WO2023182262A1 - 二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法 - Google Patents

二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法 Download PDF

Info

Publication number
WO2023182262A1
WO2023182262A1 PCT/JP2023/010845 JP2023010845W WO2023182262A1 WO 2023182262 A1 WO2023182262 A1 WO 2023182262A1 JP 2023010845 W JP2023010845 W JP 2023010845W WO 2023182262 A1 WO2023182262 A1 WO 2023182262A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
group
ratio
less
groups
Prior art date
Application number
PCT/JP2023/010845
Other languages
English (en)
French (fr)
Inventor
寿枝 若林
さやか 篠本
秀人 板野
浩 吉田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023182262A1 publication Critical patent/WO2023182262A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a secondary battery analysis method, a secondary battery analysis program, and a secondary battery manufacturing method.
  • JP 2018-41740A describes a method for evaluating gas generated from a non-aqueous electrolyte secondary battery.
  • gas generated inside the battery is continuously supplied to a gas analyzer to continuously analyze the component composition of the generated gas.
  • a gas analyzer to continuously analyze the component composition of the generated gas.
  • Secondary batteries such as lithium ion batteries gradually reduce their discharge capacity through repeated charging and discharging.
  • Deterioration of secondary batteries includes deterioration of the positive electrode, deterioration of the negative electrode, deterioration of the electrolyte, and the like. In order to determine which parts are responsible for the deterioration of the characteristics of the secondary battery, it is necessary to disassemble the secondary battery and inspect each part.
  • the evaluation method described in the above-mentioned Japanese Patent Application Publication No. 2018-41740 is for analyzing the reaction status of gas generated during charging, and is for analyzing the reaction status of gas generated during charging. It is not intended to analyze the deterioration factors of secondary batteries based on the composition.
  • a secondary battery analysis method is an analysis method for analyzing a used secondary battery based on data on the composition of gas collected from inside the used secondary battery. , a step of dividing the components of the gas into a plurality of groups and determining the ratio of the amount of each of the plurality of groups to the total amount of the components to be considered, and based on the ratio, the used secondary battery and a classification step of classifying the.
  • a secondary battery analysis program is an analysis program that analyzes a used secondary battery based on data on the composition of gas collected from inside the used secondary battery. , dividing the components of the gas into a plurality of groups and determining the ratio of the amount of each of the plurality of groups to the total amount of the components to be considered, and based on the ratio of the amount of each of the plurality of groups. , and a classification step of classifying the used secondary batteries.
  • a method for manufacturing a secondary battery according to an embodiment of the present invention includes determining whether parts included in a used secondary battery are recyclable based on the secondary battery analysis method, and parts determined to be recyclable. Assemble the secondary battery using
  • factors such as deterioration factors of used secondary batteries can be easily analyzed. Further, it is possible to easily sort out used secondary batteries that can be recycled and assemble a secondary battery using the parts.
  • FIG. 1 shows that gases are collected from multiple secondary batteries that have deteriorated under various conditions, and the components of each gas are (1) hydrogen, (2) carbon monoxide and carbon dioxide, and (3) methane and ethane. It is divided into three groups, and the distribution of the composition ratio of these three groups is plotted in a triangular diagram.
  • FIG. 2 is an example of a chromatograph measured in the process of creating the triangular diagram shown in FIG.
  • Figure 3 is a table showing the composition ratio (volume %) of each component after excluding oxygen and nitrogen from the gas composition determined by the chromatograph in Figure 2 and normalizing the remaining components so that the total sum is 100%. It is.
  • FIG. 4 further extracts five types of components: hydrogen, carbon monoxide, carbon dioxide, methane, and ethane from the table in Figure 3, and shows that (1) hydrogen, (2) carbon monoxide + carbon dioxide in these five types of components. It is a table showing the composition ratio (volume %) of carbon and (3) methane + ethane.
  • FIG. 5 is a diagram for explaining the triangular diagram of FIG. Figure 6 shows a region in the triangular diagram of Figure 1 where hydrogen: 35% or more and 100% or less, carbon monoxide + carbon dioxide: 0% or more and 65% or less, and methane + ethane: 0% or more and less than 40%. It is a figure shown with hatching.
  • Figure 7 shows a region in the triangular diagram of Figure 1 where hydrogen: 0% to less than 35%, carbon monoxide + carbon dioxide: 25% to 100%, and methane + ethane: 0% to 75%. It is a figure shown with hatching.
  • Figure 8 shows a region in the triangular diagram of Figure 1 where hydrogen: 0% or more and 60% or less, carbon monoxide + carbon dioxide: 0% or more and less than 25%, and methane + ethane: 40% or more and 100% or less. It is a figure shown with hatching.
  • FIG. 9 is a flow diagram of a secondary battery analysis method according to an embodiment of the present invention.
  • the present inventors studied a method for estimating the deterioration factors of a used secondary battery from the composition of the gas inside the used secondary battery. Specifically, a plurality of secondary batteries degraded under various conditions were prepared, gas was collected from inside each secondary battery, and the composition was analyzed. As a result, the composition of the gas is divided into multiple groups, for example, (1) hydrogen, (2) carbon monoxide and carbon dioxide, and (3) methane and ethane, and the composition ratio of these three groups is determined. We found that it is possible to estimate the deterioration factors of secondary batteries by sorting them out.
  • FIG. 2 is an example of a measured chromatograph. This measurement was performed using a gas chromatograph Tracera (registered trademark) manufactured by Shimadzu Corporation. A barrier discharge ionization detector (detector temperature: 280°C) was used as a detector.
  • FIG. 3 is a table showing the composition ratio (volume %) of each component, which is normalized so that oxygen and nitrogen are excluded from the composition of this gas and the total of the remaining components is 100%.
  • Figure 4 further extracts five types of components: hydrogen, carbon monoxide, carbon dioxide, methane, and ethane, and shows that (1) hydrogen, (2) carbon monoxide + carbon dioxide, ( 3)
  • This is a table showing the composition ratio (volume %) of methane + ethane.
  • this composition ratio is determined for each gas sampled from a plurality of secondary batteries, and the distribution thereof is plotted in a triangular diagram.
  • Each vertex of the triangle means that the proportion of one of the three groups mentioned above is 100%.
  • point P1 means that the proportion of hydrogen is 100%
  • point P2 means that the proportion of (carbon monoxide + carbon dioxide) is 100%
  • point P3 means that the proportion of (methane + carbon dioxide) is 100%.
  • point P4 means (hydrogen, carbon monoxide + carbon dioxide, methane + ethane) is (90%, 10%, 0%)
  • point P5 means (hydrogen, carbon monoxide + carbon dioxide).
  • methane + ethane) is (30%, 60%, 10%).
  • FIG. 1 The legend of FIG. 1 is explained as follows.
  • Cycle A secondary battery whose characteristics have deteriorated by repeating 500 to 1000 charge/discharge cycles at room temperature.
  • composition ratios of the three groups described above are distributed in specific regions within the triangle in FIG. 1, depending on the conditions that degraded the secondary battery. Therefore, by checking in which region of the triangle in FIG. 1 this composition ratio falls, it is possible to estimate the cause of deterioration of the secondary battery.
  • FIG. 6 is a diagram showing area A in the triangular diagram of FIG. 1 with hatching.
  • Region A includes secondary batteries whose characteristics have deteriorated due to (f) overdischarge and (g) late cycle deterioration. These secondary batteries have deteriorated negative electrodes. Therefore, if the composition ratio of the three groups described above in the gas sampled from inside the secondary battery is in the region A, it can be estimated that the negative electrode of the secondary battery has deteriorated.
  • FIG. 7 is a diagram showing region B in the triangular diagram of FIG. 1 with hatching.
  • Region B includes secondary batteries whose characteristics have deteriorated due to (c) storage, (d) thermal shock, and (e) continuous charging.
  • the positive electrodes of these secondary batteries have deteriorated. Therefore, if the composition ratio of the three groups described above in the gas sampled from inside the secondary battery is in region B, it can be estimated that the negative electrode of the secondary battery has deteriorated.
  • FIG. 8 is a diagram showing area C in the triangular diagram of FIG. 1 with hatching.
  • Region C includes secondary batteries whose characteristics have deteriorated due to (a) cycles and (b) storage cycles. In these secondary batteries, it is not possible to identify the cause of deterioration of the secondary battery using only information on the gas composition, and it is necessary to disassemble the battery and investigate.
  • FIG. 9 is a flow diagram of a secondary battery analysis method according to an embodiment of the present invention.
  • This analysis method analyzes secondary batteries based on gas composition data collected from inside used secondary batteries.
  • the analysis method divides the gas components into multiple groups and a step of determining the ratio of the amount of each of the plurality of groups to the total amount of the components (step S1), a classification step of classifying used secondary batteries based on this ratio (step S2), and a classification step. and a determination step (step S3) of determining whether the components included in the used secondary battery are recyclable based on the results of.
  • the secondary battery analysis method is an analysis method for analyzing a used secondary battery based on data on the composition of gas collected from inside the used secondary battery.
  • a used secondary battery is, for example, a secondary battery whose discharge capacity has decreased and is determined to be unsuitable for reuse.
  • the type of secondary battery to be analyzed is, for example, a lithium ion battery.
  • the gas inside a used secondary battery can be collected, for example, by making a hole in the battery placed in a sampling bag for gas analysis made of vinyl fluoride resin.
  • the composition of the sampled gas can be determined, for example, by measuring with a gas chromatograph. Gas chromatography measurements are preferably performed using a highly sensitive detector such as a barrier discharge ionization detector (BID) or a thermal conductivity detector (TCD).
  • BID barrier discharge ionization detector
  • TCD thermal conductivity detector
  • Step S1 The gas components are divided into a plurality of groups, and the ratio of the amount of each of the plurality of groups to the total amount of the components to be considered is determined (step S1).
  • the plurality of groups includes at least the following groups. (1) A group containing hydrogen (hereinafter referred to as the "first group”), (2) A group containing carbon monoxide and carbon dioxide (hereinafter referred to as the "second group”); and (3) a group containing methane and ethane (hereinafter referred to as the "third group”).
  • Gases collected from inside used secondary batteries may contain acetylene, ethylene, propane, propylene, etc. in addition to the hydrogen, carbon monoxide, carbon dioxide, methane, and ethane listed above. be. These components are usually small amounts compared to the amounts of hydrogen, carbon monoxide, carbon dioxide, methane, and ethane. Each of the components other than hydrogen, carbon monoxide, carbon dioxide, methane, and ethane may be sorted into any of the first to third groups above, or the first to third groups above are It may be a separate group or may be excluded from consideration. Note that oxygen and nitrogen may be mixed in from the measurement environment, so it is preferable to exclude them from consideration.
  • the ratio of the amount of each group to the total amount of the components to be considered is determined.
  • the amounts of each group are normalized so that the sum of the amounts of the components under consideration is 100%.
  • the ratio can be expressed by weight ratio, substance amount ratio, volume ratio, etc.
  • the volume ratio can be calculated as follows.
  • Ratio of the first group (volume of hydrogen) / (sum volume of hydrogen, carbon monoxide, carbon dioxide, methane and ethane)
  • Ratio of the second group (volume of carbon monoxide + volume of carbon dioxide) / (sum volume of hydrogen, carbon monoxide, carbon dioxide, methane and ethane)
  • Ratio of the third group (volume of methane + volume of ethane) / (sum volume of hydrogen, carbon monoxide, carbon dioxide, methane and ethane)
  • step S2 The used secondary batteries are classified based on the ratio obtained in step S1 (classification step, step S2). In this embodiment, based on the ratio of the volume of each of the first group, second group, and third group to the total volume of the components to be considered (hereinafter referred to as "volume ratio of each group") , classified into the following three types (first to third classifications).
  • first group 35% or more and 100% or less
  • second group 0% or more and 65% or less
  • third group 0% or more and less than 40%: this
  • the used secondary battery is classified into the first category.
  • secondary batteries classified into the first category there is a high possibility that the negative electrode has deteriorated.
  • the used secondary battery is classified into the second category.
  • the positive electrode has deteriorated.
  • the volume ratio of each group is: the first group: 0% or more and 60% or less, the second group: 0% or more and less than 25%, and the third group: 40% or more and 100% or less: this
  • used secondary batteries are classified into the third category.
  • step S3 Based on the results of the classification step (step S2), it is determined whether the parts included in the used secondary battery are recyclable (determination step, step S3). In this embodiment, for example, it is possible to determine whether a component is recyclable as follows.
  • the used secondary battery is classified into the first category: There is a high possibility that the negative electrode of this secondary battery has deteriorated. Therefore, it is determined that the positive electrode is recyclable.
  • the negative electrode may be treated as unrecyclable, or it may be further inspected after disassembling the secondary battery to determine whether it is recyclable. Also, for the positive electrode determined to be recyclable, the secondary battery may be further inspected after being disassembled, and then recycled.
  • the used secondary battery is classified into the second category: There is a high possibility that the positive electrode of this secondary battery has deteriorated. Therefore, it is determined that the negative electrode is recyclable.
  • the positive electrode may be treated as being unrecyclable, or the secondary battery may be further inspected after being disassembled to determine whether it is recyclable. Also, for the negative electrode determined to be recyclable, the secondary battery may be further inspected after disassembly, and then recycled.
  • a used secondary battery is analyzed based on the composition of gas collected from inside the used secondary battery. Specifically, gas components are divided into a plurality of groups, and used secondary batteries are classified based on the composition ratio of the plurality of groups. This allows easy analysis of factors such as deterioration factors of used secondary batteries. Further, based on this classification, recyclable parts can be sorted out from used secondary batteries.
  • a secondary battery analysis program is an analysis program that analyzes a secondary battery based on data on the composition of gas collected from inside a used secondary battery. a step of dividing the battery into a plurality of groups and determining the ratio of the amount of each of the plurality of groups to the total amount of the component to be considered; a classification step of classifying the used secondary battery based on this ratio; The computer is caused to execute a determination step of determining whether the parts included in the used secondary battery are recyclable based on the results of the classification step. According to this embodiment as well, factors such as deterioration factors of used secondary batteries can be easily analyzed.
  • the above-described secondary battery analysis method can also be realized as a computer-readable recording medium on which the above-described computer program is recorded.
  • a secondary battery analysis system is an analysis system that analyzes a secondary battery based on data on the composition of gas collected from inside a used secondary battery, and includes a memory and a processor. and the processor divides the gas components into a plurality of groups according to the program in the memory, and calculates the ratio of the amount of each of the plurality of groups to the total amount of the components to be considered; Based on the classification process, a classification process of classifying used secondary batteries, and a determination process of determining whether parts included in the used secondary batteries are recyclable, based on the results of the classification process.
  • a method for manufacturing a secondary battery according to an embodiment of the present invention is to manufacture a secondary battery using parts included in a used secondary battery determined to be recyclable based on the above-mentioned secondary battery analysis method. assemble. For example, a new secondary battery is assembled using the positive electrode of a used secondary battery classified into the first category. Alternatively, a new secondary battery is assembled using the negative electrode of a used secondary battery classified into the second category. Note that "using parts included in used secondary batteries" refers to cases where parts such as electrodes are used as is, as well as cases where part of the components of the parts, such as electrode mixtures and active materials, are used. Also included. According to this embodiment, used secondary batteries that can be recycled can be easily sorted, and secondary batteries can be assembled using the parts.
  • the present invention can be used, for example, as a method for sorting recyclable parts from used secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

使用済みの二次電池の劣化要因等を簡便に分析することができる二次電池の分析方法を提供する。二次電池の分析方法は、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて使用済みの二次電池を分析する分析方法であって、ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する複数のグループの各々の量の比率を求める工程と、比率に基づいて、使用済みの二次電池を分類する分類工程と、を備える。

Description

二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法
 本発明は、二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法に関する。
 特開2018-41740号公報には、非水系電解質二次電池の発生ガス評価方法が記載されている。この評価方法は、非水系電解質二次電池を充電しながら、電池内部で発生する発生ガスを連続的にガス分析装置に供給することにより、発生ガスの成分組成を連続的に分析する。この評価方法によれば、充電中に生じるガス発生の反応に即して発生ガスを分析することが可能であり、ガス発生の反応状況を詳細に分析することができる。
特開2018-41740号公報
 リチウムイオン電池等の二次電池は、充放電を繰り返すことによって次第に放電容量が低下する。二次電池の劣化には、正極の劣化によるもの、負極の劣化によるもの、及び電解液の劣化によるもの等がある。二次電池の特性の劣化がどの部品の劣化によるものかを判定するためには、二次電池を分解して各部品を検査する必要がある。
 前掲の特開2018-41740号公報に記載された評価方法は、充電中に発生する発生ガスの反応状況を分析するためのものであり、使用済みの二次電池の内部に蓄積されたガスの組成から、二次電池の劣化要因等を分析するためのものではない。
 本発明の課題は、使用済みの二次電池の劣化要因等を簡便に分析することができる二次電池の分析方法、及び二次電池の分析プログラムを提供することである。また、本発明の前記とは別の課題は、前記二次電池の分析方法に基づきリサイクル可能と判定された二次電池の部品を使用する二次電池の製造方法を提供することである。
 本発明の一実施形態による二次電池の分析方法は、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて前記使用済みの二次電池を分析する分析方法であって、前記ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する前記複数のグループの各々の量の比率を求める工程と、前記比率に基づいて、前記使用済みの二次電池を分類する分類工程と、を備える。
 本発明の一実施形態による二次電池の分析プログラムは、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて前記使用済みの二次電池を分析する分析プログラムであって、前記ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する前記複数のグループの各々の量の比率を求める工程と、前記複数のグループの各々の量の比率に基づいて、前記使用済みの二次電池を分類する分類工程と、をコンピュータに実行させる。
 本発明の一実施形態による二次電池の製造方法は、前記二次電池の分析方法に基づいて使用済みの二次電池に含まれる部品がリサイクル可能かを判定し、リサイクル可能と判定された部品を用いて二次電池を組み立てる。
 本発明によれば、使用済みの二次電池の劣化要因等を簡便に分析することができる。また、リサイクル可能な使用済みの二次電池を容易に選別し、その部品を用いて二次電池を組み立てることができる。
図1は、様々な条件で劣化させた複数の二次電池からガスを採取し、各ガスの成分を(1)水素、(2)一酸化炭素及び二酸化炭素、並びに(3)メタン及びエタンの三つのグループに分け、この三つのグループの構成比の分布を三角図にプロットしたものである。 図2は、図1の三角図を作成する過程で測定したクロマトグラフの一例である。 図3は、図2のクロマトグラフで求めたガスの組成から酸素及び窒素を除外し、残りの成分の合計が100%になるように規格化した各成分の構成比(体積%)を示す表である。 図4は、図3の表からさらに水素、一酸化炭素、二酸化炭素、メタン、及びエタンの5種類の成分を抜き出し、この5種類の成分における(1)水素、(2)一酸化炭素+二酸化炭素、(3)メタン+エタンの構成比(体積%)を示した表である。 図5は、図1の三角図を説明するための図である。 図6は、図1の三角図において、水素:35%以上100%以下、一酸化炭素+二酸化炭素:0%以上65%以下、かつメタン+エタン:0%以上40%未満、である領域にハッチングを付して示す図である。 図7は、図1の三角図において、水素:0%以上35%未満、一酸化炭素+二酸化炭素:25%以上100%以下、かつメタン+エタン:0%以上75%以下、である領域にハッチングを付して示す図である。 図8は、図1の三角図において、水素:0%以上60%以下、一酸化炭素+二酸化炭素:0%以上25%未満、かつメタン+エタン:40%以上100%以下、である領域にハッチングを付して示す図である。 図9は、本発明の一実施形態による二次電池の分析方法のフロー図である。
 本発明者らは、使用済みの二次電池の内部のガスの組成から、二次電池の劣化要因を推定する方法を検討した。具体的には、様々な条件で劣化させた複数の二次電池を準備し、各々の二次電池の内部からガスを採取して組成を分析した。その結果、ガスの組成を複数のグループ、例えば、(1)水素、(2)一酸化炭素及び二酸化炭素、並びに(3)メタン及びエタン、の三つのグループに分け、この三つのグループの構成比で整理することで、二次電池の劣化要因を推定できることを見出した。
 図1は、様々な条件で劣化させた複数の二次電池からガスを採取し、各ガスの組成から上述した三つのグループの構成比を求め、その分布を三角図にプロットしたものである。
 図2~図4を参照して、図1のグラフを作成した手順について説明する。まず、各二次電池の内部から採取したガスをガスクロマトグラフで分析した。図2は、測定されたクロマトグラフの一例である。この測定は、株式会社島津製作所製ガスクロマトグラフTracera(登録商標)を用いて行った。検出器は、バリア放電イオン化検出器(検出器温度:280℃)を使用した。
 図3は、このガスの組成から酸素及び窒素を除外し、残りの成分の合計が100%になるように規格化した各成分の構成比(体積%)を示す表である。図4は、ここからさらに水素、一酸化炭素、二酸化炭素、メタン、及びエタンの5種類の成分を抜き出し、この5種類の成分における(1)水素、(2)一酸化炭素+二酸化炭素、(3)メタン+エタンの構成比(体積%)を示した表である。図1は、この構成比を複数の二次電池から採取したガスの各々について求め、その分布を三角図にプロットしたものである。
 図5を参照して、図1の三角図の見方について補足する。三角形の各頂点は、上述した三つのグループのいずれかの割合が100%であることを意味する。具体的には、点P1は水素の割合が100%であることを意味し、点P2は(一酸化炭素+二酸化炭素)の割合が100%であることを意味し、点P3は(メタン+エタン)の割合が100%であることを意味する。また、例えば点P4は(水素、一酸化炭素+二酸化炭素、メタン+エタン)が(90%、10%、0%)であることを意味し、点P5は(水素、一酸化炭素+二酸化炭素、メタン+エタン)が(30%、60%、10%)であることを意味する。
 図1の凡例の説明は、下記のとおりである。
(a)サイクル・・・常温の充放電サイクルを500~1000サイクル繰り返すことにより特性を劣化させた二次電池
(b)貯蔵サイクル・・・60℃の温度環境下で充放電サイクルを繰り返すことにより特性を劣化させた二次電池
(c)貯蔵・・・充電状態で、60~85℃の温度環境下で一定期間保持することにより特性を劣化させた二次電池
(d)サーマルショック・・・充電状態で、-40℃から85℃、85℃から-40℃の温度変化を30サイクル繰り返し付与することにより特性を劣化させた二次電池
(e)連続充電・・・一定電圧を印加して充電を続けることにより特性を劣化させた二次電池
(f)過放電・・・規定された電圧よりも低い電圧まで放電させることにより特性を劣化させた二次電池
(g)サイクル劣化末期・・・容量が初期のおよそ25%以下になるまでサイクルを続けることにより特性を劣化させた二次電池
 図1から、上述した三つのグループの構成比は、二次電池を劣化させた条件に応じて、図1の三角形の中の特定の領域に分布することが分かる。そのため、この構成比が図1の三角形の中のどの領域にあるかを調べることによって、二次電池の劣化要因を推定することができる。
 さらに、各二次電池を分解して調べた結果、二次電池を劣化させた条件と、劣化している部品との間に、以下の関係があることが分かった。
 (a)サイクル及び(b)貯蔵サイクル
 これらの条件で劣化させた二次電池は、ガス組成の情報だけでは二次電池の劣化要因を特定することができず、電池を分解して調べることが必要となるものであった。
 (c)貯蔵、(d)サーマルショック及び(e)連続充電
 これらの条件で劣化させた二次電池は、正極が劣化していた。
 (f)過放電及び(g)サイクル劣化末期
 これらの条件で劣化させた二次電池は、負極が劣化していた。
 これらの知見を総合することにより、二次電池の内部から採取されたガスの構成比に基づいて、使用済みの二次電池の劣化している部品を以下のように推定することができる。
 水素:35%以上100%以下、
 一酸化炭素+二酸化炭素:0%以上65%以下、かつ
 メタン+エタン:0%以上40%未満、である領域(以下「領域A」と呼ぶ。)
 図6は、図1の三角図において、領域Aにハッチングを付して示す図である。領域Aには、(f)過放電及び(g)サイクル劣化末期によって特性が劣化した二次電池が含まれる。これらの二次電池は、負極が劣化している。したがって、二次電池の内部から採取されたガスの上記三つのグループの構成比が領域Aにある場合、その二次電池は負極が劣化していると推定できる。
 水素:0%以上35%未満、
 一酸化炭素+二酸化炭素:25%以上100%以下、かつ
 メタン+エタン:0%以上75%以下、である領域(以下「領域B」と呼ぶ。)
 図7は、図1の三角図において、領域Bにハッチングを付して示す図である。領域Bには、(c)貯蔵、(d)サーマルショック及び(e)連続充電によって特性が劣化した二次電池が含まれる。これらの二次電池は、正極が劣化している。したがって、二次電池の内部から採取されたガスの上記三つのグループの構成比が領域Bにある場合、その二次電池は負極が劣化していると推定できる。
 水素:0%以上60%以下、
 一酸化炭素+二酸化炭素:0%以上25%未満、かつ
 メタン+エタン:40%以上100%以下、である領域(以下「領域C」と呼ぶ。)
 図8は、図1の三角図において、領域Cにハッチングを付して示す図である。領域Cには、(a)サイクル及び(b)貯蔵サイクルによって特性が劣化した二次電池が含まれる。これらの二次電池は、ガス組成の情報だけでは二次電池の劣化要因を特定することができず、電池を分解して調べることが必要である。
 本発明は、以上の知見に基づいて完成された。以下、本発明の実施の形態を詳しく説明する。なお、前記グループ分けや各グループの構成ガス種の選択は一例であり、別の観点から、前記とは異なるグループ分けや構成ガス種の選択を行うことも可能である。例えば、還元性のガスである水素と一酸化炭素とを一つのグループに分類し、分析を行うことも考えられる。また、同様に前記ガス組成の具体的な数値範囲は一例であり、前記数値に限定されるものではない。
 [二次電池の分析方法]
 図9は、本発明の一実施形態による二次電池の分析方法のフロー図である。この分析方法は、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて二次電池を分析する分析方法であって、ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する複数のグループの各々の量の比率を求める工程(ステップS1)と、この比率に基づいて、使用済みの二次電池を分類する分類工程(ステップS2)と、分類工程の結果に基づいて、使用済みの二次電池に含まれる部品がリサイクル可能かを判定する判定工程(ステップS3)と、を備えている。以下、各工程を詳述する。
 本実施形態による二次電池の分析方法は、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて、使用済みの二次電池を分析する分析方法である。使用済みの二次電池は例えば、放電容量が低下し、再使用に適さないと判断された二次電池である。分析の対象となる二次電池の種類は、例えばリチウムイオン電池である。
 使用済みの二次電池の内部のガスは、例えば、フッ化ビニル樹脂製のガス分析用サンプリングバッグに入れた電池に穴をあける等の方法によって採取することができる。
 採取したガスの組成は、例えばガスクロマトグラフを測定して求めることができる。ガスクロマトグラフの測定は、バリア放電イオン化検出器(BID)や熱伝導度検出器(TCD)等の高感度の検出器を使って行うことが好ましい。
 [比率を求める工程(ステップS1)]
 ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する複数のグループの各々の量の比率を求める(ステップS1)。本実施形態では、複数のグループは、少なくとも以下のグループを含む。
 (1)水素を含むグループ(以下「第1のグループ」という。)、
 (2)一酸化炭素及び二酸化炭素を含むグループ(以下「第2のグループ」という。)、並びに
 (3)メタン及びエタンを含むグループ(以下「第3のグループ」という。)。
 使用済みの二次電池の内部から採取されたガスには、上記で挙げた水素、一酸化炭素、二酸化炭素、メタン及びエタン以外に、アセチレン、エチレン、プロパン、プロピレン等が含まれている場合がある。これらの成分は通常、水素、一酸化炭素、二酸化炭素、メタン、及びエタンの量と比較して少量である。水素、一酸化炭素、二酸化炭素、メタン、及びエタン以外の成分の各々は、上記の第1~第3のグループのいずれかに振り分けてもよいし、上記の第1~第3のグループとは別のグループとしてもよいし、考慮対象から除外してもよい。なお、酸素及び窒素は、測定環境から混入したものが含まれている可能性があるため、考慮対象から除外することが好ましい。
 次に、この複数のグループの構成比を求める。具体的には、考慮対象とした成分の合計の量に対する、各グループの量の比率を求める。換言すれば、各グループの量を、考慮対象とした成分の量の合計が100%になるように規格化する。比率は、重量比、物質量の比、体積比等によって表すことができる。
 例えば、先に挙げた5種類の成分(水素、一酸化炭素、二酸化炭素、メタン及びエタン)のみを考慮対象とする場合、体積比で表した比率は下記で計算することができる。
 第1のグループの比率=(水素の体積)/(水素、一酸化炭素、二酸化炭素、メタン及びエタンの合計の体積)
 第2のグループの比率=(一酸化炭素の体積+二酸化炭素の体積)/(水素、一酸化炭素、二酸化炭素、メタン及びエタンの合計の体積)
 第3のグループの比率=(メタンの体積+エタンの体積)/(水素、一酸化炭素、二酸化炭素、メタン及びエタンの合計の体積)
 [分類工程(ステップS2)]
 ステップS1で求めた比率に基づいて、使用済みの二次電池を分類する(分類工程、ステップS2)。本実施形態では、考慮対象とした成分の合計の体積に対する第1のグループ、第2のグループ及び第3のグループの各々の体積の比(以下「各グループの体積比」という。)に基づいて、次の3種類(第1~第3の分類)に分類する。
 各グループの体積比が、第1のグループ:35%以上100%以下、第2のグループ:0%以上65%以下、かつ、第3のグループ:0%以上40%未満、である場合:この場合、使用済みの二次電池を第1の分類に分類する。第1の分類に分類される二次電池は、負極が劣化している可能性が高い。
 各グループの体積比が、第1のグループ:0%以上35%未満、第2のグループ:25%以上100%以下、かつ、第3のグループ:0%以上75%以下、である場合:この場合、使用済みの二次電池を第2の分類に分類する。第2の分類に分類される二次電池は、正極が劣化している可能性が高い。
 各グループの体積比が、第1のグループ:0%以上60%以下、第2のグループ:0%以上25%未満、かつ、第3のグループ:40%以上100%以下、である場合:この場合、使用済みの二次電池を第3の分類に分類する。第3の分類に分類される二次電池は、ガス組成の情報だけでは二次電池の劣化要因を特定することができず、電池を分解して調べることが必要である。
 [判定工程(ステップS3)]
 分類工程(ステップS2)の結果に基づいて、使用済みの二次電池に含まれる部品がリサイクル可能かを判定する(判定工程、ステップS3)。本実施形態では例えば、部品がリサイクル可能かどうかを次のように判定することができる。
 使用済みの二次電池が第1の分類に分類されている場合:この二次電池は、負極が劣化している可能性が高い。そのため、正極がリサイクル可能と判定する。負極については、リサイクル不可能とみなして処理してもよいし、二次電池を分解後にさらに検査を行ってリサイクル可能かどうかを調べるようにしてもよい。また、リサイクル可能と判定された正極についても、二次電池を分解後にさらに検査を行ってからリサイクルするようにしてもよい。
 使用済みの二次電池が第2の分類に分類されている場合:この二次電池は、正極が劣化している可能性が高い。そのため、負極がリサイクル可能と判定する。正極については、リサイクル不可能とみなして処理してもよいし、二次電池を分解後にさらに検査を行ってリサイクル可能かどうかを調べるようにしてもよい。また、リサイクル可能と判定された負極についても、二次電池を分解後にさらに検査を行ってからリサイクルするようにしてもよい。
 使用済みの二次電池が第3の分類に分類されている場合:この二次電池は、ガス組成の情報だけでは二次電池の劣化要因を特定することができないため、正極及び負極のリサイクルの可否は、二次電池を分解して検査することによって判定する。
 以上、本発明の一実施形態による二次電池の分析方法を説明した。本実施形態では、使用済みの二次電池の内部から採取されたガスの組成に基づいて、使用済みの二次電池を分析する。具体的には、ガスの成分を複数のグループに分け、複数のグループの構成比に基づいて、使用済みの二次電池を分類する。これによって、使用済みの二次電池の劣化要因等を簡便に分析することができる。また、この分類に基づいて、使用済みの二次電池からリサイクル可能な部品を選別することができる。
 [二次電池の分析プログラム]
 上述した二次電池の分析方法は、コンピュータプログラムとしても実現可能である。本発明の一実施形態による二次電池の分析プログラムは、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて二次電池を分析する分析プログラムであって、ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する複数のグループの各々の量の比率を求める工程と、この比率に基づいて、使用済みの二次電池を分類する分類工程と、分類工程の結果に基づいて、使用済みの二次電池に含まれる部品がリサイクル可能かを判定する判定工程と、をコンピュータに実行させる。本実施形態によっても、使用済みの二次電池の劣化要因等を簡便に分析することができる。
 上述した二次電池の分析方法は、上記のコンピュータプログラムを記録した、コンピュータで読取可能な記録媒体としても実現可能である。
 上述した二次電池の分析方法は、コンピュータシステムとしても実現可能である。本発明の一実施形態による二次電池の分析システムは、使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて二次電池を分析する分析システムであって、メモリとプロセッサとを備え、プロセッサは、メモリのプログラムにしたがって、ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する複数のグループの各々の量の比率を求める工程と、この比率に基づいて、使用済みの二次電池を分類する分類工程と、分類工程の結果に基づいて、使用済みの二次電池に含まれる部品がリサイクル可能かを判定する判定工程と、を実行する。
 [二次電池の製造方法]
 本発明の一実施形態による二次電池の製造方法は、上述した二次電池の分析方法に基づいてリサイクル可能と判定された使用済みの二次電池に含まれる部品を用いて、二次電池を組み立てる。例えば、第1の分類に分類された使用済みの二次電池の正極を用いて、新しい二次電池を組み立てる。あるいは、第2の分類に分類された使用済みの二次電池の負極を用いて、新しい二次電池を組み立てる。なお、「使用済みの二次電池に含まれる部品を用いて」とは、電極等の部品をそのまま用いる場合の他、電極合剤や活物質等、部品の構成物の一部を使用する場合も含む。本実施形態によれば、リサイクル可能な使用済みの二次電池を容易に選別し、その部品を用いて二次電池を組み立てることができる。
 以上、本発明についての実施形態を説明したが、本発明は上述の実施形態のみに限定されず、発明の範囲内で種々の変更が可能である。
 本発明は例えば、使用済みの二次電池からリサイクル可能な部品を選別するための方法として利用可能である。

Claims (10)

  1.  使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて前記使用済みの二次電池を分析する分析方法であって、
     前記ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する前記複数のグループの各々の量の比率を求める工程と、
     前記比率に基づいて、前記使用済みの二次電池を分類する分類工程と、を備える、二次電池の分析方法。
  2.  前記分類工程の結果に基づいて、前記使用済みの二次電池に含まれる部品がリサイクル可能かを判定する判定工程をさらに備える、請求項1に記載の二次電池の分析方法。
  3.  前記複数のグループは、
      水素を含む第1のグループと、
      一酸化炭素及び二酸化炭素を含む第2のグループと、
      メタン及びエタンを含む第3のグループと、
     を含む、請求項2に記載の二次電池の分析方法。
  4.  前記分類工程において、
     考慮対象とした成分の合計の体積に対する前記第1のグループ、前記第2のグループ及び前記第3のグループの各々の体積の比が、
     前記第1のグループ:35%以上100%以下、前記第2のグループ:0%以上65%以下、かつ、前記第3のグループ:0%以上40%未満、である場合、前記使用済みの二次電池を第1の分類に分類し、
     前記判定工程において、正極がリサイクル可能と判定する、請求項3に記載の二次電池の分析方法。
  5.  前記分類工程において、
     考慮対象とした成分の合計の体積に対する前記第1のグループ、前記第2のグループ及び前記第3のグループの各々の体積の比が、
     前記第1のグループ:0%以上35%未満、前記第2のグループ:25%以上100%以下、かつ、前記第3のグループ:0%以上75%以下、である場合、前記使用済みの二次電池を第2の分類に分類し、
     前記判定工程において、負極がリサイクル可能と判定する、請求項3に記載の二次電池の分析方法。
  6.  前記分類工程において、
     考慮対象とした成分の合計の体積に対する前記第1のグループ、前記第2のグループ及び前記第3のグループの各々の体積の比が、
     前記第1のグループ:0%以上60%以下、前記第2のグループ:0%以上25%未満、かつ、前記第3のグループ:40%以上100%以下、である場合、前記使用済みの二次電池を第3の分類に分類し、
     前記判定工程において、二次電池に含まれる部品がリサイクル可能か判断できないと判定する、請求項3に記載の二次電池の分析方法。
  7.  前記使用済みの二次電池が、リチウムイオン電池である、請求項1~6のいずれか一項に記載の二次電池の分析方法。
  8.  使用済みの二次電池の内部から採取されたガスの組成のデータに基づいて前記使用済みの二次電池を分析する分析プログラムであって、
     前記ガスの成分を複数のグループに分け、考慮対象とした成分の合計の量に対する前記複数のグループの各々の量の比率を求める工程と、
     前記複数のグループの各々の量の比率に基づいて、前記使用済みの二次電池を分類する分類工程と、をコンピュータに実行させる、二次電池の分析プログラム。
  9.  前記分類工程の結果に基づいて、前記使用済みの二次電池に含まれる部品がリサイクル可能かを判定する判定工程を、さらにコンピュータに実行させる、請求項8に記載の二次電池の分析プログラム。
  10.  請求項2~5のいずれかに記載の二次電池の分析方法に基づいてリサイクル可能と判定された使用済みの二次電池に含まれる部品を用いて二次電池を組み立てる、二次電池の製造方法。
PCT/JP2023/010845 2022-03-22 2023-03-20 二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法 WO2023182262A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044969 2022-03-22
JP2022044969 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182262A1 true WO2023182262A1 (ja) 2023-09-28

Family

ID=88101026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010845 WO2023182262A1 (ja) 2022-03-22 2023-03-20 二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法

Country Status (1)

Country Link
WO (1) WO2023182262A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344068A1 (en) * 2015-05-19 2016-11-24 Samsung Electronics Co., Ltd. Battery pack and method of managing the battery pack
CN111856284A (zh) * 2020-06-11 2020-10-30 国网江苏省电力有限公司电力科学研究院 一种储能电站电池的失效分析方法及装置
JP2022108651A (ja) * 2021-01-13 2022-07-26 株式会社デンソーテン 検出装置及び検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344068A1 (en) * 2015-05-19 2016-11-24 Samsung Electronics Co., Ltd. Battery pack and method of managing the battery pack
CN111856284A (zh) * 2020-06-11 2020-10-30 国网江苏省电力有限公司电力科学研究院 一种储能电站电池的失效分析方法及装置
JP2022108651A (ja) * 2021-01-13 2022-07-26 株式会社デンソーテン 検出装置及び検出方法

Similar Documents

Publication Publication Date Title
Rohr et al. Quantifying uncertainties in reusing lithium-ion batteries from electric vehicles
Jafari et al. Deterministic models of Li-ion battery aging: It is a matter of scale
US9465077B2 (en) Battery health monitoring system and method
KR100388314B1 (ko) 전지의 임피던스 측정과 분석을 통한 전지 선택 최적화 방법
US9316699B2 (en) System for predicting lifetime of battery
CN108732510B (zh) 基于内部特征的锂离子电池一致性筛选分组方法
Rezvani et al. A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM)
CN103176136A (zh) 用于估计二次电池的寿命的装置及其方法
KR100449365B1 (ko) 임피던스 스펙트럼의 패턴 매칭기법을 이용한 단위전지분류방법
Xie et al. A facile approach to high precision detection of cell-to-cell variation for Li-ion batteries
Rappsilber et al. Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries
Wimarshana et al. Parameter sensitivity analysis of a physico-chemical lithium-ion battery model with combined discharge voltage and electrochemical impedance data
US11366168B2 (en) Battery information processing system, battery information processing method, and battery assembly and method of manufacturing battery assembly
WO2023182262A1 (ja) 二次電池の分析方法及び二次電池の分析プログラム並びに二次電池の製造方法
CN111760805A (zh) 一种锂离子实验电池测试筛选方法
Yang et al. Fast screening of lithium-ion batteries for second use with pack-level testing and machine learning
Ank et al. Experimental analysis of lithium-ion cell procurement: Quality differences, correlations, and importance of cell characterization
Liu et al. Cloud platform-oriented electrical vehicle abnormal battery cell detection and pack consistency evaluation with big data: devising an early-warning system for latent risks
Zhao et al. Data-driven lithium-ion battery degradation evaluation under overcharge cycling conditions
Zeng et al. Global sensitivity analysis of battery single particle model parameters
WO2023135971A1 (ja) 蓄電池劣化評価方法
JP2022034380A (ja) 再生二次電池の製造方法
Stroe et al. Experimental investigation on the internal resistance of Lithium iron phosphate battery cells during calendar ageing
Ank et al. Influence analysis of production defects of lithium-ion cells using single-cell and multi-cell characterization
TWI528044B (zh) Elimination of battery screening methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774857

Country of ref document: EP

Kind code of ref document: A1