WO2023182367A1 - 液化ガス貯蔵タンクのクールダウン方法 - Google Patents

液化ガス貯蔵タンクのクールダウン方法 Download PDF

Info

Publication number
WO2023182367A1
WO2023182367A1 PCT/JP2023/011263 JP2023011263W WO2023182367A1 WO 2023182367 A1 WO2023182367 A1 WO 2023182367A1 JP 2023011263 W JP2023011263 W JP 2023011263W WO 2023182367 A1 WO2023182367 A1 WO 2023182367A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
gas
cooling
space
cool
Prior art date
Application number
PCT/JP2023/011263
Other languages
English (en)
French (fr)
Inventor
太一郎 下田
晴彦 冨永
麻子 三橋
章司 池島
邦彦 持田
翔 樋渡
広崇 ▲高▼田
隆博 中島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023182367A1 publication Critical patent/WO2023182367A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/10Vessels not under pressure with provision for thermal insulation by liquid-circulating or vapour-circulating jackets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present disclosure relates to a method for cooling down a liquefied gas storage tank.
  • cooling down when storing low-temperature liquefied gas in a tank, in order to avoid rapid cooling of the tank by filling a room-temperature tank with a large amount of liquefied gas to be stored at once, the tank is cooled at a relatively low speed (hereinafter referred to as "cool down").
  • An object of the present disclosure is to shorten the time required to cool down a multi-layer heat-insulated structure tank for storing liquefied gas, and to suppress costs, in order to solve the above-mentioned problems.
  • a method for cooling down a liquefied gas storage tank includes: A method for cooling a tank including an inner tank and an outer tank for storing liquefied gas before filling it with the liquefied gas to be stored, the method comprising: Introducing a cooling liquefied gas into the inner tank space; After starting the introduction of the cooling liquefied gas, forcibly supplying the cooling gas to the space between the inner and outer tanks; including.
  • the method for cooling down a liquefied gas storage tank it is possible to shorten the time required for cooling down a multi-layered heat-insulating structure tank for storing liquefied gas, and to suppress costs.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquefied gas storage tank to which a cool-down method according to an embodiment of the present disclosure is applied.
  • FIG. 2 is a schematic diagram showing an initial state before the start of a cool-down method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to a modified example of an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to another modification of the embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a state in which a cool-down method according to an embodiment of the present disclosure has been completed.
  • FIG. 2 is an enlarged cross-sectional view schematically showing a part of the liquefied gas storage gas tank of FIG. 1.
  • FIG. 1 shows a liquefied gas storage tank (hereinafter simply referred to as “storage tank”) 1 to which a cool-down method according to an embodiment of the present disclosure is applied.
  • This storage tank 1 is a tank for storing liquefied gas, and is configured as a double shell tank including an inner tank 3 and an outer tank 5.
  • “cool down” means cooling the storage tank 1 before filling the storage tank 1 with the liquefied gas to be stored.
  • liquefied hydrogen at an extremely low temperature (approximately -250° C.) will be explained as an example of the liquefied gas to be stored.
  • liquefied gas can also include other types of gas, such as liquefied petroleum gas (LPG, approximately -45°C), liquefied ethylene gas (LEG, approximately -100°C), liquefied natural gas (LNG, approximately -160°C), It may be helium (LHe, about ⁇ 270° C.) or the like.
  • the storage tank 1 is installed, for example, on a ship such as a liquefied hydrogen carrier.
  • the liquefied hydrogen storage facility in which the storage tank 1 is installed is not limited to this example as long as it has a structure and function capable of storing liquefied hydrogen.
  • the liquefied hydrogen storage facility in which the storage tank 1 is installed may be, for example, a ship that uses liquefied hydrogen as a propulsion fuel, a land-based liquefied hydrogen storage facility other than a ship, or a plant that uses liquefied hydrogen. It's fine.
  • the storage tank 1 is configured as a double shell tank having an inner tank 3 and an outer tank 5.
  • the inner tank 3 has an inner tank shell that forms a storage space (hereinafter referred to as "inner tank interior space 7") for liquefied hydrogen to be stored, and an outer circumferential surface of the inner tank shell. It has an inner tank heat insulation layer that covers the inner tank.
  • the outer tank 5 has an outer tank shell that forms an inter-inner/outer tank space 9 that is a heat insulating layer between it and the inner tank 3, and an outer tank heat insulating layer that covers the outer peripheral surface of the outer tank shell. Note that the locations where the heat insulating layers of the inner tank 3 and the outer tank 5 are installed are not limited to this example, but are arbitrary.
  • the heat insulating layers may be installed so as to cover the inner circumferential surface of the outer tank shell.
  • one or both of the heat-insulating layers of the inner tank 3 and the outer tank 5 may be omitted.
  • This storage tank 1 is normally operated with low-temperature hydrogen gas sealed in the space 9 between the inner and outer tanks, which is a heat insulating layer.
  • a communication passage 11 is provided that communicates the inner tank interior space 7 and the outer and outer tank space 9.
  • the communication path 11 is configured to be openable and closable.
  • a vaporized gas discharge passage 13 that discharges vaporized gas of liquefied hydrogen (hereinafter simply referred to as “vaporized gas”) G1 generated in the inner tank space 7 to the outside of the storage tank 1 and a hydrogen gas introduction passage 15 that introduces hydrogen gas (hereinafter referred to as "external hydrogen gas”) G2 from a hydrogen gas source (not shown) provided outside the storage tank 1 into the space 9 between the inner and outer tanks.
  • a connecting passage 17 connecting the vaporized gas discharge passage 13 and the hydrogen gas introduction passage 15 is provided outside the storage tank 1.
  • a communication passage 11 is formed by the vaporized gas discharge passage 13, the connection passage 17, and the hydrogen gas introduction passage 15. Further, an on-off valve 19 is provided in the communication passage 11, and the communication passage 11 is configured to be openable and closable by this on-off valve 19.
  • the on-off valve 19 is provided in a portion of the hydrogen gas introduction passage 15 downstream of the connection point with the connection passage 17, but the position and number of the on-off valves 19 are not limited to this example.
  • the on-off valve 19 may be a valve that can be opened and closed manually, or may be a valve that is automatically opened and closed according to a set differential pressure.
  • the specific configuration of the communication path 11 between the inner tank interior space 7 and the outer and outer tank space 9 and the specific configuration that allows the communication path 11 to be opened and closed are not limited to this example.
  • the above-mentioned "hydrogen gas source” may have any configuration as long as it can serve as a supply source of hydrogen gas, and is typically a tank that stores hydrogen gas, but for example, it may be a tank that stores liquefied hydrogen. It may also be a combination of a tank and a vaporizer.
  • a device 31 for forcibly feeding cooling gas, which will be described later, to the space 9 between the inner and outer tanks is provided in the communication path 11.
  • a gas supply device 31 is provided in the connection passage 17 .
  • the gas supply device 31 is a device that moves gas by applying pressure to the gas, such as a turbo or positive displacement compressor, blower, or fan.
  • an inner tank temperature detection device 21 that detects the temperature of the inner tank 3
  • an inner tank space pressure detection device 23 that monitors the pressure of the inner tank space 7
  • a temperature detection device 23 that detects the temperature of the space 9 between the inner and outer tanks.
  • the inner and outer tank space temperature detection device 25 detects the pressure in the inner and outer tank space 9
  • the inner and outer tank space pressure sensor 27 detects the pressure in the inner and outer tank space 9.
  • the device is equipped with a memory for storing the data, a power source circuit such as a power supply element such as a battery or a power supply circuit for receiving power supply from the outside, a transmission circuit for transmitting the output signal to the outside by wire or wirelessly, and the like.
  • a temperature sensing device and a pressure sensing device a device that measures parts other than those described above, such as an inner tank temperature sensing device or an outer tank temperature sensing device, may be provided.
  • only the necessary temperature sensing devices and pressure sensing devices may be provided depending on the embodiment of the cool-down method described later.
  • hydrogen gas exists at room temperature and atmospheric pressure (0 kPaG), for example.
  • the temperature and pressure of the hydrogen gas in the initial state are not limited to room temperature and atmospheric pressure.
  • hydrogen for cooling liquefied hydrogen for cooling
  • FIG. 2B cooling hydrogen CH is sprayed into the inner tank space 7 using the sprayer 29 .
  • the temperature of the inner tank 3 is reduced. As the temperature of the inner tank 3 decreases, the temperature of the space 9 between the inner and outer tanks also decreases. Further, in the inner tank space 7, a vaporized gas G1 in which the cooling hydrogen CH is vaporized is generated, and the pressure increases.
  • the cooling gas CG is forcibly supplied to the space 9 between the inner and outer tanks.
  • "forcibly supplied” refers to supplying by applying pressure to the gas and moving it, rather than simply utilizing the pressure difference in the state of the gas.
  • vaporized gas G1 having an extremely low temperature of about 20K is forcibly supplied to the space 9 between the inner and outer tanks as the cooling gas CG using the gas supply device 31.
  • the cooling gas CG forcibly supplied to the space 9 between the inner and outer tanks is discharged to the outside of the storage tank 1 via the discharge passage 33.
  • the discharge passage 33 has an entrance near the bottom of the space 9 between the inner and outer tanks, passes through the space 9 between the inner and outer tanks, and discharges the storage tank 1 from an outlet located at the upper part of the space 9 between the inner and outer tanks, for example, near the top.
  • the cooling gas CG is discharged to the outside.
  • the discharge passage 33 may be appropriately installed with a gas compressor or an exhaust pump for discharge. By discharging the cooling gas CG forcibly supplied to the space 9 between the inner and outer tanks to the outside, the pressure in the space 9 between the inner and outer tanks is prevented from increasing excessively.
  • the cooling gas CG supplied to the space 9 between the inner and outer tanks is not limited to the vaporized gas G1.
  • external hydrogen gas G2 may be forcibly supplied from the hydrogen gas introduction passage 15 to the space 9 between the inner and outer tanks as the cooling gas CG.
  • the gas supply device 31 may be provided on the hydrogen gas introduction passage 15, and a bypass passage 15a may be provided for when the gas supply device 31 is not used. good.
  • the cooling gas CG supplied to the space 9 between the inner and outer tanks may be forcibly supplied from a gas source and a gas supply path provided exclusively for cooling.
  • the hydrogen gas discharged from the discharge passage 33 may be sent to a device that uses hydrogen gas and/or a device that stores hydrogen gas that is installed outside the storage tank 1.
  • a device that uses hydrogen gas and/or a device that stores hydrogen gas that is installed outside the storage tank 1.
  • the hydrogen gas discharged from the discharge passage 33 may be fed to an engine, boiler, combustion device, etc. that utilizes hydrogen gas.
  • a cooling device 35 is provided on the communication path 11, for example, on the hydrogen gas introduction path 15, and the cooling device 35 is used to adjust the temperature of the cooling gas CG.
  • Cool-down may be performed while controlling the cooling rate of the outer tank 5 by adjusting the flow rate of the CG so that the temperature difference between the inner tank 3 and the outer tank 5 is equal to or less than a predetermined value.
  • the predetermined value of the temperature difference between the inner tank 3 and the outer tank 5 is, for example, a value set as the temperature difference at the start of normal operation of the storage tank.
  • the cooling device 35 includes, for example, a temperature sensor that detects gas temperature, a cooling source such as a compression refrigerator or an absorption refrigerator, a control circuit that controls these, and the like. However, the cooling device 35 may be a device having a configuration other than the above, for example, a heat exchanger.
  • the gas supply device 31 is stopped, the on-off valve 19 is closed, and the communication passage 11 is closed to provide cooling to the space 9 between the inner and outer tanks. Stop gas CG supply.
  • the temperature of the space 9 between the inner and outer tanks is prevented from decreasing excessively.
  • it is not essential to stop the supply of the cooling gas CG based on a predetermined temperature. Further, after the supply of the cooling gas CG is once stopped, it may be restarted as necessary.
  • the above-mentioned predetermined temperature of the space 9 between the inner and outer tanks is determined based on the set temperature (for example, 110 K) of the space 9 between the inner and outer tanks during steady operation of the storage tank 1.
  • the set temperature for example, 110 K
  • a temperature slightly higher than the set temperature for example, 120 K
  • a deflection plate 37 is provided to deflect the cooling gas CG introduced into the space 9 between the inner and outer tanks.
  • the deflection plate 37 is disposed at a position facing the cooling gas CG supply port 39 in the space 9 between the inner and outer tanks so as to be substantially orthogonal to the outflow direction of the cooling gas CG. It is located.
  • the deflection plate 37 is provided with a support member (not shown) protruding from the outer circumferential surface of the inner tub 3 or the inner circumferential surface of the outer tub 5 from the outer circumferential surface of the inner tub 3 or the inner circumferential surface of the outer tub 5. supported at a distance.
  • the cooling gas CG flowing out from the supply port 39 collides with the deflection plate 37, is dispersed in each direction along the surface of the deflection plate 37, and then diffuses into the space 9 between the inner and outer tanks. In this way, by providing the deflection plate 37, the cooling gas CG flowing out from the supply port 39 collides with a concentrated portion of the inner tank 3 or outer tank 5 constituting the storage tank 1, and the part concerned is locally This prevents the product from being cooled down.
  • the number of supply ports 39 to the space 9 between the inner and outer tanks is not limited to the one illustrated, but may be plural. When the number of supply ports 39 is plural, the deflection plate 37 may be provided for all or some of the plurality of supply ports 39 .
  • the shape of the deflection plate 37 may be any shape that can disperse the cooling gas CG flowing out from the supply port 39, and is not limited to the illustrated flat shape. However, the deflection plate 37 may be omitted. Furthermore, the gas blown onto the deflection plate 37 is not limited to the cooling gas CG, but may be any temperature gas introduced into the space 9 between the inner and outer tanks.
  • cool down may be performed using liquefied gas other than liquefied hydrogen.
  • the cooldown may be performed in stages, such as introducing liquefied nitrogen from a state in which air is present in the inner tank 3, and then replacing the nitrogen with hydrogen.
  • liquefied gas other than liquefied hydrogen can be used as the cooling gas forcibly supplied to the space 9 between the inner and outer tanks.
  • FIG. 1 shows an independent double-shell tank formed independently of the ship's hull as an example of the storage tank 1
  • the cool-down method according to the present embodiment is not limited to this example. , can be applied to any type of storage tank.
  • the cool-down method according to the present embodiment can also be applied to a type of storage tank that is formed integrally with the hull.
  • the multiple structure of the storage tank may be a triple structure or more, and the cool-down method according to the present embodiment can be applied to the internal tank space and any other inter-tank space of such a multiple structure. can.
  • the cool down according to the present embodiment is typically performed, for example, after construction of the storage tank 1, after construction of liquefied gas storage equipment such as a ship in which the storage tank 1 is installed, or after the construction of the equipment or the storage tank 1. Maintenance is carried out after warming up the storage tank 1 and before loading it again.
  • the cool-down method according to the present embodiment is also applied when carrying out an empty voyage (ballast voyage) after unloading the liquefied gas in the storage tank 1 when the storage tank 1 is installed on a ship. be able to. That is, during a ballast voyage, the temperature of the inner tank 3 may gradually rise, and in that case, the above-mentioned cool-down method can be applied.
  • the liquefied gas left in the inner tank 3 for cooling down without unloading is used to cool down the pumps etc. installed in the inner tank 3.
  • a feeding device transports the liquefied gas to the top of the tank for cooling down.
  • liquefied gas or vaporized gas for cooling down may be supplied from other storage tanks 1.
  • cooling gas CG is forcibly supplied to the space 9 between the inner and outer tanks.
  • the cooling of the space 9 between the inner and outer tanks and the outer tank 5 is promoted, so that the time required to cool down the entire storage tank 1 can be shortened compared to the case where only the inner tank 3 is simply cooled.
  • the inflow of the vaporized gas G1 suppresses a drop in the pressure in the space 9 between the inner and outer tanks, the minimum allowable pressure in the space 9 between the inner and outer tanks is maintained, taking into account the mechanical strength of the inner tank 3 and the outer tank 5. This makes it easier.
  • the vaporized gas G1 as the cooling gas CG as in this embodiment, it is possible to shorten the time required for cool-down while suppressing costs.
  • the cooling gas CG is supplied by vaporized gas generated in the inner tank space 7 by opening the communication path 11 between the inner and outer tank space 9 and the inner tank inner space 7. This may be done by supplying G1.
  • hydrogen gas can be supplied to the space 9 between the inner and outer tanks with a simple structure and at low cost by utilizing hydrogen for cooling.
  • the supply of the cooling gas CG may be stopped when the temperature of the space 9 between the inner and outer tanks falls below a predetermined temperature. This prevents the temperature of the space 9 between the inner and outer tanks from decreasing excessively.
  • the cooling gas CG forcibly supplied to the space 9 between the inner and outer tanks may be discharged to the outside of the space 9 between the inner and outer tanks. This prevents the pressure in the space 9 between the inner and outer tanks from increasing excessively.
  • a deflection plate 37 may be provided in the space between the inner and outer tanks, and the cooling gas CG may be injected toward the deflection plate 37. This prevents the cooling gas CG from colliding in a concentrated manner with a part of the inner tank 3 or the outer tank 5 constituting the storage tank 1, thereby preventing the part from being locally cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

液化ガスを貯蔵するための、内槽(3)および外槽(5)を備えるタンクを、貯蔵対象である前記液化ガスを充填する前に冷却する方法が、内槽内空間(9)に、冷却用液化ガスを導入することと、前記冷却用液化ガス(CH)の導入を開始した後、前記内外槽間空間(9)に冷却用ガスCG(CG)を強制的に供給することとを含む。

Description

液化ガス貯蔵タンクのクールダウン方法 関連出願
 この出願は、2022年3月23日出願の特願2022-046802の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本開示は、液化ガス貯蔵タンクのクールダウン方法に関する。
 従来、液化ガス、例えば極低温の液化水素を貯蔵するタンクとして、内槽および外槽を備える二重殻タンクを用いることが提案されている(例えば、特許文献1参照)。
 一般的に、低温の液化ガスをタンクに貯蔵する場合、常温のタンクに一度に多量の貯蔵対象の液化ガスを充填することによってタンクを急激に冷却することを回避するため、貯蔵対象の液化ガスを充填する前に、予めタンクを比較的低速で冷却すること(以下、「クールダウン」という。)が行われている。
特開2019-151291号公報
 しかし、液化ガス用二重殻タンクのような多重防熱構造のタンクの場合、高い断熱性を有することから、内槽のみを冷却するのみではタンク全体の冷却に長時間を要し、かつ多量の冷却用の液化ガスを要することになる。したがって、クールダウンに要するコストが増大する。
 本開示の目的は、上記の課題を解決するために、液化ガス貯蔵用の多重防熱構造タンクのクールダウンに要する時間を短縮し、コストを抑制することにある。
 上記目的を達成するために、本開示に係る液化ガス貯蔵タンクのクールダウン方法は、
 液化ガスを貯蔵するための、内槽および外槽を備えるタンクを、貯蔵対象である前記液化ガスを充填する前に冷却する方法であって、
 内槽内空間に、冷却用液化ガスを導入することと、
 前記冷却用液化ガスの導入を開始した後、前記内外槽間空間に冷却用ガスを強制的に供給することと、
を含む。
 本開示に係る液化ガス貯蔵タンクのクールダウン方法によれば、液化ガス貯蔵用の多重防熱構造タンクのクールダウンに要する時間を短縮し、コストを抑制することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本開示の一実施形態に係るクールダウン方法が適用される液化ガス貯蔵タンクの概略構成を示す断面図である。 本開示の一実施形態に係るクールダウン方法の開始前の初期状態を示す模式図である。 本開示の一実施形態に係るクールダウン方法における内槽冷却中の状態を示す模式図である。 本開示の一実施形態の一変形例に係るクールダウン方法における内槽冷却中の状態を示す模式図である。 本開示の一実施形態の他の変形例に係るクールダウン方法における内槽冷却中の状態を示す模式図である。 本開示の一実施形態に係るクールダウン方法の終了した状態を示す模式図である。 図1の液化ガス貯蔵ガスタンクの一部を拡大して模式的に示す断面図である。
 以下、本開示の好ましい実施形態について図面を参照しながら説明する。図1に本開示の一実施形態に係るクールダウン方法が適用される液化ガス貯蔵タンク(以下、単に「貯蔵タンク」という。)1を示す。この貯蔵タンク1は、液化ガスを貯蔵するためのタンクであり、内槽3および外槽5を備える二重殻タンクとして構成されている。なお、本明細書において、「クールダウン」とは、貯蔵対象である液化ガスを貯蔵タンク1に充填する前に、貯蔵タンク1を冷却することを意味する。
 以下に説明する本実施形態においては、貯蔵対象である液化ガスとして極低温(約-250℃)の液化水素を例として説明する。もっとも、液化ガスは他の種類のガス、例えば、液化石油ガス(LPG、約-45℃)、液化エチレンガス(LEG、約-100℃)、液化天然ガス(LNG、約-160℃)、液化ヘリウム(LHe、約-270℃)などであってよい。
 貯蔵タンク1は、例えば液化水素運搬船のような船舶に設置される。もっとも、貯蔵タンク1が設置される液化水素貯蔵設備は、液化水素を貯蔵することが可能な構造、機能を有する設備であればこの例に限定されない。貯蔵タンク1が設置される液化水素貯蔵設備は、例えば、液化水素を推進用燃料として使用する船舶であってもよく、船舶以外の地上の液化水素貯蔵設備や、液化水素を利用するプラントであってよい。
 貯蔵タンク1は、内槽3および外槽5を有する二重殻タンクとして構成されている。具体的には、内槽3は、その内側に貯蔵対象である液化水素の貯蔵空間(以下、「内槽内空間7」と呼ぶ。)を形成する内槽殻と、内槽殻の外周面を覆う内槽防熱層とを有する。外槽5は、内槽3との間に断熱層である内外槽間空間9を形成する外槽殻と、外槽殻の外周面を覆う外槽防熱層とを有する。なお、内槽3および外槽5の防熱層を設置する箇所はこの例に限定されず任意であり、例えば防熱層を外槽殻の内周面を覆うように設置してもよい。また、内槽3および外槽5の防熱層の一方または両方を省略してもよい。この貯蔵タンク1は、断熱層である内外槽間空間9に低温の水素ガスを封入した状態で定常運用される。
 本実施形態では、内槽内空間7と内外槽間空間9とを連通させる連通路11が設けられている。連通路11は開閉可能に構成されている。図示の例では、具体的には、内槽内空間7で生じた液化水素の気化ガス(以下、単に「気化ガス」と呼ぶ。)G1を貯蔵タンク1の外部へ排出する気化ガス排出通路13と、貯蔵タンク1の外部に設けられた水素ガス源(図示せず)からの水素ガス(以下、「外部水素ガス」と呼ぶ。)G2を内外槽間空間9に導入する水素ガス導入通路15と、貯蔵タンク1の外部において気化ガス排出通路13と水素ガス導入通路15とを接続する接続通路17とが設けられている。これら気化ガス排出通路13、接続通路17および水素ガス導入通路15によって連通路11が形成されている。また、連通路11に開閉弁19が設けられており、この開閉弁19によって連通路11が開閉可能に構成されている。この例では、水素ガス導入通路15における接続通路17との接続点の下流側の部分に開閉弁19が設けられているが、開閉弁19の位置および個数はこの例に限定されない。また、開閉弁19は、手動で開閉可能な弁のほか、設定された差圧に応じて自動的に開閉する弁であってもよい。
 なお、内槽内空間7と内外槽間空間9との間の連通路11の具体的な構成、および連通路11を開閉可能とする具体的な構成は、この例に限定されない。また、上記「水素ガス源」は、水素ガスの供給源となり得るものであればどのような構成であってもよく、典型的には水素ガスを貯蔵したタンクであるが、例えば液化水素を貯蔵したタンクと気化器を組み合わせたものであってもよい。
 さらに、本実施形態では、連通路11に、後述する冷却用ガスを強制的に内外槽間空間9に送給する装置(以下、単に「ガス送給装置」と呼ぶ。)31が設けられている。図示の例では接続通路17にガス送給装置31が設けられている。ガス送給装置31は、例えばターボ式または容積式の圧縮機、ブロワ、ファンといったガスに圧力をかけることによりガスを移動させる装置である。
 また、本実施形態では、内槽3の温度を検知する内槽温度検知装置21、内槽内空間7の圧力を監視する内槽内空間圧力検知装置23、内外槽間空間9の温度を検知する内外槽間空間温度検知装置25、および内外槽間空間9の圧力を検知する内外槽間空間圧力検知装置27を備えている。これらの検知装置は、検知対象の物理量(温度、圧力)を検知するセンサ素子、取得した検出量に対して信号変換処理、演算処理等必要な処理を行う各種回路、これらの処理に必要な情報を格納するためのメモリ、電池等の電源素子または外部から電源供給を受けるための電源回路、出力信号を有線または無線で外部へ送信するための送信回路等を備えている。なお、このような温度検知装置,圧力検知装置として、上記以外の部分を計測する装置、例えば内槽温度検知装置や外槽温度検知装置が設けられていてもよい。また、これらの温度検知装置,圧力検知装置は、後述するクールダウン方法の実施の態様に応じて必要なもののみが設けられていてよい。
 このように構成された貯蔵タンク1のクールダウン方法について、以下に詳細に説明する。
 本実施形態では、図2Aに示すクールダウンを開始する時点での初期状態の貯蔵タンク1において、連通路11の開閉弁19を開いた状態とされており、内槽内空間7および内外槽間空間9には、いずれも、例えば常温,大気圧(0kPaG)の水素ガスが存在している。もっとも、初期状態の水素ガスの温度,圧力は常温,大気圧に限定されない。この状態から、図2Bに示すように、内槽内空間7に冷却用の液化水素(以下、単に「冷却用水素」と呼ぶ。)CHを導入する。この例では、噴霧器29を用いて、内槽内空間7に、冷却用水素CHを噴霧する。
 この状態で冷却用水素CHの噴霧を続けることにより、内槽3の温度が低下する。内槽3の温度が低下することにより、内外槽間空間9の温度も低下する。また、内槽内空間7においては、冷却用水素CHが気化した気化ガスG1が発生して圧力が上昇する。
 本実施形態では、冷却用液化水素CHの導入を開始した後、内外槽間空間9に冷却用ガスCGを強制的に供給する。なお、本明細書において、「強制的に供給する」とは、当該ガスの状態における圧力差を単に利用するのではなく、ガスに圧力をかけて移動させることによって供給することをいう。具体的には、この例では、20K程度の極低温である気化ガスG1を、冷却用ガスCGとして、ガス送給装置31を用いて、内外槽間空間9に強制的に供給する。内外槽間空間9に強制的に供給された冷却用ガスCGは、排出通路33を介して貯蔵タンク1の外部へ排出される。排出通路33は、例えば、内外槽間空間9における底部付近に入口を有し、内外槽間空間9内を通って、内外槽間空間9の上部、例えば頂部付近に位置する出口から貯蔵タンク1の外部へ冷却用ガスCGを排出する。排出通路33には、排出用のガス圧縮機や排気ポンプが適宜設置されていてもよい。内外槽間空間9に強制的に供給された冷却用ガスCGを外部へ排出することにより、内外槽間空間9内の圧力が過度に上昇することが防止される。
 なお、内外槽間空間9に供給される冷却用ガスCGは、気化ガスG1に限定されない。気化ガスG1に代えて、または追加して、例えば水素ガス導入通路15から外部水素ガスG2を内外槽間空間9に冷却用ガスCGとして強制的に供給してもよい。この場合には、図2Cに変形例として示すように、ガス送給装置31を水素ガス導入通路15上に設けると共に、ガス送給装置31を使用しない場合のためのバイパス通路15aを設けてもよい。また、内外槽間空間9に供給される冷却用ガスCGは、冷却用専用に設けられたガス源およびガス供給路から強制的に供給されてもよい。このように外部の水素ガスを内外槽間空間9に冷却用ガスCGとして供給する場合、冷却用ガスCGの供給は、内槽内空間7への冷却用水素CHの導入を開始する前から行ってもよい。
 排出通路33から排出された水素ガスは、貯蔵タンク1の外部に設置された水素ガスを利用する装置および/または水素ガスを貯蔵する装置に送給されてもよい。例えば、貯蔵タンク1が船舶に設置される場合、排出通路33から排出された水素ガスは、水素ガスを利用するエンジン、ボイラ、燃焼装置等に送給されてよい。
 このように、内槽3を冷却用水素CHで冷却しながら、冷却用ガスCGを内外槽間空間9に強制的に供給することにより、内外槽間空間9および外槽5の冷却が促進されるので、単に内槽3のみを冷却する場合に比べて貯蔵タンク1全体のクールダウンに要する時間を短縮することができる。さらに、気化ガスG1の流入によって内外槽間空間9の圧力の低下が抑制されるので、内槽3および外槽5の機械的強度を考慮した、内外槽間空間9の許容最低圧力を維持することが容易となる。本実施形態のように、気化ガスG1を冷却用ガスCGとして利用することにより、簡易な構造で、かつコストを抑制しながらクールダウンに要する時間を短縮することができる。
 なお、内外槽間空間9に導入される気化ガスG1および/または外部水素ガスG2の温度が十分低くない場合、つまり、内外槽間空間9の冷却速度が遅く、クールダウンの過程で内槽3と外槽5の温度差が大きくなりすぎ、構成部材の熱収縮量の差が過大になる場合がある。これを回避するため、図2Dに示すように、連通路11上、例えば水素ガス導入通路15上に冷却装置35を設け、この冷却装置35を用いた冷却用ガスCGの温度調整と冷却用ガスCGの流量調整により、外槽5の冷却速度を調整して、内槽3と外槽5の温度差が所定値以下となるように制御しながらクールダウンを行ってもよい。内槽3と外槽5の温度差の所定値は、例えば、貯蔵タンクの通常運用開始時の温度差として設定されている値である。冷却装置35は、例えば、ガス温度を検知する温度センサ、圧縮式冷凍機や吸収式冷凍機といった冷却源、これらを制御する制御回路等を備える。もっとも、冷却装置35は、上記以外の構成の装置、例えば熱交換器であってもよい。
 その後、内外槽間空間9の温度が所定温度まで低下した場合に、ガス送給装置31を停止し、開閉弁19を閉じ、連通路11を閉状態として、内外槽間空間9への冷却用ガスCG供給を停止する。内外槽間空間9への冷却用ガスCG供給を停止することにより、内外槽間空間9の温度が過度に低下することが防止される。もっとも、所定温度を基準として冷却用ガスCGの供給を停止することは必須ではない。また、冷却用ガスCGの供給をいったん停止した後、必要に応じて再開してもよい。
 上記の内外槽間空間9の所定温度は、貯蔵タンク1の定常運用時における内外槽間空間9の設定温度(例えば110K)を基準として定められる。本実施形態では、内外槽間空間温度を設定温度以上に維持するため、設定温度を若干上回る温度(例えば120K)を所定温度としている。
 その後、図2Eに示すように、内槽3の温度および内外槽間空間9の温度がそれぞれ目標温度まで低下した時点で、連通路11が開状態であればこれを閉状態にするとともに、冷却用水素CHの噴霧を停止してクールダウンを終了する。
 なお、本実施形態では、図1に示すように、内外槽間空間9に導入された冷却用ガスCGを偏向させる偏向板37が設けられている。具体的には、図3に示すように、偏向板37は、内外槽間空間9における冷却用ガスCGの供給口39に対向する位置に、冷却用ガスCGの流出方向にほぼ直交するように配置されている。偏向板37は、内槽3の外周面または外槽5の内周面に突設された支持部材(図示せず)を介して、内槽3の外周面または外槽5の内周面から離間した状態で支持されている。供給口39から流出した冷却用ガスCGは、偏向板37に衝突して、偏向板37の表面に沿った各方向に分散された後に内外槽間空間9内に拡散する。このように、偏向板37を設けることにより、供給口39から流出した冷却用ガスCGが、貯蔵タンク1を構成する内槽3または外槽5の一部分に集中して衝突し、当該部分が局所的に冷却されることが防止される。内外槽間空間9への供給口39の数は図示した1個に限定されず、複数であってもよい。供給口39の数が複数の場合、偏向板37は、複数の供給口39のすべての供給口39またはその一部の供給口39に対してそれぞれ設けられていてもよい。また、偏向板37の形状は、供給口39から流出した冷却用ガスCGを分散させることができる形状であればよく、例示した平板状に限定されない。もっとも、偏向板37は省略してもよい。また、偏向板37に吹き付けられるガスは、冷却用ガスCGに限定されず、内外槽間空間9に導入されるいかなる温度のガスであってもよい。
 本実施形態では、クールダウンを冷却用の液化水素を用いて行う例について説明したが、クールダウンは液化水素以外の液化ガスを用いて行ってもよい。例えば、内槽3内に空気が存在する状態から、液化窒素を導入した後、さらに窒素を水素で置換するというように、段階的にクールダウンを進めてもよい。同様に、内外槽間空間9に強制供給する冷却用ガスも、液化水素以外の液化ガスを使用することができる。
 なお、図1には、貯蔵タンク1の一例として、船体とは独立に形成される独立型の二重殻タンクを示したが、本実施形態に係るクールダウン方法は、この例に限定されず、いかなるタイプの貯蔵タンクにも適用することができる。例えば、本実施形態に係るクールダウン方法は、船体と一体に形成されるタイプの貯蔵タンクにも適用することができる。また、貯蔵タンクの多重構造は、三重構造以上であってよく、そのような多重構造の内槽内空間と他の任意の槽間空間とに本実施形態に係るクールダウン方法を適用することができる。
  本実施形態に係るクールダウンは、典型的には、例えば、貯蔵タンク1の建造後、貯蔵タンク1が設置される船舶のような液化ガス貯蔵設備の建造後、または、当該設備や貯蔵タンク1のメンテナンスのために貯蔵タンク1をウォームアップした後に再度積荷を実施する前に行われる。もっとも、本実施形態に係るクールダウン方法は、貯蔵タンク1が船舶に設置される場合において、貯蔵タンク1内の液化ガスを揚荷した後の空荷航海(バラスト航海)する際にも適用することができる。すなわち、バラスト航海においては内槽3の温度が徐々に上昇する場合があり、その場合に上記クールダウン方法を適用することができる。なお、バラスト航海中の貯蔵タンク1のクールダウンにおいては、例えば、揚荷せずにクールダウン用として内槽3内に残した液化ガスを用いて、内槽3内に設置されたポンプ等の送給装置によって液化ガスをタンク上部まで移送してクールダウンを行う。貯蔵タンク1が複数設置される場合には、他の貯蔵タンク1からクールダウン用の液化ガスや気化ガスの供給を受けてもよい。
 以上説明した本実施形態に係るクールダウン方法によれば、図2Bに示すように、内槽3を冷却用水素CHで冷却しながら、冷却用ガスCGを内外槽間空間9に強制的に供給することにより、内外槽間空間9および外槽5の冷却が促進されるので、単に内槽3のみを冷却する場合に比べて貯蔵タンク1全体のクールダウンに要する時間を短縮することができる。さらに、気化ガスG1の流入によって内外槽間空間9の圧力の低下が抑制されるので、内槽3および外槽5の機械的強度を考慮した、内外槽間空間9の許容最低圧力を維持することが容易となる。本実施形態のように、気化ガスG1を冷却用ガスCGとして利用することにより、コストを抑制しながらクールダウンに要する時間を短縮することができる。
 本実施形態に係るクールダウン方法において、上記の冷却用ガスCG供給は、内外槽間空間9と内槽内空間7の間の連通路11を開けることによって内槽内空間7で発生した気化ガスG1を供給することによって行ってもよい。これにより、簡易な構造で、かつ冷却用水素を活用して低コストで内外槽間空間9に水素ガス供給を行うことができる。
 本実施形態に係るクールダウン方法において、内外槽間空間9の温度が所定温度以下になった場合に冷却用ガスCGの供給を停止してもよい。これにより、内外槽間空間9の温度が過度に低下することが防止される。
 本実施形態に係るクールダウン方法において、内外槽間空間9に強制的に供給した冷却用ガスCGを、内外槽間空間9の外部へ排出してもよい。これにより、内外槽間空間9の圧力が過度に上昇することが防止される。
 本実施形態に係るクールダウン方法において、内外槽間空間に偏向板37を設け、偏向板37に向けて冷却用ガスCGを噴射してもよい。これにより、冷却用ガスCGが、貯蔵タンク1を構成する内槽3または外槽5の一部分に集中して衝突し、当該部分が局所的に冷却されることが防止される。
 以上のとおり、図面を参照しながら本開示の好適な実施形態を説明したが、本開示の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本開示の範囲内に含まれる。
1 液化ガス貯蔵タンク
3 内槽
5 外槽
7 内槽内空間
9 内外槽間空間
11 連通路
29 噴霧器
31 ガス送給装置
37 偏向板
CG 冷却用ガス
CH 冷却用液化ガス
G1 気化ガス
G2 外部水素ガス

Claims (5)

  1.  液化ガスを貯蔵するための、内槽および外槽を備えるタンクを、貯蔵対象である前記液化ガスを充填する前に冷却する方法であって、
     内槽内空間に、冷却用液化ガスを導入することと、
     前記冷却用液化ガスの導入を開始した後、前記内外槽間空間に冷却用ガスを強制的に供給することと、
    を含む、
    液化ガス貯蔵タンクのクールダウン方法。
  2.  請求項1に記載のクールダウン方法において、
     前記内外槽間空間に、前記冷却用ガスを強制的に供給した後、前記内外槽間空間の温度が所定値以下になった場合に、前記冷却用ガスの供給を停止する、
    クールダウン方法。
  3.  請求項1または2に記載のクールダウン方法において、
     前記内外槽間空間に前記冷却用ガスを強制的に供給することが、前記内槽内空間で発生した気化ガスを強制的に供給することを含む、
    クールダウン方法。
  4.  請求項1から3のいずれか一項に記載のクールダウン方法において、さらに、
     前記内外槽間空間に強制的に供給した前記冷却用ガスを、前記内外槽間空間の外部へ排出することを含む、
    クールダウン方法。
  5.  請求項1から4のいずれか一項に記載のクールダウン方法において、
     前記内外槽間空間に偏向板を設け、前記偏向板に向けて前記冷却用ガスを噴射することを含む、
    クールダウン方法。
PCT/JP2023/011263 2022-03-23 2023-03-22 液化ガス貯蔵タンクのクールダウン方法 WO2023182367A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046802 2022-03-23
JP2022046802A JP2023140786A (ja) 2022-03-23 2022-03-23 液化ガス貯蔵タンクのクールダウン方法

Publications (1)

Publication Number Publication Date
WO2023182367A1 true WO2023182367A1 (ja) 2023-09-28

Family

ID=88101606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011263 WO2023182367A1 (ja) 2022-03-23 2023-03-22 液化ガス貯蔵タンクのクールダウン方法

Country Status (2)

Country Link
JP (1) JP2023140786A (ja)
WO (1) WO2023182367A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513944A (ja) * 2015-03-20 2018-05-31 ギャズトランスポルト エ テクニギャズ 液化ガスを冷却するための方法
JP2020514150A (ja) * 2016-12-23 2020-05-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap 液化ガスを輸送するための船舶およびその船舶を運転する方法
JP2022502616A (ja) * 2018-10-09 2022-01-11 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 液化水素を貯蔵及び分配するための方法並びに設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513944A (ja) * 2015-03-20 2018-05-31 ギャズトランスポルト エ テクニギャズ 液化ガスを冷却するための方法
JP2020514150A (ja) * 2016-12-23 2020-05-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap 液化ガスを輸送するための船舶およびその船舶を運転する方法
JP2022502616A (ja) * 2018-10-09 2022-01-11 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 液化水素を貯蔵及び分配するための方法並びに設備

Also Published As

Publication number Publication date
JP2023140786A (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
JP4750097B2 (ja) Lng運搬船の安全弁及びその開閉方法
KR101588663B1 (ko) 선박의 연료가스 공급장치
JP2008196682A (ja) Lng貯蔵タンク及びこれを用いた蒸発ガス処理方法
WO2023182367A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
KR101847021B1 (ko) Lng 운반선의 lng 선적 시스템 및 방법
WO2023182363A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
WO2023182365A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
WO2023182366A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
WO2023182368A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
WO2023182362A1 (ja) 液化ガス貯蔵タンクのクールダウン方法
KR101403611B1 (ko) 재기화 장치를 구비한 lng fsru
WO2023182364A1 (ja) 液化ガス貯蔵タンクのクールダウン方法およびウォームアップ方法
KR102304933B1 (ko) 액화천연가스 충전시설의 냉매 재활용 시스템 및 재활용 방법
KR100952669B1 (ko) Lng 운반선의 하역시 압력 조절장치 및 상기 압력조절장치를 갖는 lng 운반선
JP7220706B2 (ja) 加圧式液体貨物移送装置及び方法
KR101499902B1 (ko) 재기화장치를 갖는 해양구조물 및 상기 해양구조물에서 lng 저장탱크를 운용하는 방법
KR20180113019A (ko) 선박용 가스 공급 배관 시스템 및 가스 공급 방법
KR101491717B1 (ko) Lng 저장탱크를 갖는 해양구조물 및 상기 해양구조물에서 상기 lng 저장탱크를 운용하는 방법
KR101996288B1 (ko) 선박의 증발가스 처리 시스템 및 방법
KR102542464B1 (ko) 전기추진선박의 증발가스 처리 시스템 및 방법
KR100868856B1 (ko) Lng 운반선용 lng 저장탱크의 유지보수 장치 및 방법
KR101403610B1 (ko) 재기화 장치를 구비한 lng rv
KR101866574B1 (ko) 선박의 연료가스 공급 시스템 및 방법
KR20190081141A (ko) 선박의 연료가스 공급시스템의 유량 조절 안정화 장치 및 방법
KR20220135004A (ko) 무전원 재기화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774962

Country of ref document: EP

Kind code of ref document: A1