WO2023182492A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2023182492A1
WO2023182492A1 PCT/JP2023/011801 JP2023011801W WO2023182492A1 WO 2023182492 A1 WO2023182492 A1 WO 2023182492A1 JP 2023011801 W JP2023011801 W JP 2023011801W WO 2023182492 A1 WO2023182492 A1 WO 2023182492A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
mass
manufactured
component
Prior art date
Application number
PCT/JP2023/011801
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 名取
大雅 冨永
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2023182492A1 publication Critical patent/WO2023182492A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to a curable composition.
  • a curable composition used as an adhesive for fixing members is required to be able to form a cured product with a low coefficient of thermal expansion in order to prevent minute displacement. Furthermore, when used as an adhesive in places where the influence of vibration is a concern, the curable composition is required to be able to form a cured product with a low elastic modulus in order to reduce the influence of vibration (Patent Document 1) .
  • the present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a curable composition that can form a cured product that has both a low coefficient of thermal expansion and a low modulus of elasticity.
  • the present inventors have discovered a curable composition containing an epoxy compound having two or more alicyclic epoxy groups, an inorganic filler, hollow organic polymer particles, and a cationic polymerization initiator. It was discovered that a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, and the present invention was completed.
  • the present invention based on such knowledge is as follows.
  • a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, so the curable composition of the present invention is very useful for adhesion of optical devices. be.
  • each component contained in the curable composition of the present invention will be explained in order. Unless otherwise specified, each component may be used alone or in combination of two or more.
  • the curable composition of the present invention contains, as component (A), an epoxy compound having two or more alicyclic epoxy groups (herein sometimes referred to as an "alicyclic epoxy compound").
  • alicyclic epoxy groups In curing by cationic polymerization, alicyclic epoxy groups have higher reactivity than terminal epoxy groups such as glycidyl ether, so the curable composition of the present invention has good curability.
  • epoxy compounds compared to (meth)acrylates and vinyl ethers commonly used in curable compositions, epoxy compounds have a low curing shrinkage rate, so the curable composition of the present invention has low curing shrinkage and precision fixation. Suitable for adhesives.
  • alicyclic epoxy group refers to an alicyclic group and an oxirane ring in which two adjacent carbon atoms constituting the alicyclic group form an oxirane ring (epoxy group) with an oxygen atom.
  • the alicyclic epoxy compound may have an alicyclic condensed alicyclic structure in which a plurality of alicyclic epoxy groups are condensed at an alicyclic moiety.
  • the number of alicyclic epoxy groups in the alicyclic epoxy compound is preferably 2 to 4, particularly preferably 2.
  • alicyclic epoxy compounds include formulas (I) to (III):
  • L 1 represents a single bond, or a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are connected;
  • L 2 to L 7 each independently represent a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are connected.
  • Examples include compounds represented by any of the following.
  • the "compound represented by formula (I)” may be abbreviated as “compound (I)”
  • the compounds represented by other formulas may also be abbreviated in the same way.
  • the divalent hydrocarbon group is preferably an alkylene group having 1 to 18 carbon atoms or a divalent alicyclic hydrocarbon group having 5 to 7 carbon atoms.
  • the alkylene group having 1 to 18 carbon atoms may be either linear or branched. Examples of the alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a trimethylene group, and a propylene group.
  • the divalent alicyclic hydrocarbon group having 5 to 7 carbon atoms is preferably a cycloalkylene group having 5 to 7 carbon atoms or a cycloalkylidene group having 5 to 7 carbon atoms.
  • Examples of the cycloalkylene group having 5 to 7 carbon atoms include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1, A 4-cyclohexylene group is mentioned.
  • Examples of the cycloalkylidene group having 5 to 7 carbon atoms include a cyclopentylidene group and a cyclohexylidene group.
  • Preferred compounds (I) include, for example, formulas (I-1) to (I-8):
  • n1 represents an integer from 1 to 30, n2 represents an integer of 6 to 30, and L 8 represents an alkylene group having 1 to 8 carbon atoms.
  • Examples include compounds represented by any of the following.
  • Compound (I-6) and compound (I-8) may be a mixture of compounds each having a different number of repeating units.
  • n1 in formula (I-6) is preferably an integer of 1 to 6.
  • the alkylene group having 1 to 8 carbon atoms in formula (I-8) may be linear or branched.
  • Examples of the alkylene group having 1 to 8 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group. It will be done.
  • Preferred compounds (II) include, for example, formula (II-1):
  • n3 and n4 each independently represent an integer of 2 to 30.
  • Examples include compounds represented by: Compound (II-1) may be a mixture of compounds having different numbers of repeating units.
  • Preferred compounds (III) include, for example, formula (III-1):
  • n5 to n8 each independently represent an integer of 2 to 30.
  • Examples include compounds represented by: Compound (III-1) may be a mixture of compounds having different numbers of repeating units.
  • the alicyclic epoxy compound is preferably selected from compounds (I-1) to (I-8), compound (II-1) and compound (III-1).
  • the alicyclic epoxy compound is more preferably selected from compounds (I-1) to (I-7).
  • the alicyclic epoxy compound is more preferably selected from compound (I-1) and compound (I-3).
  • the molecular weight of the alicyclic epoxy compound is preferably less than 1000, more preferably 900 or less, further preferably 800 or less, even more preferably 700 or less, and even more preferably 600 or less. Particularly preferred. Further, the lower limit of the molecular weight of the alicyclic epoxy compound is not particularly limited, but from the viewpoint of suppressing outgas generation, the molecular weight is preferably 100 or more, more preferably 125 or more, and particularly preferably 150 or more.
  • the molecular weight of the alicyclic epoxy compound is the weight average molecular weight (hereinafter referred to as (sometimes abbreviated as "Mw"). This Mw can be calculated, for example, by gel permeation chromatography (GPC) in terms of polystyrene.
  • GPC gel permeation chromatography
  • the viscosity (25° C.) of the alicyclic epoxy compound is preferably 10 to 3000 mPa ⁇ s, more preferably 25 to 2000 mPa ⁇ s, from the viewpoint of the fluidity of the curable composition at room temperature.
  • viscosity (25 degreeC) means the viscosity at 25 degreeC measured using the vibration viscometer.
  • the epoxy equivalent of the alicyclic epoxy compound is preferably 50 to 500 g/eq, more preferably 75 to 450 g/eq, particularly preferably 90 to 400 g/eq.
  • the "epoxy equivalent" of an epoxy compound means the number of grams of the epoxy compound containing 1 gram equivalent of epoxy groups. This epoxy equivalent value can be determined according to the method specified in JIS K 7236. Moreover, the epoxy equivalent can be theoretically calculated by dividing the molecular weight of the epoxy compound by the number of epoxy groups that the epoxy compound has.
  • the content of component (A) is preferably 20.0% by mass or more, and 30% by mass, based on the resin content of the curable composition, from the viewpoint of good curability of the curable composition and low coefficient of thermal expansion of the cured product.
  • the content is more preferably 40% by mass or more, particularly preferably 40% by mass or more.
  • the content of component (A) is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, particularly preferably 99.8% by mass or less, based on the resin content of the curable composition.
  • the "resin component of the curable composition” refers to the "alicyclic epoxy compound” of component (A), which is an essential component, and the “two or more oxetanyl groups described below, which is an optional component. It means the total amount of “oxetane compound” and “polyester polyol”.
  • the content of component (A) is preferably 3% by mass or more, and 5% by mass or more based on the solid content of the curable composition, from the viewpoint of good curability of the curable composition and a low coefficient of thermal expansion of the cured product.
  • the content is more preferably 10% by mass or more, particularly preferably 10% by mass or more.
  • the content of component (A) is 80% by mass per solid content of the curable composition. % or less, more preferably 70% by mass or less, particularly preferably 60% by mass or less.
  • the curable composition of the present invention contains an inorganic filler as component (B).
  • the inorganic filler contributes to a low coefficient of thermal expansion of the cured product and improves the filling property of hollow organic polymer particles (component (C) described later) into the curable composition.
  • component (C) hollow organic polymer particles
  • the filling properties of the hollow organic polymer particles are low, and without the use of the filler itself, the hollow styrene particles cannot be sufficiently dispersed and a uniform composition cannot be obtained.
  • the curable composition of the present invention by blending an inorganic filler, it becomes possible to fill the curable composition with a sufficient amount of hollow organic polymer. Therefore, the curable composition of the present invention can form a cured product that has both a low coefficient of thermal expansion and a low modulus of elasticity due to the inclusion of the hollow organic polymer.
  • inorganic fillers examples include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, and magnesium hydroxide.
  • inorganic filler examples include barium, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate.
  • the inorganic filler is preferably selected from silica and cordierite, more preferably silica. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. Further, as the silica, spherical silica is preferable.
  • the particle diameter of the inorganic filler is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, from the viewpoint of reducing the practical adhesive thickness and reducing positional displacement due to thermal expansion or the like.
  • the lower limit of the particle size of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, even more preferably 0.1 ⁇ m or more, particularly preferably 0.2 ⁇ m or more. be.
  • the "particle diameter" of the inorganic filler means the median diameter that can be calculated by a laser diffraction/scattering method based on Mie scattering theory.
  • the particle size distribution of the inorganic filler can be created on a volume basis using a laser diffraction scattering type particle size distribution measuring device, and the median diameter can be calculated. More specifically, as a measurement sample, 100 mg of the inorganic filler and 10 g of the dispersion medium were weighed into a vial and dispersed for 10 minutes using sound waves, and a laser diffraction particle size distribution measuring device was used. Then, the volume-based particle size distribution of the inorganic filler is measured using a flow cell method using blue and red light source wavelengths, and the median diameter can be calculated from the obtained particle size distribution. Examples of the laser diffraction particle size distribution measuring device include "LA-960" manufactured by Horiba, Ltd.
  • the specific surface area of the inorganic filler is preferably 0.1 m 2 /g or more, more preferably 0.5 m 2 /g or more, particularly preferably 1 m 2 /g or more, from the viewpoint of improving the filling properties of the hollow organic polymer particles.
  • the upper limit of the specific surface area of the inorganic filler is not particularly limited, but is preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, particularly preferably 50 m 2 /g or less.
  • the specific surface area of the inorganic filler can be obtained by adsorbing nitrogen gas onto the surface of the sample using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountec) according to the BET multi-point method.
  • the inorganic filler may be surface-treated with an appropriate surface treatment agent.
  • Surface treatment can improve the moisture resistance and dispersibility of the inorganic filler.
  • surface treatment agents include vinyl silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane.
  • surface treatment agents include, for example, “KBM-1003”, “KBE-1003” (vinyl silane coupling agent); “KBM-303", “KBM-402”, and “KBE-1003” manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-403 "KBM-4803", “KBE-402”, “KBE-403” (epoxy silane coupling agent); "KBM-1403” (styryl silane coupling agent); "KBM-502” , “KBM-503”, “KBE-502”, “KBE-503” (methacrylic silane coupling agent); “KBM-5103” (acrylic silane coupling agent); "KBM-602”, “KBM- 603", “KBM-903”, “KBE-903”, “KBE-9103P”, "KBM-573", "KBM-575" (amino-based silane coupling agent); “KBM-9659” (isocyanurate-based silane coupling agent); "KBE-585" (ureide silane coupling agent); "KBM-802", “KBM-803” (mercapto silane coupling agent); “KBE-9007N” (isocyanate silane coupling agent); ring agent); "X-12-967C” (acid anhydride silane
  • the degree of surface treatment with the surface treatment agent is preferably within a predetermined range from the viewpoint of improving the dispersibility of the inorganic filler.
  • the inorganic filler is preferably surface-treated with 0.2 parts by mass to 5 parts by mass of a surface treatment agent, and 0.2 parts by mass to 3 parts by mass, based on 100 parts by mass of the inorganic filler. More preferably, the surface is treated with a surface treatment agent of 0.3 parts by mass to 2 parts by mass, and even more preferably with a surface treatment agent of 0.3 parts by mass to 2 parts by mass.
  • the degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • the amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable.
  • it is preferably 1.0 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler whose surface has been treated with a surface treatment agent, and the mixture is subjected to ultrasonic cleaning at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, the amount of carbon per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, "EMIA-320V" manufactured by Horiba, Ltd., etc. can be used.
  • EMIA-320V manufactured by Horiba, Ltd., etc.
  • the content of component (B) is preferably 30 parts by mass or more, and 40 parts by mass, based on 120 parts by mass of the resin content of the curable composition, from the viewpoint of the filling property of component (C) and the low coefficient of thermal expansion of the cured product.
  • the amount above is more preferable, and 50 parts by mass or more is particularly preferable.
  • the content of component (B) is preferably 500 parts by mass or less, more preferably 400 parts by mass or less, and 300 parts by mass or less, based on 120 parts by mass of the resin content of the curable composition. Parts by mass or less are particularly preferred.
  • the content of component (B) is preferably 5% by mass or more, and 10% by mass or more based on the solid content of the curable composition, from the viewpoint of the filling property of component (C) and the low coefficient of thermal expansion of the cured product. More preferably, 20% by mass or more is particularly preferred.
  • the content of component (B) is preferably 80% by mass or less, more preferably 70% by mass or less, and 60% by mass or less based on the solid content of the curable composition. Particularly preferred.
  • the curable composition of the present invention contains hollow organic polymer particles as component (C).
  • Hollow organic polymer particles are organic polymer-containing particles that have pores inside the particles.
  • the hollow organic polymer particles are present in particulate form in the composition.
  • the hollow organic polymer particles contribute to low elastic modulus and low coefficient of thermal expansion of the cured product, and low curing shrinkage of the curable composition.
  • general non-hollow organic polymer particles are blended into a curable composition, the curing shrinkage rate of the curable composition and the elastic modulus of the cured product decrease, but the thermal expansion coefficient of the cured product increases. It is assumed that by blending hollow organic polymer particles, the volume increase due to thermal expansion of the cured product is absorbed by compression of the hollow part of the hollow organic polymer particles, and as a result, the coefficient of thermal expansion of the cured product is reduced. .
  • the form of pore formation in the hollow organic polymer particles is not particularly limited, and even if the particle is in the form of a single hollow particle having one pore inside the particle, it may be in the form of a single hollow particle having a plurality of pores inside the particle.
  • the particles may be in the form of hollow particles (including hollow porous particles whose interior is porous), but are preferably in the form of single hollow particles.
  • the hollow organic polymer particles may be spherical particles or non-spherical particles, but are preferably spherical particles.
  • the hollow organic polymer particles have a shell consisting of at least one or more layers.
  • the shell may consist of one layer or two or more layers.
  • the hollow organic polymer particles may have a form in which the pores are covered with a shell.
  • the organic polymer contained in the hollow organic polymer particles is an organic polymer composed of a monomer including an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer has at least one ethylenically unsaturated group.
  • the ethylenically unsaturated group is not particularly limited as long as it is radically polymerizable, but it may be any ethylenically unsaturated group that has a carbon-carbon double bond at the end or inside, and specifically, an allyl group.
  • unsaturated aliphatic groups such as 3-cyclohexenyl group; aromatic groups containing unsaturated aliphatic groups such as p-vinylphenyl group, m-vinylphenyl group, styryl group; acryloyl group, methacryloyl group, maleoyl group, fumaroyl group It may be an ⁇ , ⁇ -unsaturated carbonyl group such as a group.
  • ethylenically unsaturated monomers include monofunctional ethylenically unsaturated monomers, polyfunctional ethylenically unsaturated monomers, silyl group-containing ethylenically unsaturated monomers, and epoxy group-containing ethylenically unsaturated monomers. Examples include monomers.
  • a monofunctional ethylenically unsaturated monomer is a compound having one ethylenically unsaturated group.
  • monofunctional ethylenically unsaturated monomers include, but are not limited to, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, Monofunctional aromatic vinyl compounds such as m-ethylstyrene, p-ethylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, monofunctional aromatic allyl compounds such as allylbenzene, 1-allyl-4-methylbenzene, etc.
  • Monofunctional aromatic olefin compounds such as vinyl acetate, vinyl propionate, allyl acetate, allyl propionate, vinyl butyrate, vinyl benzoate; monofunctional olefin ether compounds such as allyl ethyl ether; Methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, norbornyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, lau
  • Aromatic (meth)acrylic ester compounds such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate ) acrylate and other halogen-containing (meth)acrylic ester compounds, cyano group-containing (meth)acrylic esters such as methyl cyano (meth)acrylate, ethyl cyano (meth)acrylate, propyl cyano (meth)acrylate, isopropyl cyano (meth)acrylate, etc.
  • Monofunctional ethylenically unsaturated carboxylic acid ester compounds such as compounds; monofunctional ethylenically unsaturated carboxylic acid amide compounds such as (meth)acrylamide, maleimide, N-methylmaleimide, N-phenylmaleimide; (meth)acrylic acid , monofunctional ethylenically unsaturated carboxylic acid compounds such as maleic acid, fumaric acid, and itaconic acid; monofunctional ethylenically unsaturated nitrile compounds such as (meth)acrylonitrile; "(Meth)acrylate” includes acrylate and methacrylate.
  • a polyfunctional ethylenically unsaturated monomer is a compound having multiple ethylenically unsaturated groups.
  • polyfunctional ethylenically unsaturated monomers include, but are not limited to, conjugated diolefin compounds such as butadiene and isoprene; polyfunctional aromatic vinyl compounds such as p-divinylbenzene and m-divinylbenzene; Polyfunctional aromatic olefin compounds such as compounds; polyfunctional olefin ester compounds such as diallyl phthalate, triallyl isocyanurate, triallyl cyanurate, diallyl maleate, divinyl adipate, divinyl glutarate; tetraallyloxyethane, diallyl ether Polyfunctional olefin ether compounds such as ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,6-hexanediol di(
  • Examples include polyfunctional ethylenically unsaturated carboxylic acid amide compounds such as N,N'-ethylenebis(meth)acrylamide.
  • polyfunctional ethylenically unsaturated monomer may be used, or two or more types may be used in combination.
  • the silyl group-containing ethylenically unsaturated monomer is a compound having at least one ethylenically unsaturated group and a silyl group such as a trialkoxysilyl group or an alkyldialkoxysilyl group.
  • Silyl group-containing ethylenically unsaturated monomers are not particularly limited, but include, for example, vinyl silane compounds such as vinyltrimethoxysilane and vinyltriethoxysilane; aromatic olefins such as p-vinylphenyltrimethoxysilane.
  • Silane compound 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 8-methacryloxyoctyltriethoxysilane, 3 - Ethylenically unsaturated carboxylic acid ester silane compounds such as acryloxypropyltrimethoxysilane and the like.
  • the silyl group-containing ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the epoxy group-containing ethylenically unsaturated monomer is a compound having at least one ethylenically unsaturated group and an epoxy group.
  • the epoxy group-containing ethylenically unsaturated monomer is not particularly limited, but includes, for example, epoxy group-containing aromatic olefin compounds such as styrene-4-glycidyl ether and 4-glycidyl styrene; allyl glycidyl ether, etc.
  • Epoxy group-containing olefin ether compounds epoxy group-containing ethylenically unsaturated carboxylic acid ester compounds such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth)acrylate, etc. Can be mentioned.
  • the epoxy group-containing ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the monomer constituting the organic polymer contained in the hollow organic polymer particles contains an epoxy group-containing ethylenically unsaturated monomer
  • the monomer further contains a crosslinkable monomer.
  • the crosslinkable monomer include ethylenediaminediethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, N-(2-aminoethyl)piperazine, 1,4-bis(3-aminopropyl) ) Piperazine, 2,4,4-trimethylhexamethylenediamine, 2,2,4-trimethylhexamethylenediamine, bis(hexamethylene)triamine, poly(propylene glycol)diamine, 4,4'-diamino-3,3' - Aliphatics such as dimethyldicyclohexylmethane, 3-amino-1-(cyclohexylamino)propane, 4,4'-diamino
  • Polyamine compounds 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-phenylenediamine, 2,3-tolylenediamine, 2,4- Examples include aromatic amine compounds such as tolylene diamine and 2,5-tolylene diamine.
  • One type of crosslinkable monomer may be used, or two or more types may be used in combination.
  • the organic polymer contained in the hollow organic polymer particles is preferably an aromatic olefin compound (e.g., a monofunctional aromatic olefin compound, a polyfunctional aromatic olefin compound, an aromatic olefin silane compound, an epoxy group-containing (aromatic olefin compounds, etc.), ethylenically unsaturated carboxylic acid ester compounds (e.g., a monofunctional aromatic olefin compound, a polyfunctional aromatic olefin compound, an aromatic olefin silane compound, an epoxy group-containing (aromatic olefin compounds, etc.), ethylenically unsaturated carboxylic acid ester compounds (e.g.
  • an aromatic olefin compound e.g., a monofunctional aromatic olefin compound, a polyfunctional aromatic olefin compound, an aromatic olefin silane compound, an epoxy group-containing (aromatic olefin compounds, etc.
  • the organic polymer contained in the hollow organic polymer particles is more preferably an organic polymer composed of a monomer containing one or more monomers selected from aromatic olefin compounds, and an ethylenically unsaturated carboxylic acid ester compound.
  • An organic polymer composed of a monomer containing one or more selected monomers, or an organic polymer composed of a monomer containing one or more monomers selected from ethylenically unsaturated nitrile compounds. be.
  • the organic polymer contained in the hollow organic polymer particles is more preferably an organic polymer composed of a monomer containing styrene, an organic polymer composed of a monomer containing a (meth)acrylic acid ester, or an organic polymer composed of a monomer containing a (meth)acrylic acid ester. It is an organic polymer composed of monomers containing acrylamide.
  • the organic polymer contained in the hollow organic polymer particles is a thermosetting polymer (cured product), for example, a monomer containing an isocyanate compound, a compound having an amino group, and a compound having a hydroxy group.
  • a thermosetting polymer for example, a monomer containing an isocyanate compound, a compound having an amino group, and a compound having a hydroxy group.
  • organic polymers with urea bonds and/or It is an organic polymer with urethane bonds.
  • the hollow organic polymer particles may be treated with a surface treatment agent.
  • surface treatment agents for hollow organic polymer particles include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; carboxylic acids such as acetic acid, propionic acid, butyric acid, and acrylic acid; p-toluenesulfonic acid, ethylsulfonic acid, and dodecyl acid; Sulfonic acids such as benzenesulfonic acid, phosphoric acids such as polyoxyethylene alkyl ether phosphoric acid, organic acids such as phosphonic acids, phosphinic acids; tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, 3-(meth)acrylic Examples include silane coupling agents such as roxypropyltrimethoxysilane and 8-(meth)acryloxyoctyltrimethoxysilane; and isocyanate compounds such as
  • the porosity of the hollow organic polymer particles is preferably 20% by volume or more, more preferably 30% by volume or more, and particularly preferably 40% by volume or more.
  • the upper limit of the porosity of the hollow organic polymer particles is preferably 95% by volume or less, more preferably 90% by volume or less, and particularly preferably 85% by volume or less.
  • the porosity is the ratio (%) of the volume of pores inside the particle to the total volume of the hollow organic polymer particle.
  • the particle diameter of the hollow organic polymer particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less, from the viewpoint of reducing the practical adhesive thickness and reducing misalignment due to thermal expansion or the like.
  • the lower limit of the particle size of the hollow organic polymer particles is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more from the viewpoint of particle filling properties.
  • the "particle diameter" of the hollow organic polymer particles can be calculated by the laser diffraction/scattering method based on Mie scattering theory, as in the case of the "particle diameter" of the inorganic filler. Means the median diameter that can be achieved.
  • the particle size distribution of hollow organic polymer particles can be created on a volume basis using a laser diffraction scattering type particle size distribution measurement device, and the median diameter can be calculated.
  • the hollow organic polymer particles may be commercially available or may be produced by a known method.
  • Commercially available products include, for example, "XX-6214Z”, “XX-6368Z”, “XX-5598Z” manufactured by Sekisui Plastics Co., Ltd.; "NC-751C” manufactured by Sansui Co., Ltd.; "MFL-80GCA” manufactured by Matsumoto Fine Chemicals; etc. can be mentioned.
  • Known methods include, for example, WO 2018/051794, JP 2017-119843, JP 2017-119843, JP 2016-119230, JP 4-68324, and JP 63-135409. Examples include methods described in Japanese Patent Application Publication No. 2002-241448 and the like.
  • the content of component (C) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and 30 parts by mass based on 120 parts by mass of the resin content of the curable composition. The above is particularly preferable. Further, from the viewpoint of the viscosity of the curable composition (viscosity that can be used as an adhesive), the content of component (C) is preferably 300 parts by mass or less with respect to 120 parts by mass of the resin content of the curable composition. It is more preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less.
  • the content of component (C) is preferably 3% by mass or more, more preferably 5% by mass or more, and 10% by mass or more based on the solid content of the curable composition. Particularly preferred.
  • the content of component (C) is preferably 70% by mass or less, and 60% by mass or less, based on the solid content of the curable composition. is more preferable, and 50% by mass or less is particularly preferable.
  • the mass ratio of component (B):component (C) is preferably 1:10 to 20:1, and 1:5 from the viewpoint of filling properties of component (C) and low elastic modulus and low coefficient of thermal expansion of the cured product. ⁇ 15:1 is more preferable, and 1:3 ⁇ 10:1 is particularly preferable.
  • the present invention includes a cationic polymerization initiator as component (D) in order to cure the curable composition.
  • a cationic polymerization initiator as component (D) in order to cure the curable composition.
  • the curing shrinkage rate of the curable composition is lower and the resulting cured product has higher heat resistance than in curing by photoradical polymerization or thermal anionic polymerization.
  • the cationic polymerization initiator of component (D) acts on the alicyclic epoxy group in the alicyclic epoxy compound of component (A) and the oxetanyl group in the oxetane compound having two or more oxetanyl groups described below to initiate a cationic polymerization reaction. It may be a photo cationic polymerization initiator or a thermal cationic polymerization initiator as long as it can initiate .
  • the photocationic polymerization initiator is preferably a photoacid generator, which generates protons or Lewis acids upon irradiation with light.
  • Typical photoacid generators include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p-(phenylthio)phenyldiphenylsulfonium hexafluoroantimonate, and p-(phenylthio) described in WO2019/146736.
  • the photoacid generator described in WO2018/110297 the photoacid generator described in WO2020/171186 (for example, p-(phenylthio)phenyldiphenylsulfonium tris(pentafluoroethyl)trifluoro phosphate) can also be mentioned.
  • examples of the photoacid generator include other known salts containing sulfonium cations and commercially available salts containing sulfonium cations. Only one type of photoacid generator may be used, or two or more types may be used in combination.
  • the thermal cationic polymerization initiator is preferably a thermal acid generator, which generates protons or Lewis acids upon heating.
  • Typical thermal acid generators include organic onium salt compounds in which a cation component and an anion component are paired, as described in WO2019/146736.
  • examples of the cationic component include organic sulfonium, organic oxonium, organic ammonium, organic phosphonium, and organic iodonium.
  • examples of anion components include BF 4 ⁇ , B(C 6 F 5 ) 4 ⁇ , SbF 4 ⁇ , Sb(C 6 F 5 ) 4 ⁇ , AsF 6 ⁇ , PF 6 ⁇ , PF 6 ⁇ , CF 3 SO 3 - , C 4 F 9 SO 3 - , (CF 3 SO 2 ) 3 C - , and the like.
  • thermal acid generator the thermal acid generator described in WO2018/110297 is also mentioned.
  • examples of the thermal acid generator include other known salts containing quaternary ammonium cations and commercially available salts containing quaternary ammonium cations.
  • the thermal acid generator may be used alone or in combination of two or more.
  • a commercially available product can be used as the thermal acid generator.
  • Commercially available products include, for example, "K-PURE TAG-2678,” “K-PURE TAG-2681,” “K-PURE TAG-2689,” “K-PURE TAG-2690,” and “K-PURE TAG-2678” manufactured by King Industries.
  • the content of component (D) is preferably 0.01% by mass or more, based on the amount of the curable composition excluding components (B) and (C), and 0.
  • the content is more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass or more.
  • the content of component (D) is preferably 15% by mass or less, and 10% by mass or less, based on the amount of the curable composition excluding component (B) and component (C). % or less is more preferable, and 5 mass % or less is particularly preferable.
  • the content of component (D) is preferably 0.005% by mass or more, and 0.01% by mass or more based on the solid content of the curable composition. More preferably, 0.1% by mass or more is particularly preferred.
  • the content of component (D) is preferably 15% by mass or less, more preferably 10% by mass or less, and 5% by mass, based on the solid content of the curable composition. The following are particularly preferred.
  • the curable composition of the present invention may further contain components other than components (A) to (D) (herein sometimes referred to as "other components") as optional components.
  • other components include oxetane compounds having two or more oxetanyl groups, polyester polyols, photosensitizers, and the like.
  • oxetane compound having two or more oxetanyl groups contributes to low curing shrinkage of the curable composition.
  • the number of oxetanyl groups in the oxetane compound is preferably 2 to 4, particularly preferably 2.
  • R 1 to R 4 each independently have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or a carbon number optionally substituted with an alkyl group having 1 to 6 carbon atoms.
  • L 9 is a polyoxyalkylene group, an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 5 to 7 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, and an alkylene group having 6 to 6 carbon atoms;
  • L 10 - represents -O-, -S-, -CH 2 -, -NH-, -SO-, -SO 2 -, -C(CF 3 ) 2 - or -C(CH 3 ) 2 - and L 11 represents an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 5 to 7 carbon atoms, or an arylene group having 6 to 10 carbon atoms.
  • m1 represents an integer of 1 to 3.
  • Examples include compounds represented by any of the following.
  • Compound (V) may be a mixture of compounds having different numbers of repeating units.
  • the alkyl group having 1 to 6 carbon atoms in formulas (IV) and (V) may be linear or branched.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • Examples of the cycloalkyl group having 5 to 7 carbon atoms in formulas (IV) and (V) include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 6 carbon atoms in formulas (IV) and (V) include phenyl group, naphthyl group, tolyl group, and xylyl group. can be mentioned.
  • Examples of the aralkyl group having 6 to 16 carbon atoms in formulas (IV) and (V) include benzyl group and phenethyl group.
  • the number of carbon atoms in the alkylene group in the polyoxyalkylene group in formula (V) is preferably 1 to 4.
  • the repeating number of oxyalkylene groups in the polyoxyalkylene group is preferably 2 to 30.
  • the alkylene group having 1 to 6 carbon atoms in formulas (VI) and (VII) may be linear or branched.
  • Examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, pentamethylene group, and hexamethylene group.
  • Examples of the cycloalkylene group having 5 to 7 carbon atoms in formulas (VI) and (VII) include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1, Examples include 3-cyclohexylene group, 1,4-cyclohexylene group, 1,2-cycloheptylene group, 1,3-cycloheptylene group, and 1,4-cycloheptylene group.
  • Examples of the arylene group having 6 to 10 carbon atoms in formulas (VI) and (VII) include benzenediyl group and biphenyldiyl group.
  • an alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 10 carbon atoms are connected in formulas (VI) and (VII)
  • an alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 6 carbon atoms are connected.
  • ⁇ 10 arylene groups may be one or two or more, for example, benzene-4,4-diylbismethylene group (-CH 2 -Ph-CH 2 -), biphenyl-4,4'- Diylbismethylene (-CH 2 -Ph-Ph-CH 2 -) group is mentioned.
  • the oxetane compound is preferably selected from a compound represented by the following formula (IV-1) and a compound represented by the following formula (V-1).
  • Compound (V-1) may be a mixture of compounds having different numbers of repeating units.
  • oxetane compound Only one type of oxetane compound may be used, or two or more types may be used in combination.
  • oxetane compound commercially available products can be used. Examples of commercially available products include “OXT-121" and “OXT-221" manufactured by Toagosei Co., Ltd.; “OXBP” and “OXIPA” manufactured by Ube Industries, Ltd.; and the like.
  • the molecular weight of the oxetane compound is preferably 180 or more, more preferably 190 or more, and even more preferably 200 or more.
  • the upper limit of the molecular weight of the oxetane compound is appropriately selected depending on the viscosity of the curable composition, but is preferably 400 or less.
  • the molecular weight of the oxetane compound is 180 or more, the oxetane compound becomes difficult to volatilize from the curable composition. As a result, when applying the composition by an inkjet method, the composition of the composition is unlikely to change, and furthermore, the working environment is unlikely to deteriorate.
  • the molecular weight of the oxetane compound means the weight average molecular weight (Mw). This Mw can be calculated, for example, by gel permeation chromatography (GPC) in terms of polystyrene.
  • the viscosity (25° C.) of the oxetane compound is preferably 1 to 10,000 mPa ⁇ s, more preferably 2 to 5,000 mPa ⁇ s, from the viewpoint of the fluidity of the curable composition at room temperature.
  • viscosity (25°C) means “viscosity at 25°C measured using a vibratory viscometer.”
  • the oxetanyl equivalent of the oxetane compound is preferably 30 to 5,000 g/eq, more preferably 50 to 2,000 g/eq, and particularly preferably 100 to 1,000 g/eq.
  • the "oxetanyl equivalent" of an oxetane compound means the number of grams of the oxetane compound containing 1 gram equivalent of oxetanyl group. This value of oxetanyl equivalent can be determined according to the method specified in JIS K 7236.
  • the oxetanyl equivalent can be theoretically calculated by dividing the molecular weight of the oxetane compound by the number of oxetanyl groups that the oxetane compound has.
  • the content of the oxetane compound is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 3% by mass or more, based on the resin content of the curable composition.
  • the content of oxetane is preferably 65% by mass or less, more preferably 55% by mass or less, particularly preferably 45% by mass or less, based on the resin content of the curable composition. .
  • the content of the oxetane compound is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 2% by mass, based on the solid content of the curable composition. The above is particularly preferable.
  • the content of the oxetane compound is preferably 30% by mass or less, more preferably 25% by mass or less, particularly 20% by mass or less, based on the solid content of the curable composition. preferable.
  • polyester polyol By using a polyester polyol, the moisture and heat resistant adhesive properties of the curable composition can be improved.
  • polyester polyols include polyester polyols obtained by condensation polymerization of dicarboxylic acids and diols.
  • dicarboxylic acids include aliphatic carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid; aromatic carboxylic acids such as terephthalic acid and isophthalic acid.
  • diols examples include linear diols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and diethylene glycol; 1,2-propylene glycol, 1,3- Butylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentadiol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1,8- Examples include octanediol. Only one type of polyester polyol may be used, or two or more types may be used in combination.
  • the number average molecular weight of the polyester polyol is preferably from 500 to 20,000, more preferably from 1,000 to 15,000, from the viewpoint of obtaining good adhesion.
  • the number average molecular weight can be calculated in terms of polystyrene by gel permeation chromatography (GPC).
  • the hydroxyl value of the polyester polyol is preferably 5 to 500 mgKOH/g, more preferably 10 to 400 mgKOH/g, and particularly preferably 20 to 300 mgKOH/g.
  • hydroxyl value refers to the number of mg of potassium hydroxide corresponding to hydroxyl groups in 1 g of sample. The hydroxyl value can be measured according to the method specified in JIS K 1557-1.
  • polyester polyols can be used. Examples of such commercial products include “OD-X-102”, “OD-X-668", “OD-X-2068", and “OD-X-3100” manufactured by DIC; “P -1010”, “P-2010”, “P-3010”, “P-2050”; ADEKA “NS-2400”, “YT-101”, “F7-67”, “#50”, “F1212” -29'', ⁇ YG-108'', ⁇ V14-90'', ⁇ Y65-55'', and the like.
  • the content of the polyester polyol is preferably 1% by mass or more, more preferably 2% by mass or more, particularly 3% by mass or more, based on the resin content of the curable composition, from the viewpoint of moisture-heat-resistant adhesive properties of the curable composition. preferable.
  • the content of the polyester polyol is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass or less, based on the resin content of the curable composition. Particularly preferably less than % by mass.
  • the content of the polyester polyol is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the solid content of the curable composition, from the viewpoint of heat-and-moisture resistant adhesiveness of the curable composition. Particularly preferred is 1% by mass or more.
  • its content is preferably 30% by mass or less, and 20% by mass or less, based on the solid content of the curable composition, from the viewpoint of obtaining a cured product with high Tg and high heat resistance stability. The following is more preferable, and 10% by mass or less is particularly preferable.
  • a photosensitizer When using a photocationic polymerization initiator (particularly a photoacid generator) as component (D), a photosensitizer is added to increase the activity of the photocationic polymerization initiator and increase the curability of the curable composition. It is preferable to use A sensitizer has an absorption band in a wavelength range longer than that of a photocationic polymerization initiator, and after being excited by light absorption, electrons or energy are transferred, and the photoacid generator is decomposed and the polymerization initiation species is activated. It is a compound that contributes to development.
  • the sensitizer can be appropriately blended depending on the wavelength of the light source used for photocuring.
  • sensitizers include anthracene compounds such as dimethylanthracene, 9,10-diethoxyanthracene, and 9,10-dibutoxyanthracene, thioxanthone compounds such as 2-isopropylthioxanthone and diethylthioxanthone, 2-ethylanthraquinone, ( Examples include quinone compounds such as ⁇ )-camphorquinone, naphthalene compounds such as dialkoxynaphthalene, and aromatic diketone compounds such as benzyl and curcumin. Only one type of photosensitizer may be used, or two or more types may be used in combination.
  • photosensitizers include anthracene compounds (such as 9, 10-dibutoxyanthracene), thioxanthone compounds, and quinone compounds, the absorbance in the long wavelength range is at a suitable level, poor dispersion in the composition is less likely to occur, and curability is improved. It is preferable from the viewpoint of improving the curing rate and improving the curing speed during curing.
  • photosensitizers include, for example, “AnthraCure UVS-1331", “AnthraCure UVS-1101”, “AnthraCure UVS-581”, and “AnthraCure UVS-2171” manufactured by Air Water Performance Chemical; Examples include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, and 2-ethylanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • the content of the photosensitizer is preferably 0.01% or more, more preferably 0.03% or more, based on the resin content of the curable composition. Particularly preferred is 0.05% or more.
  • the content of the photosensitizer is preferably 5% or less, more preferably 4% or less, particularly preferably 3% or less, based on the resin content of the curable composition.
  • the curable composition of the present invention comprises essential components (components (A) to (D)) and optional components (for example, an oxetane compound having two or more oxetanyl groups, a polyester polyol, a photosensitizer, etc.). ) using a known stirrer or disperser.
  • the stirrer and dispersion machine include a dissolver, a planetary mixer, a roll mill, a sand mill, a ball mill, a bead mill, a homogenizer, a high-pressure homogenizer, an ajihomo mixer, an autorotation/revolution mixer, and the like.
  • the curable composition of the present invention is liquid at 25°C, and preferably has a viscosity (at 25°C) of less than 300,000 mPa ⁇ s, more preferably 250,000 mPa ⁇ s or less.
  • the lower limit is not particularly limited, it is preferably 10 mPa ⁇ s or more, and preferably 20 mPa ⁇ s or more.
  • a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed from the curable composition of the present invention. That is, it is possible to obtain an optical device having a cured layer formed from a curable composition that has both a low coefficient of thermal expansion and a low modulus of elasticity. Therefore, the curable composition of the present invention can be suitably used for adhesion of optical devices (specifically, for adhesion of members in optical devices). Specifically, it is used as an adhesive for fiber arrays and ball lenses, for example. Since the curable composition of the present invention has excellent fluidity at room temperature, it can be directly applied to an object to be sealed, and a composition layer (coating layer) with uniform properties can be easily formed.
  • composition layer As a coating method, bar coating, comma coating, die coating, blade coating, dispenser coating, inkjet coating, etc. can be used alone or in combination.
  • a cured layer having a low coefficient of thermal expansion and a low modulus of elasticity can be formed.
  • the curable composition of the present invention can be cured by light or heat.
  • light irradiation of 300 mJ/cm 2 or more can be performed using, for example, a mercury lamp, UV-LED, or the like.
  • it can be cured by heating, for example, at a temperature of 60 to 150°C.
  • Component (B): Inorganic filler 40SE-C3: Silica manufactured by Admatex, particle size (median diameter): 3.0 ⁇ m, specific surface area: 3.3 m 2 /g SS-1000: Cordierite manufactured by Marusu Glaze Co., Ltd., particle size (median diameter): 1.7 ⁇ m
  • XX-6214Z Hollow styrene particles manufactured by Sekisui Plastics Co., Ltd., organic polymer: styrene polymer, number of pores in one particle: 1, porosity: 50%, particle size (median diameter): 0.42 ⁇ m
  • XX-6368Z Hollow acrylic particles manufactured by Sekisui Plastics Co., Ltd., number of pores in one particle: 1, porosity: 60%, particle diameter (median diameter): 4 ⁇ m
  • NC-751C Hollow thermosetting resin particles manufactured by Sansuisha, number of pores in one particle: 1, porosity: 69%, particle size (median diameter): 4.4 ⁇ m
  • MFL-80GCA hollow acrylonitrile particles manufactured by Matsumoto Fine Chemicals, organic polymer: acrylonitrile-based polymer, number of pores in one particle: 1, porosity: 80%, particle size (median diameter): 20 ⁇ m
  • OXT-221 3-ethyl-3 ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ oxetane (compound IV-1) manufactured by Toagosei Co., Ltd., molecular weight: 214, number of oxetanyl groups in one molecule :2
  • ARX-805 Acrylic particles manufactured by Sekisui Plastics, organic polymer: (meth)acrylate polymer, particle size (median diameter): 8 ⁇ m
  • Example 1 50 parts of an alicyclic epoxy compound ("Celoxide 2021P” manufactured by Daicel Corporation), 50 parts of an oxetane compound ("OXT-221" manufactured by Toagosei Co., Ltd.), and 20 parts of polyester polyol ("OD-X-3100” manufactured by DIC Corporation). were mixed uniformly using a high-speed rotating mixer to obtain a mixture. 100 parts of silica (“40SE-C3" manufactured by Admatex) and 40 parts of hollow styrene particles (“XX-6214Z” manufactured by Sekisui Plastics Co., Ltd.) were added to the resulting mixture, and the resulting mixture was rotated at high speed. Uniformly dispersed with a mixer.
  • a photoacid generator (“CPI-210S” manufactured by Sun-Apro Corporation) and 1 part of a photosensitizer (“UVS-1331” manufactured by Air Water Performance Chemical Company) were uniformly added to the obtained mixture using a high-speed rotating mixer. The mixture was mixed to obtain a curable composition.
  • the obtained curable composition was placed on the release-treated surface of a polyethylene terephthalate (PET) film (“NS-80A” manufactured by Toray Industries, Ltd., PET film thickness: 38 ⁇ m) that had been treated with an alkyd-based mold release agent. It was applied uniformly with a glass rod and irradiated with 365 nm ultraviolet rays at 30 mW for 100 seconds to obtain a cured product with a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • Example 2 Example 1 except that 40 parts of hollow acrylic particles ("XX-6368Z” manufactured by Sekisui Plastics Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z” manufactured by Sekisui Plastics Co., Ltd.) A curable composition and a cured product were produced in the same manner.
  • Example 3 Example 1 except that 90 parts of hollow thermosetting resin particles ("NC-751C” made by Sansui Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z” made by Sekisui Plastics Co., Ltd.). A curable composition and a cured product were produced in the same manner.
  • Example 4 Same as Example 1 except that 50 parts of hollow acrylonitrile particles ("MFL-80GCA” manufactured by Matsumoto Fine Chemical Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z” manufactured by Sekisui Plastics Co., Ltd.) A curable composition and a cured product were produced.
  • MFL-80GCA hollow acrylonitrile particles
  • XX-6214Z hollow styrene particles
  • Example 5 Except for adding 5 parts of hollow styrene particles ("XX-6214Z” manufactured by Sekisui Plastics Co., Ltd.) and changing the amount of silica ("40SE-C3" manufactured by Admatex Co., Ltd.) from 100 parts to 200 parts. A curable composition and a cured product were produced in the same manner as in Example 4.
  • Example 6 The amount of alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel Corporation) was changed from 50 parts to 60 parts, and the amount of oxetane compound (“OXT-221” manufactured by Toagosei Co., Ltd.) was changed from 50 parts to 60 parts.
  • a curable composition and a cured product were produced in the same manner as in Example 4, except that the polyester polyol ("OD-X-3100" manufactured by DIC Corporation) was not used.
  • Example 7 Instead of 2 parts of photoacid generator (CPI-210S manufactured by Sun-Apro) and 1 part of photosensitizer (UVS-1331 manufactured by Air Water Performance Chemical), A curable composition and a cured product were produced in the same manner as in Example 4, except that 5 parts of "Irgacure 290") were used.
  • Example 8 Curing was carried out in the same manner as in Example 4, except that 100 parts of cordierite ("SS-1000", manufactured by Marusu Glaze Co., Ltd.) was used in place of 100 parts of silica ("40SE-C3", manufactured by Admatex). A composition and a cured product were produced.
  • Example 9 Except that the amount of the alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel Corporation) was changed from 50 parts to 100 parts, and the oxetane compound (“OXT-221” manufactured by Toagosei Co., Ltd.) was not used. A curable composition and a cured product were produced in the same manner as in Example 4.
  • the amount of the alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel Corporation) was changed from 50 parts to 100 parts, and the oxetane compound (“OXT-221” manufactured by Toagosei Co., Ltd.) was not used.
  • a curable composition and a cured product were produced in the same manner as in Example 4.
  • Example 10 The same procedure as in Example 4 was carried out, except that 50 parts of an alicyclic epoxy compound ("Celoxide 8000" manufactured by Daicel) was used instead of 50 parts of the alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel). , a curable composition and a cured product were produced.
  • an alicyclic epoxy compound (“Celoxide 8000" manufactured by Daicel)
  • 50 parts of the alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel).
  • Example 11 Curing was carried out in the same manner as in Example 4, except that 50 parts of the oxetane compound ("OXT-121", manufactured by Toagosei Co., Ltd.) was used instead of 50 parts of the oxetane compound ("OXT-221", manufactured by Toagosei Co., Ltd.). A composition and a cured product were produced.
  • OXT-121 manufactured by Toagosei Co., Ltd.
  • OXT-221 manufactured by Toagosei Co., Ltd.
  • Example 12 In place of 2 parts of a photoacid generator ("CPI-210S” manufactured by Sun-Apro) and 1 part of a photosensitizer ("UVS-1331” manufactured by Air Water Performance Chemicals), a thermal acid generator (King Industries) was used. Using 1 part of hollow acrylonitrile particles ("MFL-80GCA”, manufactured by Matsumoto Fine Chemical Co., Ltd.), hollow acrylic particles (“XX-6368Z”, manufactured by Sekisui Plastics Co., Ltd.) were used. A curable composition and a cured product were produced in the same manner as in Example 11, except that 50 parts were used. Further, a cured product with a thickness of 100 ⁇ m was obtained in the same manner as in Example 11, except that instead of photocuring by ultraviolet irradiation, thermal curing was performed by heating in an oven at 120° C. for 30 minutes.
  • a thermal acid generator King Industries
  • MFL-80GCA hollow acrylonitrile particles
  • XX-6368Z manufactured by Sekis
  • Example 1 except that 50 parts of acrylic particles ("ARX-805", manufactured by Sekisui Plastics Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z", manufactured by Sekisui Plastics Co., Ltd.). A curable composition and a cured product were produced in the same manner.
  • a sheet-shaped cured product was obtained by peeling off the PET film from the cured product obtained in Examples and Comparative Examples.
  • the cured product was cut into test pieces with a width of about 4 mm and a length of about 15 mm, and thermomechanical analysis was performed using a thermomechanical analyzer TMA-SS6100 (manufactured by Seiko Instruments Inc.) using a tensile loading method. .
  • TMA-SS6100 manufactured by Seiko Instruments Inc.
  • the average coefficient of thermal expansion (ppm/°C) from 30°C to 80°C in the second measurement was calculated.
  • (Evaluation criteria) ⁇ : Average coefficient of thermal expansion (30°C to 80°C) ⁇ 100ppm/°C
  • Average coefficient of thermal expansion (30°C to 80°C)>100ppm/°C
  • a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, so the curable composition of the present invention is very useful for adhesion of optical devices. be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides a curable composition which can form cured objects having both a low degree of thermal expansion and a low modulus. The present invention relates to a curable composition comprising (A) an epoxy compound having two or more alicyclic epoxy groups, (B) an inorganic filler, (C) hollow organic-polymer particles, and (D) a cationic-polymerization initiator.

Description

硬化性組成物curable composition
 本発明は、硬化性組成物に関する。 The present invention relates to a curable composition.
 通信基地局等の光デバイスにおける部材の固定においては、その部材の微小な位置ずれにおいても性能が低下してしまう。そのため、部材を固定する接着剤として用いられる硬化性組成物には、微小なずれを防止するために低熱膨張率の硬化物を形成できることが求められる。また、振動の影響が懸念される場所で接着剤として用いる場合には、振動の影響を低減するために、低弾性率の硬化物を形成できることが硬化性組成物に求められる(特許文献1)。 When fixing members in optical devices such as communication base stations, performance deteriorates even if the members are slightly misaligned. Therefore, a curable composition used as an adhesive for fixing members is required to be able to form a cured product with a low coefficient of thermal expansion in order to prevent minute displacement. Furthermore, when used as an adhesive in places where the influence of vibration is a concern, the curable composition is required to be able to form a cured product with a low elastic modulus in order to reduce the influence of vibration (Patent Document 1) .
特開2012-177013号公報Japanese Patent Application Publication No. 2012-177013
 硬化物の低熱膨張率を達成するには、シリカ等の無機粒子を硬化性組成物に配合することが考えられるが、その場合、硬化物の弾性率が大きく上昇してしまう。一方、硬化物の弾性率を下げるためには、有機フィラーを硬化性組成物に配合する方法が考えられるが、その場合、硬化物の熱膨張率が上昇してしまう。
 このように、低熱膨張率および低弾性率が両立する硬化物を形成することは困難であった。
In order to achieve a low coefficient of thermal expansion of the cured product, it is possible to incorporate inorganic particles such as silica into the curable composition, but in this case, the elastic modulus of the cured product increases significantly. On the other hand, in order to lower the elastic modulus of the cured product, it is possible to incorporate an organic filler into the curable composition, but in that case, the coefficient of thermal expansion of the cured product increases.
As described above, it has been difficult to form a cured product that has both a low coefficient of thermal expansion and a low modulus of elasticity.
 本発明は上記のような事情に着目してなされたものであり、低熱膨張率および低弾性率が両立する硬化物を形成できる硬化性組成物を提供することを目的とする。 The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a curable composition that can form a cured product that has both a low coefficient of thermal expansion and a low modulus of elasticity.
 本発明者らは、上記目的を達成すべく鋭意研究をした結果、2以上の脂環エポキシ基を有するエポキシ化合物、無機充填材、中空有機ポリマー粒子およびカチオン重合開始剤を含む硬化性組成物が、低熱膨張率および低弾性率が両立する硬化物を形成し得ることを見出し、本発明を完成させるに至った。
 このような知見に基づく本発明は、以下の通りである。
As a result of intensive research to achieve the above object, the present inventors have discovered a curable composition containing an epoxy compound having two or more alicyclic epoxy groups, an inorganic filler, hollow organic polymer particles, and a cationic polymerization initiator. It was discovered that a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, and the present invention was completed.
The present invention based on such knowledge is as follows.
 [1] 以下の成分(A)~成分(D):
(A)2以上の脂環エポキシ基を有するエポキシ化合物、
(B)無機充填材、
(C)中空有機ポリマー粒子、および
(D)カチオン重合開始剤
を含む、硬化性組成物。
 [2] 成分(B)の含有量が、硬化性組成物の固形分あたり5~80質量%である、前記[1]に記載の硬化性組成物。
 [3] 成分(C)の含有量が、硬化性組成物の固形分あたり3~70質量%である、前記[1]または[2]に記載の硬化性組成物。
 [4] 成分(B):成分(C)の質量比が、1:10~20:1である、前記[1]~[3]のいずれか一つに記載の硬化性組成物。
 [5] 成分(C)の空孔率が、20体積%以上である、前記[1]~[4]のいずれか一つに記載の硬化性組成物。
 [6] 成分(C)の空孔率が、40~85体積%である、前記[1]~[4]のいずれか一つに記載の硬化性組成物。
 [7] 成分(D)が、光酸発生剤および熱酸発生剤から選択される、前記[1]~[6]のいずれか一つに記載の硬化性組成物。
 [8] 2以上のオキセタニル基を有するオキセタン化合物をさらに含む、前記[1]~[7]のいずれか一つに記載の硬化性組成物。
 [9] ポリエステルポリオールをさらに含む、前記[1]~[8]のいずれか一つに記載の硬化性組成物。
 [10] 光デバイスの接着用である、前記[1]~[9]のいずれか一つに記載の硬化性組成物。
 [11][1]~[10]のいずれか一項に記載の硬化性組成物から形成された硬化層を有する光デバイス。
[1] The following components (A) to (D):
(A) an epoxy compound having two or more alicyclic epoxy groups,
(B) inorganic filler,
A curable composition comprising (C) hollow organic polymer particles and (D) a cationic polymerization initiator.
[2] The curable composition according to [1] above, wherein the content of component (B) is 5 to 80% by mass based on the solid content of the curable composition.
[3] The curable composition according to [1] or [2] above, wherein the content of component (C) is 3 to 70% by mass based on the solid content of the curable composition.
[4] The curable composition according to any one of [1] to [3] above, wherein the mass ratio of component (B) to component (C) is 1:10 to 20:1.
[5] The curable composition according to any one of [1] to [4] above, wherein component (C) has a porosity of 20% by volume or more.
[6] The curable composition according to any one of [1] to [4] above, wherein component (C) has a porosity of 40 to 85% by volume.
[7] The curable composition according to any one of [1] to [6] above, wherein component (D) is selected from a photoacid generator and a thermal acid generator.
[8] The curable composition according to any one of [1] to [7] above, further comprising an oxetane compound having two or more oxetanyl groups.
[9] The curable composition according to any one of [1] to [8] above, further comprising a polyester polyol.
[10] The curable composition according to any one of [1] to [9] above, which is used for adhesion of optical devices.
[11] An optical device having a cured layer formed from the curable composition according to any one of [1] to [10].
 本発明の硬化性組成物によれば、低熱膨張率および低弾性率が両立する硬化物を形成することができるので、本発明の硬化性組成物は、光デバイスの接着用に非常に有用である。 According to the curable composition of the present invention, a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, so the curable composition of the present invention is very useful for adhesion of optical devices. be.
 以下、本発明の硬化性組成物に含まれる各成分を順に説明する。特段の記載がない限り、各成分は、いずれも1種のみを使用してもよく、2種以上を併用してもよい。 Hereinafter, each component contained in the curable composition of the present invention will be explained in order. Unless otherwise specified, each component may be used alone or in combination of two or more.
<(A)2以上の脂環エポキシ基を有するエポキシ化合物>
 本発明の硬化性組成物は、成分(A)として2以上の脂環エポキシ基を有するエポキシ化合物(本明細書中、「脂環式エポキシ化合物」と記載することがある)を含む。
 カチオン重合による硬化では、グリシジルエーテル等の末端エポキシ基と比較して、脂環エポキシ基は反応性が高いので、本発明の硬化性組成物は、硬化性が良好となる。
 また、硬化性組成物で一般的に用いられる(メタ)アクリレートやビニルエーテルと比較して、エポキシ化合物は硬化収縮率が低いので、本発明の硬化性組成物は、低硬化収縮であり、精密固定用接着剤に適している。
<(A) Epoxy compound having two or more alicyclic epoxy groups>
The curable composition of the present invention contains, as component (A), an epoxy compound having two or more alicyclic epoxy groups (herein sometimes referred to as an "alicyclic epoxy compound").
In curing by cationic polymerization, alicyclic epoxy groups have higher reactivity than terminal epoxy groups such as glycidyl ether, so the curable composition of the present invention has good curability.
In addition, compared to (meth)acrylates and vinyl ethers commonly used in curable compositions, epoxy compounds have a low curing shrinkage rate, so the curable composition of the present invention has low curing shrinkage and precision fixation. Suitable for adhesives.
 本明細書中、「脂環エポキシ基」とは、脂環式基を構成する隣接する二つの炭素原子が酸素原子とでオキシラン環(エポキシ基)を形成した、脂環式基とオキシラン環から成る縮合環基を意味する。脂環エポキシ基としては、例えば、エポキシシクロペンチル基、エポキシシクロヘキシル基等が挙げられ、好ましくはエポキシシクロヘキシル基である。
 脂環式エポキシ化合物は、複数の脂環エポキシ基が脂環部分で縮合した、脂環式縮合脂環構造を有していてもよい。
 脂環式エポキシ化合物中の脂環エポキシ基の数は、2~4が好ましく、2が特に好ましい。
In the present specification, "alicyclic epoxy group" refers to an alicyclic group and an oxirane ring in which two adjacent carbon atoms constituting the alicyclic group form an oxirane ring (epoxy group) with an oxygen atom. means a condensed ring group consisting of Examples of the alicyclic epoxy group include epoxycyclopentyl group and epoxycyclohexyl group, with epoxycyclohexyl group being preferred.
The alicyclic epoxy compound may have an alicyclic condensed alicyclic structure in which a plurality of alicyclic epoxy groups are condensed at an alicyclic moiety.
The number of alicyclic epoxy groups in the alicyclic epoxy compound is preferably 2 to 4, particularly preferably 2.
 脂環式エポキシ化合物としては、例えば、式(I)~(III): Examples of alicyclic epoxy compounds include formulas (I) to (III):
[式中、
 Lは、単結合を示すか、或いは2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、またはこれらが複数連結した基を示し、
 L~Lは、それぞれ独立に、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、またはこれらが複数連結した基を示す。]のいずれかで表される化合物が挙げられる。
 なお、本明細書中、「式(I)で表される化合物」を「化合物(I)」と略称することがあり、他の式で表される化合物も同様に略称することがある。
[In the formula,
L 1 represents a single bond, or a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are connected;
L 2 to L 7 each independently represent a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are connected. ] Examples include compounds represented by any of the following.
In addition, in this specification, the "compound represented by formula (I)" may be abbreviated as "compound (I)", and the compounds represented by other formulas may also be abbreviated in the same way.
 上記式中、2価の炭化水素基は、好ましくは、炭素数1~18のアルキレン基、または炭素数5~7の2価の脂環式炭化水素基である。
 炭素数1~18のアルキレン基は、直鎖状または分枝鎖状のいずれもでよい。炭素数1~18のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられる。
 炭素数5~7の2価の脂環式炭化水素基は、好ましくは炭素数5~7のシクロアルキレン基または炭素数5~7のシクロアルキリデン基である。炭素数5~7のシクロアルキレン基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基が挙げられる。炭素数5~7のシクロアルキリデン基としては、例えば、シクロペンチリデン基、シクロヘキシリデン基が挙げられる。
In the above formula, the divalent hydrocarbon group is preferably an alkylene group having 1 to 18 carbon atoms or a divalent alicyclic hydrocarbon group having 5 to 7 carbon atoms.
The alkylene group having 1 to 18 carbon atoms may be either linear or branched. Examples of the alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a trimethylene group, and a propylene group.
The divalent alicyclic hydrocarbon group having 5 to 7 carbon atoms is preferably a cycloalkylene group having 5 to 7 carbon atoms or a cycloalkylidene group having 5 to 7 carbon atoms. Examples of the cycloalkylene group having 5 to 7 carbon atoms include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1, A 4-cyclohexylene group is mentioned. Examples of the cycloalkylidene group having 5 to 7 carbon atoms include a cyclopentylidene group and a cyclohexylidene group.
 好ましい化合物(I)としては、例えば、式(I-1)~式(I-8): Preferred compounds (I) include, for example, formulas (I-1) to (I-8):
[式中、
 n1は、1~30の整数を示し、
 n2は、6~30の整数を示し、および
 Lは、炭素数1~8のアルキレン基を示す。]
のいずれかで表される化合物が挙げられる。化合物(I-6)および化合物(I-8)は、それぞれ、繰り返し単位の数が異なる化合物の混合物でもよい。
[In the formula,
n1 represents an integer from 1 to 30,
n2 represents an integer of 6 to 30, and L 8 represents an alkylene group having 1 to 8 carbon atoms. ]
Examples include compounds represented by any of the following. Compound (I-6) and compound (I-8) may be a mixture of compounds each having a different number of repeating units.
 式(I-6)中のn1は、好ましくは1~6の整数である。
 式(I-8)中の炭素数1~8のアルキレン基は、直鎖状または分枝鎖状のいずれもでよい。炭素数1~8のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基が挙げられる。
n1 in formula (I-6) is preferably an integer of 1 to 6.
The alkylene group having 1 to 8 carbon atoms in formula (I-8) may be linear or branched. Examples of the alkylene group having 1 to 8 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group. It will be done.
 好ましい化合物(II)としては、例えば、式(II-1): Preferred compounds (II) include, for example, formula (II-1):
[式中、n3およびn4は、それぞれ独立に、2~30の整数を示す。]
で表される化合物が挙げられる。化合物(II-1)は、繰り返し単位の数が異なる化合物の混合物でもよい。
[In the formula, n3 and n4 each independently represent an integer of 2 to 30. ]
Examples include compounds represented by: Compound (II-1) may be a mixture of compounds having different numbers of repeating units.
 好ましい化合物(III)としては、例えば、式(III-1): Preferred compounds (III) include, for example, formula (III-1):
[式中、n5~n8は、それぞれ独立に、2~30の整数を示す。]
で表される化合物が挙げられる。化合物(III-1)は、繰り返し単位の数が異なる化合物の混合物でもよい。
[In the formula, n5 to n8 each independently represent an integer of 2 to 30. ]
Examples include compounds represented by: Compound (III-1) may be a mixture of compounds having different numbers of repeating units.
 脂環式エポキシ化合物は、1種のみ使用してもよく、2種以上併用してもよい。
 脂環式エポキシ化合物は、好ましくは化合物(I-1)~化合物(I-8)、化合物(II-1)および化合物(III-1)から選択される。脂環式エポキシ化合物は、より好ましくは化合物(I-1)~化合物(I-7)から選択される。脂環式エポキシ化合物は、さらに好ましくは化合物(I-1)および化合物(I-3)から選択される。
One type of alicyclic epoxy compound may be used, or two or more types may be used in combination.
The alicyclic epoxy compound is preferably selected from compounds (I-1) to (I-8), compound (II-1) and compound (III-1). The alicyclic epoxy compound is more preferably selected from compounds (I-1) to (I-7). The alicyclic epoxy compound is more preferably selected from compound (I-1) and compound (I-3).
 脂環式エポキシ化合物は、市販品を使用することができる。市販品としては、例えば、ダイセル社製「セロキサイド2021P」、「セロキサイド2081」、「セロキサイド8000」;Synasia社製「Synasia S-21E」、「Synasia S-28」、「Synasia S-60」;Tetrachem社製「TTA60」、「TTA2081」、「TTA2083」;等が挙げられる。 Commercially available products can be used as the alicyclic epoxy compound. Commercially available products include, for example, "Celoxide 2021P", "Celoxide 2081", and "Celoxide 8000" manufactured by Daicel; "Synasia S-21E", "Synasia S-28", and "Synasia S-60" manufactured by Synasia; and Tetrachem. Examples include "TTA60", "TTA2081", and "TTA2083" manufactured by the company.
 脂環式エポキシ化合物の分子量は、硬化性組成物の室温での流動性の観点から、1000未満が好ましく、900以下がより好ましく、800以下がさらに好ましく、700以下がさらに一層好ましく、600以下が特に好ましい。また、脂環式エポキシ化合物の分子量の下限は特に限定はされないが、アウトガス発生を抑制する観点から、その分子量は100以上が好ましく、125以上がより好ましく、150以上が特に好ましい。
 なお、脂環式エポキシ化合物が、繰返し単位を有する化合物であって、且つ繰返し単位の数が異なる複数の化合物の混合物である場合、脂環式エポキシ化合物の分子量は、重量平均分子量(本明細書中、「Mw」と略称することがある)を意味する。
 このMwは、例えば、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算にて算出することができる。
From the viewpoint of fluidity of the curable composition at room temperature, the molecular weight of the alicyclic epoxy compound is preferably less than 1000, more preferably 900 or less, further preferably 800 or less, even more preferably 700 or less, and even more preferably 600 or less. Particularly preferred. Further, the lower limit of the molecular weight of the alicyclic epoxy compound is not particularly limited, but from the viewpoint of suppressing outgas generation, the molecular weight is preferably 100 or more, more preferably 125 or more, and particularly preferably 150 or more.
In addition, when the alicyclic epoxy compound is a compound having a repeating unit and is a mixture of a plurality of compounds having different numbers of repeating units, the molecular weight of the alicyclic epoxy compound is the weight average molecular weight (hereinafter referred to as (sometimes abbreviated as "Mw").
This Mw can be calculated, for example, by gel permeation chromatography (GPC) in terms of polystyrene.
 また、脂環式エポキシ化合物の粘度(25℃)は、硬化性組成物の室温での流動性の観点から、10~3000mPa・sが好ましく、25~2000mPa・sがより好ましい。なお、本明細書中、「粘度(25℃)」とは、振動式粘度計を使用して測定される25℃における粘度を意味する。 Further, the viscosity (25° C.) of the alicyclic epoxy compound is preferably 10 to 3000 mPa·s, more preferably 25 to 2000 mPa·s, from the viewpoint of the fluidity of the curable composition at room temperature. In addition, in this specification, "viscosity (25 degreeC)" means the viscosity at 25 degreeC measured using the vibration viscometer.
 脂環式エポキシ化合物のエポキシ当量は、その反応性の観点から、50~500g/eqが好ましく、75~450g/eqがより好ましく、90~400g/eqが特に好ましい。本明細書中、エポキシ化合物の「エポキシ当量」とは、1グラム当量のエポキシ基を含むエポキシ化合物のグラム数を意味する。このエポキシ当量の値は、JIS K 7236に規定された方法に従って求めることができる。また、エポキシ当量は、理論的には、エポキシ化合物の分子量を該エポキシ化合物が有するエポキシ基の数で割ることによって算出することができる。 From the viewpoint of reactivity, the epoxy equivalent of the alicyclic epoxy compound is preferably 50 to 500 g/eq, more preferably 75 to 450 g/eq, particularly preferably 90 to 400 g/eq. As used herein, the "epoxy equivalent" of an epoxy compound means the number of grams of the epoxy compound containing 1 gram equivalent of epoxy groups. This epoxy equivalent value can be determined according to the method specified in JIS K 7236. Moreover, the epoxy equivalent can be theoretically calculated by dividing the molecular weight of the epoxy compound by the number of epoxy groups that the epoxy compound has.
 成分(A)の含有量は、硬化性組成物の良好な硬化性および硬化物の低熱膨張率の観点から、硬化性組成物の樹脂分あたり、20.0質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が特に好ましい。また、成分(A)の含有量は、硬化性組成物の樹脂分あたり、99.99質量%以下が好ましく、99.9質量%以下がより好ましく、99.8質量%以下が特に好ましい。
 なお、本明細書中、「硬化性組成物の樹脂分」とは、必須成分である成分(A)の「脂環式エポキシ化合物」と、任意成分である後述の「2以上のオキセタニル基を有するオキセタン化合物」および「ポリエステルポリオール」との合計量を意味する。
The content of component (A) is preferably 20.0% by mass or more, and 30% by mass, based on the resin content of the curable composition, from the viewpoint of good curability of the curable composition and low coefficient of thermal expansion of the cured product. The content is more preferably 40% by mass or more, particularly preferably 40% by mass or more. Further, the content of component (A) is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, particularly preferably 99.8% by mass or less, based on the resin content of the curable composition.
In addition, in this specification, the "resin component of the curable composition" refers to the "alicyclic epoxy compound" of component (A), which is an essential component, and the "two or more oxetanyl groups described below, which is an optional component. It means the total amount of "oxetane compound" and "polyester polyol".
 また、成分(A)の含有量は、硬化性組成物の良好な硬化性および硬化物の低熱膨張率の観点から、硬化性組成物の固形分あたり、3質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が特に好ましい。また、成分(B)の無機充填材および成分(C)の中空有機ポリマー粒子の含有量とのバランスの観点から、成分(A)の含有量は、硬化性組成物の固形分あたり、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が特に好ましい。 Further, the content of component (A) is preferably 3% by mass or more, and 5% by mass or more based on the solid content of the curable composition, from the viewpoint of good curability of the curable composition and a low coefficient of thermal expansion of the cured product. The content is more preferably 10% by mass or more, particularly preferably 10% by mass or more. In addition, from the viewpoint of balance with the content of the inorganic filler of component (B) and the hollow organic polymer particles of component (C), the content of component (A) is 80% by mass per solid content of the curable composition. % or less, more preferably 70% by mass or less, particularly preferably 60% by mass or less.
<(B)無機充填材>
 本発明の硬化性組成物は、成分(B)として無機充填材を含む。
 本発明において、当該無機充填材は、硬化物の低熱膨張率に寄与するとともに、後述する成分(C)の中空有機ポリマー粒子の硬化性組成物への充填性を改善する。有機充填材の使用では、中空有機ポリマー粒子の充填性は低く、充填材自体の使用なしでは、中空スチレン粒子を十分に分散させることができず、均一な組成物が得られない。本発明の硬化性組成物では、無機充填材を配合することにより、十分な量の中空有機ポリマーを硬化性組成物に充填させることが可能となる。従って、本発明の硬化性組成物は、硬化物の低熱膨張率とともに、中空有機ポリマーの配合による硬化物の低弾性率をも併せ持つ硬化物を形成することができる。
<(B) Inorganic filler>
The curable composition of the present invention contains an inorganic filler as component (B).
In the present invention, the inorganic filler contributes to a low coefficient of thermal expansion of the cured product and improves the filling property of hollow organic polymer particles (component (C) described later) into the curable composition. When an organic filler is used, the filling properties of the hollow organic polymer particles are low, and without the use of the filler itself, the hollow styrene particles cannot be sufficiently dispersed and a uniform composition cannot be obtained. In the curable composition of the present invention, by blending an inorganic filler, it becomes possible to fill the curable composition with a sufficient amount of hollow organic polymer. Therefore, the curable composition of the present invention can form a cured product that has both a low coefficient of thermal expansion and a low modulus of elasticity due to the inclusion of the hollow organic polymer.
 無機充填材としては、例えば、シリカ、アルミナ、ガラス、コージェライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。
 無機充填材は、1種のみ使用してもよく、2種以上併用してもよい。
 無機充填材は、好ましくは、シリカおよびコージェライトから選択され、より好ましくはシリカである。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては球形シリカが好ましい。
Examples of inorganic fillers include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, and magnesium hydroxide. , calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, titanate Examples include barium, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate.
One type of inorganic filler may be used, or two or more types may be used in combination.
The inorganic filler is preferably selected from silica and cordierite, more preferably silica. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. Further, as the silica, spherical silica is preferable.
 無機充填材は、市販品を使用することができる。市販品としては、例えば、電化化学工業社製の「UFP-30」;新日鉄住金マテリアルズ社製「SP60-05」、「SP507-05」;アドマテックス社製「40SE-C3」、「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」、「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;デンカ社製「UFP-30」、「DAW-03」、「FB-105FD」;トクヤマ社製「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;丸ス釉薬社製「SS-1000」;等が挙げられる。 Commercially available products can be used as the inorganic filler. Commercially available products include, for example, "UFP-30" manufactured by Denka Kagaku Kogyo Co., Ltd.; "SP60-05" and "SP507-05" manufactured by Nippon Steel & Sumikin Materials; "40SE-C3" and "YC100C" manufactured by Admatex Corporation. , "YA050C", "YA050C-MJE", "YA010C", "SC2500SQ", "SO-C4", "SO-C2", "SO-C1"; Denka "UFP-30", "DAW-03" ", "FB-105FD"; "Silfill NSS-3N", "Silfill NSS-4N", "Silfill NSS-5N" manufactured by Tokuyama Corporation; "SS-1000" manufactured by Marusu Glaze Co., Ltd.; and the like.
 無機充填材の粒子径は、実用上の接着厚みを薄くし、熱膨張等による位置ずれを低減する観点から、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。無機充填材の粒子径の下限は、特に限定されるものではないが、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上、特に好ましくは0.2μm以上である。本明細書中、無機充填材の「粒子径」とは、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により算出することができるメジアン径を意味する。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメジアン径を算出することができる。より具体的には、測定サンプルとして、無機充填材100mg、分散媒10gをバイアル瓶に秤り取り、音波にて10分間分散させたものを使用し、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメジアン径を算出することができる。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。 The particle diameter of the inorganic filler is preferably 20 μm or less, more preferably 15 μm or less, particularly preferably 10 μm or less, from the viewpoint of reducing the practical adhesive thickness and reducing positional displacement due to thermal expansion or the like. The lower limit of the particle size of the inorganic filler is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.05 μm or more, even more preferably 0.1 μm or more, particularly preferably 0.2 μm or more. be. In this specification, the "particle diameter" of the inorganic filler means the median diameter that can be calculated by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis using a laser diffraction scattering type particle size distribution measuring device, and the median diameter can be calculated. More specifically, as a measurement sample, 100 mg of the inorganic filler and 10 g of the dispersion medium were weighed into a vial and dispersed for 10 minutes using sound waves, and a laser diffraction particle size distribution measuring device was used. Then, the volume-based particle size distribution of the inorganic filler is measured using a flow cell method using blue and red light source wavelengths, and the median diameter can be calculated from the obtained particle size distribution. Examples of the laser diffraction particle size distribution measuring device include "LA-960" manufactured by Horiba, Ltd.
 無機充填材の比表面積は、中空有機ポリマー粒子の充填性向上の観点から、好ましくは0.1m/g以上、より好ましくは0.5m/g以上、特に好ましくは1m/g以上である。無機充填材の比表面積の上限は、特に限定されるものではないが、好ましくは100m/g以下、より好ましくは70m/g以下、特に好ましくは50m/g以下である。無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて得ることができる。 The specific surface area of the inorganic filler is preferably 0.1 m 2 /g or more, more preferably 0.5 m 2 /g or more, particularly preferably 1 m 2 /g or more, from the viewpoint of improving the filling properties of the hollow organic polymer particles. be. The upper limit of the specific surface area of the inorganic filler is not particularly limited, but is preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, particularly preferably 50 m 2 /g or less. The specific surface area of the inorganic filler can be obtained by adsorbing nitrogen gas onto the surface of the sample using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountec) according to the BET multi-point method.
 無機充填材は、適切な表面処理剤で表面処理されていてもよい。表面処理されることにより、無機充填材の耐湿性及び分散性を高めることができる。表面処理剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル系シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、8-グリシドキシオクチルトリメトキシシラン等のエポキシ系シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-8-アミノオクチルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;トリス-(トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレート系シランカップリング剤;3-ウレイドプロピルトリアルコキシシラン等のウレイド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤;3-トリメトキシシリルプロピルコハク酸無水物等の酸無水物系シランカップリング剤;等のシランカップリング剤;メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等の非シランカップリング-アルコキシシラン化合物等が挙げられる。また、表面処理剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。 The inorganic filler may be surface-treated with an appropriate surface treatment agent. Surface treatment can improve the moisture resistance and dispersibility of the inorganic filler. Examples of surface treatment agents include vinyl silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane. , 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 8-glycidoxyoctyltrimethoxysilane, and other epoxy-based silane coupling agents; Styryl silane coupling agents such as p-styryltrimethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxy Methacrylic silane coupling agents such as silane; Acrylic silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(amino ethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl Amino-based silane coupling agents such as -3-aminopropyltrimethoxysilane, N-phenyl-8-aminooctyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane; Tris - Isocyanurate-based silane coupling agents such as (trimethoxysilylpropyl) isocyanurate; ureido-based silane coupling agents such as 3-ureidopropyltrialkoxysilane; 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane Mercapto-based silane coupling agents such as; Isocyanate-based silane coupling agents such as 3-isocyanatepropyltriethoxysilane; Acid anhydride-based silane coupling agents such as 3-trimethoxysilylpropylsuccinic anhydride; Silane cups such as Ring agent: Methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane , hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, and other non-silane coupling alkoxysilane compounds. Furthermore, the surface treatment agents may be used alone or in combination of two or more in any ratio.
 表面処理剤の市販品としては、例えば、信越化学工業社製の「KBM-1003」、「KBE-1003」(ビニル系シランカップリング剤);「KBM-303」、「KBM-402」、「KBM-403」、「KBM-4803」、「KBE-402」、「KBE-403」(エポキシ系シランカップリング剤);「KBM-1403」(スチリル系シランカップリング剤);「KBM-502」、「KBM-503」、「KBE-502」、「KBE-503」(メタクリル系シランカップリング剤);「KBM-5103」(アクリル系シランカップリング剤);「KBM-602」、「KBM-603」、「KBM-903」、「KBE-903」、「KBE-9103P」、「KBM-573」、「KBM-575」(アミノ系シランカップリング剤);「KBM-9659」(イソシアヌレート系シランカップリング剤);「KBE-585」(ウレイド系シランカップリング剤);「KBM-802」、「KBM-803」(メルカプト系シランカップリング剤);「KBE-9007N」(イソシアネート系シランカップリング剤);「X-12-967C」(酸無水物系シランカップリング剤);「KBM-13」、「KBM-22」、「KBM-103」、「KBE-13」、「KBE-22」、「KBE-103」、「KBM-3033」、「KBE-3033」、「KBM-3063」、「KBE-3063」、「KBE-3083」、「KBM-3103C」、「KBM-3066」、「KBM-7103」(非シランカップリング-アルコキシシラン化合物)等が挙げられる。 Commercially available surface treatment agents include, for example, "KBM-1003", "KBE-1003" (vinyl silane coupling agent); "KBM-303", "KBM-402", and "KBE-1003" manufactured by Shin-Etsu Chemical Co., Ltd. KBM-403", "KBM-4803", "KBE-402", "KBE-403" (epoxy silane coupling agent); "KBM-1403" (styryl silane coupling agent); "KBM-502" , "KBM-503", "KBE-502", "KBE-503" (methacrylic silane coupling agent); "KBM-5103" (acrylic silane coupling agent); "KBM-602", "KBM- 603", "KBM-903", "KBE-903", "KBE-9103P", "KBM-573", "KBM-575" (amino-based silane coupling agent); "KBM-9659" (isocyanurate-based silane coupling agent); "KBE-585" (ureide silane coupling agent); "KBM-802", "KBM-803" (mercapto silane coupling agent); "KBE-9007N" (isocyanate silane coupling agent); ring agent); "X-12-967C" (acid anhydride silane coupling agent); "KBM-13", "KBM-22", "KBM-103", "KBE-13", "KBE-22" ", "KBE-103", "KBM-3033", "KBE-3033", "KBM-3063", "KBE-3063", "KBE-3083", "KBM-3103C", "KBM-3066", Examples include "KBM-7103" (non-silane coupling alkoxysilane compound).
 表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、無機充填材は、その100質量部に対して、0.2質量部~5質量部の表面処理剤で表面処理されていることが好ましく、0.2質量部~3質量部の表面処理剤で表面処理されていることがより好ましく、0.3質量部~2質量部の表面処理剤で表面処理されていることがさらに好ましい。 The degree of surface treatment with the surface treatment agent is preferably within a predetermined range from the viewpoint of improving the dispersibility of the inorganic filler. Specifically, the inorganic filler is preferably surface-treated with 0.2 parts by mass to 5 parts by mass of a surface treatment agent, and 0.2 parts by mass to 3 parts by mass, based on 100 parts by mass of the inorganic filler. More preferably, the surface is treated with a surface treatment agent of 0.3 parts by mass to 2 parts by mass, and even more preferably with a surface treatment agent of 0.3 parts by mass to 2 parts by mass.
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、硬化性組成物の粘度の上昇を防止する観点から、1.0mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。 The degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. The amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable. On the other hand, from the viewpoint of preventing an increase in the viscosity of the curable composition, it is preferably 1.0 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
 無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。 The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler whose surface has been treated with a surface treatment agent, and the mixture is subjected to ultrasonic cleaning at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, the amount of carbon per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, "EMIA-320V" manufactured by Horiba, Ltd., etc. can be used.
 成分(B)の含有量は、成分(C)の充填性および硬化物の低熱膨張率の観点から、硬化性組成物の樹脂分120質量部に対し、30質量部以上が好ましく、40質量部以上がより好ましく、50質量部以上が特に好ましい。また、硬化物の低弾性率の観点から、成分(B)の含有量は、硬化性組成物の樹脂分120質量部に対し、500質量部以下が好ましく、400質量部以下がより好ましく、300質量部以下が特に好ましい。 The content of component (B) is preferably 30 parts by mass or more, and 40 parts by mass, based on 120 parts by mass of the resin content of the curable composition, from the viewpoint of the filling property of component (C) and the low coefficient of thermal expansion of the cured product. The amount above is more preferable, and 50 parts by mass or more is particularly preferable. In addition, from the viewpoint of low elastic modulus of the cured product, the content of component (B) is preferably 500 parts by mass or less, more preferably 400 parts by mass or less, and 300 parts by mass or less, based on 120 parts by mass of the resin content of the curable composition. Parts by mass or less are particularly preferred.
 また、成分(B)の含有量は、成分(C)の充填性および硬化物の低熱膨張率の観点から、硬化性組成物の固形分あたり、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が特に好ましい。また、硬化物の低弾性率の観点から、成分(B)の含有量は、硬化性組成物の固形分あたり、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が特に好ましい。 In addition, the content of component (B) is preferably 5% by mass or more, and 10% by mass or more based on the solid content of the curable composition, from the viewpoint of the filling property of component (C) and the low coefficient of thermal expansion of the cured product. More preferably, 20% by mass or more is particularly preferred. In addition, from the viewpoint of low elastic modulus of the cured product, the content of component (B) is preferably 80% by mass or less, more preferably 70% by mass or less, and 60% by mass or less based on the solid content of the curable composition. Particularly preferred.
<(C)中空有機ポリマー粒子>
 本発明の硬化性組成物は、成分(C)として中空有機ポリマー粒子を含む。
 中空有機ポリマー粒子は、粒子内部の空孔を有する有機ポリマー含有粒子である。中空有機ポリマー粒子は、組成物中に粒子状の形態で存在する。
 当該中空有機ポリマー粒子は、硬化物の低弾性率および低熱膨張率、並びに硬化性組成物の低硬化収縮に寄与する。一般的な非中空の有機ポリマー粒子を硬化性組成物に配合すると、硬化性組成物の硬化収縮率および硬化物の弾性率は下がるが、硬化物の熱膨張率は上がってしまう。中空有機ポリマー粒子を配合することによって、硬化物の熱膨張による体積増加が、中空有機ポリマー粒子の中空部の圧縮によって吸収され、その結果、硬化物の熱膨張率が低減されると推測される。
<(C) Hollow organic polymer particles>
The curable composition of the present invention contains hollow organic polymer particles as component (C).
Hollow organic polymer particles are organic polymer-containing particles that have pores inside the particles. The hollow organic polymer particles are present in particulate form in the composition.
The hollow organic polymer particles contribute to low elastic modulus and low coefficient of thermal expansion of the cured product, and low curing shrinkage of the curable composition. When general non-hollow organic polymer particles are blended into a curable composition, the curing shrinkage rate of the curable composition and the elastic modulus of the cured product decrease, but the thermal expansion coefficient of the cured product increases. It is assumed that by blending hollow organic polymer particles, the volume increase due to thermal expansion of the cured product is absorbed by compression of the hollow part of the hollow organic polymer particles, and as a result, the coefficient of thermal expansion of the cured product is reduced. .
 中空有機ポリマー粒子の空孔の形成形態は、特に限定されるものではなく、粒子内部に1個の空孔を有する単中空粒子の形態であっても、粒子内部に複数の空孔を有する多中空粒子(粒子内部が多孔質状の中空多孔粒子を含む)の形態であってもよいが、単中空粒子の形態であることが好ましい。
 また、中空有機ポリマー粒子は、球状粒子であっても、非球状粒子であってもよいが、球状粒子であることが好ましい。
 また、中空有機ポリマー粒子は、少なくとも1つ以上の層からなるシェルを有していることが好ましい。シェルを構成する層は、1つからなっていても、2つ以上の複数層からなっていてもよい。中空有機ポリマー粒子は、空孔がシェルに覆われている形態であってもよい。
The form of pore formation in the hollow organic polymer particles is not particularly limited, and even if the particle is in the form of a single hollow particle having one pore inside the particle, it may be in the form of a single hollow particle having a plurality of pores inside the particle. The particles may be in the form of hollow particles (including hollow porous particles whose interior is porous), but are preferably in the form of single hollow particles.
Further, the hollow organic polymer particles may be spherical particles or non-spherical particles, but are preferably spherical particles.
Moreover, it is preferable that the hollow organic polymer particles have a shell consisting of at least one or more layers. The shell may consist of one layer or two or more layers. The hollow organic polymer particles may have a form in which the pores are covered with a shell.
 一実施形態として、中空有機ポリマー粒子に含まれる有機ポリマーは、エチレン性不飽和単量体を含む単量体で構成された有機ポリマーである。エチレン性不飽和単量体は、少なくとも1種以上のエチレン性不飽和基を有する。エチレン性不飽和基は、ラジカル重合可能である限り特に限定されるものではないが、末端又は内部に炭素-炭素二重結合を有するエチレン性不飽和基であればよく、具体的に、アリル基、3-シクロヘキセニル基等の不飽和脂肪族基;p-ビニルフェニル基、m-ビニルフェニル基、スチリル基等の不飽和脂肪族基含有芳香族基;アクリロイル基、メタクリロイル基、マレオイル基、フマロイル基等のα,β-不飽和カルボニル基等であり得る。 In one embodiment, the organic polymer contained in the hollow organic polymer particles is an organic polymer composed of a monomer including an ethylenically unsaturated monomer. The ethylenically unsaturated monomer has at least one ethylenically unsaturated group. The ethylenically unsaturated group is not particularly limited as long as it is radically polymerizable, but it may be any ethylenically unsaturated group that has a carbon-carbon double bond at the end or inside, and specifically, an allyl group. , unsaturated aliphatic groups such as 3-cyclohexenyl group; aromatic groups containing unsaturated aliphatic groups such as p-vinylphenyl group, m-vinylphenyl group, styryl group; acryloyl group, methacryloyl group, maleoyl group, fumaroyl group It may be an α,β-unsaturated carbonyl group such as a group.
 エチレン性不飽和単量体としては、例えば、単官能エチレン性不飽和単量体、多官能エチレン性不飽和単量体、シリル基含有エチレン性不飽和単量体、エポキシ基含有エチレン性不飽和単量体等が挙げられる。 Examples of ethylenically unsaturated monomers include monofunctional ethylenically unsaturated monomers, polyfunctional ethylenically unsaturated monomers, silyl group-containing ethylenically unsaturated monomers, and epoxy group-containing ethylenically unsaturated monomers. Examples include monomers.
 単官能エチレン性不飽和単量体は、エチレン性不飽和基を1つ有する化合物である。単官能エチレン性不飽和単量体としては、特に限定されるものではないが、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン等の単官能の芳香族ビニル化合物、アリルベンゼン、1-アリル-4-メチルベンゼン等の単官能の芳香族アリル化合物等の単官能の芳香族オレフィン化合物;酢酸ビニル、プロピオン酸ビニル、酢酸アリル、プロピオン酸アリル、酪酸ビニル、安息香酸ビニル等の単官能のオレフィンエステル化合物;アリルエチルエーテル等の単官能のオレフィンエーテル化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボロニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の脂肪族(メタ)アクリル酸エステル化合物、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート等の芳香族(メタ)アクリル酸エステル化合物、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル化合物、2,2,2-トリフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリル酸エステル化合物、メチルシアノ(メタ)アクリレート、エチルシアノ(メタ)アクリレート、プロピルシアノ(メタ)アクリレート、イソプロピルシアノ(メタ)アクリレート等のシアノ基含有(メタ)アクリル酸エステル化合物等の単官能のエチレン性不飽和カルボン酸エステル化合物;(メタ)アクリルアミド、マレイミド、N-メチルマレイミド、N-フェニルマレイミド等の単官能のエチレン性不飽和カルボン酸アミド化合物;(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸等の単官能のエチレン性不飽和カルボン酸化合物;(メタ)アクリロニトリル等の単官能のエチレン性不飽和ニトリル化合物等が挙げられる。「(メタ)アクリレート」は、アクリレート及びメタクリレートを包含する。「(メタ)アクリル酸」、「(メタ)アクリルアミド」、「(メタ)アクリロニトリル」等も同様である。単官能エチレン性不飽和単量体は、1種のみ使用してもよく、2種以上併用してもよい。 A monofunctional ethylenically unsaturated monomer is a compound having one ethylenically unsaturated group. Examples of monofunctional ethylenically unsaturated monomers include, but are not limited to, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, Monofunctional aromatic vinyl compounds such as m-ethylstyrene, p-ethylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, monofunctional aromatic allyl compounds such as allylbenzene, 1-allyl-4-methylbenzene, etc. Monofunctional aromatic olefin compounds; monofunctional olefin ester compounds such as vinyl acetate, vinyl propionate, allyl acetate, allyl propionate, vinyl butyrate, vinyl benzoate; monofunctional olefin ether compounds such as allyl ethyl ether; Methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, norbornyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, lauryl (meth)acrylate, tetradecyl ( Aliphatic (meth)acrylic acid ester compounds such as meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, etc. Aromatic (meth)acrylic ester compounds, hydroxyl group-containing (meth)acrylic ester compounds such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate ) acrylate and other halogen-containing (meth)acrylic ester compounds, cyano group-containing (meth)acrylic esters such as methyl cyano (meth)acrylate, ethyl cyano (meth)acrylate, propyl cyano (meth)acrylate, isopropyl cyano (meth)acrylate, etc. Monofunctional ethylenically unsaturated carboxylic acid ester compounds such as compounds; monofunctional ethylenically unsaturated carboxylic acid amide compounds such as (meth)acrylamide, maleimide, N-methylmaleimide, N-phenylmaleimide; (meth)acrylic acid , monofunctional ethylenically unsaturated carboxylic acid compounds such as maleic acid, fumaric acid, and itaconic acid; monofunctional ethylenically unsaturated nitrile compounds such as (meth)acrylonitrile; "(Meth)acrylate" includes acrylate and methacrylate. The same applies to "(meth)acrylic acid", "(meth)acrylamide", "(meth)acrylonitrile", etc. One type of monofunctional ethylenically unsaturated monomer may be used, or two or more types may be used in combination.
 多官能エチレン性不飽和単量体は、エチレン性不飽和基を複数有する化合物である。多官能エチレン性不飽和単量体としては、特に限定されるものではないが、例えば、ブタジエン、イソプレン等の共役ジオレフィン化合物;p-ジビニルベンゼン、m-ジビニルベンゼン等の多官能の芳香族ビニル化合物等の多官能の芳香族オレフィン化合物;フタル酸ジアリル、イソシアヌル酸トリアリル、シアヌル酸トリアリル、マレイン酸ジアリル、アジピン酸ジビニル、グルタル酸ジビニル等の多官能のオレフィンエステル化合物;テトラアリルオキシエタン、ジアリルエーテル等の多官能のオレフィンエーテル化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能のエチレン性不飽和カルボン酸エステル化合物;N,N'-エチレンビス(メタ)アクリルアミド等の多官能のエチレン性不飽和カルボン酸アミド化合物等が挙げられる。多官能エチレン性不飽和単量体は、1種のみ使用してもよく、2種以上併用してもよい。 A polyfunctional ethylenically unsaturated monomer is a compound having multiple ethylenically unsaturated groups. Examples of polyfunctional ethylenically unsaturated monomers include, but are not limited to, conjugated diolefin compounds such as butadiene and isoprene; polyfunctional aromatic vinyl compounds such as p-divinylbenzene and m-divinylbenzene; Polyfunctional aromatic olefin compounds such as compounds; polyfunctional olefin ester compounds such as diallyl phthalate, triallyl isocyanurate, triallyl cyanurate, diallyl maleate, divinyl adipate, divinyl glutarate; tetraallyloxyethane, diallyl ether Polyfunctional olefin ether compounds such as ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri( Polyfunctional ethylenically unsaturated carboxylic acid ester compounds such as meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. ; Examples include polyfunctional ethylenically unsaturated carboxylic acid amide compounds such as N,N'-ethylenebis(meth)acrylamide. One type of polyfunctional ethylenically unsaturated monomer may be used, or two or more types may be used in combination.
 シリル基含有エチレン性不飽和単量体は、少なくとも1種以上のエチレン性不飽和基と、トリアルコキシシリル基、アルキルジアルコキシシリル基等のシリル基とを有する化合物である。シリル基含有エチレン性不飽和単量体としては、特に限定されるものではないが、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルシラン化合物;p-ビニルフェニルトリメトキシシラン等の芳香族オレフィンシラン化合物;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、8-メタクリロキシオクチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のエチレン性不飽和カルボン酸エステルシラン化合物等が挙げられる。シリル基含有エチレン性不飽和単量体は、1種のみ使用してもよく、2種以上併用してもよい。 The silyl group-containing ethylenically unsaturated monomer is a compound having at least one ethylenically unsaturated group and a silyl group such as a trialkoxysilyl group or an alkyldialkoxysilyl group. Silyl group-containing ethylenically unsaturated monomers are not particularly limited, but include, for example, vinyl silane compounds such as vinyltrimethoxysilane and vinyltriethoxysilane; aromatic olefins such as p-vinylphenyltrimethoxysilane. Silane compound; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 8-methacryloxyoctyltriethoxysilane, 3 - Ethylenically unsaturated carboxylic acid ester silane compounds such as acryloxypropyltrimethoxysilane and the like. The silyl group-containing ethylenically unsaturated monomers may be used alone or in combination of two or more.
 エポキシ基含有エチレン性不飽和単量体は、少なくとも1種以上のエチレン性不飽和基とエポキシ基とを有する化合物である。エポキシ基含有エチレン性不飽和単量体としては、特に限定されるものではないが、例えば、スチレン-4-グリシジルエーテル、4-グリシジルスチレン等のエポキシ基含有芳香族オレフィン化合物;アリルグリシジルエーテル等のエポキシ基含有オレフィンエーテル化合物;グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等のエポキシ基含有エチレン性不飽和カルボン酸エステル化合物等が挙げられる。エポキシ基含有エチレン性不飽和単量体は、1種のみ使用してもよく、2種以上併用してもよい。 The epoxy group-containing ethylenically unsaturated monomer is a compound having at least one ethylenically unsaturated group and an epoxy group. The epoxy group-containing ethylenically unsaturated monomer is not particularly limited, but includes, for example, epoxy group-containing aromatic olefin compounds such as styrene-4-glycidyl ether and 4-glycidyl styrene; allyl glycidyl ether, etc. Epoxy group-containing olefin ether compounds; epoxy group-containing ethylenically unsaturated carboxylic acid ester compounds such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth)acrylate, etc. Can be mentioned. The epoxy group-containing ethylenically unsaturated monomers may be used alone or in combination of two or more.
 中空有機ポリマー粒子に含まれる有機ポリマーを構成する単量体は、エポキシ基含有エチレン性不飽和単量体を含む場合、架橋性単量体をさらに含むことが好ましい。架橋性単量体としては、例えば、エチレンジアミンジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、N-(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、2,4,4-トリメチルヘキサメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ビス(ヘキサメチレン)トリアミン、ポリ(プロピレングリコール)ジアミン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、3-アミノ-1-(シクロヘキシルアミノ)プロパン、4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナン等の脂肪族ポリアミン化合物;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-フェニレンジアミン、2,3-トルイレンジアミン、2,4-トルイレンジアミン、2,5-トルイレンジアミン等の芳香族アミン化合物等が挙げられる。架橋性単量体は、1種のみ使用してもよく、2種以上併用してもよい。 When the monomer constituting the organic polymer contained in the hollow organic polymer particles contains an epoxy group-containing ethylenically unsaturated monomer, it is preferable that the monomer further contains a crosslinkable monomer. Examples of the crosslinkable monomer include ethylenediaminediethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, N-(2-aminoethyl)piperazine, 1,4-bis(3-aminopropyl) ) Piperazine, 2,4,4-trimethylhexamethylenediamine, 2,2,4-trimethylhexamethylenediamine, bis(hexamethylene)triamine, poly(propylene glycol)diamine, 4,4'-diamino-3,3' - Aliphatics such as dimethyldicyclohexylmethane, 3-amino-1-(cyclohexylamino)propane, 4,4'-diaminodicyclohexylmethane, isophoronediamine, 1,3-bis(aminomethyl)cyclohexane, bis(aminomethyl)norbornane, etc. Polyamine compounds; 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-phenylenediamine, 2,3-tolylenediamine, 2,4- Examples include aromatic amine compounds such as tolylene diamine and 2,5-tolylene diamine. One type of crosslinkable monomer may be used, or two or more types may be used in combination.
 一実施形態において、中空有機ポリマー粒子に含まれる有機ポリマーは、好ましくは、芳香族オレフィン化合物(例えば単官能の芳香族オレフィン化合物、多官能の芳香族オレフィン化合物、芳香族オレフィンシラン化合物、エポキシ基含有芳香族オレフィン化合物等)、エチレン性不飽和カルボン酸エステル化合物(例えば単官能のエチレン性不飽和カルボン酸エステル化合物、多官能のエチレン性不飽和カルボン酸エステル化合物、エチレン性不飽和カルボン酸エステルシラン化合物、エポキシ基含有エチレン性不飽和カルボン酸エステル化合物等)、およびエチレン性不飽和ニトリル化合物から選ばれる1種以上の単量体を含む単量体で構成された有機ポリマーである。中空有機ポリマー粒子に含まれる有機ポリマーは、より好ましくは、芳香族オレフィン化合物から選ばれる1種以上の単量体を含む単量体で構成された有機ポリマー、エチレン性不飽和カルボン酸エステル化合物から選ばれる1種以上の単量体を含む単量体で構成された有機ポリマー、又はエチレン性不飽和ニトリル化合物から選ばれる1種以上の単量体を含む単量体で構成された有機ポリマーである。中空有機ポリマー粒子に含まれる有機ポリマーは、さらに好ましくは、スチレンを含む単量体で構成された有機ポリマー、(メタ)アクリル酸エステルを含む単量体で構成された有機ポリマー、又は(メタ)アクリルアミドを含む単量体で構成された有機ポリマーである。 In one embodiment, the organic polymer contained in the hollow organic polymer particles is preferably an aromatic olefin compound (e.g., a monofunctional aromatic olefin compound, a polyfunctional aromatic olefin compound, an aromatic olefin silane compound, an epoxy group-containing (aromatic olefin compounds, etc.), ethylenically unsaturated carboxylic acid ester compounds (e.g. monofunctional ethylenically unsaturated carboxylic ester compounds, polyfunctional ethylenically unsaturated carboxylic ester compounds, ethylenically unsaturated carboxylic ester silane compounds) , epoxy group-containing ethylenically unsaturated carboxylic acid ester compounds, etc.), and ethylenically unsaturated nitrile compounds. The organic polymer contained in the hollow organic polymer particles is more preferably an organic polymer composed of a monomer containing one or more monomers selected from aromatic olefin compounds, and an ethylenically unsaturated carboxylic acid ester compound. An organic polymer composed of a monomer containing one or more selected monomers, or an organic polymer composed of a monomer containing one or more monomers selected from ethylenically unsaturated nitrile compounds. be. The organic polymer contained in the hollow organic polymer particles is more preferably an organic polymer composed of a monomer containing styrene, an organic polymer composed of a monomer containing a (meth)acrylic acid ester, or an organic polymer composed of a monomer containing a (meth)acrylic acid ester. It is an organic polymer composed of monomers containing acrylamide.
 別の実施形態として、中空有機ポリマー粒子に含まれる有機ポリマーは、熱硬化性ポリマー(硬化物)であり、例えば、イソシアネート化合物、アミノ基を有する化合物およびヒドロキシ基を有する化合物を含む単量体で構成された有機ポリマーが挙げられ、好ましくは、複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基またはヒドロキシ基を有する活性水素化合物および/または水との反応により得られる、ウレア結合および/又はウレタン結合を有する有機ポリマーである。 In another embodiment, the organic polymer contained in the hollow organic polymer particles is a thermosetting polymer (cured product), for example, a monomer containing an isocyanate compound, a compound having an amino group, and a compound having a hydroxy group. Preferably, organic polymers with urea bonds and/or It is an organic polymer with urethane bonds.
 中空有機ポリマー粒子は、表面処理剤で処理されていてもよい。中空有機ポリマー粒子のための表面処理剤としては、例えば、塩酸、硝酸、硫酸等の無機酸;酢酸、プロピオン酸、酪酸、アクリル酸等のカルボン酸、p-トルエンスルホン酸、エチルスルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸、ポリオキシエチレンアルキルエーテルリン酸等のリン酸、ホスホン酸、ホスフィン酸等の有機酸;テトラエトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、8-(メタ)アクリロキシオクチルトリメトキシシラン等のシランカップリング剤;エチルイソシアネート等のイソシアネート化合物等が挙げられる。 The hollow organic polymer particles may be treated with a surface treatment agent. Examples of surface treatment agents for hollow organic polymer particles include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; carboxylic acids such as acetic acid, propionic acid, butyric acid, and acrylic acid; p-toluenesulfonic acid, ethylsulfonic acid, and dodecyl acid; Sulfonic acids such as benzenesulfonic acid, phosphoric acids such as polyoxyethylene alkyl ether phosphoric acid, organic acids such as phosphonic acids, phosphinic acids; tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, 3-(meth)acrylic Examples include silane coupling agents such as roxypropyltrimethoxysilane and 8-(meth)acryloxyoctyltrimethoxysilane; and isocyanate compounds such as ethyl isocyanate.
 中空有機ポリマー粒子の空孔率は、硬化物の低熱膨張率の観点から、好ましくは20体積%以上が好ましく、30体積%以上がより好ましく、40体積%以上が特に好ましい。中空有機ポリマー粒子の空孔率の上限は、その粒子の形状維持の観点から、95体積%以下が好ましく、90体積%以下がより好ましく、85体積%以下が特に好ましい。空孔率とは、中空有機ポリマー粒子の全体積に占める粒子内部の空孔の体積の割合(%)である。 From the viewpoint of a low coefficient of thermal expansion of the cured product, the porosity of the hollow organic polymer particles is preferably 20% by volume or more, more preferably 30% by volume or more, and particularly preferably 40% by volume or more. From the viewpoint of maintaining the shape of the particles, the upper limit of the porosity of the hollow organic polymer particles is preferably 95% by volume or less, more preferably 90% by volume or less, and particularly preferably 85% by volume or less. The porosity is the ratio (%) of the volume of pores inside the particle to the total volume of the hollow organic polymer particle.
 中空有機ポリマー粒子の粒子径は、実用上の接着厚みを薄くし、熱膨張等による位置ずれを低減する観点から、100μm以下が好ましく、50μm以下がより好ましく、30μm以下が特に好ましい。中空有機ポリマー粒子の粒子径の下限は、粒子の充填性の観点から、0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が特に好ましい。なお、本明細書中、中空有機ポリマー粒子の「粒子径」は、無機充填材の「粒子径」の場合と同様に、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により算出することができるメジアン径を意味する。具体的には、レーザー回折散乱式粒径分布測定装置により、中空有機ポリマー粒子の粒径分布を体積基準で作成し、そのメジアン径を算出することができる。 The particle diameter of the hollow organic polymer particles is preferably 100 μm or less, more preferably 50 μm or less, and particularly preferably 30 μm or less, from the viewpoint of reducing the practical adhesive thickness and reducing misalignment due to thermal expansion or the like. The lower limit of the particle size of the hollow organic polymer particles is preferably 0.05 μm or more, more preferably 0.1 μm or more, and particularly preferably 0.3 μm or more from the viewpoint of particle filling properties. Note that in this specification, the "particle diameter" of the hollow organic polymer particles can be calculated by the laser diffraction/scattering method based on Mie scattering theory, as in the case of the "particle diameter" of the inorganic filler. Means the median diameter that can be achieved. Specifically, the particle size distribution of hollow organic polymer particles can be created on a volume basis using a laser diffraction scattering type particle size distribution measurement device, and the median diameter can be calculated.
 中空有機ポリマー粒子は、市販品であってもよく、公知の方法で製造したものであってもよい。市販品としては、例えば、積水化成品工業社製「XX-6214Z」、「XX-6368Z」、「XX-5598Z」;三水社製「NC-751C」;マツモトファインケミカル社製「MFL-80GCA」;等が挙げられる。公知の方法としては、例えば、WO2018/051794、特開2017-119843号公報、特開2017-119843号公報、特開2016-119230号公報、特公平4-68324号公報、特開昭63-135409号公報、特開2002-241448号公報等に記載の方法等が挙げられる。 The hollow organic polymer particles may be commercially available or may be produced by a known method. Commercially available products include, for example, "XX-6214Z", "XX-6368Z", "XX-5598Z" manufactured by Sekisui Plastics Co., Ltd.; "NC-751C" manufactured by Sansui Co., Ltd.; "MFL-80GCA" manufactured by Matsumoto Fine Chemicals; etc. can be mentioned. Known methods include, for example, WO 2018/051794, JP 2017-119843, JP 2017-119843, JP 2016-119230, JP 4-68324, and JP 63-135409. Examples include methods described in Japanese Patent Application Publication No. 2002-241448 and the like.
 成分(C)の含有量は、硬化物の低弾性率の観点から、硬化性組成物の樹脂分120質量部に対し、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が特に好ましい。また、硬化性組成物の粘度(接着剤として使用可能な粘度)の観点から、成分(C)の含有量は、硬化性組成物の樹脂分120質量部に対し、300質量部以下が好ましく、250質量部以下がより好ましく、200質量部以下が特に好ましい。 From the viewpoint of low elastic modulus of the cured product, the content of component (C) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and 30 parts by mass based on 120 parts by mass of the resin content of the curable composition. The above is particularly preferable. Further, from the viewpoint of the viscosity of the curable composition (viscosity that can be used as an adhesive), the content of component (C) is preferably 300 parts by mass or less with respect to 120 parts by mass of the resin content of the curable composition. It is more preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less.
 また、成分(C)の含有量は、硬化物の低弾性率の観点から、硬化性組成物の固形分あたり、3質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が特に好ましい。また、硬化性組成物の粘度(接着剤として使用可能な粘度)の観点から、成分(C)の含有量は、硬化性組成物の固形分あたり、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。 In addition, from the viewpoint of low elastic modulus of the cured product, the content of component (C) is preferably 3% by mass or more, more preferably 5% by mass or more, and 10% by mass or more based on the solid content of the curable composition. Particularly preferred. In addition, from the viewpoint of the viscosity of the curable composition (viscosity that can be used as an adhesive), the content of component (C) is preferably 70% by mass or less, and 60% by mass or less, based on the solid content of the curable composition. is more preferable, and 50% by mass or less is particularly preferable.
 成分(B):成分(C)の質量比は、成分(C)の充填性、並びに硬化物の低弾性率および低熱膨張率の観点から、1:10~20:1が好ましく、1:5~15:1がより好ましく、1:3~10:1が特に好ましい。 The mass ratio of component (B):component (C) is preferably 1:10 to 20:1, and 1:5 from the viewpoint of filling properties of component (C) and low elastic modulus and low coefficient of thermal expansion of the cured product. ˜15:1 is more preferable, and 1:3˜10:1 is particularly preferable.
<(D)カチオン重合開始剤>
 本発明は、硬化性組成物を硬化させるために、成分(D)としてカチオン重合開始剤を含む。カチオン重合による硬化では、光ラジカル重合または熱アニオン重合による硬化と比較して、硬化性組成物の硬化収縮率が低く、且つ得られる硬化物の耐熱性が高い。
<(D) Cationic polymerization initiator>
The present invention includes a cationic polymerization initiator as component (D) in order to cure the curable composition. In curing by cationic polymerization, the curing shrinkage rate of the curable composition is lower and the resulting cured product has higher heat resistance than in curing by photoradical polymerization or thermal anionic polymerization.
 成分(D)のカチオン重合開始剤は、(A)成分の脂環式エポキシ化合物における脂環エポキシ基、および後述する2以上のオキセタニル基を有するオキセタン化合物におけるオキセタニル基に作用して、カチオン重合反応を開始させ得るものであれば、光カチオン重合開始剤であっても、熱カチオン重合開始剤であってもよい。 The cationic polymerization initiator of component (D) acts on the alicyclic epoxy group in the alicyclic epoxy compound of component (A) and the oxetanyl group in the oxetane compound having two or more oxetanyl groups described below to initiate a cationic polymerization reaction. It may be a photo cationic polymerization initiator or a thermal cationic polymerization initiator as long as it can initiate .
 光カチオン重合開始剤は、好ましくは光酸発生剤であり、光照射によりプロトン又はルイス酸を発生する剤である。 The photocationic polymerization initiator is preferably a photoacid generator, which generates protons or Lewis acids upon irradiation with light.
 代表的な光酸発生剤としては、WO2019/146736に記載された、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe-ヘキサフルオロホスフェート、ジアリルヨードニウムヘキサフルオロアンチモネート等が挙げられる。
 また、光酸発生剤として、WO2018/110297に記載された光酸発生剤、WO2020/171186に記載された光酸発生剤(例えば、p-(フェニルチオ)フェニルジフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート)も挙げられる。
 さらに、光酸発生剤として、その他の公知のスルホニウムカチオンを含む塩や、市販のスルホニウムカチオンを含む塩も挙げられる。
 光酸発生剤は、1種のみを使用してもよく、2種以上を併用してもよい。
Typical photoacid generators include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, p-(phenylthio)phenyldiphenylsulfonium hexafluoroantimonate, and p-(phenylthio) described in WO2019/146736. ) Phenyldiphenylsulfonium hexafluorophosphate, 4-chlorophenyldiphenylsulfonium hexafluorophosphate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, bis[4-(diphenylsulfonio)phenyl]sulfide bishexafluorophosphate, bis[4 -(diphenylsulfonio)phenyl]sulfide bishexafluoroantimonate, (2,4-cyclopentadien-1-yl)[(1-methylethyl)benzene]-Fe-hexafluorophosphate, diallyliodonium hexafluoroantimonate etc.
In addition, as a photoacid generator, the photoacid generator described in WO2018/110297, the photoacid generator described in WO2020/171186 (for example, p-(phenylthio)phenyldiphenylsulfonium tris(pentafluoroethyl)trifluoro phosphate) can also be mentioned.
Furthermore, examples of the photoacid generator include other known salts containing sulfonium cations and commercially available salts containing sulfonium cations.
Only one type of photoacid generator may be used, or two or more types may be used in combination.
 光酸発生剤は、市販品を使用することができる。市販品としては、例えば、BASF社製「イルガキュア261」、「イルガキュア290」、「CG-24-61」;サンアプロ社製「CPI-110P」、「CPI-110A」、「CPI-110B」、「CPI-210S」、「CPI-310B」、「VC-1S」、「CPI-410S」、「CPI-410B」;米国ユニオンカーバイド社製「サイラキュアUVI-6970」、「サイラキュアUVI-6974」、「サイラキュアUVI-6990」、「サイラキュアUVI-950」;ダイセル社製「DAICATII」;ダイセル・オルネクス社製「UVAC1591」;日本曹達社製「CI-2481」、「CI-2734」、「CI-2823」、「CI-2758」;3M社製「FFC509」;ミドリ化学社製「BBI-102」、「BBI-101」、「BBI-103」、「MPI-103」、「TPS-103」、「MDS-103」、「DTS-103」、「NAT-103」、「NDS-103」;等が挙げられる。 Commercially available products can be used as the photoacid generator. Commercially available products include, for example, BASF's "Irgacure 261", "Irgacure 290", "CG-24-61"; Sun-Apro's "CPI-110P", "CPI-110A", "CPI-110B", " CPI-210S", "CPI-310B", "VC-1S", "CPI-410S", "CPI-410B"; "Cyracure UVI-6970", "Cyracure UVI-6974", "Cyracure "UVI-6990", "Cyracure UVI-950"; "DAICATII" manufactured by Daicel; "UVAC1591" manufactured by Daicel Allnex; "CI-2481", "CI-2734", "CI-2823" manufactured by Nippon Soda, "CI-2758"; "FFC509" manufactured by 3M; "BBI-102", "BBI-101", "BBI-103", "MPI-103", "TPS-103", "MDS-" manufactured by Midori Chemical Co., Ltd. 103,” “DTS-103,” “NAT-103,” and “NDS-103.”
 熱カチオン重合開始剤は、好ましくは熱酸発生剤であり、加熱によりプロトン又はルイス酸を発生する剤である。 The thermal cationic polymerization initiator is preferably a thermal acid generator, which generates protons or Lewis acids upon heating.
 代表的な熱酸発生剤としては、WO2019/146736に記載された、カチオン成分とアニオン成分とが対になった有機オニウム塩化合物が挙げられる。ここで、カチオン成分としては、例えば、有機スルホニウム、有機オキソニウム、有機アンモニウム、有機ホスホニウムや有機ヨードニウム等を挙げることができる。また、アニオン成分としては、例えば、BF 、B(C 、SbF 、Sb(C 、AsF 、PF 、PF 、CFSO 、CSO や(CFSO等が挙げられる。
 また、熱酸発生剤として、WO2018/110297に記載された熱酸発生剤も挙げられる。
 さらに、熱酸発生剤として、その他の公知の4級アンモニウムカチオンを含む塩や、または市販の4級アンモニウムカチオンを含む塩も挙げられる。
 熱酸発生剤は、1種のみを使用してもよく、2種以上を併用してもよい。
Typical thermal acid generators include organic onium salt compounds in which a cation component and an anion component are paired, as described in WO2019/146736. Here, examples of the cationic component include organic sulfonium, organic oxonium, organic ammonium, organic phosphonium, and organic iodonium. In addition, examples of anion components include BF 4 , B(C 6 F 5 ) 4 , SbF 4 , Sb(C 6 F 5 ) 4 , AsF 6 − , PF 6 , PF 6 , CF 3 SO 3 - , C 4 F 9 SO 3 - , (CF 3 SO 2 ) 3 C - , and the like.
Moreover, as a thermal acid generator, the thermal acid generator described in WO2018/110297 is also mentioned.
Furthermore, examples of the thermal acid generator include other known salts containing quaternary ammonium cations and commercially available salts containing quaternary ammonium cations.
The thermal acid generator may be used alone or in combination of two or more.
 熱酸発生剤は、市販品を使用することができる。市販品としては、例えば、King Industries社製「K-PURE TAG-2678」、「K-PURE TAG-2681」、「K-PURE TAG-2689」、「K-PURE TAG-2690」、「K-PURE TAG-2700」、「K-PURE CXC-1612」、「K-PURE CXC-1614」、「K-PURE CXC-1615」、「K-PURE CXC-1616」、「K-PURE CXC-1733」、「K-PURE CXC-1738」、「K-PURE CXC-1742」、「K-PURE CXC-1802」、「K-PURE CXC-1821」;サンアプロ社製「TA-60」、「TA-60B」、「TA-90」、「TA-100」、「TA-120」、「TA-160」、「IK-1」、「IK-2」;三新化学工業社製「サンエイドSI-45」、「サンエイドSI-47」、「サンエイドSI-45L」、「サンエイドSI-60」、「サンエイドSI-60L」、「サンエイドSI-80」、「サンエイドSI-80L」、「サンエイドSI-100」、「サンエイドSI-100L」、「サンエイドSI-110」、「サンエイドSI-110L」、「サンエイドSI-145」、「サンエイドSI-150」、「サンエイドSI-150L」、「サンエイドSI-160」、「サンエイドSI-180」、「サンエイドSI-180L」、「サンエイドSI-B2」、「サンエイドSI-B2A」、「サンエイドSI-B3」、「サンエイドSI-B3A」、「サンエイドSI-B4」、「サンエイドSI-B5」、「サンエイドSI-200」、「サンエイドSI-210」、「サンエイドSI-220」、「サンエイドSI-300」、「サンエイドSI-360」;ADEKA社製「アデカオプトンCP-66」、「アデカオプトンCP-77」;3M社製「FC-520」等が挙げられる。 A commercially available product can be used as the thermal acid generator. Commercially available products include, for example, "K-PURE TAG-2678," "K-PURE TAG-2681," "K-PURE TAG-2689," "K-PURE TAG-2690," and "K-PURE TAG-2678" manufactured by King Industries. PURE TAG-2700", "K-PURE CXC-1612", "K-PURE CXC-1614", "K-PURE CXC-1615", "K-PURE CXC-1616", "K-PURE CXC-1733" , "K-PURE CXC-1738", "K-PURE CXC-1742", "K-PURE CXC-1802", "K-PURE CXC-1821"; Sun-Apro "TA-60", "TA-60B" ”, “TA-90”, “TA-100”, “TA-120”, “TA-160”, “IK-1”, “IK-2”; Sanshin Kagaku Kogyo Co., Ltd. “Sanaid SI-45” , "Sun-Aid SI-47", "Sun-Aid SI-45L", "Sun-Aid SI-60", "Sun-Aid SI-60L", "Sun-Aid SI-80", "Sun-Aid SI-80L", "Sun-Aid SI-100", “SUN-AID SI-100L”, “SUN-AID SI-110”, “SUN-AID SI-110L”, “SUN-AID SI-145”, “SUN-AID SI-150”, “SUN-AID SI-150L”, “SUN-AID SI-160”, “ Sun-Aid SI-180", "Sun-Aid SI-180L", "Sun-Aid SI-B2", "Sun-Aid SI-B2A", "Sun-Aid SI-B3", "Sun-Aid SI-B3A", "Sun-Aid SI-B4", "Sun-Aid SI-B5'', ``SunAid SI-200'', ``SunAid SI-210'', ``SunAid SI-220'', ``SunAid SI-300'', ``SunAid SI-360''; ADEKA's ``Adeka Opton CP-66'', Examples include "ADEKA OPTON CP-77" and "FC-520" manufactured by 3M.
 成分(D)の含有量は、硬化性組成物の良好な硬化性の観点から、成分(B)と成分(C)を除いた硬化性組成物量あたり、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が特に好ましい。また、硬化性組成物の保存安定性の観点から、成分(D)の含有量は、成分(B)と成分(C)を除いた硬化性組成物量あたり、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。 From the viewpoint of good curability of the curable composition, the content of component (D) is preferably 0.01% by mass or more, based on the amount of the curable composition excluding components (B) and (C), and 0. The content is more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass or more. In addition, from the viewpoint of storage stability of the curable composition, the content of component (D) is preferably 15% by mass or less, and 10% by mass or less, based on the amount of the curable composition excluding component (B) and component (C). % or less is more preferable, and 5 mass % or less is particularly preferable.
 また、成分(D)の含有量は、良好な硬化性の硬化性組成物を得る観点から、硬化性組成物の固形分あたり、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が特に好ましい。また、硬化性組成物の保存安定性の観点から、成分(D)の含有量は、硬化性組成物の固形分あたり、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。 In addition, from the viewpoint of obtaining a curable composition with good curability, the content of component (D) is preferably 0.005% by mass or more, and 0.01% by mass or more based on the solid content of the curable composition. More preferably, 0.1% by mass or more is particularly preferred. In addition, from the viewpoint of storage stability of the curable composition, the content of component (D) is preferably 15% by mass or less, more preferably 10% by mass or less, and 5% by mass, based on the solid content of the curable composition. The following are particularly preferred.
<他の成分>
 本発明の硬化性組成物は、成分(A)~(D)以外の成分(本明細書中、「他の成分」と記載することがある)を任意成分としてさらに含んでいてもよい。他の成分は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。他の成分としては、例えば、2以上のオキセタニル基を有するオキセタン化合物、ポリエステルポリオール、光増感剤等が挙げられる。
<Other ingredients>
The curable composition of the present invention may further contain components other than components (A) to (D) (herein sometimes referred to as "other components") as optional components. As for the other components, only one type may be used, or two or more types may be used in combination. Examples of other components include oxetane compounds having two or more oxetanyl groups, polyester polyols, photosensitizers, and the like.
(2以上のオキセタニル基を有するオキセタン化合物)
 2以上のオキセタニル基を有するオキセタン化合物(本明細書中、「オキセタン化合物」と略称することがある)は、硬化性組成物の低硬化収縮に寄与する。オキセタン化合物中のオキセタニル基の数は、2~4が好ましく、2が特に好ましい。
(Oxetane compound having two or more oxetanyl groups)
An oxetane compound having two or more oxetanyl groups (herein sometimes abbreviated as "oxetane compound") contributes to low curing shrinkage of the curable composition. The number of oxetanyl groups in the oxetane compound is preferably 2 to 4, particularly preferably 2.
 オキセタン化合物としては、例えば、式(IV)または式(V): As the oxetane compound, for example, formula (IV) or formula (V):
[式中、
 R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数5~7のシクロアルキル基、炭素数1~6のアルキル基で置換されていてもよい炭素数6~10のアリール基、炭素数6~16のアラルキル基、アリル基、フリル基またはチエニル基を示し、
 Lは、ポリオキシアルキレン基、炭素数1~6のアルキレン基、炭素数5~7のシクロアルキレン基、炭素数6~10のアリーレン基、炭素数1~6のアルキレン基と炭素数6~10のアリーレン基とが連結した2価の基、または下記式(VI)若しくは(VII):
[In the formula,
R 1 to R 4 each independently have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or a carbon number optionally substituted with an alkyl group having 1 to 6 carbon atoms. It represents an aryl group having 6 to 10 carbon atoms, an aralkyl group having 6 to 16 carbon atoms, an allyl group, a furyl group or a thienyl group,
L 9 is a polyoxyalkylene group, an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 5 to 7 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, and an alkylene group having 6 to 6 carbon atoms; A divalent group connected to 10 arylene groups, or the following formula (VI) or (VII):
(式中、
 *は結合位置を示し、
 -L10-は、-O-、-S-、-CH-、-NH-、-SO-、-SO-、-C(CF-または-C(CH-を示し、および
 L11は、炭素数1~6のアルキレン基、炭素数5~7のシクロアルキレン基または炭素数6~10のアリーレン基を示す。)
のいずれかで表される基を示し、および
 m1は、1~3の整数を示す。]
のいずれかで表される化合物が挙げられる。
 化合物(V)は、繰返し単位の数が異なる化合物の混合物でもよい。
(In the formula,
* indicates the bonding position,
-L 10 - represents -O-, -S-, -CH 2 -, -NH-, -SO-, -SO 2 -, -C(CF 3 ) 2 - or -C(CH 3 ) 2 - and L 11 represents an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 5 to 7 carbon atoms, or an arylene group having 6 to 10 carbon atoms. )
represents a group represented by any of the following, and m1 represents an integer of 1 to 3. ]
Examples include compounds represented by any of the following.
Compound (V) may be a mixture of compounds having different numbers of repeating units.
 式(IV)および(V)中の炭素数1~6のアルキル基は、直鎖状または分枝鎖状のいずれでもよい。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。 The alkyl group having 1 to 6 carbon atoms in formulas (IV) and (V) may be linear or branched. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
 式(IV)および(V)中の炭素数5~7のシクロアルキル基は、シクロペンチル基、シクロヘキシル基およびシクロヘプチル基が挙げられる。 Examples of the cycloalkyl group having 5 to 7 carbon atoms in formulas (IV) and (V) include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
 式(IV)および(V)中の、炭素数1~6のアルキル基で置換されていてもよい炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基、トリル基、キシリル基が挙げられる。 Examples of the aryl group having 6 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 6 carbon atoms in formulas (IV) and (V) include phenyl group, naphthyl group, tolyl group, and xylyl group. can be mentioned.
 式(IV)および(V)中の炭素数6~16のアラルキル基としては、例えば、ベンジル基、フェネチル基が挙げられる。 Examples of the aralkyl group having 6 to 16 carbon atoms in formulas (IV) and (V) include benzyl group and phenethyl group.
 式(V)中のポリオキシアルキレン基中のアルキレン基の炭素数は、好ましくは1~4である。ポリオキシアルキレン基のオキシアルキレン基の繰り返し数は、好ましくは2~30である。 The number of carbon atoms in the alkylene group in the polyoxyalkylene group in formula (V) is preferably 1 to 4. The repeating number of oxyalkylene groups in the polyoxyalkylene group is preferably 2 to 30.
 式(VI)および(VII)中の炭素数1~6のアルキレン基は、直鎖状または分枝鎖状のいずれでもよい。炭素数1~6のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基が挙げられる。 The alkylene group having 1 to 6 carbon atoms in formulas (VI) and (VII) may be linear or branched. Examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, pentamethylene group, and hexamethylene group.
 式(VI)および(VII)中の炭素数5~7のシクロアルキレン基としては、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、1,2-シクロヘプチレン基、1,3-シクロヘプチレン基、および1,4-シクロヘプチレン基が挙げられる。 Examples of the cycloalkylene group having 5 to 7 carbon atoms in formulas (VI) and (VII) include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1, Examples include 3-cyclohexylene group, 1,4-cyclohexylene group, 1,2-cycloheptylene group, 1,3-cycloheptylene group, and 1,4-cycloheptylene group.
 式(VI)および(VII)中の炭素数6~10のアリーレン基としては、例えばベンゼンジイル基、ビフェニルジイル基が挙げられる。 Examples of the arylene group having 6 to 10 carbon atoms in formulas (VI) and (VII) include benzenediyl group and biphenyldiyl group.
 式(VI)および(VII)中の、炭素数1~6のアルキレン基と炭素数6~10のアリーレン基とが連結した2価の基において、炭素数1~6のアルキレン基と炭素数6~10のアリーレン基は、それぞれ、1個でも、2個以上でもよく、例えば、ベンゼン-4,4-ジイルビスメチレン基(-CH-Ph-CH-)、ビフェニル-4,4’-ジイルビスメチレン(-CH-Ph-Ph-CH-)基が挙げられる。 In the divalent group in which an alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 10 carbon atoms are connected in formulas (VI) and (VII), an alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 6 carbon atoms are connected. ~10 arylene groups may be one or two or more, for example, benzene-4,4-diylbismethylene group (-CH 2 -Ph-CH 2 -), biphenyl-4,4'- Diylbismethylene (-CH 2 -Ph-Ph-CH 2 -) group is mentioned.
 オキセタン化合物は、好ましくは下記式(IV-1)で表される化合物、および下記式(V-1)で表される化合物から選択される。 The oxetane compound is preferably selected from a compound represented by the following formula (IV-1) and a compound represented by the following formula (V-1).
[下記式(V-1)中、m2は、1~3の整数を示す。]
 化合物(V-1)は、繰返し単位の数が異なる化合物の混合物でもよい。
[In the following formula (V-1), m2 represents an integer of 1 to 3. ]
Compound (V-1) may be a mixture of compounds having different numbers of repeating units.
 オキセタン化合物は、1種のみを使用してもよく、2種以上を併用してもよい。
 オキセタン化合物は、市販品を使用することができる。市販品としては、例えば、東亞合成社製「OXT-121」、「OXT-221」;宇部興産社製「OXBP」、「OXIPA」;等が挙げられる。
Only one type of oxetane compound may be used, or two or more types may be used in combination.
As the oxetane compound, commercially available products can be used. Examples of commercially available products include "OXT-121" and "OXT-221" manufactured by Toagosei Co., Ltd.; "OXBP" and "OXIPA" manufactured by Ube Industries, Ltd.; and the like.
 オキセタン化合物の分子量は180以上が好ましく、190以上がより好ましく、200以上がさらに好ましい。オキセタン化合物の分子量の上限は、硬化性組成物の粘度に応じて適宜選択されるが、400以下が好ましい。オキセタン化合物の分子量が180以上であると、硬化性組成物からオキセタン化合物が揮発し難くなる。その結果、当該組成物をインクジェット法で塗布する際、当該組成物の組成が変化し難く、さらには作業環境が悪化し難い。なお、オキセタン化合物が、繰返し単位を有する化合物であって、且つ繰返し単位の数が異なる複数の化合物の混合物である場合、オキセタン化合物の分子量は、重量平均分子量(Mw)を意味する。このMwは、例えば、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算にて算出することができる。 The molecular weight of the oxetane compound is preferably 180 or more, more preferably 190 or more, and even more preferably 200 or more. The upper limit of the molecular weight of the oxetane compound is appropriately selected depending on the viscosity of the curable composition, but is preferably 400 or less. When the molecular weight of the oxetane compound is 180 or more, the oxetane compound becomes difficult to volatilize from the curable composition. As a result, when applying the composition by an inkjet method, the composition of the composition is unlikely to change, and furthermore, the working environment is unlikely to deteriorate. In addition, when the oxetane compound is a compound having a repeating unit and is a mixture of a plurality of compounds having different numbers of repeating units, the molecular weight of the oxetane compound means the weight average molecular weight (Mw). This Mw can be calculated, for example, by gel permeation chromatography (GPC) in terms of polystyrene.
 また、オキセタン化合物の粘度(25℃)は、硬化性組成物の室温での流動性の観点から、1~10,000mPa・sが好ましく、2~5,000mPa・sがより好ましい。なお、本明細書中、「粘度(25℃)」とは、「振動式粘度計を使用して測定される25℃における粘度」を意味する。 Further, the viscosity (25° C.) of the oxetane compound is preferably 1 to 10,000 mPa·s, more preferably 2 to 5,000 mPa·s, from the viewpoint of the fluidity of the curable composition at room temperature. In this specification, "viscosity (25°C)" means "viscosity at 25°C measured using a vibratory viscometer."
 オキセタン化合物のオキセタニル当量は、その反応性の観点から、30~5,000g/eqが好ましく、50~2,000g/eqがより好ましく、100~1,000g/eqが特に好ましい。本明細書中、オキセタン化合物の「オキセタニル当量」とは、1グラム当量のオキセタニル基を含むオキセタン化合物のグラム数を意味する。このオキセタニル当量の値は、JIS K 7236に規定された方法に従って求めることができる。また、オキセタニル当量は、理論的には、オキセタン化合物の分子量を該オキセタン化合物が有するオキセタニル基の数で割ることによって算出することができる。 From the viewpoint of reactivity, the oxetanyl equivalent of the oxetane compound is preferably 30 to 5,000 g/eq, more preferably 50 to 2,000 g/eq, and particularly preferably 100 to 1,000 g/eq. As used herein, the "oxetanyl equivalent" of an oxetane compound means the number of grams of the oxetane compound containing 1 gram equivalent of oxetanyl group. This value of oxetanyl equivalent can be determined according to the method specified in JIS K 7236. Moreover, the oxetanyl equivalent can be theoretically calculated by dividing the molecular weight of the oxetane compound by the number of oxetanyl groups that the oxetane compound has.
 オキセタン化合物の含有量は、硬化性組成物の低硬化収縮の観点から、硬化性組成物の樹脂分あたり、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が特に好ましい。また、硬化性組成物の接着性の観点から、オキセタンの含有量は、硬化性組成物の樹脂分あたり、65質量%以下が好ましく、55質量%以下がより好ましく、45質量%以下が特に好ましい。 From the viewpoint of low curing shrinkage of the curable composition, the content of the oxetane compound is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 3% by mass or more, based on the resin content of the curable composition. . In addition, from the viewpoint of adhesiveness of the curable composition, the content of oxetane is preferably 65% by mass or less, more preferably 55% by mass or less, particularly preferably 45% by mass or less, based on the resin content of the curable composition. .
 また、オキセタン化合物の含有量は、硬化性組成物の低硬化収縮の観点から、硬化性組成物の固形分あたり、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が特に好ましい。また、硬化性組成物の接着性の観点から、オキセタン化合物の含有量は、硬化性組成物の固形分あたり、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が特に好ましい。 In addition, from the viewpoint of low curing shrinkage of the curable composition, the content of the oxetane compound is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 2% by mass, based on the solid content of the curable composition. The above is particularly preferable. In addition, from the viewpoint of adhesiveness of the curable composition, the content of the oxetane compound is preferably 30% by mass or less, more preferably 25% by mass or less, particularly 20% by mass or less, based on the solid content of the curable composition. preferable.
(ポリエステルポリオール)
 ポリエステルポリオールを使用することによって、硬化性組成物の耐湿熱接着性を改善することができる。
(Polyester polyol)
By using a polyester polyol, the moisture and heat resistant adhesive properties of the curable composition can be improved.
 ポリエステルポリオールとしては、例えばジカルボン酸とジオールとを縮合重合することにより得られるポリエステルポリオールが挙げられる。ジカルボン酸としては、例えば、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族カルボン酸;テレフタル酸、イソフタル酸等の芳香族カルボン酸等が挙げられる。ジオールとしては、例えば、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ジエチレングリコール等の直鎖構造のジオール;1,2-プロピレングリコール、1,3-ブチレングリコール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタジオール、2,2-ジメチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオール等が挙げられる。
 ポリエステルポリオールは、1種のみを使用してもよく、2種以上を併用してもよい。
Examples of polyester polyols include polyester polyols obtained by condensation polymerization of dicarboxylic acids and diols. Examples of dicarboxylic acids include aliphatic carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid; aromatic carboxylic acids such as terephthalic acid and isophthalic acid. Examples of diols include linear diols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and diethylene glycol; 1,2-propylene glycol, 1,3- Butylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentadiol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1,8- Examples include octanediol.
Only one type of polyester polyol may be used, or two or more types may be used in combination.
 ポリエステルポリオールの数平均分子量は、良好な密着性を得る観点から、500~20000が好ましく、1000~15000がより好ましい。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算にて算出することができる。 The number average molecular weight of the polyester polyol is preferably from 500 to 20,000, more preferably from 1,000 to 15,000, from the viewpoint of obtaining good adhesion. The number average molecular weight can be calculated in terms of polystyrene by gel permeation chromatography (GPC).
 ポリエステルポリオールの水酸基価は、密着性の観点から、5~500mgKOH/gが好ましく、10~400mgKOH/gがより好ましく、20~300mgKOH/gが特に好ましい。本明細書中、「水酸基価」とは、試料1g中の水酸基に相当する水酸化カリウムのmg数をいう。水酸基価は、JIS K 1557-1に規定された方法に従って測定することができる。 From the viewpoint of adhesion, the hydroxyl value of the polyester polyol is preferably 5 to 500 mgKOH/g, more preferably 10 to 400 mgKOH/g, and particularly preferably 20 to 300 mgKOH/g. In this specification, "hydroxyl value" refers to the number of mg of potassium hydroxide corresponding to hydroxyl groups in 1 g of sample. The hydroxyl value can be measured according to the method specified in JIS K 1557-1.
 ポリエステルポリオールは、市販品を使用することができる。そのような市販品としては、例えば、DIC社製「OD-X-102」、「OD-X-668」、「OD-X-2068」、「OD-X-3100」;クラレ社製「P-1010」、「P-2010」、「P-3010」、「P-2050」;ADEKA社製「NS-2400」、「YT-101」、「F7-67」、「#50」、「F1212-29」、「YG-108」、「V14-90」、「Y65-55」;等が挙げられる。 Commercially available polyester polyols can be used. Examples of such commercial products include "OD-X-102", "OD-X-668", "OD-X-2068", and "OD-X-3100" manufactured by DIC; "P -1010", "P-2010", "P-3010", "P-2050"; ADEKA "NS-2400", "YT-101", "F7-67", "#50", "F1212" -29'', ``YG-108'', ``V14-90'', ``Y65-55'', and the like.
 ポリエステルポリオールの含有量は、硬化性組成物の耐湿熱接着性の観点から、硬化性組成物の樹脂分あたり、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が特に好ましい。また、Tgが高く、耐熱安定性の高い硬化物を得る観点から、ポリエステルポリオールの含有量は、硬化性組成物の樹脂分あたり、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が特に好ましい。 The content of the polyester polyol is preferably 1% by mass or more, more preferably 2% by mass or more, particularly 3% by mass or more, based on the resin content of the curable composition, from the viewpoint of moisture-heat-resistant adhesive properties of the curable composition. preferable. In addition, from the viewpoint of obtaining a cured product with a high Tg and high heat resistance stability, the content of the polyester polyol is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass or less, based on the resin content of the curable composition. Particularly preferably less than % by mass.
 また、ポリエステルポリオールの含有量は、硬化性組成物の耐湿熱接着性の観点から、硬化性組成物の固形分あたり、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が特に好ましい。また、ポリエステルポリオールを使用する場合、その含有量は、Tgが高く、耐熱安定性の高い硬化物を得るの観点から、硬化性組成物の固形分あたり、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が特に好ましい。 In addition, the content of the polyester polyol is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the solid content of the curable composition, from the viewpoint of heat-and-moisture resistant adhesiveness of the curable composition. Particularly preferred is 1% by mass or more. In addition, when using polyester polyol, its content is preferably 30% by mass or less, and 20% by mass or less, based on the solid content of the curable composition, from the viewpoint of obtaining a cured product with high Tg and high heat resistance stability. The following is more preferable, and 10% by mass or less is particularly preferable.
(光増感剤)
 成分(D)として光カチオン重合開始剤(特に光酸発生剤)を使用する場合、光カチオン重合開始剤の活性を高めて、硬化性組成物の硬化性を高めるために、光増感剤を使用することが好ましい。
 増感剤とは、光カチオン重合開始剤が持つ吸収帯より長波長域の吸収帯を持ち、光吸収による励起後に電子もしくはエネルギーの移動が行われ、光酸発生剤の分解・重合開始種の発生に寄与する化合物である。増感剤は光硬化に用いる光源波長に応じて、適宜配合することができる。
(Photosensitizer)
When using a photocationic polymerization initiator (particularly a photoacid generator) as component (D), a photosensitizer is added to increase the activity of the photocationic polymerization initiator and increase the curability of the curable composition. It is preferable to use
A sensitizer has an absorption band in a wavelength range longer than that of a photocationic polymerization initiator, and after being excited by light absorption, electrons or energy are transferred, and the photoacid generator is decomposed and the polymerization initiation species is activated. It is a compound that contributes to development. The sensitizer can be appropriately blended depending on the wavelength of the light source used for photocuring.
 増感剤の具体例としては、ジメチルアントラセン、9,10-ジエトキシアントラセン、9,10-ジブトキシアントラセンなどのアントラセン化合物、2-イソプロピルチオキサントン、ジエチルチオキサントンなどのチオキサントン化合物、2-エチルアントラキノン、(±)-カンファーキノンなどのキノン化合物、ジアルコキシナフタレンなどのナフタレン化合物、ベンジル、クルクミンなどの芳香族のジケトン化合物などが挙げられる。
 光増感剤は、1種のみを使用してもよく、2種以上を併用してもよい。
Specific examples of sensitizers include anthracene compounds such as dimethylanthracene, 9,10-diethoxyanthracene, and 9,10-dibutoxyanthracene, thioxanthone compounds such as 2-isopropylthioxanthone and diethylthioxanthone, 2-ethylanthraquinone, ( Examples include quinone compounds such as ±)-camphorquinone, naphthalene compounds such as dialkoxynaphthalene, and aromatic diketone compounds such as benzyl and curcumin.
Only one type of photosensitizer may be used, or two or more types may be used in combination.
 また、光増感剤は、350nmより大きい波長領域に吸収帯を持ち、芳香族スルホニウム塩系や芳香族ヨードニウム塩系の光カチオン重合開始剤との電子移動が生じやすいアントラセン化合物(例えば、9,10-ジブトキシアントラセン)やチオキサントン化合物及びキノン化合物の群から選択して使用することが、長波長帯の吸光度が好適なレベルにあり、組成物中の分散不良が発生しにくく、また硬化性の向上や硬化時の硬化速度向上の観点から好ましい。 In addition, photosensitizers include anthracene compounds (such as 9, 10-dibutoxyanthracene), thioxanthone compounds, and quinone compounds, the absorbance in the long wavelength range is at a suitable level, poor dispersion in the composition is less likely to occur, and curability is improved. It is preferable from the viewpoint of improving the curing rate and improving the curing speed during curing.
 光増感剤は、市販品を使用することができる。そのような光増感剤としては、例えば、エア・ウォーター・パフォーマンスケミカル社製「アントラキュアーUVS-1331」、「アントラキュアーUVS-1101」「アントラキュアーUVS-581」「アントラキュアーUVS-2171」;東京化成工業社製の2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン;等が挙げられる。 Commercially available products can be used as the photosensitizer. Such photosensitizers include, for example, "AnthraCure UVS-1331", "AnthraCure UVS-1101", "AnthraCure UVS-581", and "AnthraCure UVS-2171" manufactured by Air Water Performance Chemical; Examples include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, and 2-ethylanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.
 光増感剤の含有量は、硬化性組成物の良好な硬化性の観点から、硬化性組成物の樹脂分に対して、0.01%以上が好ましく、0.03%以上がより好ましく、0.05%以上が特に好ましい。また、深部硬化性の観点から、光増感剤の含有量は、硬化性組成物の樹脂分に対して、5%以下が好ましく、4%以下がより好ましく、3%以下が特に好ましい。 From the viewpoint of good curability of the curable composition, the content of the photosensitizer is preferably 0.01% or more, more preferably 0.03% or more, based on the resin content of the curable composition. Particularly preferred is 0.05% or more. Moreover, from the viewpoint of deep curability, the content of the photosensitizer is preferably 5% or less, more preferably 4% or less, particularly preferably 3% or less, based on the resin content of the curable composition.
<硬化性組成物の製造方法>
 本発明の硬化性組成物は、必須成分(成分(A)~成分(D))及び必要により配合される成分(例えば、2以上のオキセタニル基を有するオキセタン化合物、ポリエステルポリオール、光増感剤等)を公知の攪拌機や分散機により混合することで調製される。攪拌機や分散機の例としては、ディゾルバー、プラネタリミキサー、ロールミル、サンドミル、ボールミル、ビーズミル、ホモジナイザー、高圧ホモジナイザー、アジホモミキサー、自転・公転ミキサーなどが挙げられる。
<Method for manufacturing curable composition>
The curable composition of the present invention comprises essential components (components (A) to (D)) and optional components (for example, an oxetane compound having two or more oxetanyl groups, a polyester polyol, a photosensitizer, etc.). ) using a known stirrer or disperser. Examples of the stirrer and dispersion machine include a dissolver, a planetary mixer, a roll mill, a sand mill, a ball mill, a bead mill, a homogenizer, a high-pressure homogenizer, an ajihomo mixer, an autorotation/revolution mixer, and the like.
 本発明の硬化性組成物は、25℃で液状であり、好ましくは、その粘度(25℃)が300,000mPa・s未満であり、より好ましくは、250,000mPa・s以下である。下限は特に限定はされないが、10mPa・s以上が好ましく、20mPa・s以上が好ましい。 The curable composition of the present invention is liquid at 25°C, and preferably has a viscosity (at 25°C) of less than 300,000 mPa·s, more preferably 250,000 mPa·s or less. Although the lower limit is not particularly limited, it is preferably 10 mPa·s or more, and preferably 20 mPa·s or more.
<用途>
 本発明の硬化性組成物から、低熱膨張率および低弾性率が両立する硬化物を形成できる。すなわち、低熱膨張率および低弾性率が両立する、硬化性組成物から形成された硬化層を有する、光デバイスを得ることができる。そのため、本発明の硬化性組成物を、光デバイスの接着用(詳しくは光デバイスにおける部材の接着)に好適に使用できる。具体的には、例えば、ファイバアレイ、ボールレンズの接着剤として使用する。本発明の硬化性組成物は、室温での流動性に優れるため、封止対象物に直接塗工でき、一様な性状の組成物層(塗布層)を容易に形成することができる。塗工方法としては、バーコート、カンマコート、ダイコート、ブレードコート、ディスペンサー、インクジェット等を単独または組み合わせて用いることができる。こうして形成された組成物層(塗布層)を硬化することで、低熱膨張率および低弾性率が良好な硬化層を形成することができる。
<Application>
A cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed from the curable composition of the present invention. That is, it is possible to obtain an optical device having a cured layer formed from a curable composition that has both a low coefficient of thermal expansion and a low modulus of elasticity. Therefore, the curable composition of the present invention can be suitably used for adhesion of optical devices (specifically, for adhesion of members in optical devices). Specifically, it is used as an adhesive for fiber arrays and ball lenses, for example. Since the curable composition of the present invention has excellent fluidity at room temperature, it can be directly applied to an object to be sealed, and a composition layer (coating layer) with uniform properties can be easily formed. As a coating method, bar coating, comma coating, die coating, blade coating, dispenser coating, inkjet coating, etc. can be used alone or in combination. By curing the composition layer (coating layer) thus formed, a cured layer having a low coefficient of thermal expansion and a low modulus of elasticity can be formed.
 本発明の硬化性組成物は光若しくは熱により硬化させることができる。光により硬化させる場合、例えば、水銀ランプ、UV-LED等で300mJ/cm以上の光照射を行うことができる。また、熱により硬化させる場合、例えば温度60~150℃で加熱して硬化させることができる。 The curable composition of the present invention can be cured by light or heat. When curing with light, light irradiation of 300 mJ/cm 2 or more can be performed using, for example, a mercury lamp, UV-LED, or the like. Further, in the case of curing by heat, it can be cured by heating, for example, at a temperature of 60 to 150°C.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下に記載の「部」および「%」は、それぞれ「質量部」および「質量%」を意味する。 Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the following Examples. Note that "parts" and "%" described below mean "parts by mass" and "% by mass", respectively.
原料
[成分(A):2以上の脂環エポキシ基を有するエポキシ化合物]
 セロキサイド2021P:ダイセル社製の3’,4’-エポキシシクロヘキシルメチル
 3,4-エポキシシクロヘキサンカルボキシレート(化合物(I-1))、分子量:252、1分子中の脂環エポキシ基の数:2、粘度:250mPa・s、エポキシ当量:130g/eq
 セロキサイド8000:ダイセル社製の(3,4,3',4'-ジエポキシ)ビシクロヘキシル(化合物(I-3))、分子量:194、1分子中の脂環エポキシ基の数:2、粘度:60mPa・s、エポキシ当量:100g/eq
Raw material [Component (A): epoxy compound having two or more alicyclic epoxy groups]
Celloxide 2021P: 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (compound (I-1)) manufactured by Daicel, molecular weight: 252, number of alicyclic epoxy groups in one molecule: 2, Viscosity: 250mPa・s, Epoxy equivalent: 130g/eq
Celloxide 8000: (3,4,3',4'-diepoxy)bicyclohexyl (compound (I-3)) manufactured by Daicel, molecular weight: 194, number of alicyclic epoxy groups in one molecule: 2, viscosity: 60mPa・s, epoxy equivalent: 100g/eq
[成分(B):無機充填材]
 40SE-C3:アドマテックス社製のシリカ、粒子径(メジアン径):3.0μm、比表面積:3.3m/g
 SS-1000:丸ス釉薬社製のコージェライト、粒子径(メジアン径):1.7μm
[Component (B): Inorganic filler]
40SE-C3: Silica manufactured by Admatex, particle size (median diameter): 3.0 μm, specific surface area: 3.3 m 2 /g
SS-1000: Cordierite manufactured by Marusu Glaze Co., Ltd., particle size (median diameter): 1.7 μm
[成分(C):中空有機ポリマー粒子]
 XX-6214Z:積水化成品工業社製の中空スチレン粒子、有機ポリマー:スチレン系ポリマー、1粒子中の空孔の数:1、空孔率:50%、粒子径(メジアン径):0.42μm
 XX-6368Z:積水化成品工業社製の中空アクリル粒子、1粒子中の空孔の数:1、空孔率:60%、粒子径(メジアン径):4μm
 NC-751C:三水社製の中空熱硬化性樹脂粒子、1粒子中の空孔の数:1、空孔率:69%、粒子径(メジアン径):4.4μm
 MFL-80GCA:マツモトファインケミカル社製の中空アクリロニトリル粒子、有機ポリマー:アクリロニトリル系ポリマー、1粒子中の空孔の数:1、空孔率:80%、粒子径(メジアン径):20μm
[Component (C): Hollow organic polymer particles]
XX-6214Z: Hollow styrene particles manufactured by Sekisui Plastics Co., Ltd., organic polymer: styrene polymer, number of pores in one particle: 1, porosity: 50%, particle size (median diameter): 0.42 μm
XX-6368Z: Hollow acrylic particles manufactured by Sekisui Plastics Co., Ltd., number of pores in one particle: 1, porosity: 60%, particle diameter (median diameter): 4 μm
NC-751C: Hollow thermosetting resin particles manufactured by Sansuisha, number of pores in one particle: 1, porosity: 69%, particle size (median diameter): 4.4 μm
MFL-80GCA: hollow acrylonitrile particles manufactured by Matsumoto Fine Chemicals, organic polymer: acrylonitrile-based polymer, number of pores in one particle: 1, porosity: 80%, particle size (median diameter): 20 μm
[成分(D):カチオン重合開始剤]
<光酸発生剤>
 イルガキュア290:BASF社製
 CPI-210S:サンアプロ社製
<熱酸発生剤>
 CXC-1821:King Industries社製
[Component (D): Cationic polymerization initiator]
<Photoacid generator>
Irgacure 290: manufactured by BASF CPI-210S: manufactured by Sun-Apro <thermal acid generator>
CXC-1821: Manufactured by King Industries
[他の成分]
 OXT-221:東亞合成社製の3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(化合物IV-1)、分子量:214、1分子中のオキセタニル基の数:2
 OXT-121:東亞合成社製のオキセタン化合物(化合物V-1)、式(V-1)中のm2=1~3、重量平均分子量:334、1分子中のオキセタニル基の数:2
 OD-X-3100:DIC社製のポリエステルポリオール、数平均分子量:3,000、水酸基価:27.5~32.5mgKOH/g
 UVS-1331:エア・ウォーター・パフォーマンスケミカル社製の光増感剤
[Other ingredients]
OXT-221: 3-ethyl-3{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane (compound IV-1) manufactured by Toagosei Co., Ltd., molecular weight: 214, number of oxetanyl groups in one molecule :2
OXT-121: Oxetane compound (compound V-1) manufactured by Toagosei Co., Ltd., m2 in formula (V-1) = 1 to 3, weight average molecular weight: 334, number of oxetanyl groups in one molecule: 2
OD-X-3100: Polyester polyol manufactured by DIC, number average molecular weight: 3,000, hydroxyl value: 27.5 to 32.5 mgKOH/g
UVS-1331: Photosensitizer manufactured by Air Water Performance Chemical Co.
[成分(A)以外のエポキシ化合物]
 ZX-1059:日鉄ケミカル&マテリアル社製の2官能ビスフェノールA型エポキシ樹脂および2官能ビスフェノールF型エポキシ樹脂の混合物、エポキシ当量:165g/eq
[Epoxy compounds other than component (A)]
ZX-1059: Mixture of bifunctional bisphenol A type epoxy resin and bifunctional bisphenol F type epoxy resin manufactured by Nippon Steel Chemical & Materials, epoxy equivalent: 165 g/eq
[中空構造を有さない有機ポリマー粒子]
 ARX-805:積水化成品工業社製のアクリル粒子、有機ポリマー:(メタ)アクリレート系ポリマー、粒子径(メジアン径):8μm
[Organic polymer particles without hollow structure]
ARX-805: Acrylic particles manufactured by Sekisui Plastics, organic polymer: (meth)acrylate polymer, particle size (median diameter): 8 μm
<実施例1>
 脂環式エポキシ化合物(ダイセル社製「セロキサイド2021P」)50部に、オキセタン化合物(東亞合成社製「OXT-221」)50部、ポリエステルポリオール(DIC社製「OD-X-3100」)20部を高速回転ミキサーで均一に混合させて、混合物を得た。得られた混合物に、シリカ(アドマテックス社製「40SE-C3」)100部、中空スチレン粒子(積水化成品工業社製「XX-6214Z」)40部を配合し、得られた混合物を高速回転ミキサーで均一に分散した。得られた混合物に光酸発生剤(サンアプロ社製「CPI-210S」)2部、光増感剤(エア・ウォーター・パフォーマンスケミカル社製「UVS-1331」)1部を高速回転ミキサーで均一に混合し、硬化性組成物を得た。得られた硬化性組成物を、アルキッド系離型剤で処理されたポリエチレンテレフタレート(PET)フィルム(東レ社製「NS-80A」、PETフィルムの厚さ:38μm)の離型処理面上に、ガラス棒にて均一に塗布し、30mWで100秒間、365nmの紫外線を照射し、厚さ100μmの硬化物を得た。
<Example 1>
50 parts of an alicyclic epoxy compound ("Celoxide 2021P" manufactured by Daicel Corporation), 50 parts of an oxetane compound ("OXT-221" manufactured by Toagosei Co., Ltd.), and 20 parts of polyester polyol ("OD-X-3100" manufactured by DIC Corporation). were mixed uniformly using a high-speed rotating mixer to obtain a mixture. 100 parts of silica ("40SE-C3" manufactured by Admatex) and 40 parts of hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) were added to the resulting mixture, and the resulting mixture was rotated at high speed. Uniformly dispersed with a mixer. 2 parts of a photoacid generator ("CPI-210S" manufactured by Sun-Apro Corporation) and 1 part of a photosensitizer ("UVS-1331" manufactured by Air Water Performance Chemical Company) were uniformly added to the obtained mixture using a high-speed rotating mixer. The mixture was mixed to obtain a curable composition. The obtained curable composition was placed on the release-treated surface of a polyethylene terephthalate (PET) film (“NS-80A” manufactured by Toray Industries, Ltd., PET film thickness: 38 μm) that had been treated with an alkyd-based mold release agent. It was applied uniformly with a glass rod and irradiated with 365 nm ultraviolet rays at 30 mW for 100 seconds to obtain a cured product with a thickness of 100 μm.
<実施例2>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)40部に替えて、中空アクリル粒子(積水化成品工業社製「XX-6368Z」)40部を使用したこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Example 2>
Example 1 except that 40 parts of hollow acrylic particles ("XX-6368Z" manufactured by Sekisui Plastics Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) A curable composition and a cured product were produced in the same manner.
<実施例3>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)40部に替えて、中空熱硬化性樹脂粒子(三水社製「NC-751C」)90部を使用したこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Example 3>
Example 1 except that 90 parts of hollow thermosetting resin particles ("NC-751C" made by Sansui Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z" made by Sekisui Plastics Co., Ltd.). A curable composition and a cured product were produced in the same manner.
<実施例4>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)40部に替えて、中空アクリロニトリル粒子(マツモトファインケミカル社製「MFL-80GCA」)50部を使用したこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Example 4>
Same as Example 1 except that 50 parts of hollow acrylonitrile particles ("MFL-80GCA" manufactured by Matsumoto Fine Chemical Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) A curable composition and a cured product were produced.
<実施例5>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)を5部追加し、シリカ(アドマテックス社製「40SE-C3」)の使用量を100部から200部に変更したこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 5>
Except for adding 5 parts of hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) and changing the amount of silica ("40SE-C3" manufactured by Admatex Co., Ltd.) from 100 parts to 200 parts. A curable composition and a cured product were produced in the same manner as in Example 4.
<実施例6>
 脂環式エポキシ化合物(ダイセル社製「セロキサイド2021P」)の使用量を50部から60部に変更し、オキセタン化合物(東亞合成社製「OXT-221」)の使用量を50部から60部に変更し、かつポリエステルポリオール(DIC社製「OD-X-3100」)を使用しなかったこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 6>
The amount of alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel Corporation) was changed from 50 parts to 60 parts, and the amount of oxetane compound (“OXT-221” manufactured by Toagosei Co., Ltd.) was changed from 50 parts to 60 parts. A curable composition and a cured product were produced in the same manner as in Example 4, except that the polyester polyol ("OD-X-3100" manufactured by DIC Corporation) was not used.
<実施例7>
 光酸発生剤(サンアプロ社製「CPI-210S」)2部および光増感剤(エア・ウォーター・パフォーマンスケミカル社製「UVS-1331」)1部に替えて、光酸発生剤(BASF社製「イルガキュア290」)5部を使用したこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 7>
Instead of 2 parts of photoacid generator (CPI-210S manufactured by Sun-Apro) and 1 part of photosensitizer (UVS-1331 manufactured by Air Water Performance Chemical), A curable composition and a cured product were produced in the same manner as in Example 4, except that 5 parts of "Irgacure 290") were used.
<実施例8>
 シリカ(アドマテックス社製「40SE-C3」)100部に替えて、コージェライト(丸ス釉薬社製「SS-1000」)100部を使用したこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 8>
Curing was carried out in the same manner as in Example 4, except that 100 parts of cordierite ("SS-1000", manufactured by Marusu Glaze Co., Ltd.) was used in place of 100 parts of silica ("40SE-C3", manufactured by Admatex). A composition and a cured product were produced.
<実施例9>
 脂環式エポキシ化合物(ダイセル社製「セロキサイド2021P」)の使用量を50部から100部に変更し、オキセタン化合物(東亞合成社製「OXT-221」)を使用しなかったこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 9>
Except that the amount of the alicyclic epoxy compound (“Celoxide 2021P” manufactured by Daicel Corporation) was changed from 50 parts to 100 parts, and the oxetane compound (“OXT-221” manufactured by Toagosei Co., Ltd.) was not used. A curable composition and a cured product were produced in the same manner as in Example 4.
<実施例10>
 脂環式エポキシ化合物(ダイセル社製「セロキサイド2021P」)50部に替えて、脂環式エポキシ化合物(ダイセル社製「セロキサイド8000」)50部を使用したこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 10>
The same procedure as in Example 4 was carried out, except that 50 parts of an alicyclic epoxy compound ("Celoxide 8000" manufactured by Daicel) was used instead of 50 parts of the alicyclic epoxy compound ("Celoxide 2021P" manufactured by Daicel). , a curable composition and a cured product were produced.
<実施例11>
 オキセタン化合物(東亞合成社製「OXT-221」)50部に替えて、オキセタン化合物(東亞合成社製「OXT-121」)50部を使用したこと以外は、実施例4と同様にして、硬化性組成物および硬化物を製造した。
<Example 11>
Curing was carried out in the same manner as in Example 4, except that 50 parts of the oxetane compound ("OXT-121", manufactured by Toagosei Co., Ltd.) was used instead of 50 parts of the oxetane compound ("OXT-221", manufactured by Toagosei Co., Ltd.). A composition and a cured product were produced.
<実施例12>
 光酸発生剤(サンアプロ社製「CPI-210S」)2部および光増感剤(エア・ウォーター・パフォーマンスケミカル社製「UVS-1331」)1部に替えて、熱酸発生剤(King Industries社製「CXC-1821」)1部を使用し、かつ中空アクリロニトリル粒子(マツモトファインケミカル社製「MFL-80GCA」)50部に替えて、中空アクリル粒子(積水化成品工業社製「XX-6368Z」)50部を使用したこと以外は、実施例11と同様にして、硬化性組成物および硬化物を製造した。
 また、紫外線照射による光硬化に替えて、120℃で30分間オーブンでの加熱による熱硬化を行ったこと以外は、実施例11と同様にして、厚さ100μmの硬化物を得た。
<Example 12>
In place of 2 parts of a photoacid generator ("CPI-210S" manufactured by Sun-Apro) and 1 part of a photosensitizer ("UVS-1331" manufactured by Air Water Performance Chemicals), a thermal acid generator (King Industries) was used. Using 1 part of hollow acrylonitrile particles ("MFL-80GCA", manufactured by Matsumoto Fine Chemical Co., Ltd.), hollow acrylic particles ("XX-6368Z", manufactured by Sekisui Plastics Co., Ltd.) were used. A curable composition and a cured product were produced in the same manner as in Example 11, except that 50 parts were used.
Further, a cured product with a thickness of 100 μm was obtained in the same manner as in Example 11, except that instead of photocuring by ultraviolet irradiation, thermal curing was performed by heating in an oven at 120° C. for 30 minutes.
<比較例1>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)を使用しなかったこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Comparative example 1>
A curable composition and a cured product were produced in the same manner as in Example 1, except that hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) were not used.
<比較例2>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)を使用せず、かつシリカ(アドマテックス社製「40SE-C3」)の使用量を100部から400部に変更したこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Comparative example 2>
Except that hollow styrene particles ("XX-6214Z" manufactured by Sekisui Plastics Co., Ltd.) were not used and the amount of silica ("40SE-C3" manufactured by Admatex Co., Ltd.) was changed from 100 parts to 400 parts. A curable composition and a cured product were produced in the same manner as in Example 1.
<比較例3>
 中空スチレン粒子(積水化成品工業社製「XX-6214Z」)40部に替えて、アクリル粒子(積水化成品工業社製「ARX-805」)50部を使用したこと以外は、実施例1と同様にして、硬化性組成物および硬化物を製造した。
<Comparative example 3>
Example 1 except that 50 parts of acrylic particles ("ARX-805", manufactured by Sekisui Plastics Co., Ltd.) were used instead of 40 parts of hollow styrene particles ("XX-6214Z", manufactured by Sekisui Plastics Co., Ltd.). A curable composition and a cured product were produced in the same manner.
<比較例4>
 シリカ(アドマテックス社製「40SE-C3」)を使用しなかったこと以外は、実施例4と同様にして、硬化性組成物を製造しようと試みた。しかし、中空スチレン粒子を十分に分散させることができず、均一な組成物が得られなかった。
<Comparative example 4>
An attempt was made to produce a curable composition in the same manner as in Example 4, except that silica (Admatex "40SE-C3") was not used. However, the hollow styrene particles could not be sufficiently dispersed, and a uniform composition could not be obtained.
<比較例5>
 脂環式エポキシ化合物(ダイセル社製「セロキサイド2021P」)50部に替えて、2官能ビスフェノールA型エポキシ樹脂および2官能ビスフェノールF型エポキシ樹脂の混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)50部を使用したこと以外は、実施例4と同様にして、硬化性組成物を製造した。得られた硬化性組成物は硬化性が悪く、硬化物を形成できなかった。
<Comparative example 5>
Instead of 50 parts of an alicyclic epoxy compound ("Celoxide 2021P" manufactured by Daicel Corporation), a mixture of a bifunctional bisphenol A type epoxy resin and a bifunctional bisphenol F type epoxy resin ("ZX-1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd.) was used. ) A curable composition was produced in the same manner as in Example 4, except that 50 parts of the curable composition was used. The obtained curable composition had poor curability and could not form a cured product.
<比較例6>
 オキセタン化合物(東亞合成社製「OXT-121」)50部に替えて、オキセタン化合物(東亞合成社製「OXT-221」)50部を使用し、かつ中空アクリル粒子(積水化成品工業社製「XX-6368Z」)を使用しなかったこと以外は、実施例12と同様にして硬化性組成物および硬化物を製造した。得られた硬化物には大きな反りが生じた。
<Comparative example 6>
Instead of 50 parts of oxetane compound ("OXT-121" manufactured by Toagosei Co., Ltd.), 50 parts of oxetane compound ("OXT-221" manufactured by Toagosei Co., Ltd.) was used, and hollow acrylic particles ("OXT-121" manufactured by Sekisui Plastics Co., Ltd.) were used. A curable composition and a cured product were produced in the same manner as in Example 12, except that XX-6368Z'') was not used. The obtained cured product had large warpage.
評価試験
[貯蔵弾性率の測定]
 実施例及び比較例において得られた硬化物からPETフィルムを剥離することによりシート状の硬化物を得た。上記硬化物を幅約7mm、長さ約40mmの試験片に切断し、動的機械分析装置DMS-6100(セイコーインスツルメンツ(株)製)を使用して、引張モードにて動的機械分析を行った。試験片を前記装置に装着後、周波数1Hz、昇温速度5℃/分の測定条件にて測定した。かかる測定における25℃のときの貯蔵弾性率(GPa)の値を読み取った。
(評価基準)
〇:貯蔵弾性率(25℃)≦4GPa
×:貯蔵弾性率(25℃)>4GPa
Evaluation test [Measurement of storage modulus]
A sheet-shaped cured product was obtained by peeling off the PET film from the cured product obtained in Examples and Comparative Examples. The cured product was cut into test pieces with a width of about 7 mm and a length of about 40 mm, and dynamic mechanical analysis was performed in tensile mode using a dynamic mechanical analyzer DMS-6100 (manufactured by Seiko Instruments Inc.). Ta. After the test piece was attached to the above-mentioned apparatus, measurement was performed under the measurement conditions of a frequency of 1 Hz and a temperature increase rate of 5° C./min. The storage modulus (GPa) value at 25° C. in this measurement was read.
(Evaluation criteria)
〇: Storage modulus (25℃)≦4GPa
×: Storage modulus (25°C)>4GPa
[平均熱膨張率の測定]
 実施例及び比較例において得られた硬化物からPETフィルムを剥離することによりシート状の硬化物を得た。上記硬化物を、幅約4mm、長さ約15mmの試験片に切断し、熱機械分析装置TMA-SS6100(セイコーインスツルメンツ(株)製)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における30℃から80℃までの平均熱膨張率(ppm/℃)を算出した。
(評価基準)
〇:平均熱膨張率(30℃~80℃)≦100ppm/℃
×:平均熱膨張率(30℃~80℃)>100ppm/℃
[Measurement of average coefficient of thermal expansion]
A sheet-shaped cured product was obtained by peeling off the PET film from the cured product obtained in Examples and Comparative Examples. The cured product was cut into test pieces with a width of about 4 mm and a length of about 15 mm, and thermomechanical analysis was performed using a thermomechanical analyzer TMA-SS6100 (manufactured by Seiko Instruments Inc.) using a tensile loading method. . After the test piece was mounted on the device, it was measured twice continuously under the measurement conditions of a load of 1 g and a temperature increase rate of 5° C./min. The average coefficient of thermal expansion (ppm/°C) from 30°C to 80°C in the second measurement was calculated.
(Evaluation criteria)
〇: Average coefficient of thermal expansion (30°C to 80°C) ≦100ppm/°C
×: Average coefficient of thermal expansion (30°C to 80°C)>100ppm/°C
 下記表1~3に、実施例または比較例で使用した成分の種類および配合量、並びに評価試験の結果を示す。また、下記表1および2に、硬化性組成物の成分合計(=固形分)あたりの成分(A)~(D)の含有量も記載する。なお、比較例4~比較例6では、貯蔵弾性率および平均熱膨張率の評価試験を行うことができなかった。 Tables 1 to 3 below show the types and amounts of components used in Examples or Comparative Examples, as well as the results of evaluation tests. Tables 1 and 2 below also list the contents of components (A) to (D) per total component (=solid content) of the curable composition. In addition, in Comparative Examples 4 to 6, evaluation tests for storage modulus and average coefficient of thermal expansion could not be conducted.
 本発明の硬化性組成物によれば、低熱膨張率および低弾性率が両立する硬化物を形成することができるので、本発明の硬化性組成物は、光デバイスの接着用に非常に有用である。 According to the curable composition of the present invention, a cured product having both a low coefficient of thermal expansion and a low modulus of elasticity can be formed, so the curable composition of the present invention is very useful for adhesion of optical devices. be.
 本出願は、日本で2022年3月24日に出願された特願2022-048354を基礎としており、その内容は本明細書にすべて包含されるものである。 This application is based on Japanese Patent Application No. 2022-048354 filed in Japan on March 24, 2022, the contents of which are fully incorporated herein.

Claims (11)

  1.  以下の成分(A)~成分(D):
    (A)2以上の脂環エポキシ基を有するエポキシ化合物、
    (B)無機充填材、
    (C)中空有機ポリマー粒子、および
    (D)カチオン重合開始剤
    を含む、硬化性組成物。
    The following ingredients (A) to (D):
    (A) an epoxy compound having two or more alicyclic epoxy groups,
    (B) inorganic filler,
    A curable composition comprising (C) hollow organic polymer particles and (D) a cationic polymerization initiator.
  2.  成分(B)の含有量が、硬化性組成物の固形分あたり5~80質量%である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the content of component (B) is 5 to 80% by mass based on the solid content of the curable composition.
  3.  成分(C)の含有量が、硬化性組成物の固形分あたり3~70質量%である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the content of component (C) is 3 to 70% by mass based on the solid content of the curable composition.
  4.  成分(B):成分(C)の質量比が、1:10~20:1である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the mass ratio of component (B):component (C) is 1:10 to 20:1.
  5.  成分(C)の空孔率が、20体積%以上である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the porosity of component (C) is 20% by volume or more.
  6.  成分(C)の空孔率が、40~85体積%である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the porosity of component (C) is 40 to 85% by volume.
  7.  成分(D)が、光酸発生剤および熱酸発生剤から選択される、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein component (D) is selected from a photoacid generator and a thermal acid generator.
  8.  2以上のオキセタニル基を有するオキセタン化合物をさらに含む、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, further comprising an oxetane compound having two or more oxetanyl groups.
  9.  ポリエステルポリオールをさらに含む、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, further comprising a polyester polyol.
  10.  光デバイスの接着用である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, which is used for adhesion of optical devices.
  11.  請求項1~10のいずれか一項に記載の硬化性組成物から形成された硬化層を有する光デバイス。 An optical device having a cured layer formed from the curable composition according to any one of claims 1 to 10.
PCT/JP2023/011801 2022-03-24 2023-03-24 Curable composition WO2023182492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048354 2022-03-24
JP2022048354 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182492A1 true WO2023182492A1 (en) 2023-09-28

Family

ID=88101660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011801 WO2023182492A1 (en) 2022-03-24 2023-03-24 Curable composition

Country Status (2)

Country Link
TW (1) TW202406969A (en)
WO (1) WO2023182492A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001346A (en) * 2008-06-19 2010-01-07 Hitachi Chem Co Ltd Thermosetting resin composition and cured product
JP2012528205A (en) * 2009-05-28 2012-11-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy based adhesive film or adhesive tape
JP2015168687A (en) * 2014-03-04 2015-09-28 京セラケミカル株式会社 Resin composition for immersion of coil and coil device
JP2018119031A (en) * 2017-01-23 2018-08-02 株式会社ダイセル Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
JP2019116556A (en) * 2017-12-27 2019-07-18 京セラ株式会社 Epoxy resin composition and reflector
US20200115572A1 (en) * 2018-10-12 2020-04-16 Taiwan Union Technology Corporation Solvent-free resin composition and uses of the same
JP2021088635A (en) * 2019-12-03 2021-06-10 昭和電工マテリアルズ株式会社 Sealing resin composition, electronic component device, and method for producing electronic component device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001346A (en) * 2008-06-19 2010-01-07 Hitachi Chem Co Ltd Thermosetting resin composition and cured product
JP2012528205A (en) * 2009-05-28 2012-11-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy based adhesive film or adhesive tape
JP2015168687A (en) * 2014-03-04 2015-09-28 京セラケミカル株式会社 Resin composition for immersion of coil and coil device
JP2018119031A (en) * 2017-01-23 2018-08-02 株式会社ダイセル Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
JP2019116556A (en) * 2017-12-27 2019-07-18 京セラ株式会社 Epoxy resin composition and reflector
US20200115572A1 (en) * 2018-10-12 2020-04-16 Taiwan Union Technology Corporation Solvent-free resin composition and uses of the same
JP2021088635A (en) * 2019-12-03 2021-06-10 昭和電工マテリアルズ株式会社 Sealing resin composition, electronic component device, and method for producing electronic component device

Also Published As

Publication number Publication date
TW202406969A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP6761972B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
US9685597B2 (en) Curable composition for sealing optical semiconductor
JP5152213B2 (en) Cationic curable resin composition comprising a polymer having two or more oxetanyl groups
JP7320787B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP7199004B2 (en) UV curable resin composition and organic EL light emitting device
WO2018084121A1 (en) Curable insulating composition for printed wiring boards, dry film, cured product, printed wiring board, and method for producing curable insulating composition for printed wiring boards
JP6545482B2 (en) Photo- or thermosetting resin composition, cured product and laminate
JP7170245B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP2019001994A (en) Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
JP7209245B2 (en) Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device
JP2015137338A (en) Curable composition containing conductive fiber coated particle
WO2023182492A1 (en) Curable composition
JP7065396B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
JP7029696B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
JP6814454B2 (en) Composition, gas barrier material, coating material, adhesive, molded product, laminate, and method for producing the molded product.
JP7296591B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP6715486B1 (en) Ultraviolet curable resin composition, method for manufacturing light emitting device, and light emitting device
JP7489612B2 (en) Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP2005187636A (en) Photo-curable resin composition, adhesive for display device, method of bonding and display device
WO2022239674A1 (en) Sealant for display element, cured product thereof, and display device
JP2001294800A (en) Coating material and base plate coated with the same
WO2023021891A1 (en) Ultraviolet-curable composition
JP2020200462A (en) Ultraviolet curable resin composition, method for producing light emitting device and light emitting device
JP2020200463A (en) Ultraviolet curable resin composition, method for producing light emitting device and light emitting device
JP2020200461A (en) Ultraviolet curable resin composition, method for producing light emitting device and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775085

Country of ref document: EP

Kind code of ref document: A1