラスチック(CFRP)等の各種材料から選ばれる2種の組み合わせが挙げられる。また、上記接着剤用途に使用されるエポキシ樹脂含有組成物は、本発明のエポキシ樹脂に加えて、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよい。 (Adhesive application)
For example, when used as an adhesive, the epoxy resin-containing composition may contain an epoxy resin and a curing agent. From this point of view, for example, polymer fine particles may be contained. When containing polymer fine particles, the adhesive is preferably used for dissimilar material adhesive applications in fields such as automobiles, and for well bond applications. The dissimilar materials used in dissimilar adhesive applications include two types selected from various materials such as various steel materials, aluminum, aluminum alloys, fiber reinforced plastic (FRP) plates such as carbon fiber and glass fiber, and carbon fiber reinforced plastic (CFRP). Examples include combinations. In addition to the epoxy resin of the present invention, the epoxy resin-containing composition used for the adhesive application may contain an epoxy resin other than the epoxy resin of the present invention.
例えば、接着剤として使用される場合、エポキシ樹脂含有組成物は、エポキシ樹脂及び硬化剤を含有すればよいが、これらに加えて、フィラー成分として、接着剤の接着強度の向上や衝撃特性の付与の観点から、例えば、ポリマー微粒子を含有してもよい。ポリマー微粒子を含有する場合、接着剤は自動車などの分野における異種材料接着剤用途や、ウエルボンド用途に使用されることが好ましい。異種接着剤用途における異種材料としては、各種鋼材、アルミニウム、アルミニウム合金、炭素繊維やガラス繊維等の繊維強化プラスチック(FRP)板や炭素繊維強化プラスチック(CFRP)等の各種材料から選ばれる2種の組み合わせが挙げられる。また、上記接着剤用途に使用されるエポキシ樹脂含有組成物は、本発明のエポキシ樹脂に加えて、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよい。 (Adhesive application)
For example, when used as an adhesive, the epoxy resin-containing composition may contain an epoxy resin and a curing agent. From this point of view, for example, polymer fine particles may be contained. When containing polymer fine particles, the adhesive is preferably used for dissimilar material adhesive applications in fields such as automobiles, and for well bond applications. The dissimilar materials used in dissimilar adhesive applications include two types selected from various materials such as various steel materials, aluminum, aluminum alloys, fiber reinforced plastic (FRP) plates such as carbon fiber and glass fiber, and carbon fiber reinforced plastic (CFRP). Examples include combinations. In addition to the epoxy resin of the present invention, the epoxy resin-containing composition used for the adhesive application may contain an epoxy resin other than the epoxy resin of the present invention.
ポリマー微粒子は、コアシェル構造を有するポリマー微粒子であることが好ましい。コアシェル構造を有するポリマー微粒子は、中央部(コア部)と外周部(シェル部)で分子構造が異なるポリマー粒子のことを意味する。
コアシェル構造を有するポリマー微粒子のコア部を構成する成分としては、例えば、ブタジエンゴム(BR)、アクリルゴム(ACM)、シリコーンゴム(Si)、ブチルゴム(IIR)、ニトリルゴム(NBR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPR)等が挙げられる。なかでもブタジエンゴムが好ましい。コアシェル構造を有するポリマー微粒子のシェル部を構成する成分は、前記したコア部にグラフト重合されており、コア成分を構成するポリマーと共有結合していることが好ましい。シェル部を構成する成分としては、例えばアクリル酸エステル系モノマー、およびメタクリル酸エステル系モノマー、および芳香族系ビニルモノマー等が挙げられる。
ポリマー微粒子の含有量は、硬化性組成物に含有されるエポキシ樹脂100質量部に対して、例えば1~100質量部、好ましくは2~80質量部、より好ましくは4~60質量部である。コアシェル構造を有するポリマー微粒子は単独で用いてもよいし、2種以上を併用してもよい。 The polymer fine particles are preferably polymer fine particles having a core-shell structure. A polymer particle having a core-shell structure refers to a polymer particle in which the molecular structure is different between the central part (core part) and the outer peripheral part (shell part).
Examples of the components constituting the core part of the polymer fine particles having a core-shell structure include butadiene rubber (BR), acrylic rubber (ACM), silicone rubber (Si), butyl rubber (IIR), nitrile rubber (NBR), and styrene-butadiene rubber. (SBR), isoprene rubber (IR), ethylene propylene rubber (EPR), and the like. Among them, butadiene rubber is preferred. It is preferable that the component constituting the shell part of the polymer fine particles having a core-shell structure is graft-polymerized to the above-mentioned core part and covalently bonded to the polymer constituting the core component. Examples of the components constituting the shell portion include acrylic ester monomers, methacrylic ester monomers, and aromatic vinyl monomers.
The content of the polymer fine particles is, for example, 1 to 100 parts by weight, preferably 2 to 80 parts by weight, and more preferably 4 to 60 parts by weight, based on 100 parts by weight of the epoxy resin contained in the curable composition. Polymer fine particles having a core-shell structure may be used alone, or two or more types may be used in combination.
コアシェル構造を有するポリマー微粒子のコア部を構成する成分としては、例えば、ブタジエンゴム(BR)、アクリルゴム(ACM)、シリコーンゴム(Si)、ブチルゴム(IIR)、ニトリルゴム(NBR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPR)等が挙げられる。なかでもブタジエンゴムが好ましい。コアシェル構造を有するポリマー微粒子のシェル部を構成する成分は、前記したコア部にグラフト重合されており、コア成分を構成するポリマーと共有結合していることが好ましい。シェル部を構成する成分としては、例えばアクリル酸エステル系モノマー、およびメタクリル酸エステル系モノマー、および芳香族系ビニルモノマー等が挙げられる。
ポリマー微粒子の含有量は、硬化性組成物に含有されるエポキシ樹脂100質量部に対して、例えば1~100質量部、好ましくは2~80質量部、より好ましくは4~60質量部である。コアシェル構造を有するポリマー微粒子は単独で用いてもよいし、2種以上を併用してもよい。 The polymer fine particles are preferably polymer fine particles having a core-shell structure. A polymer particle having a core-shell structure refers to a polymer particle in which the molecular structure is different between the central part (core part) and the outer peripheral part (shell part).
Examples of the components constituting the core part of the polymer fine particles having a core-shell structure include butadiene rubber (BR), acrylic rubber (ACM), silicone rubber (Si), butyl rubber (IIR), nitrile rubber (NBR), and styrene-butadiene rubber. (SBR), isoprene rubber (IR), ethylene propylene rubber (EPR), and the like. Among them, butadiene rubber is preferred. It is preferable that the component constituting the shell part of the polymer fine particles having a core-shell structure is graft-polymerized to the above-mentioned core part and covalently bonded to the polymer constituting the core component. Examples of the components constituting the shell portion include acrylic ester monomers, methacrylic ester monomers, and aromatic vinyl monomers.
The content of the polymer fine particles is, for example, 1 to 100 parts by weight, preferably 2 to 80 parts by weight, and more preferably 4 to 60 parts by weight, based on 100 parts by weight of the epoxy resin contained in the curable composition. Polymer fine particles having a core-shell structure may be used alone, or two or more types may be used in combination.
上記異種材料接着剤用途或いはウエルボンド用途の接着剤において、エポキシ樹脂含有組成物は、硬化剤としては、上記列挙したものが適宜使用されるが、中でもジシアンジアミドを含有することが好ましい。硬化剤の含有量は、エポキシ樹脂100質量部に対して、好ましくは0.01~30質量部、より好ましくは0.1~25質量部、さらに好ましくは1~20質量部である。
また、上記接着剤をウエルボンド用として使用する場合、エポキシ樹脂含有組成物は、ブロックドウレタンを含有することが好ましい。ブロックドウレタンは、エラストマー型であって、ウレタン基および/または尿素基を含有し、かつ、末端にイソシアネート基を有する化合物の当該末端イソシアネート基の全部または一部が活性水素基を有する種々のブロック剤でキャップされた化合物を意図する。特に、当該末端イソシアネート基の全部がブロック剤でキャップされた化合物が好ましい。ブロックドウレタンの具体例としては、国際公開2016/163491号に記載の化合物を挙げることができる。
エポキシ樹脂含有組成物におけるブロックドウレタンの含有量は、エポキシ樹脂100質量部に対して、1~50質量部が好ましく、2~40質量部がより好ましく、5~30質量部がさらに好ましい。 In the above-mentioned adhesive for dissimilar material adhesive use or well bond use, the epoxy resin-containing composition preferably contains dicyandiamide, although the curing agents listed above are used as appropriate. The content of the curing agent is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 25 parts by weight, and even more preferably 1 to 20 parts by weight, based on 100 parts by weight of the epoxy resin.
Moreover, when using the said adhesive for well bonding, it is preferable that the epoxy resin containing composition contains blocked urethane. Blocked urethane is an elastomer type compound containing a urethane group and/or a urea group, and has an isocyanate group at the end of various blocks in which all or part of the terminal isocyanate group has an active hydrogen group. Compounds capped with agents are contemplated. Particularly preferred is a compound in which all of the terminal isocyanate groups are capped with a blocking agent. Specific examples of blocked urethanes include compounds described in International Publication No. 2016/163491.
The content of blocked urethane in the epoxy resin-containing composition is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, and even more preferably 5 to 30 parts by weight, based on 100 parts by weight of the epoxy resin.
また、上記接着剤をウエルボンド用として使用する場合、エポキシ樹脂含有組成物は、ブロックドウレタンを含有することが好ましい。ブロックドウレタンは、エラストマー型であって、ウレタン基および/または尿素基を含有し、かつ、末端にイソシアネート基を有する化合物の当該末端イソシアネート基の全部または一部が活性水素基を有する種々のブロック剤でキャップされた化合物を意図する。特に、当該末端イソシアネート基の全部がブロック剤でキャップされた化合物が好ましい。ブロックドウレタンの具体例としては、国際公開2016/163491号に記載の化合物を挙げることができる。
エポキシ樹脂含有組成物におけるブロックドウレタンの含有量は、エポキシ樹脂100質量部に対して、1~50質量部が好ましく、2~40質量部がより好ましく、5~30質量部がさらに好ましい。 In the above-mentioned adhesive for dissimilar material adhesive use or well bond use, the epoxy resin-containing composition preferably contains dicyandiamide, although the curing agents listed above are used as appropriate. The content of the curing agent is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 25 parts by weight, and even more preferably 1 to 20 parts by weight, based on 100 parts by weight of the epoxy resin.
Moreover, when using the said adhesive for well bonding, it is preferable that the epoxy resin containing composition contains blocked urethane. Blocked urethane is an elastomer type compound containing a urethane group and/or a urea group, and has an isocyanate group at the end of various blocks in which all or part of the terminal isocyanate group has an active hydrogen group. Compounds capped with agents are contemplated. Particularly preferred is a compound in which all of the terminal isocyanate groups are capped with a blocking agent. Specific examples of blocked urethanes include compounds described in International Publication No. 2016/163491.
The content of blocked urethane in the epoxy resin-containing composition is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, and even more preferably 5 to 30 parts by weight, based on 100 parts by weight of the epoxy resin.
また、エポキシ樹脂含有組成物は、タイヤなどにおいてゴム-樹脂間接着剤として使用してもよい。ゴム-樹脂間接着剤の一例としては、本発明のエポキシ樹脂の他に、合成ゴムラテックスを含む硬化性組成物が挙げられる。
合成ゴムラテックスとしては、特に限定されるものではないが、不飽和ジエンを有するものが挙げられ、スチレン-ブタジエン共重合体ゴムラテックス、ビニルピリジン-スチレン-ブタジエン共重合体ゴムラテックス、カルボキシル基変性スチレン-ブタジエン共重合体ゴムラテックス、ニトリルゴムラテックス、クロロプレンゴムラテックス等を挙げることができる。これらを1種単独で使用しても、2種以上を組み合わせて使用してもよい。
ゴム-樹脂間接着剤に使用されるエポキシ樹脂含有組成物において、上記合成ゴムラテックスの含有量は、特に限定されるものではないが、固形分基準で、例えば25~80質量%、好ましくは35~75質量%、より好ましくは55~75質量%ある。 The epoxy resin-containing composition may also be used as a rubber-resin adhesive in tires and the like. An example of the rubber-resin adhesive includes, in addition to the epoxy resin of the present invention, a curable composition containing synthetic rubber latex.
Synthetic rubber latexes include, but are not particularly limited to, those containing unsaturated dienes, such as styrene-butadiene copolymer rubber latex, vinylpyridine-styrene-butadiene copolymer rubber latex, and carboxyl group-modified styrene. -Butadiene copolymer rubber latex, nitrile rubber latex, chloroprene rubber latex, etc. can be mentioned. These may be used alone or in combination of two or more.
In the epoxy resin-containing composition used for the rubber-resin adhesive, the content of the synthetic rubber latex is not particularly limited, but is, for example, 25 to 80% by mass, preferably 35% by mass, based on solid content. ~75% by weight, more preferably 55-75% by weight.
合成ゴムラテックスとしては、特に限定されるものではないが、不飽和ジエンを有するものが挙げられ、スチレン-ブタジエン共重合体ゴムラテックス、ビニルピリジン-スチレン-ブタジエン共重合体ゴムラテックス、カルボキシル基変性スチレン-ブタジエン共重合体ゴムラテックス、ニトリルゴムラテックス、クロロプレンゴムラテックス等を挙げることができる。これらを1種単独で使用しても、2種以上を組み合わせて使用してもよい。
ゴム-樹脂間接着剤に使用されるエポキシ樹脂含有組成物において、上記合成ゴムラテックスの含有量は、特に限定されるものではないが、固形分基準で、例えば25~80質量%、好ましくは35~75質量%、より好ましくは55~75質量%ある。 The epoxy resin-containing composition may also be used as a rubber-resin adhesive in tires and the like. An example of the rubber-resin adhesive includes, in addition to the epoxy resin of the present invention, a curable composition containing synthetic rubber latex.
Synthetic rubber latexes include, but are not particularly limited to, those containing unsaturated dienes, such as styrene-butadiene copolymer rubber latex, vinylpyridine-styrene-butadiene copolymer rubber latex, and carboxyl group-modified styrene. -Butadiene copolymer rubber latex, nitrile rubber latex, chloroprene rubber latex, etc. can be mentioned. These may be used alone or in combination of two or more.
In the epoxy resin-containing composition used for the rubber-resin adhesive, the content of the synthetic rubber latex is not particularly limited, but is, for example, 25 to 80% by mass, preferably 35% by mass, based on solid content. ~75% by weight, more preferably 55-75% by weight.
また、合成ゴムラテックスを含む硬化性組成物は、さらに水溶性カルボジイミドを含有することが好ましい。水溶性カルボジイミドは、水に可溶なカルボジイミドのことを意味し、水性であり部分的に水溶性であるカルボジイミドを含む。該水溶性カルボジイミドは、分子内に、カルボジイミド(化学式:-N=C=N-)と、親水性セグメントと、を有する化合物である。水溶性カルボジイミドは、水溶液中に含まれる化合物のCOOH基とOH基もしくはアミノ基とのエステル結合もしくはアミド結合の形成が可能である脱水縮合剤として使用することができる。例えば、1-エチル-3-(3-(ジメチルアミノプロピル)カルボジイミド(WSC)は、カルボキシル基を活性化し、その活性中間体は、アミノ基および水酸基と反応し、アミドおよびエステルを形成することが知られている。
Furthermore, the curable composition containing the synthetic rubber latex preferably further contains a water-soluble carbodiimide. Water-soluble carbodiimide refers to a carbodiimide that is soluble in water, and includes carbodiimides that are water-based and partially water-soluble. The water-soluble carbodiimide is a compound having carbodiimide (chemical formula: -N=C=N-) and a hydrophilic segment in the molecule. Water-soluble carbodiimide can be used as a dehydration condensation agent capable of forming an ester bond or an amide bond between a COOH group and an OH group or an amino group of a compound contained in an aqueous solution. For example, 1-ethyl-3-(3-(dimethylaminopropyl)carbodiimide (WSC) activates carboxyl groups, and its active intermediates can react with amino and hydroxyl groups to form amides and esters. Are known.
水溶性カルボジイミドは、不飽和ジエンを有する合成ゴムラテックスの表面を架橋しながら被覆し、かつ本発明のエポキシ樹脂と複合して、被着体の樹脂をゴムと接着することができるものと推定される。
水溶性カルボジイミドは、塩酸塩、硫酸塩等の水溶性塩類であることが好ましい。水溶性カルボジイミドとして、より具体的には、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC);1-シクロへキシル-3-(2-モルホリノエチル)カルボジイミド-メト-p-トルエン硫酸塩等の1-シクロヘキシル-3-(2-モルホリノエチル)カルボジイミドの水溶性塩類;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)等のトリアジン系縮合剤類;等を例示することができ、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)が好適に使用される。
ゴム-樹脂間接着剤として使用される熱硬化性組成物において、水溶性カルボジイミドの含有量は、特に限定はされるものではないが、固形分基準で、0.1~15質量%が好ましく、0.3~10質量%がより好ましく、0.5~7質量%がさらに好ましく、0.5~5質量%がよりさらに好ましい。 It is presumed that the water-soluble carbodiimide can coat the surface of synthetic rubber latex containing an unsaturated diene while crosslinking, and can be combined with the epoxy resin of the present invention to bond the resin of the adherend to the rubber. Ru.
The water-soluble carbodiimide is preferably a water-soluble salt such as a hydrochloride or a sulfate. More specifically, the water-soluble carbodiimide includes 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC); 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide-meth-p -Water-soluble salts of 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide such as toluene sulfate; 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmol Examples include triazine condensing agents such as phorinium chloride (DMT-MM), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) is preferably used.
In the thermosetting composition used as a rubber-resin adhesive, the content of water-soluble carbodiimide is not particularly limited, but is preferably 0.1 to 15% by mass on a solid content basis. It is more preferably 0.3 to 10% by weight, even more preferably 0.5 to 7% by weight, even more preferably 0.5 to 5% by weight.
水溶性カルボジイミドは、塩酸塩、硫酸塩等の水溶性塩類であることが好ましい。水溶性カルボジイミドとして、より具体的には、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC);1-シクロへキシル-3-(2-モルホリノエチル)カルボジイミド-メト-p-トルエン硫酸塩等の1-シクロヘキシル-3-(2-モルホリノエチル)カルボジイミドの水溶性塩類;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)等のトリアジン系縮合剤類;等を例示することができ、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)が好適に使用される。
ゴム-樹脂間接着剤として使用される熱硬化性組成物において、水溶性カルボジイミドの含有量は、特に限定はされるものではないが、固形分基準で、0.1~15質量%が好ましく、0.3~10質量%がより好ましく、0.5~7質量%がさらに好ましく、0.5~5質量%がよりさらに好ましい。 It is presumed that the water-soluble carbodiimide can coat the surface of synthetic rubber latex containing an unsaturated diene while crosslinking, and can be combined with the epoxy resin of the present invention to bond the resin of the adherend to the rubber. Ru.
The water-soluble carbodiimide is preferably a water-soluble salt such as a hydrochloride or a sulfate. More specifically, the water-soluble carbodiimide includes 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC); 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide-meth-p -Water-soluble salts of 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide such as toluene sulfate; 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmol Examples include triazine condensing agents such as phorinium chloride (DMT-MM), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) is preferably used.
In the thermosetting composition used as a rubber-resin adhesive, the content of water-soluble carbodiimide is not particularly limited, but is preferably 0.1 to 15% by mass on a solid content basis. It is more preferably 0.3 to 10% by weight, even more preferably 0.5 to 7% by weight, even more preferably 0.5 to 5% by weight.
また、ゴム-樹脂間接着剤において使用される本発明のエポキシ樹脂は、1分子中に2個以上のエポキシ基を有すればよいが、好ましくは1分子中に4個以上のエポキシ基を含有するとよい。
ゴム-樹脂間接着剤のエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、特に限定はされるものではないが、固形分基準で、0.1~40質量%であることが好ましく、更に好ましくは0.4~40質量%で、特に好ましくは1.0~30質量%である。
ゴム-樹脂間接着剤用のエポキシ樹脂含有組成物は、特に限定されないが、各成分が水に分散又は溶解させて分散液として使用されることが好ましい。 Further, the epoxy resin of the present invention used in the rubber-resin adhesive may have two or more epoxy groups in one molecule, but preferably contains four or more epoxy groups in one molecule. It's good to do that.
In the epoxy resin-containing composition of the rubber-resin adhesive, the content of the epoxy resin is not particularly limited, but is preferably 0.1 to 40% by mass on a solid content basis, and It is preferably 0.4 to 40% by weight, particularly preferably 1.0 to 30% by weight.
The epoxy resin-containing composition for the rubber-resin adhesive is not particularly limited, but each component is preferably dispersed or dissolved in water and used as a dispersion.
ゴム-樹脂間接着剤のエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、特に限定はされるものではないが、固形分基準で、0.1~40質量%であることが好ましく、更に好ましくは0.4~40質量%で、特に好ましくは1.0~30質量%である。
ゴム-樹脂間接着剤用のエポキシ樹脂含有組成物は、特に限定されないが、各成分が水に分散又は溶解させて分散液として使用されることが好ましい。 Further, the epoxy resin of the present invention used in the rubber-resin adhesive may have two or more epoxy groups in one molecule, but preferably contains four or more epoxy groups in one molecule. It's good to do that.
In the epoxy resin-containing composition of the rubber-resin adhesive, the content of the epoxy resin is not particularly limited, but is preferably 0.1 to 40% by mass on a solid content basis, and It is preferably 0.4 to 40% by weight, particularly preferably 1.0 to 30% by weight.
The epoxy resin-containing composition for the rubber-resin adhesive is not particularly limited, but each component is preferably dispersed or dissolved in water and used as a dispersion.
接着剤用途では、電子機器用途で使用してもよく、例えば、基材と半導体素子との接合に使用される用途に使用されてもよい。より具体的には、ダイアタッチ用途などで使用されてもよく、また、例えば銀粒子が配合されて銀ペースト材料として使用されてもよい。
銀ペースト材料として使用される場合、エポキシ樹脂含有組成物は、銀粒子と、本発明のエポキシ樹脂と、硬化剤とを含むとよく、また、該組成物は、溶剤により希釈されて使用されるとよい。エポキシ樹脂含有組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含んでもよい。また、硬化剤としては、フェノール誘導体、ジシアンジアミドが好ましく、これらは併用してもよい。
エポキシ樹脂含有組成物において、銀粒子の含有量は、固形分基準で、例えば、70~98質量%、好ましくは75~95質量%以下である。また、エポキシ樹脂の含有量は、固形分基準で、例えば1~20質量%、好ましくは2~15質量%である。また、硬化剤の含有量は、例えば0.1~1.5質量%、好ましくは0.2~1.0質量%である。 In adhesive applications, it may be used in electronic equipment applications, for example, in applications where a base material and a semiconductor element are bonded together. More specifically, it may be used for die attach purposes, and it may also be used as a silver paste material, for example, with silver particles added thereto.
When used as a silver paste material, the epoxy resin-containing composition may include silver particles, the epoxy resin of the present invention, and a curing agent, and the composition is used after being diluted with a solvent. Good. The epoxy resin-containing composition may contain epoxy resins other than the epoxy resin of the present invention. Further, as the curing agent, phenol derivatives and dicyandiamide are preferable, and these may be used in combination.
In the epoxy resin-containing composition, the content of silver particles is, for example, 70 to 98% by mass, preferably 75 to 95% by mass, based on solid content. Further, the content of the epoxy resin is, for example, 1 to 20% by mass, preferably 2 to 15% by mass, based on solid content. Further, the content of the curing agent is, for example, 0.1 to 1.5% by mass, preferably 0.2 to 1.0% by mass.
銀ペースト材料として使用される場合、エポキシ樹脂含有組成物は、銀粒子と、本発明のエポキシ樹脂と、硬化剤とを含むとよく、また、該組成物は、溶剤により希釈されて使用されるとよい。エポキシ樹脂含有組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含んでもよい。また、硬化剤としては、フェノール誘導体、ジシアンジアミドが好ましく、これらは併用してもよい。
エポキシ樹脂含有組成物において、銀粒子の含有量は、固形分基準で、例えば、70~98質量%、好ましくは75~95質量%以下である。また、エポキシ樹脂の含有量は、固形分基準で、例えば1~20質量%、好ましくは2~15質量%である。また、硬化剤の含有量は、例えば0.1~1.5質量%、好ましくは0.2~1.0質量%である。 In adhesive applications, it may be used in electronic equipment applications, for example, in applications where a base material and a semiconductor element are bonded together. More specifically, it may be used for die attach purposes, and it may also be used as a silver paste material, for example, with silver particles added thereto.
When used as a silver paste material, the epoxy resin-containing composition may include silver particles, the epoxy resin of the present invention, and a curing agent, and the composition is used after being diluted with a solvent. Good. The epoxy resin-containing composition may contain epoxy resins other than the epoxy resin of the present invention. Further, as the curing agent, phenol derivatives and dicyandiamide are preferable, and these may be used in combination.
In the epoxy resin-containing composition, the content of silver particles is, for example, 70 to 98% by mass, preferably 75 to 95% by mass, based on solid content. Further, the content of the epoxy resin is, for example, 1 to 20% by mass, preferably 2 to 15% by mass, based on solid content. Further, the content of the curing agent is, for example, 0.1 to 1.5% by mass, preferably 0.2 to 1.0% by mass.
接着剤用途として使用される場合、フレキシブル基板用に使用されてもよい。フレキシブル基板用の接着剤としては、例えば銅箔と、基板を構成するポリイミドフィルムを接着するために使用され、例えば、ボンディングフィルムとして使用されてもよい。
フレキシブル基板用のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂と、硬化剤を含有する硬化性樹脂組成物であるとよく、また、本発明のエポキシ樹脂以外のエポキシ樹脂や、エポキシ樹脂以外の樹脂を含有してもよく、そのような樹脂としては、ポリエステルポリウレタン樹脂などのポリエステル系重合体などが挙げられる。なお、ポリエステルポリウレタン樹脂は、その原料としてポリエステルポリオールと、ポリイソシアネートと、ポリエステルポリオール以外のジオール化合物などの鎖延長剤とを少なくとも反応させてなる樹脂であるとよい。また、ポリエステルポリウレタン樹脂に加えて、カルボキシ基又はカルボン酸無水物構造を有する樹脂を含有してもよい。
また、硬化剤としては、上記したものを適宜使用してもよいが、上記以外でもイミダゾールシラン化合物などのイミダゾール誘導体を使用してもよい。
さらに、以上のフレキシブル基板用におけるエポキシ樹脂含有組成物は、有機フィラー、金属フィラー、金属フィラー以外の無機フィラーなどを含んでいてもよい。
以上のフレキシブル基板用に使用されるエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、上記したフィラー以外の成分の合計量基準で、1~60質量%であることが好ましく、2~40質量%であることがより好ましく、3~20質量%であることがさらに好ましい。 When used as an adhesive, it may also be used for flexible substrates. As an adhesive for a flexible substrate, it is used, for example, to bond a copper foil and a polyimide film constituting the substrate, and may be used, for example, as a bonding film.
The epoxy resin-containing composition for flexible substrates is preferably a curable resin composition containing the epoxy resin of the present invention and a curing agent, and may also contain epoxy resins other than the epoxy resin of the present invention, or epoxy resins other than the epoxy resin of the present invention. It may contain a resin, and such resins include polyester polymers such as polyester polyurethane resins. The polyester polyurethane resin is preferably a resin obtained by reacting at least a polyester polyol, a polyisocyanate, and a chain extender such as a diol compound other than the polyester polyol as raw materials. Further, in addition to the polyester polyurethane resin, a resin having a carboxy group or a carboxylic acid anhydride structure may be contained.
Further, as the curing agent, those mentioned above may be used as appropriate, but imidazole derivatives such as imidazole silane compounds may also be used in addition to those mentioned above.
Furthermore, the above-described epoxy resin-containing composition for flexible substrates may contain an organic filler, a metal filler, an inorganic filler other than the metal filler, and the like.
In the epoxy resin-containing composition used for the above flexible substrate, the content of the epoxy resin is preferably 1 to 60% by mass, and preferably 2 to 40% by mass, based on the total amount of components other than the filler. %, and even more preferably 3 to 20% by mass.
フレキシブル基板用のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂と、硬化剤を含有する硬化性樹脂組成物であるとよく、また、本発明のエポキシ樹脂以外のエポキシ樹脂や、エポキシ樹脂以外の樹脂を含有してもよく、そのような樹脂としては、ポリエステルポリウレタン樹脂などのポリエステル系重合体などが挙げられる。なお、ポリエステルポリウレタン樹脂は、その原料としてポリエステルポリオールと、ポリイソシアネートと、ポリエステルポリオール以外のジオール化合物などの鎖延長剤とを少なくとも反応させてなる樹脂であるとよい。また、ポリエステルポリウレタン樹脂に加えて、カルボキシ基又はカルボン酸無水物構造を有する樹脂を含有してもよい。
また、硬化剤としては、上記したものを適宜使用してもよいが、上記以外でもイミダゾールシラン化合物などのイミダゾール誘導体を使用してもよい。
さらに、以上のフレキシブル基板用におけるエポキシ樹脂含有組成物は、有機フィラー、金属フィラー、金属フィラー以外の無機フィラーなどを含んでいてもよい。
以上のフレキシブル基板用に使用されるエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、上記したフィラー以外の成分の合計量基準で、1~60質量%であることが好ましく、2~40質量%であることがより好ましく、3~20質量%であることがさらに好ましい。 When used as an adhesive, it may also be used for flexible substrates. As an adhesive for a flexible substrate, it is used, for example, to bond a copper foil and a polyimide film constituting the substrate, and may be used, for example, as a bonding film.
The epoxy resin-containing composition for flexible substrates is preferably a curable resin composition containing the epoxy resin of the present invention and a curing agent, and may also contain epoxy resins other than the epoxy resin of the present invention, or epoxy resins other than the epoxy resin of the present invention. It may contain a resin, and such resins include polyester polymers such as polyester polyurethane resins. The polyester polyurethane resin is preferably a resin obtained by reacting at least a polyester polyol, a polyisocyanate, and a chain extender such as a diol compound other than the polyester polyol as raw materials. Further, in addition to the polyester polyurethane resin, a resin having a carboxy group or a carboxylic acid anhydride structure may be contained.
Further, as the curing agent, those mentioned above may be used as appropriate, but imidazole derivatives such as imidazole silane compounds may also be used in addition to those mentioned above.
Furthermore, the above-described epoxy resin-containing composition for flexible substrates may contain an organic filler, a metal filler, an inorganic filler other than the metal filler, and the like.
In the epoxy resin-containing composition used for the above flexible substrate, the content of the epoxy resin is preferably 1 to 60% by mass, and preferably 2 to 40% by mass, based on the total amount of components other than the filler. %, and even more preferably 3 to 20% by mass.
(塗料用途)
本発明のエポキシ樹脂は、塗料用途に使用してもよく、塗料用のバインダー樹脂として使用してもよい。具体的には、例えば防曇用塗料として使用される場合には、本発明のエポキシ樹脂と、シリカ粒子とを含む塗料組成物などにおいて使用すればよい。本塗料組成物においては、適宜シランカップリング剤などが含有されていてもよい。防曇用塗料として使用される場合、塗料組成物は、各成分を水などの液状媒体に分散又は溶解させて分散液として使用されることが好ましい。また、バインダー樹脂としては、本発明のエポキシ樹脂以外のエポキシ樹脂や、エポキシ樹脂以外の樹脂を含んでもよい。
シリカ粒子としては、水分散シリカが好ましく、また、コロイダルシリカなどを使用することが好ましい。また、液状媒体としては、水、有機溶剤が挙げられ、水、或いは、水と有機溶剤の混合溶剤が好ましく、混合溶媒の場合には有機溶剤としては、シリカを分散できるものであればよく、例えばエチレングリコールモノブチルエーテルなどが使用されるとよい。上記塗料用組成物において、エポキシ樹脂の含有量は、シリカ粒子100質量部に対して、0.1~1000質量部であってもよく、0.5~500質量部であってもよく、1~100質量部であってもよい。 (Paint application)
The epoxy resin of the present invention may be used for paint purposes, or may be used as a binder resin for paints. Specifically, when used as an anti-fog coating, for example, it may be used in a coating composition containing the epoxy resin of the present invention and silica particles. The present coating composition may contain a silane coupling agent and the like as appropriate. When used as an anti-fog coating, the coating composition is preferably used as a dispersion by dispersing or dissolving each component in a liquid medium such as water. Further, the binder resin may include an epoxy resin other than the epoxy resin of the present invention or a resin other than the epoxy resin.
As the silica particles, water-dispersed silica is preferred, and colloidal silica or the like is preferably used. In addition, examples of the liquid medium include water and organic solvents, preferably water or a mixed solvent of water and an organic solvent. In the case of a mixed solvent, the organic solvent may be any organic solvent as long as it can disperse silica. For example, ethylene glycol monobutyl ether may be used. In the above coating composition, the content of the epoxy resin may be 0.1 to 1000 parts by mass, 0.5 to 500 parts by mass, and 1 to 100 parts by mass, based on 100 parts by mass of silica particles. It may be up to 100 parts by mass.
本発明のエポキシ樹脂は、塗料用途に使用してもよく、塗料用のバインダー樹脂として使用してもよい。具体的には、例えば防曇用塗料として使用される場合には、本発明のエポキシ樹脂と、シリカ粒子とを含む塗料組成物などにおいて使用すればよい。本塗料組成物においては、適宜シランカップリング剤などが含有されていてもよい。防曇用塗料として使用される場合、塗料組成物は、各成分を水などの液状媒体に分散又は溶解させて分散液として使用されることが好ましい。また、バインダー樹脂としては、本発明のエポキシ樹脂以外のエポキシ樹脂や、エポキシ樹脂以外の樹脂を含んでもよい。
シリカ粒子としては、水分散シリカが好ましく、また、コロイダルシリカなどを使用することが好ましい。また、液状媒体としては、水、有機溶剤が挙げられ、水、或いは、水と有機溶剤の混合溶剤が好ましく、混合溶媒の場合には有機溶剤としては、シリカを分散できるものであればよく、例えばエチレングリコールモノブチルエーテルなどが使用されるとよい。上記塗料用組成物において、エポキシ樹脂の含有量は、シリカ粒子100質量部に対して、0.1~1000質量部であってもよく、0.5~500質量部であってもよく、1~100質量部であってもよい。 (Paint application)
The epoxy resin of the present invention may be used for paint purposes, or may be used as a binder resin for paints. Specifically, when used as an anti-fog coating, for example, it may be used in a coating composition containing the epoxy resin of the present invention and silica particles. The present coating composition may contain a silane coupling agent and the like as appropriate. When used as an anti-fog coating, the coating composition is preferably used as a dispersion by dispersing or dissolving each component in a liquid medium such as water. Further, the binder resin may include an epoxy resin other than the epoxy resin of the present invention or a resin other than the epoxy resin.
As the silica particles, water-dispersed silica is preferred, and colloidal silica or the like is preferably used. In addition, examples of the liquid medium include water and organic solvents, preferably water or a mixed solvent of water and an organic solvent. In the case of a mixed solvent, the organic solvent may be any organic solvent as long as it can disperse silica. For example, ethylene glycol monobutyl ether may be used. In the above coating composition, the content of the epoxy resin may be 0.1 to 1000 parts by mass, 0.5 to 500 parts by mass, and 1 to 100 parts by mass, based on 100 parts by mass of silica particles. It may be up to 100 parts by mass.
(電着塗装用)
例えば、電着塗装用途に使用される場合には、エポキシ樹脂をアミンと反応させてアミン化エポキシ樹脂として使用してもよい。ここで、アミンの具体例としては、ブチルアミン、オクチルアミン、モノエタノールアミンなどの一級アミン;ジエチルアミン、ジブチルアミン、メチルブチルアミン、ジエタノールアミン、N-メチルエタノールアミンなどの二級アミン;ジエチレントリアミンなどの複合アミンが挙げられる。上記一級アミンは、ケトン化合物を用いてケチミン基を形成して、いわゆるブロック化により反応を制御することが可能である。また、アミンとしては、三級アミンを使用してもよく、その具体例として、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどが挙げられる。
電着塗装用の塗料組成物は、例えばアミン化エポキシ樹脂と、ブロック化ポリイソシアネート硬化剤などの硬化剤を含むとよく、また、必要に応じて、さらに顔料分散ペーストを含んでもよい。顔料分散ペーストは、顔料分散樹脂および顔料を含む。電着塗装用の塗料組成物は、エマルションなどとして使用されてもよい。 (For electrodeposition coating)
For example, when used in electrodeposition coating applications, an epoxy resin may be reacted with an amine and used as an aminated epoxy resin. Specific examples of amines include primary amines such as butylamine, octylamine, and monoethanolamine; secondary amines such as diethylamine, dibutylamine, methylbutylamine, diethanolamine, and N-methylethanolamine; and complex amines such as diethylenetriamine. Can be mentioned. The reaction of the above-mentioned primary amine can be controlled by forming a ketimine group using a ketone compound and forming a so-called block. Further, as the amine, a tertiary amine may be used, and specific examples thereof include triethylamine, N,N-dimethylbenzylamine, and N,N-dimethylethanolamine.
The coating composition for electrodeposition coating may contain, for example, an aminated epoxy resin and a curing agent such as a blocked polyisocyanate curing agent, and may further contain a pigment dispersion paste if necessary. The pigment dispersion paste includes a pigment dispersion resin and a pigment. The coating composition for electrodeposition coating may be used as an emulsion or the like.
例えば、電着塗装用途に使用される場合には、エポキシ樹脂をアミンと反応させてアミン化エポキシ樹脂として使用してもよい。ここで、アミンの具体例としては、ブチルアミン、オクチルアミン、モノエタノールアミンなどの一級アミン;ジエチルアミン、ジブチルアミン、メチルブチルアミン、ジエタノールアミン、N-メチルエタノールアミンなどの二級アミン;ジエチレントリアミンなどの複合アミンが挙げられる。上記一級アミンは、ケトン化合物を用いてケチミン基を形成して、いわゆるブロック化により反応を制御することが可能である。また、アミンとしては、三級アミンを使用してもよく、その具体例として、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどが挙げられる。
電着塗装用の塗料組成物は、例えばアミン化エポキシ樹脂と、ブロック化ポリイソシアネート硬化剤などの硬化剤を含むとよく、また、必要に応じて、さらに顔料分散ペーストを含んでもよい。顔料分散ペーストは、顔料分散樹脂および顔料を含む。電着塗装用の塗料組成物は、エマルションなどとして使用されてもよい。 (For electrodeposition coating)
For example, when used in electrodeposition coating applications, an epoxy resin may be reacted with an amine and used as an aminated epoxy resin. Specific examples of amines include primary amines such as butylamine, octylamine, and monoethanolamine; secondary amines such as diethylamine, dibutylamine, methylbutylamine, diethanolamine, and N-methylethanolamine; and complex amines such as diethylenetriamine. Can be mentioned. The reaction of the above-mentioned primary amine can be controlled by forming a ketimine group using a ketone compound and forming a so-called block. Further, as the amine, a tertiary amine may be used, and specific examples thereof include triethylamine, N,N-dimethylbenzylamine, and N,N-dimethylethanolamine.
The coating composition for electrodeposition coating may contain, for example, an aminated epoxy resin and a curing agent such as a blocked polyisocyanate curing agent, and may further contain a pigment dispersion paste if necessary. The pigment dispersion paste includes a pigment dispersion resin and a pigment. The coating composition for electrodeposition coating may be used as an emulsion or the like.
(防食用塗料)
塗料用途において、塗料組成物は、本発明のエポキシ樹脂と、硬化剤とを含む硬化組成物であってもよい。このような塗料用組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよく、また、顔料や顔料分散剤が含まれてもよく、接着性向上のためにシランカップリング剤などを含有してもよい。また、一般的に有機溶剤に希釈されて使用されてもよい。エポキシ樹脂と、硬化剤とを含む塗料組成物は、例えば防食用塗料組成物に使用されることが好ましく、中でも船舶の防食用に使用されることが好ましい。塗料用組成物において、エポキシ樹脂の含有量は、固形分基準で、好ましくは1~60質量%、より好ましくは5~50質量%である。 (Anti-corrosion paint)
In coating applications, the coating composition may be a cured composition containing the epoxy resin of the present invention and a curing agent. Such a coating composition may contain an epoxy resin other than the epoxy resin of the present invention, a pigment or a pigment dispersant, and a silane coupling agent or the like to improve adhesion. May contain. Further, it may generally be used after being diluted with an organic solvent. A coating composition containing an epoxy resin and a curing agent is preferably used, for example, as an anticorrosive coating composition, and particularly preferably used for anticorrosion of ships. In the coating composition, the content of the epoxy resin is preferably 1 to 60% by mass, more preferably 5 to 50% by mass, based on solid content.
塗料用途において、塗料組成物は、本発明のエポキシ樹脂と、硬化剤とを含む硬化組成物であってもよい。このような塗料用組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよく、また、顔料や顔料分散剤が含まれてもよく、接着性向上のためにシランカップリング剤などを含有してもよい。また、一般的に有機溶剤に希釈されて使用されてもよい。エポキシ樹脂と、硬化剤とを含む塗料組成物は、例えば防食用塗料組成物に使用されることが好ましく、中でも船舶の防食用に使用されることが好ましい。塗料用組成物において、エポキシ樹脂の含有量は、固形分基準で、好ましくは1~60質量%、より好ましくは5~50質量%である。 (Anti-corrosion paint)
In coating applications, the coating composition may be a cured composition containing the epoxy resin of the present invention and a curing agent. Such a coating composition may contain an epoxy resin other than the epoxy resin of the present invention, a pigment or a pigment dispersant, and a silane coupling agent or the like to improve adhesion. May contain. Further, it may generally be used after being diluted with an organic solvent. A coating composition containing an epoxy resin and a curing agent is preferably used, for example, as an anticorrosive coating composition, and particularly preferably used for anticorrosion of ships. In the coating composition, the content of the epoxy resin is preferably 1 to 60% by mass, more preferably 5 to 50% by mass, based on solid content.
(塗り床剤)
本発明のエポキシ樹脂は、建築、土木用途に使用されてもよく、例えば、塗り床剤などとして使用されてもよい。塗り床剤として使用される場合のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂、硬化剤を含むとよいが、さらに、無機充填剤を含むことが好ましい。無機充填剤としては、カーボンナノチューブ、シリカ、珪砂、バライト、炭酸カルシウム、タルク等の塗り床剤として使用される公知の無機充填剤が使用されるとよい。また、これら無機充填剤以外にも着色剤として使用される顔料なども適宜配合されてもよい。また、エポキシ樹脂としては、本発明以外のエポキシ樹脂を含有してもよい。
塗り床剤用のエポキシ樹脂含有組成物において、無機充填剤の含有量は、エポキシ樹脂100質量部に対して、例えば1~1000質量部程度、好ましくは10~200質量部、より好ましくは20~100質量部である。
もちろん、エポキシ樹脂含有組成物は、建築、土木用途において、塗り床剤以外において使用されてもよく、タンク用塗料、パイプ内装用塗料、外装用塗料等として使用されてもよい。また、建築、土木用途における接着剤として使用されてもよく、例えば各種構造物を接着されるために使用されもて良い。 (floor coating agent)
The epoxy resin of the present invention may be used in architecture and civil engineering applications, for example, as a floor coating agent. The epoxy resin-containing composition used as a floor coating agent preferably contains the epoxy resin of the present invention and a curing agent, and further preferably contains an inorganic filler. As the inorganic filler, known inorganic fillers used as flooring agents such as carbon nanotubes, silica, silica sand, barite, calcium carbonate, and talc may be used. In addition to these inorganic fillers, pigments used as colorants may also be appropriately blended. Furthermore, the epoxy resin may contain epoxy resins other than those of the present invention.
In the epoxy resin-containing composition for floor coating, the content of the inorganic filler is, for example, about 1 to 1000 parts by mass, preferably 10 to 200 parts by mass, more preferably 20 to 200 parts by mass, based on 100 parts by mass of the epoxy resin. It is 100 parts by mass.
Of course, the epoxy resin-containing composition may be used in construction and civil engineering applications other than as a floor coating, and may also be used as a tank paint, a pipe interior paint, an exterior paint, and the like. It may also be used as an adhesive in architecture and civil engineering applications, for example, for bonding various structures.
本発明のエポキシ樹脂は、建築、土木用途に使用されてもよく、例えば、塗り床剤などとして使用されてもよい。塗り床剤として使用される場合のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂、硬化剤を含むとよいが、さらに、無機充填剤を含むことが好ましい。無機充填剤としては、カーボンナノチューブ、シリカ、珪砂、バライト、炭酸カルシウム、タルク等の塗り床剤として使用される公知の無機充填剤が使用されるとよい。また、これら無機充填剤以外にも着色剤として使用される顔料なども適宜配合されてもよい。また、エポキシ樹脂としては、本発明以外のエポキシ樹脂を含有してもよい。
塗り床剤用のエポキシ樹脂含有組成物において、無機充填剤の含有量は、エポキシ樹脂100質量部に対して、例えば1~1000質量部程度、好ましくは10~200質量部、より好ましくは20~100質量部である。
もちろん、エポキシ樹脂含有組成物は、建築、土木用途において、塗り床剤以外において使用されてもよく、タンク用塗料、パイプ内装用塗料、外装用塗料等として使用されてもよい。また、建築、土木用途における接着剤として使用されてもよく、例えば各種構造物を接着されるために使用されもて良い。 (floor coating agent)
The epoxy resin of the present invention may be used in architecture and civil engineering applications, for example, as a floor coating agent. The epoxy resin-containing composition used as a floor coating agent preferably contains the epoxy resin of the present invention and a curing agent, and further preferably contains an inorganic filler. As the inorganic filler, known inorganic fillers used as flooring agents such as carbon nanotubes, silica, silica sand, barite, calcium carbonate, and talc may be used. In addition to these inorganic fillers, pigments used as colorants may also be appropriately blended. Furthermore, the epoxy resin may contain epoxy resins other than those of the present invention.
In the epoxy resin-containing composition for floor coating, the content of the inorganic filler is, for example, about 1 to 1000 parts by mass, preferably 10 to 200 parts by mass, more preferably 20 to 200 parts by mass, based on 100 parts by mass of the epoxy resin. It is 100 parts by mass.
Of course, the epoxy resin-containing composition may be used in construction and civil engineering applications other than as a floor coating, and may also be used as a tank paint, a pipe interior paint, an exterior paint, and the like. It may also be used as an adhesive in architecture and civil engineering applications, for example, for bonding various structures.
(封止材用途)
本発明のエポキシ樹脂は、封止材用途、好ましくは被覆電線封止用に使用される場合、例えば、エポキシ樹脂と硬化剤とを含む硬化性組成物として使用されるとよい。封止材用途において使用される硬化剤は、上記硬化剤が適宜使用できるが、アミン系硬化剤、メルカプト系硬化剤が好ましく使用できる。また、封止材用途に使用される硬化性組成物は、シランカップリング剤を含有することが好ましい。 (Encapsulant use)
When the epoxy resin of the present invention is used as a sealing material, preferably for sealing a covered electric wire, it may be used, for example, as a curable composition containing an epoxy resin and a curing agent. As the curing agent used in the sealant application, the above-mentioned curing agents can be used as appropriate, but amine-based curing agents and mercapto-based curing agents can be preferably used. Moreover, it is preferable that the curable composition used as a sealant contains a silane coupling agent.
本発明のエポキシ樹脂は、封止材用途、好ましくは被覆電線封止用に使用される場合、例えば、エポキシ樹脂と硬化剤とを含む硬化性組成物として使用されるとよい。封止材用途において使用される硬化剤は、上記硬化剤が適宜使用できるが、アミン系硬化剤、メルカプト系硬化剤が好ましく使用できる。また、封止材用途に使用される硬化性組成物は、シランカップリング剤を含有することが好ましい。 (Encapsulant use)
When the epoxy resin of the present invention is used as a sealing material, preferably for sealing a covered electric wire, it may be used, for example, as a curable composition containing an epoxy resin and a curing agent. As the curing agent used in the sealant application, the above-mentioned curing agents can be used as appropriate, but amine-based curing agents and mercapto-based curing agents can be preferably used. Moreover, it is preferable that the curable composition used as a sealant contains a silane coupling agent.
(繊維集束剤)
本発明のエポキシ樹脂は、繊維集束剤として使用される場合、スルホン酸塩基を有するポリエステル樹脂と併用されるとよい。スルホン酸塩基を有するポリエステル樹脂としてては、芳香族ポリエステル樹脂や脂肪族ポリエステル樹脂等を使用することができるが、芳香族ポリエステル樹脂を使用することが好ましい。芳香族ポリエステル樹脂としては、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸由来の構造単位を有することが好ましい。
また、繊維集束剤用のエポキシ樹脂含有組成物は、上記したエポキシ樹脂及びスルホン酸塩基を有するポリエステル樹脂に加えて、界面活性剤を含有することが好ましく、界面活性剤としては、芳香族非イオン界面活性剤が好ましい。芳香族非イオン界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンスチレン化フェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレンクミルフェニルエーテ、ポリオキシアルキレンナフチルフェニルエーテ、ポリオキシアルキレンスチレン化(アルキルフェニルエーテル)などが挙げられ、これらの中では、ポリオキシエチレンスチレン化フェニルエーテルなどのポリオキシアルキレンスチレン化フェニルエーテが好ましい。
繊維集束剤用のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよい。
繊維集束剤用のエポキシ樹脂含有組成物は、水性の組成物として使用されることが好ましく、例えば水系分散剤として使用されることが好ましい。
繊維集束剤用のエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、固形分基準で、例えば75~95質量%であるが、好ましくは80~95質量%が好ましい。 (fiber sizing agent)
When the epoxy resin of the present invention is used as a fiber sizing agent, it may be used in combination with a polyester resin having a sulfonic acid group. As the polyester resin having a sulfonic acid group, an aromatic polyester resin, an aliphatic polyester resin, etc. can be used, but it is preferable to use an aromatic polyester resin. The aromatic polyester resin preferably has a structural unit derived from an aromatic dicarboxylic acid such as isophthalic acid or terephthalic acid.
In addition, the epoxy resin-containing composition for the fiber sizing agent preferably contains a surfactant in addition to the above-mentioned epoxy resin and polyester resin having a sulfonic acid group. Surfactants are preferred. Aromatic nonionic surfactants include polyoxyalkylene alkylphenyl ether, polyoxyalkylene styrenated phenyl ether, polyoxyalkylene benzylphenyl ether, polyoxyalkylene cumyl phenyl ether, polyoxyalkylene naphthylphenyl ether, polyoxyalkylene Examples include styrenated phenyl ethers (alkylphenyl ethers), and among these, polyoxyalkylene styrenated phenyl ethers such as polyoxyethylene styrenated phenyl ethers are preferred.
The epoxy resin-containing composition for fiber sizing agent may contain epoxy resins other than the epoxy resin of the present invention.
The epoxy resin-containing composition for a fiber sizing agent is preferably used as an aqueous composition, for example, as an aqueous dispersant.
In the epoxy resin-containing composition for a fiber sizing agent, the content of the epoxy resin is, for example, 75 to 95% by mass, and preferably 80 to 95% by mass, based on the solid content.
本発明のエポキシ樹脂は、繊維集束剤として使用される場合、スルホン酸塩基を有するポリエステル樹脂と併用されるとよい。スルホン酸塩基を有するポリエステル樹脂としてては、芳香族ポリエステル樹脂や脂肪族ポリエステル樹脂等を使用することができるが、芳香族ポリエステル樹脂を使用することが好ましい。芳香族ポリエステル樹脂としては、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸由来の構造単位を有することが好ましい。
また、繊維集束剤用のエポキシ樹脂含有組成物は、上記したエポキシ樹脂及びスルホン酸塩基を有するポリエステル樹脂に加えて、界面活性剤を含有することが好ましく、界面活性剤としては、芳香族非イオン界面活性剤が好ましい。芳香族非イオン界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンスチレン化フェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレンクミルフェニルエーテ、ポリオキシアルキレンナフチルフェニルエーテ、ポリオキシアルキレンスチレン化(アルキルフェニルエーテル)などが挙げられ、これらの中では、ポリオキシエチレンスチレン化フェニルエーテルなどのポリオキシアルキレンスチレン化フェニルエーテが好ましい。
繊維集束剤用のエポキシ樹脂含有組成物は、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してもよい。
繊維集束剤用のエポキシ樹脂含有組成物は、水性の組成物として使用されることが好ましく、例えば水系分散剤として使用されることが好ましい。
繊維集束剤用のエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は、固形分基準で、例えば75~95質量%であるが、好ましくは80~95質量%が好ましい。 (fiber sizing agent)
When the epoxy resin of the present invention is used as a fiber sizing agent, it may be used in combination with a polyester resin having a sulfonic acid group. As the polyester resin having a sulfonic acid group, an aromatic polyester resin, an aliphatic polyester resin, etc. can be used, but it is preferable to use an aromatic polyester resin. The aromatic polyester resin preferably has a structural unit derived from an aromatic dicarboxylic acid such as isophthalic acid or terephthalic acid.
In addition, the epoxy resin-containing composition for the fiber sizing agent preferably contains a surfactant in addition to the above-mentioned epoxy resin and polyester resin having a sulfonic acid group. Surfactants are preferred. Aromatic nonionic surfactants include polyoxyalkylene alkylphenyl ether, polyoxyalkylene styrenated phenyl ether, polyoxyalkylene benzylphenyl ether, polyoxyalkylene cumyl phenyl ether, polyoxyalkylene naphthylphenyl ether, polyoxyalkylene Examples include styrenated phenyl ethers (alkylphenyl ethers), and among these, polyoxyalkylene styrenated phenyl ethers such as polyoxyethylene styrenated phenyl ethers are preferred.
The epoxy resin-containing composition for fiber sizing agent may contain epoxy resins other than the epoxy resin of the present invention.
The epoxy resin-containing composition for a fiber sizing agent is preferably used as an aqueous composition, for example, as an aqueous dispersant.
In the epoxy resin-containing composition for a fiber sizing agent, the content of the epoxy resin is, for example, 75 to 95% by mass, and preferably 80 to 95% by mass, based on the solid content.
(プリプレグ用途)
本発明のエポキシ樹脂は、プリプレグ用途に使用してもよく、プリプレグ用途に使用される強化繊維などの繊維材料に含浸されるマトリクス樹脂として使用されるとよい。
マトリクス樹脂として使用される場合、エポキシ樹脂含有組成物は、硬化性組成物であればよく、本発明のエポキシ樹脂と硬化剤を含有すればよい。
また、エポキシ樹脂含有組成物において、本発明のエポキシ樹脂は樹脂成分として単独で使用されてもよいが、他の樹脂成分と併用されてもよく、本発明のエポキシ樹脂以外のエポキシ樹脂、多官能(メタ)アクリレート化合物、シアナト基を2つ以上含有するシアネートエステル樹脂などが含有されてもよい。また、エポキシ樹脂含有組成物は、熱可塑性樹脂が含有されることも好ましい。また、プリプレグ用途に使用されるエポキシ樹脂含有組成物は、難燃剤を含有してもよい。難燃剤としては、リン酸エステルなどのリン含有化合物、赤リン、メラミン、メラミンシアヌレート、メラミンイソシアヌレートなどの窒素含有化合物、金属水酸化物、金属酸化物などが挙げられる。
プリプレグ用途に使用されるエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は20~99質量%程度であることが好ましく、50~80質量%程度であることがより好ましい。また硬化剤の含有量は、1~25質量%が好ましく、2~20質量%がより好ましい。 (Prepreg application)
The epoxy resin of the present invention may be used for prepreg applications, and is preferably used as a matrix resin to be impregnated into fiber materials such as reinforcing fibers used for prepreg applications.
When used as a matrix resin, the epoxy resin-containing composition may be a curable composition and may contain the epoxy resin of the present invention and a curing agent.
In addition, in the epoxy resin-containing composition, the epoxy resin of the present invention may be used alone as a resin component, but it may also be used in combination with other resin components, and epoxy resins other than the epoxy resin of the present invention, polyfunctional A (meth)acrylate compound, a cyanate ester resin containing two or more cyanato groups, etc. may be contained. Moreover, it is also preferable that the epoxy resin-containing composition contains a thermoplastic resin. Furthermore, the epoxy resin-containing composition used for prepreg applications may contain a flame retardant. Examples of the flame retardant include phosphorus-containing compounds such as phosphoric acid esters, nitrogen-containing compounds such as red phosphorus, melamine, melamine cyanurate, and melamine isocyanurate, metal hydroxides, metal oxides, and the like.
In the epoxy resin-containing composition used for prepreg applications, the content of epoxy resin is preferably about 20 to 99% by mass, more preferably about 50 to 80% by mass. Further, the content of the curing agent is preferably 1 to 25% by mass, more preferably 2 to 20% by mass.
本発明のエポキシ樹脂は、プリプレグ用途に使用してもよく、プリプレグ用途に使用される強化繊維などの繊維材料に含浸されるマトリクス樹脂として使用されるとよい。
マトリクス樹脂として使用される場合、エポキシ樹脂含有組成物は、硬化性組成物であればよく、本発明のエポキシ樹脂と硬化剤を含有すればよい。
また、エポキシ樹脂含有組成物において、本発明のエポキシ樹脂は樹脂成分として単独で使用されてもよいが、他の樹脂成分と併用されてもよく、本発明のエポキシ樹脂以外のエポキシ樹脂、多官能(メタ)アクリレート化合物、シアナト基を2つ以上含有するシアネートエステル樹脂などが含有されてもよい。また、エポキシ樹脂含有組成物は、熱可塑性樹脂が含有されることも好ましい。また、プリプレグ用途に使用されるエポキシ樹脂含有組成物は、難燃剤を含有してもよい。難燃剤としては、リン酸エステルなどのリン含有化合物、赤リン、メラミン、メラミンシアヌレート、メラミンイソシアヌレートなどの窒素含有化合物、金属水酸化物、金属酸化物などが挙げられる。
プリプレグ用途に使用されるエポキシ樹脂含有組成物において、エポキシ樹脂の含有量は20~99質量%程度であることが好ましく、50~80質量%程度であることがより好ましい。また硬化剤の含有量は、1~25質量%が好ましく、2~20質量%がより好ましい。 (Prepreg application)
The epoxy resin of the present invention may be used for prepreg applications, and is preferably used as a matrix resin to be impregnated into fiber materials such as reinforcing fibers used for prepreg applications.
When used as a matrix resin, the epoxy resin-containing composition may be a curable composition and may contain the epoxy resin of the present invention and a curing agent.
In addition, in the epoxy resin-containing composition, the epoxy resin of the present invention may be used alone as a resin component, but it may also be used in combination with other resin components, and epoxy resins other than the epoxy resin of the present invention, polyfunctional A (meth)acrylate compound, a cyanate ester resin containing two or more cyanato groups, etc. may be contained. Moreover, it is also preferable that the epoxy resin-containing composition contains a thermoplastic resin. Furthermore, the epoxy resin-containing composition used for prepreg applications may contain a flame retardant. Examples of the flame retardant include phosphorus-containing compounds such as phosphoric acid esters, nitrogen-containing compounds such as red phosphorus, melamine, melamine cyanurate, and melamine isocyanurate, metal hydroxides, metal oxides, and the like.
In the epoxy resin-containing composition used for prepreg applications, the content of epoxy resin is preferably about 20 to 99% by mass, more preferably about 50 to 80% by mass. Further, the content of the curing agent is preferably 1 to 25% by mass, more preferably 2 to 20% by mass.
(電気絶縁材料及び保護材料)
本発明のエポキシ樹脂は、電子基板などにおいて使用されてもよく、具体的には、保護材料や、電気絶縁層などを形成するための電気絶縁材料に使用されてもよい。
電気絶縁材料や保護材料に使用される場合には、本発明のエポキシ樹脂と、硬化剤に加えて、フィラーを含有する硬化性樹脂組成物とよい。フィラーは絶縁性を有するとよい。そのようなフィラーとしては、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素等が挙げられる。また、フィラーとしては、上記した無機フィラー以外を使用してもよく、有機フィラーを使用してもよい。硬化性樹脂組成物において、フィラーの含有量は、固形分基準で、例えば50~90質量%、好ましくは65~85質量%である。 (Electrical insulation materials and protective materials)
The epoxy resin of the present invention may be used in electronic substrates and the like, and specifically, it may be used as a protective material and an electrically insulating material for forming an electrically insulating layer.
When used for electrical insulation materials or protective materials, a curable resin composition containing a filler in addition to the epoxy resin of the present invention and a curing agent is preferable. The filler is preferably insulating. Such fillers include silica, alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, and the like. Further, as the filler, fillers other than the above-mentioned inorganic fillers may be used, or organic fillers may be used. In the curable resin composition, the filler content is, for example, 50 to 90% by mass, preferably 65 to 85% by mass, based on solid content.
本発明のエポキシ樹脂は、電子基板などにおいて使用されてもよく、具体的には、保護材料や、電気絶縁層などを形成するための電気絶縁材料に使用されてもよい。
電気絶縁材料や保護材料に使用される場合には、本発明のエポキシ樹脂と、硬化剤に加えて、フィラーを含有する硬化性樹脂組成物とよい。フィラーは絶縁性を有するとよい。そのようなフィラーとしては、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素等が挙げられる。また、フィラーとしては、上記した無機フィラー以外を使用してもよく、有機フィラーを使用してもよい。硬化性樹脂組成物において、フィラーの含有量は、固形分基準で、例えば50~90質量%、好ましくは65~85質量%である。 (Electrical insulation materials and protective materials)
The epoxy resin of the present invention may be used in electronic substrates and the like, and specifically, it may be used as a protective material and an electrically insulating material for forming an electrically insulating layer.
When used for electrical insulation materials or protective materials, a curable resin composition containing a filler in addition to the epoxy resin of the present invention and a curing agent is preferable. The filler is preferably insulating. Such fillers include silica, alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, and the like. Further, as the filler, fillers other than the above-mentioned inorganic fillers may be used, or organic fillers may be used. In the curable resin composition, the filler content is, for example, 50 to 90% by mass, preferably 65 to 85% by mass, based on solid content.
電気絶縁材料や保護材料用途に使用される硬化性樹脂組成物は、本発明のエポキシ樹脂以外の樹脂を含有してもよく、例えば、共役ジエン系ゴムなどのゴム状高分子化合物を含有してもよい。ゴム状高分子化合物の含有量は、フィラー以外の成分全量の固形分基準で、例えば30~70質量%、好ましくは40~60質量%である。また、本発明のエポキシ樹脂以外のエポキシ樹脂を含有してよく、フェノキシ樹脂などのエポキシ樹脂以外の熱硬化性樹脂を含有してよい。また、シランカップリング剤なども含有してもよい。
電気絶縁材料や保護材料に使用される硬化性樹脂組成物においてエポキシ樹脂の含有量は、フィラー以外の成分全量の固形分基準で、例えば20~70質量%、好ましくは25~40質量%である。 Curable resin compositions used for electrical insulation materials and protective materials may contain resins other than the epoxy resin of the present invention, for example, may contain rubbery polymer compounds such as conjugated diene rubber. Good too. The content of the rubbery polymer compound is, for example, 30 to 70% by mass, preferably 40 to 60% by mass, based on the solid content of all components other than the filler. Further, it may contain an epoxy resin other than the epoxy resin of the present invention, and may contain a thermosetting resin other than the epoxy resin, such as a phenoxy resin. It may also contain a silane coupling agent.
In the curable resin composition used for electrical insulation materials and protective materials, the content of epoxy resin is, for example, 20 to 70% by mass, preferably 25 to 40% by mass, based on the solid content of the total amount of components other than fillers. .
電気絶縁材料や保護材料に使用される硬化性樹脂組成物においてエポキシ樹脂の含有量は、フィラー以外の成分全量の固形分基準で、例えば20~70質量%、好ましくは25~40質量%である。 Curable resin compositions used for electrical insulation materials and protective materials may contain resins other than the epoxy resin of the present invention, for example, may contain rubbery polymer compounds such as conjugated diene rubber. Good too. The content of the rubbery polymer compound is, for example, 30 to 70% by mass, preferably 40 to 60% by mass, based on the solid content of all components other than the filler. Further, it may contain an epoxy resin other than the epoxy resin of the present invention, and may contain a thermosetting resin other than the epoxy resin, such as a phenoxy resin. It may also contain a silane coupling agent.
In the curable resin composition used for electrical insulation materials and protective materials, the content of epoxy resin is, for example, 20 to 70% by mass, preferably 25 to 40% by mass, based on the solid content of the total amount of components other than fillers. .
(感光性樹脂)
電子基板の電気絶縁材料や保護材料として使用される場合には、エポキシ樹脂含有組成物は、光感光性樹脂組成物として使用されてもよく、そのような場合には、エポキシ樹脂に加えて、カルボキシル基含有感光性樹脂などの感光性樹脂、光重合開始剤、反応性希釈剤、感光性モノマー、フィラーなどを含有する組成物であってもよい。
また、感光性樹脂組成物として使用される場合には、上記した電子基板の保護材料や電気絶縁材料以外の用途に使用されてもよい。感光性樹脂組成物に使用される場合、本発明のエポキシ樹脂は、ヨードニウム塩類、スルホニウム塩類、ピリジニウム塩類等光酸発生剤と併用して使用されてもよい。光酸発生剤は、光照射によって酸を発生する剤であり、エポキシ樹脂は、光酸発生剤の分解によって生じる酸によって重合するとよい。
また、上記の通りに感光性樹脂組成物として使用される場合の用途としては、特に限定されないが、歯科用が挙げられ、より具体的には損傷をうけた歯牙の修復に用いる充填修復材料や、義歯床の裏装材、歯冠修復用のハイブリッドセラミックス等が挙げられる。また、以下で説明するレンズ用途などに使用されてもよい。 (Photosensitive resin)
When used as an electrical insulation material or protective material for electronic boards, the epoxy resin-containing composition may be used as a photosensitive resin composition, and in such a case, in addition to the epoxy resin, It may be a composition containing a photosensitive resin such as a carboxyl group-containing photosensitive resin, a photopolymerization initiator, a reactive diluent, a photosensitive monomer, a filler, and the like.
Furthermore, when used as a photosensitive resin composition, it may be used for purposes other than the above-mentioned protective material for electronic substrates and electrical insulating material. When used in a photosensitive resin composition, the epoxy resin of the present invention may be used in combination with a photoacid generator such as iodonium salts, sulfonium salts, and pyridinium salts. The photoacid generator is an agent that generates acid upon irradiation with light, and the epoxy resin is preferably polymerized by the acid generated by decomposition of the photoacid generator.
In addition, when used as a photosensitive resin composition as described above, applications include, but are not limited to, dental applications, and more specifically, filling and restoring materials used for repairing damaged teeth. , lining materials for denture bases, hybrid ceramics for dental crown restorations, etc. Further, it may be used for lens applications as described below.
電子基板の電気絶縁材料や保護材料として使用される場合には、エポキシ樹脂含有組成物は、光感光性樹脂組成物として使用されてもよく、そのような場合には、エポキシ樹脂に加えて、カルボキシル基含有感光性樹脂などの感光性樹脂、光重合開始剤、反応性希釈剤、感光性モノマー、フィラーなどを含有する組成物であってもよい。
また、感光性樹脂組成物として使用される場合には、上記した電子基板の保護材料や電気絶縁材料以外の用途に使用されてもよい。感光性樹脂組成物に使用される場合、本発明のエポキシ樹脂は、ヨードニウム塩類、スルホニウム塩類、ピリジニウム塩類等光酸発生剤と併用して使用されてもよい。光酸発生剤は、光照射によって酸を発生する剤であり、エポキシ樹脂は、光酸発生剤の分解によって生じる酸によって重合するとよい。
また、上記の通りに感光性樹脂組成物として使用される場合の用途としては、特に限定されないが、歯科用が挙げられ、より具体的には損傷をうけた歯牙の修復に用いる充填修復材料や、義歯床の裏装材、歯冠修復用のハイブリッドセラミックス等が挙げられる。また、以下で説明するレンズ用途などに使用されてもよい。 (Photosensitive resin)
When used as an electrical insulation material or protective material for electronic boards, the epoxy resin-containing composition may be used as a photosensitive resin composition, and in such a case, in addition to the epoxy resin, It may be a composition containing a photosensitive resin such as a carboxyl group-containing photosensitive resin, a photopolymerization initiator, a reactive diluent, a photosensitive monomer, a filler, and the like.
Furthermore, when used as a photosensitive resin composition, it may be used for purposes other than the above-mentioned protective material for electronic substrates and electrical insulating material. When used in a photosensitive resin composition, the epoxy resin of the present invention may be used in combination with a photoacid generator such as iodonium salts, sulfonium salts, and pyridinium salts. The photoacid generator is an agent that generates acid upon irradiation with light, and the epoxy resin is preferably polymerized by the acid generated by decomposition of the photoacid generator.
In addition, when used as a photosensitive resin composition as described above, applications include, but are not limited to, dental applications, and more specifically, filling and restoring materials used for repairing damaged teeth. , lining materials for denture bases, hybrid ceramics for dental crown restorations, etc. Further, it may be used for lens applications as described below.
(レンズ用途)
レンズ用途において、本発明のエポキシ樹脂は、本発明のエポキシ樹脂以外のエポキシ樹脂やオキタセン化合物などの樹脂成分と併用してもよく、したがって、レンズ用途におけるエポキシ樹脂含有組成物は、本発明のエポキシ樹脂に加えて、他のエポキシ樹脂やオキタセン化合物などを含有してもよい。他のエポキシ樹脂としては、ビスフェノール骨格を有するジグリシジルエーテル化合物、ビスフェノール骨格を有しない2官能脂環式エポキシ化合物、イソシアヌレート環構造を有する3官能以上の多官能エポキシ化合物などが挙げられる。また、レンズ用途に使用される場合、エポキシ樹脂含有組成物は、感光性樹脂組成物であることが好ましく、例えば上記した光酸発生剤を含有すればよい。
なお、以上で説明した各用途、及び各用途の具体的な配合は、一例にすぎず、上記で説明した用途以外で使用されてもよいし、各用途において各組成物の配合は、上記配合以外でもよい。 (Lens use)
In lens applications, the epoxy resin of the present invention may be used in combination with resin components such as epoxy resins other than the epoxy resin of the present invention and oxtacene compounds. In addition to the resin, other epoxy resins, oxtacene compounds, etc. may be contained. Examples of other epoxy resins include diglycidyl ether compounds having a bisphenol skeleton, bifunctional alicyclic epoxy compounds having no bisphenol skeleton, and trifunctional or higher functional epoxy compounds having an isocyanurate ring structure. Further, when used for lens applications, the epoxy resin-containing composition is preferably a photosensitive resin composition, and may contain, for example, the above-mentioned photoacid generator.
The uses and specific formulations for each use explained above are only examples, and may be used for purposes other than those explained above, and the formulation of each composition for each use may be different from the above-mentioned formulation. Anything other than that is fine.
レンズ用途において、本発明のエポキシ樹脂は、本発明のエポキシ樹脂以外のエポキシ樹脂やオキタセン化合物などの樹脂成分と併用してもよく、したがって、レンズ用途におけるエポキシ樹脂含有組成物は、本発明のエポキシ樹脂に加えて、他のエポキシ樹脂やオキタセン化合物などを含有してもよい。他のエポキシ樹脂としては、ビスフェノール骨格を有するジグリシジルエーテル化合物、ビスフェノール骨格を有しない2官能脂環式エポキシ化合物、イソシアヌレート環構造を有する3官能以上の多官能エポキシ化合物などが挙げられる。また、レンズ用途に使用される場合、エポキシ樹脂含有組成物は、感光性樹脂組成物であることが好ましく、例えば上記した光酸発生剤を含有すればよい。
なお、以上で説明した各用途、及び各用途の具体的な配合は、一例にすぎず、上記で説明した用途以外で使用されてもよいし、各用途において各組成物の配合は、上記配合以外でもよい。 (Lens use)
In lens applications, the epoxy resin of the present invention may be used in combination with resin components such as epoxy resins other than the epoxy resin of the present invention and oxtacene compounds. In addition to the resin, other epoxy resins, oxtacene compounds, etc. may be contained. Examples of other epoxy resins include diglycidyl ether compounds having a bisphenol skeleton, bifunctional alicyclic epoxy compounds having no bisphenol skeleton, and trifunctional or higher functional epoxy compounds having an isocyanurate ring structure. Further, when used for lens applications, the epoxy resin-containing composition is preferably a photosensitive resin composition, and may contain, for example, the above-mentioned photoacid generator.
The uses and specific formulations for each use explained above are only examples, and may be used for purposes other than those explained above, and the formulation of each composition for each use may be different from the above-mentioned formulation. Anything other than that is fine.
本発明を以下に実施例により説明するが、本発明はこれらの例によってなんら限定され
るものではない。なお、以下の実施例における各測定条件は、以下のとおりである。
<測定条件>
〔1H-NMRスペクトル測定〕
日本電子株式会社製NMR測定装置「ECX-400」を用い、重ジメチルスルホキシド(重DMSO)又はTHFを溶媒とし、23℃で測定した。 The present invention will be explained below with reference to Examples, but the present invention is not limited in any way by these Examples. In addition, each measurement condition in the following examples is as follows.
<Measurement conditions>
[ 1H -NMR spectrum measurement]
Measurement was performed at 23° C. using an NMR measuring device “ECX-400” manufactured by JEOL Ltd., using heavy dimethyl sulfoxide (heavy DMSO) or THF as a solvent.
るものではない。なお、以下の実施例における各測定条件は、以下のとおりである。
<測定条件>
〔1H-NMRスペクトル測定〕
日本電子株式会社製NMR測定装置「ECX-400」を用い、重ジメチルスルホキシド(重DMSO)又はTHFを溶媒とし、23℃で測定した。 The present invention will be explained below with reference to Examples, but the present invention is not limited in any way by these Examples. In addition, each measurement condition in the following examples is as follows.
<Measurement conditions>
[ 1H -NMR spectrum measurement]
Measurement was performed at 23° C. using an NMR measuring device “ECX-400” manufactured by JEOL Ltd., using heavy dimethyl sulfoxide (heavy DMSO) or THF as a solvent.
〔ガラス転移温度(Tg)〕
株式会社島津製作所製の示差走査熱量計(商品名「DSC-60」)を用い、アルゴン雰囲気下、10℃/分の昇温条件で測定し、ベースラインの変位の中点をガラス転移温度とした。このとき、10℃/分の条件で、250℃まで昇温させた後に30℃まで降温し、再び昇温させるときにガラス転移温度を測定した。
株式会社ユービーエム製の動的粘弾性装置(商品名「Rheogel-E4000」)を用い、窒素雰囲気下、3℃/分の昇温条件で測定し、tanδのピークトップ温度をガラス転移温度とした。 [Glass transition temperature (Tg)]
Using a differential scanning calorimeter (product name: "DSC-60") manufactured by Shimadzu Corporation, measurements were performed under argon atmosphere at a heating rate of 10°C/min, and the midpoint of the baseline displacement was determined as the glass transition temperature. did. At this time, the temperature was raised to 250°C at a rate of 10°C/min, the temperature was lowered to 30°C, and the glass transition temperature was measured when the temperature was raised again.
Using a dynamic viscoelasticity device (trade name "Rheogel-E4000") manufactured by UBM Co., Ltd., it was measured under a nitrogen atmosphere at a temperature increase of 3°C/min, and the peak top temperature of tan δ was taken as the glass transition temperature. .
株式会社島津製作所製の示差走査熱量計(商品名「DSC-60」)を用い、アルゴン雰囲気下、10℃/分の昇温条件で測定し、ベースラインの変位の中点をガラス転移温度とした。このとき、10℃/分の条件で、250℃まで昇温させた後に30℃まで降温し、再び昇温させるときにガラス転移温度を測定した。
株式会社ユービーエム製の動的粘弾性装置(商品名「Rheogel-E4000」)を用い、窒素雰囲気下、3℃/分の昇温条件で測定し、tanδのピークトップ温度をガラス転移温度とした。 [Glass transition temperature (Tg)]
Using a differential scanning calorimeter (product name: "DSC-60") manufactured by Shimadzu Corporation, measurements were performed under argon atmosphere at a heating rate of 10°C/min, and the midpoint of the baseline displacement was determined as the glass transition temperature. did. At this time, the temperature was raised to 250°C at a rate of 10°C/min, the temperature was lowered to 30°C, and the glass transition temperature was measured when the temperature was raised again.
Using a dynamic viscoelasticity device (trade name "Rheogel-E4000") manufactured by UBM Co., Ltd., it was measured under a nitrogen atmosphere at a temperature increase of 3°C/min, and the peak top temperature of tan δ was taken as the glass transition temperature. .
合成例1
[パラクマル酸二量体の合成]
パラクマル酸(東京化成社製)をヘキサンに懸濁し、懸濁溶液に白熱水銀灯でUV照射を行った。UV照射によりパラクマル酸のベータ位にある二重結合が開裂し、その分子同士が再結合することで二量化させた。反応液からヘキサンを除去後、エタノールに再懸濁させ、フィルターろ過した。濾過膜上に残った粉末をパラクマル酸二量体として得た。なお、濾過膜上に残った粉末は、1H-NMR測定を行ったところ、式(2-1)で示すパラクマル酸二量体(4,4’-ジヒドロキシトルキシル酸)であることが確認できた。 Synthesis example 1
[Synthesis of paracoumaric acid dimer]
Paracoumaric acid (manufactured by Tokyo Kasei Co., Ltd.) was suspended in hexane, and the suspended solution was irradiated with UV light using an incandescent mercury lamp. The double bond at the beta position of paracoumaric acid was cleaved by UV irradiation, and the molecules recombined with each other, resulting in dimerization. After removing hexane from the reaction solution, it was resuspended in ethanol and filtered. The powder remaining on the filtration membrane was obtained as paracoumaric acid dimer. In addition, when the powder remaining on the filter membrane was subjected to 1 H-NMR measurement, it was confirmed that it was paracoumaric acid dimer (4,4'-dihydroxytruxylic acid) shown by formula (2-1). did it.
[パラクマル酸二量体の合成]
パラクマル酸(東京化成社製)をヘキサンに懸濁し、懸濁溶液に白熱水銀灯でUV照射を行った。UV照射によりパラクマル酸のベータ位にある二重結合が開裂し、その分子同士が再結合することで二量化させた。反応液からヘキサンを除去後、エタノールに再懸濁させ、フィルターろ過した。濾過膜上に残った粉末をパラクマル酸二量体として得た。なお、濾過膜上に残った粉末は、1H-NMR測定を行ったところ、式(2-1)で示すパラクマル酸二量体(4,4’-ジヒドロキシトルキシル酸)であることが確認できた。 Synthesis example 1
[Synthesis of paracoumaric acid dimer]
Paracoumaric acid (manufactured by Tokyo Kasei Co., Ltd.) was suspended in hexane, and the suspended solution was irradiated with UV light using an incandescent mercury lamp. The double bond at the beta position of paracoumaric acid was cleaved by UV irradiation, and the molecules recombined with each other, resulting in dimerization. After removing hexane from the reaction solution, it was resuspended in ethanol and filtered. The powder remaining on the filtration membrane was obtained as paracoumaric acid dimer. In addition, when the powder remaining on the filter membrane was subjected to 1 H-NMR measurement, it was confirmed that it was paracoumaric acid dimer (4,4'-dihydroxytruxylic acid) shown by formula (2-1). did it.
[エポキシ樹脂の合成]
実施例1
合成例1で得られたパラクマル酸二量体5gを50mlのメタノールと濃硫酸0.3mlで懸濁し、80℃で6時間反応させた。反応終了後、メタノールを除去、乾固させた。乾固したメチルエステル体を50ml酢酸エチルで溶解させた後、5質量%のNaHCO3溶液で2回洗浄した。更に飽和食塩水で2回洗浄し、酢酸エチル層を回収した。得られた有機相に無水硫酸マグネシウムを加えて脱水した後、酢酸エチルおよび残存揮発分を除去しメチルエステル体(4,4’-ジヒドロキシトルキシル酸ジメチル)3.31gを得た(収率61.0%)。構造の同定はTHF中の1H-NMR測定により行った。図1に1H-NMRスペクトルを示す。 [Synthesis of epoxy resin]
Example 1
5 g of the paracoumaric acid dimer obtained in Synthesis Example 1 was suspended in 50 ml of methanol and 0.3 ml of concentrated sulfuric acid, and reacted at 80° C. for 6 hours. After the reaction was completed, methanol was removed and the mixture was dried. The dried methyl ester was dissolved in 50 ml of ethyl acetate, and then washed twice with 5% by mass NaHCO 3 solution. It was further washed twice with saturated brine, and the ethyl acetate layer was collected. After dehydrating the obtained organic phase by adding anhydrous magnesium sulfate, ethyl acetate and remaining volatile components were removed to obtain 3.31 g of methyl ester (dimethyl 4,4'-dihydroxytruxylate) (yield: 61 .0%). The structure was identified by 1 H-NMR measurement in THF. Figure 1 shows the 1 H-NMR spectrum.
実施例1
合成例1で得られたパラクマル酸二量体5gを50mlのメタノールと濃硫酸0.3mlで懸濁し、80℃で6時間反応させた。反応終了後、メタノールを除去、乾固させた。乾固したメチルエステル体を50ml酢酸エチルで溶解させた後、5質量%のNaHCO3溶液で2回洗浄した。更に飽和食塩水で2回洗浄し、酢酸エチル層を回収した。得られた有機相に無水硫酸マグネシウムを加えて脱水した後、酢酸エチルおよび残存揮発分を除去しメチルエステル体(4,4’-ジヒドロキシトルキシル酸ジメチル)3.31gを得た(収率61.0%)。構造の同定はTHF中の1H-NMR測定により行った。図1に1H-NMRスペクトルを示す。 [Synthesis of epoxy resin]
Example 1
5 g of the paracoumaric acid dimer obtained in Synthesis Example 1 was suspended in 50 ml of methanol and 0.3 ml of concentrated sulfuric acid, and reacted at 80° C. for 6 hours. After the reaction was completed, methanol was removed and the mixture was dried. The dried methyl ester was dissolved in 50 ml of ethyl acetate, and then washed twice with 5% by mass NaHCO 3 solution. It was further washed twice with saturated brine, and the ethyl acetate layer was collected. After dehydrating the obtained organic phase by adding anhydrous magnesium sulfate, ethyl acetate and remaining volatile components were removed to obtain 3.31 g of methyl ester (
上記の方法で得られたメチルエステル体1g、エピクロルヒドリン5.2g(メチルエステル体に対して10当量)、テトラブチルアンモニウムブロミド0.18gを、100℃で5時間反応させた。反応終了後、溶液を氷冷しながら40質量%水酸化ナトリウム水溶液2.5mlを滴下し、その後氷冷水中で1時間反応させた。反応後の溶液にイオン交換水20mlを加えて析出した塩を溶解させた後、酢酸エチル30mlを加えてよく混合し水相を分離した。得られた有機相に無水硫酸マグネシウムを加えて脱水した後、酢酸エチルおよび残存揮発分を除去し目的のエポキシ樹脂0.57gを得た(収率44.0%)。構造の同定はTHF中の1H-NMR測定により行った。図2に1H-NMRスペクトルを示す。また、実施例1における反応式を以下に示す。
1 g of the methyl ester obtained by the above method, 5.2 g of epichlorohydrin (10 equivalents to the methyl ester), and 0.18 g of tetrabutylammonium bromide were reacted at 100° C. for 5 hours. After the reaction was completed, 2.5 ml of a 40% by mass aqueous sodium hydroxide solution was added dropwise to the solution while cooling it with ice, and then the reaction was allowed to proceed in ice-cold water for 1 hour. After the reaction, 20 ml of ion-exchanged water was added to dissolve the precipitated salt, and then 30 ml of ethyl acetate was added and mixed thoroughly to separate the aqueous phase. After dehydrating the obtained organic phase by adding anhydrous magnesium sulfate, ethyl acetate and remaining volatile components were removed to obtain 0.57 g of the desired epoxy resin (yield 44.0%). The structure was identified by 1 H-NMR measurement in THF. Figure 2 shows the 1 H-NMR spectrum. Moreover, the reaction formula in Example 1 is shown below.
[エポキシ硬化体の作製]
実施例2
実施例1で得られたエポキシ樹脂4.64gと、イソホロンジアミン0.85gを混合した。その後、100℃で1時間、160℃で1時間、次いで200℃で1時間加熱して硬化体を作製した。得られた硬化体を細かく砕き、示差走査熱量計(DSC)によりTgを測定したところ、Tgは165℃であり、良好な耐熱性を示した。 [Preparation of cured epoxy body]
Example 2
4.64 g of the epoxy resin obtained in Example 1 and 0.85 g of isophorone diamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and its Tg was measured using a differential scanning calorimeter (DSC), the Tg was 165° C., indicating good heat resistance.
実施例2
実施例1で得られたエポキシ樹脂4.64gと、イソホロンジアミン0.85gを混合した。その後、100℃で1時間、160℃で1時間、次いで200℃で1時間加熱して硬化体を作製した。得られた硬化体を細かく砕き、示差走査熱量計(DSC)によりTgを測定したところ、Tgは165℃であり、良好な耐熱性を示した。 [Preparation of cured epoxy body]
Example 2
4.64 g of the epoxy resin obtained in Example 1 and 0.85 g of isophorone diamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and its Tg was measured using a differential scanning calorimeter (DSC), the Tg was 165° C., indicating good heat resistance.
実施例3
[エポキシ樹脂の合成]
合成例1で得られたパラクマル酸二量体5g、エピクロルヒドリン56.4g(パラクマル酸二量体に対して10当量)、テトラブチルアンモニウムブロミド1gを、100℃で5時間反応させた。反応終了後、溶液を氷冷しながら40質量%水酸化ナトリウム水溶液2.5mlを滴下し、その後氷冷水中で1時間反応させた。反応後の溶液にイオン交換水20mlを加えて析出した塩を溶解させた後、酢酸エチル30mlを加えてよく混合し水相を分離した。得られた有機相に無水硫酸マグネシウムを加えて脱水した後、酢酸エチルおよび残存揮発分を除去し目的のエポキシ樹脂5.42gを得た(収率63.3%)。構造の同定は重DMSO中の1H-NMR測定により行ったところ目的のエポキシ樹脂が合成できていることが確認できた。実施例3における反応式を以下に示す。 Example 3
[Synthesis of epoxy resin]
5 g of the paracoumaric acid dimer obtained in Synthesis Example 1, 56.4 g of epichlorohydrin (10 equivalents to the paracoumaric acid dimer), and 1 g of tetrabutylammonium bromide were reacted at 100° C. for 5 hours. After the reaction was completed, 2.5 ml of a 40% by mass aqueous sodium hydroxide solution was added dropwise to the solution while cooling it with ice, and then the reaction was allowed to proceed in ice-cold water for 1 hour. After the reaction, 20 ml of ion-exchanged water was added to dissolve the precipitated salt, and then 30 ml of ethyl acetate was added and mixed thoroughly to separate the aqueous phase. After dehydrating the obtained organic phase by adding anhydrous magnesium sulfate, ethyl acetate and remaining volatile components were removed to obtain 5.42 g of the desired epoxy resin (yield 63.3%). The structure was identified by 1 H-NMR measurement in heavy DMSO, and it was confirmed that the desired epoxy resin had been synthesized. The reaction formula in Example 3 is shown below.
[エポキシ樹脂の合成]
合成例1で得られたパラクマル酸二量体5g、エピクロルヒドリン56.4g(パラクマル酸二量体に対して10当量)、テトラブチルアンモニウムブロミド1gを、100℃で5時間反応させた。反応終了後、溶液を氷冷しながら40質量%水酸化ナトリウム水溶液2.5mlを滴下し、その後氷冷水中で1時間反応させた。反応後の溶液にイオン交換水20mlを加えて析出した塩を溶解させた後、酢酸エチル30mlを加えてよく混合し水相を分離した。得られた有機相に無水硫酸マグネシウムを加えて脱水した後、酢酸エチルおよび残存揮発分を除去し目的のエポキシ樹脂5.42gを得た(収率63.3%)。構造の同定は重DMSO中の1H-NMR測定により行ったところ目的のエポキシ樹脂が合成できていることが確認できた。実施例3における反応式を以下に示す。 Example 3
[Synthesis of epoxy resin]
5 g of the paracoumaric acid dimer obtained in Synthesis Example 1, 56.4 g of epichlorohydrin (10 equivalents to the paracoumaric acid dimer), and 1 g of tetrabutylammonium bromide were reacted at 100° C. for 5 hours. After the reaction was completed, 2.5 ml of a 40% by mass aqueous sodium hydroxide solution was added dropwise to the solution while cooling it with ice, and then the reaction was allowed to proceed in ice-cold water for 1 hour. After the reaction, 20 ml of ion-exchanged water was added to dissolve the precipitated salt, and then 30 ml of ethyl acetate was added and mixed thoroughly to separate the aqueous phase. After dehydrating the obtained organic phase by adding anhydrous magnesium sulfate, ethyl acetate and remaining volatile components were removed to obtain 5.42 g of the desired epoxy resin (yield 63.3%). The structure was identified by 1 H-NMR measurement in heavy DMSO, and it was confirmed that the desired epoxy resin had been synthesized. The reaction formula in Example 3 is shown below.
[エポキシ硬化体の作製]
実施例4
実施例3で得られたエポキシ樹脂5.52gと、イソホロンジアミン1.70gを混合した。その後、100℃で1時間、160℃で1時間、次いで200℃で1時間加熱して硬化体を作製した。得られた硬化体を細かく砕き、示差走査熱量計(DSC)によりTgを測定したところ、明確なTgを示すことができなかった。そこで、動的粘弾性法(DMA)で測定し、tanδのピークトップ温度からTgを251℃と読み取ることができた。良好な耐熱性を示した。 [Preparation of cured epoxy body]
Example 4
5.52 g of the epoxy resin obtained in Example 3 and 1.70 g of isophoronediamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and the Tg was measured using a differential scanning calorimeter (DSC), no clear Tg could be shown. Therefore, measurement was performed using a dynamic viscoelasticity method (DMA), and the Tg could be read as 251° C. from the peak top temperature of tan δ. It showed good heat resistance.
実施例4
実施例3で得られたエポキシ樹脂5.52gと、イソホロンジアミン1.70gを混合した。その後、100℃で1時間、160℃で1時間、次いで200℃で1時間加熱して硬化体を作製した。得られた硬化体を細かく砕き、示差走査熱量計(DSC)によりTgを測定したところ、明確なTgを示すことができなかった。そこで、動的粘弾性法(DMA)で測定し、tanδのピークトップ温度からTgを251℃と読み取ることができた。良好な耐熱性を示した。 [Preparation of cured epoxy body]
Example 4
5.52 g of the epoxy resin obtained in Example 3 and 1.70 g of isophoronediamine were mixed. Thereafter, a cured product was produced by heating at 100°C for 1 hour, at 160°C for 1 hour, and then at 200°C for 1 hour. When the obtained cured product was finely crushed and the Tg was measured using a differential scanning calorimeter (DSC), no clear Tg could be shown. Therefore, measurement was performed using a dynamic viscoelasticity method (DMA), and the Tg could be read as 251° C. from the peak top temperature of tan δ. It showed good heat resistance.
比較例1
石油由来のビスフェノールA型エポキシ樹脂(商品名「jER828」、三菱ケミカル社製)に、硬化剤としてイソホロンジアミンをエポキシ基:NH基=1:1となるように混合し、実施例2と4と同じ条件にて硬化を行い、硬化体を作製した。得られた硬化体を細かく切断し、示差走査熱量計(DSC)によりTgを測定した結果、Tg152℃であった。 Comparative example 1
A petroleum-derived bisphenol A epoxy resin (trade name "jER828", manufactured by Mitsubishi Chemical Corporation) was mixed with isophorone diamine as a curing agent so that the ratio of epoxy group to NH group was 1:1. Curing was performed under the same conditions to produce a cured product. The obtained cured product was cut into pieces and the Tg was measured using a differential scanning calorimeter (DSC), and the result was that the Tg was 152°C.
石油由来のビスフェノールA型エポキシ樹脂(商品名「jER828」、三菱ケミカル社製)に、硬化剤としてイソホロンジアミンをエポキシ基:NH基=1:1となるように混合し、実施例2と4と同じ条件にて硬化を行い、硬化体を作製した。得られた硬化体を細かく切断し、示差走査熱量計(DSC)によりTgを測定した結果、Tg152℃であった。 Comparative example 1
A petroleum-derived bisphenol A epoxy resin (trade name "jER828", manufactured by Mitsubishi Chemical Corporation) was mixed with isophorone diamine as a curing agent so that the ratio of epoxy group to NH group was 1:1. Curing was performed under the same conditions to produce a cured product. The obtained cured product was cut into pieces and the Tg was measured using a differential scanning calorimeter (DSC), and the result was that the Tg was 152°C.
Claims (13)
- 以下の式(1)で表される骨格を有するエポキシ樹脂。
なお、式(1)において、R4及びR5はそれぞれ独立に、水素原子、アルコキシ基、及び-OGのいずれかである。*は他の構造との結合部位となってもよい。Gはグリシジル基を表す。 An epoxy resin having a skeleton represented by the following formula (1).
In addition, in formula (1), R 4 and R 5 are each independently a hydrogen atom, an alkoxy group, or -OG. * may be a binding site with another structure. G represents a glycidyl group. - 以下の式(1-1)で表される構造を有する請求項1に記載のエポキシ樹脂。
なお、式(1-1)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環においてそれぞれ独立に、R4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。nは0~100の整数である。 The epoxy resin according to claim 1, having a structure represented by the following formula (1-1).
In addition, in formula (1-1), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a heteroatom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. In each benzene ring, one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. n is an integer from 0 to 100. - 以下の式(1-2)で表される構造を有する請求項1に記載のエポキシ樹脂。
なお、式(1-2)において、R1及びR3は、それぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基、若しくはグリシジル基であり、R2はヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。nは0~100の整数である。 The epoxy resin according to claim 1, having a structure represented by the following formula (1-2).
In addition, in formula (1-2), R 1 and R 3 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, or a glycidyl group, and R 2 is It is a divalent hydrocarbon group having 2 to 20 carbon atoms that may have a heteroatom. n is an integer from 0 to 100. - R1及びR3がグリシジル基であり、nが0である請求項2又は3に記載のエポキシ樹脂。 The epoxy resin according to claim 2 or 3, wherein R 1 and R 3 are glycidyl groups, and n is 0.
- R1及びR3が炭素数1~6のアルキル基であり、nが0である請求項2又は3に記載のエポキシ樹脂。 The epoxy resin according to claim 2 or 3, wherein R 1 and R 3 are alkyl groups having 1 to 6 carbon atoms, and n is 0.
- R1及びR3がメチル基である請求項2又は3に記載のエポキシ樹脂。 The epoxy resin according to claim 2 or 3, wherein R 1 and R 3 are methyl groups.
- 以下の式(1-3)で表される構造を有する請求項1に記載のエポキシ樹脂。
式(1-3)の各ベンゼン環において、それぞれ独立にR4及びR5のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OGのいずれかである。また、R6が水素原子、-COOG、及び-COOR1のいずれかであり、R7が水素原子、-COOG、及び-COOR3のいずれかである。R1及びR3はアルキル基である。 The epoxy resin according to claim 1, having a structure represented by the following formula (1-3).
In each benzene ring of formula (1-3), one of R 4 and R 5 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OG. Further, R 6 is a hydrogen atom, -COOG, or -COOR 1 , and R 7 is a hydrogen atom, -COOG, or -COOR 3 . R 1 and R 3 are alkyl groups. - 式(1)で表される骨格が、バイオマス由来である、請求項1~3、及び7のいずれか1項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 3 and 7, wherein the skeleton represented by formula (1) is derived from biomass.
- 請求項1~3、及び7のいずれか1項に記載のエポキシ樹脂を硬化させて得られた硬化体。 A cured product obtained by curing the epoxy resin according to any one of claims 1 to 3 and 7.
- 以下の式(2)に示す骨格を有する化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、エポキシ樹脂の製造方法。
なお、式(2)において、R14及びR15はそれぞれ独立に、水素原子、アルコキシ基、及び-OHのいずれかである。*は他の構造との結合部位となってもよい。 A method for producing an epoxy resin, which comprises reacting a compound having a skeleton represented by the following formula (2) with epihalohydrin to obtain an epoxy resin.
In addition, in formula (2), R 14 and R 15 are each independently a hydrogen atom, an alkoxy group, or -OH. * may be a binding site with another structure. - 以下の式(2-1)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、請求項10に記載のエポキシ樹脂の製造方法。
上記式(2-1)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。mは0~100の整数である。 The method for producing an epoxy resin according to claim 10, wherein the epoxy resin is obtained by reacting a compound represented by the following formula (2-1) with epihalohydrin.
In the above formula (2-1), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. In each benzene ring, one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. m is an integer from 0 to 100. - 以下の式(2-2)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、請求項10に記載のエポキシ樹脂の製造方法。
上記式(2-2)において、R11、R13は、それぞれ独立に水素原子、又はヘテロ原子を有してもよい炭素数1~20の1価の炭化水素基である。R12は、ヘテロ原子を有してもよい炭素数2~20の2価の炭化水素基である。mは0~100の整数である。 The method for producing an epoxy resin according to claim 10, wherein the epoxy resin is obtained by reacting a compound represented by the following formula (2-2) with epihalohydrin.
In the above formula (2-2), R 11 and R 13 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. R 12 is a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a heteroatom. m is an integer from 0 to 100. - 以下の式(2-3)に示す化合物と、エピハロヒドリンを反応させてエポキシ樹脂を得る、請求項10に記載のエポキシ樹脂の製造方法。
式(2-3)の各ベンゼン環において、それぞれ独立にR14及びR15のうち一方が水素原子であり、他方が水素原子、-OCH3、及び-OHのいずれかである。R16が水素原子又は-COOR11であり、かつR17が水素原子又は-COOR13である。R11、R13は、それぞれ独立に水素原子、又はアルキル基である。 The method for producing an epoxy resin according to claim 10, wherein the epoxy resin is obtained by reacting a compound represented by the following formula (2-3) with epihalohydrin.
In each benzene ring of formula (2-3), one of R 14 and R 15 is a hydrogen atom, and the other is a hydrogen atom, -OCH 3 or -OH. R 16 is a hydrogen atom or -COOR 11 , and R 17 is a hydrogen atom or -COOR 13 . R 11 and R 13 are each independently a hydrogen atom or an alkyl group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023541523A JP7537028B2 (en) | 2022-03-24 | 2023-03-24 | Epoxy resin, its hardened product, and method for producing epoxy resin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022048636 | 2022-03-24 | ||
JP2022-048636 | 2022-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182522A1 true WO2023182522A1 (en) | 2023-09-28 |
Family
ID=88101749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/012033 WO2023182522A1 (en) | 2022-03-24 | 2023-03-24 | Epoxy resin, cured body of same and method for producing epoxy resin |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7537028B2 (en) |
WO (1) | WO2023182522A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073519A1 (en) * | 2011-11-17 | 2013-05-23 | 国立大学法人北陸先端科学技術大学院大学 | Polymer raw material and polymer material |
JP2013113937A (en) * | 2011-11-25 | 2013-06-10 | Jsr Corp | Liquid crystal aligning agent, liquid crystal aligning layer, method for forming liquid crystal aligning layer, and liquid crystal display element |
CN107417594A (en) * | 2017-05-08 | 2017-12-01 | 凯莱英医药集团(天津)股份有限公司 | A kind of method of acid amides alcoholysis |
US9878039B1 (en) * | 2016-09-01 | 2018-01-30 | International Business Machines Corporation | Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction |
WO2018119157A1 (en) * | 2016-12-20 | 2018-06-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Mechanophore-grafted polymers to form stress-responsive thermoset network |
WO2019026795A1 (en) * | 2017-07-29 | 2019-02-07 | 国立大学法人北陸先端科学技術大学院大学 | Hydrophilic polyamide or polyimide |
US20200055807A1 (en) * | 2017-05-08 | 2020-02-20 | Asymchem Laboratories (Tianjin) Co., Ltd | Method for alcoholysis of amide |
JP2021028371A (en) * | 2019-08-09 | 2021-02-25 | 積水化学工業株式会社 | Polymer and epoxy resin |
CN114326306A (en) * | 2022-01-06 | 2022-04-12 | 武汉柔显科技股份有限公司 | Photosensitive resin composition, photosensitive resin composition film, and patterned cured product |
CN114874412A (en) * | 2022-06-14 | 2022-08-09 | 中国科学院宁波材料技术与工程研究所 | Deep ultraviolet light-promoted degradation epoxy material, composite coating, and preparation method and application thereof |
-
2023
- 2023-03-24 JP JP2023541523A patent/JP7537028B2/en active Active
- 2023-03-24 WO PCT/JP2023/012033 patent/WO2023182522A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073519A1 (en) * | 2011-11-17 | 2013-05-23 | 国立大学法人北陸先端科学技術大学院大学 | Polymer raw material and polymer material |
JP2013113937A (en) * | 2011-11-25 | 2013-06-10 | Jsr Corp | Liquid crystal aligning agent, liquid crystal aligning layer, method for forming liquid crystal aligning layer, and liquid crystal display element |
US9878039B1 (en) * | 2016-09-01 | 2018-01-30 | International Business Machines Corporation | Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction |
WO2018119157A1 (en) * | 2016-12-20 | 2018-06-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Mechanophore-grafted polymers to form stress-responsive thermoset network |
CN107417594A (en) * | 2017-05-08 | 2017-12-01 | 凯莱英医药集团(天津)股份有限公司 | A kind of method of acid amides alcoholysis |
US20200055807A1 (en) * | 2017-05-08 | 2020-02-20 | Asymchem Laboratories (Tianjin) Co., Ltd | Method for alcoholysis of amide |
WO2019026795A1 (en) * | 2017-07-29 | 2019-02-07 | 国立大学法人北陸先端科学技術大学院大学 | Hydrophilic polyamide or polyimide |
JP2021028371A (en) * | 2019-08-09 | 2021-02-25 | 積水化学工業株式会社 | Polymer and epoxy resin |
CN114326306A (en) * | 2022-01-06 | 2022-04-12 | 武汉柔显科技股份有限公司 | Photosensitive resin composition, photosensitive resin composition film, and patterned cured product |
CN114874412A (en) * | 2022-06-14 | 2022-08-09 | 中国科学院宁波材料技术与工程研究所 | Deep ultraviolet light-promoted degradation epoxy material, composite coating, and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023182522A1 (en) | 2023-09-28 |
JP7537028B2 (en) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007323759B2 (en) | Epoxy resins comprising a cycloaliphatic diamine curing agent | |
EP2744860B1 (en) | Curable resin compositions | |
US9056942B2 (en) | Curable resin compositions | |
US10017614B2 (en) | Epoxy-resin composition for fiber-matrix semifinished products | |
JP2016501922A (en) | Toughened curable epoxy compositions for high temperature applications | |
KR20160034330A (en) | Curable compositions | |
US9334426B2 (en) | Latent curing agent and epoxy compositions containing the same | |
KR101885703B1 (en) | Epoxy resins comprising a pyrazine-containing compound | |
KR20200072358A (en) | Two part adhesive composition and cured product thereof and vehicle material adhesive method | |
WO2005035617A1 (en) | Latent curing agent and composition | |
US20240327582A1 (en) | Rapid curing epoxy-resin composition for fiber-matrix semifinished products | |
WO2023182522A1 (en) | Epoxy resin, cured body of same and method for producing epoxy resin | |
KR102454135B1 (en) | Two part epoxy adhesive composition containing acid anhydride-based epoxy compound modified with fatty acid and cured product prepared therfrom | |
JP2006022146A (en) | Curable resin composition | |
JP2007186547A (en) | Curing agent composition for epoxy resin and one-component thermosetting epoxy resin composition | |
KR20220138144A (en) | Novel acid anhydride-based epoxy compound, epoxy resin composition containing the same, and cured product prepared therefrom | |
KR102454213B1 (en) | Novel acid anhydride-based epoxy compound, epoxy adhesive composition containing the same, and cured product prepared therefrom | |
JP2006022153A (en) | Curable resin composition | |
WO2024219430A1 (en) | Latent curing agent and one-pack epoxy resin composition | |
CN115210287A (en) | Epoxy amine adduct, curing catalyst, resin composition, sealing material, adhesive, and cured product | |
JP2011057743A (en) | Heat-curable epoxy resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541523 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23775115 Country of ref document: EP Kind code of ref document: A1 |