WO2023182267A1 - Poly(vinyl alcohol) film and production method therefor - Google Patents

Poly(vinyl alcohol) film and production method therefor Download PDF

Info

Publication number
WO2023182267A1
WO2023182267A1 PCT/JP2023/010856 JP2023010856W WO2023182267A1 WO 2023182267 A1 WO2023182267 A1 WO 2023182267A1 JP 2023010856 W JP2023010856 W JP 2023010856W WO 2023182267 A1 WO2023182267 A1 WO 2023182267A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
stretching
mass
pva film
Prior art date
Application number
PCT/JP2023/010856
Other languages
French (fr)
Japanese (ja)
Inventor
真奈 石原
洋平 鷹取
慎二 中井
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2023182267A1 publication Critical patent/WO2023182267A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polyvinyl alcohol film and a method for producing the same.
  • a polarizing plate which has the function of transmitting and blocking light, is a basic component of a liquid crystal display (LCD), along with a liquid crystal that changes the polarization state of light.
  • LCDs are now used in a wide range of applications, including small devices such as calculators and watches, notebook computers, LCD monitors, LCD color projectors, LCD televisions, in-vehicle navigation systems, mobile phones, and measuring instruments used indoors and outdoors. .
  • a polarizing plate is generally made by dyeing a polyvinyl alcohol film (hereinafter “polyvinyl alcohol” may be abbreviated as “PVA”), uniaxially stretching it, and if necessary further fixing it with a boron compound or the like. After manufacturing, a protective film such as triacetate cellulose (TAC) film is attached to the surface of the polarizing film. Since the optical performance such as the contrast ratio of an LCD greatly depends on the polarization performance such as the degree of polarization of a polarizing film, a PVA film having high stretchability has been proposed to improve the polarization performance.
  • PVA polyvinyl alcohol film
  • TAC triacetate cellulose
  • Patent Document 1 describes a PVA film that can reduce the occurrence of wrinkles during stretching, has low stretching stress, reduces breakage during stretching, and can produce a thin polarizing film with good yield. , a PVA film having a thickness of 40 ⁇ m or less and a swelling degree of 190 to 230%, and a PVA film having a swelling degree of 260% or more after being stretched at a stretching ratio of 3 times in water at 30° C. .
  • the present inventors investigated and found that even with the PVA film described in Patent Document 1, if high-speed stretching conditions are used during the production of a polarizing film, the breakage of the PVA film during stretching can be sufficiently reduced. There were times when it was difficult to do so. In addition, it has sometimes been difficult to sufficiently reduce wrinkles and folding of the edges during stretching of the PVA film and deterioration in the optical performance of the polarizing film.
  • the present invention was made to solve the above problems, and it is possible to obtain a polarizing film with excellent optical performance while reducing breakage even under high-speed stretching conditions during the production of the polarizing film.
  • An object of the present invention is to provide a PVA film and a method for manufacturing the same.
  • the degree of swelling (A) is 195 to 205% by mass
  • the degree of swelling (B) after stretching 2.5 times in water at 30°C at a stretching rate of 240%/min is the degree of swelling ( A PVA film whose value divided by A) is 1.27 to 1.40, and whose average water absorption rate when immersed in water at 30°C for 30 seconds is 1.35% by mass/second or more.
  • Production method [6] The method for producing a PVA film according to [5], wherein the heat treatment is performed on a roll heated to 100 to 120°C; [7] The PVA film according to [5] or [6], wherein the plasticizing component consists of water and a plasticizer, and the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol. manufacturing method; Regarding.
  • a PVA film and a method for producing the same which can reduce breakage even under high-speed stretching conditions during the production of a polarizing film and obtain a polarizing film with excellent optical performance.
  • the PVA film of the present invention has a swelling degree (A) of 195 to 205% by mass, and a swelling degree (B) after stretching 2.5 times in water at 30°C at a stretching rate of 240%/min.
  • the value divided by the swelling degree (A) (hereinafter sometimes abbreviated as swelling degree ratio (B/A)) is 1.27 to 1.40, and when immersed in water at 30 ° C. for 30 seconds
  • the average water absorption rate is 1.35% by mass/second or more.
  • the degree of swelling (A) is 195 to 205% by mass.
  • Swelling degree (A) is an index indicating the water retention capacity when a PVA film is immersed in water at 30°C, and is the mass after immersing the PVA film as it is (without stretching) in water at 30°C for 30 minutes. can be determined as a percentage by dividing by the mass after drying at 105° C. for 16 hours after immersion. Specifically, it can be measured by the method described in the Examples below.
  • the degree of swelling (A) is preferably 198% by mass or more, more preferably 199% by mass or more, and preferably 203% by mass or less, more preferably 201% by mass or less.
  • the degree of swelling (B) is an index indicating the water retention capacity of the PVA film after stretching the PVA film in water at 30°C at a stretching ratio of 2.5 times, and It can be determined as a percentage by dividing the mass of the film after stretching at a stretching rate of /min to a stretching ratio of 2.5 times by the mass of the film after stretching and drying at 105° C. for 16 hours. Specifically, it can be measured by the method described in the Examples below.
  • the stretching ratio (2.5 times) when measuring the degree of swelling (B) corresponds to the stretching ratio at the initial stage of stretching when producing a polarizing film. Therefore, if the swelling degree (B) measured under these conditions is relatively larger than the swelling degree (A), that is, the swelling degree ratio (B/A) is 1.27 to 1.40, the polarizing film It is thought that during the production of the PVA film, the PVA film easily absorbs water and stretches from the initial stage of stretching, and the breakage of the PVA film is reduced even under high-speed stretching conditions.
  • the swelling ratio (B/A) is preferably 1.29 or more, more preferably 1.30 or more, and preferably 1.35 or less, more preferably 1.33 or less.
  • the average water absorption rate when immersed in water at 30°C for 30 seconds is 1.35% by mass/second or more.
  • the average water absorption rate is an index of the water absorption rate at the initial stage of immersion in water, and can be determined by subtracting the moisture content before immersion from the moisture content after immersing the PVA film in 30°C water for 30 seconds, and dividing by the immersion time. I can do it. Specifically, it can be measured by the method described in the Examples below.
  • the PVA film of the present invention has a sufficiently high average water absorption rate of 1.35% by mass/second or more, when it is stretched in various water baths in the manufacturing process of polarizing film, some of the lamellar crystals of PVA in the PVA film unravel. Easy to unravel and become amorphous. As a result, the degree of swelling of the PVA film increases more easily than before stretching, so it is thought that the breakage of the PVA film is reduced even under high-speed stretching conditions during the production of a polarizing film. Further, since the PVA film of the present invention has a sufficiently high average water absorption rate of 1.35% by mass/second or more, it easily absorbs boric acid contained in a stretching bath or the like in the manufacturing process of a polarizing film.
  • the average water absorption rate is preferably 1.36 mass%/second or more, more preferably 1.38 mass%/second or more, and preferably 1.44 mass%/second or less, and 1.42 mass%/second or less. More preferred.
  • the dimensional change rate in the width direction is 14.6 to 16.2. It is preferably within the range of %.
  • This underwater dimensional change rate is calculated from the gauge line distance B in the width direction of the PVA film after immersing the PVA film in water at 30°C for 30 seconds to the gauge line distance A in the width direction of the film before dipping. It can be determined by calculating the ratio [100 ⁇ (B ⁇ A)/A] of the value obtained by subtracting the distance A between the gauge lines in the width direction of the film. Specifically, it can be measured by the method described in the Examples below.
  • the dimensional change rate in water is more preferably 14.8% or more, further preferably 15.0% or more, and more preferably 15.8% or less, even more preferably 15.6% or less. .
  • periodic or continuous unevenness in thickness or retardation occurs in the machine flow direction or width direction. By observing this unevenness, it is possible to determine the mechanical flow direction/width direction of the PVA film even if the film sample is not a long one.
  • the PVA film of the present invention has a stretching stress of 14.5 to 17.0 N/mm when it is uniaxially stretched in the length direction at a stretching speed of 480%/min after being immersed in pure water at 30°C for 8 seconds . It is preferable that it is within the range of .
  • the stretching stress can be measured by the method described in the Examples below.
  • the stretching stress is 14.5 N/mm 2 or more, the optical performance of the polarizing film obtained can be improved.
  • the stretching stress is more preferably 14.7 N/mm 2 or more, even more preferably 14.9 N/mm 2 or more, and particularly preferably 15.1 N/mm 2 or more.
  • the stretching stress is more preferably 16.8 N/mm 2 or less, even more preferably 16.7 N/mm 2 or less, and particularly preferably 16.6 N/mm 2 or less.
  • Examples of the PVA constituting the PVA film of the present invention include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and isoacetate.
  • Examples include those obtained by saponifying polyvinyl esters obtained by polymerizing one or more vinyl esters such as propenyl.
  • vinyl esters vinyl acetate is preferred from the viewpoint of ease of production, availability, cost, etc. of PVA.
  • the polyvinyl ester is preferably one obtained using only one type or two or more types of vinyl ester as a monomer, and more preferably one obtained using only one type of vinyl ester as a monomer, It may be a copolymer of one or more vinyl esters and another monomer copolymerizable with the vinyl ester, as long as it does not impair the effects of the present invention.
  • Other monomers copolymerizable with vinyl ester include, for example, ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene, and isobutene; (meth)acrylic acid or its salt; (meth)acrylic acid or its salt; Methyl acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, (meth) (meth)acrylic acid esters such as t-butyl acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, and octadecyl (meth)acrylate; (meth)acrylamide, N-methyl (meth)acrylate Acrylamide, N-ethyl (meth)acrylamide, N,
  • vinyl halides such as allyl acetate and allyl chloride; maleic acid or its salts, esters, or acid anhydrides; itaconic acid or its salts, esters, or acid anhydrides; vinyl silyl compounds such as vinyltrimethoxysilane; unsaturated Examples include sulfonic acid.
  • the above polyvinyl ester can have a structural unit derived from one or more of these other monomers.
  • the proportion of structural units derived from other monomers in the polyvinyl ester is preferably 15 mol% or less, and preferably 10 mol% or less, based on the number of moles of all structural units constituting the polyvinyl ester. is more preferable, and even more preferably 5 mol% or less.
  • the resulting PVA film may be In order to prevent PVA from dissolving when used as a raw film for the production of polarizing films, the proportion of structural units derived from these monomers in polyvinyl ester is reduced to the total structural units constituting the polyvinyl ester. It is preferably 5 mol% or less, more preferably 3 mol% or less, based on the number of moles of.
  • PVA may be modified with one or more graft copolymerizable monomers as long as the effects of the present invention are not impaired.
  • monomers that can be graft copolymerized include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; and ⁇ -olefins having 2 to 30 carbon atoms.
  • the proportion of structural units derived from graft copolymerizable monomers in PVA is preferably 5 mol % or less, based on the number of moles of all structural units constituting PVA.
  • PVA may or may not have some of its hydroxyl groups crosslinked.
  • PVA may have some of its hydroxyl groups reacting with aldehyde compounds such as acetaldehyde and butyraldehyde to form an acetal structure, or it may not react with these compounds and form an acetal structure. good.
  • the degree of polymerization of PVA is preferably within the range of 1,500 to 6,000, more preferably within the range of 1,800 to 5,000, and more preferably within the range of 2,000 to 4,000. It is even more preferable. If the degree of polymerization is less than 1,500, the durability of a polarizing film produced using the resulting PVA film tends to deteriorate. On the other hand, if the degree of polymerization exceeds 6,000, it tends to lead to increased manufacturing costs, poor passability during film formation, and increased shrinkage stress of the resulting polarizing film. Note that the degree of polymerization of PVA as used herein means the average degree of polymerization measured according to the description of JIS K6726-1994.
  • the degree of saponification of PVA is preferably 98.0 mol% or more, more preferably 98.5 mol% or more, and 99. More preferably, it is .0 mol% or more. If the degree of saponification is less than 98.0 mol%, the polarizing film tends to have poor water resistance.
  • the saponification degree of PVA in this specification refers to the total number of moles of structural units (typically vinyl ester units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification, which PVA has. It refers to the proportion (mol%) occupied by the number of moles of vinyl alcohol units.
  • the degree of saponification can be measured according to the description in JIS K6726-1994.
  • the PVA film of the present invention preferably contains a surfactant.
  • a surfactant By containing a surfactant, the occurrence of thickness unevenness in the PVA film is suppressed, and the PVA film can be easily peeled off from a roll or belt during production.
  • the type of surfactant is not particularly limited, but anionic surfactants or nonionic surfactants are preferred from the viewpoint of releasability from rolls, belts, etc. when producing PVA films.
  • anionic surfactant examples include carboxylic acid types such as potassium laurate; sulfuric acid ester types such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and sulfonic acid types such as dodecylbenzenesulfonate.
  • nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether; alkyl phenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; and polyoxyethylene lauryl amino.
  • Alkyl amine type such as ether
  • Alkyl amide type such as polyoxyethylene lauric acid amide
  • Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether
  • Alkanol amide type such as lauric acid diethanolamide and oleic acid diethanolamide
  • Polyoxy Allyl phenyl ether types such as alkylene allyl phenyl ether are preferred.
  • surfactants may be used alone or in combination of two or more.
  • the content of the surfactant in the PVA film of the present invention is preferably within the range of 0.01 to 0.5 parts by mass, and preferably within the range of 0.02 to 0.3 parts by mass, based on 100 parts by mass of PVA. It is more preferable that the amount is within the range of 0.05 to 0.1 parts by mass.
  • the PVA film of the present invention preferably contains a plasticizer.
  • the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylolpropane.
  • the plasticizer may contain at least one plasticizer. Among these, as described in the PVA film manufacturing method below, it is preferable that the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol, and that the plasticizer contains at least glycerin. is more preferable.
  • the content of the plasticizer in the PVA film of the present invention is preferably within the range of 1 to 20 parts by mass, more preferably within the range of 3 to 17 parts by mass, based on 100 parts by mass of PVA. It is more preferably within the range of 15 parts by mass.
  • the content of the plasticizer is within the above range, it is possible to further improve the stretchability of the PVA film while preventing the PVA film from becoming too flexible and having poor handling properties.
  • the PVA film of the present invention may further contain components such as an antioxidant, an antifreeze agent, a pH adjuster, a masking agent, a coloring inhibitor, and an oil agent, if necessary.
  • shape of the PVA film of the present invention is not particularly limited, it is possible to continuously and smoothly produce a more uniform PVA film, and it can also be used continuously when producing a polarizing film using it. It is preferable to use a long film because it allows for The length of the long film (length in the machine flow direction) is not particularly limited, and can be set as appropriate depending on the application, for example, within the range of 5 to 30,000 m.
  • the width of the PVA film of the present invention is not particularly limited, and can be set appropriately depending on the use of the PVA film and the polarizing film manufactured from it, but in recent years, the screens of LCD televisions and LCD monitors have become larger. Therefore, it is suitable for these uses if the width of the PVA film is 3 m or more, more preferably 4 m or more. On the other hand, if the width of the PVA film is too large, it will be difficult to uniformly uniaxially stretch it when manufacturing a polarizing film using a commercially available device, so the width of the PVA film should be 7 m or less. is preferred.
  • the thickness of the PVA film is preferably within the range of 45 to 80 ⁇ m, more preferably within the range of 45 to 60 ⁇ m.
  • the thickness of the PVA film is less than or equal to the above upper limit, drying when manufacturing a polarizing film is facilitated to be performed quickly.
  • the thickness of the PVA film is at least the above-mentioned lower limit, it is possible to more effectively suppress the occurrence of breakage of the PVA film during uniaxial stretching to produce a polarizing film.
  • the PVA film of the present invention is preferably an optical film. That is, the PVA film of the present invention is preferably used as a raw film used for manufacturing optical films such as polarizing films and retardation films. Among these, according to the PVA film of the present invention, it is possible to obtain a polarizing film with excellent optical performance while reducing breakage even under high-speed stretching conditions. It is preferable to use it as a film.
  • the production of the PVA film of the present invention is not particularly limited, and conventionally known methods such as wet film forming method, gel film forming method, casting film forming method, and extrusion film forming method can be adopted. By employing the manufacturing method described above, the PVA film of the present invention can be efficiently manufactured.
  • the method for producing a PVA film of the present invention is a method for producing a PVA film in which a film-forming stock solution containing PVA is cast onto a roll or belt heated to 50 to 99°C and dried, and the method comprises plasticizing This is a method for producing a PVA film, in which the PVA film is dried until the content of the components is 20 to 23% by mass, and then the PVA film is heat-treated on a roll or belt heated to 100 to 120 ° C.
  • the film-forming stock solution containing PVA may be one in which PVA is dissolved in a liquid medium, or a PVA film containing PVA and a liquid medium.
  • a molten one can be used.
  • Specific aspects and preferred aspects of PVA contained in the film-forming stock solution are the same as those of PVA contained in the above-described PVA film.
  • liquid medium contained in the membrane forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane. , ethylenediamine, diethylenetriamine, etc., and one or more of these can be used. Among these, water is preferably used in view of its environmental impact and recoverability.
  • the volatile fraction of the film-forming stock solution (the content of volatile components such as liquid media removed by volatilization or evaporation during film-forming) varies depending on the film-forming method, film-forming conditions, etc., but is in the range of 50 to 95% by mass. It is preferably within the range of 55 to 90% by mass, more preferably within the range of 60 to 85% by mass. If the volatile fraction of the membrane-forming stock solution is too low, the viscosity of the membrane-forming stock solution becomes too high, making filtration and defoaming difficult when preparing the film-forming stock solution, making it difficult to produce PVA films with few foreign substances and defects. There is a tendency to On the other hand, if the volatile fraction of the film-forming stock solution is too high, the concentration of the film-forming stock solution becomes too low, which tends to make industrial production of PVA film difficult.
  • Wa represents the mass (g) of the film-forming stock solution
  • Wb represents the mass (g) after drying the film-forming stock solution of Wa (g) for 16 hours in an electric dryer at 105°C. .
  • the membrane forming stock solution preferably contains a surfactant. Specific aspects and preferred aspects of the surfactant contained in the film-forming stock solution are the same as those of the surfactant contained in the PVA film described above.
  • the film forming stock solution contains a plasticizer.
  • specific aspects and preferred aspects of the plasticizer contained in the film-forming stock solution are the same as those of the plasticizer contained in the PVA film described above.
  • a film-forming stock solution containing PVA is cast onto a roll or belt heated to 50 to 99°C and dried.
  • the surface temperature of the heated roll or belt is more preferably within the range of 60 to 98°C, and even more preferably within the range of 70 to 97°C.
  • the PVA film is dried until the amount of the plasticizing component becomes 20 to 23% by mass.
  • the amount of plasticizing component refers to the amount of PVA film that is obtained by casting a film-forming stock solution containing PVA onto a roll or belt heated to 50 to 99°C and drying it. It is the mass fraction of the plasticizing component contained in the PVA film when it contacts the roll.
  • This plasticizing component consists of a liquid medium and a plasticizer contained in the PVA film forming solution.
  • the plasticizing component consists of a liquid medium and a plasticizer.
  • the liquid medium is preferably water
  • the plasticizer is preferably at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol. That is, it is preferable that the plasticizing component consists of water and a plasticizer, and that the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol.
  • glycerin has relatively low volatility and high plasticizing effect, so it is more preferable that the plasticizer contains at least glycerin.
  • the PVA film is heat-treated on a roll or belt heated to 100 to 120°C. do.
  • the degree of swelling (A), degree of swelling ratio (B/A), and average water absorption rate of the PVA film can be adjusted to desired ranges.
  • properties such as mechanical strength of the PVA film can also be adjusted.
  • the heat treatment is preferably carried out on a roll heated to 100 to 120°C.
  • the temperature of the heat treatment is preferably 102°C or higher, preferably 115°C or lower, and more preferably 108°C or lower.
  • the heat treatment time is usually 10 to 30 seconds.
  • the method for producing a polarizing film using the PVA film of the present invention as a raw film is not particularly limited, and any conventionally employed method may be employed. Examples of such methods include, for example, a method of dyeing and uniaxially stretching a PVA film. Specifically, the PVA film is subjected to swelling, dyeing, uniaxially stretching, and if necessary, further fixing treatment, Methods include drying, heat treatment, etc. In this case, the order of each treatment such as swelling, dyeing, uniaxial stretching, and fixing treatment is not particularly limited, and one or more treatments can be performed simultaneously. Also, one or more of each process can be performed two or more times.
  • Swelling can be performed by immersing the PVA film in water.
  • the temperature of the water during immersion is preferably within the range of 20 to 40°C, more preferably within the range of 22 to 38°C, and preferably within the range of 25 to 35°C. More preferred.
  • the time for immersion in water is preferably within a range of 0.1 to 5 minutes, and more preferably within a range of 0.5 to 3 minutes.
  • the water used for immersion is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and an aqueous medium.
  • Staining is preferably carried out using iodine, and the dyeing may be carried out at any stage before uniaxial stretching, during uniaxial stretching, or after uniaxial stretching.
  • Dyeing is generally performed by immersing the PVA film in a solution (especially an aqueous solution) containing iodine and potassium iodide as a dye bath, and such a dyeing method is preferably adopted in the present invention.
  • the concentration of iodine in the dye bath is preferably within the range of 0.01 to 0.5% by mass, and the concentration of potassium iodide is preferably within the range of 0.01 to 10% by mass.
  • the temperature of the dyeing bath is preferably within the range of 20 to 50°C, more preferably within the range of 25 to 40°C.
  • the uniaxial stretching may be performed by either a wet stretching method or a dry stretching method.
  • the wet stretching method it can be carried out in an aqueous solution containing boric acid, or it can be carried out in the above-mentioned dyeing bath or in the fixing bath described below.
  • a dry stretching method it can be carried out in air using a PVA film after water absorption.
  • wet stretching is preferred, and uniaxial stretching in an aqueous solution containing boric acid is more preferred.
  • the concentration of boric acid in the boric acid aqueous solution is preferably within the range of 0.5 to 6.0% by mass, more preferably within the range of 1.0 to 5.0% by mass, and 1.5% by mass.
  • the boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably within the range of 0.01 to 10% by mass.
  • the stretching temperature in uniaxial stretching is preferably within the range of 30 to 90°C, more preferably within the range of 40 to 80°C, and particularly preferably within the range of 50 to 70°C.
  • the stretching ratio in uniaxial stretching is preferably 5 times or more, more preferably 5.5 times or more, and particularly preferably 6 times or more from the viewpoint of polarizing performance of the polarizing film obtained. Although the upper limit of the stretching ratio is not particularly limited, it is preferable that the stretching ratio is 8 times or less.
  • a fixing treatment in order to strengthen the adsorption of dyes (iodine, etc.) to the PVA film.
  • an aqueous solution containing one or more boron compounds such as boric acid and borax can be used.
  • an iodine compound or a metal compound may be added to the fixing treatment bath as necessary.
  • the concentration of the boron compound in the fixing treatment bath is preferably within the range of 2 to 15% by mass, more preferably within the range of 3 to 10% by mass.
  • the temperature of the fixing treatment bath is preferably within the range of 15 to 60°C, more preferably within the range of 25 to 40°C.
  • Drying is preferably carried out within the range of 30 to 150°C, more preferably within the range of 50 to 130°C.
  • tension is applied to the polarizing film and heat treatment is performed at 80 to 120°C for 1 to 5 minutes, resulting in polarized light with even better dimensional stability and durability. You can get the film.
  • the polarizing film obtained as described above is usually used as a polarizing plate by laminating a protective film on both or one side thereof.
  • the protective film include those that are optically transparent and have mechanical strength. Specifically, for example, cellulose triacetate (TAC) film, cellulose acetate/butyrate (CAB) film, acrylic film, polyester film, etc. Film etc. are used.
  • adhesives for bonding include PVA adhesives and urethane adhesives, among which PVA adhesives are preferred.
  • the polarizing plate obtained as described above can be used as an LCD component by being coated with an acrylic adhesive or the like and then bonded to a glass substrate. At the same time, it may be laminated with a retardation film, a viewing angle improvement film, a brightness improvement film, or the like.
  • the thickness of the polarizing film is not particularly limited, and can be, for example, 30 ⁇ m or less, or even 25 ⁇ m or less.
  • the thickness of the polarizing film is preferably 20 ⁇ m or less, and preferably 15 ⁇ m or less, from the viewpoint of reducing the shrinkage stress of the polarizing film and the polarizing plate using the polarizing film, and preventing the laminated thin glass from warping. It is more preferable that On the other hand, since a polarizing film that is too thin tends to be difficult to manufacture and handle, the thickness of the polarizing film is preferably 3 ⁇ m or more.
  • the actual stretching ratio here refers to the distance between the centers of the marked lines after stretching (the center in the thickness direction of the marked lines at the positions that equally divide the length of the marked lines) to the distance between the marked lines before stretching ( 50mm).
  • Example 1 100 parts by mass of PVA (saponified homopolymer of vinyl acetate, degree of polymerization 2,400, degree of saponification 99.95 mol%), 13 parts by mass of glycerin as a plasticizer, 0.1 mass of lauric acid diethanolamide as a surfactant.
  • a film-forming stock solution with a volatile content of 66% by mass was prepared. This film-forming stock solution was cast onto a metal drum with a surface temperature of 80°C, and dried until the content of plasticizing components was 20.1% by mass (moisture content: 7% by mass, plasticizer content: 13.1% by mass). After that, heat treatment was performed at 105° C.
  • the above PVA film was uniaxially stretched in the length direction to twice its original length (first stage stretching) while immersed in water at a temperature of 30°C. While immersed in an iodine/potassium iodide aqueous solution containing 1.2% by mass of potassium iodide at 32°C, the film was uniaxially stretched (second stage stretching) to 2.5 times its original length. Next, while immersed in a 30°C aqueous boric acid solution containing 2.6% by mass of boric acid, it was uniaxially stretched in the length direction to three times the original length (third-stage stretching), and further stretched with boric acid.
  • Examples 2 to 5, Comparative Examples 1 to 3 The content of plasticizing components in the PVA film before heat treatment was changed as shown in Table 3 by adjusting the amount of glycerin added or the drying time of the PVA film, and the conditions of heat treatment temperature were changed as shown in Table 3.
  • a PVA film and a polarizing film were obtained in the same manner as in Example 1 except for the above.
  • the degree of swelling (A), degree of swelling (B), average water absorption rate, underwater dimensional change rate in the width direction, stretching stress (240%/min) and stretching stress (480%/min) were determined by the method described above. minutes) was measured.
  • the PVA films of Examples 1 to 5 had sufficiently low stretching stress under the stretching conditions of 480%/min, so even under high-speed stretching conditions during the production of polarizing films, the PVA films did not break. is reduced. Further, the polarizing films obtained from the PVA films of Examples 1 to 5 have a sufficiently high degree of polarization at a transmittance of 43.0%. That is, according to the PVA films of Examples 1 to 5, it is possible to produce a polarizing film with excellent optical performance while reducing breakage of the PVA film even under high-speed stretching conditions during production of the polarizing film. .
  • the stretching stress under the stretching condition of 480%/min is large, so that during the production of the polarizing film, Under high-speed stretching conditions, the PVA film tends to break.
  • the PVA film of Comparative Example 3 has a sufficiently low stretching stress under the stretching condition of 480%/min, the breakage of the polarizing film is reduced even under high-speed stretching conditions during the production of the polarizing film.
  • the polarizing film had an insufficient degree of polarization at a transmittance of 43.0%. Note that even in the PVA films of Comparative Examples 1 and 2, the stretching stress is sufficiently small under relatively low stretching conditions such as 240%/min.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

A poly(vinyl alcohol) film having a degree of swelling (A) of 195-205 mass% and having a value of (B)/(A) of 1.27-1.40, where (B) is the degree of swelling of the film which has been stretched to 2.5 times in 30°C water under the conditions of a stretching rate of 240 %/min. When immersed in 30°C water for 30 seconds, the poly(vinyl alcohol) film has an average water absorption rate of 1.35 mass%/sec or greater. By using such poly(vinyl alcohol) film in polarizing-film production, polarizing films having excellent optical performance can be obtained while diminishing breakages even under high-speed stretching conditions.

Description

ポリビニルアルコールフィルム及びその製造方法Polyvinyl alcohol film and its manufacturing method
 本発明は、ポリビニルアルコールフィルム及びその製造方法に関する。 The present invention relates to a polyvinyl alcohol film and a method for producing the same.
 光の透過及び遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。LCDは、電卓及び腕時計などの小型機器、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広範囲において用いられるようになっている。 A polarizing plate, which has the function of transmitting and blocking light, is a basic component of a liquid crystal display (LCD), along with a liquid crystal that changes the polarization state of light. LCDs are now used in a wide range of applications, including small devices such as calculators and watches, notebook computers, LCD monitors, LCD color projectors, LCD televisions, in-vehicle navigation systems, mobile phones, and measuring instruments used indoors and outdoors. .
 偏光板は、一般にポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記する場合がある)に染色、一軸延伸、及び必要に応じてさらにホウ素化合物等による固定処理を施して偏光フィルムを製造した後、その偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護膜を貼り合わせることによって製造される。LCDのコントラスト比などの光学性能は、偏光フィルムの偏光度などの偏光性能に大きく依存するため、偏光性能を向上させるために高い延伸性を有するPVAフィルムが提案されてきた。 A polarizing plate is generally made by dyeing a polyvinyl alcohol film (hereinafter "polyvinyl alcohol" may be abbreviated as "PVA"), uniaxially stretching it, and if necessary further fixing it with a boron compound or the like. After manufacturing, a protective film such as triacetate cellulose (TAC) film is attached to the surface of the polarizing film. Since the optical performance such as the contrast ratio of an LCD greatly depends on the polarization performance such as the degree of polarization of a polarizing film, a PVA film having high stretchability has been proposed to improve the polarization performance.
 例えば、特許文献1には、延伸時の皺の発生を低減することができるとともに、延伸応力が低く延伸時の破断が低減されて薄型の偏光フィルムを収率良く製造することができるPVAフィルムとして、膨潤度が190~230%である厚みが40μm以下のPVAフィルムであって、30℃の水中で延伸倍率3倍に延伸した後の膨潤度が260%以上であるPVAフィルムが記載されている。 For example, Patent Document 1 describes a PVA film that can reduce the occurrence of wrinkles during stretching, has low stretching stress, reduces breakage during stretching, and can produce a thin polarizing film with good yield. , a PVA film having a thickness of 40 μm or less and a swelling degree of 190 to 230%, and a PVA film having a swelling degree of 260% or more after being stretched at a stretching ratio of 3 times in water at 30° C. .
国際公開第2014/050697号International Publication No. 2014/050697
 近年、LCD需要の増加により構成部品の一つである偏光フィルムを効率良く製造することが求められている。偏光フィルムの製造効率を上げるには、幅広のPVAフィルムを用いて偏光フィルムを製造すること、又は偏光フィルムの製造時において高速の延伸条件を採用することが考えられる。しかしながら、前者の方法では、PVAフィルム及び偏光フィルムの製造装置の新造や改造といった膨大な設備投資が必要となり、経済的に好ましくない。一方で、後者の方法では、従来と延伸倍率は同じでも延伸中のPVAフィルムの破断が多発して、逆に偏光フィルムの製造効率が低下する問題を生じやすい。これは、PVAフィルムが、偏光フィルムを製造する際の延伸条件の高速化に伴う、急激なひずみ速度の上昇に追従できないためと推定される。その対策として、PVAフィルムの軟化点温度を下げたり、偏光フィルムの製造時において延伸温度を上げたりすることにより、高速の延伸条件であってもPVAフィルムの破断を低減することは可能である。しかしながら、これらの方法では、PVAフィルムの延伸時の皺や偏光フィルムの端部の折れといった異常が発生しやすく、また製造される偏光フィルムの光学性能低下の問題を生じやすい。 In recent years, with the increase in demand for LCDs, there has been a demand for efficient production of polarizing film, which is one of the components. In order to increase the manufacturing efficiency of polarizing films, it is possible to manufacture polarizing films using wide PVA films, or to employ high-speed stretching conditions when manufacturing polarizing films. However, the former method requires a huge investment in equipment such as new construction or modification of manufacturing equipment for PVA films and polarizing films, which is not economically preferable. On the other hand, in the latter method, even if the stretching ratio is the same as in the conventional method, the PVA film frequently breaks during stretching, which tends to cause a problem of lowering the manufacturing efficiency of the polarizing film. This is presumed to be because the PVA film cannot follow the rapid increase in strain rate that accompanies the increase in the stretching conditions when producing a polarizing film. As a countermeasure, it is possible to reduce the breakage of the PVA film even under high-speed stretching conditions by lowering the softening point temperature of the PVA film or increasing the stretching temperature during the production of the polarizing film. However, these methods tend to cause abnormalities such as wrinkles during stretching of the PVA film and folding of the edges of the polarizing film, and also tend to cause the problem of deterioration of the optical performance of the manufactured polarizing film.
 本発明者らが検討したところ、特許文献1に記載のPVAフィルムであっても、偏光フィルムの製造時において高速の延伸条件を採用した場合には、延伸中のPVAフィルムの破断を十分に低減することが困難な場合があった。また、PVAフィルムの延伸時の皺や端部の折れや、偏光フィルムの光学性能低下を十分に低減することが困難な場合があった。 The present inventors investigated and found that even with the PVA film described in Patent Document 1, if high-speed stretching conditions are used during the production of a polarizing film, the breakage of the PVA film during stretching can be sufficiently reduced. There were times when it was difficult to do so. In addition, it has sometimes been difficult to sufficiently reduce wrinkles and folding of the edges during stretching of the PVA film and deterioration in the optical performance of the polarizing film.
 本発明は、上記の課題を解決するためになされたものであり、偏光フィルムの製造時において高速の延伸条件であっても破断を低減しつつ、光学性能の優れた偏光フィルムを得ることができるPVAフィルム、及びその製造方法を提供することを目的とする。 The present invention was made to solve the above problems, and it is possible to obtain a polarizing film with excellent optical performance while reducing breakage even under high-speed stretching conditions during the production of the polarizing film. An object of the present invention is to provide a PVA film and a method for manufacturing the same.
 本発明者らが鋭意検討を重ねた結果、所定の条件で測定した膨潤度比及び平均吸水速度が特定範囲であるPVAフィルムを用いることにより、上記の課題が解決されることを見出した。そして、このような知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of extensive studies, the present inventors have found that the above problems can be solved by using a PVA film whose swelling ratio and average water absorption rate measured under predetermined conditions are within a specific range. Based on these findings, the present invention was completed after further studies.
 すなわち、本発明は、
[1]膨潤度(A)が195~205質量%であり、30℃の水中で延伸速度240%/分の条件で2.5倍に延伸した後の膨潤度(B)を前記膨潤度(A)で除した値が1.27~1.40であるPVAフィルムであって、30℃の水中に30秒間浸漬した際の平均吸水速度が1.35質量%/秒以上である、PVAフィルム;
[2]30℃の水中に30秒間浸漬したときの幅方向の寸法変化率が14.6~16.2%である、[1]に記載のPVAフィルム;
[3]フィルムの厚みが45~80μmである、[1]または[2]に記載のPVAフィルム;
[4]光学用フィルムである、[1]~[3]のいずれかに記載のPVAフィルム;
[5]PVAを含有する製膜原液を、50~99℃に加熱されたロール上又はベルト上に流延して乾燥させるPVAフィルムの製造方法であって、可塑化成分の含有量が20~23質量%になるまでPVAフィルムを乾燥させた後、100~120℃に加熱されたロール上又はベルト上でPVAフィルムを熱処理する、[1]~[3]のいずれかに記載のPVAフィルムの製造方法;
[6]前記熱処理を100~120℃に加熱されたロール上で行う、[5]に記載のPVAフィルムの製造方法;
[7]前記可塑化成分が水及び可塑剤からなり、前記可塑剤がグリセリン、ジグリセリン及びプロピレングリコールからなる群より選ばれる少なくとも1種である、[5]または[6]に記載のPVAフィルムの製造方法;
に関する。
That is, the present invention
[1] The degree of swelling (A) is 195 to 205% by mass, and the degree of swelling (B) after stretching 2.5 times in water at 30°C at a stretching rate of 240%/min is the degree of swelling ( A PVA film whose value divided by A) is 1.27 to 1.40, and whose average water absorption rate when immersed in water at 30°C for 30 seconds is 1.35% by mass/second or more. ;
[2] The PVA film according to [1], which has a dimensional change rate in the width direction of 14.6 to 16.2% when immersed in water at 30°C for 30 seconds;
[3] The PVA film according to [1] or [2], wherein the film has a thickness of 45 to 80 μm;
[4] The PVA film according to any one of [1] to [3], which is an optical film;
[5] A method for producing a PVA film in which a film-forming stock solution containing PVA is cast on a roll or belt heated to 50 to 99°C and dried, wherein the content of the plasticizing component is 20 to 99°C. The PVA film according to any one of [1] to [3], wherein the PVA film is dried to a concentration of 23% by mass, and then heat-treated on a roll or belt heated to 100 to 120°C. Production method;
[6] The method for producing a PVA film according to [5], wherein the heat treatment is performed on a roll heated to 100 to 120°C;
[7] The PVA film according to [5] or [6], wherein the plasticizing component consists of water and a plasticizer, and the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol. manufacturing method;
Regarding.
 本発明によれば、偏光フィルムの製造時において高速の延伸条件であっても破断を低減しつつ、光学性能の優れた偏光フィルムを得ることができるPVAフィルム、及びその製造方法が提供される。 According to the present invention, there is provided a PVA film and a method for producing the same, which can reduce breakage even under high-speed stretching conditions during the production of a polarizing film and obtain a polarizing film with excellent optical performance.
<PVAフィルム>
 本発明のPVAフィルムは、膨潤度(A)が195~205質量%であり、30℃の水中で延伸速度240%/分の条件で2.5倍に延伸した後の膨潤度(B)を前記膨潤度(A)で除した値(以下、膨潤度比(B/A)と略記する場合がある)が1.27~1.40であって、30℃の水中に30秒間浸漬した際の平均吸水速度が1.35質量%/秒以上である。
<PVA film>
The PVA film of the present invention has a swelling degree (A) of 195 to 205% by mass, and a swelling degree (B) after stretching 2.5 times in water at 30°C at a stretching rate of 240%/min. The value divided by the swelling degree (A) (hereinafter sometimes abbreviated as swelling degree ratio (B/A)) is 1.27 to 1.40, and when immersed in water at 30 ° C. for 30 seconds The average water absorption rate is 1.35% by mass/second or more.
 本発明のPVAフィルムにおいて、膨潤度(A)は195~205質量%である。膨潤度(A)は、PVAフィルムを30℃の水中に浸漬した際の保水能力を示す指標であり、PVAフィルムをそのまま(延伸を施すことなく)30℃の水中に30分間浸漬した後の質量を、浸漬後105℃で16時間乾燥した後の質量で除すことによって百分率として求めることができるものである。具体的には、後の実施例に記載された方法により測定することができる。 In the PVA film of the present invention, the degree of swelling (A) is 195 to 205% by mass. Swelling degree (A) is an index indicating the water retention capacity when a PVA film is immersed in water at 30°C, and is the mass after immersing the PVA film as it is (without stretching) in water at 30°C for 30 minutes. can be determined as a percentage by dividing by the mass after drying at 105° C. for 16 hours after immersion. Specifically, it can be measured by the method described in the Examples below.
 膨潤度(A)が195質量%未満であると、偏光フィルムの製造時において高速の延伸条件の場合に、延伸時のPVAフィルムにかかる応力が高くなり、PVAフィルムの破断が発生しやすくなる。一方、膨潤度(A)が205質量%を超えると、偏光フィルムの製造時において高速の延伸条件の場合に、延伸時にPVAフィルムに皴が発生して得られる偏光フィルムの光学性能が低下する傾向がある。膨潤度(A)は、198質量%以上が好ましく、199質量%以上がより好ましく、また、203%質量以下が好ましく、201質量%以下がより好ましい。 If the degree of swelling (A) is less than 195% by mass, when the polarizing film is produced under high-speed stretching conditions, the stress applied to the PVA film during stretching becomes high, making it easy for the PVA film to break. On the other hand, if the degree of swelling (A) exceeds 205% by mass, wrinkles will occur in the PVA film during stretching when the polarizing film is manufactured under high-speed stretching conditions, resulting in a tendency for the optical performance of the resulting polarizing film to deteriorate. There is. The degree of swelling (A) is preferably 198% by mass or more, more preferably 199% by mass or more, and preferably 203% by mass or less, more preferably 201% by mass or less.
 本発明のPVAフィルムにおいて、30℃の水中で延伸速度240%/分の条件で延伸倍率2.5倍に延伸した後の膨潤度(B)を、前記膨潤度(A)で除した値、すなわち膨潤度比(B/A)は1.27~1.40である。ここで、膨潤度(B)は、PVAフィルムを30℃の水中で延伸倍率2.5倍に延伸した後のPVAフィルムの保水能力を示す指標であり、PVAフィルムを30℃の水中で240%/分の延伸速度で延伸倍率2.5倍に延伸した後のフィルムの質量を、延伸した後105℃で16時間乾燥した後のフィルムの質量で除すことによって百分率として求めることができる。具体的には、後の実施例に記載された方法により測定することができる。なお、膨潤度(B)を測定する際の延伸倍率(2.5倍)は、偏光フィルムを製造する際の延伸初期の延伸倍率に相当する。したがって、このような条件で測定した膨潤度(B)が膨潤度(A)より比較的大きい、すなわち、膨潤度比(B/A)が1.27~1.40であることにより、偏光フィルムの製造時においてPVAフィルムが延伸初期から吸水して伸びやすく、高速の延伸条件であってもPVAフィルムの破断が低減されるものと考えられる。 In the PVA film of the present invention, the value obtained by dividing the swelling degree (B) after stretching in water at 30 ° C. at a stretching rate of 2.5 times at a stretching rate of 240% / min by the swelling degree (A), That is, the swelling ratio (B/A) is 1.27 to 1.40. Here, the degree of swelling (B) is an index indicating the water retention capacity of the PVA film after stretching the PVA film in water at 30°C at a stretching ratio of 2.5 times, and It can be determined as a percentage by dividing the mass of the film after stretching at a stretching rate of /min to a stretching ratio of 2.5 times by the mass of the film after stretching and drying at 105° C. for 16 hours. Specifically, it can be measured by the method described in the Examples below. In addition, the stretching ratio (2.5 times) when measuring the degree of swelling (B) corresponds to the stretching ratio at the initial stage of stretching when producing a polarizing film. Therefore, if the swelling degree (B) measured under these conditions is relatively larger than the swelling degree (A), that is, the swelling degree ratio (B/A) is 1.27 to 1.40, the polarizing film It is thought that during the production of the PVA film, the PVA film easily absorbs water and stretches from the initial stage of stretching, and the breakage of the PVA film is reduced even under high-speed stretching conditions.
 膨潤度比(B/A)が1.27未満であると、偏光フィルムの製造時において高速の延伸条件の場合に、延伸時のPVAフィルムにかかる応力が高くなり、PVAフィルムの破断が発生しやすくなる。一方、膨潤度比(B/A)が1.40を超えると、偏光フィルムの製造時において高速の延伸条件の場合に、延伸時にPVAフィルムに皴が発生しやすく、また、得られる偏光フィルムの光学性能が低下する傾向がある。膨潤度比(B/A)は、1.29以上が好ましく、1.30以上がより好ましく、また、1.35以下が好ましく、1.33以下がより好ましい。 If the swelling ratio (B/A) is less than 1.27, the stress applied to the PVA film during stretching becomes high when the polarizing film is manufactured under high-speed stretching conditions, and the PVA film may break. It becomes easier. On the other hand, if the swelling ratio (B/A) exceeds 1.40, wrinkles will easily occur in the PVA film during stretching when the polarizing film is manufactured under high-speed stretching conditions. Optical performance tends to deteriorate. The swelling ratio (B/A) is preferably 1.29 or more, more preferably 1.30 or more, and preferably 1.35 or less, more preferably 1.33 or less.
 本発明のPVAフィルムにおいて、30℃の水中に30秒間浸漬した際の平均吸水速度は1.35質量%/秒以上である。平均吸水速度は、水中浸漬初期における吸水速度の指標であり、PVAフィルムを30℃の水中に30秒間浸漬した後の水分率から浸漬前の水分率を引き、浸漬時間で除すことによって求めることができる。具体的には、後の実施例に記載された方法により測定することができる。 In the PVA film of the present invention, the average water absorption rate when immersed in water at 30°C for 30 seconds is 1.35% by mass/second or more. The average water absorption rate is an index of the water absorption rate at the initial stage of immersion in water, and can be determined by subtracting the moisture content before immersion from the moisture content after immersing the PVA film in 30°C water for 30 seconds, and dividing by the immersion time. I can do it. Specifically, it can be measured by the method described in the Examples below.
 本発明のPVAフィルムは平均吸水速度が1.35質量%/秒以上で十分に大きいため、偏光フィルムの製造工程における各種水浴中で延伸すると、PVAフィルム中のPVAのラメラ晶の一部が解きほぐれて非晶化しやすい。その結果、PVAフィルムの膨潤度が延伸前より増加しやすくなるため、偏光フィルムの製造時において高速の延伸条件であってもPVAフィルムの破断が低減されるものと考えられる。また、本発明のPVAフィルムは平均吸水速度が1.35質量%/秒以上で十分に大きいため、偏光フィルムの製造工程における延伸浴等に含まれるホウ酸を吸収しやすくなる。その結果、偏光性能を示すヨウ素錯体の足場が形成されやすいため、得られる偏光フィルムの光学性能が維持されるものと考えられる。平均吸水速度は、1.36質量%/秒以上が好ましく、1.38質量%/秒以上がより好ましく、また、1.44質量%/秒以下が好ましく、1.42質量%/秒以下がより好ましい。平均吸水速度が上記上限以下であることにより、偏光フィルムの製造時において高速の延伸条件であっても、延伸時にPVAフィルムに皴が発生するのをより低減でき、また、得られる偏光フィルムの光学性能が低下するのを防ぎやすくなる。 Since the PVA film of the present invention has a sufficiently high average water absorption rate of 1.35% by mass/second or more, when it is stretched in various water baths in the manufacturing process of polarizing film, some of the lamellar crystals of PVA in the PVA film unravel. Easy to unravel and become amorphous. As a result, the degree of swelling of the PVA film increases more easily than before stretching, so it is thought that the breakage of the PVA film is reduced even under high-speed stretching conditions during the production of a polarizing film. Further, since the PVA film of the present invention has a sufficiently high average water absorption rate of 1.35% by mass/second or more, it easily absorbs boric acid contained in a stretching bath or the like in the manufacturing process of a polarizing film. As a result, a scaffold of an iodine complex exhibiting polarizing performance is likely to be formed, so it is thought that the optical performance of the resulting polarizing film is maintained. The average water absorption rate is preferably 1.36 mass%/second or more, more preferably 1.38 mass%/second or more, and preferably 1.44 mass%/second or less, and 1.42 mass%/second or less. More preferred. By having an average water absorption rate below the above upper limit, it is possible to further reduce wrinkles in the PVA film during stretching even under high-speed stretching conditions during the production of the polarizing film, and the optical properties of the polarizing film obtained can be further reduced. This makes it easier to prevent performance from deteriorating.
 本発明のPVAフィルムを30℃の水中に30秒間浸漬したときの幅方向(機械流れ方向に対し直角方向;以下、TDと略記する場合がある)の寸法変化率が14.6~16.2%の範囲内であることが好ましい。この水中寸法変化率は、浸漬前のフィルムの幅方向の標線間距離Aに対する、PVAフィルムを30℃の水中に30秒間浸漬した後のフィルムの幅方向の標線間距離Bから浸漬前のフィルムの幅方向の標線間距離Aを引いた値の割合[100×(B-A)/A]を算出することによって求めることができる。具体的には、後の実施例に記載された方法により測定することができる。工程通過性の観点から、水中寸法変化率は、14.8%以上がより好ましく、15.0%以上がさらに好ましく、また、15.8%以下がより好ましく、15.6%以下がさらに好ましい。なお、一般に、PVAフィルムを連続的に製膜する場合、機械流れ方向や幅方向に、周期的あるいは連続的な、厚みやレタデーションのムラを生じる。このムラを観察することにより、長尺のフィルムサンプルでなくても、PVAフィルムの機械流れ方向/幅方向を判別することができる。 When the PVA film of the present invention is immersed in water at 30°C for 30 seconds, the dimensional change rate in the width direction (direction perpendicular to the machine flow direction; hereinafter sometimes abbreviated as TD) is 14.6 to 16.2. It is preferably within the range of %. This underwater dimensional change rate is calculated from the gauge line distance B in the width direction of the PVA film after immersing the PVA film in water at 30°C for 30 seconds to the gauge line distance A in the width direction of the film before dipping. It can be determined by calculating the ratio [100×(B−A)/A] of the value obtained by subtracting the distance A between the gauge lines in the width direction of the film. Specifically, it can be measured by the method described in the Examples below. From the viewpoint of process passability, the dimensional change rate in water is more preferably 14.8% or more, further preferably 15.0% or more, and more preferably 15.8% or less, even more preferably 15.6% or less. . Generally, when a PVA film is continuously formed, periodic or continuous unevenness in thickness or retardation occurs in the machine flow direction or width direction. By observing this unevenness, it is possible to determine the mechanical flow direction/width direction of the PVA film even if the film sample is not a long one.
 本発明のPVAフィルムにおいて、30℃の純水中に8秒間浸漬した後、480%/分の延伸速度で長さ方向に一軸延伸したときの延伸応力は14.5~17.0N/mmの範囲内であることが好ましい。当該延伸応力は、具体的には、後の実施例に記載された方法により測定することができる。延伸応力が14.5N/mm以上であることで、得られる偏光フィルムの光学性能を高めることができる。このような観点から、延伸応力は14.7N/mm以上がより好ましく、14.9N/mm以上がさらに好ましく、15.1N/mm以上が特に好ましい。一方、延伸応力が17.0N/mm以下であることで、偏光フィルムの製造時において高速の延伸条件の場合に、延伸時にPVAフィルムの破断が発生するのを低減することができる。このような観点から、延伸応力は16.8N/mm以下がより好ましく、16.7N/mm以下がさらに好ましく、16.6N/mm以下が特に好ましい。 The PVA film of the present invention has a stretching stress of 14.5 to 17.0 N/mm when it is uniaxially stretched in the length direction at a stretching speed of 480%/min after being immersed in pure water at 30°C for 8 seconds . It is preferable that it is within the range of . Specifically, the stretching stress can be measured by the method described in the Examples below. When the stretching stress is 14.5 N/mm 2 or more, the optical performance of the polarizing film obtained can be improved. From such a viewpoint, the stretching stress is more preferably 14.7 N/mm 2 or more, even more preferably 14.9 N/mm 2 or more, and particularly preferably 15.1 N/mm 2 or more. On the other hand, by setting the stretching stress to 17.0 N/mm 2 or less, it is possible to reduce the occurrence of breakage of the PVA film during stretching when the polarizing film is manufactured under high-speed stretching conditions. From such a viewpoint, the stretching stress is more preferably 16.8 N/mm 2 or less, even more preferably 16.7 N/mm 2 or less, and particularly preferably 16.6 N/mm 2 or less.
[PVA]
 本発明のPVAフィルムを構成するPVAとしては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸イソプロペニル等のビニルエステルの1種または2種以上を重合して得られるポリビニルエステルをけん化することにより得られるものが挙げられる。これらのビニルエステルの中でも、PVAの製造の容易性、入手容易性、コスト等の点から、酢酸ビニルが好ましい。
[PVA]
Examples of the PVA constituting the PVA film of the present invention include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and isoacetate. Examples include those obtained by saponifying polyvinyl esters obtained by polymerizing one or more vinyl esters such as propenyl. Among these vinyl esters, vinyl acetate is preferred from the viewpoint of ease of production, availability, cost, etc. of PVA.
 ポリビニルエステルは、単量体として1種または2種以上のビニルエステルのみを用いて得られたものが好ましく、単量体として1種のビニルエステルのみを用いて得られたものがより好ましいが、本発明の効果を損なわない範囲内であれば、1種または2種以上のビニルエステルと、これと共重合可能な他の単量体との共重合体であってもよい。 The polyvinyl ester is preferably one obtained using only one type or two or more types of vinyl ester as a monomer, and more preferably one obtained using only one type of vinyl ester as a monomer, It may be a copolymer of one or more vinyl esters and another monomer copolymerizable with the vinyl ester, as long as it does not impair the effects of the present invention.
 ビニルエステルと共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸またはその塩、(メタ)アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロール(メタ)アクリルアミドまたはその誘導体等の(メタ)アクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;(メタ)アクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;不飽和スルホン酸などを挙げることができる。上記のポリビニルエステルは、これらの他の単量体の1種または2種以上に由来する構造単位を有することができる。 Other monomers copolymerizable with vinyl ester include, for example, α-olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene, and isobutene; (meth)acrylic acid or its salt; (meth)acrylic acid or its salt; Methyl acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, (meth) (meth)acrylic acid esters such as t-butyl acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, and octadecyl (meth)acrylate; (meth)acrylamide, N-methyl (meth)acrylate Acrylamide, N-ethyl (meth)acrylamide, N,N-dimethyl (meth)acrylamide, diacetone (meth)acrylamide, (meth)acrylamidopropanesulfonic acid or its salt, (meth)acrylamidopropyldimethylamine or its salt, N- (Meth)acrylamide derivatives such as methylol (meth)acrylamide or its derivatives; N-vinylamide such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl Vinyl ethers such as vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, and stearyl vinyl ether; vinyl cyanide such as (meth)acrylonitrile; vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc. vinyl halides; allyl compounds such as allyl acetate and allyl chloride; maleic acid or its salts, esters, or acid anhydrides; itaconic acid or its salts, esters, or acid anhydrides; vinyl silyl compounds such as vinyltrimethoxysilane; unsaturated Examples include sulfonic acid. The above polyvinyl ester can have a structural unit derived from one or more of these other monomers.
 ポリビニルエステルに占める他の単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましい。特に他の単量体が、(メタ)アクリル酸、不飽和スルホン酸などのように、得られるPVAの水溶性を促進する可能性のある単量体である場合には、得られるPVAフィルムを偏光フィルム製造用の原反フィルムとして使用する際などにおいてPVAが溶解するのを防止するために、ポリビニルエステルにおけるこれらの単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましく、3モル%以下であることがより好ましい。 The proportion of structural units derived from other monomers in the polyvinyl ester is preferably 15 mol% or less, and preferably 10 mol% or less, based on the number of moles of all structural units constituting the polyvinyl ester. is more preferable, and even more preferably 5 mol% or less. In particular, when the other monomers are monomers that may promote the water solubility of the resulting PVA, such as (meth)acrylic acid or unsaturated sulfonic acid, the resulting PVA film may be In order to prevent PVA from dissolving when used as a raw film for the production of polarizing films, the proportion of structural units derived from these monomers in polyvinyl ester is reduced to the total structural units constituting the polyvinyl ester. It is preferably 5 mol% or less, more preferably 3 mol% or less, based on the number of moles of.
 PVAは、本発明の効果を損なわない範囲内であれば、1種または2種以上のグラフト共重合可能な単量体によって変性されたものであってもよい。グラフト共重合可能な単量体としては、例えば、不飽和カルボン酸またはその誘導体;不飽和スルホン酸またはその誘導体;炭素数2~30のα-オレフィンなどが挙げられる。PVAにおけるグラフト共重合可能な単量体に由来する構造単位の割合は、PVAを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましい。 PVA may be modified with one or more graft copolymerizable monomers as long as the effects of the present invention are not impaired. Examples of monomers that can be graft copolymerized include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; and α-olefins having 2 to 30 carbon atoms. The proportion of structural units derived from graft copolymerizable monomers in PVA is preferably 5 mol % or less, based on the number of moles of all structural units constituting PVA.
 PVAは、その水酸基の一部が架橋されていてもよいし架橋されていなくてもよい。またPVAは、その水酸基の一部がアセトアルデヒド、ブチルアルデヒド等のアルデヒド化合物などと反応してアセタール構造を形成していてもよいし、これらの化合物と反応せずアセタール構造を形成していなくてもよい。 PVA may or may not have some of its hydroxyl groups crosslinked. In addition, PVA may have some of its hydroxyl groups reacting with aldehyde compounds such as acetaldehyde and butyraldehyde to form an acetal structure, or it may not react with these compounds and form an acetal structure. good.
 PVAの重合度は1,500~6,000の範囲内であることが好ましく、1,800~5,000の範囲内であることがより好ましく、2,000~4,000の範囲内であることがさらに好ましい。重合度が1,500未満であると、得られるPVAフィルムを用いて製造した偏光フィルムの耐久性が悪くなる傾向がある。一方、重合度が6,000を超えると、製造コストの上昇、製膜時における工程通過性の不良、得られる偏光フィルムの収縮応力の上昇などにつながる傾向がある。なお、本明細書でいうPVAの重合度はJIS K6726-1994の記載に準じて測定した平均重合度を意味する。 The degree of polymerization of PVA is preferably within the range of 1,500 to 6,000, more preferably within the range of 1,800 to 5,000, and more preferably within the range of 2,000 to 4,000. It is even more preferable. If the degree of polymerization is less than 1,500, the durability of a polarizing film produced using the resulting PVA film tends to deteriorate. On the other hand, if the degree of polymerization exceeds 6,000, it tends to lead to increased manufacturing costs, poor passability during film formation, and increased shrinkage stress of the resulting polarizing film. Note that the degree of polymerization of PVA as used herein means the average degree of polymerization measured according to the description of JIS K6726-1994.
 PVAのけん化度は、得られるPVAフィルムを用いて製造した偏光フィルムの耐水性の点から、98.0モル%以上であることが好ましく、98.5モル%以上であることがより好ましく、99.0モル%以上であることがさらに好ましい。けん化度が98.0モル%未満であると、偏光フィルムの耐水性が悪くなる傾向がある。なお、本明細書におけるPVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。けん化度はJISK6726-1994の記載に準じて測定することができる。 The degree of saponification of PVA is preferably 98.0 mol% or more, more preferably 98.5 mol% or more, and 99. More preferably, it is .0 mol% or more. If the degree of saponification is less than 98.0 mol%, the polarizing film tends to have poor water resistance. In addition, the saponification degree of PVA in this specification refers to the total number of moles of structural units (typically vinyl ester units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification, which PVA has. It refers to the proportion (mol%) occupied by the number of moles of vinyl alcohol units. The degree of saponification can be measured according to the description in JIS K6726-1994.
[界面活性剤]
 本発明のPVAフィルムは界面活性剤を含有することが好ましい。界面活性剤を含有することにより、PVAフィルムの厚み斑の発生が抑制されると共に、PVAフィルムを製造する際のロールやベルトからの剥離が容易になる。界面活性剤の種類は特に限定されないが、PVAフィルムを製造する際のロールやベルトなどからの剥離性の観点から、アニオン性界面活性剤またはノニオン性界面活性剤が好ましい。
[Surfactant]
The PVA film of the present invention preferably contains a surfactant. By containing a surfactant, the occurrence of thickness unevenness in the PVA film is suppressed, and the PVA film can be easily peeled off from a roll or belt during production. The type of surfactant is not particularly limited, but anionic surfactants or nonionic surfactants are preferred from the viewpoint of releasability from rolls, belts, etc. when producing PVA films.
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などが好ましい。 Preferred examples of the anionic surfactant include carboxylic acid types such as potassium laurate; sulfuric acid ester types such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and sulfonic acid types such as dodecylbenzenesulfonate.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが好ましい。 Examples of nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether; alkyl phenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; and polyoxyethylene lauryl amino. Alkyl amine type such as ether; Alkyl amide type such as polyoxyethylene lauric acid amide; Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; Alkanol amide type such as lauric acid diethanolamide and oleic acid diethanolamide; Polyoxy Allyl phenyl ether types such as alkylene allyl phenyl ether are preferred.
 これらの界面活性剤は1種を単独で使用しても2種以上を併用してもよい。 These surfactants may be used alone or in combination of two or more.
 本発明のPVAフィルムにおける界面活性剤の含有量はPVA100質量部に対して0.01~0.5質量部の範囲内であることが好ましく、0.02~0.3質量部の範囲内であることがより好ましく、0.05~0.1質量部の範囲内であることがさらに好ましい。界面活性剤の含有量が上記範囲内であることでPVAフィルムの製膜性及び剥離性を維持しつつ、界面活性剤がPVAフィルムの表面にブリードアウトしてブロッキングし、取り扱い性が低下するのを防ぐことができる。 The content of the surfactant in the PVA film of the present invention is preferably within the range of 0.01 to 0.5 parts by mass, and preferably within the range of 0.02 to 0.3 parts by mass, based on 100 parts by mass of PVA. It is more preferable that the amount is within the range of 0.05 to 0.1 parts by mass. By keeping the content of the surfactant within the above range, while maintaining the film formability and peelability of the PVA film, the surfactant bleeds out onto the surface of the PVA film and blocks it, reducing the ease of handling. can be prevented.
[可塑剤]
 本発明のPVAフィルムは可塑剤を含有することが好ましい。可塑剤としては、例えば、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等の多価アルコールなどを挙げることができ、本発明のPVAフィルムはこれらの可塑剤の少なくとも1種を含有することができる。これらの中でも、後のPVAフィルムの製造方法における記載の通り、可塑剤がグリセリン、ジグリセリン及びプロピレングリコールからなる群より選ばれる少なくとも1種であることが好ましく、可塑剤が少なくともグリセリンを含有することがより好ましい。
[Plasticizer]
The PVA film of the present invention preferably contains a plasticizer. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylolpropane. The plasticizer may contain at least one plasticizer. Among these, as described in the PVA film manufacturing method below, it is preferable that the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol, and that the plasticizer contains at least glycerin. is more preferable.
 本発明のPVAフィルムにおける可塑剤の含有量は、PVA100質量部に対して、1~20質量部の範囲内であることが好ましく、3~17質量部の範囲内であることがより好ましく、5~15質量部の範囲内であることがさらに好ましい。可塑剤の含有量が上記範囲内であることでPVAフィルムの延伸性をより向上させつつ、PVAフィルムが柔軟になり過ぎて取り扱い性が低下するのを防止することができる。 The content of the plasticizer in the PVA film of the present invention is preferably within the range of 1 to 20 parts by mass, more preferably within the range of 3 to 17 parts by mass, based on 100 parts by mass of PVA. It is more preferably within the range of 15 parts by mass. When the content of the plasticizer is within the above range, it is possible to further improve the stretchability of the PVA film while preventing the PVA film from becoming too flexible and having poor handling properties.
[その他の添加剤]
 本発明のPVAフィルムは、必要に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色防止剤、油剤などの成分をさらに含有していてもよい。
[Other additives]
The PVA film of the present invention may further contain components such as an antioxidant, an antifreeze agent, a pH adjuster, a masking agent, a coloring inhibitor, and an oil agent, if necessary.
[形状等]
 本発明のPVAフィルムの形状は特に制限されないが、より均一なPVAフィルムを連続して円滑に製造することができると共に、それを用いて偏光フィルムを製造する場合などにおいても連続して使用することができることから長尺のフィルムであることが好ましい。長尺のフィルムの長さ(機械流れ方向の長さ)は特に制限されず、用途などに応じて適宜設定することができ、例えば、5~30,000mの範囲内とすることができる。
[Shape, etc.]
Although the shape of the PVA film of the present invention is not particularly limited, it is possible to continuously and smoothly produce a more uniform PVA film, and it can also be used continuously when producing a polarizing film using it. It is preferable to use a long film because it allows for The length of the long film (length in the machine flow direction) is not particularly limited, and can be set as appropriate depending on the application, for example, within the range of 5 to 30,000 m.
 本発明のPVAフィルムの幅は特に制限されず、PVAフィルムや、それから製造される偏光フィルムの用途などに応じて適宜設定することができるが、近年、液晶テレビや液晶モニターの大画面化が進行している点から、PVAフィルムの幅を3m以上、より好ましくは4m以上にしておくと、これらの用途に好適である。一方、PVAフィルムの幅があまりに大き過ぎると実用化されている装置で偏光フィルムを製造する場合に一軸延伸自体を均一に行うことが困難になりやすいので、PVAフィルムの幅は7m以下であることが好ましい。 The width of the PVA film of the present invention is not particularly limited, and can be set appropriately depending on the use of the PVA film and the polarizing film manufactured from it, but in recent years, the screens of LCD televisions and LCD monitors have become larger. Therefore, it is suitable for these uses if the width of the PVA film is 3 m or more, more preferably 4 m or more. On the other hand, if the width of the PVA film is too large, it will be difficult to uniformly uniaxially stretch it when manufacturing a polarizing film using a commercially available device, so the width of the PVA film should be 7 m or less. is preferred.
 本発明において、PVAフィルムの厚みは45~80μmの範囲内であることが好ましく、45~60μmの範囲内であることがより好ましい。PVAフィルムの厚みが上記上限以下であることにより、偏光フィルムを製造する際の乾燥が速やかに行われやすくなる。一方、PVAフィルムの厚みが上記下限以上であることにより、偏光フィルムを製造するための一軸延伸時にPVAフィルムの破断の発生をより効果的に抑制することができる。 In the present invention, the thickness of the PVA film is preferably within the range of 45 to 80 μm, more preferably within the range of 45 to 60 μm. When the thickness of the PVA film is less than or equal to the above upper limit, drying when manufacturing a polarizing film is facilitated to be performed quickly. On the other hand, when the thickness of the PVA film is at least the above-mentioned lower limit, it is possible to more effectively suppress the occurrence of breakage of the PVA film during uniaxial stretching to produce a polarizing film.
 本発明のPVAフィルムは、光学用フィルムであることが好ましい。すなわち、本発明のPVAフィルムは、偏光フィルム、位相差フィルム等の光学フィルムの製造に用いられる原反フィルムとして用いることが好ましい。これらの中でも、本発明のPVAフィルムによれば、高速の延伸条件であっても破断を低減しつつ、光学性能の優れた偏光フィルムを得ることができることから、偏光フィルムの製造に用いられる原反フィルムとして用いることが好ましい。 The PVA film of the present invention is preferably an optical film. That is, the PVA film of the present invention is preferably used as a raw film used for manufacturing optical films such as polarizing films and retardation films. Among these, according to the PVA film of the present invention, it is possible to obtain a polarizing film with excellent optical performance while reducing breakage even under high-speed stretching conditions. It is preferable to use it as a film.
 本発明のPVAフィルムの製造については特に限定されず、湿式製膜法、ゲル製膜法、流延製膜法、押出製膜法など従来公知の方法を採用することできるが、後述するPVAフィルムの製造方法を採用することにより、本発明のPVAフィルムを効率良く製造できる。 The production of the PVA film of the present invention is not particularly limited, and conventionally known methods such as wet film forming method, gel film forming method, casting film forming method, and extrusion film forming method can be adopted. By employing the manufacturing method described above, the PVA film of the present invention can be efficiently manufactured.
<PVAフィルムの製造方法>
 本発明のPVAフィルムの製造方法は、PVAを含有する製膜原液を、50~99℃に加熱されたロール上又はベルト上に流延して乾燥させるPVAフィルムの製造方法であって、可塑化成分の含有量が20~23質量%になるまでPVAフィルムを乾燥させた後、100~120℃に加熱されたロール上又はベルト上でPVAフィルムを熱処理する、PVAフィルムの製造方法である。
<PVA film manufacturing method>
The method for producing a PVA film of the present invention is a method for producing a PVA film in which a film-forming stock solution containing PVA is cast onto a roll or belt heated to 50 to 99°C and dried, and the method comprises plasticizing This is a method for producing a PVA film, in which the PVA film is dried until the content of the components is 20 to 23% by mass, and then the PVA film is heat-treated on a roll or belt heated to 100 to 120 ° C.
 上記のPVAフィルムの製造方法において、PVAを含有する製膜原液(以下、製膜原液と略記する場合がある)としては、PVAが液体媒体中に溶解したものや、PVA及び液体媒体を含みPVAが溶融したものを用いることができる。製膜原液に含有されるPVAの具体的態様及び好適態様は、上記したPVAフィルムに含まれるPVAと同様である。 In the above method for producing a PVA film, the film-forming stock solution containing PVA (hereinafter sometimes abbreviated as film-forming stock solution) may be one in which PVA is dissolved in a liquid medium, or a PVA film containing PVA and a liquid medium. A molten one can be used. Specific aspects and preferred aspects of PVA contained in the film-forming stock solution are the same as those of PVA contained in the above-described PVA film.
 製膜原液に含まれる液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種または2種以上を使用することができる。そのうちでも、環境に与える負荷や回収性の点から水が好適に使用される。 Examples of the liquid medium contained in the membrane forming stock solution include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane. , ethylenediamine, diethylenetriamine, etc., and one or more of these can be used. Among these, water is preferably used in view of its environmental impact and recoverability.
 製膜原液の揮発分率(製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の含有割合)は、製膜方法、製膜条件などによって異なるが、50~95質量%の範囲内であることが好ましく、55~90質量%の範囲内であることがより好ましく、60~85質量%の範囲内であることがさらに好ましい。製膜原液の揮発分率が低過ぎると、製膜原液の粘度が高くなり過ぎて、製膜原液を調製する際の濾過や脱泡が困難となり、異物や欠点の少ないPVAフィルムの製造が困難になる傾向がある。一方、製膜原液の揮発分率が高過ぎると、製膜原液の濃度が低くなり過ぎて、工業的なPVAフィルムの製造が困難になる傾向がある。 The volatile fraction of the film-forming stock solution (the content of volatile components such as liquid media removed by volatilization or evaporation during film-forming) varies depending on the film-forming method, film-forming conditions, etc., but is in the range of 50 to 95% by mass. It is preferably within the range of 55 to 90% by mass, more preferably within the range of 60 to 85% by mass. If the volatile fraction of the membrane-forming stock solution is too low, the viscosity of the membrane-forming stock solution becomes too high, making filtration and defoaming difficult when preparing the film-forming stock solution, making it difficult to produce PVA films with few foreign substances and defects. There is a tendency to On the other hand, if the volatile fraction of the film-forming stock solution is too high, the concentration of the film-forming stock solution becomes too low, which tends to make industrial production of PVA film difficult.
 ここで、本明細書における製膜原液の揮発分率とは、下記式により求めた値をいう。
 製膜原液の揮発分率(質量%)={(Wa-Wb)/Wa}×100
 上記式中、Waは、製膜原液の質量(g)を表し、Wbは、Wa(g)の製膜原液を105℃の電熱乾燥機中で16時間乾燥した後の質量(g)を表す。
Here, the volatile fraction of the film-forming stock solution in this specification refers to a value determined by the following formula.
Volatile fraction (mass%) of film forming stock solution = {(Wa-Wb)/Wa}×100
In the above formula, Wa represents the mass (g) of the film-forming stock solution, and Wb represents the mass (g) after drying the film-forming stock solution of Wa (g) for 16 hours in an electric dryer at 105°C. .
 製膜原液は、界面活性剤を含有することが好ましい。製膜原液に含有される界面活性剤の具体的態様及び好適態様は、上記したPVAフィルムに含まれる界面活性剤と同様である。 The membrane forming stock solution preferably contains a surfactant. Specific aspects and preferred aspects of the surfactant contained in the film-forming stock solution are the same as those of the surfactant contained in the PVA film described above.
 製膜原液は、可塑剤を含有することが好ましい。製膜原液に含有される可塑剤の具体的態様及び好適態様は、上記したPVAフィルムに含まれる可塑剤と同様である。 It is preferable that the film forming stock solution contains a plasticizer. Specific aspects and preferred aspects of the plasticizer contained in the film-forming stock solution are the same as those of the plasticizer contained in the PVA film described above.
 上記のPVAフィルムの製造方法においては、PVAを含有する製膜原液を、50~99℃に加熱されたロール上又はベルト上に流延して乾燥させる。加熱されたロール又はベルトの表面温度は、PVAフィルムの製造効率の観点から、60~98℃の範囲内であることがより好ましく、70~97℃の範囲内であることがさらに好ましい。 In the above method for producing a PVA film, a film-forming stock solution containing PVA is cast onto a roll or belt heated to 50 to 99°C and dried. From the viewpoint of PVA film production efficiency, the surface temperature of the heated roll or belt is more preferably within the range of 60 to 98°C, and even more preferably within the range of 70 to 97°C.
 上記のPVAフィルムの製造方法においては、可塑化成分の量が20~23質量%になるまでPVAフィルムを乾燥させる。可塑化成分の量を上記範囲内とすることにより、本発明のPVAフィルムを効率的に製造することができる。ここで、可塑化成分の量とは、PVAを含有する製膜原液を、50~99℃に加熱されたロール上又はベルト上に流延して乾燥させた後のPVAフィルムが、最初の熱処理ロールに接触するときのPVAフィルムに含まれる可塑化成分の質量分率である。この可塑化成分は、PVAフィルムの製膜原液に含まれる液体媒体及び可塑剤からなる。 In the above method for producing a PVA film, the PVA film is dried until the amount of the plasticizing component becomes 20 to 23% by mass. By controlling the amount of the plasticizing component within the above range, the PVA film of the present invention can be efficiently produced. Here, the amount of plasticizing component refers to the amount of PVA film that is obtained by casting a film-forming stock solution containing PVA onto a roll or belt heated to 50 to 99°C and drying it. It is the mass fraction of the plasticizing component contained in the PVA film when it contacts the roll. This plasticizing component consists of a liquid medium and a plasticizer contained in the PVA film forming solution.
 上記の通り可塑化成分は、液体媒体及び可塑剤からなる。液体媒体としては水が好ましく、可塑剤としてはグリセリン、ジグリセリン及びプロピレングリコールからなる群より選ばれる少なくとも1種であることが好ましい。すなわち、可塑化成分が水及び可塑剤からなり、可塑剤がグリセリン、ジグリセリン及びプロピレングリコールからなる群より選ばれる少なくとも1種であることが好ましい。このような可塑化効果が高い可塑剤を使用することにより、得られるPVAフィルムの延伸性が向上しやすくなる。また、これら可塑剤の中でも、グリセリンは比較的揮発性が低く、かつ可塑化効果も高いので、可塑剤が少なくともグリセリンを含有することがより好ましい。 As mentioned above, the plasticizing component consists of a liquid medium and a plasticizer. The liquid medium is preferably water, and the plasticizer is preferably at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol. That is, it is preferable that the plasticizing component consists of water and a plasticizer, and that the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol. By using a plasticizer with such a high plasticizing effect, the stretchability of the resulting PVA film can be easily improved. Further, among these plasticizers, glycerin has relatively low volatility and high plasticizing effect, so it is more preferable that the plasticizer contains at least glycerin.
 上記のPVAフィルムの製造方法においては、可塑化成分の量が20~23質量%になるまでPVAフィルムを乾燥させた後、100~120℃に加熱されたロール上又はベルト上でPVAフィルムを熱処理する。熱処理の温度が上記範囲内であることにより、PVAフィルムの膨潤度(A)、膨潤度比(B/A)及び平均吸水速度を所望の範囲に調整することができる。また、PVAフィルムの機械的強度等の特性も調整することができる。 In the above method for producing a PVA film, after drying the PVA film until the amount of plasticizing component becomes 20 to 23% by mass, the PVA film is heat-treated on a roll or belt heated to 100 to 120°C. do. By setting the heat treatment temperature within the above range, the degree of swelling (A), degree of swelling ratio (B/A), and average water absorption rate of the PVA film can be adjusted to desired ranges. Furthermore, properties such as mechanical strength of the PVA film can also be adjusted.
 熱処理は、100~120℃に加熱されたロール上で行うことが好ましい。また、本発明のPVAフィルムをより効率的に製造することができることから、熱処理の温度は102℃以上が好ましく、115℃以下が好ましく、108℃以下がより好ましい。熱処理時間は通常、10~30秒間である。 The heat treatment is preferably carried out on a roll heated to 100 to 120°C. Moreover, since the PVA film of the present invention can be manufactured more efficiently, the temperature of the heat treatment is preferably 102°C or higher, preferably 115°C or lower, and more preferably 108°C or lower. The heat treatment time is usually 10 to 30 seconds.
<偏光フィルムの製造方法>
 本発明のPVAフィルムによれば、高速の延伸条件であっても破断を低減しつつ、光学性能の優れた偏光フィルムを得ることができることから、偏光フィルムの製造に用いられる原反フィルムとして用いることが好ましい。本発明のPVAフィルムを原反フィルムとして用いて偏光フィルムを製造する際の方法は特に制限されず、従来から採用されているいずれの方法を採用してもよい。このような方法としては、例えば、PVAフィルムを染色及び一軸延伸する方法が挙げられ、具体的には、PVAフィルムに対して、膨潤、染色、一軸延伸、及び必要に応じてさらに、固定処理、乾燥、熱処理などを施す方法が挙げられる。この場合、膨潤、染色、一軸延伸、固定処理などの各処理の順序は特に制限されず、1つまたは2つ以上の処理を同時に行うこともできる。また、各処理の1つまたは2つ以上を2回またはそれ以上行うこともできる。
<Production method of polarizing film>
According to the PVA film of the present invention, it is possible to obtain a polarizing film with excellent optical performance while reducing breakage even under high-speed stretching conditions, and therefore it can be used as a raw film used in the production of polarizing films. is preferred. The method for producing a polarizing film using the PVA film of the present invention as a raw film is not particularly limited, and any conventionally employed method may be employed. Examples of such methods include, for example, a method of dyeing and uniaxially stretching a PVA film. Specifically, the PVA film is subjected to swelling, dyeing, uniaxially stretching, and if necessary, further fixing treatment, Methods include drying, heat treatment, etc. In this case, the order of each treatment such as swelling, dyeing, uniaxial stretching, and fixing treatment is not particularly limited, and one or more treatments can be performed simultaneously. Also, one or more of each process can be performed two or more times.
 膨潤は、PVAフィルムを水に浸漬することにより行うことができる。水に浸漬する際の水の温度としては、20~40℃の範囲内であることが好ましく、22~38℃の範囲内であることがより好ましく、25~35℃の範囲内であることがさらに好ましい。また、水に浸漬する時間としては、例えば、0.1~5分間の範囲内であることが好ましく、0.5~3分間の範囲内であることがより好ましい。なお、水に浸漬する際の水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。 Swelling can be performed by immersing the PVA film in water. The temperature of the water during immersion is preferably within the range of 20 to 40°C, more preferably within the range of 22 to 38°C, and preferably within the range of 25 to 35°C. More preferred. Further, the time for immersion in water is preferably within a range of 0.1 to 5 minutes, and more preferably within a range of 0.5 to 3 minutes. Note that the water used for immersion is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and an aqueous medium.
 染色は、ヨウ素を用いて行うのがよく、染色の時期としては、一軸延伸前、一軸延伸時、一軸延伸後のいずれの段階であってもよい。染色はPVAフィルムを染色浴としてヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中に浸漬させることにより行うのが一般的であり、本発明においてもこのような染色方法が好適に採用される。染色浴におけるヨウ素の濃度は0.01~0.5質量%の範囲内であることが好ましく、ヨウ化カリウムの濃度は0.01~10質量%の範囲内であることが好ましい。また、染色浴の温度は20~50℃の範囲内であることが好ましく、25~40℃の範囲内であることがより好ましい。 Staining is preferably carried out using iodine, and the dyeing may be carried out at any stage before uniaxial stretching, during uniaxial stretching, or after uniaxial stretching. Dyeing is generally performed by immersing the PVA film in a solution (especially an aqueous solution) containing iodine and potassium iodide as a dye bath, and such a dyeing method is preferably adopted in the present invention. . The concentration of iodine in the dye bath is preferably within the range of 0.01 to 0.5% by mass, and the concentration of potassium iodide is preferably within the range of 0.01 to 10% by mass. Further, the temperature of the dyeing bath is preferably within the range of 20 to 50°C, more preferably within the range of 25 to 40°C.
 一軸延伸は、湿式延伸法または乾式延伸法のいずれで行ってもよい。湿式延伸法の場合はホウ酸を含む水溶液中で行うこともできるし、上記した染色浴中や後述する固定処理浴中で行うこともできる。また乾式延伸法の場合は吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。ホウ酸水溶液中におけるホウ酸の濃度は0.5~6.0質量%の範囲内であることが好ましく、1.0~5.0質量%の範囲内であることがより好ましく、1.5~4.0質量%の範囲内であることが特に好ましい。また、ホウ酸水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01~10質量%の範囲内であることが好ましい。一軸延伸における延伸温度は、30~90℃の範囲内であることが好ましく、40~80℃の範囲内であることがより好ましく、50~70℃の範囲内であることが特に好ましい。また、一軸延伸における延伸倍率は、得られる偏光フィルムの偏光性能の点から5倍以上であることが好ましく、5.5倍以上であることがより好ましく、6倍以上であることが特に好ましい。延伸倍率の上限は特に制限されないが、延伸倍率は8倍以下であることが好ましい。 The uniaxial stretching may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, it can be carried out in an aqueous solution containing boric acid, or it can be carried out in the above-mentioned dyeing bath or in the fixing bath described below. Further, in the case of a dry stretching method, it can be carried out in air using a PVA film after water absorption. Among these, wet stretching is preferred, and uniaxial stretching in an aqueous solution containing boric acid is more preferred. The concentration of boric acid in the boric acid aqueous solution is preferably within the range of 0.5 to 6.0% by mass, more preferably within the range of 1.0 to 5.0% by mass, and 1.5% by mass. It is particularly preferably within the range of 4.0% by mass. Further, the boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably within the range of 0.01 to 10% by mass. The stretching temperature in uniaxial stretching is preferably within the range of 30 to 90°C, more preferably within the range of 40 to 80°C, and particularly preferably within the range of 50 to 70°C. Further, the stretching ratio in uniaxial stretching is preferably 5 times or more, more preferably 5.5 times or more, and particularly preferably 6 times or more from the viewpoint of polarizing performance of the polarizing film obtained. Although the upper limit of the stretching ratio is not particularly limited, it is preferable that the stretching ratio is 8 times or less.
 偏光フィルムの製造に当たっては、PVAフィルムへの染料(ヨウ素等)の吸着を強固にするために固定処理を行うことが好ましい。固定処理に使用する固定処理浴としては、ホウ酸、硼砂等のホウ素化合物の1種または2種以上を含む水溶液を使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴におけるホウ素化合物の濃度は、2~15質量%の範囲内であることが好ましく、3~10質量%の範囲内であることがより好ましい。固定処理浴の温度は、15~60℃の範囲内であることが好ましく、25~40℃の範囲内であることがより好ましい。 When manufacturing a polarizing film, it is preferable to carry out a fixing treatment in order to strengthen the adsorption of dyes (iodine, etc.) to the PVA film. As the fixing treatment bath used for the fixing treatment, an aqueous solution containing one or more boron compounds such as boric acid and borax can be used. Further, an iodine compound or a metal compound may be added to the fixing treatment bath as necessary. The concentration of the boron compound in the fixing treatment bath is preferably within the range of 2 to 15% by mass, more preferably within the range of 3 to 10% by mass. The temperature of the fixing treatment bath is preferably within the range of 15 to 60°C, more preferably within the range of 25 to 40°C.
 乾燥は、30~150℃の範囲内で行うことが好ましく、50~130℃の範囲内で行うことがより好ましい。乾燥により偏光フィルムの水分率が10%以下になった時点で偏光フィルムに張力を掛けて80~120℃程度で1~5分間程度熱処理を行うと、寸法安定性、耐久性等に一層優れる偏光フィルムを得ることができる。 Drying is preferably carried out within the range of 30 to 150°C, more preferably within the range of 50 to 130°C. When the moisture content of the polarizing film decreases to 10% or less after drying, tension is applied to the polarizing film and heat treatment is performed at 80 to 120°C for 1 to 5 minutes, resulting in polarized light with even better dimensional stability and durability. You can get the film.
 以上のようにして得られた偏光フィルムは、通常、その両面または片面に保護膜を貼り合わせて偏光板にして使用される。保護膜としては、光学的に透明で且つ機械的強度を有するものが挙げられ、具体的には例えば、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などを挙げることができるが、中でもPVA系接着剤が好適である。 The polarizing film obtained as described above is usually used as a polarizing plate by laminating a protective film on both or one side thereof. Examples of the protective film include those that are optically transparent and have mechanical strength. Specifically, for example, cellulose triacetate (TAC) film, cellulose acetate/butyrate (CAB) film, acrylic film, polyester film, etc. Film etc. are used. Furthermore, examples of adhesives for bonding include PVA adhesives and urethane adhesives, among which PVA adhesives are preferred.
 上記のようにして得られた偏光板は、アクリル系等の粘着剤をコートした後、ガラス基板に貼り合わせてLCDの部品として使用することができる。同時に位相差フィルムや視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。 The polarizing plate obtained as described above can be used as an LCD component by being coated with an acrylic adhesive or the like and then bonded to a glass substrate. At the same time, it may be laminated with a retardation film, a viewing angle improvement film, a brightness improvement film, or the like.
 偏光フィルムの厚みに特に制限はなく、例えば、30μm以下、さらには25μm以下とすることができる。偏光フィルムさらにはそれを用いた偏光板の収縮応力を低減させ、積層される薄型のガラスが反ることを防止するなどの観点から、偏光フィルムの厚みは20μm以下であることが好ましく、15μm以下であることがより好ましい。一方、あまりに薄い偏光フィルムはその製造や取り扱いが困難になる傾向があることから、偏光フィルムの厚みは3μm以上であることが好ましい。 The thickness of the polarizing film is not particularly limited, and can be, for example, 30 μm or less, or even 25 μm or less. The thickness of the polarizing film is preferably 20 μm or less, and preferably 15 μm or less, from the viewpoint of reducing the shrinkage stress of the polarizing film and the polarizing plate using the polarizing film, and preventing the laminated thin glass from warping. It is more preferable that On the other hand, since a polarizing film that is too thin tends to be difficult to manufacture and handle, the thickness of the polarizing film is preferably 3 μm or more.
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。評価方法等は以下に示す方法に従って行った。 The present invention will be specifically explained below using examples, but the present invention is not limited to these examples in any way. The evaluation method was performed according to the method shown below.
[PVAフィルムの膨潤度(A)]
 以下の実施例及び比較例で得られたPVAフィルムから幅方向(TD)に100mm、長さ方向(機械流れ方向)に200mmの長方形のサンプルを切り出し、このサンプルをさらに幅が2~3mm、長さが200mmの短冊状にカットした。その後、これらの短冊状のサンプル全てを30℃の1000gの純水中にそのまま浸漬した。30分間浸漬後に短冊状のサンプルを取り出し、3000rpmで5分間遠心脱水し、脱水後の質量Wa(g)(短冊状のサンプル全ての合計)を測定した。続いて、その短冊状のサンプルを105℃の乾燥機で16時間乾燥した後、質量Wb(g)(短冊状のサンプル全ての合計)を測定し、下記式により膨潤度(A)を算出した。なお同様の測定を3回行い、その平均値を採用した。
  膨潤度(A)(%)=100×Wa/Wb
[Swelling degree of PVA film (A)]
A rectangular sample of 100 mm in the width direction (TD) and 200 mm in the length direction (machine flow direction) was cut out from the PVA films obtained in the following Examples and Comparative Examples, and this sample was further cut into 2 to 3 mm width and length. It was cut into strips with a length of 200 mm. Thereafter, all of these strip-shaped samples were immersed as they were in 1000 g of pure water at 30°C. After 30 minutes of immersion, the strip sample was taken out, centrifuged for 5 minutes at 3000 rpm, and the mass Wa (g) (total of all strip samples) after dehydration was measured. Subsequently, after drying the strip-shaped sample for 16 hours in a dryer at 105 ° C., the mass Wb (g) (total of all strip-shaped samples) was measured, and the degree of swelling (A) was calculated using the following formula. . Note that similar measurements were performed three times and the average value was used.
Swelling degree (A) (%) = 100 x Wa/Wb
[PVAフィルムの膨潤度(B)]
 以下の実施例及び比較例で得られたPVAフィルムから幅方向(TD)に40mm、長さ方向(機械流れ方向)に110mmの長方形のサンプルを切り出し、サンプルの長さ方向の中央部に、標線間(標線の太さ方向の中心間)の距離が50mmになるように油性ペンでサンプルの幅方向の標線(太さ約0.5mm)を2本引いた。このサンプルを各標線が延伸治具の端に位置するように延伸治具にセットし(チャック間の距離は50mm)、30℃の純水に浸漬して10秒後に0.12m/分(240%/分)の延伸速度で実延伸倍率が2.5倍になるように一軸延伸した。ここでいう実延伸倍率とは、延伸後の標線の中央(標線の長さを等分する位置における標線の太さ方向の中心)間の距離を延伸前の標線間の距離(50mm)で除した値である。延伸後、1分以内に、ろ紙を用いて延伸後のサンプル表面の水分をふき取り、標線の太さ方向の中心部分で標線に沿ってサンプルを切ることにより標線間のフィルムを切り出し、この標線間のフィルムの質量Wc(g)を測定した。続いてそのフィルムを105℃の乾燥機で16時間乾燥した後、質量Wd(g)を測定し、下記式により、30℃の水中で延伸倍率2.5倍に延伸した後の膨潤度(B)を算出した。なお同様の測定を5回行い、最大値と最小値を除外した3回の平均値を採用した。
  膨潤度(B)(%)=100×Wc/Wd
[Swelling degree of PVA film (B)]
A rectangular sample measuring 40 mm in the width direction (TD) and 110 mm in the length direction (machine flow direction) was cut out from the PVA films obtained in the following Examples and Comparative Examples. Two gauge lines (thickness: about 0.5 mm) were drawn in the width direction of the sample using a permanent marker so that the distance between the lines (between the centers in the thickness direction of the gauge lines) was 50 mm. This sample was set on a stretching jig so that each marked line was located at the end of the stretching jig (distance between chucks was 50 mm), and immersed in pure water at 30°C for 10 seconds, at a rate of 0.12 m/min. Uniaxial stretching was carried out at a stretching speed of 240%/min) so that the actual stretching ratio was 2.5 times. The actual stretching ratio here refers to the distance between the centers of the marked lines after stretching (the center in the thickness direction of the marked lines at the positions that equally divide the length of the marked lines) to the distance between the marked lines before stretching ( 50mm). After stretching, within 1 minute, wipe off moisture on the surface of the sample after stretching using filter paper, cut the film between the marked lines by cutting the sample along the marked line at the center part in the thickness direction of the marked line, The mass Wc (g) of the film between the marked lines was measured. Subsequently, the film was dried in a dryer at 105°C for 16 hours, the mass Wd (g) was measured, and the swelling degree (B ) was calculated. Note that similar measurements were performed five times, and the average value of the three measurements excluding the maximum and minimum values was adopted.
Swelling degree (B) (%) = 100 x Wc/Wd
[PVAフィルムの幅方向の寸法変化率]
 以下の実施例及び比較例で得られたPVAフィルムの幅方向中央部から長さ方向(機械流れ方向)40mm×幅方向(TD)270mmの長方形のサンプルを切り出した。このサンプルの270mm長の両端から10mmずつ内側に長さ方向の標線を引き、両端の標線から外側の部分をそれぞれクリップ(チャック幅40mm、質量7.8g(水中での重量7.3g))で挟み、一方のクリップは棒状治具で固定した。標線間距離が250mmであることを確認後、水槽に蓄えた30℃に調温した純水に、サンプルの長辺が垂直(鉛直)になるように速やかにサンプル全体を水中に浸漬した。このとき、浸漬直後に水槽上部に棒状冶具を引っ掛けてサンプルの長辺が垂直(鉛直)になるように固定し、浸漬から30秒後のサンプルの標線間距離WTDを測定した後、下記式により寸法変化率を算出した。
  寸法変化率(%)=100×{(WTD-250)/250}
[Dimensional change rate in the width direction of PVA film]
A rectangular sample measuring 40 mm in the length direction (machine flow direction) x 270 mm in the width direction (TD) was cut out from the center of the width direction of the PVA films obtained in the following Examples and Comparative Examples. Draw longitudinal markings 10mm inward from both ends of the 270mm length of this sample, and clip the parts outside from the markings at both ends (chuck width 40mm, mass 7.8g (weight in water 7.3g)) ), and one clip was fixed with a rod-shaped jig. After confirming that the distance between the gauge lines was 250 mm, the entire sample was immediately immersed in pure water stored in a water tank and kept at a temperature of 30° C. so that the long side of the sample was vertical. At this time, immediately after immersion, a rod-shaped jig was hooked to the top of the water tank and fixed so that the long side of the sample was vertical (vertical), and the distance between the gauge lines W TD of the sample was measured 30 seconds after immersion, and then the following The dimensional change rate was calculated using the formula.
Dimensional change rate (%) = 100 x {(W TD -250)/250}
[PVAフィルムの平均吸水速度]
 以下の実施例及び比較例で得られたPVAフィルムについて、以下(1)、(2)の方法で水分率M30及びMを求め、下記式によりPVAフィルムの平均吸水速度(質量%/秒)を求めた。なお、水分率が2.5質量%未満又は4.0質量%を超えるPVAフィルムを測定する場合には、吸水前のPVAフィルムの水分率Mを2.5~4.0質量%に調整した後、下記(1)の方法で当該フィルムに吸水させて吸水後の水分率M30を測定することにより、平均吸水速度を求める。
  平均吸水速度(質量%/秒)={(M30-M)/30}
[Average water absorption rate of PVA film]
For the PVA films obtained in the following Examples and Comparative Examples, the moisture content M 30 and M 0 were determined by the methods (1) and (2) below, and the average water absorption rate (mass%/sec) of the PVA film was calculated using the following formula. ) was sought. In addition, when measuring a PVA film with a moisture content of less than 2.5% by mass or more than 4.0% by mass, adjust the moisture content M 0 of the PVA film before water absorption to 2.5 to 4.0% by mass. After that, the average water absorption rate is determined by making the film absorb water using the method (1) below and measuring the moisture content M30 after water absorption.
Average water absorption rate (mass%/sec) = {(M 30 - M 0 )/30}
 (1)以下の実施例及び比較例で得られたPVAフィルムから幅方向に50mm、長さ方向に100mmの長方形のサンプルを切り出し、30℃の純水1000g中に30秒間浸漬した。浸漬後のサンプルを取り出し、濾紙で表面の水を吸い取った後、その質量We(g)を測定した。続いてそのサンプルを105℃の乾燥機で16時間乾燥した後、その質量Wf(g)を測定した。得られた質量We及びWfから、下記式によって、PVAフィルムの水分率M30(質量%)を算出した。同様の測定を3回行い、その平均値を採用した。
  M30(質量%)={(We-Wf)/We}×100   
(1) A rectangular sample measuring 50 mm in the width direction and 100 mm in the length direction was cut out from the PVA films obtained in the following Examples and Comparative Examples, and immersed in 1000 g of pure water at 30° C. for 30 seconds. The sample after immersion was taken out, and after absorbing the water on the surface with a filter paper, its mass We (g) was measured. Subsequently, the sample was dried in a dryer at 105° C. for 16 hours, and then its mass Wf (g) was measured. From the obtained masses We and Wf, the moisture content M 30 (mass %) of the PVA film was calculated using the following formula. Similar measurements were performed three times, and the average value was used.
M 30 (mass%) = {(We-Wf)/We}×100
 (2)以下の実施例及び比較例で得られたPVAフィルムから約5gのサンプルを切り出した。このサンプルをガラス製の耐熱容器に入れて密閉し、風袋を除いたサンプル質量Wg(g)を小数点以下4桁まで測定した。続いて、このサンプルを耐熱容器ごと温度50℃、圧力0.1kPa以下の真空乾燥機中に入れて、耐熱容器のふたを開けた状態で4時間乾燥した後、風袋を除いたサンプルの質量Wh(g)を小数点以下4桁まで測定した。得られた質量Wg及びWhから、下記式によって、PVAフィルムの水分率M(質量%)を求めた。
  M(質量%)={(Wg-Wh)/Wg}×100
(2) About 5 g of samples were cut out from the PVA films obtained in the following Examples and Comparative Examples. This sample was placed in a heat-resistant glass container and sealed, and the sample mass Wg (g) excluding the tare was measured to four decimal places. Next, this sample was placed in a vacuum dryer with the heat-resistant container at a temperature of 50°C and a pressure of 0.1 kPa or less, and dried for 4 hours with the lid of the heat-resistant container open. (g) was measured to four decimal places. From the obtained masses Wg and Wh, the moisture content M 0 (mass %) of the PVA film was determined by the following formula.
M 0 (mass%) = {(Wg-Wh)/Wg}×100
[熱処理前のPVAフィルムの可塑化成分の含有量]
 以下の実施例及び比較例において、加熱された金属ドラム(加熱されたロール)上で乾燥させたPVAフィルムの幅方向の中央部から約5gのサンプルを切り出した。このサンプルについて、以下(1)(2)の方法で水分率M(質量%)及び可塑剤率G(質量%)を求め、これらの合計の値を熱処理前のPVAフィルムの可塑化成分の含有量(質量%)とした。
[Content of plasticizing component in PVA film before heat treatment]
In the following Examples and Comparative Examples, a sample of about 5 g was cut out from the center in the width direction of a PVA film dried on a heated metal drum (heated roll). For this sample, determine the moisture content M (mass%) and plasticizer content G (mass%) using methods (1) and (2) below, and calculate the total value of these as the content of plasticizing components in the PVA film before heat treatment. amount (mass%).
 (1)サンプルをガラス製の耐熱容器に入れて密閉し、風袋を除いたサンプルの質量Wi(g)を小数点以下4桁まで測定した。続いて、このサンプルを耐熱容器ごと温度50℃、圧力0.1kPa以下の真空乾燥機中に入れて、耐熱容器のふたを開けた状態で4時間乾燥した後、風袋を除いたサンプルの質量Wj(g)を小数点以下4桁まで測定した。得られた質量Wi及びWjから、下記式によって、PVAフィルムの水分率M(質量%)を求めた。
  M(質量%)={(Wi-Wj)/Wi}×100
(1) The sample was placed in a heat-resistant glass container and sealed, and the mass Wi (g) of the sample excluding the tare was measured to four decimal places. Next, this sample was placed together with the heat-resistant container in a vacuum dryer at a temperature of 50°C and a pressure of 0.1 kPa or less, and dried for 4 hours with the lid of the heat-resistant container open, and then the weight of the sample after removing the tare Wj (g) was measured to four decimal places. From the obtained masses Wi and Wj, the moisture content M (mass %) of the PVA film was determined by the following formula.
M (mass%) = {(Wi-Wj)/Wi}×100
 (2)サンプルからフィルム0.3gを取り出し、純水9gに室温にて3分間浸漬させた。得られた抽出液の質量Wk(g)を測定した後、固相抽出カラムに通して分離液を採取し、屈折率計(アントンパール社製「ABBEMAT550」)にてグリセリン濃度CG(質量%)を計測した。一方、抽出液を除いた浸漬後のフィルムを105℃で2時間乾燥させ、乾燥させたフィルムの質量Wl(g)を測定した。得られた質量Wk、Wl及び濃度CGから、下記式によって、PVAフィルムの可塑剤率G(質量%)を求めた。
  G(質量%)=CG×Wk/Wl    
(2) 0.3 g of film was taken out from the sample and immersed in 9 g of pure water for 3 minutes at room temperature. After measuring the mass Wk (g) of the obtained extract, the separated liquid was collected by passing it through a solid phase extraction column, and the glycerin concentration CG (mass %) was measured using a refractometer (“ABBEMAT550” manufactured by Anton Paar). was measured. On the other hand, the immersed film from which the extract was removed was dried at 105° C. for 2 hours, and the mass Wl (g) of the dried film was measured. From the obtained masses Wk, Wl and concentration CG, the plasticizer ratio G (mass %) of the PVA film was determined by the following formula.
G (mass%) = CG x Wk/Wl
[PVAフィルムの延伸応力(480%/分)]
 以下の実施例及び比較例で得られたPVAフィルムの幅方向中央部から、幅方向に30mm、長さ方向に100mmのサンプルを切り出し、長さ方向に一軸延伸するためにこれをチャック間が30mmになるように延伸治具に挟み、30℃の純水中に8秒間浸漬した。その後、144mm/分(480%/分)の延伸速度で長さ方向に一軸延伸しながら延伸倍率に対する応力を連続的に測定した。このとき、PVAフィルムのひずみが400%の時の応力を延伸応力とした。なお、応力の測定にはオートグラフ(株式会社島津製作所製「AG-I」)を用い、また、測定された張力を延伸前の断面積(サンプル厚み×サンプル幅(30mm))で除すことにより応力とした。同様の測定を3回行い、その平均値をPVAフィルムの延伸応力(480%/分)とした。
[Stretching stress of PVA film (480%/min)]
A sample of 30 mm in the width direction and 100 mm in the length direction is cut out from the center of the width direction of the PVA film obtained in the following Examples and Comparative Examples, and in order to uniaxially stretch it in the length direction, the sample is placed between chucks of 30 mm. The film was held in a stretching jig so that the shape of the film was maintained, and the film was immersed in pure water at 30°C for 8 seconds. Thereafter, while uniaxially stretching in the length direction at a stretching speed of 144 mm/min (480%/min), the stress with respect to the stretching ratio was continuously measured. At this time, the stress when the strain of the PVA film was 400% was defined as the stretching stress. Note that an autograph ("AG-I" manufactured by Shimadzu Corporation) was used to measure the stress, and the measured tension was divided by the cross-sectional area before stretching (sample thickness x sample width (30 mm)). The stress was determined by Similar measurements were performed three times, and the average value was taken as the stretching stress (480%/min) of the PVA film.
[PVAフィルムの延伸応力(240%/分)]
 延伸速度を72mm/分(240%/分)としたこと以外は上記の「PVAフィルムの延伸応力(480%/分)」と同様にして、PVAフィルムの延伸応力(240%/分)を求めた。
[Stretching stress of PVA film (240%/min)]
The stretching stress (240%/min) of the PVA film was determined in the same manner as "PVA film stretching stress (480%/min)" above except that the stretching speed was 72 mm/min (240%/min). Ta.
[偏光フィルムの透過率43.0%における偏光度]
 以下の実施例及び比較例それぞれにおいて、PVAフィルムから偏光フィルムを製造する際の2段目延伸時におけるヨウ素/ヨウ化カリウム水溶液中のヨウ素濃度を変更して、染色濃度の異なる5種類の偏光フィルムを製造した。これらの5種類の偏光フィルムそれぞれについて以下(1)(2)の方法で単体透過率Y(%)及び偏光度V(%)を求め、単体透過率Yを横軸、偏光度Vを縦軸として、5種類の偏光フィルムのデータをプロットして近似曲線を作成した。この近似曲線から単体透過率Yが43.0%であるときの偏光度Vの値を求め、これを「透過率43.0%における偏光度(%)」とした。
[Degree of polarization at 43.0% transmittance of polarizing film]
In each of the following Examples and Comparative Examples, the iodine concentration in the iodine/potassium iodide aqueous solution during the second-stage stretching when producing a polarizing film from a PVA film was changed to produce five types of polarizing films with different dyeing densities. was manufactured. For each of these five types of polarizing films, determine the single transmittance Y (%) and polarization degree V (%) using the methods (1) and (2) below, and plot the single transmittance Y on the horizontal axis and the polarization degree V on the vertical axis. An approximate curve was created by plotting the data of five types of polarizing films. From this approximate curve, the value of the degree of polarization V when the single transmittance Y was 43.0% was determined, and this was defined as the "degree of polarization (%) at a transmittance of 43.0%."
 (1)5種類の偏光フィルムの1枚から、長さ方向に30mm×幅方向に30mmの正方形のサンプルを2枚採取した。このうち1枚のサンプルについて、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z8722:2009(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、長さ方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値TY1(%)を求めた。もう1枚のサンプルについても同様にして、45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値TY2(%)を求めた。下記式によりTY1(%)とTY2(%)を平均し、偏光フィルムの単体透過率Y(%)を求めた。このような操作を5種類の偏光フィルムそれぞれについて行った。
  Y(%)= (TY1+TY2)/2
(1) Two square samples measuring 30 mm in the length direction x 30 mm in the width direction were taken from one of the five types of polarizing films. One of the samples was measured using a spectrophotometer with an integrating sphere (V7100 manufactured by JASCO Corporation) in accordance with JIS Z8722:2009 (method for measuring object color), using a C light source and a 2° field of view. Visibility correction in the visible light region is performed, and the light transmittance when tilted at 45 degrees and the light transmittance when tilted at -45 degrees with respect to the length direction are measured, and their average value TY1 (% ) was sought. Similarly, for the other sample, the light transmittance when tilted at 45 degrees and the light transmittance when tilted at -45 degrees were measured, and their average value TY2 (%) was determined. TY1 (%) and TY2 (%) were averaged using the following formula to determine the single transmittance Y (%) of the polarizing film. Such operations were performed for each of the five types of polarizing films.
Y (%) = (TY1+TY2)/2
 (2)上記(1)の単体透過率Yの測定で採取した2枚の偏光フィルムのサンプルを、その長さ方向が平行になるように重ねて、長さ方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値T∥(%)を求めた。次に、長さ方向が直交するように重ねて、長さ方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値T⊥(%)を求め、下記式により偏光度V(%)を求めた。このような操作を5種類の偏光フィルムそれぞれについて行った。
  V(%)= {(T∥-T⊥)/(T∥+T⊥)}1/2×100
(2) When the two polarizing film samples collected in the measurement of single transmittance Y in (1) above are stacked so that their length directions are parallel and tilted at 45 degrees with respect to the length direction. The light transmittance when tilted at -45° and the light transmittance when tilted at -45° were measured, and their average value T∥ (%) was determined. Next, stack them so that the length directions are perpendicular to each other, measure the light transmittance when tilted at 45 degrees with respect to the length direction, and the light transmittance when tilted at -45 degrees, and calculate the average of them. The value T⊥(%) was determined, and the degree of polarization V (%) was determined using the following formula. Such operations were performed for each of the five types of polarizing films.
V (%) = {(T∥−T⊥)/(T∥+T⊥)}1/2×100
[実施例1]
 PVA(酢酸ビニルの単独重合体のけん化物、重合度2,400、けん化度99.95モル%)100質量部、可塑剤としてグリセリン13質量部、界面活性剤としてラウリン酸ジエタノールアミド0.1質量部及び水からなる揮発分率66質量%の製膜原液を調製した。この製膜原液を表面温度が80℃の金属ドラムに流延し、可塑化成分の含有量が20.1質量%(水分率7質量%、可塑剤率13.1質量%)になるまで乾燥した後、105℃で15秒間熱処理を行い、幅65cm、厚み60μmのPVAフィルムを得た。得られたPVAフィルムについて、上記した方法により膨潤度(A)、膨潤度(B)、平均吸水速度、幅方向の水中寸法変化率、延伸応力(240%/分)及び延伸応力(480%/分)を測定した。また、膨潤度(B)を膨潤度(A)で除して、膨潤度比(B/A)を求めた。これらの結果を表1、2に示す。
[Example 1]
100 parts by mass of PVA (saponified homopolymer of vinyl acetate, degree of polymerization 2,400, degree of saponification 99.95 mol%), 13 parts by mass of glycerin as a plasticizer, 0.1 mass of lauric acid diethanolamide as a surfactant. A film-forming stock solution with a volatile content of 66% by mass was prepared. This film-forming stock solution was cast onto a metal drum with a surface temperature of 80°C, and dried until the content of plasticizing components was 20.1% by mass (moisture content: 7% by mass, plasticizer content: 13.1% by mass). After that, heat treatment was performed at 105° C. for 15 seconds to obtain a PVA film with a width of 65 cm and a thickness of 60 μm. Regarding the obtained PVA film, the degree of swelling (A), degree of swelling (B), average water absorption rate, underwater dimensional change rate in the width direction, stretching stress (240%/min) and stretching stress (480%/min) were determined by the method described above. minutes) was measured. Further, the degree of swelling (B) was divided by the degree of swelling (A) to obtain the degree of swelling ratio (B/A). These results are shown in Tables 1 and 2.
 上記のPVAフィルムを、温度30℃の水中に浸漬している間に元の長さの2倍に長さ方向に一軸延伸(1段目延伸)した後、ヨウ素を0.05質量%、ヨウ化カリウムを1.2質量%含む32℃のヨウ素/ヨウ化カリウム水溶液中に浸漬している間に元の長さの2.5倍まで長さ方向に一軸延伸(2段目延伸)した。次いで、ホウ酸を2.6質量%含む30℃のホウ酸水溶液中に浸漬している間に元の長さの3倍まで長さ方向に一軸延伸(3段目延伸)し、さらにホウ酸を2.8質量%、ヨウ化カリウムを5質量%含む55℃のホウ酸/ヨウ化カリウム水溶液中に浸漬している間に元の長さの5.8倍まで長さ方向に一軸延伸(4段目延伸)した。続いて、ホウ酸を1.5質量%、ヨウ化カリウムを3.3質量%含む22℃のヨウ化カリウム水溶液中に浸漬することによりフィルムを洗浄し、80℃の乾燥機で110秒間乾燥することにより、厚み24μmの偏光フィルムを製造した。得られた偏光フィルムについて、上記した方法により透過率43.0%における偏光度を測定した。結果を表1に示す。 The above PVA film was uniaxially stretched in the length direction to twice its original length (first stage stretching) while immersed in water at a temperature of 30°C. While immersed in an iodine/potassium iodide aqueous solution containing 1.2% by mass of potassium iodide at 32°C, the film was uniaxially stretched (second stage stretching) to 2.5 times its original length. Next, while immersed in a 30°C aqueous boric acid solution containing 2.6% by mass of boric acid, it was uniaxially stretched in the length direction to three times the original length (third-stage stretching), and further stretched with boric acid. While immersed in a boric acid/potassium iodide aqueous solution at 55°C containing 2.8% by mass and 5% by mass of potassium iodide, it was uniaxially stretched ( 4th stage stretching). Subsequently, the film is washed by immersing it in a potassium iodide aqueous solution at 22°C containing 1.5% by mass of boric acid and 3.3% by mass of potassium iodide, and dried for 110 seconds in a dryer at 80°C. In this way, a polarizing film with a thickness of 24 μm was manufactured. Regarding the obtained polarizing film, the degree of polarization at a transmittance of 43.0% was measured by the method described above. The results are shown in Table 1.
 [実施例2~5、比較例1~3]
 グリセリンの添加量又はPVAフィルムの乾燥時間を調整して熱処理前のPVAフィルムの可塑化成分の含有量を表3に示すように変更したこと、熱処理温度の条件を表3に示すように変更したこと以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルムについて、上記した方法により膨潤度(A)、膨潤度(B)、平均吸水速度、幅方向の水中寸法変化率、延伸応力(240%/分)及び延伸応力(480%/分)を測定した。また、膨潤度(B)を膨潤度(A)で除して、膨潤度比(B/A)を求めた。さらに、得られた偏光フィルムについて、上記した方法により、透過率43.0%における偏光度を測定した。これらの結果を表1、2に示す。
[Examples 2 to 5, Comparative Examples 1 to 3]
The content of plasticizing components in the PVA film before heat treatment was changed as shown in Table 3 by adjusting the amount of glycerin added or the drying time of the PVA film, and the conditions of heat treatment temperature were changed as shown in Table 3. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except for the above. Regarding the obtained PVA film, the degree of swelling (A), degree of swelling (B), average water absorption rate, underwater dimensional change rate in the width direction, stretching stress (240%/min) and stretching stress (480%/min) were determined by the method described above. minutes) was measured. Further, the degree of swelling (B) was divided by the degree of swelling (A) to obtain the degree of swelling ratio (B/A). Furthermore, the degree of polarization of the obtained polarizing film at a transmittance of 43.0% was measured by the method described above. These results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す通り、実施例1~5のPVAフィルムは480%/分の延伸条件での延伸応力が十分に小さいため、偏光フィルムの製造時において高速の延伸条件であってもPVAフィルムの破断が低減される。また、実施例の1~5のPVAフィルムから得られた偏光フィルムは、透過率43.0%における偏光度が十分に高い。すなわち、実施例1~5のPVAフィルムによれば、偏光フィルムの製造時において高速の延伸条件であってもPVAフィルムの破断が低減されつつ、光学性能の優れた偏光フィルムを製造することができる。 As shown in Table 1, the PVA films of Examples 1 to 5 had sufficiently low stretching stress under the stretching conditions of 480%/min, so even under high-speed stretching conditions during the production of polarizing films, the PVA films did not break. is reduced. Further, the polarizing films obtained from the PVA films of Examples 1 to 5 have a sufficiently high degree of polarization at a transmittance of 43.0%. That is, according to the PVA films of Examples 1 to 5, it is possible to produce a polarizing film with excellent optical performance while reducing breakage of the PVA film even under high-speed stretching conditions during production of the polarizing film. .
 一方、表1に示す通り、比較例1~2のPVAフィルムは、得られる偏光フィルムの光学性能は優れているが480%/分の延伸条件での延伸応力が大きいため、偏光フィルムの製造時において高速の延伸条件ではPVAフィルムが破断しやすくなる。また、比較例3のPVAフィルムは、480%/分の延伸条件での延伸応力が十分に小さいため、偏光フィルムの製造時において高速の延伸条件でも偏光フィルムの破断は低減されるが、得られた偏光フィルムの透過率43.0%における偏光度が十分でなかった。なお、比較例1~2のPVAフィルムであっても、240%/分のような比較的低速の延伸条件では延伸応力は十分に小さい。すなわち、比較例1~2のPVAフィルムでは、従来の比較的低速の延伸条件においてはPVAフィルムの破断を低減しつつ光学性能の優れた偏光フィルムを製造できるが、480%/分のような高速の延伸条件ではPVAフィルムが破断しやすくなり、偏光フィルムの製造効率が低減する。 On the other hand, as shown in Table 1, although the PVA films of Comparative Examples 1 and 2 have excellent optical performance, the stretching stress under the stretching condition of 480%/min is large, so that during the production of the polarizing film, Under high-speed stretching conditions, the PVA film tends to break. In addition, since the PVA film of Comparative Example 3 has a sufficiently low stretching stress under the stretching condition of 480%/min, the breakage of the polarizing film is reduced even under high-speed stretching conditions during the production of the polarizing film. The polarizing film had an insufficient degree of polarization at a transmittance of 43.0%. Note that even in the PVA films of Comparative Examples 1 and 2, the stretching stress is sufficiently small under relatively low stretching conditions such as 240%/min. In other words, with the PVA films of Comparative Examples 1 and 2, polarizing films with excellent optical performance can be produced while reducing PVA film breakage under conventional relatively low-speed stretching conditions, but under high-speed stretching conditions such as 480%/min. Under the stretching conditions, the PVA film tends to break, and the manufacturing efficiency of the polarizing film decreases.
 上記実施例で示されているとおり、本発明によれば、偏光フィルムの製造時において高速の延伸条件であってもPVAフィルムの破断が低減されつつ、光学性能の優れた偏光フィルムを製造することができる。そのため、光学性能を損なうことなく、効率よく偏光フィルムを製造することができる。

 
As shown in the above examples, according to the present invention, it is possible to produce a polarizing film with excellent optical performance while reducing breakage of the PVA film even under high-speed stretching conditions during production of the polarizing film. I can do it. Therefore, a polarizing film can be efficiently manufactured without impairing optical performance.

Claims (7)

  1.  膨潤度(A)が195~205質量%であり、30℃の水中で延伸速度240%/分の条件で2.5倍に延伸した後の膨潤度(B)を前記膨潤度(A)で除した値が1.27~1.40であるポリビニルアルコールフィルムであって、30℃の水中に30秒間浸漬した際の平均吸水速度が1.35質量%/秒以上である、ポリビニルアルコールフィルム。 The degree of swelling (A) is 195 to 205% by mass, and the degree of swelling (B) after stretching 2.5 times in water at 30 ° C. at a stretching rate of 240%/min is the degree of swelling (A). A polyvinyl alcohol film having a divided value of 1.27 to 1.40, and having an average water absorption rate of 1.35% by mass/second or more when immersed in water at 30°C for 30 seconds.
  2.  30℃の水中に30秒間浸漬したときの幅方向の寸法変化率が14.6~16.2%である、請求項1に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to claim 1, which has a dimensional change rate in the width direction of 14.6 to 16.2% when immersed in water at 30°C for 30 seconds.
  3.  フィルムの厚みが45~80μmである、請求項1または2に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to claim 1 or 2, wherein the film has a thickness of 45 to 80 μm.
  4.  光学用フィルムである、請求項1または2に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to claim 1 or 2, which is an optical film.
  5.  ポリビニルアルコールを含有する製膜原液を、50~99℃に加熱されたロール上又はベルト上に流延して乾燥させるポリビニルアルコールフィルムの製造方法であって、可塑化成分の含有量が20~23質量%になるまでポリビニルアルコールフィルムを乾燥させた後、100~120℃に加熱されたロール上又はベルト上でポリビニルアルコールフィルムを熱処理する、請求項1または2に記載のポリビニルアルコールフィルムの製造方法。 A method for producing a polyvinyl alcohol film in which a film-forming stock solution containing polyvinyl alcohol is cast onto a roll or belt heated to 50 to 99°C and dried, the method comprising: a film forming solution containing polyvinyl alcohol having a plasticizing component content of 20 to 23 The method for producing a polyvinyl alcohol film according to claim 1 or 2, wherein after drying the polyvinyl alcohol film to a mass%, the polyvinyl alcohol film is heat-treated on a roll or belt heated to 100 to 120 ° C.
  6.  前記熱処理を100~120℃に加熱されたロール上で行う、請求項5に記載のポリビニルアルコールフィルムの製造方法。 The method for producing a polyvinyl alcohol film according to claim 5, wherein the heat treatment is performed on a roll heated to 100 to 120°C.
  7.  前記可塑化成分が水及び可塑剤からなり、前記可塑剤がグリセリン、ジグリセリン及びプロピレングリコールからなる群より選ばれる少なくとも1種である、請求項5に記載のポリビニルアルコールフィルムの製造方法。 The method for producing a polyvinyl alcohol film according to claim 5, wherein the plasticizing component consists of water and a plasticizer, and the plasticizer is at least one selected from the group consisting of glycerin, diglycerin, and propylene glycol.
PCT/JP2023/010856 2022-03-22 2023-03-20 Poly(vinyl alcohol) film and production method therefor WO2023182267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045648 2022-03-22
JP2022-045648 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182267A1 true WO2023182267A1 (en) 2023-09-28

Family

ID=88101055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010856 WO2023182267A1 (en) 2022-03-22 2023-03-20 Poly(vinyl alcohol) film and production method therefor

Country Status (2)

Country Link
TW (1) TW202400695A (en)
WO (1) WO2023182267A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050697A1 (en) * 2012-09-26 2014-04-03 株式会社クラレ Polyvinyl alcohol film and polarizing film
JP2017223941A (en) * 2016-06-13 2017-12-21 日本合成化学工業株式会社 Polyvinyl alcohol film for polarization films, and method for producing the same, and polarization film
WO2018199141A1 (en) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 Polyvinyl alcohol film, polarizing film and polarizing plate, and polyvinyl alcohol film production method
WO2019151206A1 (en) * 2018-01-30 2019-08-08 株式会社クラレ Polyvinyl alcohol film and manufacturing method therefor
WO2022080472A1 (en) * 2020-10-15 2022-04-21 株式会社クラレ Polyvinyl alcohol resin film, method for identifying polyvinyl alcohol resin film, and method for producing polyvinyl alcohol resin film
WO2022202861A1 (en) * 2021-03-24 2022-09-29 三菱ケミカル株式会社 Polyvinyl-alcohol-based film, and method for manufacturing same and polarizing film and polarizing plate in which same is used

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050697A1 (en) * 2012-09-26 2014-04-03 株式会社クラレ Polyvinyl alcohol film and polarizing film
JP2017223941A (en) * 2016-06-13 2017-12-21 日本合成化学工業株式会社 Polyvinyl alcohol film for polarization films, and method for producing the same, and polarization film
WO2018199141A1 (en) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 Polyvinyl alcohol film, polarizing film and polarizing plate, and polyvinyl alcohol film production method
WO2019151206A1 (en) * 2018-01-30 2019-08-08 株式会社クラレ Polyvinyl alcohol film and manufacturing method therefor
WO2022080472A1 (en) * 2020-10-15 2022-04-21 株式会社クラレ Polyvinyl alcohol resin film, method for identifying polyvinyl alcohol resin film, and method for producing polyvinyl alcohol resin film
WO2022202861A1 (en) * 2021-03-24 2022-09-29 三菱ケミカル株式会社 Polyvinyl-alcohol-based film, and method for manufacturing same and polarizing film and polarizing plate in which same is used

Also Published As

Publication number Publication date
TW202400695A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP5587517B1 (en) Polyvinyl alcohol film and polarizing film
KR102163144B1 (en) Polyvinyl alcohol-based polymer film and manufacturing process therefor
KR102232980B1 (en) Master film for producing optical film
KR102161870B1 (en) Original film for manufacturing optical film
JP5624803B2 (en) Polyvinyl alcohol polymer film
JP4149201B2 (en) Manufacturing method of polarizing film
KR102595403B1 (en) Polarizing film, polarizing plate, and their manufacturing method
WO2018016542A1 (en) Method for producing polarizing film
JP7199343B2 (en) Polarizing film, polarizing plate, and manufacturing method thereof
JP4104916B2 (en) Optical polyvinyl alcohol film and method for producing the same
JP2018135426A (en) Polyvinyl alcohol film and method for producing the same, and polarization film prepared therewith
WO2015129538A1 (en) Polyvinyl alcohol film and method for manufacturing same
JP6077626B2 (en) Polyvinyl alcohol film
WO2023182267A1 (en) Poly(vinyl alcohol) film and production method therefor
KR102467101B1 (en) Film
JP5606704B2 (en) Manufacturing method of polarizing film
JP6667989B2 (en) Manufacturing method of polarizing film
KR20230028563A (en) Polyvinyl alcohol film
JP2004020631A (en) Method for manufacturing polarizing film
JP7375042B2 (en) Manufacturing method of optical polyvinyl alcohol film
JP7413116B2 (en) Manufacturing method of polarizing film
JP5832921B2 (en) Polyvinyl alcohol film
JP2017032732A (en) Polarizing film
WO2024143351A1 (en) Polyvinyl alcohol film and production method for same
KR20230112129A (en) Polyvinyl alcohol film, polarizing film and polarizing plate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774862

Country of ref document: EP

Kind code of ref document: A1