WO2023182411A1 - Reflection-type screen, and image display device - Google Patents

Reflection-type screen, and image display device Download PDF

Info

Publication number
WO2023182411A1
WO2023182411A1 PCT/JP2023/011429 JP2023011429W WO2023182411A1 WO 2023182411 A1 WO2023182411 A1 WO 2023182411A1 JP 2023011429 W JP2023011429 W JP 2023011429W WO 2023182411 A1 WO2023182411 A1 WO 2023182411A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
screen
layer
reflective screen
reflective
Prior art date
Application number
PCT/JP2023/011429
Other languages
French (fr)
Japanese (ja)
Inventor
直 山口
一紘 笹原
朱洋 草原
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023182411A1 publication Critical patent/WO2023182411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a reflective screen and an image display device.
  • the angle of incidence of the image light on the reflective screen is large, and a portion of the image light is reflected on the surface of the reflective screen, causing the image to be reflected on the ceiling, etc. This may occur.
  • Such reflection of the image on the ceiling or the like is particularly obtrusive when viewing the image in a dark room, for example, and hinders comfortable viewing of the image.
  • An object of the present invention is to provide a reflective screen and an image display device that can suppress the reflection of images on the ceiling or the like and display good images.
  • the present invention solves the above problems by the following solving means. Note that, in order to facilitate understanding, the description will be given with reference numerals corresponding to the embodiments of the present invention, but the present invention is not limited thereto.
  • the first invention is a reflective screen that reflects and displays image light projected from an image source, and in the thickness direction of the reflective screen, the surface side on which the image light is projected is the first surface side.
  • a Fresnel lens shape in which unit lenses (131) having a lens surface (132) and a non-lens surface (133) and convex on the second surface side are arranged with the back side as the second surface side.
  • the first curved surface portion (134) is located on the non-lens surface in a region adjacent to the lens surface of the adjacent unit lens, and the first curved surface portion is arranged at an arrangement pitch of the unit lenses.
  • the reflective screen (10) is characterized in that the ratio of the dimensions of the lens surface in the arrangement direction of the unit lenses is 60% or more and 95% or less.
  • a second invention is the reflective screen according to the first invention, in which the screen is divided into three in the vertical direction and in the horizontal direction of the screen in a state of use to form a total of nine areas, and the nine areas are divided into three areas.
  • This is a reflective screen (10) characterized in that the standard deviation ⁇ with respect to the speckle value S of is 1.38 or less.
  • a third invention is the reflective screen according to the first invention or the second invention, wherein the non-lens surface (133) has a curved second curved surface portion (135) at an end on the second surface side.
  • the reflective screen (10) is characterized in that the radius of curvature of the first curved surface portion (134) is larger than the radius of curvature of the second curved surface portion.
  • a fourth invention is the reflective screen according to the third invention, wherein the non-lens surface (133) is a planar area between the first curved surface portion (134) and the second curved surface portion (135). (136), and the angle ( ⁇ ) corresponding to the apex angle of the unit lens and at which the extension direction of the lens surface and the extension direction of the planar area intersect is an acute angle.
  • This is a reflective screen (10).
  • a fifth invention is the reflective screen according to the first invention or the second invention, in which in a cross section parallel to the arrangement direction of the unit lenses (131) and the thickness direction of the reflective screen, the unit lenses Corresponding to the apex angle, a point (t1) closest to the first surface and a point (t2) closest to the second surface in the extending direction of the lens surface (132) and the non-lens surface (133)
  • the reflective screen (10) is characterized in that the angle ( ⁇ ) at which the tangential direction intersects with the tangential direction at a point (t3) that is equidistant from the reflection screen (10) is an acute angle.
  • a sixth invention is a reflective screen according to any one of the first to fifth inventions, in which the lens layer (13) is arranged such that the unit lens (131) is located outside the display area of the reflective screen.
  • This is a reflective screen (10) characterized by having a circular Fresnel lens shape arranged concentrically with one point (C) as the center.
  • a seventh invention is a reflective screen according to any one of the first to sixth inventions, in which a colored layer ( 122).
  • An eighth invention is a reflective screen according to any one of the first invention to the seventh invention, in which a light diffusion layer ( 121) is a reflective screen (10).
  • a ninth invention is a video display device comprising the reflective screen (10) according to any one of the first to eighth inventions, and a video source (LS) that projects video light onto the reflective screen. (1).
  • the present invention it is possible to provide a reflective screen and an image display device that can suppress the reflection of images on the ceiling or the like and display good images.
  • FIG. 1 is a diagram showing a video display device 1 according to an embodiment. It is a figure showing the layer composition of screen 10 of an embodiment. It is a figure explaining the lens layer 13 and the unit lens 131 of embodiment.
  • FIG. 3 is a diagram illustrating the unit lens 131 in more detail. It is a figure which shows an example of the image light and external light which enter the unit lens 131 of embodiment.
  • FIG. 7 is a diagram schematically showing the cross-sectional shape of the unit lens at the center of the screen in Measurement Examples 1 to 8.
  • FIG. 2 is a diagram showing each area of the screen when calculating the standard deviation ⁇ of speckle values.
  • FIG. 7 is a diagram illustrating a table summarizing the evaluation results of image reflection on the screen ceiling and image glare in Measurement Examples 1 to 8. 7 is a diagram illustrating an angle ⁇ corresponding to the apex angle of a unit lens 131.
  • FIG. 3 is a diagram illustrating the unit lens 131 in more detail. It is a
  • FIG. 1 is a diagram showing a video display device 1 of this embodiment.
  • FIG. 1(a) is a perspective view of the video display device 1
  • FIG. 1(b) is a diagram of the video display device 1 viewed from the side (+X side described later).
  • the video display device 1 includes a screen 10, a video source LS, and the like.
  • the screen 10 of this embodiment is a reflective screen that reflects the image light L projected from the image source LS and displays an image on the screen. Details of this screen 10 will be described later.
  • an XYZ orthogonal coordinate system is provided as appropriate.
  • the vertical direction is the Y direction
  • the horizontal direction is the X direction
  • the depth direction is the Z direction.
  • the X direction is parallel to the horizontal direction of the screen
  • the Y direction is parallel to the vertical direction of the screen
  • the Z direction is parallel to the thickness direction of the screen 10.
  • the screen of the screen 10 is parallel to the XY plane
  • the thickness direction (Z direction) of the screen 10 is orthogonal to the screen of the screen 10.
  • the screen (display area) of the screen is parallel to the XY plane, the up and down direction (Y direction) of the screen is vertical, and the left and right direction (X direction) of the screen is horizontal.
  • the screen 10 has a second surface 10b on the back side (-Z side) and a first surface 10a on the viewer side (+Z side) in the thickness direction.
  • the direction toward the right side in the horizontal direction of the screen is the +X direction
  • the direction toward the upper side in the vertical direction of the screen is the +Y direction
  • the direction from the side (side, back side) to the first side (observer side, image source side) is defined as +Z direction.
  • the screen vertical direction (vertical direction), screen horizontal direction (horizontal direction), and thickness direction in the usage state of this screen 10 are referred to as the screen vertical direction, screen horizontal direction, and thickness direction. (depth direction).
  • the image source LS is an image projection device that projects the image light L onto the screen 10, and is, for example, a short focus projector.
  • the video source LS of this embodiment uses a laser light source as a light source, for example.
  • This video source LS is located outside the display area of the screen 10 when the screen (display area) of the screen 10 is viewed from the front direction (normal direction of the screen surface) when the video display device 1 is in use, It is located at the center of the screen 10 in the horizontal direction (X direction) and on the lower side (-Y side) of the screen 10 in the vertical direction.
  • the image source LS can project image light L obliquely from a position that is much closer to the surface of the screen 10 in the depth direction (Z direction) of the image display device 1 than a conventional general-purpose projector. Therefore, compared to a conventional general-purpose projector, the image source LS has a shorter projection distance of the image light L to the screen 10, and a larger incident angle at which the projected image light L enters the screen 10.
  • the screen 10 is a reflective screen that reflects the image light L projected by the image source LS toward the observer O and displays an image.
  • the screen (display area) of the screen 10 has a substantially rectangular shape in which the long side direction is the left-right direction (X direction) of the screen when viewed from the observer O side when in use.
  • the screen 10 has a large screen size of about 40 to 100 inches diagonally, and the screen has an aspect ratio of 16:9. Note that the screen size is not limited to this, for example, the screen size may be less than 40 inches, and the size and shape can be selected as appropriate depending on the purpose of use, environment of use, etc. In this embodiment, an example in which the screen size of the screen is 80 inches will be described.
  • FIG. 2 is a diagram showing the layer structure of the screen 10 of this embodiment.
  • the line passes through point A (see Fig. 1), which is the screen center of the screen 10 (the geometric center of the screen), is parallel to the screen vertical direction (Y direction), and is orthogonal to the screen surface (in the Z direction).
  • point A is the screen center of the screen 10 (the geometric center of the screen)
  • Y direction the screen vertical direction
  • Z direction the screen surface
  • the screen 10 includes, in order from the first surface side (+Z side), a surface layer 11, a base material layer 12, a lens layer 13, a reflective layer 14, and a back surface protective layer 15, which are integrally formed. are laminated on.
  • the surface layer 11 is a layer provided on the first surface side (+Z side) of the base material layer 12.
  • the surface layer 11 of this embodiment forms the outermost surface (first surface 10a) of the screen 10 on the viewer side.
  • the surface layer 11 of this embodiment has a hard coat function and an anti-glare function, and the surface on the first surface side of the base layer 12 is made of an ultraviolet curable resin (for example, urethane acrylate) having a hard coat function.
  • An ionizing radiation-curable resin such as the above is applied to a film thickness of about 10 to 100 ⁇ m, and a fine uneven shape (matte shape) is transferred to the resin film surface and cured, resulting in fine unevenness on the surface. The shape is formed. Therefore, the surface of the surface layer 11 facing the viewer has a rough surface.
  • the surface layer 11 is not limited to the above examples, and may be provided with one or more necessary functions, such as an antireflection function, an antiglare function, a hard coat function, an ultraviolet absorption function, an antifouling function, and an antistatic function. It's okay. Further, the surface layer 11 may be bonded to the base material layer 12 with an adhesive (not shown), or may be directly attached to the surface of the base material layer 12 on the side opposite to the lens layer 13 (first surface side). may be formed.
  • an adhesive not shown
  • the base material layer 12 is a layer having optical transparency, and is a sheet-like member that serves as a base material for forming the lens layer 13 .
  • the surface layer 11 is integrally formed on the first surface side (+Z side) of the base material layer 12, and the lens layer 13 is integrally formed on the second surface side ( ⁇ Z side).
  • the base layer 12 has a light diffusion layer 121 containing a diffusing agent and a colored layer 122 containing a coloring material such as a pigment or dye.
  • the base material layer 12 of this embodiment is formed by integrally laminating the light diffusion layer 121 and the colored layer 122 by co-extrusion molding.
  • the present invention is not limited to this, and these layers may be integrally laminated via a bonding layer (not shown) made of a light-transmitting adhesive or adhesive.
  • a bonding layer (not shown) made of a light-transmitting adhesive or adhesive.
  • the light diffusion layer 121 is located on the first surface side (+Z side)
  • the colored layer 122 is located on the second surface side (-Z side). ing.
  • the light diffusion layer 121 is a layer that has a base material made of a light-transmitting resin and contains a diffusing agent that diffuses light.
  • the light diffusion layer 121 has the function of widening the viewing angle and improving the in-plane uniformity of brightness.
  • the resin that serves as the base material of the light diffusion layer 121 include PET (polyethylene terephthalate) resin, PC (polycarbonate) resin, MS (methyl methacrylate styrene) resin, MBS (methyl methacrylate butadiene styrene) resin, and TAC ( Triacetyl cellulose) resin, PEN (polyethylene naphthalate) resin, acrylic resin, etc. are preferably used.
  • the diffusing agent contained in the light diffusing layer 121 particles made of resin such as acrylic resin, epoxy resin, silicone resin, or inorganic particles are preferably used.
  • the diffusing agent may be a combination of an inorganic diffusing agent and an organic diffusing agent.
  • the diffusing agent is preferably approximately spherical and has an average particle size of approximately 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the thickness of the light diffusion layer 121 is preferably about 100 to 2000 ⁇ m, although it depends on the screen size of the screen 10 and the like. It is desirable that the light diffusion layer 121 has a haze value in the range of 1 to 50%.
  • a reflective screen like this embodiment, in order to improve the front brightness, it is conceivable to reduce the content of the diffusing agent in the light diffusing layer.
  • the content of the diffusing agent is reduced when the reflective layer and the light diffusing layer are provided close to each other in the thickness direction of the screen, the position of the diffusing agent within the light diffusing layer becomes localized. , glare (scintillation) may occur in the image, making it impossible to display a good image.
  • a light diffusion layer 121 and a colored layer 122 are arranged in order from the first surface side (+Z side) in the base layer 12, and the light diffusion layer 121 and the reflection layer in the thickness direction of the screen 10 are arranged in order from the first surface side (+Z side). It is separated from the layer 14 by a predetermined distance.
  • the screen 10 of the present embodiment improves front brightness and suppresses the occurrence of glare in images even when the position of the diffusing agent in the light diffusing layer is localized as described above. can do.
  • the shortest distance between the light diffusion layer 121 and the reflective layer 14 in the thickness direction of the screen is 450 ⁇ m or more and 1370 ⁇ m or less.
  • This shortest distance refers to the distance from the point closest to the first surface (+Z side) of the reflective layer 14 to the surface of the light diffusion layer 121 on the second surface side in the normal direction (thickness direction) of the screen surface.
  • the point closest to the first surface of the reflective layer 14 corresponds to a point t1 shown in FIG. 3(b), which will be described later, and is the bottom of the valley between the unit lenses 131 on which the reflective layer 14 is formed.
  • the shortest distance between the light diffusing layer 121 and the reflective layer 14 in the thickness direction is less than 450 ⁇ m, the light diffusing layer 121 and the reflective layer 14 will be too close to each other, causing glare in the image (also referred to as scintillation, speckles, etc.) This is undesirable because the suppressing effect of Moreover, if the shortest distance is larger than 1370 ⁇ m, the thickness of the screen becomes thick and the weight of the screen increases too much, which is not desirable. Therefore, the shortest distance between the light diffusing layer 121 and the reflective layer 14 is preferably within the above range.
  • the colored layer 122 is a layer colored with a dark coloring agent such as black so as to have a predetermined light transmittance.
  • the colored layer 122 has the function of absorbing unnecessary external light such as illumination light that enters the screen 10 and reducing the black luminance of the displayed image to improve the contrast of the image.
  • the coloring agent for the colored layer 122 dark color dyes and pigments such as gray and black, and metal salts such as carbon black, graphite, and black iron oxide are suitably used.
  • the resin serving as the base material of the colored layer 122 PET resin, PC resin, MS resin, MBS resin, TAC resin, PEN resin, acrylic resin, etc. can be used.
  • the thickness of the colored layer 122 is preferably about 430 to 1350 ⁇ m, although it depends on the screen size of the screen 10 and the like.
  • FIG. 3 is a diagram illustrating the lens layer 13 and unit lens 131 of this embodiment.
  • FIG. 3(a) shows the lens layer 13 observed from the front direction of the second surface side (-Z side), and the reflective layer 14 and back protective layer 15 are omitted for easy understanding. It is shown as follows.
  • FIG. 3(b) shows a further enlarged part of the cross section of the screen 10 shown in FIG. 2, and only the lens layer 13 and the reflective layer 14 are shown for easy understanding.
  • the lens layer 13 is a layer provided on the second surface side (-Z side) of the base material layer 12 and has a light transmitting property. As shown in FIG. 3(a) etc., the lens layer 13 has a circular Fresnel lens shape in which a plurality of unit lenses 131 are arranged concentrically around a point C on its second surface side. . Therefore, when the lens layer 13 is viewed from the front direction on the second surface side (-Z side), it is observed that the unit lenses 131 having a partially perfect circular shape (arc shape) are arranged.
  • This point C is outside the screen of the screen 10 (outside the display area), and is located at the center of the screen 10 in the horizontal direction and below the screen 10, similarly to the video source LS. Therefore, as shown in FIG. 3A, when viewed from the normal direction of the screen surface of the screen 10, points A and C are located on a straight line parallel to the vertical direction of the screen.
  • the lens layer 13 will be described using an example in which the second surface side (-Z side) has a circular Fresnel lens shape. It is also possible to have a linear Fresnel lens shape arranged in the vertical direction of the screen.
  • the unit lens 131 has a lens surface 132 and a non-lens surface in a cross section passing through point A and parallel to the arrangement direction of the unit lenses 131 and parallel to the thickness direction of the screen 10. 133.
  • the non-lens surface is located on the lower side ( ⁇ Y side) of the lens surface 132 in the vertical direction of the screen in the cross section shown in FIG. 2 or FIG. 3(b).
  • the lens surface 132 is linear in the cross section shown in FIG. 2 or FIG. 3(b), and the end on the side far from the image source LS (upper side in the vertical direction of the screen) in the arrangement direction of the unit lenses 131 is connected to the image source LS.
  • This lens surface 132 is a surface that exhibits a Fresnel lens-shaped lens effect formed in the lens layer 13.
  • the non-lens surface 133 is a portion located between adjacent lens surfaces 132 in the arrangement direction of the unit lenses 131, and connects the adjacent lens surfaces 132.
  • This non-lens surface 133 is smoothly continuous with the adjacent lens surface 132.
  • the non-lens surface 133 has a point t2 that is the apex of a shape that is convex toward the second surface side (-Z side) and a point t1 that is the apex of a shape that is convex toward the first surface side (+Z side). ing.
  • This point t1 is the bottom of the valley between adjacent unit lenses 131 when point t2 is the apex of the unit lens 131, and is located in a curved area corresponding to the valley between the unit lenses 131.
  • the non-lens surface 133 has a curved shape in which at least a region including this point t1 is convex toward the first surface side, and this region is particularly referred to as a first curved surface portion 134. Further, in this embodiment, a region of the non-lens surface 133 including the point t2 has a curved surface shape convex toward the second surface side, and this region is referred to as a second curved surface portion 135. Further, in this embodiment, as shown in FIG.
  • the non-lens surface 133 has a substantially planar region 136 between the first curved surface portion 134 and the second curved surface portion 135, The first curved surface portion 134 and the second curved surface portion 135 are connected via this planar region 136.
  • the unit lens 131 is not limited to the above-described example, and the unit lens 131 may have a form in which the first curved surface portion 134 and the second curved surface portion 135 are directly continuous without interposing the planar region 136.
  • the area including the point t2 may not include the second curved surface portion 135, but may be configured to include a plane that is an extension of the lens surface 132 and a planar area 136.
  • first curved surface portion 134 and the second curved surface portion 135 have a substantially arcuate cross-sectional shape as shown in FIG. 3(b), and the radius of curvature of the first curved surface portion 134 is is larger than the radius of curvature.
  • first curved surface portion 134 and the second curved surface portion 135 of the non-lens surface 133 may have, for example, a partial shape of an ellipse or other curved shape in the cross section shown in FIG. 3(b). Good too.
  • the arrangement pitch of the unit lenses 131 is P
  • the lens height of the unit lenses 131 (dimension from point t2 to point t1 in the thickness direction of the screen 10) is h.
  • the angle that the lens surface 132 makes with a surface parallel to the screen surface is ⁇
  • the angle that the planar region 136 of the non-lens surface 133 makes with a surface parallel to the screen surface is ⁇ .
  • the non-lens surface 133 does not have a planar region 136, the tangent at a point on the non-lens surface 133 that is equidistant from points t1 and t2 and a surface parallel to the screen surface are Let the angle formed be angle ⁇ . This angle ⁇ is larger than the angle ⁇ .
  • the arrangement pitch P, angle ⁇ , etc. of the unit lenses 131 are shown to be constant in the arrangement direction of the unit lenses 131.
  • the arrangement pitch P is actually constant, the angle ⁇ gradually increases as the distance from point C in the arrangement direction of the unit lenses 131 increases, and accordingly the lens height increases. h has also increased.
  • the arrangement pitch P is preferably 50 to 200 ⁇ m. Further, the angle ⁇ of the lens surface 132 is formed in a range of 0.5 to 35°. Note that the arrangement pitch P is not limited to this, and may have a form that gradually changes along the arrangement direction of the unit lenses 131, and may vary depending on the size of a pixel of the image source LS that projects the image light L or the image source. It can be changed as appropriate depending on the projection angle of the LS (the angle of incidence of the image light onto the screen surface of the screen 10), the screen size of the screen 10, the refractive index of each layer, etc.
  • the lens layer 13 is made of an ultraviolet curable resin such as urethane acrylate or epoxy acrylate on the second surface side (-Z side) of the base layer 12 (in this embodiment, the surface on the back side of the colored layer 122). , which are integrally formed by ultraviolet molding.
  • the lens layer 13 may be formed of other ionizing radiation curable resins such as electron beam curable resins, or may be formed of thermoplastic resins.
  • the material and molding method for forming the lens layer 13 can be appropriately selected depending on the shape and material of the Fresnel lens on the second surface side of the lens layer 13.
  • the reflective layer 14 is a layer that has the function of reflecting incident light.
  • the reflective layer 14 is formed on at least a portion of the lens surface 132.
  • the reflective layer 14 of this embodiment is formed on the lens surface 132 and the non-lens surface 133, as shown in FIG. 2 and FIG. 3(b).
  • the reflective layer 14 is made of a metal with high light reflectivity, such as aluminum, silver, nickel, chromium, etc.
  • the reflective layer 14 of this embodiment is formed by vapor depositing aluminum, and the thickness of the reflective layer 14 is about 800 ⁇ .
  • the reflective layer 14 is not limited to this, and may be formed by, for example, sputtering a highly reflective metal, transferring a metal foil, or applying a paint containing a metal thin film or the like. For example, it may be formed by depositing a dielectric multilayer film or a dielectric single layer film.
  • the reflective layer 14 may be formed by applying a white or silver paint, an ultraviolet curable resin or a thermosetting resin containing white or silver pigments, beads, etc. by spray coating, die coating, screen printing, or wiping. It may be formed by coating and curing by various coating methods such as groove filling.
  • the back surface protective layer 15 is a layer provided on the second surface side (-Z side) of the reflective layer 14 and protects the reflective layer 14 and the back surface side (back side) of the screen 10. As shown in FIG. 2, the back surface protective layer 15 of this embodiment covers the reflective layer 14, fills in the irregularities caused by the unit lenses 131, and flattens the second surface 10b of the screen 10. In addition, the back protective layer 15 has a light-absorbing function, which means that it absorbs unnecessary external light such as sunlight and illumination light that enters the screen 10 from the second surface side (-Z side), thereby improving the image quality. This is preferable from the viewpoint of improving the contrast.
  • the back protective layer 15 of this embodiment has a light-absorbing function, and is made of a dark-colored paint such as black, a dark-colored pigment or dye such as black, and beads having a light-absorbing function.
  • the reflective layer 14 is formed by applying a resin containing a material to the second surface side of the reflective layer 14 and curing the resin.
  • resins include thermosetting resins such as epoxy resins and urethane resins, thermoplastic resins such as acrylic resins, and ultraviolet curable resins such as urethane acrylates and epoxy acrylates.
  • the back surface protective layer 15 may have an ultraviolet absorbing function, a hard coat function, and the like.
  • FIG. 4 is a diagram illustrating the unit lens 131 in more detail.
  • FIG. 4(a) shows a cross section of the unit lens 131 of this embodiment
  • FIG. 4(b) shows a cross section of a conventional unit lens 531.
  • FIGS. 4A and 4B for ease of understanding, only the lens layer 13 of this embodiment and the conventional lens layer 53 are shown, respectively, and for each lens layer, the arrangement direction of the unit lenses and the screen A part of the cross section parallel to the thickness direction is shown enlarged.
  • the unit lens 131 of this embodiment shown in FIG. 4(a) and the conventional unit lens 531 shown in FIG. 4(b) are located on a straight line that passes through point A and is parallel to the vertical direction of the screen. is on the upper side of the screen in the vertical direction and the distance from point C is the same.
  • a conventional unit lens 531 has a lens surface 532 and a non-lens surface 533. Further, the conventional unit lens 531 is similar to the unit lens 131 of the present embodiment except that it does not include the first curved surface portion 134 and the second curved surface portion 135 and the non-lens surface 533 is planar. The pitch P, the angle ⁇ , and the incident angle of the image light onto the lens surface 532 are also the same. As shown in FIG. 4B, the image light La projected from the image source LS is incident on the lens surface 532 of the conventional unit lens 531 at a predetermined incident angle.
  • the lens surface 532 includes a reflective region 532A, which is a region on which the image light La is incident, and a non-reflective region 532B, which is a region on which the image light La is not incident.
  • the ratio of the size of the reflective area 532A in the arrangement direction of the unit lenses 531 to the arrangement pitch P is Wa/P.
  • the second curved surface portion 135 of the non-lens surface 133 is formed in a region corresponding to the non-reflection region of the lens surface 132.
  • the reflective area occupied by the lens surface 132 is secured to be the same as that of the conventional unit lens 531, while the non-reflective area of the lens surface 132 is made much smaller than that of the conventional unit lens 531.
  • the ratio W1/P of the dimension of the lens surface 132 in the arrangement direction of the unit lenses 131 to the arrangement pitch P (hereinafter referred to as the ratio of the lens surface 132 to the arrangement pitch) is
  • the ratio Wa/P of the reflective area 532A of the unit lens 531 to the arrangement pitch is equal or approximately equal.
  • the image light La is incident on this unit lens 131 at a predetermined incident angle, similarly to the unit lens 531 of the comparative example. Therefore, in the unit lens 131 of this embodiment, the amount of reflected light of the image light La is equivalent to the amount of reflected light of the image light La in the conventional unit lens 531.
  • the conventional unit lens 531 a part of the image light (image light Lb) is incident on a point t1 that is convex toward the first surface side (+Z side), The light is reflected by the reflective layer 14 and exits upward on the first surface side of the screen.
  • the amount of such image light Lb is small. Therefore, even if the image light Lb reaches the ceiling or the like, it is not possible to reduce the reflection of the image due to the image light reflected on the viewer's surface of the screen.
  • the unit lens 131 of this embodiment as shown in FIG. The light is diffusely reflected by the curved surface shape and the reflective layer 14.
  • the image lights Lc and Ld emitted upward from the screen 10 are diffusely reflected, the image reflected on the surface (first surface 10a) of the screen 10 and reflected on the ceiling etc. is blurred and unclear. It has the effect of becoming Thereby, the screen 10 of this embodiment can suppress the reflection of images on the ceiling or the like. Further, a small amount of the diffusely reflected image light Lc reaches the observer O, which has the effect of reducing glare in the image.
  • the ratio W1/P of the dimension of the lens surface 132 to the arrangement pitch P in the arrangement direction of the unit lenses 131 is preferably 60% or more and 95% or less. If this ratio W1/P is less than 60%, the lens surface 132 becomes smaller with respect to the arrangement pitch P, which reduces the reflective area and lowers the front brightness of the image, which is not preferable. Further, if the ratio W1/P is greater than 95%, the first curved surface portion 134 becomes too small, and the effect of suppressing the reflection of the image on the ceiling etc. as described above cannot be obtained sufficiently. Therefore, the ratio W1/P is preferably within the above range.
  • this ratio W1/P gradually becomes smaller as it moves away from the point C (image source LS) along the arrangement direction of the unit lenses 131 within the above-mentioned preferable range. ing.
  • the angle ⁇ is small and the lens height h is small, so that the curvature of the first curved surface portion 134 is small.
  • the radius becomes smaller and the ratio W1/P becomes larger.
  • the angle ⁇ is large and the lens height h is also large, so that the first curved surface portion 134
  • the radius of curvature becomes larger and the ratio W1/P becomes smaller.
  • the present invention is not limited to this, and the ratio W1/P may gradually decrease within the above-mentioned preferable range as it moves away from the point C (image source LS) along the arrangement direction of the unit lenses 131. , may be constant in the arrangement direction of the unit lenses 131.
  • the non-lens surface 133 has the first curved surface portion 134, in addition to the effect of suppressing the reflection of the image on the ceiling etc., the glare (also referred to as scintillation, speckle, etc.) of the displayed image is reduced. It was found that this effect can be obtained.
  • the screen 10 is divided into 9 regions, each divided into 3 in the vertical direction and in the horizontal direction of the screen, and the speckle value at the geometric center of each region is ( Speckle contrast) was measured and defined by the standard deviation ⁇ of the speckle values of the nine regions. From the viewpoint of reducing glare in images, it is preferable that the standard deviation ⁇ of the speckle values in the nine regions is smaller, and particularly preferably less than 1.38.
  • FIG. 9 is a diagram illustrating the angle ⁇ corresponding to the apex angle of the unit lens 131. Similar to FIG. 2 and the like, FIG. 9 is a cross section that passes through the thickness direction of the screen 10 and point A and is parallel to the arrangement direction of the unit lenses 131, and shows only a part of the unit lenses 131 in an enlarged manner. Further, FIG. 9(a) shows a unit lens 131 in which the non-lens surface 133 has a planar region 136, and FIG. 9(b) shows a unit lens 131 in which the non-lens surface 133 does not have a planar region 136. It shows.
  • the angle ⁇ which corresponds to the apex angle of the unit lens 131 and is formed by the extending direction of the lens surface 132 and the extending direction of the planar region 136 of the non-lens surface 133, is an acute angle. That is, it is preferable that 0° ⁇ 90°.
  • the angle ⁇ is 90° or more, the ratio of the dimension of the non-lens surface 133 to the arrangement pitch P in the arrangement direction of the unit lenses 131 becomes large, and the ratio W1/P becomes small. Therefore, the area of the lens surface 132 that reflects the image light (the area of the reflection region) is reduced. Furthermore, the amount of image light incident on the non-lens surface 133 increases. For these reasons, the amount of image light reflected toward the viewer decreases, resulting in a dark image.
  • the angle ⁇ is 90° or more, as described above, the image light incident on the non-lens surface 133 and reflected by the reflective layer 14 becomes stray light, which reduces the contrast and clarity of the image displayed on the screen. This results in a decrease in Furthermore, if the angle ⁇ is 90° or more, unnecessary external light or the like enters the non-lens surface 133 and is likely to be reflected toward the viewer, reducing the contrast of the image. From the above, it is preferable that the angle ⁇ is an acute angle (0° ⁇ 90°).
  • be the angle that a tangent at a point equidistant from point t2 on the two-curved surface portion 135 (point t3 shown in FIG. 9(b)) makes with the extension direction of the lens surface 132.
  • FIG. 5 is a diagram showing an example of image light and external light incident on the screen 10 of this embodiment.
  • the cross section of the screen 10 shown in FIG. 5 is similar to the cross section of the screen 10 shown in FIG. 2 described above.
  • the refractive index between the surface layer 11 and the base material layer 12 and between the base material layer 12 and the lens layer 13 are equal, and the refractive index for image light and external light is The light diffusion effect of the diffusion layer 121 and the like are omitted.
  • most of the image light L1 projected from the image source LS is incident on the screen 10 like the image light L2, and the surface layer 11 and the base material layer 12 (light diffusion layer 121, The light passes through the colored layer 122) and heads toward the lens layer 13.
  • image light L3 image light L3 projected from the image source LS is reflected on the surface of the screen 10 and heads upward on the first surface side of the screen 10, causing the image to be projected onto the ceiling or the like. This may cause reflections.
  • fine irregularities are formed on the surface of the surface layer 11 in this embodiment, so that the image light L3 reflected toward the ceiling etc. is diffused, and the reflection of the image on the ceiling etc. is reduced.
  • the screen 10 can display bright images.
  • the screen 10 since the screen 10 has a sufficient distance between the reflective layer 14 and the light diffusion layer 121 in the thickness direction, the brightness of the image light can be made uniform without significantly reducing the front brightness. , can suppress glare in images.
  • the image light L1 is projected from below the screen 10 and the angle ⁇ is larger than the incident angle of the image light L1 at each point in the vertical direction of the screen 10, the image light L1 is projected from the bottom of the non-lens surface 133.
  • the light does not directly enter a region other than the first curved surface portion 134 (for example, the second curved surface portion 135, etc.).
  • the first curved surface portion 134 of the non-lens surface 133 does not largely block the image light L2 incident on the lens surface 132 in the unit lens 131, the front brightness of the image is maintained, and the screen 10 displays a bright image. can.
  • the first curved surface portion 134 and the reflective layer 14 diffusely reflect a portion of the image light L2 (image light L4) toward the upper side of the screen, and a portion of the image light L2 is emitted upward on the first surface side of the screen 10.
  • image light L4 image light L4
  • the reflection of the image on the ceiling or the like can be made unclear, and the reflection of the image can be suppressed.
  • a portion of the image light L4 is diffused and a portion of the image light L4 is directed toward the viewer, thereby reducing glare in the image.
  • unnecessary external lights G1 and G2 such as illumination light mainly enter the screen 10 from above, as shown in FIG. Then, a portion (not shown) of the external lights G1 and G2 is reflected on the surface of the screen and travels below the screen 10. Moreover, most of the external lights G1 and G2 enter the screen 10, pass through the surface layer 11 and the base layer 12, and enter the unit lenses 131 of the lens layer 13. Then, the external light G1 enters the non-lens surface 133, is reflected by the reflective layer 14, is further reflected by the lens surface 132, etc., and heads upward toward the first surface side of the screen 10, so that the external light G1 is directed upward toward the first surface side of the screen 10.
  • the amount of light reaching the image light L1 is significantly smaller than that of the image light L1.
  • the external light G2 is reflected by the lens surface 132 and mainly heads downward on the first surface side of the screen 10, so it does not directly reach the observer O side, and even if it reaches the viewer O side, the amount of light G2 is It is significantly less than the light L1.
  • some external light (not shown) is absorbed by the colored layer 122. Therefore, in the screen 10, it is possible to greatly suppress a decrease in image contrast due to external light G1, G2, etc.
  • a high-contrast, bright, and good image can be displayed, and reflection of the image on the ceiling or the like can be suppressed. Furthermore, according to the present embodiment, glare in images can be reduced. Furthermore, according to the present embodiment, fine irregularities are formed on the surface of the surface layer 11, and the irregularities can diffuse the image light reflected toward the ceiling, etc., and reduce the reflection of the image on the ceiling, etc. The effect of suppressing crowding can be further enhanced.
  • the screens of measurement examples 1 to 8 which differ in the ratio W1/P that the lens surface 132 occupies with respect to the arrangement pitch P, the presence or absence of the first curved surface part 134, etc. are prepared, and the reflection of the image on the ceiling etc. was evaluated.
  • the screens of Measurement Examples 1 to 8 have the same configuration except that the ratio of the lens surface 132, the presence or absence of a curved surface portion, the shape of the curved surface portion, etc. are different.
  • the screens of Measurement Examples 1 to 8 have a horizontally long rectangular shape and a screen size of 80 inches.
  • the image source LS (manufactured by Hisense 75L9S) that projects image light onto the screens of measurement examples 1 to 8 was placed 741 mm below the screen in the vertical direction from point A on the screen of each measurement example (in the horizontal direction of the screen). Image light is projected from a point located at the center (236 mm downward from the bottom edge of the screen) and 447 mm away from the viewer side (+Z side) along the normal direction of the screen surface. Further, the angle ⁇ at the lower end of the screen in the vertical direction of the screen is 5.2°, and the angle ⁇ at the upper end of the screen is 21.8°. In the screen of each measurement example, the incident angle of the image light in the vertical direction of the screen at point A was 58.9°.
  • FIG. 6 is a diagram schematically showing the cross-sectional shape of the unit lens 131 at point A, which is the center of the screen in Measurement Examples 1 to 8.
  • the unit lens 131 is shown in a cross section similar to that in FIG. 3(b), and only the lens layer 13 is shown for easy understanding.
  • 6(a) corresponds to the unit lens 131 of the screen in measurement examples 1 to 3
  • FIG. 6(b) corresponds to the unit lens 131 of the screen in measurement example 4
  • FIG. 6(c) corresponds to the unit lens 131 of the screen in measurement examples 1 to 3.
  • 6(d) corresponds to the unit lens 131 of the screens of Measurement Examples 7 and 8.
  • the non-lens surface 133 has a first curved surface portion 134 and a planar region 136, but does not have a second curved surface portion 135.
  • the screen of measurement example 1 has a ratio W1/P of 60%
  • the screen of measurement example 2 has a ratio W1/P of 80%
  • the screen of measurement example 3 has a ratio W1/P of 95%.
  • the non-lens surface 133 has a first curved surface portion 134 and a second curved surface portion 135, and the ratio W1/P is 95%.
  • the screens of measurement examples 1 to 4 described above correspond to the screens of the examples of this embodiment.
  • the non-lens surface 133 does not have the first curved surface portion 134 but has a planar region 136 and a second curved surface portion 135.
  • the screen of Measurement Example 5 has a W1/P of 80%
  • the screen of Measurement Example 6 has a W1/P of 95%.
  • the non-lens surface 133 is planar and does not have the first curved surface portion 134 and the second curved surface portion 135.
  • the screen of Measurement Example 7 has a ratio W1/P of 98%
  • the screen of Measurement Example 8 has a ratio W1/P of 99%.
  • the screens of measurement examples 5 to 8 described above correspond to the screens of comparative examples of this embodiment.
  • FIG. 7 is a diagram showing each area of the screen when calculating the standard deviation ⁇ of the speckle values.
  • FIG. 7 shows a view of the screen as seen from the normal direction of the screen, and the nine areas are labeled S1 to S9.
  • the lens layer 13 is a circular Fresnel lens in which unit lenses 131 are arranged concentrically around a point C (see FIG. 3(a)) outside the display area of the screen.
  • regions S3 and S9 shown in FIG. 7 may have a small contribution to reducing the reflection of images on the ceiling etc. from the viewpoint of the arrangement direction of the unit lenses 131, etc., but the regions S3 and S9 shown in FIG. Since it is expected to be effective in reducing glare, the standard deviation ⁇ for all nine areas was used.
  • the speckle value is a value that serves as an index for evaluating glare in an image, and is a value obtained by the following equation (1).
  • ⁇ a in equation (1) is the intersection point of a predetermined measurement area centered on the geometric center of each area of the screen, and line segments drawn at a predetermined pitch within the measurement area. is the standard deviation of the brightness at each measurement point when a white image is displayed on the screen.
  • the measurement area is 40 mm in the vertical direction of the screen and 60 mm in the horizontal direction of the screen.
  • the line segments have a pitch of 255 ⁇ m in the vertical direction of the screen and in the horizontal direction of the screen.
  • M indicates the average value of each luminance of the above-mentioned measurement points.
  • This speckle value is determined by measuring the speckle value by moving the measuring instrument (Dr.SPECKLE/SM01VS09 manufactured by Oxide Co., Ltd.) from point A, which is the center of the screen (geometric center of the screen), to the screen surface in a dark room environment.
  • the speckle contrast Cs was obtained by arranging it at a position 1.0 m away from the viewer (+Z side) in the linear direction and measuring the speckle contrast Cs.
  • the image source LS 75L9S manufactured by Hisense Co., Ltd.
  • FIG. 8 is a diagram showing a table summarizing the evaluation results of image reflection on the screen ceiling and image glare in Measurement Examples 1 to 8.
  • the observer should move 3 degrees along the normal direction of the screen surface from point A, which is the center of each screen, to the observer side (+Z side). Evaluation was made by visually observing the display surface of the ceiling and screen at a position of .2 m.
  • the evaluation of the image reflection on the ceiling is ⁇ weak'' if the reflection on the ceiling is weak and unclear, and can be used in good condition; Those that are stronger than “weak” but still usable are designated as “medium,” and those that have a strong and clear reflection on the ceiling and are not suitable for use are designated as “strong.”
  • "weak” means that the video glare is weak and hardly visible, and can be used in good condition. The rating was ⁇ medium'' if it was strong but usable, and the rating was ⁇ strong'' if the image had strong glare and was not suitable for use.
  • the screens of measurement examples 1 to 4 that have the first curved surface part 134 have a higher degree of image reflection on the ceiling than the screens of measurement examples 5 to 8 that do not have the first curved surface part 134. was weak and reduced.
  • the screens of Measurement Examples 7 and 8, which did not have any of these, had strong and clear reflection on the ceiling.
  • the screen 10 has the first curved surface portion 134 in which the unit lens 131 is convex toward the first surface side, and the ratio W1/P is 60% or more and 95% or less to prevent the image from reaching the ceiling. This is preferable from the viewpoint of reducing glare.
  • the screens of Measurement Examples 1 to 4 in which the standard deviation ⁇ of the speckle value was 1.38 or less had reduced glare (speckle) in the image.
  • the screens of measurement examples 5 to 8 where the standard deviation ⁇ of the speckle value was larger than 1.38 glare in the images was visually recognized.
  • the non-lens surface 133 has the first curved surface portion 134, and the ratio W1/P of the lens surface 132 to the arrangement pitch P is 60% or more and 95%. Since it is as follows, it is possible to suppress the reflection of the image on the ceiling while displaying a bright and good image. Furthermore, according to the present embodiment, the screen has a standard deviation ⁇ of speckle values in each of the nine divided areas of the screen, which is 1.38 or less, so that glare in the image can be reduced.
  • the surface layer 11 has been described with reference to an example having a hard coat function and an anti-glare function, but the surface layer 11 is not limited to this.
  • the layer may have one or more of various functions such as antifouling function and antistatic function, or may be formed by laminating a plurality of layers having the desired function. Further, a touch panel layer or the like may be provided as the surface layer 11.
  • the lens surface 132 may have a shape composed of a plurality of planes (so-called folded surface shape), or may have a curved shape that is convex toward the second surface side (-Z side). good.
  • the screen 10 may include a highly rigid transparent substrate layer made of glass or resin and having light transmittance, from the viewpoint of improving the flatness of the screen. Further, a highly rigid support plate (not shown) or the like may be integrally laminated on the second surface side (-Z side) to improve the flatness of the screen.
  • the screen 10 may be flexible enough to be rolled up and stored when not in use.
  • the screen 10 shows an example in which the back protective layer 15 has light absorbing properties; however, the present invention is not limited to this, and the screen 10 has a form in which the back protecting layer 15 does not have light absorbing properties, and the second surface thereof is not limited to this.
  • a form may be adopted in which a light-shielding curtain made of cloth or resin that does not easily transmit light, a layer that improves scratch resistance, etc. is laminated on the side (-Z side).
  • the screen 10 may have a form in which the back surface protective layer 15 does not have light absorbing properties, and the screen 10 may be configured as described above.
  • the back protection layer 15 may be made of paper, nonwoven fabric, resin sheet, etc., and may be laminated on the second surface side of the reflective layer 14 via a bonding layer formed of an adhesive or an adhesive (not shown). good.
  • the image source LS is arranged below the screen 10 (on the ⁇ Y side) in the vertical direction, but the present invention is not limited to this. It may be located above the screen 10 (on the +Y side). In this case, similarly to the video source LS, the screen 10 is used with its vertical direction reversed so that the Fresnel center point C is located on the upper side in the vertical direction.
  • the surface layer 11 may have a shape in which unit optical shapes (not shown) convex toward the first surface are arranged in the horizontal direction of the screen, with the vertical direction of the screen being the longitudinal direction.
  • This unit optical shape has, for example, a partial circular cross-sectional shape parallel to the arrangement direction and the thickness direction of the screen, and the surface layer 11 has a so-called lenticular lens shape on the first surface side. You can also use it as Further, the unit optical shape may have a cross-sectional shape that is a partial shape of an ellipse, or a shape that is a combination of a plurality of curved lines.
  • the unit optical shape of the surface layer 11 is not limited to the above example, and may be a triangular shape in which the cross-sectional shape in a cross section parallel to the arrangement direction and the thickness direction of the screen is convex toward the first surface side.
  • the image light L is diffused in the horizontal direction of the screen by the unit optical shape, and the screen 10 can secure a sufficient viewing angle in the horizontal direction (X direction) of the screen.
  • the image source LS is an example in which a laser light source is used.
  • a DLP projector using a mercury lamp may be used, or an image source using another light source such as an LED may be used.
  • the video display device 1 includes a windshield (not shown) that causes the screen 10 to reflect the video light L projected from the video source LS and further reflects the reflected light toward the viewer O. It is good also as a form provided.
  • the windshield has the function of reflecting image light in addition to the function of a transparent window glass.
  • Such a video display device is suitable as a head-up display mounted on a moving object such as an automobile. With conventional reflective screens, some unintended light (stray light) generated by reflection off the surface of the screen reaches the windshield or the ceiling inside the car, causing unintended projected images to be observed. , which could obstruct the driver's view. However, by using the screen 10 of the above-described embodiment in such a video display device, such unintended projected images can be suppressed and a good visibility can be ensured.
  • Video display device 10 Screen 11 Surface layer 12 Base layer 121 Light diffusion layer 122 Colored layer 13 Lens layer 131 Unit lens 132 Lens surface 133 Non-lens surface 134 First curved surface portion 135 Second curved surface portion 136 Planar region 14 Reflection Layer 15 Back protective layer LS Image source

Abstract

A screen 10 is a reflection-type screen and comprises: a lens layer 13 of which a surface side, in a thickness direction of the screen 10, upon which image light is projected is a first surface side and a reverse surface side is a second surface side, and having, on the second surface side, a Fresnel lens shape in which unit lenses 131 each including a lens surface 132 and a non-lens surface 133 and protruding to the second surface side are arranged; and a reflective layer 14 which is formed on the unit lenses 131 to reflect light. Each non-lens surface 133 has a first curved surface portion 134 in the shape of a curved surface on an end portion on the first surface side, wherein the first curved surface portion 134 is positioned in a region of the non-lens surface 133 adjacent to the lens surface 132 of the adjacent unit lens 131, and a proportion occupied by a dimension of the lens surface 132 in a direction in which the unit lenses 131 are arranged, relative to an arrangement pitch of the unit lenses 131, is 60% to 95% inclusive.

Description

反射型スクリーン、映像表示装置Reflective screen, video display device
 本発明は、反射型スクリーン、映像表示装置に関するものである。 The present invention relates to a reflective screen and an image display device.
 従来、反射型スクリーンやこれを備える映像表示装置において、良好な映像を表示するために様々に開発がなされている(例えば、特許文献1等)。
 また、反射型スクリーンを備える映像表示装置において、近年、短焦点型の映像源が広く用いられている。このような短焦点型の映像源は、反射型スクリーンに対して近距離から、大きな入射角度で映像光を投射することができ、映像表示装置としての奥行方向における寸法を小さくすることができる。
Conventionally, various developments have been made to display good images in reflective screens and video display devices equipped with the same (for example, Patent Document 1, etc.).
Furthermore, in recent years, short-focus video sources have been widely used in video display devices equipped with reflective screens. Such a short focus type image source can project image light at a large angle of incidence from a short distance to a reflective screen, and can reduce the size of an image display device in the depth direction.
特開2008-076522号公報JP2008-076522A
 しかし、このような映像源を用いた場合、反射型スクリーンに対して映像光の入射角度が大きく、映像光の一部が反射型スクリーンの表面で反射して天井等に映像が映り込む現象が発生する場合がある。このような天井等への映像の映り込みは、例えば、暗い室内等で映像を視認する場合には、特に目障りとなり、快適な映像の視認の妨げになる。 However, when such an image source is used, the angle of incidence of the image light on the reflective screen is large, and a portion of the image light is reflected on the surface of the reflective screen, causing the image to be reflected on the ceiling, etc. This may occur. Such reflection of the image on the ceiling or the like is particularly obtrusive when viewing the image in a dark room, for example, and hinders comfortable viewing of the image.
 本発明の課題は、天井等への映像の映り込みを抑制でき、良好な映像を表示できる反射型スクリーン、映像表示装置を提供することである。 An object of the present invention is to provide a reflective screen and an image display device that can suppress the reflection of images on the ceiling or the like and display good images.
 本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
 第1の発明は、映像源から投射された映像光を反射させて表示する反射型スクリーンであって、該反射型スクリーンの厚み方向において、映像光が投射される面側を第1面側とし、裏面側を第2面側とし、レンズ面(132)と非レンズ面(133)とを有し前記第2面側に凸となる単位レンズ(131)が配列されたフレネルレンズ形状を前記第2面側に有するレンズ層(13)と、前記単位レンズ上に形成され、光を反射する反射層(14)と、を備え、前記非レンズ面は、前記第1面側の端部に曲面状の第1曲面部(134)を有し、前記第1曲面部は、前記非レンズ面において、隣り合う前記単位レンズの前記レンズ面と隣接する領域に位置し、前記単位レンズの配列ピッチに対して、前記単位レンズの配列方向における前記レンズ面の寸法が占める割合が、60%以上95%以下であること、を特徴とする反射型スクリーン(10)である。
 第2の発明は、第1の発明の反射型スクリーンにおいて、該反射型スクリーンは、その画面を、使用状態における画面上下方法及び画面左右方向においてそれぞれ3分割して全9領域とし、前記9領域のスペックル値Sに対する標準偏差σが、1.38以下であることを特徴とする反射型スクリーン(10)である。
 第3の発明は、第1の発明又は第2の発明の反射型スクリーンにおいて、前記非レンズ面(133)は、前記第2面側の端部に曲面状の第2曲面部(135)を有し、前記第1曲面部(134)の曲率半径は、前記第2曲面部の曲率半径よりも大きいこと、を特徴とする反射型スクリーン(10)である。
 第4の発明は、第3の発明の反射型スクリーンにおいて、前記非レンズ面(133)は、前記第1曲面部(134)と前記第2曲面部(135)との間に平面状の領域(136)を有し、前記単位レンズの頂角に相当し、前記レンズ面の延長方向と前記平面状の領域の延長方向とが交差する角度(γ)は、鋭角であること、を特徴とする反射型スクリーン(10)である。
 第5の発明は、第1の発明又は第2の発明に記載の反射型スクリーンにおいて、前記単位レンズ(131)の配列方向及び該反射型スクリーンの厚み方向に平行な断面において、前記単位レンズの頂角に相当し、前記レンズ面(132)の延長方向と、前記非レンズ面(133)において最も前記第1面側となる点(t1)と最も前記第2面側となる点(t2)とに対して等距離となる点(t3)での接線方向とが交差する角度(γ)は、鋭角であること、を特徴とする反射型スクリーン(10)である。
 第6の発明は、第1の発明から第5の発明までのいずれかの反射型スクリーンにおいて、前記レンズ層(13)は、前記単位レンズ(131)が、該反射型スクリーンの表示領域外に位置する一点を中心(C)として同心円状に配列されたサーキュラーフレネルレンズ形状を有すること、を特徴とする反射型スクリーン(10)である。
 第7の発明は、第1の発明から第6の発明までのいずれかの反射型スクリーンにおいて、前記反射層(14)よりも前記第1面側に、所定の濃度に着色された着色層(122)を備えること、を特徴とする反射型スクリーン(10)である。
 第8の発明は、第1の発明から第7の発明までのいずれかの反射型スクリーンにおいて、前記反射層(14)よりも前記第1面側に、入射する光を拡散する光拡散層(121)を備えること、を特徴とする反射型スクリーン(10)である。
 第9の発明は、第1の発明から第8の発明までのいずれかの反射型スクリーン(10)と、前記反射型スクリーンに映像光を投射する映像源(LS)と、を備える映像表示装置(1)である。
The present invention solves the above problems by the following solving means. Note that, in order to facilitate understanding, the description will be given with reference numerals corresponding to the embodiments of the present invention, but the present invention is not limited thereto.
The first invention is a reflective screen that reflects and displays image light projected from an image source, and in the thickness direction of the reflective screen, the surface side on which the image light is projected is the first surface side. , a Fresnel lens shape in which unit lenses (131) having a lens surface (132) and a non-lens surface (133) and convex on the second surface side are arranged with the back side as the second surface side. A lens layer (13) formed on the second surface side, and a reflective layer (14) formed on the unit lens to reflect light, and the non-lens surface has a curved surface at the end on the first surface side. The first curved surface portion (134) is located on the non-lens surface in a region adjacent to the lens surface of the adjacent unit lens, and the first curved surface portion is arranged at an arrangement pitch of the unit lenses. On the other hand, the reflective screen (10) is characterized in that the ratio of the dimensions of the lens surface in the arrangement direction of the unit lenses is 60% or more and 95% or less.
A second invention is the reflective screen according to the first invention, in which the screen is divided into three in the vertical direction and in the horizontal direction of the screen in a state of use to form a total of nine areas, and the nine areas are divided into three areas. This is a reflective screen (10) characterized in that the standard deviation σ with respect to the speckle value S of is 1.38 or less.
A third invention is the reflective screen according to the first invention or the second invention, wherein the non-lens surface (133) has a curved second curved surface portion (135) at an end on the second surface side. The reflective screen (10) is characterized in that the radius of curvature of the first curved surface portion (134) is larger than the radius of curvature of the second curved surface portion.
A fourth invention is the reflective screen according to the third invention, wherein the non-lens surface (133) is a planar area between the first curved surface portion (134) and the second curved surface portion (135). (136), and the angle (γ) corresponding to the apex angle of the unit lens and at which the extension direction of the lens surface and the extension direction of the planar area intersect is an acute angle. This is a reflective screen (10).
A fifth invention is the reflective screen according to the first invention or the second invention, in which in a cross section parallel to the arrangement direction of the unit lenses (131) and the thickness direction of the reflective screen, the unit lenses Corresponding to the apex angle, a point (t1) closest to the first surface and a point (t2) closest to the second surface in the extending direction of the lens surface (132) and the non-lens surface (133) The reflective screen (10) is characterized in that the angle (γ) at which the tangential direction intersects with the tangential direction at a point (t3) that is equidistant from the reflection screen (10) is an acute angle.
A sixth invention is a reflective screen according to any one of the first to fifth inventions, in which the lens layer (13) is arranged such that the unit lens (131) is located outside the display area of the reflective screen. This is a reflective screen (10) characterized by having a circular Fresnel lens shape arranged concentrically with one point (C) as the center.
A seventh invention is a reflective screen according to any one of the first to sixth inventions, in which a colored layer ( 122).
An eighth invention is a reflective screen according to any one of the first invention to the seventh invention, in which a light diffusion layer ( 121) is a reflective screen (10).
A ninth invention is a video display device comprising the reflective screen (10) according to any one of the first to eighth inventions, and a video source (LS) that projects video light onto the reflective screen. (1).
 本発明によれば、天井等への映像の映り込みを抑制でき、良好な映像を表示できる反射型スクリーン、映像表示装置を提供することができる。 According to the present invention, it is possible to provide a reflective screen and an image display device that can suppress the reflection of images on the ceiling or the like and display good images.
実施形態の映像表示装置1を示す図である。1 is a diagram showing a video display device 1 according to an embodiment. 実施形態のスクリーン10の層構成を示す図である。It is a figure showing the layer composition of screen 10 of an embodiment. 実施形態のレンズ層13及び単位レンズ131を説明する図である。It is a figure explaining the lens layer 13 and the unit lens 131 of embodiment. 単位レンズ131についてより詳細に説明する図である。FIG. 3 is a diagram illustrating the unit lens 131 in more detail. 実施形態の単位レンズ131に入射する映像光及び外光の一例を示す図である。It is a figure which shows an example of the image light and external light which enter the unit lens 131 of embodiment. 測定例1~8のスクリーンにおける画面中央での単位レンズの形状の断面形状を模式的に示す図である。FIG. 7 is a diagram schematically showing the cross-sectional shape of the unit lens at the center of the screen in Measurement Examples 1 to 8. スペックル値の標準偏差σを求める際のスクリーンの画面の各領域について示す図ある。FIG. 2 is a diagram showing each area of the screen when calculating the standard deviation σ of speckle values. 測定例1~8のスクリーンの天井への映像の映り込みや映像のぎらつきの評価結果をまとめた表を示す図である。FIG. 7 is a diagram illustrating a table summarizing the evaluation results of image reflection on the screen ceiling and image glare in Measurement Examples 1 to 8. 単位レンズ131の頂角に相当する角度γを説明する図である。7 is a diagram illustrating an angle γ corresponding to the apex angle of a unit lens 131. FIG.
 以下、図面等を参照して、本発明の実施形態について説明する。なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
 本明細書において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
 また、本明細書に記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
Embodiments of the present invention will be described below with reference to the drawings and the like. Note that each figure shown below, including FIG. 1, is a schematic diagram, and the size and shape of each part are appropriately exaggerated for easy understanding.
In this specification, terms that specify shapes or geometrical conditions, such as terms such as parallel and orthogonal, do not have strict meanings, but also mean that they have similar optical functions and can be considered parallel or orthogonal. This also includes states with errors.
In addition, the numerical values such as dimensions and material names of each member described in this specification are examples of embodiments, and are not limited to these, and may be appropriately selected and used.
 また、本明細書において、板、シート等の言葉を使用しているが、これらは、一般的な使い方として、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、これらの文言は、適宜置き換えることができるものとする。
 また、スクリーン面とは、反射型スクリーン全体としてみたときにおける、反射型スクリーンの平面方向となる面を示すものであり、反射型スクリーンの画面は、このスクリーン面に平行であるとする。
In addition, although words such as plate, sheet, etc. are used in this specification, these are generally used in the order of thickness, such as plate, sheet, and film. This is also used in the book. However, since there is no technical meaning in these different uses, these words can be replaced as appropriate.
Furthermore, the term "screen surface" refers to the plane of the reflective screen when viewed as a whole, and the screen of the reflective screen is parallel to this screen surface.
(実施形態)
 図1は、本実施形態の映像表示装置1を示す図である。図1(a)では、映像表示装置1の斜視図であり、図1(b)は、映像表示装置1を側面側(後述する+X側)から見た図である。
 映像表示装置1は、スクリーン10、映像源LS等を有している。本実施形態のスクリーン10は、映像源LSから投影された映像光Lを反射して、その画面上に映像を表示する反射型スクリーンである。このスクリーン10の詳細に関しては、後述する。
(Embodiment)
FIG. 1 is a diagram showing a video display device 1 of this embodiment. FIG. 1(a) is a perspective view of the video display device 1, and FIG. 1(b) is a diagram of the video display device 1 viewed from the side (+X side described later).
The video display device 1 includes a screen 10, a video source LS, and the like. The screen 10 of this embodiment is a reflective screen that reflects the image light L projected from the image source LS and displays an image on the screen. Details of this screen 10 will be described later.
 ここで、理解を容易にするために、図1を含め以下に示す各図において、適宜、XYZ直交座標系を設けて示している。この座標系では、映像表示装置1において、鉛直方向をY方向とし、水平方向をX方向とし、奥行方向をZ方向とする。スクリーン10の使用状態において、このX方向は、画面左右方向に平行であり、Y方向は、画面上下方向に平行であり、Z方向は、スクリーン10の厚み方向に平行である。スクリーン10の画面は、XY面に平行であり、スクリーン10の厚み方向(Z方向)は、スクリーン10の画面に直交する。 Here, in order to facilitate understanding, in each of the figures shown below, including FIG. 1, an XYZ orthogonal coordinate system is provided as appropriate. In this coordinate system, in the video display device 1, the vertical direction is the Y direction, the horizontal direction is the X direction, and the depth direction is the Z direction. When the screen 10 is in use, the X direction is parallel to the horizontal direction of the screen, the Y direction is parallel to the vertical direction of the screen, and the Z direction is parallel to the thickness direction of the screen 10. The screen of the screen 10 is parallel to the XY plane, and the thickness direction (Z direction) of the screen 10 is orthogonal to the screen of the screen 10.
 本実施形態のスクリーン10は、その使用状態において、スクリーンの画面(表示領域)がXY面に平行であり、画面上下方向(Y方向)が鉛直方向、画面左右方向(X方向)が水平方向となるように配置される。スクリーン10は、その厚み方向において背面側(-Z側)の面を第2面10b、観察者側(+Z側)の面を第1面10aとする。
 スクリーン10の正面方向に位置する観察者Oから見て画面左右方向の右側に向かう方向を+X方向、画面上下方向の上側に向かう方向を+Y方向、スクリーン10の厚み方向において第2面側(背面側、裏面側)から第1面側(観察者側、映像源側)に向かう方向を+Z方向とする。
 以下の説明中において、画面上下方向、画面左右方向、厚み方向とは、特に断りが無い場合、このスクリーン10の使用状態における画面上下方向(鉛直方向)、画面左右方向(水平方向)、厚み方向(奥行方向)であるとする。
When the screen 10 of this embodiment is in use, the screen (display area) of the screen is parallel to the XY plane, the up and down direction (Y direction) of the screen is vertical, and the left and right direction (X direction) of the screen is horizontal. are arranged so that The screen 10 has a second surface 10b on the back side (-Z side) and a first surface 10a on the viewer side (+Z side) in the thickness direction.
When viewed from an observer O located in the front direction of the screen 10, the direction toward the right side in the horizontal direction of the screen is the +X direction, the direction toward the upper side in the vertical direction of the screen is the +Y direction, and the second surface side (back surface side) in the thickness direction of the screen 10. The direction from the side (side, back side) to the first side (observer side, image source side) is defined as +Z direction.
In the following explanation, unless otherwise specified, the screen vertical direction (vertical direction), screen horizontal direction (horizontal direction), and thickness direction in the usage state of this screen 10 are referred to as the screen vertical direction, screen horizontal direction, and thickness direction. (depth direction).
 映像源LSは、映像光Lをスクリーン10へ投影する映像投射装置であり、例えば、短焦点型のプロジェクタである。本実施形態の映像源LSは、一例として、光源としてレーザー光源を用いている。
 この映像源LSは、映像表示装置1の使用状態において、スクリーン10の画面(表示領域)を正面方向(スクリーン面の法線方向)から見た場合に、スクリーン10の表示領域外に位置し、スクリーン10の画面左右方向(X方向)の中央であって、スクリーン10の画面よりも鉛直方向下方側(-Y側)に位置している。
The image source LS is an image projection device that projects the image light L onto the screen 10, and is, for example, a short focus projector. The video source LS of this embodiment uses a laser light source as a light source, for example.
This video source LS is located outside the display area of the screen 10 when the screen (display area) of the screen 10 is viewed from the front direction (normal direction of the screen surface) when the video display device 1 is in use, It is located at the center of the screen 10 in the horizontal direction (X direction) and on the lower side (-Y side) of the screen 10 in the vertical direction.
 映像源LSは、映像表示装置1の奥行き方向(Z方向)において、スクリーン10の表面からの距離が、従来の汎用プロジェクタに比べて大幅に近い位置から斜めに映像光Lを投射できる。したがって、従来の汎用プロジェクタに比べて、映像源LSは、映像光Lのスクリーン10までの投射距離が短く、投射された映像光Lがスクリーン10に入射する入射角度が大きい。 The image source LS can project image light L obliquely from a position that is much closer to the surface of the screen 10 in the depth direction (Z direction) of the image display device 1 than a conventional general-purpose projector. Therefore, compared to a conventional general-purpose projector, the image source LS has a shorter projection distance of the image light L to the screen 10, and a larger incident angle at which the projected image light L enters the screen 10.
 スクリーン10は、映像源LSが投射した映像光Lを観察者O側へ向けて反射し、映像を表示する反射型のスクリーンである。
 スクリーン10の画面(表示領域)は、使用状態において、観察者O側から見て長辺方向が画面左右方向(X方向)となる略矩形状である。
 スクリーン10は、その画面サイズが対角40~100インチ程度の大きな画面を有しており、画面の横縦比が16:9である。なお、これに限らず、例えば、画面サイズが40インチ未満の大きさとしてもよく、使用目的や使用環境等に応じて、その大きさや形状は適宜選択できるものとする。
 本実施形態では、一例として、スクリーンの画面サイズが、80インチである例を挙げて説明する。
The screen 10 is a reflective screen that reflects the image light L projected by the image source LS toward the observer O and displays an image.
The screen (display area) of the screen 10 has a substantially rectangular shape in which the long side direction is the left-right direction (X direction) of the screen when viewed from the observer O side when in use.
The screen 10 has a large screen size of about 40 to 100 inches diagonally, and the screen has an aspect ratio of 16:9. Note that the screen size is not limited to this, for example, the screen size may be less than 40 inches, and the size and shape can be selected as appropriate depending on the purpose of use, environment of use, etc.
In this embodiment, an example in which the screen size of the screen is 80 inches will be described.
 図2は、本実施形態のスクリーン10の層構成を示す図である。図2では、スクリーン10の画面中央(画面の幾何学的中心)となる点A(図1参照)を通り、画面上下方向(Y方向)に平行であって、スクリーン面に直交(Z方向に平行)する断面の一部を拡大して示している。
 スクリーン10は、図2に示すように、その第1面側(+Z側)から順に、表面層11、基材層12、レンズ層13、反射層14、裏面保護層15を備え、これらが一体に積層されている。
FIG. 2 is a diagram showing the layer structure of the screen 10 of this embodiment. In Fig. 2, the line passes through point A (see Fig. 1), which is the screen center of the screen 10 (the geometric center of the screen), is parallel to the screen vertical direction (Y direction), and is orthogonal to the screen surface (in the Z direction). This is an enlarged view of a part of the cross-section that is parallel to the surface.
As shown in FIG. 2, the screen 10 includes, in order from the first surface side (+Z side), a surface layer 11, a base material layer 12, a lens layer 13, a reflective layer 14, and a back surface protective layer 15, which are integrally formed. are laminated on.
 表面層11は、基材層12の第1面側(+Z側)に設けられる層である。本実施形態の表面層11は、スクリーン10の観察者側の最表面(第1面10a)を形成している。
 本実施形態の表面層11は、ハードコート機能及び防眩機能を有しており、基材層12の第1面側の表面に、ハードコート機能を有する紫外線硬化型樹脂(例えば、ウレタンアクリレート)等の電離放射線硬化型樹脂を塗膜が膜厚約10~100μmとなるように塗布し、微細な凹凸形状(マット形状)をその樹脂膜表面に転写する等して硬化させ、表面に微細凹凸形状が賦型されて形成されている。したがって、表面層11の観察者側の表面は、粗面状となっている。
The surface layer 11 is a layer provided on the first surface side (+Z side) of the base material layer 12. The surface layer 11 of this embodiment forms the outermost surface (first surface 10a) of the screen 10 on the viewer side.
The surface layer 11 of this embodiment has a hard coat function and an anti-glare function, and the surface on the first surface side of the base layer 12 is made of an ultraviolet curable resin (for example, urethane acrylate) having a hard coat function. An ionizing radiation-curable resin such as the above is applied to a film thickness of about 10 to 100 μm, and a fine uneven shape (matte shape) is transferred to the resin film surface and cured, resulting in fine unevenness on the surface. The shape is formed. Therefore, the surface of the surface layer 11 facing the viewer has a rough surface.
 表面層11は、上記の例に限らず、反射防止機能や防眩機能、ハードコート機能、紫外線吸収機能、防汚機能や帯電防止機能等、適宜必要な機能を1つ又は複数選択して設けてもよい。
 また、表面層11は、不図示の粘着剤等により基材層12に接合される形態としてもよいし、基材層12のレンズ層13とは反対側(第1面側)の面に直接形成してもよい。
The surface layer 11 is not limited to the above examples, and may be provided with one or more necessary functions, such as an antireflection function, an antiglare function, a hard coat function, an ultraviolet absorption function, an antifouling function, and an antistatic function. It's okay.
Further, the surface layer 11 may be bonded to the base material layer 12 with an adhesive (not shown), or may be directly attached to the surface of the base material layer 12 on the side opposite to the lens layer 13 (first surface side). may be formed.
 基材層12は、光透過性を有する層であり、レンズ層13を形成する基材となるシート状の部材である。基材層12の第1面側(+Z側)には、表面層11が一体に形成され、第2面側(-Z側)には、レンズ層13が一体に形成されている。
 基材層12は、拡散剤を含有する光拡散層121と、顔料や染料等の着色材を含有する着色層122とを有している。本実施形態の基材層12は、光拡散層121と着色層122とが共押出成形されることにより、一体に積層されて形成されている。なお、これに限らず、これらの層が、光透過性を有する粘着剤や接着剤による接合層(不図示)を介して一体に積層されている形態としてもよい。
 本実施形態では、図2に示すように、基材層12において、光拡散層121が第1面側(+Z側)であり、着色層122が第2面側(-Z側)に位置している。
The base material layer 12 is a layer having optical transparency, and is a sheet-like member that serves as a base material for forming the lens layer 13 . The surface layer 11 is integrally formed on the first surface side (+Z side) of the base material layer 12, and the lens layer 13 is integrally formed on the second surface side (−Z side).
The base layer 12 has a light diffusion layer 121 containing a diffusing agent and a colored layer 122 containing a coloring material such as a pigment or dye. The base material layer 12 of this embodiment is formed by integrally laminating the light diffusion layer 121 and the colored layer 122 by co-extrusion molding. Note that the present invention is not limited to this, and these layers may be integrally laminated via a bonding layer (not shown) made of a light-transmitting adhesive or adhesive.
In this embodiment, as shown in FIG. 2, in the base material layer 12, the light diffusion layer 121 is located on the first surface side (+Z side), and the colored layer 122 is located on the second surface side (-Z side). ing.
 光拡散層121は、光透過性を有する樹脂を母材とし、光を拡散する拡散剤を含有する層である。光拡散層121は、視野角を広げたり、明るさの面内均一性を向上させたりする機能を有する。
 光拡散層121の母材となる樹脂は、例えば、PET(ポリエチレンテレフタレート)樹脂や、PC(ポリカーボネート)樹脂、MS(メチルメタクリレート・スチレン)樹脂、MBS(メチルメタクリレート・ブタジエン・スチレン)樹脂、TAC(トリアセチルセルロース)樹脂、PEN(ポリエチレンナフタレート)樹脂、アクリル系樹脂等が好適に用いられる。
The light diffusion layer 121 is a layer that has a base material made of a light-transmitting resin and contains a diffusing agent that diffuses light. The light diffusion layer 121 has the function of widening the viewing angle and improving the in-plane uniformity of brightness.
Examples of the resin that serves as the base material of the light diffusion layer 121 include PET (polyethylene terephthalate) resin, PC (polycarbonate) resin, MS (methyl methacrylate styrene) resin, MBS (methyl methacrylate butadiene styrene) resin, and TAC ( Triacetyl cellulose) resin, PEN (polyethylene naphthalate) resin, acrylic resin, etc. are preferably used.
 光拡散層121に含まれる拡散剤としては、アクリル系樹脂、エポキシ樹脂等、シリコン系等の樹脂製の粒子や無機粒子等が好適に用いられる。なお、拡散剤は、無機系拡散剤と有機系拡散剤とを組み合わせて用いてもよい。この拡散剤は、略球形であり、平均粒径が約1~50μmであるものを用いることが好ましく、5~30μmであることがより好ましい。
 光拡散層121の厚さは、スクリーン10の画面サイズ等にも依るが、約100~2000μmとすることが好ましい。光拡散層121は、そのヘイズ値が、1~50%の範囲であることが望ましい。
As the diffusing agent contained in the light diffusing layer 121, particles made of resin such as acrylic resin, epoxy resin, silicone resin, or inorganic particles are preferably used. Note that the diffusing agent may be a combination of an inorganic diffusing agent and an organic diffusing agent. The diffusing agent is preferably approximately spherical and has an average particle size of approximately 1 to 50 μm, more preferably 5 to 30 μm.
The thickness of the light diffusion layer 121 is preferably about 100 to 2000 μm, although it depends on the screen size of the screen 10 and the like. It is desirable that the light diffusion layer 121 has a haze value in the range of 1 to 50%.
 本実施形態のような反射型のスクリーンにおいて、正面輝度を向上させようとすると、光拡散層の拡散剤の含有量を減少させることが考えられる。しかし、スクリーンの厚み方向において反射層と光拡散層とが近接して設けられた状態で拡散剤の含有量を減少させてしまうと、光拡散層内における拡散剤の位置が局在化してしまい、映像にぎらつき(シンチレーション)が発生して良好な映像を表示できない場合がある。
 そこで、本実施形態のスクリーン10は、基材層12において第1面側(+Z側)から順に、光拡散層121、着色層122として配置し、スクリーン10の厚み方向における光拡散層121と反射層14との距離を所定の距離だけ離している。これにより、本実施形態のスクリーン10は、上述のように光拡散層内の拡散剤の位置が局在化している場合であっても、正面輝度を向上するとともに、映像のぎらつきの発生を抑制することができる。
In a reflective screen like this embodiment, in order to improve the front brightness, it is conceivable to reduce the content of the diffusing agent in the light diffusing layer. However, if the content of the diffusing agent is reduced when the reflective layer and the light diffusing layer are provided close to each other in the thickness direction of the screen, the position of the diffusing agent within the light diffusing layer becomes localized. , glare (scintillation) may occur in the image, making it impossible to display a good image.
Therefore, in the screen 10 of the present embodiment, a light diffusion layer 121 and a colored layer 122 are arranged in order from the first surface side (+Z side) in the base layer 12, and the light diffusion layer 121 and the reflection layer in the thickness direction of the screen 10 are arranged in order from the first surface side (+Z side). It is separated from the layer 14 by a predetermined distance. As a result, the screen 10 of the present embodiment improves front brightness and suppresses the occurrence of glare in images even when the position of the diffusing agent in the light diffusing layer is localized as described above. can do.
 スクリーン10は、スクリーンの厚み方向における光拡散層121と反射層14との最短距離が、450μm以上、1370μm以下であることが望ましい。この最短距離とは、スクリーン面の法線方向(厚み方向)において反射層14の最も第1面側(+Z側)となる点から光拡散層121の第2面側の面までの距離をいう。反射層14の最も第1面側となる点とは、後述する図3(b)に示す点t1に相当し、反射層14が形成される単位レンズ131間の谷底となる点である。 In the screen 10, it is desirable that the shortest distance between the light diffusion layer 121 and the reflective layer 14 in the thickness direction of the screen is 450 μm or more and 1370 μm or less. This shortest distance refers to the distance from the point closest to the first surface (+Z side) of the reflective layer 14 to the surface of the light diffusion layer 121 on the second surface side in the normal direction (thickness direction) of the screen surface. . The point closest to the first surface of the reflective layer 14 corresponds to a point t1 shown in FIG. 3(b), which will be described later, and is the bottom of the valley between the unit lenses 131 on which the reflective layer 14 is formed.
 厚み方向における光拡散層121と反射層14との最短距離が450μm未満の場合、光拡散層121と反射層14とが近接しすぎてしまい、映像のぎらつき(シンチレーション、スペックル等ともいう)の抑制効果が低減してしまうので望ましくない。また、最短距離が1370μmより大きい場合、スクリーンの厚みが厚くなり、スクリーンの重量が増えすぎてしまうので望ましくない。したがって、光拡散層121と反射層14との最短距離は、上記範囲が好ましい。 If the shortest distance between the light diffusing layer 121 and the reflective layer 14 in the thickness direction is less than 450 μm, the light diffusing layer 121 and the reflective layer 14 will be too close to each other, causing glare in the image (also referred to as scintillation, speckles, etc.) This is undesirable because the suppressing effect of Moreover, if the shortest distance is larger than 1370 μm, the thickness of the screen becomes thick and the weight of the screen increases too much, which is not desirable. Therefore, the shortest distance between the light diffusing layer 121 and the reflective layer 14 is preferably within the above range.
 着色層122は、黒色等の暗色系の着色剤等により、所定の光透過率となるように着色が施された層である。着色層122は、スクリーン10に入射する照明光等の不要な外光を吸収したり、表示される映像の黒輝度を低下させたりして、映像のコントラストを向上させる機能を有する。
 着色層122の着色剤としては、グレー系や黒色系等の暗色系の染料や顔料等や、カーボンブラック、グラファイト、黒色酸化鉄等の金属塩等が好適に用いられる。
 着色層122の母材となる樹脂は、PET樹脂や、PC樹脂、MS樹脂、MBS樹脂、TAC樹脂、PEN樹脂、アクリル系樹脂等を用いることができる。
 着色層122は、スクリーン10の画面サイズ等にも依るが、その厚さを約430~1350μmとすることが好ましい。
The colored layer 122 is a layer colored with a dark coloring agent such as black so as to have a predetermined light transmittance. The colored layer 122 has the function of absorbing unnecessary external light such as illumination light that enters the screen 10 and reducing the black luminance of the displayed image to improve the contrast of the image.
As the coloring agent for the colored layer 122, dark color dyes and pigments such as gray and black, and metal salts such as carbon black, graphite, and black iron oxide are suitably used.
As the resin serving as the base material of the colored layer 122, PET resin, PC resin, MS resin, MBS resin, TAC resin, PEN resin, acrylic resin, etc. can be used.
The thickness of the colored layer 122 is preferably about 430 to 1350 μm, although it depends on the screen size of the screen 10 and the like.
 図3は、本実施形態のレンズ層13及び単位レンズ131を説明する図である。
 図3(a)は、レンズ層13を第2面側(-Z側)の正面方向から観察した様子を示しており、理解を容易にするために、反射層14や裏面保護層15は省略して示している。図3(b)は、図2に示すスクリーン10の断面の一部をさらに拡大して示しており、理解を容易にするために、レンズ層13及び反射層14のみを示している。
FIG. 3 is a diagram illustrating the lens layer 13 and unit lens 131 of this embodiment.
FIG. 3(a) shows the lens layer 13 observed from the front direction of the second surface side (-Z side), and the reflective layer 14 and back protective layer 15 are omitted for easy understanding. It is shown as follows. FIG. 3(b) shows a further enlarged part of the cross section of the screen 10 shown in FIG. 2, and only the lens layer 13 and the reflective layer 14 are shown for easy understanding.
 レンズ層13は、基材層12の第2面側(-Z側)に設けられた光透過性を有する層である。図3(a)等に示すように、レンズ層13は、点Cを中心として単位レンズ131が同心円状に複数配列されたサーキュラーフレネルレンズ形状を、その第2面側の面に有している。したがって、レンズ層13を第2面側(-Z側)の正面方向から見た場合に、真円の一部形状(円弧状)の単位レンズ131が配列されているように観察される。 The lens layer 13 is a layer provided on the second surface side (-Z side) of the base material layer 12 and has a light transmitting property. As shown in FIG. 3(a) etc., the lens layer 13 has a circular Fresnel lens shape in which a plurality of unit lenses 131 are arranged concentrically around a point C on its second surface side. . Therefore, when the lens layer 13 is viewed from the front direction on the second surface side (-Z side), it is observed that the unit lenses 131 having a partially perfect circular shape (arc shape) are arranged.
 この点Cは、スクリーン10の画面の外(表示領域外)であって、映像源LSと同様に、スクリーン10の画面左右方向の中央であってスクリーン10の下方に位置している。したがって、図3(a)に示すように、スクリーン10のスクリーン面の法線方向から見て、点Aと点Cとは画面上下方向に平行な直線上に位置している。
 本実施形態では、レンズ層13は、その第2面側(-Z側)の面にサーキュラーフレネルレンズ形状を有する例を上げて説明するが、これに限らず、単位レンズ131がスクリーン面に沿って画面上下方向等に配列されたリニアフレネルレンズ形状を有する形態としてもよい。
This point C is outside the screen of the screen 10 (outside the display area), and is located at the center of the screen 10 in the horizontal direction and below the screen 10, similarly to the video source LS. Therefore, as shown in FIG. 3A, when viewed from the normal direction of the screen surface of the screen 10, points A and C are located on a straight line parallel to the vertical direction of the screen.
In this embodiment, the lens layer 13 will be described using an example in which the second surface side (-Z side) has a circular Fresnel lens shape. It is also possible to have a linear Fresnel lens shape arranged in the vertical direction of the screen.
 単位レンズ131は、図2や図3(b)に示すように、点Aを通り単位レンズ131の配列方向に平行かつスクリーン10の厚み方向に平行な断面において、レンズ面132と、非レンズ面133とを有している。本実施形態の単位レンズ131では、図2や図3(b)に示す断面において、レンズ面132の画面上下方向下側(-Y側)に非レンズ面が位置している。
 レンズ面132は、図2や図3(b)に示す断面において直線状であり、単位レンズ131の配列方向において、映像源LSから遠い側(画面上下方向上側)の端部が映像源LSに近い側(画面上下方向下側)の端部よりも第1面側(+Z側)となるように傾斜している。このレンズ面132は、レンズ層13に形成されたフレネルレンズ形状のレンズ作用を発揮する面である。
As shown in FIGS. 2 and 3(b), the unit lens 131 has a lens surface 132 and a non-lens surface in a cross section passing through point A and parallel to the arrangement direction of the unit lenses 131 and parallel to the thickness direction of the screen 10. 133. In the unit lens 131 of this embodiment, the non-lens surface is located on the lower side (−Y side) of the lens surface 132 in the vertical direction of the screen in the cross section shown in FIG. 2 or FIG. 3(b).
The lens surface 132 is linear in the cross section shown in FIG. 2 or FIG. 3(b), and the end on the side far from the image source LS (upper side in the vertical direction of the screen) in the arrangement direction of the unit lenses 131 is connected to the image source LS. It is inclined so that it is closer to the first surface (+Z side) than the edge on the near side (lower side in the vertical direction of the screen). This lens surface 132 is a surface that exhibits a Fresnel lens-shaped lens effect formed in the lens layer 13.
 図3(b)に示すように、非レンズ面133は、単位レンズ131の配列方向において隣り合うレンズ面132の間に位置し、隣り合うレンズ面132を接続する部分である。この非レンズ面133は、隣り合うレンズ面132と滑らかに連続している。
 非レンズ面133は、第2面側(-Z側)に凸となる形状の頂点となる点t2と、第1面側(+Z側)に凸となる形状の頂点となる点t1を有している。この点t1は、点t2を単位レンズ131の頂点とした場合に、隣り合う単位レンズ131間の谷底となる点であり、単位レンズ131間の谷部に相当する曲面状の領域に位置している。
As shown in FIG. 3(b), the non-lens surface 133 is a portion located between adjacent lens surfaces 132 in the arrangement direction of the unit lenses 131, and connects the adjacent lens surfaces 132. This non-lens surface 133 is smoothly continuous with the adjacent lens surface 132.
The non-lens surface 133 has a point t2 that is the apex of a shape that is convex toward the second surface side (-Z side) and a point t1 that is the apex of a shape that is convex toward the first surface side (+Z side). ing. This point t1 is the bottom of the valley between adjacent unit lenses 131 when point t2 is the apex of the unit lens 131, and is located in a curved area corresponding to the valley between the unit lenses 131. There is.
 非レンズ面133は、少なくともこの点t1を含む領域が第1面側に凸となる曲面状となっており、この領域を特に、第1曲面部134とする。また、本実施形態では、非レンズ面133の点t2を含む領域が第2面側に凸となる曲面状であり、この領域を第2曲面部135とする。また、本実施形態では、図3(b)に示すように、非レンズ面133は、第1曲面部134と第2曲面部135との間に略平面状の領域136を有しており、この平面状の領域136を介して第1曲面部134と第2曲面部135とが接続されている。
 なお、上述の例に限らず、単位レンズ131は、第1曲面部134と第2曲面部135とが平面状の領域136を介さずに直接連続している形態としてもよい。また、上述の例に限らず、点t2を含む領域は、第2曲面部135を有さず、レンズ面132の延長となる平面と平面状の領域136とで構成される形態としてもよい。
The non-lens surface 133 has a curved shape in which at least a region including this point t1 is convex toward the first surface side, and this region is particularly referred to as a first curved surface portion 134. Further, in this embodiment, a region of the non-lens surface 133 including the point t2 has a curved surface shape convex toward the second surface side, and this region is referred to as a second curved surface portion 135. Further, in this embodiment, as shown in FIG. 3(b), the non-lens surface 133 has a substantially planar region 136 between the first curved surface portion 134 and the second curved surface portion 135, The first curved surface portion 134 and the second curved surface portion 135 are connected via this planar region 136.
Note that the unit lens 131 is not limited to the above-described example, and the unit lens 131 may have a form in which the first curved surface portion 134 and the second curved surface portion 135 are directly continuous without interposing the planar region 136. Furthermore, the area including the point t2 may not include the second curved surface portion 135, but may be configured to include a plane that is an extension of the lens surface 132 and a planar area 136.
 本実施形態では、第1曲面部134及び第2曲面部135は、図3(b)に示す断面形状が、略円弧状であり、第1曲面部134の曲率半径は、第2曲面部135の曲率半径よりも大きい。
 なお、これに限らず、非レンズ面133の第1曲面部134及び第2曲面部135は、図3(b)に示す断面において、例えば、楕円の一部形状や、他の曲線形状等としてもよい。
In this embodiment, the first curved surface portion 134 and the second curved surface portion 135 have a substantially arcuate cross-sectional shape as shown in FIG. 3(b), and the radius of curvature of the first curved surface portion 134 is is larger than the radius of curvature.
Note that the first curved surface portion 134 and the second curved surface portion 135 of the non-lens surface 133 may have, for example, a partial shape of an ellipse or other curved shape in the cross section shown in FIG. 3(b). Good too.
 図3(b)に示すように、単位レンズ131の配列ピッチは、Pであり、単位レンズ131のレンズ高さ(スクリーン10の厚み方向における点t2から点t1までの寸法)は、hである。
 本実施形態において、レンズ面132がスクリーン面に平行な面となす角度は、αであり、非レンズ面133において平面状の領域136がスクリーン面に平行な面となす角度は、βである。なお、非レンズ面133が平面状の領域136を有しない場合は、非レンズ面133上であって点t1と点t2とから等距離となる点での接線とスクリーン面に平行な面とがなす角度を角度βとする。この角度βは、角度αより大きい。
As shown in FIG. 3(b), the arrangement pitch of the unit lenses 131 is P, and the lens height of the unit lenses 131 (dimension from point t2 to point t1 in the thickness direction of the screen 10) is h. .
In this embodiment, the angle that the lens surface 132 makes with a surface parallel to the screen surface is α, and the angle that the planar region 136 of the non-lens surface 133 makes with a surface parallel to the screen surface is β. Note that if the non-lens surface 133 does not have a planar region 136, the tangent at a point on the non-lens surface 133 that is equidistant from points t1 and t2 and a surface parallel to the screen surface are Let the angle formed be angle β. This angle β is larger than the angle α.
 理解を容易にするために、図2等では、単位レンズ131の配列ピッチP、角度α等は、単位レンズ131の配列方向において一定であるように示している。しかし、本実施形態の単位レンズ131は、実際には、配列ピッチPが一定であるが、単位レンズ131の配列方向において点Cから離れるにつれて、角度αが次第に大きくなり、これに伴いレンズ高さhも大きくなっている。 To facilitate understanding, in FIG. 2 and the like, the arrangement pitch P, angle α, etc. of the unit lenses 131 are shown to be constant in the arrangement direction of the unit lenses 131. However, in the unit lenses 131 of this embodiment, although the arrangement pitch P is actually constant, the angle α gradually increases as the distance from point C in the arrangement direction of the unit lenses 131 increases, and accordingly the lens height increases. h has also increased.
 本実施形態では、配列ピッチPは、50~200μmであることが好ましい。また、レンズ面132の角度αは、0.5~35°の範囲で形成されている。
 なお、これに限らず、配列ピッチPは、単位レンズ131の配列方向に沿って次第に変化する形態等としてもよく、映像光Lを投影する映像源LSの画素(ピクセル)の大きさや、映像源LSの投射角度(スクリーン10のスクリーン面への映像光の入射角度)、スクリーン10の画面サイズ、各層の屈折率等に応じて、適宜変更可能である。
In this embodiment, the arrangement pitch P is preferably 50 to 200 μm. Further, the angle α of the lens surface 132 is formed in a range of 0.5 to 35°.
Note that the arrangement pitch P is not limited to this, and may have a form that gradually changes along the arrangement direction of the unit lenses 131, and may vary depending on the size of a pixel of the image source LS that projects the image light L or the image source. It can be changed as appropriate depending on the projection angle of the LS (the angle of incidence of the image light onto the screen surface of the screen 10), the screen size of the screen 10, the refractive index of each layer, etc.
 レンズ層13は、ウレタンアクリレートやエポキシアクリレート等の紫外線硬化型樹脂により、基材層12の第2面側(-Z側)の面(本実施形態では、着色層122の背面側の面)に、紫外線成形法により一体に形成されている。なお、レンズ層13は、電子線硬化型樹脂等の他の電離放射線硬化型樹脂により形成してもよいし、熱可塑性樹脂により形成してもよい。
 また、レンズ層13を形成する材料及び成型方法は、レンズ層13の第2面側のフレネルレンズ形状や材料に応じて、適宜選択できる。
The lens layer 13 is made of an ultraviolet curable resin such as urethane acrylate or epoxy acrylate on the second surface side (-Z side) of the base layer 12 (in this embodiment, the surface on the back side of the colored layer 122). , which are integrally formed by ultraviolet molding. In addition, the lens layer 13 may be formed of other ionizing radiation curable resins such as electron beam curable resins, or may be formed of thermoplastic resins.
Further, the material and molding method for forming the lens layer 13 can be appropriately selected depending on the shape and material of the Fresnel lens on the second surface side of the lens layer 13.
 反射層14は、入射した光を反射する作用を有する層である。反射層14は、少なくともレンズ面132の一部に形成される。本実施形態の反射層14は、図2や図3(b)に示すように、レンズ面132及び非レンズ面133に形成されている。
 反射層14は、光反射性の高い金属、例えば、アルミニウム、銀、ニッケル、クロム等により形成される。本実施形態の反射層14は、アルミニウムを蒸着することにより形成されており、反射層14の厚さは、約800Å程度である。
The reflective layer 14 is a layer that has the function of reflecting incident light. The reflective layer 14 is formed on at least a portion of the lens surface 132. The reflective layer 14 of this embodiment is formed on the lens surface 132 and the non-lens surface 133, as shown in FIG. 2 and FIG. 3(b).
The reflective layer 14 is made of a metal with high light reflectivity, such as aluminum, silver, nickel, chromium, etc. The reflective layer 14 of this embodiment is formed by vapor depositing aluminum, and the thickness of the reflective layer 14 is about 800 Å.
 反射層14は、これに限らず、例えば、光反射性の高い金属をスパッタリングしたり、金属箔を転写したり、金属薄膜等を含有した塗料を塗布したりする等により形成されてもよいし、例えば、誘電体多層膜や誘電体単層膜を蒸着する等により形成されてもよい。
 また、反射層14は、白色又は銀色系の塗料や、白色又は銀色系の顔料やビーズ等を含有する紫外線硬化型樹脂又は熱硬化性樹脂等を、スプレーコートや、ダイコート、スクリーン印刷、ワイピングによる溝充填等の各種塗布方法により塗布して硬化させることにより形成してもよい。
The reflective layer 14 is not limited to this, and may be formed by, for example, sputtering a highly reflective metal, transferring a metal foil, or applying a paint containing a metal thin film or the like. For example, it may be formed by depositing a dielectric multilayer film or a dielectric single layer film.
The reflective layer 14 may be formed by applying a white or silver paint, an ultraviolet curable resin or a thermosetting resin containing white or silver pigments, beads, etc. by spray coating, die coating, screen printing, or wiping. It may be formed by coating and curing by various coating methods such as groove filling.
 裏面保護層15は、反射層14の第2面側(-Z側)に設けられ、反射層14を保護し、かつ、スクリーン10の裏面側(背面側)を保護する層である。
 本実施形態の裏面保護層15は、図2に示すように、反射層14を被覆し、単位レンズ131による凹凸を充填して、スクリーン10の第2面10bを平坦化している。
 また、裏面保護層15は、光を吸収する作用を有することが、第2面側(-Z側)からスクリーン10に入射する太陽光や照明光等の不要な外光を吸収して、映像のコントラストを向上させる観点から好ましい。
The back surface protective layer 15 is a layer provided on the second surface side (-Z side) of the reflective layer 14 and protects the reflective layer 14 and the back surface side (back side) of the screen 10.
As shown in FIG. 2, the back surface protective layer 15 of this embodiment covers the reflective layer 14, fills in the irregularities caused by the unit lenses 131, and flattens the second surface 10b of the screen 10.
In addition, the back protective layer 15 has a light-absorbing function, which means that it absorbs unnecessary external light such as sunlight and illumination light that enters the screen 10 from the second surface side (-Z side), thereby improving the image quality. This is preferable from the viewpoint of improving the contrast.
 本実施形態の裏面保護層15は、光を吸収する作用を有しており、黒色等の暗色系の塗料や、黒色等の暗色系の顔料や染料及び光吸収作用を有するビーズ等の光吸収材を含有する樹脂を、反射層14の第2面側に塗布して硬化させること等により形成される。このような樹脂としては、エポキシ樹脂やウレタン樹脂等の熱硬化性樹脂や、アクリル樹脂等の熱可塑性樹脂、ウレタンアクリレートやエポキシアクリレート等の紫外線硬化型樹脂等が好ましい。
 また、裏面保護層15は、反射層14及びレンズ層13を保護する観点から、紫外線吸収機能やハードコート機能等を備えていてもよい。
The back protective layer 15 of this embodiment has a light-absorbing function, and is made of a dark-colored paint such as black, a dark-colored pigment or dye such as black, and beads having a light-absorbing function. The reflective layer 14 is formed by applying a resin containing a material to the second surface side of the reflective layer 14 and curing the resin. Preferred examples of such resins include thermosetting resins such as epoxy resins and urethane resins, thermoplastic resins such as acrylic resins, and ultraviolet curable resins such as urethane acrylates and epoxy acrylates.
Further, from the viewpoint of protecting the reflective layer 14 and the lens layer 13, the back surface protective layer 15 may have an ultraviolet absorbing function, a hard coat function, and the like.
 ここで、本実施形態の単位レンズ131の形状について、より詳細に説明する。
 図4は、単位レンズ131についてより詳細に説明する図である。図4(a)は、本実施形態の単位レンズ131の断面を示し、図4(b)は、従来の単位レンズ531の断面を示している。図4(a),(b)では、理解を容易にするために、それぞれ、本実施形態のレンズ層13、従来のレンズ層53のみを示し、各レンズ層について、単位レンズの配列方向及びスクリーンの厚み方向に平行な断面の一部を拡大して示している。
 図4(a)に示す本実施形態の単位レンズ131と、図4(b)に示す従来の単位レンズ531とは、点Aを通り画面上下方向に平行な直線上に位置し、点Aよりも画面上下方向上側であって点Cからの距離が同じである。
Here, the shape of the unit lens 131 of this embodiment will be explained in more detail.
FIG. 4 is a diagram illustrating the unit lens 131 in more detail. FIG. 4(a) shows a cross section of the unit lens 131 of this embodiment, and FIG. 4(b) shows a cross section of a conventional unit lens 531. In FIGS. 4A and 4B, for ease of understanding, only the lens layer 13 of this embodiment and the conventional lens layer 53 are shown, respectively, and for each lens layer, the arrangement direction of the unit lenses and the screen A part of the cross section parallel to the thickness direction is shown enlarged.
The unit lens 131 of this embodiment shown in FIG. 4(a) and the conventional unit lens 531 shown in FIG. 4(b) are located on a straight line that passes through point A and is parallel to the vertical direction of the screen. is on the upper side of the screen in the vertical direction and the distance from point C is the same.
 従来の単位レンズ531は、レンズ面532と非レンズ面533とを有している。また、従来の単位レンズ531は、第1曲面部134、第2曲面部135を備えず、非レンズ面533が平面状である点以外は、本実施形態の単位レンズ131と同様であり、配列ピッチP、角度α、レンズ面532への映像光の入射角度も同じである。
 図4(b)に示すように、従来の単位レンズ531のレンズ面532には、映像源LSから投射された映像光Laが所定の入射角度で入射する。このとき、レンズ面532には、映像光Laが入射する領域である反射領域532Aと、映像光Laが入射しない領域である非反射領域532Bとが存在する。
 単位レンズ531の配列方向における反射領域532Aの寸法が配列ピッチPに対して占める割合は、Wa/Pである。
A conventional unit lens 531 has a lens surface 532 and a non-lens surface 533. Further, the conventional unit lens 531 is similar to the unit lens 131 of the present embodiment except that it does not include the first curved surface portion 134 and the second curved surface portion 135 and the non-lens surface 533 is planar. The pitch P, the angle α, and the incident angle of the image light onto the lens surface 532 are also the same.
As shown in FIG. 4B, the image light La projected from the image source LS is incident on the lens surface 532 of the conventional unit lens 531 at a predetermined incident angle. At this time, the lens surface 532 includes a reflective region 532A, which is a region on which the image light La is incident, and a non-reflective region 532B, which is a region on which the image light La is not incident.
The ratio of the size of the reflective area 532A in the arrangement direction of the unit lenses 531 to the arrangement pitch P is Wa/P.
 これに対して、本実施形態の単位レンズ131では、非レンズ面133の第2曲面部135が、レンズ面132の非反射領域に相当する領域に形成されている。これにより、レンズ面132に占める反射領域を従来の単位レンズ531と同等に確保しつつ、レンズ面132における非反射領域を従来の単位レンズ531よりも非常に小さくしている。そのため、本実施形態では、単位レンズ131の配列方向におけるレンズ面132の寸法が配列ピッチPに対して占める割合(以下、レンズ面132が配列ピッチに対して占める割合という)W1/Pは、従来の単位レンズ531の反射領域532Aが配列ピッチに対して占める割合Wa/Pと等しいもしくは略等しい状態である。
 また、この単位レンズ131には、比較例の単位レンズ531と同様に、映像光Laが所定の入射角度で入射する。
 したがって、本実施形態の単位レンズ131は、その映像光Laの反射光量が、従来の単位レンズ531における映像光Laの反射光量と同等である。
In contrast, in the unit lens 131 of this embodiment, the second curved surface portion 135 of the non-lens surface 133 is formed in a region corresponding to the non-reflection region of the lens surface 132. As a result, the reflective area occupied by the lens surface 132 is secured to be the same as that of the conventional unit lens 531, while the non-reflective area of the lens surface 132 is made much smaller than that of the conventional unit lens 531. Therefore, in this embodiment, the ratio W1/P of the dimension of the lens surface 132 in the arrangement direction of the unit lenses 131 to the arrangement pitch P (hereinafter referred to as the ratio of the lens surface 132 to the arrangement pitch) is The ratio Wa/P of the reflective area 532A of the unit lens 531 to the arrangement pitch is equal or approximately equal.
Further, the image light La is incident on this unit lens 131 at a predetermined incident angle, similarly to the unit lens 531 of the comparative example.
Therefore, in the unit lens 131 of this embodiment, the amount of reflected light of the image light La is equivalent to the amount of reflected light of the image light La in the conventional unit lens 531.
 次に、図4(b)に示すように、従来の単位レンズ531において、映像光の一部(映像光Lb)は、第1面側(+Z側)に凸となる点t1に入射し、反射層14により反射してスクリーンの第1面側の上方へ出射する。このような映像光Lbの光量は、わずかである。したがって、仮に、映像光Lbが天井等に到達しても、スクリーンの観察者側の表面で反射した映像光による映像の映り込みを低減できない。
 これに対して、本実施形態の単位レンズ131では、図4(a)に示すように、映像光の一部(映像光Lc,Ld,Le)は、第1曲面部134に入射し、その曲面形状及び反射層14により、拡散反射される。そして、一部の映像光Lc,Ldは、スクリーン10の第1面側上方へ出射し、一部の映像光Leは、スクリーン10の第1面側の界面で全反射してスクリーン10内部を上方へ伝搬し、やがて減衰する。
Next, as shown in FIG. 4B, in the conventional unit lens 531, a part of the image light (image light Lb) is incident on a point t1 that is convex toward the first surface side (+Z side), The light is reflected by the reflective layer 14 and exits upward on the first surface side of the screen. The amount of such image light Lb is small. Therefore, even if the image light Lb reaches the ceiling or the like, it is not possible to reduce the reflection of the image due to the image light reflected on the viewer's surface of the screen.
On the other hand, in the unit lens 131 of this embodiment, as shown in FIG. The light is diffusely reflected by the curved surface shape and the reflective layer 14. Then, some of the image lights Lc and Ld are emitted upward on the first surface side of the screen 10, and some of the image light Le is totally reflected at the interface on the first surface side of the screen 10 and passes through the inside of the screen 10. It propagates upward and eventually attenuates.
 このスクリーン10の上方へ出射する映像光Lc,Ldは、拡散反射されているので、スクリーン10の表面(第1面10a)で反射して天井等へ映り込んだ映像がぼかされ、不明瞭になるという効果を奏する。これにより、本実施形態のスクリーン10は、天井等への映像の映り込みを抑制することができる。また、拡散反射された映像光Lcの一部は、観察者Oに少量届き、映像のぎらつきを低減する効果を有する。 Since the image lights Lc and Ld emitted upward from the screen 10 are diffusely reflected, the image reflected on the surface (first surface 10a) of the screen 10 and reflected on the ceiling etc. is blurred and unclear. It has the effect of becoming Thereby, the screen 10 of this embodiment can suppress the reflection of images on the ceiling or the like. Further, a small amount of the diffusely reflected image light Lc reaches the observer O, which has the effect of reducing glare in the image.
 なお、単位レンズ131の配列方向においてレンズ面132の寸法が配列ピッチPに対して占める割合W1/Pは、60%以上95%以下であることが好ましい。
 この割合W1/Pが60%未満となると、配列ピッチPに対してレンズ面132が小さくなり、これにより反射領域が減少し、映像の正面輝度が低下するため、好ましくない。また、割合W1/Pが95%よりも大きくなると、第1曲面部134が小さくなりすぎ、上述のような天井等への映像の映り込みを抑制する効果等が十分得られない。したがって、割合W1/Pは、上記範囲が好ましい。
Note that the ratio W1/P of the dimension of the lens surface 132 to the arrangement pitch P in the arrangement direction of the unit lenses 131 is preferably 60% or more and 95% or less.
If this ratio W1/P is less than 60%, the lens surface 132 becomes smaller with respect to the arrangement pitch P, which reduces the reflective area and lowers the front brightness of the image, which is not preferable. Further, if the ratio W1/P is greater than 95%, the first curved surface portion 134 becomes too small, and the effect of suppressing the reflection of the image on the ceiling etc. as described above cannot be obtained sufficiently. Therefore, the ratio W1/P is preferably within the above range.
 本実施形態では、配列ピッチPが一定であるので、この割合W1/Pは、上記好ましい範囲内で単位レンズ131の配列方向に沿って、点C(映像源LS)から離れるにつれて、次第に小さくなっている。
 単位レンズ131の配列方向において、点Cに近い領域(本実施形態では、例えば、画面上下方向下側)では、角度αが小さく、レンズ高さhが小さいために、第1曲面部134の曲率半径が小さくなり、割合W1/Pが大きい。一方、単位レンズ131の配列方向において、点Cから遠い領域(本実施形態では、例えば、画面上下方向上側)では、角度αが大きく、レンズ高さhも大きいために、第1曲面部134の曲率半径が大きくなり、割合W1/Pが小さくなる。
 なお、これに限らず、この割合W1/Pは、単位レンズ131の配列方向に沿って、点C(映像源LS)から離れるにつれて、上記好ましい範囲内で段階的に小さくなる形態としてもよいし、単位レンズ131の配列方向において一定としてもよい。
In this embodiment, since the arrangement pitch P is constant, this ratio W1/P gradually becomes smaller as it moves away from the point C (image source LS) along the arrangement direction of the unit lenses 131 within the above-mentioned preferable range. ing.
In the arrangement direction of the unit lenses 131, in a region close to point C (in this embodiment, for example, the lower side in the vertical direction of the screen), the angle α is small and the lens height h is small, so that the curvature of the first curved surface portion 134 is small. The radius becomes smaller and the ratio W1/P becomes larger. On the other hand, in the arrangement direction of the unit lenses 131, in a region far from point C (in this embodiment, for example, the upper side in the vertical direction of the screen), the angle α is large and the lens height h is also large, so that the first curved surface portion 134 The radius of curvature becomes larger and the ratio W1/P becomes smaller.
Note that the present invention is not limited to this, and the ratio W1/P may gradually decrease within the above-mentioned preferable range as it moves away from the point C (image source LS) along the arrangement direction of the unit lenses 131. , may be constant in the arrangement direction of the unit lenses 131.
 また、非レンズ面133が第1曲面部134を有することにより、天井等への映像の映り込み抑制の効果に加え、表示される映像のぎらつき(シンチレーション、スペックル等ともいう)が低減される効果が得られることが分かった。
 この映像のぎらつきに関しては、スクリーン10の画面を、画面を画面上下方向及び画面左右方向にそれぞれ3分割、計9分割した9領域を設け、各領域の幾何学的中心でのスペックル値(スペックルコントラスト)を測定し、その9領域のスペックル値の標準偏差σにより規定した。映像のぎらつきを低減する観点から、9領域のスペックル値の標準偏差σは、その値が小さい方が好ましく、特に、1.38未満であることが好ましい。
Furthermore, since the non-lens surface 133 has the first curved surface portion 134, in addition to the effect of suppressing the reflection of the image on the ceiling etc., the glare (also referred to as scintillation, speckle, etc.) of the displayed image is reduced. It was found that this effect can be obtained.
Regarding the glare in the image, the screen 10 is divided into 9 regions, each divided into 3 in the vertical direction and in the horizontal direction of the screen, and the speckle value at the geometric center of each region is ( Speckle contrast) was measured and defined by the standard deviation σ of the speckle values of the nine regions. From the viewpoint of reducing glare in images, it is preferable that the standard deviation σ of the speckle values in the nine regions is smaller, and particularly preferably less than 1.38.
 図9は、単位レンズ131の頂角に相当する角度γを説明する図である。図9では、図2等と同様に、スクリーン10の厚み方向及び点Aを通り単位レンズ131の配列方向に平行な断面であって、単位レンズ131の一部のみを拡大して示している。また、図9(a)は、非レンズ面133が平面状の領域136を有する単位レンズ131を示し、図9(b)は、非レンズ面133が平面状の領域136を有しない単位レンズ131を示している。 FIG. 9 is a diagram illustrating the angle γ corresponding to the apex angle of the unit lens 131. Similar to FIG. 2 and the like, FIG. 9 is a cross section that passes through the thickness direction of the screen 10 and point A and is parallel to the arrangement direction of the unit lenses 131, and shows only a part of the unit lenses 131 in an enlarged manner. Further, FIG. 9(a) shows a unit lens 131 in which the non-lens surface 133 has a planar region 136, and FIG. 9(b) shows a unit lens 131 in which the non-lens surface 133 does not have a planar region 136. It shows.
 図9(a)に示す断面において、単位レンズ131の頂角に相当し、レンズ面132の延長方向と、非レンズ面133の平面状の領域136の延長方向とがなす角度γは、鋭角、すなわち、0°<γ<90°であることが好ましい。
 角度γが90°以上であると、単位レンズ131の配列方向において配列ピッチPに対して非レンズ面133の寸法が占める割合が大きくなり、割合W1/Pが小さくなる。このため、映像光を反射するレンズ面132の面積(反射領域の面積)が減る。また、非レンズ面133に入射する映像光の光量が大きくなってしまう。これらのことから、観察者に向けて反射される映像光の光量が減り、映像が暗くなってしまう。
In the cross section shown in FIG. 9A, the angle γ, which corresponds to the apex angle of the unit lens 131 and is formed by the extending direction of the lens surface 132 and the extending direction of the planar region 136 of the non-lens surface 133, is an acute angle. That is, it is preferable that 0°<γ<90°.
When the angle γ is 90° or more, the ratio of the dimension of the non-lens surface 133 to the arrangement pitch P in the arrangement direction of the unit lenses 131 becomes large, and the ratio W1/P becomes small. Therefore, the area of the lens surface 132 that reflects the image light (the area of the reflection region) is reduced. Furthermore, the amount of image light incident on the non-lens surface 133 increases. For these reasons, the amount of image light reflected toward the viewer decreases, resulting in a dark image.
 また、角度γが90°以上であると、上述のように、非レンズ面133に入射して反射層14で反射された映像光が迷光となり、スクリーンに表示される映像のコントラストや明瞭さ等を低下させてしまう。
 また、角度γが90°以上であると、非レンズ面133に不要な外光等が入射して観察者側へ反射されやすくなり、映像のコントラストが低下する。
 以上のことから、角度γは、鋭角(0°<γ<90°)であることが好ましい。
In addition, if the angle γ is 90° or more, as described above, the image light incident on the non-lens surface 133 and reflected by the reflective layer 14 becomes stray light, which reduces the contrast and clarity of the image displayed on the screen. This results in a decrease in
Furthermore, if the angle γ is 90° or more, unnecessary external light or the like enters the non-lens surface 133 and is likely to be reflected toward the viewer, reducing the contrast of the image.
From the above, it is preferable that the angle γ is an acute angle (0°<γ<90°).
 なお、図9(b)に示すように、非レンズ面133が平面状の領域136を有しない単位レンズ131の場合、非レンズ面133上であって第1曲面部134上の点t1及び第2曲面部135上の点t2から等距離となる点(図9(b)に示す点t3)における接線がレンズ面132の延長方向となす角度をγとする。 As shown in FIG. 9B, in the case of a unit lens 131 in which the non-lens surface 133 does not have a planar region 136, the points t1 and 1 on the first curved surface portion 134 on the non-lens surface 133 Let γ be the angle that a tangent at a point equidistant from point t2 on the two-curved surface portion 135 (point t3 shown in FIG. 9(b)) makes with the extension direction of the lens surface 132.
 図5は、本実施形態のスクリーン10に入射する映像光及び外光の一例を示す図である。図5に示すスクリーン10の断面は、前述の図2に示すスクリーン10の断面と同様である。図5では、理解を容易にするために、表面層11と基材層12との間、基材層12とレンズ層13との間の屈折率は等しいものとし、映像光及び外光に対する光拡散層121の光拡散作用等は省略して示している。
 図5に示すように、映像源LSから投影された映像光L1のうち、その多くは映像光L2のように、スクリーン10に入射し、表面層11及び基材層12(光拡散層121、着色層122)を透過してレンズ層13へ向かう。
FIG. 5 is a diagram showing an example of image light and external light incident on the screen 10 of this embodiment. The cross section of the screen 10 shown in FIG. 5 is similar to the cross section of the screen 10 shown in FIG. 2 described above. In FIG. 5, for ease of understanding, it is assumed that the refractive index between the surface layer 11 and the base material layer 12 and between the base material layer 12 and the lens layer 13 are equal, and the refractive index for image light and external light is The light diffusion effect of the diffusion layer 121 and the like are omitted.
As shown in FIG. 5, most of the image light L1 projected from the image source LS is incident on the screen 10 like the image light L2, and the surface layer 11 and the base material layer 12 (light diffusion layer 121, The light passes through the colored layer 122) and heads toward the lens layer 13.
 しかし、映像源LSから投影された映像光L1のうち、一部(映像光L3)は、スクリーン10の表面で反射して、スクリーン10の第1面側上方へ向かい、天井等への映像の映り込みを生じさせる場合がある。しかし、本実施形態の表面層11の表面には微細な凹凸形状が形成されており、天井等へ向かって反射する映像光L3は拡散され、天井等への映像の映り込みが低減される。 However, a part (image light L3) of the image light L1 projected from the image source LS is reflected on the surface of the screen 10 and heads upward on the first surface side of the screen 10, causing the image to be projected onto the ceiling or the like. This may cause reflections. However, fine irregularities are formed on the surface of the surface layer 11 in this embodiment, so that the image light L3 reflected toward the ceiling etc. is diffused, and the reflection of the image on the ceiling etc. is reduced.
 スクリーンに入射した映像光L2は、その多くが、単位レンズ131のレンズ面132へ入射して反射層14によって反射され、第1面側の略正面方向へ向かって、スクリーン10から出射し、観察者Oに届く。これにより、スクリーン10は、明るい映像を表示できる。
 このとき、スクリーン10は、厚み方向において、反射層14と光拡散層121との距離が十分確保されているので、正面輝度を大きく低下させることなく映像光の明るさを均一にすることができ、映像のぎらつきを抑制できる。
Most of the image light L2 incident on the screen enters the lens surface 132 of the unit lens 131, is reflected by the reflective layer 14, and exits from the screen 10 toward the first surface side, approximately in the front direction, and is observed. It reaches Person O. Thereby, the screen 10 can display bright images.
At this time, since the screen 10 has a sufficient distance between the reflective layer 14 and the light diffusion layer 121 in the thickness direction, the brightness of the image light can be made uniform without significantly reducing the front brightness. , can suppress glare in images.
 なお、映像光L1がスクリーン10の下方から投射され、かつ、角度βがスクリーン10の画面上下方向の各点における映像光L1の入射角度よりも大きいので、映像光L1が非レンズ面133の第1曲面部134以外の領域(例えば、第2曲面部135等)に直接入射することはない。
 また、非レンズ面133の第1曲面部134は、単位レンズ131において、レンズ面132へ入射する映像光L2を大きく遮蔽しないので、映像の正面輝度が維持され、スクリーン10は、明るい映像を表示できる。
Note that since the image light L1 is projected from below the screen 10 and the angle β is larger than the incident angle of the image light L1 at each point in the vertical direction of the screen 10, the image light L1 is projected from the bottom of the non-lens surface 133. The light does not directly enter a region other than the first curved surface portion 134 (for example, the second curved surface portion 135, etc.).
Furthermore, since the first curved surface portion 134 of the non-lens surface 133 does not largely block the image light L2 incident on the lens surface 132 in the unit lens 131, the front brightness of the image is maintained, and the screen 10 displays a bright image. can.
 さらに、第1曲面部134及び反射層14は、映像光L2の一部(映像光L4)をスクリーンの上方へ向けて拡散反射し、一部がスクリーン10の第1面側上方へ出射する。これにより、天井等への映像の映り込みを不明瞭にすることができ、映像の映り込みを抑制できる。また、映像光L4の一部が、前述の図4(a)の映像光Lcに示すように、拡散されて一部が観察者側へ向かうことにより、映像のぎらつきが低減される。 Further, the first curved surface portion 134 and the reflective layer 14 diffusely reflect a portion of the image light L2 (image light L4) toward the upper side of the screen, and a portion of the image light L2 is emitted upward on the first surface side of the screen 10. Thereby, the reflection of the image on the ceiling or the like can be made unclear, and the reflection of the image can be suppressed. Furthermore, as shown in the image light Lc in FIG. 4A, a portion of the image light L4 is diffused and a portion of the image light L4 is directed toward the viewer, thereby reducing glare in the image.
 一方、照明光等の不要な外光G1,G2は、図5に示すように、主としてスクリーン10の上方からスクリーンに入射する。そして、外光G1,G2の一部(不図示)は、スクリーンの表面で反射して、スクリーン10の下方へ向かう。また、外光G1,G2の多くは、スクリーン10に入射し、表面層11及び基材層12を透過してレンズ層13の単位レンズ131へ入射する。
 そして、外光G1は、非レンズ面133へ入射して反射層14により反射され、さらにレンズ面132で反射される等してスクリーン10の第1面側の上方へ向かうので、観察者O側に届く光量は、映像光L1に比べて大幅に少ない。また、外光G2は、レンズ面132で反射して、主としてスクリーン10の第1面側下方へ向かうので、観察者O側には直接届かず、また、届いた場合にもその光量は、映像光L1に比べて大幅に少ない。さらに、一部の外光(不図示)は、着色層122に吸収される。したがって、スクリーン10では、外光G1,G2等による映像のコントラスト低下を大きく抑制することができる。
On the other hand, unnecessary external lights G1 and G2 such as illumination light mainly enter the screen 10 from above, as shown in FIG. Then, a portion (not shown) of the external lights G1 and G2 is reflected on the surface of the screen and travels below the screen 10. Moreover, most of the external lights G1 and G2 enter the screen 10, pass through the surface layer 11 and the base layer 12, and enter the unit lenses 131 of the lens layer 13.
Then, the external light G1 enters the non-lens surface 133, is reflected by the reflective layer 14, is further reflected by the lens surface 132, etc., and heads upward toward the first surface side of the screen 10, so that the external light G1 is directed upward toward the first surface side of the screen 10. The amount of light reaching the image light L1 is significantly smaller than that of the image light L1. In addition, the external light G2 is reflected by the lens surface 132 and mainly heads downward on the first surface side of the screen 10, so it does not directly reach the observer O side, and even if it reaches the viewer O side, the amount of light G2 is It is significantly less than the light L1. Furthermore, some external light (not shown) is absorbed by the colored layer 122. Therefore, in the screen 10, it is possible to greatly suppress a decrease in image contrast due to external light G1, G2, etc.
 以上のことから、本実施形態のスクリーン10によれば、コントラストが高く明るく良好な映像を表示でき、天井等への映像の映り込みを抑制することができる。また、本実施形態によれば、映像のぎらつきを低減できる。
 また、本実施形態によれば、表面層11の表面には微細な凹凸形状が形成されており、この凹凸形状によって天井等へ向かって反射する映像光を拡散でき、天井等への映像の映り込み抑制効果をさらに高めることができる。
From the above, according to the screen 10 of the present embodiment, a high-contrast, bright, and good image can be displayed, and reflection of the image on the ceiling or the like can be suppressed. Furthermore, according to the present embodiment, glare in images can be reduced.
Furthermore, according to the present embodiment, fine irregularities are formed on the surface of the surface layer 11, and the irregularities can diffuse the image light reflected toward the ceiling, etc., and reduce the reflection of the image on the ceiling, etc. The effect of suppressing crowding can be further enhanced.
 ここで、レンズ面132が配列ピッチPに対して占める割合W1/Pや第1曲面部134の有無等が異なる測定例1~8のスクリーンを用意し、その天井等への映像の映り込み等を評価した。
 測定例1~8のスクリーンは、レンズ面132の占める比率や曲面部分の有無やその形状等が異なる点以外は、同様の構成を有している。
 測定例1~8のスクリーンは、画面は横長の矩形形状であり、画面サイズが80インチである。測定例1~8のスクリーンに対して映像光を投射する映像源LS(Hisense社製 75L9S)は、各測定例のスクリーンの画面の点Aから画面上下方向下側に741mm(スクリーンの画面左右方向中央であって画面下端から下側に236mm)、スクリーン面の法線方向に沿って観察者側(+Z側)に447mm離れた点から映像光を投射している。また、スクリーンの画面上下方向下端での角度αは5.2°であり、上端での角度αが21.8°である。各測定例のスクリーンにおいて、点Aでの画面上下方向における映像光の入射角度は58.9°である。
Here, the screens of measurement examples 1 to 8, which differ in the ratio W1/P that the lens surface 132 occupies with respect to the arrangement pitch P, the presence or absence of the first curved surface part 134, etc. are prepared, and the reflection of the image on the ceiling etc. was evaluated.
The screens of Measurement Examples 1 to 8 have the same configuration except that the ratio of the lens surface 132, the presence or absence of a curved surface portion, the shape of the curved surface portion, etc. are different.
The screens of Measurement Examples 1 to 8 have a horizontally long rectangular shape and a screen size of 80 inches. The image source LS (manufactured by Hisense 75L9S) that projects image light onto the screens of measurement examples 1 to 8 was placed 741 mm below the screen in the vertical direction from point A on the screen of each measurement example (in the horizontal direction of the screen). Image light is projected from a point located at the center (236 mm downward from the bottom edge of the screen) and 447 mm away from the viewer side (+Z side) along the normal direction of the screen surface. Further, the angle α at the lower end of the screen in the vertical direction of the screen is 5.2°, and the angle α at the upper end of the screen is 21.8°. In the screen of each measurement example, the incident angle of the image light in the vertical direction of the screen at point A was 58.9°.
 図6は、測定例1~8のスクリーンにおける画面中央となる点Aでの単位レンズ131の形状の断面形状を模式的に示す図である。図6では、図3(b)と同様の断面での単位レンズ131を示しており、理解を容易にするために、レンズ層13のみを示している。
 図6(a)は、測定例1~3のスクリーンの単位レンズ131に相当し、図6(b)は測定例4のスクリーンの単位レンズ131に相当し、図6(c)は、測定例5,6のスクリーンの単位レンズ131に相当し、図6(d)は、測定例7,8のスクリーンの単位レンズ131に相当する。
FIG. 6 is a diagram schematically showing the cross-sectional shape of the unit lens 131 at point A, which is the center of the screen in Measurement Examples 1 to 8. In FIG. 6, the unit lens 131 is shown in a cross section similar to that in FIG. 3(b), and only the lens layer 13 is shown for easy understanding.
6(a) corresponds to the unit lens 131 of the screen in measurement examples 1 to 3, FIG. 6(b) corresponds to the unit lens 131 of the screen in measurement example 4, and FIG. 6(c) corresponds to the unit lens 131 of the screen in measurement examples 1 to 3. 6(d) corresponds to the unit lens 131 of the screens of Measurement Examples 7 and 8.
 測定例1~3のスクリーンは、非レンズ面133が第1曲面部134及び平面状の領域136を有しているが、第2曲面部135を有していない。測定例1のスクリーンは、割合W1/Pが60%であり、測定例2のスクリーンは、割合W1/Pが80%であり、測定例3のスクリーンは、割合W1/Pが95%である。
 測定例4のスクリーンは、非レンズ面133が第1曲面部134及び第2曲面部135を有しており、割合W1/Pが95%である。
 上述の測定例1~4のスクリーンは、本実施形態の実施例のスクリーンに相当する。
In the screens of Measurement Examples 1 to 3, the non-lens surface 133 has a first curved surface portion 134 and a planar region 136, but does not have a second curved surface portion 135. The screen of measurement example 1 has a ratio W1/P of 60%, the screen of measurement example 2 has a ratio W1/P of 80%, and the screen of measurement example 3 has a ratio W1/P of 95%. .
In the screen of measurement example 4, the non-lens surface 133 has a first curved surface portion 134 and a second curved surface portion 135, and the ratio W1/P is 95%.
The screens of measurement examples 1 to 4 described above correspond to the screens of the examples of this embodiment.
 測定例5,6のスクリーンは、非レンズ面133が第1曲面部134を有しておらず、平面状の領域136及び第2曲面部135を有している。測定例5のスクリーンは、W1/Pが80%、測定例6のスクリーンは、W1/Pが95%である。
 測定例7,8のスクリーンは、非レンズ面133が平面状であり、第1曲面部134及び第2曲面部135を有していない。測定例7のスクリーンは、割合W1/Pが98%であり、測定例8のスクリーンは、割合W1/Pが99%である。
 上述の測定例5~8のスクリーンは、本実施形態の比較例のスクリーンに相当する。
In the screens of Measurement Examples 5 and 6, the non-lens surface 133 does not have the first curved surface portion 134 but has a planar region 136 and a second curved surface portion 135. The screen of Measurement Example 5 has a W1/P of 80%, and the screen of Measurement Example 6 has a W1/P of 95%.
In the screens of Measurement Examples 7 and 8, the non-lens surface 133 is planar and does not have the first curved surface portion 134 and the second curved surface portion 135. The screen of Measurement Example 7 has a ratio W1/P of 98%, and the screen of Measurement Example 8 has a ratio W1/P of 99%.
The screens of measurement examples 5 to 8 described above correspond to the screens of comparative examples of this embodiment.
 また、この測定例1~8のスクリーンに対して、画面を画面上下方向及び画面左右方向にそれぞれ3分割して得られる9つの領域について、その幾何学的中心でのスペックル値を測定し、その9領域のスペックル値の標準偏差σを求めた。
 図7は、スペックル値の標準偏差σを求める際のスクリーンの画面の各領域について示す図ある。図7では、スクリーンの画面の法線方向から見た図を示し、9つの領域について、符号S1~S9を付している。
 なお、測定例1~8のスクリーンは、いずれもレンズ層13が、スクリーンの表示領域外の点C(図3(a)参照)を中心として単位レンズ131が同心円状に配列されたサーキュラーフレネルレンズ形状を有している。このようなスクリーンにおいて、図7に示す領域S3,S9は、単位レンズ131の配列方向等の観点から、天井等への映像の映り込み低減に関しては、寄与が小さい可能性があるが、映像のぎらつき低減には効果が期待されるため、全9領域での標準偏差σとした。
In addition, for the screens of Measurement Examples 1 to 8, the speckle value at the geometric center was measured for nine areas obtained by dividing the screen into three in the vertical direction of the screen and in the horizontal direction of the screen. The standard deviation σ of the speckle values in the nine regions was determined.
FIG. 7 is a diagram showing each area of the screen when calculating the standard deviation σ of the speckle values. FIG. 7 shows a view of the screen as seen from the normal direction of the screen, and the nine areas are labeled S1 to S9.
In each of the screens of Measurement Examples 1 to 8, the lens layer 13 is a circular Fresnel lens in which unit lenses 131 are arranged concentrically around a point C (see FIG. 3(a)) outside the display area of the screen. It has a shape. In such a screen, regions S3 and S9 shown in FIG. 7 may have a small contribution to reducing the reflection of images on the ceiling etc. from the viewpoint of the arrangement direction of the unit lenses 131, etc., but the regions S3 and S9 shown in FIG. Since it is expected to be effective in reducing glare, the standard deviation σ for all nine areas was used.
 ここで、スペックル値とは、映像のぎらつきの評価の指標となる値であり、以下の式(1)によって求められる値である。
 式(1)  S[%]=100×σa[cd/m]/M[cd/m
 ここで、式(1)中のσaは、スクリーンの画面の各領域の幾何学的中心を中心とする所定の測定領域を設定し、その測定領域内に所定のピッチで線分をひいた交点を測定点とし、スクリーンに白色画像を表示したときにおける各測定点の輝度の標準偏差である。測定領域は、画面上下方向に40mm、画面左右方向に60mmの範囲である。また、線分は、画面上下方向及び画面左右方向にそれぞれ255μmピッチとする。また、Mは、上述の測定点の各輝度の平均値を示すものである。
Here, the speckle value is a value that serves as an index for evaluating glare in an image, and is a value obtained by the following equation (1).
Formula (1) S [%] = 100 x σa [cd/m 2 ]/M [cd/m 2 ]
Here, σa in equation (1) is the intersection point of a predetermined measurement area centered on the geometric center of each area of the screen, and line segments drawn at a predetermined pitch within the measurement area. is the standard deviation of the brightness at each measurement point when a white image is displayed on the screen. The measurement area is 40 mm in the vertical direction of the screen and 60 mm in the horizontal direction of the screen. Furthermore, the line segments have a pitch of 255 μm in the vertical direction of the screen and in the horizontal direction of the screen. Moreover, M indicates the average value of each luminance of the above-mentioned measurement points.
 このスペックル値は、暗室環境下において、測定器(株式会社オキサイド製 Dr.SPECKLE/SM01VS09)を各測定例のスクリーンの画面中央(画面の幾何学的中心)となる点Aからスクリーン面の法線方向の観察者側(+Z側)へ1.0m離れた位置に配置して、スペックルコントラストCsを測定することにより得られた。
 また、このとき、映像源LS(Hisense株式会社製 75L9S)を各測定例のスクリーンの画面の点Aから画面上下方向下側(-Y側)に741mm、シート面の法線方向に沿って観察者側(+Z側)へ447mm離れた位置に配置した。
This speckle value is determined by measuring the speckle value by moving the measuring instrument (Dr.SPECKLE/SM01VS09 manufactured by Oxide Co., Ltd.) from point A, which is the center of the screen (geometric center of the screen), to the screen surface in a dark room environment. The speckle contrast Cs was obtained by arranging it at a position 1.0 m away from the viewer (+Z side) in the linear direction and measuring the speckle contrast Cs.
Also, at this time, the image source LS (75L9S manufactured by Hisense Co., Ltd.) was observed from point A on the screen of each measurement example 741 mm below the screen in the vertical direction (-Y side) along the normal direction of the sheet surface. It was placed at a position 447 mm away from the person's side (+Z side).
 図8は、測定例1~8のスクリーンの天井への映像の映り込みや映像のぎらつきの評価結果をまとめた表を示す図である。
 天井へ映像の映り込み及び映像のぎらつきに関しては、暗室環境下において、観察者が各スクリーンの画面中央となる点Aからスクリーン面の法線方向に沿って観察者側(+Z側)に3.2mの位置において、天井やスクリーンの表示面を目視して、評価した。
 図8に示す表において、天井への映像の映り込みの評価は、天井への映り込みが弱く不明瞭であり、良好に使用可能であるものを「弱」とし、天井への映り込みが「弱」よりも強いが使用可能であるものを「中」とし、天井への映り込みが強く明瞭であり、使用に適さないものを「強」として示した。
 また、映像のぎらつき(スペックルの視認性)の評価は、映像のぎらつきが弱くほとんど視認されず、良好に使用可能であるものを「弱」とし、映像のぎらつきが「弱」よりも強いが使用可能であるものを「中」とし、映像のぎらつきが強く視認され、使用に適さないものを「強」として示した。
FIG. 8 is a diagram showing a table summarizing the evaluation results of image reflection on the screen ceiling and image glare in Measurement Examples 1 to 8.
Regarding the reflection of the image on the ceiling and the glare of the image, in a darkroom environment, the observer should move 3 degrees along the normal direction of the screen surface from point A, which is the center of each screen, to the observer side (+Z side). Evaluation was made by visually observing the display surface of the ceiling and screen at a position of .2 m.
In the table shown in Figure 8, the evaluation of the image reflection on the ceiling is ``weak'' if the reflection on the ceiling is weak and unclear, and can be used in good condition; Those that are stronger than "weak" but still usable are designated as "medium," and those that have a strong and clear reflection on the ceiling and are not suitable for use are designated as "strong."
In addition, in the evaluation of video glare (visibility of speckles), "weak" means that the video glare is weak and hardly visible, and can be used in good condition. The rating was ``medium'' if it was strong but usable, and the rating was ``strong'' if the image had strong glare and was not suitable for use.
 図8の表に示すように、第1曲面部134を有する測定例1~4のスクリーンでは、第1曲面部134を有していない測定例5~8よりも、天井への映像の映り込みが弱く、低減されていた。これに対して、非レンズ面133に第1曲面部134を有しておらず、第2曲面部135を有する測定例5,6のスクリーンや、第1曲面部134及び第2曲面部135をいずれも有していない測定例7,8のスクリーンは、天井への映り込みが強く、明瞭に生じていた。
 また、レンズ面132が配列ピッチPに対して占める割合W1/Pが他の測定例のスクリーンよりも小さい測定例1においても良好に明るい映像が表示されており、測定例1~4はいずれも十分な明るさで映像が表示されていた。
 したがって、スクリーン10は、単位レンズ131が第1面側に凸となる第1曲面部134を有し、かつ、割合W1/Pが60%以上95%以下であることが、天井への映像の映り込み低減の観点から好ましい。
As shown in the table of FIG. 8, the screens of measurement examples 1 to 4 that have the first curved surface part 134 have a higher degree of image reflection on the ceiling than the screens of measurement examples 5 to 8 that do not have the first curved surface part 134. was weak and reduced. In contrast, the screens of measurement examples 5 and 6 which do not have the first curved surface part 134 on the non-lens surface 133 and have the second curved surface part 135, and the screens of measurement examples 5 and 6 which do not have the first curved surface part 134 on the non-lens surface 133, The screens of Measurement Examples 7 and 8, which did not have any of these, had strong and clear reflection on the ceiling.
Furthermore, even in Measurement Example 1, where the ratio W1/P of the lens surface 132 to the arrangement pitch P is smaller than that of the screens of other measurement examples, a good bright image is displayed, and in all Measurement Examples 1 to 4, The image was displayed with sufficient brightness.
Therefore, the screen 10 has the first curved surface portion 134 in which the unit lens 131 is convex toward the first surface side, and the ratio W1/P is 60% or more and 95% or less to prevent the image from reaching the ceiling. This is preferable from the viewpoint of reducing glare.
 また、図8の表に示すように、スペックル値の標準偏差σが1.38以下である測定例1~4のスクリーンは、映像のぎらつき(スペックル)が低減されていた。これに対して、スペックル値の標準偏差σが1.38より大きい測定例5~8のスクリーンは、映像のぎらつきが視認されていた。 Furthermore, as shown in the table of FIG. 8, the screens of Measurement Examples 1 to 4 in which the standard deviation σ of the speckle value was 1.38 or less had reduced glare (speckle) in the image. On the other hand, in the screens of measurement examples 5 to 8 where the standard deviation σ of the speckle value was larger than 1.38, glare in the images was visually recognized.
 上述のように、本実施形態によれば、非レンズ面133は、第1曲面部134を有しており、レンズ面132が配列ピッチPに対して占める割合W1/Pが60%以上95%以下であるので、明るく良好な映像を表示しながら、天井への映像の映り込みを抑制できる。
 また、本実施形態によれば、スクリーンは、画面を9分割した各領域のスペックル値の標準偏差σが1.38以下であるので、映像のぎらつきを低減できる。
As described above, according to the present embodiment, the non-lens surface 133 has the first curved surface portion 134, and the ratio W1/P of the lens surface 132 to the arrangement pitch P is 60% or more and 95%. Since it is as follows, it is possible to suppress the reflection of the image on the ceiling while displaying a bright and good image.
Furthermore, according to the present embodiment, the screen has a standard deviation σ of speckle values in each of the nine divided areas of the screen, which is 1.38 or less, so that glare in the image can be reduced.
(変形形態)
 以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(Deformed form)
Various modifications and changes are possible without being limited to the embodiments described above, and these are also within the scope of the present invention.
(1)実施形態において、表面層11は、ハードコート機能及び防眩機能を有する例を挙げて説明したが、これに限らず、ハードコート機能、防眩機能、反射防止機能、紫外線吸収機能、防汚機能や帯電防止機能等の各種機能を1つ又は複数有する層としてもよく、所望する機能を有する層が複数積層されて形成されていてもよい。また、表面層11としてタッチパネル層等を設けてもよい。 (1) In the embodiment, the surface layer 11 has been described with reference to an example having a hard coat function and an anti-glare function, but the surface layer 11 is not limited to this. The layer may have one or more of various functions such as antifouling function and antistatic function, or may be formed by laminating a plurality of layers having the desired function. Further, a touch panel layer or the like may be provided as the surface layer 11.
(2)実施形態において、レンズ面132は、複数の平面から構成される形態(所謂、折れ面状)としてもよいし、第2面側(-Z側)に凸となる曲面形状等としてもよい。 (2) In the embodiment, the lens surface 132 may have a shape composed of a plurality of planes (so-called folded surface shape), or may have a curved shape that is convex toward the second surface side (-Z side). good.
(3)実施形態において、スクリーン10は、画面の平面性を向上させる観点から、光透過性を有するガラス製や樹脂製の剛性の高い透明基板層を備える形態としてもよい。
 また、第2面側(-Z側)に剛性の高い不図示の支持板等を一体に積層する等して設けて、画面の平面性を向上させてもよい。
(3) In the embodiment, the screen 10 may include a highly rigid transparent substrate layer made of glass or resin and having light transmittance, from the viewpoint of improving the flatness of the screen.
Further, a highly rigid support plate (not shown) or the like may be integrally laminated on the second surface side (-Z side) to improve the flatness of the screen.
(4)実施形態において、スクリーン10は、不使用時には巻き取って保管できる巻き取り可能な可撓性を有する形態としてもよい。 (4) In the embodiment, the screen 10 may be flexible enough to be rolled up and stored when not in use.
(5)実施形態において、スクリーン10は、裏面保護層15が光吸収性を有する例を示したが、これに限らず、裏面保護層15が光吸収性を有しない形態とし、その第2面側(-Z側)に、光を透過しにくい布製又は樹脂製の遮光幕や耐傷性を向上させる層等を積層する形態としてもよい。また、スクリーンの使用環境において、第2面側からの外光によるコントラスト低下等が生じにくい場合には、スクリーン10は、裏面保護層15が光吸収性を有しない形態であってさらに上記のような遮光幕等を備えない形態としてもよい。
 また、裏面保護層15は、紙、不織布、樹脂シート等とし、不図示の粘着剤や接着剤等により形成される接合層を介して、反射層14の第2面側に積層する形態としてもよい。
(5) In the embodiment, the screen 10 shows an example in which the back protective layer 15 has light absorbing properties; however, the present invention is not limited to this, and the screen 10 has a form in which the back protecting layer 15 does not have light absorbing properties, and the second surface thereof is not limited to this. A form may be adopted in which a light-shielding curtain made of cloth or resin that does not easily transmit light, a layer that improves scratch resistance, etc. is laminated on the side (-Z side). In addition, if the environment in which the screen is used is such that a reduction in contrast due to external light from the second surface side is unlikely to occur, the screen 10 may have a form in which the back surface protective layer 15 does not have light absorbing properties, and the screen 10 may be configured as described above. It is also possible to adopt a form that does not include a light-shielding curtain or the like.
The back protection layer 15 may be made of paper, nonwoven fabric, resin sheet, etc., and may be laminated on the second surface side of the reflective layer 14 via a bonding layer formed of an adhesive or an adhesive (not shown). good.
(6)実施形態において、映像源LSは、鉛直方向において、スクリーン10より下方(-Y側)に配置される例を示したが、これに限らず、例えば、映像源LSが、鉛直方向においてスクリーン10より上方(+Y側)に位置する形態としてもよい。この場合、映像源LSと同様に、鉛直方向上側にフレネルセンターとなる点Cが位置するように、スクリーン10は、その上下方向を反転させて使用する。 (6) In the embodiment, the image source LS is arranged below the screen 10 (on the −Y side) in the vertical direction, but the present invention is not limited to this. It may be located above the screen 10 (on the +Y side). In this case, similarly to the video source LS, the screen 10 is used with its vertical direction reversed so that the Fresnel center point C is located on the upper side in the vertical direction.
(7)実施形態において、表面層11は、第1面側に凸となる単位光学形状(不図示)が画面上下方向を長手方向とし、画面左右方向に配列された形状としてもよい。この単位光学形状は、例えば、その配列方向及びスクリーンの厚み方向に平行な断面の断面形状が、円の一部形状であり、表面層11は、第1面側に所謂レンチキュラーレンズ形状を有する形態としてもよい。また、単位光学形状は、上記断面形状が、例えば、楕円の一部形状としてもよいし、複数の曲線を組み合わせた形状としてもよい。
 また、上述の例に限らず、表面層11の単位光学形状は、配列方向及びスクリーンの厚み方向に平行な断面での断面形状が第1面側に凸となる三角形形状としてもよい。
 このような表面層11を備えることにより、映像光Lが単位光学形状によって画面左右方向に拡散され、スクリーン10は、画面左右方向(X方向)における視野角を十分に確保することができる。
(7) In the embodiment, the surface layer 11 may have a shape in which unit optical shapes (not shown) convex toward the first surface are arranged in the horizontal direction of the screen, with the vertical direction of the screen being the longitudinal direction. This unit optical shape has, for example, a partial circular cross-sectional shape parallel to the arrangement direction and the thickness direction of the screen, and the surface layer 11 has a so-called lenticular lens shape on the first surface side. You can also use it as Further, the unit optical shape may have a cross-sectional shape that is a partial shape of an ellipse, or a shape that is a combination of a plurality of curved lines.
Further, the unit optical shape of the surface layer 11 is not limited to the above example, and may be a triangular shape in which the cross-sectional shape in a cross section parallel to the arrangement direction and the thickness direction of the screen is convex toward the first surface side.
By providing such a surface layer 11, the image light L is diffused in the horizontal direction of the screen by the unit optical shape, and the screen 10 can secure a sufficient viewing angle in the horizontal direction (X direction) of the screen.
(8)実施形態において、映像源LSは、レーザー光源を用いる例を示したが、これに限らず、所望する光学性能や映像表示装置1の使用環境等に応じて、映像源LSは、高圧水銀ランプを用いたDLP方式のプロジェクタとしてもよいし、LED等の他の光源を用いる映像源を用いてもよい。 (8) In the embodiment, the image source LS is an example in which a laser light source is used. A DLP projector using a mercury lamp may be used, or an image source using another light source such as an LED may be used.
(9)実施形態において、映像表示装置1は、映像源LSから投影された映像光Lをスクリーン10が反射して、その反射光を観察者Oに向けてさらに反射する不図示のウインドシールドを備える形態としてもよい。このとき、ウインドシールドは、透明な窓ガラスとしての機能に加えて、映像光を反射させる機能も併せて有している。このような映像表示装置は、自動車のような移動体に搭載されるヘッドアップディスプレイとして好適である。従来の反射型のスクリーンでは、スクリーンの表面で反射する等により発生していた一部の意図しない光(迷光)が、ウインドシールド上や車内の天井等へ到達し、意図しない投影像が観察され、運転者の視界の妨げになる場合がった。しかし、このような映像表示装置に上述の実施形態のスクリーン10を用いることにより、このような意図しない投影像が抑制され、良好な視界を確保できる。 (9) In the embodiment, the video display device 1 includes a windshield (not shown) that causes the screen 10 to reflect the video light L projected from the video source LS and further reflects the reflected light toward the viewer O. It is good also as a form provided. At this time, the windshield has the function of reflecting image light in addition to the function of a transparent window glass. Such a video display device is suitable as a head-up display mounted on a moving object such as an automobile. With conventional reflective screens, some unintended light (stray light) generated by reflection off the surface of the screen reaches the windshield or the ceiling inside the car, causing unintended projected images to be observed. , which could obstruct the driver's view. However, by using the screen 10 of the above-described embodiment in such a video display device, such unintended projected images can be suppressed and a good visibility can be ensured.
 なお、本実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した各実施形態によって限定されることはない。 Note that this embodiment and the modified embodiments can be used in combination as appropriate, but a detailed explanation will be omitted. Furthermore, the present invention is not limited to the embodiments described above.
 1  映像表示装置
 10  スクリーン
 11  表面層
 12  基材層
 121  光拡散層
 122  着色層
 13  レンズ層
 131  単位レンズ
 132  レンズ面
 133  非レンズ面
 134  第1曲面部
 135  第2曲面部
 136  平面状の領域
 14  反射層
 15  裏面保護層
 LS  映像源
1 Video display device 10 Screen 11 Surface layer 12 Base layer 121 Light diffusion layer 122 Colored layer 13 Lens layer 131 Unit lens 132 Lens surface 133 Non-lens surface 134 First curved surface portion 135 Second curved surface portion 136 Planar region 14 Reflection Layer 15 Back protective layer LS Image source

Claims (9)

  1.  映像源から投射された映像光を反射させて表示する反射型スクリーンであって、
     該反射型スクリーンの厚み方向において、映像光が投射される面側を第1面側とし、裏面側を第2面側とし、
      レンズ面と非レンズ面とを有し前記第2面側に凸となる単位レンズが配列されたフレネルレンズ形状を前記第2面側に有するレンズ層と、
      前記単位レンズ上に形成され、光を反射する反射層と、
     を備え、
     前記非レンズ面は、前記第1面側の端部に曲面状の第1曲面部を有し、
     前記第1曲面部は、前記非レンズ面において、隣り合う前記単位レンズの前記レンズ面と隣接する領域に位置し、
     前記単位レンズの配列ピッチに対して、前記単位レンズの配列方向における前記レンズ面の寸法が占める割合が、60%以上95%以下であること、
     を特徴とする反射型スクリーン。
    A reflective screen that reflects and displays image light projected from an image source,
    In the thickness direction of the reflective screen, the surface side on which the image light is projected is the first surface side, and the back surface side is the second surface side,
    a lens layer having a Fresnel lens shape on the second surface side, in which unit lenses having a lens surface and a non-lens surface and convex on the second surface side are arranged;
    a reflective layer formed on the unit lens and reflecting light;
    Equipped with
    The non-lens surface has a curved first curved surface portion at an end on the first surface side,
    The first curved surface portion is located in a region adjacent to the lens surface of the adjacent unit lens on the non-lens surface,
    The ratio of the dimension of the lens surface in the arrangement direction of the unit lenses to the arrangement pitch of the unit lenses is 60% or more and 95% or less;
    A reflective screen featuring
  2.  請求項1に記載の反射型スクリーンにおいて、
     該反射型スクリーンは、その画面を、使用状態における画面上下方法及び画面左右方向においてそれぞれ3分割して全9領域とし、前記9領域のスペックル値Sに対する標準偏差σが、1.38以下であること。
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    The reflective screen has a screen divided into three areas in the vertical direction and the horizontal direction of the screen in the usage state to form a total of nine areas, and the standard deviation σ for the speckle value S of the nine areas is 1.38 or less. Something.
    A reflective screen featuring
  3.  請求項1に記載の反射型スクリーンにおいて、
     前記非レンズ面は、前記第2面側の端部に曲面状の第2曲面部を有し、
     前記第1曲面部の曲率半径は、前記第2曲面部の曲率半径よりも大きいこと、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    The non-lens surface has a curved second curved surface portion at an end on the second surface side,
    The radius of curvature of the first curved surface portion is larger than the radius of curvature of the second curved surface portion;
    A reflective screen featuring
  4.  請求項3に記載の反射型スクリーンにおいて、
     前記非レンズ面は、前記第1曲面部と前記第2曲面部との間に平面状の領域を有し、
     前記単位レンズの頂角に相当し、前記レンズ面の延長方向と前記平面状の領域の延長方向とが交差する角度は、鋭角であること、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 3,
    The non-lens surface has a planar region between the first curved surface portion and the second curved surface portion,
    The angle corresponding to the apex angle of the unit lens and at which the extension direction of the lens surface and the extension direction of the planar area intersect is an acute angle;
    A reflective screen featuring
  5.  請求項1に記載の反射型スクリーンにおいて、
     前記単位レンズの配列方向及び該反射型スクリーンの厚み方向に平行な断面において、前記単位レンズの頂角に相当し、前記レンズ面の延長方向と、前記非レンズ面において最も前記第1面側となる点と最も前記第2面側となる点とに対して等距離となる点での接線方向とが交差する角度は、鋭角であること、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    In a cross section parallel to the arrangement direction of the unit lenses and the thickness direction of the reflective screen, the angle corresponds to the apex angle of the unit lens, and is the closest to the first surface in the extension direction of the lens surface and the non-lens surface. The angle at which the tangential direction intersects the point equidistant from the point closest to the second surface is an acute angle;
    A reflective screen featuring
  6.  請求項1に記載の反射型スクリーンにおいて、
     前記レンズ層は、前記単位レンズが、該反射型スクリーンの表示領域外に位置する一点を中心として同心円状に配列されたサーキュラーフレネルレンズ形状を有すること、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    The lens layer has a circular Fresnel lens shape in which the unit lenses are arranged concentrically around a point located outside the display area of the reflective screen;
    A reflective screen featuring
  7.  請求項1に記載の反射型スクリーンにおいて、
     前記反射層よりも前記第1面側に、所定の濃度に着色された着色層を備えること、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    providing a colored layer colored to a predetermined density on the first surface side relative to the reflective layer;
    A reflective screen featuring
  8.  請求項1に記載の反射型スクリーンにおいて、
     前記反射層よりも前記第1面側に、入射する光を拡散する光拡散層を備えること、
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    Providing a light diffusion layer that diffuses incident light on the first surface side relative to the reflective layer;
    A reflective screen featuring
  9.  請求項1から請求項8までのいずれか1項に記載の反射型スクリーンと、
     前記反射型スクリーンに映像光を投射する映像源と、
     を備える映像表示装置。
    The reflective screen according to any one of claims 1 to 8,
    an image source that projects image light onto the reflective screen;
    A video display device comprising:
PCT/JP2023/011429 2022-03-25 2023-03-23 Reflection-type screen, and image display device WO2023182411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049379A JP7201115B1 (en) 2022-03-25 2022-03-25 Reflective screen, image display device
JP2022-049379 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182411A1 true WO2023182411A1 (en) 2023-09-28

Family

ID=84817467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011429 WO2023182411A1 (en) 2022-03-25 2023-03-23 Reflection-type screen, and image display device

Country Status (2)

Country Link
JP (1) JP7201115B1 (en)
WO (1) WO2023182411A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298063A (en) * 2014-10-24 2015-01-21 苏州大学 Transparent projection screen
US20160334697A1 (en) * 2014-01-15 2016-11-17 Lg Electronics Inc. Reflective screen, display having the same and method for manufacturing reflective screen
JP2018063404A (en) * 2016-10-14 2018-04-19 大日本印刷株式会社 Reflection screen and image display device
JP2018146666A (en) * 2017-03-02 2018-09-20 大日本印刷株式会社 Reflection screen and video display device
WO2020110961A1 (en) * 2018-11-26 2020-06-04 Agc株式会社 Reflection-type transparent screen, and image display system
JP2020173416A (en) * 2019-04-11 2020-10-22 大日本印刷株式会社 Reflection screen and video display device
JP2021096297A (en) * 2019-12-13 2021-06-24 大日本印刷株式会社 Reflection type screen and video display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334697A1 (en) * 2014-01-15 2016-11-17 Lg Electronics Inc. Reflective screen, display having the same and method for manufacturing reflective screen
CN104298063A (en) * 2014-10-24 2015-01-21 苏州大学 Transparent projection screen
JP2018063404A (en) * 2016-10-14 2018-04-19 大日本印刷株式会社 Reflection screen and image display device
JP2018146666A (en) * 2017-03-02 2018-09-20 大日本印刷株式会社 Reflection screen and video display device
WO2020110961A1 (en) * 2018-11-26 2020-06-04 Agc株式会社 Reflection-type transparent screen, and image display system
JP2020173416A (en) * 2019-04-11 2020-10-22 大日本印刷株式会社 Reflection screen and video display device
JP2021096297A (en) * 2019-12-13 2021-06-24 大日本印刷株式会社 Reflection type screen and video display device

Also Published As

Publication number Publication date
JP2023142455A (en) 2023-10-05
JP7201115B1 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
CN109917613B (en) Reflection type screen and image display system
JP2012252057A (en) Reflection screen and image display system
JP2014010404A (en) Reflection screen, and video display system
JP5939116B2 (en) Reflective screen, video display system
JP2012226103A (en) Reflection screen and image display system
JP5949355B2 (en) Reflective screen, video display system
JP6272013B2 (en) Reflective screen, video display system
JP6988070B2 (en) Video display device
WO2023182411A1 (en) Reflection-type screen, and image display device
JP6938872B2 (en) Video display device
JP6724424B2 (en) Reflective screen, video display
JP2016151649A (en) Reflection screen and video display system
JP2015014649A (en) Reflective screen and image display system
JP7314757B2 (en) Reflective screen, image display device
JP2017156696A (en) Reflection screen and image display device
JP2021096297A (en) Reflection type screen and video display device
JP6010890B2 (en) Transmission screen, rear projection display device
TW202407396A (en) Reflective screens and image display devices
JP2016200845A (en) Reflective type screen and video display system
JP7070613B2 (en) Video display device
JP2014071344A (en) Reflective screen and video image display system
JP5780112B2 (en) Reflective screen, video display system
JP2022059308A (en) Reflection type screen and video display device
JP6702462B2 (en) Reflective screen, video display system
JP2023032597A (en) Reflective screen and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775005

Country of ref document: EP

Kind code of ref document: A1