WO2023182136A1 - Positive-type photosensitive resin composition, cured film, and semiconductor device - Google Patents

Positive-type photosensitive resin composition, cured film, and semiconductor device Download PDF

Info

Publication number
WO2023182136A1
WO2023182136A1 PCT/JP2023/010281 JP2023010281W WO2023182136A1 WO 2023182136 A1 WO2023182136 A1 WO 2023182136A1 JP 2023010281 W JP2023010281 W JP 2023010281W WO 2023182136 A1 WO2023182136 A1 WO 2023182136A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
positive photosensitive
mass
positive
Prior art date
Application number
PCT/JP2023/010281
Other languages
French (fr)
Japanese (ja)
Inventor
豊誠 高橋
咲子 鈴木
渉 高田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2023182136A1 publication Critical patent/WO2023182136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • the present invention relates to a positive photosensitive resin composition, a cured film thereof, and a semiconductor device including the cured film as an insulating layer.
  • thermosetting resins are sometimes used to form cured films such as insulating layers. Therefore, photosensitive resin compositions containing thermosetting resins have been studied so far. It is known to form an insulating film in a rewiring layer or an insulating film in a portion other than the rewiring layer using a photosensitive resin composition containing a thermosetting resin.
  • Patent Document 1 describes a photosensitive resin composition containing an alkaline aqueous solution soluble resin, a crosslinking agent, a photopolymerization initiator, and an epoxy resin (thermosetting resin) represented by a specific general formula. .
  • Patent Document 1 describes that this photosensitive resin composition has good photosensitivity. Further, Patent Document 1 states that a film formed from this photosensitive resin composition has excellent flexibility, adhesion, pencil hardness, solvent resistance, acid resistance, heat resistance, gold plating resistance, etc. There is.
  • the present invention was made in view of the above-mentioned problems, and by using a specific phenol resin, a crosslinking agent, and a photosensitizer in combination in a positive photosensitive resin composition, it can be cured at low temperature while being They discovered that a cured product has excellent mechanical properties and, as a result, a resin film with excellent adhesion to a substrate can be obtained, and the present invention has been completed.
  • a positive photosensitive resin composition used for a rewiring layer of a semiconductor device comprising:
  • the photosensitive resin composition is (A) Phenol resin having a biphenol structure, (B) a crosslinking agent, and (C) a photosensitizer,
  • a positive photosensitive resin composition is provided in which the cured product obtained by curing the positive photosensitive resin composition at 180° C. has a tensile strength at break of 100 MPa or more.
  • a cured film obtained by curing the above-mentioned positive photosensitive resin composition is provided.
  • a semiconductor element A rewiring layer provided on the surface of the semiconductor element, the semiconductor device comprising: A semiconductor device is provided in which the insulating layer in the rewiring layer is composed of the cured film.
  • a positive photosensitive resin composition having low temperature curability and a cured film with excellent mechanical strength obtained by curing the same are provided.
  • FIG. 1 is a cross-sectional view showing a configuration example of a semiconductor device in an embodiment.
  • the numerical range "x to y" represents “x to y” and includes both the lower limit x and the upper limit y.
  • “1 to 5% by mass” means “1 to 5% by mass”.
  • similar components are denoted by common reference numerals, and description thereof will be omitted as appropriate.
  • the figure is a schematic diagram and does not correspond to the actual dimensional ratio.
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the positive photosensitive resin composition of this embodiment is a resin material used to form a rewiring layer of a semiconductor device.
  • the positive photosensitive resin composition of this embodiment includes (A) a phenol resin, (B) a crosslinking agent, and (C) a photosensitizer,
  • the phenol resin (A) is a phenol resin having a biphenol structure, in other words, a biphenyl type phenol resin.
  • the positive photosensitive resin composition of this embodiment has a tensile strength at break of 100 MPa or more of a cured product obtained by curing the positive photosensitive resin composition at 180°C.
  • the present inventor conducted studies to improve the low-temperature curability of a positive photosensitive resin composition and to improve the mechanical strength of the resulting cured film.
  • the positive photosensitive resin composition to include a specific component, the tensile strength at break of the cured product obtained by curing the positive photosensitive resin composition at 180°C becomes 100 MPa or more. Therefore, it has been found that the above problem can be solved.
  • Each component used in the positive photosensitive resin composition of this embodiment will be explained below.
  • the positive photosensitive resin composition of this embodiment contains a biphenyl type phenol resin (a1) as a phenol resin.
  • a biphenyl-type phenolic resin (a1) from the viewpoint of improving curability at low temperatures and reliability of the cured film, a biphenyl-type phenolic resin having a structural unit having a biphenol skeleton represented by the following formula (2) is preferable. .
  • R 41 and R 42 are each independently a hydroxyl group, a halogen atom, a carboxyl group, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, or an alkyl ether having 1 to 20 carbon atoms.
  • a monovalent substituent selected from the group consisting of a saturated or unsaturated alicyclic group having 3 to 20 carbon atoms, or an organic group having an aromatic structure having 6 to 20 carbon atoms; may be bonded via an ether bond, an amide bond, or a carbonyl bond, r and s are each independently an integer of 0 to 3, and Y 4 and Z 4 are each independently , an aliphatic group having 1 to 10 carbon atoms which may have a single bond or an unsaturated bond, an alicyclic group having 3 to 20 carbon atoms, and an organic group having an aromatic structure having 6 to 20 carbon atoms.
  • Z 4 is selected from the group consisting of, and Z 4 is bonded to either one of the two benzene rings.
  • the weight average molecular weight of the biphenyl-type phenolic resin (a1) is 12,000 or more, preferably 15 ,000 or more, more preferably 18,000 or more, still more preferably 20,000 or more.
  • the weight average molecular weight of the biphenyl type phenol resin (a1) is 500,000 or less, preferably 400,000 or less, more preferably 300,000 or less, from the viewpoint of maintaining appropriate solvent solubility. or less, more preferably 200,000 or less.
  • the biphenyl-type phenolic resin (a1) having a structural unit represented by formula (2) can be obtained using the method described in JP 2018-155938A.
  • the content of the biphenyl phenolic resin (a1) in the positive photosensitive resin composition of this embodiment is determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of improving curability during low temperature curing.
  • the content is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more.
  • the content of the biphenyl type phenol resin (a1) in the positive photosensitive resin composition is preferably 70% by mass based on the total solid content of the positive photosensitive resin composition from the viewpoint of deterioration of toughness. or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the positive photosensitive resin composition of the present embodiment may further contain a phenol resin (a2) other than the above-mentioned biphenyl-type phenol resin (a1) from the viewpoint of improving curability at low temperatures and reliability of the cured film. good.
  • a phenol resin (a2) specifically, a novolac type phenolic resin such as a phenol novolac resin, a cresol novolac resin, a bisphenol novolac resin, a phenol-biphenyl novolak resin, an allylated novolac type phenolic resin, a xylylene novolac type phenolic resin;
  • Examples include reaction products of a phenol compound and an aldehyde compound, such as novolac type phenol resin, resol type phenol resin, and cresol novolak resin; and reaction products of a phenol compound, such as phenol aralkyl resin, and a dimethanol compound.
  • the phenol resin (a2) is preferably a resin having a structure represented by the following formula (1) from the viewpoint of obtaining a low-temperature curable resin composition.
  • n is preferably 6 or more, more preferably 10 or more, still more preferably 14 or more, from the viewpoint of improving curability at low temperatures. Further, from the viewpoint of solvent solubility, n is preferably 72 or less, more preferably 54 or less, and still more preferably 36 or less.
  • the weight average molecular weight of the biphenyl type phenol resin (a2) is, for example, 500 or more, preferably 2000 or more, more preferably 3000 or more, and even more preferably is 4000 or more.
  • the weight average molecular weight of the biphenyl type phenol resin (a2) is, from the viewpoint of solvent solubility, for example, 50,000 or less, preferably 20,000 or less, more preferably 15,000 or less, and even more preferably, 10,000 or less.
  • the content is preferably determined based on the total solid content of the positive type photosensitive resin composition from the viewpoint of improving toughness during low temperature curing. is 5% by mass or more, more preferably 10% by mass or more, still more preferably 15 parts by mass or more.
  • the content of the biphenyl phenolic resin (a2) in the positive photosensitive resin composition is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of mechanical properties of the cured film obtained. Preferably it is 70 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less.
  • the positive photosensitive resin composition of this embodiment may contain thermosetting resins other than the above-mentioned phenolic resins (a1) and (a2).
  • thermosetting resins include phenol resins other than the above-mentioned biphenyl type phenol resins, hydroxystyrene resins, polyamide resins, polybenzoxazole resins, polyimide resins, and cyclic olefin resins.
  • the content of the phenolic resin (A) in the positive photosensitive resin composition is determined based on the total solid content of the photosensitive resin composition, from the viewpoint of improving curability at low temperatures and reliability of the cured film. , preferably 30% by mass or more, more preferably 45% by mass or more, even more preferably 50% by mass or more, still more preferably 55% by mass or more. Further, from the viewpoint of improving chemical resistance and photosensitivity, the content of component (A) in the photosensitive resin composition is preferably 95 parts by mass or less based on the total solid content of the photosensitive resin composition. It is more preferably 90% by mass or less, still more preferably 85% by mass or less.
  • the phenol resin (A) is the total amount of phenol resins used in the positive photosensitive resin composition of this embodiment, and the phenol resin (A) is the above-mentioned biphenyl type phenol resin (a1), and It consists of a phenolic resin (a2) used as necessary.
  • the positive photosensitive resin composition of this embodiment includes a crosslinking agent (B) having a reactive group capable of crosslinking with the phenol resin (A).
  • a crosslinking agent (B) a bifunctional or more functional urea resin crosslinking agent (b1) is preferably used.
  • Examples of the difunctional or more functional urea resin crosslinking agent (b1) include di- to tetrafunctional alkoxymethylated glycoluril compounds.
  • An alkoxymethylated glycoluril compound refers to a compound in which the hydrogen atom of the amino group of a glycoluril compound is substituted with an alkoxymethylol group.
  • alkoxymethylated glycoluril examples include 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4 , 6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, 1,1,3,3-tetrakis(methoxymethyl) Examples include urea, 1,3-bis(hydroxymethyl)-4,5-dihydroxy-2-imidazolinone, and 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone.
  • the crosslinking agent (B) contains other crosslinking agents (b2) in addition to the above-mentioned urea resin crosslinking agent (b1) having 22 or more functional groups, as long as the low-temperature curability of the positive photosensitive resin composition is not impaired. But that's fine.
  • crosslinking agents (b2) include, for example, 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol (paraxylene glycol), 1,3,5-benzenedimethanol , 4,4-biphenyldimethanol, 2,6-pyridinedimethanol, 2,6-bis(hydroxymethyl)-p-cresol, 4,4'-methylenebis(2,6-dialkoxymethylphenol) and other methylols Compounds having groups; phenols such as phloroglucide; 1,4-bis(methoxymethyl)benzene, 1,3-bis(methoxymethyl)benzene, 4,4'-bis(methoxymethyl)biphenyl, 3,4'- Having an alkoxymethyl group such as bis(methoxymethyl)biphenyl, 3,3'-bis(methoxymethyl)biphenyl, methyl 2,6-naphthalene dicarboxylate, 4,4'-methylenebis(2,6-dimethoxymethylphenol)
  • the content of the bifunctional or higher urea resin crosslinking agent (b1) is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of improving the toughness during low temperature curing of the positive photosensitive resin composition. Preferably it is 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more.
  • the content of the bifunctional or more functional urea resin crosslinking agent (b1) in the positive photosensitive resin composition is determined from the viewpoint of maintaining thermomechanical properties during low temperature curing of the positive photosensitive resin composition. It is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, based on the total solid content of the resin composition.
  • the content of the crosslinking agent (B) in the positive photosensitive resin composition of the present embodiment is preferably determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of improving toughness during low temperature curing. is 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more.
  • the content of the crosslinking agent (B) in the positive photosensitive resin composition is preferably determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of maintaining thermomechanical properties during low temperature curing. is 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less.
  • the crosslinking agent (B) consists of the above-mentioned bifunctional or more functional urea resin crosslinking agent (b1) and other crosslinking agents (b2) used as necessary.
  • the positive photosensitive resin composition of this embodiment contains a photosensitizer (C) from the viewpoint of stably forming a cured film.
  • the photosensitizer (C) is an acid generator that generates acid by absorbing thermal energy or light energy.
  • the photosensitizer (C) is a thermal acid generator (c1) that generates acid by thermal energy or a photoacid generator (c2) that generates acid by light energy. Contains either or both.
  • a sulfonium compound or a salt thereof is preferably used.
  • the sulfonium compound or its salt is a sulfonium salt having a sulfonium ion as a cation moiety.
  • the anion moiety of the sulfonium compound or its salt is specifically a sulfonate ion such as a boride ion, antimony ion, phosphorus ion, or trifluoromethanesulfonate ion, and from the viewpoint of improving the reaction rate at low temperature. , preferably a boride ion or an antimony ion, more preferably a boride ion. These anions may have a substituent.
  • the sulfonium compound or its salt preferably includes a sulfonium salt represented by the following formula (4).
  • R 2 is a monovalent organic group, and from the viewpoint of improving reactivity at low temperatures, it is preferably a chain or branched hydrocarbon group or a benzyl group that may have a substituent, and more preferably is a benzyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or a benzyl group whose aromatic ring portion may be substituted with a methyl group. It is the basis.
  • R3 is a monovalent organic group, and from the viewpoint of improving reactivity at low temperatures, it is preferably a chain or branched hydrocarbon group, more preferably an alkyl group having 1 to 4 carbon atoms. More preferably, it is a methyl group.
  • thermal acid generator (c1) include triphenylsulfonium salts such as triphenylsulfonium trifluoromethanesulfonate.
  • naphthoquinonediazide compounds As the photoacid generator (c2), naphthoquinonediazide compounds, diarylsulfonium salts, triarylsulfonium salts, dialkylphenacylsulfonium salts, diaryliodonium salts, aryldiazonium salts, aromatic tetracarboxylic acid esters, aromatic sulfonic acid esters, Examples include nitrobenzyl ester, aromatic N-oximide sulfonate, aromatic sulfamide, benzoquinone diazosulfonic acid ester, and the like. Among these, naphthoquinone diazide compounds are preferred.
  • the naphthoquinone diazide compound for example, a naphthoquinone diazide adduct of tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene, a naphthoquinone diazide adduct of tetrahydroxybenzophenone, etc. can be used.
  • the addition of naphthoquinonediazide can be produced, for example, by reacting o-quinonediazide sulfonyl chloride with a hydroxy compound or an amino compound.
  • the content of the photosensitizer (C) in the positive photosensitive resin composition is preferably 3 mass based on the total solid content of the positive photosensitive resin composition. % or more, more preferably 5% by mass or more, still more preferably 8% by mass or more. Further, the content of the photosensitizer (C) in the positive photosensitive resin composition is preferably 20% by mass or less based on the total solid content of the photosensitive resin composition, from the viewpoint of suppressing a decrease in reliability. It is more preferably 18 parts by mass or less, and still more preferably 16 parts by mass or less.
  • the photosensitizer (C) consists of a thermal acid generator (c1) and/or a photoacid generator (c2).
  • the positive photosensitive resin composition of the present embodiment preferably contains a combination of the above-mentioned thermal acid generator (c1) and photoacid generator (c2) as the photosensitizer (C). This improves the mechanical strength of the resulting cured product of the positive photosensitive resin composition.
  • the photosensitive resin composition contains a combination of a thermal acid generator (c1) and a photoacid generator (c2), the thermal acid generator (c1): photoacid expressed as a compounding ratio converted to their mass ratio
  • the amount of generator (c2) is, for example, 2:8 to 8:2, preferably 3:7 to 7:3, more preferably 4:6 to 6:4.
  • the positive photosensitive resin composition of this embodiment preferably contains a flexible epoxy resin (D). Thereby, the cured product of this photosensitive resin composition can have tensile strength at break within a desired range.
  • a flexible epoxy resin (D) an epoxy resin (d1) having an alkylene structure having an ether bond having 4 or more carbon atoms is preferably used.
  • the flexible epoxy resin (d1) is a compound in which part or all of the epoxy resin has a flexible structure selected from an alkylene structure having 2 to 20 carbon atoms and an alkylene structure having an ether bond having 2 to 20 carbon atoms. It is preferable that Examples of such flexible epoxy resins (d1) include EXA-4850-150, EXA-4816, and EXA-4822 (epoxy resins containing an alkylene structure having an ether bond); manufactured by ADEKA; EP-4000S, EP-4000SS, EP-4003S, EP-4010S, and EP-4011S (epoxy resins containing an alkylene structure with an ether bond); BEO-60E and BPO-20E (with an ether bond); (Epoxy resin containing an alkylene structure having an ether bond); Mitsubishi Chemical Corporation YX7105, YX7110, and YX7400 (epoxy resin containing an alkylene structure having an ether bond), and YX7180 (phenoxy resin containing an al
  • the content in the positive photosensitive resin composition is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of improving toughness during low temperature curing.
  • the content is preferably 3% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the content of the flexible epoxy resin (d1) in the positive photosensitive resin composition is preferably set relative to the total solid content of the photosensitive resin composition. is 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • the positive photosensitive resin composition of the present embodiment may contain an epoxy resin (d2) other than the above-mentioned epoxy resin (d1).
  • epoxy resins (d2) include bisphenol A phenoxy resin, bisphenol F phenoxy resin, bisphenol S phenoxy resin, bisphenolacetophenone phenoxy resin, novolak phenoxy resin, biphenyl phenoxy resin, fluorene phenoxy resin, Examples include cyclopentadiene type phenoxy resin, norbornene type phenoxy resin, naphthalene type phenoxy resin, anthracene type phenoxy resin, adamantane type phenoxy resin, terpene type phenoxy resin, and trimethylcyclohexane type phenoxy resin.
  • adhesion aid (E) The positive photosensitive resin composition of this embodiment preferably contains an adhesion aid (E). Thereby, for example, adhesion to the substrate can be further improved.
  • the adhesion aid (E) is not particularly limited.
  • an amino group-containing silane coupling agent an epoxy group-containing silane coupling agent, a (meth)acryloyl group-containing silane coupling agent, a mercapto group-containing silane coupling agent, a vinyl group-containing silane coupling agent, a ureido group-containing silane cup
  • a silane coupling agent such as a ring agent or a sulfide group-containing silane coupling agent can be used.
  • a silane coupling agent one type may be used alone, or two or more types may be used in combination.
  • amino group-containing silane coupling agents include bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ -aminopropylmethyldiethoxy.
  • Silane ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -amino Examples include propylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, and N-phenyl- ⁇ -amino-propyltrimethoxysilane.
  • epoxy group-containing silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidyl Examples include propyltrimethoxysilane.
  • Examples of (meth)acryloyl group-containing silane coupling agents include ⁇ -((meth)acryloyloxypropyl)trimethoxysilane, ⁇ -((meth)acryloyloxypropyl)methyldimethoxysilane, ⁇ -((meth) Examples include acryloyloxypropyl)methyldiethoxysilane.
  • Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropyltrimethoxysilane.
  • Examples of the vinyl group-containing silane coupling agent include vinyltris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • Examples of the ureido group-containing silane coupling agent include 3-ureidopropyltriethoxysilane.
  • Examples of the sulfide group-containing silane coupling agent include bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxysilyl)propyl)tetrasulfide, and the like.
  • Examples of the acid anhydride-containing silane coupling agent include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3-dimethylmethoxysilylpropylsuccinic anhydride, and the like.
  • adhesion aids include not only silane coupling agents, but also titanium coupling agents, zirconium coupling agents, and the like.
  • an adhesion aid When an adhesion aid is used, it may be used alone or two or more adhesion aids may be used in combination. When an adhesion aid is used, its content is preferably 0.3 to 15 parts by mass, more preferably 0.4 to 12 parts by mass, and even more preferably 0.5 parts by mass, per 100 parts by mass of the phenolic resin (A). ⁇ 10 parts by mass.
  • the positive photosensitive resin composition of this embodiment can contain a surfactant.
  • a surfactant By including a surfactant, wettability during coating can be improved and a uniform resin film and cured film can be obtained.
  • the surfactant include fluorine surfactants, silicone surfactants, alkyl surfactants, and acrylic surfactants.
  • the surfactant preferably contains a surfactant containing at least one of a fluorine atom and a silicon atom. This contributes to obtaining a uniform resin film (improving coating properties), improving developability, and improving adhesive strength.
  • a surfactant for example, a nonionic surfactant containing at least one of a fluorine atom and a silicon atom is preferable.
  • F-251, F-253, F-281, F-430, F-477, F-551 of the "Megafac" series manufactured by DIC Corporation F-552, F-553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F- 565, F-568, F-569, F-570, F-572, F-574, F-575, F-576, R-40, R-40-LM, R-41, R-94, etc.
  • Fluorine-containing oligomer structure surfactants fluorine-containing nonionic surfactants such as Ftergent 250 and Ftergent 251 manufactured by Neos Co., Ltd., SILFOAM (registered trademark) series manufactured by Wacker Chemie (for example, SD 100 TS) , SD 670, SD 850, SD 860, SD 882) and the like.
  • the photosensitive resin composition can contain one or more surfactants.
  • the amount thereof is, for example, 0.001 to 1 part by mass, preferably 0.005 to 0.5 part by mass, per 100 parts by mass of the phenolic resin (A). .
  • the positive photosensitive resin composition of this embodiment preferably contains a solvent. Thereby, a photosensitive resin film can be easily formed on the stepped substrate by a coating method.
  • the positive photosensitive resin composition of this embodiment contains a solvent
  • the positive photosensitive resin composition of this embodiment is, for example, varnish-like.
  • the solvent usually includes an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and does not substantially chemically react with each component.
  • organic solvents examples include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and benzyl.
  • examples include alcohol, propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, dipropylene glycol methyl-n-propyl ether, butyl acetate, and ⁇ -butyrolactone. These may be used alone or in combination.
  • the concentration of nonvolatile components in the positive photosensitive resin composition is preferably 30 to 75% by mass, more preferably 35 to 70% by mass. By setting it as this range, each component can be fully dissolved or dispersed. In addition, good coating properties can be ensured, which in turn leads to improved flatness during spin coating. Furthermore, by adjusting the content of nonvolatile components, the viscosity of the positive photosensitive resin composition can be appropriately controlled.
  • the positive photosensitive resin composition of the present embodiment may contain components other than the above-mentioned components, if necessary.
  • examples of such components include antioxidants, fillers such as silica, sensitizers, film-forming agents, and the like.
  • the positive photosensitive resin composition of this embodiment has a tensile strength at break of 100 MPa or more of a cured product obtained by curing the positive photosensitive resin composition at 180°C. I can do it.
  • the lower limit of the tensile breaking strength of the cured film of the positive photosensitive resin composition of this embodiment is 100 MPa or more, preferably 105 MPa or more, more preferably 110 MPa, from the viewpoint of suppressing tensile brittle fracture. % or more.
  • the upper limit of the tensile strength at break of the cured film is, for example, 200 MPa or less, preferably 180 MPa or less, and more preferably 150 MPa or less.
  • the positive photosensitive resin composition of the present embodiment has a tensile elongation rate of a cured film of the positive photosensitive resin composition of 20% or more, as measured under Condition 1 below. can do.
  • (Condition 1) (i) The positive photosensitive resin composition is cured at 200° C. for 180 minutes to form the cured film, and a 6.5 mm x 20 mm x 10 ⁇ m thick sample is prepared from the cured film. (ii) Based on JIS K7161, perform a tensile test on the sample at 23° C. and a test speed of 5 mm/min to determine the tensile elongation rate.
  • the lower limit of the tensile elongation rate of the cured film of the positive photosensitive resin composition of this embodiment is 20% or more, preferably 25% or more, more preferably, from the viewpoint of suppressing brittle fracture. It is 30% or more, and even more preferably 40% or more.
  • the upper limit of the tensile elongation rate of the cured film is 100% or less, preferably 190% or less, more preferably 80% or less, and even more preferably is 70% or less.
  • the glass transition temperature (Tg) of the cured product of the positive photosensitive resin composition is preferably 200°C or higher, more preferably 220°C or higher, from the viewpoint of improving heat resistance. Further, from the viewpoint of suppressing deterioration of brittleness, the glass transition temperature of the cured product of the positive photosensitive resin composition is preferably 300°C or lower, more preferably 280°C or lower, and even more preferably 260°C or lower. .
  • the Tg of the cured product of the positive photosensitive resin composition is measured using a thermomechanical analyzer (TMA) on a predetermined test piece (width 3 mm x length 10 mm x thickness 0.005 to 0.015 mm). It is calculated from the results of measurements conducted using the following conditions: a starting temperature of 30°C, a measurement temperature range of 30 to 440°C, and a heating rate of 10°C/min.
  • TMA thermomechanical analyzer
  • a resin film is obtained by curing the photosensitive resin composition in this embodiment.
  • the resin film in this embodiment is a dried film or a cured film of a photosensitive resin composition. That is, the resin film is formed by drying or curing a photosensitive resin composition, preferably by making the photosensitive resin composition effective.
  • This resin film is used to form a resin film for electronic devices, such as a permanent film or a resist. Among these, it is preferable to use it in applications using permanent films from the viewpoints of obtaining a resin film at low temperatures, excellent workability, and obtaining a resin film with excellent reliability.
  • a resin film obtained using a photosensitive resin composition has excellent processability or reliability, which is required for a resin film useful for manufacturing electronic devices, etc. It is also possible to obtain.
  • the permanent film is composed of a resin film obtained by pre-baking, exposing and developing a photosensitive resin composition, patterning it into a desired shape, and then curing it by post-baking.
  • the permanent film can be used as a protective film for electronic devices such as a buffer coat film, an interlayer film such as an insulating film for rewiring, a dam material, and the like.
  • a resist is made by applying a negative photosensitive resin composition to an object to be masked by the resist using a method such as spin coating, roll coating, flow coating, dip coating, spray coating, or doctor coating. It is composed of a resin film obtained by removing the solvent from a resin composition.
  • FIG. 1 is a cross-sectional view showing a configuration example of an electronic device having a resin film according to the present embodiment.
  • the electronic device 100 shown in FIG. 1 can be an electronic device including the resin film described above.
  • one or more of the group consisting of the passivation film 32, the insulating layer 42, and the insulating layer 44 can be made of a resin film.
  • the resin film is preferably the above-mentioned permanent film.
  • the electronic device 100 is, for example, a semiconductor chip. In this case, for example, a semiconductor package can be obtained by mounting the electronic device 100 on a wiring board via the bumps 52.
  • the electronic device 100 includes a semiconductor substrate provided with semiconductor elements such as transistors, and a multilayer wiring layer (not shown) provided on the semiconductor substrate.
  • An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer.
  • the uppermost layer wiring 34 is made of aluminum Al, for example.
  • a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. A part of the passivation film 32 is provided with an opening through which the uppermost layer wiring 34 is exposed.
  • a rewiring layer 40 is provided on the passivation film 32.
  • the rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, has.
  • An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42 .
  • the rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34.
  • the insulating layer 44 is provided with an opening connected to the rewiring 46 .
  • a bump 52 is formed in the opening provided in the insulating layer 44 via, for example, a UBM (under bump metallurgy) layer 50.
  • the electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
  • Examples 1 to 7, Comparative Example 1 A photosensitive resin composition was prepared according to the formulation shown in Table 1. Specifically, first, each component formulated according to Table 1 was stirred and mixed in a nitrogen atmosphere, and then filtered through a polyethylene filter with a pore size of 0.2 ⁇ m to obtain a varnish-like photosensitive resin composition. . Details of each component listed in Table 1 are shown below.
  • Phenol resin (A)) (Biphenyl type phenolic resin (a1))
  • phenolic resin a1-1) 186.2 g (1.00 mol) of 4,4'-biphenol and 86.2 g (1.00 mol) of p-cresol were placed in a four-neck glass round-bottomed flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet.
  • Crosslinking agent (B) (Urea resin crosslinking agent (b1))
  • ⁇ Crosslinking agent b1-1 1,3,4,6-tetrakis(methoxymethyl)glycoluril, manufactured by Daito Chemix Co., Ltd., CROLIN-318
  • Crosslinking agent b1-2 1,3,4,6-tetrakis(butoxymethyl)glycoluril, manufactured by Sanwa Chemical Co., Ltd.
  • Nikalac MX-279 Crosslinking agent b1-3: 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone, manufactured by Sanwa Chemical Co., Ltd., Nikalac MX-280 (Epoxy resin crosslinking agent (b2))
  • Crosslinking agent b2-1 Phenoxy type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • Crosslinking agent b2-2 Epoxy resin (bisphenol A type phenoxy), manufactured by Mitsubishi Chemical Corporation, JER-1256 Crosslinking agent b2
  • Thermal acid generator (c1) (Thermal acid generator (c1)) ⁇ Thermal acid generator c1-1: Compound represented by formula (c1-1) (SAN-AID SI-150, manufactured by Sankegaku Co., Ltd.) (Photoacid generator (c2)) ⁇ Photoacid generator c2-1: 3-diazo-3,4- of 4,4'-(1- ⁇ 4-[1-(4-hydroxyphenyl)-1-methylethyl]phenyl ⁇ ethylidene)diphenol Dihydro-4-oxo-1-naphthalenesulfonic acid ester, manufactured by Daito Chemix Co., Ltd., DS-427,
  • Adhesion aid 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E
  • surfactant Fluorine surfactant, manufactured by 3M Japan, FC4432 (10% GBL) (solvent)
  • Solvent 1 ⁇ -butyrolactone, manufactured by Sanwa Yuka Kogyo Co., Ltd.
  • Tg Glass transition temperature
  • CTE coefficient of linear expansion
  • a cured film of the photosensitive resin composition obtained in each example was produced at 180° C. for 120 minutes, and a test piece with a width of 3 mm x length of 10 mm x thickness of 10 mm was obtained from the obtained cured film.
  • the test pieces of each example were analyzed using a thermomechanical analyzer (TMA, manufactured by Seiko Instruments Inc., SS6000) under conditions of a starting temperature of 30°C, a measurement temperature range of 30 to 440°C, and a heating rate of 10°C/min. Measurements were carried out, and from the measurement results, Tg (°C) and linear expansion coefficient (ppm/°C) in the temperature range of 50 to 100°C were determined. The results are shown in Table 1.
  • the development time was adjusted so that the difference between the film thickness after pre-baking and the film thickness after development was 1.0 ⁇ m, and the puddle was applied twice.
  • the exposed area was dissolved and removed by development, it was rinsed with pure water for 10 seconds.
  • the resolution of the line pattern was evaluated using a pattern exposed with an energy of the minimum exposure amount + 100 mJ/cm 2 to form a pattern of 100 ⁇ m square via holes. Regarding the resolution, it was confirmed whether the openings were formed in a line pattern with an interval of 10 ⁇ m. Table 1 indicates that the opening is marked as "A", and the case of not opening is marked as "B".

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

This positive-type photosensitive resin composition is used in a rewiring layer of a semiconductor device. The photosensitive resin composition includes (A) a phenol resin having a biphenol structure, (B) a crosslinking agent, and (C) a photosensitizer. The tensile fracture strength of a cured product obtained by curing the positive-type photosensitive resin composition at 180°C is not less than 100 MPa.

Description

ポジ型感光性樹脂組成物、硬化膜、および半導体装置Positive photosensitive resin composition, cured film, and semiconductor device
 本発明は、ポジ型感光性樹脂組成物およびその硬化膜、ならびに当該硬化膜を絶縁層として備える半導体装置に関する。 The present invention relates to a positive photosensitive resin composition, a cured film thereof, and a semiconductor device including the cured film as an insulating layer.
 電気・電子分野においては、絶縁層などの硬化膜を形成するために、熱硬化性樹脂を含む感光性樹脂組成物が用いられることがある。そのため、熱硬化性樹脂を含む感光性樹脂組成物がこれまで検討されてきている。熱硬化性樹脂を含む感光性樹脂組成物により、再配線層中の絶縁膜や、再配線層以外の部分の絶縁膜を形成することが知られている。 In the electrical and electronic fields, photosensitive resin compositions containing thermosetting resins are sometimes used to form cured films such as insulating layers. Therefore, photosensitive resin compositions containing thermosetting resins have been studied so far. It is known to form an insulating film in a rewiring layer or an insulating film in a portion other than the rewiring layer using a photosensitive resin composition containing a thermosetting resin.
 一例として、特許文献1には、アルカリ水溶液可溶性樹脂、架橋剤、光重合開始剤および特定の一般式で表わされるエポキシ樹脂(熱硬化性樹脂)を含有する感光性樹脂組成物が記載されている。特許文献1には、この感光性樹脂組成物の光感度は良好であると記載されている。また、特許文献1には、この感光性樹脂組成物により形成された膜は、屈曲性、密着性、鉛筆硬度、耐溶剤性、耐酸性、耐熱性、耐金メッキ性等に優れると記載されている。 As an example, Patent Document 1 describes a photosensitive resin composition containing an alkaline aqueous solution soluble resin, a crosslinking agent, a photopolymerization initiator, and an epoxy resin (thermosetting resin) represented by a specific general formula. . Patent Document 1 describes that this photosensitive resin composition has good photosensitivity. Further, Patent Document 1 states that a film formed from this photosensitive resin composition has excellent flexibility, adhesion, pencil hardness, solvent resistance, acid resistance, heat resistance, gold plating resistance, etc. There is.
特開2016-80871号公報Japanese Patent Application Publication No. 2016-80871
 電子デバイスの高度化・複雑化に伴い、電子デバイスには従来以上の信頼性が求められるようになってきている。そのため、硬化膜の改良およびこの硬化膜を形成するための感光性樹脂組成物の改良により、電子デバイスの信頼性を向上させることが求められている。また、近年、半導体チップへの熱ダメージ低減のため、硬化膜を形成する際の加熱温度を比較的低くすること(例えば、200℃程度とすること)が求められてきている。 As electronic devices become more sophisticated and complex, electronic devices are required to be more reliable than ever before. Therefore, there is a need to improve the reliability of electronic devices by improving the cured film and improving the photosensitive resin composition for forming the cured film. Furthermore, in recent years, in order to reduce thermal damage to semiconductor chips, there has been a demand for a relatively low heating temperature (for example, about 200° C.) when forming a cured film.
 本発明は、上記課題に鑑みなされたものであり、ポジ型感光性樹脂組成物において、特定のフェノール樹脂と、架橋剤と、感光剤とを組み合わせて使用することにより、低温硬化性でありながら、硬化物の機械的特性に優れ、結果として基板に対する密着性が優れた樹脂膜が得られることを見出し、本発明を完成するに至った。 The present invention was made in view of the above-mentioned problems, and by using a specific phenol resin, a crosslinking agent, and a photosensitizer in combination in a positive photosensitive resin composition, it can be cured at low temperature while being They discovered that a cured product has excellent mechanical properties and, as a result, a resin film with excellent adhesion to a substrate can be obtained, and the present invention has been completed.
 本発明によれば、
 半導体装置の再配線層に用いられるポジ型感光性樹脂組成物であって、
 当該感光性樹脂組成物は、
 (A)ビフェノール構造を有するフェノール樹脂、
 (B)架橋剤、および
 (C)感光剤、を含み、
 当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張破断強度は、100MPa以上である、ポジ型感光性樹脂組成物が提供される。
According to the invention,
A positive photosensitive resin composition used for a rewiring layer of a semiconductor device, the composition comprising:
The photosensitive resin composition is
(A) Phenol resin having a biphenol structure,
(B) a crosslinking agent, and (C) a photosensitizer,
A positive photosensitive resin composition is provided in which the cured product obtained by curing the positive photosensitive resin composition at 180° C. has a tensile strength at break of 100 MPa or more.
 また本発明によれば、上記ポジ型感光性樹脂組成物を硬化させて得られる硬化膜が提供される。 Further, according to the present invention, a cured film obtained by curing the above-mentioned positive photosensitive resin composition is provided.
 さらにまた本発明によれば、
 半導体素子と、
 前記半導体素子の表面上に設けられた再配線層と、を備える半導体装置であって、
 前記再配線層中の絶縁層が、上記硬化膜から構成される、半導体装置が提供される。
Furthermore, according to the present invention,
a semiconductor element;
A rewiring layer provided on the surface of the semiconductor element, the semiconductor device comprising:
A semiconductor device is provided in which the insulating layer in the rewiring layer is composed of the cured film.
 本発明によれば、低温硬化性を有するポジ型感光性樹脂組成物、およびこれを硬化して得られる、機械的強度に優れた硬化膜が提供される。 According to the present invention, a positive photosensitive resin composition having low temperature curability and a cured film with excellent mechanical strength obtained by curing the same are provided.
実施形態における半導体装置の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a semiconductor device in an embodiment.
 以下、本発明の実施の形態について説明する。なお、本明細書において、数値範囲の「x~y」は「x以上y以下」を表し、下限値xおよび上限値yをいずれも含む。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。また、以下の図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。 Embodiments of the present invention will be described below. In this specification, the numerical range "x to y" represents "x to y" and includes both the lower limit x and the upper limit y. For example, "1 to 5% by mass" means "1 to 5% by mass". Further, in the following drawings, similar components are denoted by common reference numerals, and description thereof will be omitted as appropriate. Furthermore, the figure is a schematic diagram and does not correspond to the actual dimensional ratio.
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。 In the description of groups (atomic groups) in this specification, descriptions that do not indicate whether they are substituted or unsubstituted include both those without a substituent and those with a substituent. For example, the term "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
[ポジ型感光性樹脂組成物]
 本実施形態のポジ型感光性樹脂組成物は、半導体装置の再配線層を形成するために用いられる樹脂材料である。本実施形態のポジ型感光性樹脂組成物は、(A)フェノール樹脂、(B)架橋剤、および(C)感光剤、を含み、
 フェノール樹脂(A)は、ビフェノール構造を有するフェノール樹脂、換言すると、ビフェニル型フェノール樹脂である。
 本実施形態のポジ型感光性樹脂組成物は、当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張破断強度が、100MPa以上である。
[Positive photosensitive resin composition]
The positive photosensitive resin composition of this embodiment is a resin material used to form a rewiring layer of a semiconductor device. The positive photosensitive resin composition of this embodiment includes (A) a phenol resin, (B) a crosslinking agent, and (C) a photosensitizer,
The phenol resin (A) is a phenol resin having a biphenol structure, in other words, a biphenyl type phenol resin.
The positive photosensitive resin composition of this embodiment has a tensile strength at break of 100 MPa or more of a cured product obtained by curing the positive photosensitive resin composition at 180°C.
 本発明者は、ポジ型感光性樹脂組成物の低温硬化性を向上するとともに、得られる硬化膜の機械的強度を改善すべく検討をおこなった。その結果、ポジ型感光性樹脂組成物が特定の成分を含む構成とすることにより、当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張破断強度が、100MPa以上となり、よって上記課題が解決されることを見出した。
 以下に、本実施形態のポジ型感光性樹脂組成物に用いられる各成分について説明する。
The present inventor conducted studies to improve the low-temperature curability of a positive photosensitive resin composition and to improve the mechanical strength of the resulting cured film. As a result, by configuring the positive photosensitive resin composition to include a specific component, the tensile strength at break of the cured product obtained by curing the positive photosensitive resin composition at 180°C becomes 100 MPa or more. Therefore, it has been found that the above problem can be solved.
Each component used in the positive photosensitive resin composition of this embodiment will be explained below.
(フェノール樹脂(A))
 本実施形態のポジ型感光性樹脂組成物は、フェノール樹脂として、ビフェニル型フェノール樹脂(a1)を含む。ビフェニル型フェノール樹脂(a1)としては、低温での硬化性および硬化膜の信頼性を向上する観点から、下記式(2)で表されるビフェノール骨格を有する構造単位を有するビフェニル型フェノール樹脂が好ましい。
(Phenol resin (A))
The positive photosensitive resin composition of this embodiment contains a biphenyl type phenol resin (a1) as a phenol resin. As the biphenyl-type phenolic resin (a1), from the viewpoint of improving curability at low temperatures and reliability of the cured film, a biphenyl-type phenolic resin having a structural unit having a biphenol skeleton represented by the following formula (2) is preferable. .
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 上記式(2)中、R41、およびR42は、それぞれ独立して、水酸基、ハロゲン原子、カルボキシル基、炭素数1~20の飽和または不飽和のアルキル基、炭素数1~20のアルキルエーテル基、炭素数3~20の飽和または不飽和の脂環式基、または炭素数6~20の芳香族構造を有する有機基からなる群から選ばれる1価の置換基であり、これらはエステル結合、エーテル結合、アミド結合、カルボニル結合を介して結合していてもよく、r、およびsは、それぞれ独立して、0~3の整数であり、Y、およびZは、それぞれ独立して、単結合、または不飽和結合を有していてもよい炭素数1~10の脂肪族基、炭素数3~20の脂環式基、および炭素数6~20の芳香族構造を有する有機基からなる群から選択され、Zは、2つのベンゼン環のうちいずれか一方に結合する。 In the above formula (2), R 41 and R 42 are each independently a hydroxyl group, a halogen atom, a carboxyl group, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, or an alkyl ether having 1 to 20 carbon atoms. A monovalent substituent selected from the group consisting of a saturated or unsaturated alicyclic group having 3 to 20 carbon atoms, or an organic group having an aromatic structure having 6 to 20 carbon atoms; , may be bonded via an ether bond, an amide bond, or a carbonyl bond, r and s are each independently an integer of 0 to 3, and Y 4 and Z 4 are each independently , an aliphatic group having 1 to 10 carbon atoms which may have a single bond or an unsaturated bond, an alicyclic group having 3 to 20 carbon atoms, and an organic group having an aromatic structure having 6 to 20 carbon atoms. Z 4 is selected from the group consisting of, and Z 4 is bonded to either one of the two benzene rings.
 本実施形態において、ビフェニル型フェノール樹脂(a1)の重量平均分子量は、200℃以下(例えば、180℃)の低温での硬化性を向上する観点から、12,000以上であり、好ましくは、15,000以上であり、より好ましくは、18,000以上であり、さらに好ましくは、20,000以上である。また、ビフェニル型フェノール樹脂(a1)の重量平均分子量は、適切な溶剤溶解性を保持する観点から、500,000以下であり、好ましくは、400,000以下であり、より好ましくは、300,000以下であり、さらに好ましくは、200,000以下である。 In this embodiment, the weight average molecular weight of the biphenyl-type phenolic resin (a1) is 12,000 or more, preferably 15 ,000 or more, more preferably 18,000 or more, still more preferably 20,000 or more. In addition, the weight average molecular weight of the biphenyl type phenol resin (a1) is 500,000 or less, preferably 400,000 or less, more preferably 300,000 or less, from the viewpoint of maintaining appropriate solvent solubility. or less, more preferably 200,000 or less.
 式(2)で表される構造単位を有するビフェニル型フェノール樹脂(a1)は、具体的には、特開2018-155938号公報の記載の方法を用いて得ることができる。 Specifically, the biphenyl-type phenolic resin (a1) having a structural unit represented by formula (2) can be obtained using the method described in JP 2018-155938A.
 本実施形態のポジ型感光性樹脂組成物中の、ビフェニル型フェノール樹脂(a1)の含有量は、低温硬化時の硬化性向上の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは5質量%以上であり、より好ましくは、10質量%以上であり、さらに好ましくは、15質量%以上である。また、ポジ型感光性樹脂組成物中のビフェニル型フェノール樹脂(a1)の含有量は、靭性悪化の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、70質量%以下であり、より好ましくは、60質量%以下であり、さらに好ましくは、50質量%以下である。 The content of the biphenyl phenolic resin (a1) in the positive photosensitive resin composition of this embodiment is determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of improving curability during low temperature curing. The content is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. Further, the content of the biphenyl type phenol resin (a1) in the positive photosensitive resin composition is preferably 70% by mass based on the total solid content of the positive photosensitive resin composition from the viewpoint of deterioration of toughness. or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
 本実施形態のポジ型感光性樹脂組成物は、低温での硬化性および硬化膜の信頼性を向上する観点から、上述のビフェニル型フェノール樹脂(a1)以外のフェノール樹脂(a2)をさらに含んでもよい。
 フェノール樹脂(a2)として、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂、アリル化ノボラック型フェノール樹脂、キシリレンノボラック型フェノール樹脂等のノボラック型フェノール樹脂;ノボラック型フェノール樹脂、レゾール型フェノール樹脂、クレゾールノボラック樹脂などのフェノール化合物とアルデヒド化合物との反応物;フェノールアラルキル樹脂などのフェノール化合物とジメタノール化合物との反応物が挙げられる。
The positive photosensitive resin composition of the present embodiment may further contain a phenol resin (a2) other than the above-mentioned biphenyl-type phenol resin (a1) from the viewpoint of improving curability at low temperatures and reliability of the cured film. good.
As the phenolic resin (a2), specifically, a novolac type phenolic resin such as a phenol novolac resin, a cresol novolac resin, a bisphenol novolac resin, a phenol-biphenyl novolak resin, an allylated novolac type phenolic resin, a xylylene novolac type phenolic resin; Examples include reaction products of a phenol compound and an aldehyde compound, such as novolac type phenol resin, resol type phenol resin, and cresol novolak resin; and reaction products of a phenol compound, such as phenol aralkyl resin, and a dimethanol compound.
 中でも、フェノール樹脂(a2)としては、低温硬化性の樹脂組成物を得る観点から、以下の式(1)で表される構造を有する樹脂であることが好ましい。 Among these, the phenol resin (a2) is preferably a resin having a structure represented by the following formula (1) from the viewpoint of obtaining a low-temperature curable resin composition.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 上記式(1)中、nは、低温での硬化性を向上する観点から、好ましくは6以上であり、より好ましくは10以上、さらに好ましくは14以上である。
 また、溶剤溶解性の観点から、nは、好ましくは72以下であり、より好ましくは54以下、さらに好ましくは36以下である。
In the above formula (1), n is preferably 6 or more, more preferably 10 or more, still more preferably 14 or more, from the viewpoint of improving curability at low temperatures.
Further, from the viewpoint of solvent solubility, n is preferably 72 or less, more preferably 54 or less, and still more preferably 36 or less.
 ビフェニル型フェノール樹脂(a2)の重量平均分子量は、低温での硬化性を向上する観点から、たとえば、500以上であり、好ましくは、2000以上であり、より好ましくは、3000以上であり、さらに好ましくは、4000以上である。また、ビフェニル型フェノール樹脂(a2)の重量平均分子量は、溶剤溶解性の観点から、たとえば、50000以下であり、好ましくは、20000以下であり、より好ましくは、15000以下であり、さらに好ましくは、10000以下である。 The weight average molecular weight of the biphenyl type phenol resin (a2) is, for example, 500 or more, preferably 2000 or more, more preferably 3000 or more, and even more preferably is 4000 or more. In addition, the weight average molecular weight of the biphenyl type phenol resin (a2) is, from the viewpoint of solvent solubility, for example, 50,000 or less, preferably 20,000 or less, more preferably 15,000 or less, and even more preferably, 10,000 or less.
 ポジ型感光性樹脂組成物がビフェニル型フェノール樹脂(a2)を含む場合、その含有量は、低温硬化時の靭性向上の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、5質量%以上であり、より好ましくは、10質量%以上であり、さらに好ましくは、15質量部以上である。また、ポジ型感光性樹脂組成物中のビフェニル型フェノール樹脂(a2)の含有量は、得られる硬化膜の機械的特性の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、70質量部以下であり、より好ましくは、60質量部以下であり、さらに好ましくは、50質量部以下である。 When the positive type photosensitive resin composition contains biphenyl type phenolic resin (a2), the content is preferably determined based on the total solid content of the positive type photosensitive resin composition from the viewpoint of improving toughness during low temperature curing. is 5% by mass or more, more preferably 10% by mass or more, still more preferably 15 parts by mass or more. In addition, the content of the biphenyl phenolic resin (a2) in the positive photosensitive resin composition is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of mechanical properties of the cured film obtained. Preferably it is 70 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less.
 本実施形態のポジ型感光性樹脂組成物は、上記フェノール樹脂(a1)および(a2)以外の熱硬化性樹脂を含んでもよい。このような樹脂の具体例として、上述のビフェニル型フェノール樹脂以外のフェノール樹脂、ヒドロキシスチレン樹脂、ポリアミド樹脂、ポリベンゾオキサゾール樹脂、ポリイミド樹脂、環状オレフィン樹脂が挙げられる。 The positive photosensitive resin composition of this embodiment may contain thermosetting resins other than the above-mentioned phenolic resins (a1) and (a2). Specific examples of such resins include phenol resins other than the above-mentioned biphenyl type phenol resins, hydroxystyrene resins, polyamide resins, polybenzoxazole resins, polyimide resins, and cyclic olefin resins.
 また、ポジ型感光性樹脂組成物中のフェノール樹脂(A)の含有量は、低温での硬化性および硬化膜の信頼性を向上する観点から、感光性樹脂組成物の全固形分に対して、好ましくは、30質量%以上であり、より好ましくは、45質量%以上であり、さらに好ましくは、50質量%以上であり、なおさらに好ましくは、55質量%以上である。また、耐薬性や感光性を向上させる観点から、感光性樹脂組成物中の成分(A)の含有量は、感光性樹脂組成物の全固形分に対して、好ましくは、95質量部%以下であり、より好ましくは、90質量%以下であり、さらに好ましくは、85質量%以下である。ここで、フェノール樹脂(A)は、本実施形態のポジ型感光性樹脂組成物に用いられるフェノール樹脂の合計量であり、フェノール樹脂(A)は、上述のビフェニル型フェノール樹脂(a1)、および必要に応じて用いられるフェノール樹脂(a2)からなる。 In addition, the content of the phenolic resin (A) in the positive photosensitive resin composition is determined based on the total solid content of the photosensitive resin composition, from the viewpoint of improving curability at low temperatures and reliability of the cured film. , preferably 30% by mass or more, more preferably 45% by mass or more, even more preferably 50% by mass or more, still more preferably 55% by mass or more. Further, from the viewpoint of improving chemical resistance and photosensitivity, the content of component (A) in the photosensitive resin composition is preferably 95 parts by mass or less based on the total solid content of the photosensitive resin composition. It is more preferably 90% by mass or less, still more preferably 85% by mass or less. Here, the phenol resin (A) is the total amount of phenol resins used in the positive photosensitive resin composition of this embodiment, and the phenol resin (A) is the above-mentioned biphenyl type phenol resin (a1), and It consists of a phenolic resin (a2) used as necessary.
(架橋剤(B))
 本実施形態のポジ型感光性樹脂組成物は、上記フェノール樹脂(A)と架橋反応し得る反応性基を有する架橋剤(B)を含む。このような架橋剤(B)としては、2官能以上の尿素樹脂系架橋剤(b1)が好ましく用いられる。
(Crosslinking agent (B))
The positive photosensitive resin composition of this embodiment includes a crosslinking agent (B) having a reactive group capable of crosslinking with the phenol resin (A). As such a crosslinking agent (B), a bifunctional or more functional urea resin crosslinking agent (b1) is preferably used.
 2官能以上の尿素樹脂系架橋剤(b1)としては、例えば、2~4官能のアルコキシメチル化グリコールウリル化合物が挙げられる。アルコキシメチル化グリコールウリル化合物とは、グリコールウリル化合物のアミノ基の水素原子が、アルコキシメチロール基に置換された化合物をいう。アルコキシメチル化グリコールウリルの具体例としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、および1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。 Examples of the difunctional or more functional urea resin crosslinking agent (b1) include di- to tetrafunctional alkoxymethylated glycoluril compounds. An alkoxymethylated glycoluril compound refers to a compound in which the hydrogen atom of the amino group of a glycoluril compound is substituted with an alkoxymethylol group. Specific examples of alkoxymethylated glycoluril include 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4 , 6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, 1,1,3,3-tetrakis(methoxymethyl) Examples include urea, 1,3-bis(hydroxymethyl)-4,5-dihydroxy-2-imidazolinone, and 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone.
 架橋剤(B)は、ポジ型感光性樹脂組成物の低温硬化性を損なわない範囲で、上述の22官能以上の尿素樹脂系架橋剤(b1)に加え、その他の架橋剤(b2)を含んでもよい。その他の架橋剤(b2)としては、例えば、1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール(パラキシレングリコール)、1,3,5-ベンゼントリメタノール、4,4-ビフェニルジメタノール、2,6-ピリジンジメタノール、2,6-ビス(ヒドロキシメチル)-p-クレゾール、4,4'-メチレンビス(2,6-ジアルコキシメチルフェノール)などのメチロール基を有する化合物;フロログルシドなどのフェノール類;1,4-ビス(メトキシメチル)ベンゼン、1,3-ビス(メトキシメチル)ベンゼン、4,4'-ビス(メトキシメチル)ビフェニル、3,4'-ビス(メトキシメチル)ビフェニル、3,3'-ビス(メトキシメチル)ビフェニル、2,6-ナフタレンジカルボン酸メチル、4,4'-メチレンビス(2,6-ジメトキシメチルフェノール)などのアルコキシメチル基を有する化合物;ヘキサメチロールメラミン、ヘキサブタノールメラミン等から代表されるメチロールメラミン化合物;ヘキサメトキシメラミンなどのアルコキシメラミン化合物;メチロールベンゾグアナミン化合物、ジメチロールエチレンウレアなどのメチロールウレア化合物;アルキル化尿素樹脂;ジシアノアニリン、ジシアノフェノール、シアノフェニルスルホン酸などのシアノ化合物;1,4-フェニレンジイソシアナート、3,3'-ジメチルジフェニルメタン-4,4'-ジイソシアナートなどのイソシアナート化合物;エチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、イソシアヌル酸トリグリシジル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン系エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック樹脂型エポキシ樹脂などのエポキシ基含有化合物;N,N'-1,3-フェニレンジマレイミド、N,N'-メチレンジマレイミドなどのマレイミド化合物等が挙げられる。 The crosslinking agent (B) contains other crosslinking agents (b2) in addition to the above-mentioned urea resin crosslinking agent (b1) having 22 or more functional groups, as long as the low-temperature curability of the positive photosensitive resin composition is not impaired. But that's fine. Other crosslinking agents (b2) include, for example, 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol (paraxylene glycol), 1,3,5-benzenedimethanol , 4,4-biphenyldimethanol, 2,6-pyridinedimethanol, 2,6-bis(hydroxymethyl)-p-cresol, 4,4'-methylenebis(2,6-dialkoxymethylphenol) and other methylols Compounds having groups; phenols such as phloroglucide; 1,4-bis(methoxymethyl)benzene, 1,3-bis(methoxymethyl)benzene, 4,4'-bis(methoxymethyl)biphenyl, 3,4'- Having an alkoxymethyl group such as bis(methoxymethyl)biphenyl, 3,3'-bis(methoxymethyl)biphenyl, methyl 2,6-naphthalene dicarboxylate, 4,4'-methylenebis(2,6-dimethoxymethylphenol) Compounds: Methylolmelamine compounds represented by hexamethylolmelamine, hexabutanolmelamine, etc.; Alkoxymelamine compounds such as hexamethoxymelamine; Methylorurea compounds such as methylolbenzoguanamine compounds and dimethylolethylene urea; Alkylated urea resins; dicyanoaniline, dicyano Cyano compounds such as phenol and cyanophenylsulfonic acid; Isocyanate compounds such as 1,4-phenylene diisocyanate and 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate; Ethylene glycol diglycidyl ether, bisphenol A Epoxy group-containing compounds such as diglycidyl ether, triglycidyl isocyanurate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolak resin type epoxy resin; N, N'-1 , 3-phenylene dimaleimide, N,N'-methylene dimaleimide, and other maleimide compounds.
 2官能以上の尿素樹脂系架橋剤(b1)の含有量は、ポジ型感光性樹脂組成物の低温硬化時の靭性向上の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、50質量%以上であり、より好ましくは、55質量%以上であり、さらに好ましくは、60質量%以上である。また、ポジ型感光性樹脂組成物中の2官能以上尿素樹脂系架橋剤(b1)の含有量は、ポジ型感光性樹脂組成物の低温硬化時の熱機械特性を保持する観点から、感光性樹脂組成物の全固形分に対して、好ましくは、90質量%以下であり、より好ましくは、85質量%以下、さらに好ましくは、80質量%以下である。 The content of the bifunctional or higher urea resin crosslinking agent (b1) is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of improving the toughness during low temperature curing of the positive photosensitive resin composition. Preferably it is 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more. In addition, the content of the bifunctional or more functional urea resin crosslinking agent (b1) in the positive photosensitive resin composition is determined from the viewpoint of maintaining thermomechanical properties during low temperature curing of the positive photosensitive resin composition. It is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, based on the total solid content of the resin composition.
 本実施形態のポジ型感光性樹脂組成物中の、架橋剤(B)の含有量は、低温硬化時の靭性向上の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、50質量%以上であり、より好ましくは、55質量%以上であり、さらに好ましくは、60質量%以上である。また、ポジ型感光性樹脂組成物中の架橋剤(B)の含有量は、低温硬化時の熱機械特性を保持する観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、90質量%以下であり、より好ましくは、85質量%以下であり、さらに好ましくは、80質量%以下である。ここで、架橋剤(B)は、上述の2官能以上の尿素樹脂系架橋剤(b1)、および必要に応じて用いられるその他の架橋剤(b2)からなる。 The content of the crosslinking agent (B) in the positive photosensitive resin composition of the present embodiment is preferably determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of improving toughness during low temperature curing. is 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more. In addition, the content of the crosslinking agent (B) in the positive photosensitive resin composition is preferably determined based on the total solid content of the positive photosensitive resin composition from the viewpoint of maintaining thermomechanical properties during low temperature curing. is 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less. Here, the crosslinking agent (B) consists of the above-mentioned bifunctional or more functional urea resin crosslinking agent (b1) and other crosslinking agents (b2) used as necessary.
(感光剤(C))
 本実施形態のポジ型感光性樹脂組成物は、硬化膜を安定的に形成する観点から、感光剤(C)を含む。感光剤(C)は、具体的には、熱エネルギーまたは光エネルギーを吸収することにより酸を発生する酸発生剤である。低温での硬化性および耐薬性を向上する観点から、感光剤(C)は、熱エネルギーにより酸を発生する熱酸発生剤(c1)または光エネルギーにより酸を発生する光酸発生剤(c2)のいずれか、または両方を含む。
(Photosensitizer (C))
The positive photosensitive resin composition of this embodiment contains a photosensitizer (C) from the viewpoint of stably forming a cured film. Specifically, the photosensitizer (C) is an acid generator that generates acid by absorbing thermal energy or light energy. From the viewpoint of improving curability and chemical resistance at low temperatures, the photosensitizer (C) is a thermal acid generator (c1) that generates acid by thermal energy or a photoacid generator (c2) that generates acid by light energy. Contains either or both.
 熱酸発生剤(c1)としては、スルホニウム化合物またはその塩が好ましく用いられる。
 スルホニウム化合物またはその塩は、具体的には、カチオン部としてスルホニウムイオンを有するスルホニウム塩である。このとき、スルホニウム化合物またはその塩のアニオン部は、具体的には、ホウ化物イオン、アンチモンイオン、リンイオンまたはトリフルオロメタンスルホン酸イオン等のスルホン酸イオンであり、低温での反応速度を向上する観点から、好ましくはホウ化物イオンまたはアンチモンイオンであり、より好ましくはホウ化物イオンである。これらのアニオンは置換基を有してもよい。
As the thermal acid generator (c1), a sulfonium compound or a salt thereof is preferably used.
Specifically, the sulfonium compound or its salt is a sulfonium salt having a sulfonium ion as a cation moiety. At this time, the anion moiety of the sulfonium compound or its salt is specifically a sulfonate ion such as a boride ion, antimony ion, phosphorus ion, or trifluoromethanesulfonate ion, and from the viewpoint of improving the reaction rate at low temperature. , preferably a boride ion or an antimony ion, more preferably a boride ion. These anions may have a substituent.
 スルホニウム化合物またはその塩は、好ましくは下記式(4)で示されるスルホニウム塩を含む。 The sulfonium compound or its salt preferably includes a sulfonium salt represented by the following formula (4).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 上記一般式(4)中、Rは水素原子または一価の有機基であり、低温での反応性を向上する観点から、好ましくは水素原子またはアシル基であり、より好ましくはアシル基であり、さらに好ましくはCHC(=O)-基である。
 Rは一価の有機基であり、低温での反応性を向上する観点から、好ましくは鎖状もしくは分岐鎖を有する炭化水素基または置換基を有してもよいベンジル基であり、より好ましくは炭素数1以上4以下のアルキル基で置換されてもよいベンジル基または炭素数1以上4以下のアルキル基であり、さらに好ましくはメチル基または芳香環部がメチル基で置換されてもよいベンジル基である。
 Rは一価の有機基であり、低温での反応性を向上する観点から、好ましくは鎖状もしくは分岐鎖を有する炭化水素基であり、より好ましくは炭素数1以上4以下のアルキル基であり、より好ましくはメチル基である。
In the above general formula (4), R 1 is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or an acyl group, more preferably an acyl group, from the viewpoint of improving reactivity at low temperatures. , more preferably a CH 3 C(=O)- group.
R 2 is a monovalent organic group, and from the viewpoint of improving reactivity at low temperatures, it is preferably a chain or branched hydrocarbon group or a benzyl group that may have a substituent, and more preferably is a benzyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or a benzyl group whose aromatic ring portion may be substituted with a methyl group. It is the basis.
R3 is a monovalent organic group, and from the viewpoint of improving reactivity at low temperatures, it is preferably a chain or branched hydrocarbon group, more preferably an alkyl group having 1 to 4 carbon atoms. More preferably, it is a methyl group.
 熱酸発生剤(c1)の他の好ましい例として、トリフェニルスルホニウムトリフルオロメタンスルホネート等のトリフェニルスルホニウム塩が挙げられる。 Other preferred examples of the thermal acid generator (c1) include triphenylsulfonium salts such as triphenylsulfonium trifluoromethanesulfonate.
 光酸発生剤(c2)としては、ナフトキノンジアジド化合物、ジアリールスルホニウム塩、トリアリールスルホニウム塩、ジアルキルフェナシルスルホニウム塩、ジアリールヨードニウム塩、アリールジアゾニウム塩、芳香族テトラカルボン酸エステル、芳香族スルホン酸エステル、ニトロベンジルエステル、芳香族N-オキシイミドスルフォネート、芳香族スルファミド、ベンゾキノンジアゾスルホン酸エステル等が挙げられる。中でもナフトキノンジアジド化合物であることが好ましい。 As the photoacid generator (c2), naphthoquinonediazide compounds, diarylsulfonium salts, triarylsulfonium salts, dialkylphenacylsulfonium salts, diaryliodonium salts, aryldiazonium salts, aromatic tetracarboxylic acid esters, aromatic sulfonic acid esters, Examples include nitrobenzyl ester, aromatic N-oximide sulfonate, aromatic sulfamide, benzoquinone diazosulfonic acid ester, and the like. Among these, naphthoquinone diazide compounds are preferred.
 ナフトキノンジアジド化合物としては、例えば、トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼンのナフトキノンジアジド付加物、テトラヒドロキシベンゾフェノンのナフトキノンジアジド付加物等を使用することができる。ここで、ナフトキノンジアジドの付加は、例えば、o-キノンジアジドスルホニルクロリド類を、ヒドロキシ化合物やアミノ化合物と反応させることにより製造することができる。 As the naphthoquinone diazide compound, for example, a naphthoquinone diazide adduct of tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene, a naphthoquinone diazide adduct of tetrahydroxybenzophenone, etc. can be used. Here, the addition of naphthoquinonediazide can be produced, for example, by reacting o-quinonediazide sulfonyl chloride with a hydroxy compound or an amino compound.
 ポジ型感光性樹脂組成物中の感光剤(C)の含有量は、低温での硬化性を向上する観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、3質量%以上であり、より好ましくは、5質量%以上であり、さらに好ましくは、8質量%以上である。また、ポジ型感光性樹脂組成物中の感光剤(C)の含有量は、信頼性低下を抑制する観点から、感光性樹脂組成物の全固形分に対して、好ましくは、20質量%以下であり、より好ましくは、18質量%以下であり、さらに好ましくは16質量部以下である。ここで、感光剤(C)は、熱酸発生剤(c1)および/または光酸発生剤(c2)からなる。 From the viewpoint of improving curability at low temperatures, the content of the photosensitizer (C) in the positive photosensitive resin composition is preferably 3 mass based on the total solid content of the positive photosensitive resin composition. % or more, more preferably 5% by mass or more, still more preferably 8% by mass or more. Further, the content of the photosensitizer (C) in the positive photosensitive resin composition is preferably 20% by mass or less based on the total solid content of the photosensitive resin composition, from the viewpoint of suppressing a decrease in reliability. It is more preferably 18 parts by mass or less, and still more preferably 16 parts by mass or less. Here, the photosensitizer (C) consists of a thermal acid generator (c1) and/or a photoacid generator (c2).
 本実施形態のポジ型感光性樹脂組成物は、好ましくは、感光剤(C)として、上述の熱酸発生剤(c1)および光酸発生剤(c2)を組み合わせて含む。これにより、得られるポジ型感光性樹脂組成物の硬化物の機械的強度が改善される。感光性樹脂組成物が熱酸発生剤(c1)および光酸発生剤(c2)を組み合わせて含む場合、これらの質量比に換算した配合割合として表される熱酸発生剤(c1):光酸発生剤(c2)が、例えば、2:8~8:2で、好ましくは、3:7~7:3、より好ましくは、4:6~6:4となる量 The positive photosensitive resin composition of the present embodiment preferably contains a combination of the above-mentioned thermal acid generator (c1) and photoacid generator (c2) as the photosensitizer (C). This improves the mechanical strength of the resulting cured product of the positive photosensitive resin composition. When the photosensitive resin composition contains a combination of a thermal acid generator (c1) and a photoacid generator (c2), the thermal acid generator (c1): photoacid expressed as a compounding ratio converted to their mass ratio The amount of generator (c2) is, for example, 2:8 to 8:2, preferably 3:7 to 7:3, more preferably 4:6 to 6:4.
(柔軟性エポキシ樹脂(D))
 本実施形態のポジ型感光性樹脂組成物は、柔軟性エポキシ樹脂(D)を含むことが好ましい。これにより、この感光性樹脂組成物の硬化物は、所望の範囲の引張破断強度を有し得る。柔軟性エポキシ樹脂(D)としては、炭素数4以上のエーテル結合を有するアルキレン構造を有するエポキシ樹脂(d1)が好ましく用いられる。
(Flexible epoxy resin (D))
The positive photosensitive resin composition of this embodiment preferably contains a flexible epoxy resin (D). Thereby, the cured product of this photosensitive resin composition can have tensile strength at break within a desired range. As the flexible epoxy resin (D), an epoxy resin (d1) having an alkylene structure having an ether bond having 4 or more carbon atoms is preferably used.
 上記柔軟性エポキシ樹脂(d1)は、エポキシ樹脂の一部または全部が、炭素原子数2~20のアルキレン構造及び炭素原子数2~20のエーテル結合を有するアルキレン構造から選ばれる柔軟構造を有する化合物であることが好ましい。このような柔軟性エポキシ樹脂(d1)の例としては、DIC Corporation社製EXA-4850-150、EXA-4816、およびEXA-4822(エーテル結合を有するアルキレン構造を含有するエポキシ樹脂);ADEKA社製EP-4000S、EP-4000SS、EP-4003S、EP-4010S、およびEP-4011S(エーテル結合を有するアルキレン構造を含有するエポキシ樹脂);新日本理化社製BEO-60EおよびBPO-20E(エーテル結合を有するアルキレン構造を含有するエポキシ樹脂);三菱化学社製YX7105、YX7110、およびYX7400(エーテル結合を有するアルキレン構造を含有するエポキシ樹脂)、ならびにYX7180(エーテル結合を有するアルキレン構造を含有するフェノキシ樹脂)等が挙げられる。柔軟性エポキシ樹脂(d1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The flexible epoxy resin (d1) is a compound in which part or all of the epoxy resin has a flexible structure selected from an alkylene structure having 2 to 20 carbon atoms and an alkylene structure having an ether bond having 2 to 20 carbon atoms. It is preferable that Examples of such flexible epoxy resins (d1) include EXA-4850-150, EXA-4816, and EXA-4822 (epoxy resins containing an alkylene structure having an ether bond); manufactured by ADEKA; EP-4000S, EP-4000SS, EP-4003S, EP-4010S, and EP-4011S (epoxy resins containing an alkylene structure with an ether bond); BEO-60E and BPO-20E (with an ether bond); (Epoxy resin containing an alkylene structure having an ether bond); Mitsubishi Chemical Corporation YX7105, YX7110, and YX7400 (epoxy resin containing an alkylene structure having an ether bond), and YX7180 (phenoxy resin containing an alkylene structure having an ether bond), etc. can be mentioned. The flexible epoxy resin (d1) may be used alone or in combination of two or more.
 柔軟性エポキシ樹脂(d1)を用いる場合、ポジ型感光性樹脂組成物中のその含有量は、低温硬化時の靭性向上の観点から、ポジ型感光性樹脂組成物の全固形分に対して、好ましくは、3質量%以上であり、より好ましくは、5質量%以上、さらに好ましくは、10質量%以上である。また、低温硬化時の熱機械特性を保持する観点から、ポジ型感光性樹脂組成物中の柔軟性エポキシ樹脂(d1)の含有量は、感光性樹脂組成物の全固形分に対して、好ましくは、60質量%以下であり、より好ましくは、50質量%以下であり、さらに好ましくは、40質量%以下である。 When using the flexible epoxy resin (d1), its content in the positive photosensitive resin composition is determined based on the total solid content of the positive photosensitive resin composition, from the viewpoint of improving toughness during low temperature curing. The content is preferably 3% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. In addition, from the viewpoint of maintaining thermomechanical properties during low-temperature curing, the content of the flexible epoxy resin (d1) in the positive photosensitive resin composition is preferably set relative to the total solid content of the photosensitive resin composition. is 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
 本実施形態のポジ型感光性樹脂組成物は、上記エポキシ樹脂(d1)以外の他のエポキシ樹脂(d2)を含んでもよい。他のエポキシ樹脂(d2)としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、ビスフェノールアセトフェノン型フェノキシ樹脂、ノボラック型フェノキシ樹脂、ビフェニル型フェノキシ樹脂、フルオレン型フェノキシ樹脂、ジシクロペンタジエン型フェノキシ樹脂、ノルボルネン型フェノキシ樹脂、ナフタレン型フェノキシ樹脂、アントラセン型フェノキシ樹脂、アダマンタン型フェノキシ樹脂、テルペン型フェノキシ樹脂、およびトリメチルシクロヘキサン型フェノキシ樹脂等が挙げられる。 The positive photosensitive resin composition of the present embodiment may contain an epoxy resin (d2) other than the above-mentioned epoxy resin (d1). Other epoxy resins (d2) include bisphenol A phenoxy resin, bisphenol F phenoxy resin, bisphenol S phenoxy resin, bisphenolacetophenone phenoxy resin, novolak phenoxy resin, biphenyl phenoxy resin, fluorene phenoxy resin, Examples include cyclopentadiene type phenoxy resin, norbornene type phenoxy resin, naphthalene type phenoxy resin, anthracene type phenoxy resin, adamantane type phenoxy resin, terpene type phenoxy resin, and trimethylcyclohexane type phenoxy resin.
(密着助剤(E))
 本実施形態のポジ型感光性樹脂組成物は、密着助剤(E)を含むことが好ましい。これにより、例えば基板との密着性をより高めることができる。
(Adhesion aid (E))
The positive photosensitive resin composition of this embodiment preferably contains an adhesion aid (E). Thereby, for example, adhesion to the substrate can be further improved.
 密着助剤(E)は、特に限定されない。例えば、アミノ基含有シランカップリング剤、エポキシ基含有シランカップリング剤、(メタ)アクリロイル基含有シランカップリング剤、メルカプト基含有シランカップリング剤、ビニル基含有シランカップリング剤、ウレイド基含有シランカップリング剤、スルフィド基含有シランカップリング剤等のシランカップリング剤を用いることができる。
 シランカップリング剤を用いる場合、1種類を単独で用いてもよいし、2種以上を併用してもよい。
The adhesion aid (E) is not particularly limited. For example, an amino group-containing silane coupling agent, an epoxy group-containing silane coupling agent, a (meth)acryloyl group-containing silane coupling agent, a mercapto group-containing silane coupling agent, a vinyl group-containing silane coupling agent, a ureido group-containing silane cup A silane coupling agent such as a ring agent or a sulfide group-containing silane coupling agent can be used.
When using a silane coupling agent, one type may be used alone, or two or more types may be used in combination.
 アミノ基含有シランカップリング剤としては、例えばビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。
 エポキシ基含有シランカップリング剤としては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。
 (メタ)アクリロイル基含有シランカップリング剤としては、例えばγ-((メタ)アクリロイルオキシプロピル)トリメトキシシラン、γ-((メタ)アククリロイルオキシプロピル)メチルジメトキシシラン、γ-((メタ)アクリロイルオキシプロピル)メチルジエトキシシラン等が挙げられる。
 メルカプト基含有シランカップリング剤としては、例えば3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 ビニル基含有シランカップリング剤としては、例えばビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。
 ウレイド基含有シランカップリング剤としては、例えば3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 スルフィド基含有シランカップリング剤としては、例えばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。
 酸無水物含有シランカップリング剤としては、例えば3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピルコハク酸無水物等が挙げられる。
Examples of amino group-containing silane coupling agents include bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropylmethyldiethoxy. Silane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-amino Examples include propylmethyldimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldiethoxysilane, and N-phenyl-γ-amino-propyltrimethoxysilane.
Examples of the epoxy group-containing silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidyl Examples include propyltrimethoxysilane.
Examples of (meth)acryloyl group-containing silane coupling agents include γ-((meth)acryloyloxypropyl)trimethoxysilane, γ-((meth)acryloyloxypropyl)methyldimethoxysilane, γ-((meth) Examples include acryloyloxypropyl)methyldiethoxysilane.
Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropyltrimethoxysilane.
Examples of the vinyl group-containing silane coupling agent include vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
Examples of the ureido group-containing silane coupling agent include 3-ureidopropyltriethoxysilane.
Examples of the sulfide group-containing silane coupling agent include bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxysilyl)propyl)tetrasulfide, and the like.
Examples of the acid anhydride-containing silane coupling agent include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3-dimethylmethoxysilylpropylsuccinic anhydride, and the like.
 密着助剤としては、シランカップリング剤だけでなく、チタンカップリング剤やジルコニウムカップリング剤等も挙げることができる。 Examples of adhesion aids include not only silane coupling agents, but also titanium coupling agents, zirconium coupling agents, and the like.
 密着助剤が用いられる場合、単独で用いられてもよいし、2種以上の密着助剤が併用されてもよい。
 密着助剤が用いられる場合、その含有量は、フェノール樹脂(A)100質量部に対し、好ましくは0.3~15質量部、より好ましく0.4~12質量部、さらに好ましくは0.5~10質量部である。
When an adhesion aid is used, it may be used alone or two or more adhesion aids may be used in combination.
When an adhesion aid is used, its content is preferably 0.3 to 15 parts by mass, more preferably 0.4 to 12 parts by mass, and even more preferably 0.5 parts by mass, per 100 parts by mass of the phenolic resin (A). ~10 parts by mass.
(界面活性剤)
 本実施形態のポジ型感光性樹脂組成物は、界面活性剤を含むことができる。界面活性剤を含むことにより、塗工時における濡れ性を向上させ、均一な樹脂膜そして硬化膜を得ることができる。界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、アルキル系界面活性剤、およびアクリル系界面活性剤等が挙げられる。
(surfactant)
The positive photosensitive resin composition of this embodiment can contain a surfactant. By including a surfactant, wettability during coating can be improved and a uniform resin film and cured film can be obtained. Examples of the surfactant include fluorine surfactants, silicone surfactants, alkyl surfactants, and acrylic surfactants.
 界面活性剤は、フッ素原子およびケイ素原子の少なくともいずれかを含む界面活性剤を含むことが好ましい。これにより、均一な樹脂膜を得られること(塗布性の向上)や、現像性の向上に加え、接着強度の向上にも寄与する。このような界面活性剤としては、例えば、フッ素原子およびケイ素原子の少なくともいずれかを含むノニオン系界面活性剤であることが好ましい。界面活性剤として使用可能な市販品としては、例えば、DIC株式会社製の「メガファック」シリーズの、F-251、F-253、F-281、F-430、F-477、F-551、F-552、F-553、F-554、F-555、F-556、F-557、F-558、F-559、F-560、F-561、F-562、F-563、F-565、F-568、F-569、F-570、F-572、F-574、F-575、F-576、R-40、R-40-LM、R-41、R-94等の、フッ素を含有するオリゴマー構造の界面活性剤、株式会社ネオス製のフタージェント250、フタージェント251等のフッ素含有ノニオン系界面活性剤、ワッカー・ケミー社製のSILFOAM(登録商標)シリーズ(例えばSD 100 TS、SD 670、SD 850、SD 860、SD 882)等のシリコーン系界面活性剤が挙げられる。 The surfactant preferably contains a surfactant containing at least one of a fluorine atom and a silicon atom. This contributes to obtaining a uniform resin film (improving coating properties), improving developability, and improving adhesive strength. As such a surfactant, for example, a nonionic surfactant containing at least one of a fluorine atom and a silicon atom is preferable. Commercially available products that can be used as surfactants include, for example, F-251, F-253, F-281, F-430, F-477, F-551 of the "Megafac" series manufactured by DIC Corporation, F-552, F-553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F- 565, F-568, F-569, F-570, F-572, F-574, F-575, F-576, R-40, R-40-LM, R-41, R-94, etc. Fluorine-containing oligomer structure surfactants, fluorine-containing nonionic surfactants such as Ftergent 250 and Ftergent 251 manufactured by Neos Co., Ltd., SILFOAM (registered trademark) series manufactured by Wacker Chemie (for example, SD 100 TS) , SD 670, SD 850, SD 860, SD 882) and the like.
 ポジ型感光性樹脂組成物が界面活性剤を含む場合、感光性樹脂組成物は1または2以上の界面活性剤を含むことができる。
 感光性樹脂組成物が界面活性剤を含む場合、その量は、フェノール樹脂(A)100質量部に対し、例えば0.001~1質量部、好ましくは0.005~0.5質量部である。
When the positive photosensitive resin composition contains a surfactant, the photosensitive resin composition can contain one or more surfactants.
When the photosensitive resin composition contains a surfactant, the amount thereof is, for example, 0.001 to 1 part by mass, preferably 0.005 to 0.5 part by mass, per 100 parts by mass of the phenolic resin (A). .
(溶剤)
 本実施形態のポジ型感光性樹脂組成物は、好ましくは溶剤を含む。これにより、段差基板に対して塗布法により感光性樹脂膜を容易に形成することができる。本実施形態のポジ型感光性樹脂組成物が溶剤を含む場合、本実施形態のポジ型感光性樹脂組成物は、例えばワニス状である。
 溶剤は、通常、有機溶剤を含む。上述の各成分を溶解または分散可能で、かつ、各構成成分と実質的に化学反応しないものである限り、有機溶剤は特に限定されない。
(solvent)
The positive photosensitive resin composition of this embodiment preferably contains a solvent. Thereby, a photosensitive resin film can be easily formed on the stepped substrate by a coating method. When the positive photosensitive resin composition of this embodiment contains a solvent, the positive photosensitive resin composition of this embodiment is, for example, varnish-like.
The solvent usually includes an organic solvent. The organic solvent is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and does not substantially chemically react with each component.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモ
ノブチルエーテルアセテート、ベンジルアルコール、プロピレンカーボネート、エチレングリコールジアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロプレングリコールメチルーn-プロピルエーテル、酢酸ブチル、γ-ブチロラクトン等が挙げられる。これらは単独で用いられても複数組み合わせて用いられてもよい。
Examples of organic solvents include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and benzyl. Examples include alcohol, propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, dipropylene glycol methyl-n-propyl ether, butyl acetate, and γ-butyrolactone. These may be used alone or in combination.
 溶剤を用いる場合は、ポジ型感光性樹脂組成物中の不揮発成分の濃度が、好ましくは30~75質量%、より好ましくは35~70質量%となるように用いられる。この範囲とすることで、各成分を十分に溶解または分散させることができる。また、良好な塗布性を担保することができ、ひいてはスピンコート時の平坦性の良化にもつながる。さらに、不揮発成分の含有量を調整することにより、ポジ型感光性樹脂組成物の粘度を適切に制御できる。 When a solvent is used, it is used so that the concentration of nonvolatile components in the positive photosensitive resin composition is preferably 30 to 75% by mass, more preferably 35 to 70% by mass. By setting it as this range, each component can be fully dissolved or dispersed. In addition, good coating properties can be ensured, which in turn leads to improved flatness during spin coating. Furthermore, by adjusting the content of nonvolatile components, the viscosity of the positive photosensitive resin composition can be appropriately controlled.
(その他成分)
 本実施形態のポジ型感光性樹脂組成物は、上記の成分に加えて、必要に応じて、上掲の成分以外の成分を含んでもよい。そのような成分としては、例えば、酸化防止剤、シリカ等の充填材、増感剤、フィルム化剤等が挙げられる。
(Other ingredients)
In addition to the above-mentioned components, the positive photosensitive resin composition of the present embodiment may contain components other than the above-mentioned components, if necessary. Examples of such components include antioxidants, fillers such as silica, sensitizers, film-forming agents, and the like.
(ポジ型感光性樹脂組成物の特性)
 本実施形態のポジ型感光性樹脂組成物は、上記成分を含むことにより、当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張破断強度を、100MPa以上とすることができる。
 本実施形態のポジ型感光性樹脂組成物の硬化膜の引張破断強度の下限値は、引脆性破壊を抑制する観点から、100MPa以上であり、好ましくは、105MPa以上であり、より好ましくは、110MPa%以上である。また硬化膜をより安定的に得る観点から、硬化膜の引張破断強度の上限値は、例えば、200MPa以下であり、好ましくは、180MPa以下であり、より好ましくは、150MPa以下である。
(Characteristics of positive photosensitive resin composition)
By containing the above-mentioned components, the positive photosensitive resin composition of this embodiment has a tensile strength at break of 100 MPa or more of a cured product obtained by curing the positive photosensitive resin composition at 180°C. I can do it.
The lower limit of the tensile breaking strength of the cured film of the positive photosensitive resin composition of this embodiment is 100 MPa or more, preferably 105 MPa or more, more preferably 110 MPa, from the viewpoint of suppressing tensile brittle fracture. % or more. Moreover, from the viewpoint of obtaining a cured film more stably, the upper limit of the tensile strength at break of the cured film is, for example, 200 MPa or less, preferably 180 MPa or less, and more preferably 150 MPa or less.
 本実施形態のポジ型感光性樹脂組成物は、上記成分を含むことにより、以下の条件1にて測定される、ポジ型感光性樹脂組成物の硬化膜の引張伸び率を、20%以上とすることができる。
(条件1)
(i)当該ポジ型感光性樹脂組成物を200℃、180分の条件で硬化して前記硬化膜を形成し、前記硬化膜から、6.5mm×20mm×10μm厚の試料を作製する。
(ii)JIS K7161に基づき、23℃、試験速度5mm/minの条件で前記試料の引張試験を実施して前記引張伸び率を求める。
 本実施形態のポジ型感光性樹脂組成物の硬化膜の引張伸び率の下限値は、脆性破壊を抑制する観点から、20%以上であり、好ましくは、25%以上であり、より好ましくは、30%以上であり、さらにより好ましくは、40%以上である。また硬化膜をより安定的に得る観点から、硬化膜の引張伸び率の上限値は、100%以下であり、好ましくは、190%以下であり、より好ましくは、80%以下であり、さらに好ましくは、70%以下である。
By containing the above components, the positive photosensitive resin composition of the present embodiment has a tensile elongation rate of a cured film of the positive photosensitive resin composition of 20% or more, as measured under Condition 1 below. can do.
(Condition 1)
(i) The positive photosensitive resin composition is cured at 200° C. for 180 minutes to form the cured film, and a 6.5 mm x 20 mm x 10 μm thick sample is prepared from the cured film.
(ii) Based on JIS K7161, perform a tensile test on the sample at 23° C. and a test speed of 5 mm/min to determine the tensile elongation rate.
The lower limit of the tensile elongation rate of the cured film of the positive photosensitive resin composition of this embodiment is 20% or more, preferably 25% or more, more preferably, from the viewpoint of suppressing brittle fracture. It is 30% or more, and even more preferably 40% or more. In addition, from the viewpoint of obtaining a cured film more stably, the upper limit of the tensile elongation rate of the cured film is 100% or less, preferably 190% or less, more preferably 80% or less, and even more preferably is 70% or less.
 本実施形態において、ポジ型感光性樹脂組成物の硬化物のガラス転移温度(Tg)は、耐熱性向上の観点から、好ましくは、200℃以上であり、より好ましくは、220℃以上である。また、脆性悪化を抑制する観点から、ポジ型感光性樹脂組成物の硬化物のガラス転移温度は、好ましくは、300℃以下であり、より好ましくは280℃以下、さらに好ましくは260℃以下である。 In the present embodiment, the glass transition temperature (Tg) of the cured product of the positive photosensitive resin composition is preferably 200°C or higher, more preferably 220°C or higher, from the viewpoint of improving heat resistance. Further, from the viewpoint of suppressing deterioration of brittleness, the glass transition temperature of the cured product of the positive photosensitive resin composition is preferably 300°C or lower, more preferably 280°C or lower, and even more preferably 260°C or lower. .
 ここで、ポジ型感光性樹脂組成物の硬化物のTgは、所定の試験片(幅3mm×長さ10mm×厚み0.005~0.015mm)に対して、熱機械分析装置(TMA)を用いて、開始温度30℃、測定温度範囲30~440℃、昇温速度10℃/minの条件下で測定をおこなった結果から算出される。 Here, the Tg of the cured product of the positive photosensitive resin composition is measured using a thermomechanical analyzer (TMA) on a predetermined test piece (width 3 mm x length 10 mm x thickness 0.005 to 0.015 mm). It is calculated from the results of measurements conducted using the following conditions: a starting temperature of 30°C, a measurement temperature range of 30 to 440°C, and a heating rate of 10°C/min.
[硬化樹脂膜]
本実施形態における感光性樹脂組成物を硬化することにより樹脂膜が得られる。また、本実施形態における樹脂膜は、感光性樹脂組成物の乾燥膜または硬化膜である。すなわち、樹脂膜は、感光性樹脂組成物を乾燥または硬化させてなり、好ましくは感光性樹脂組成物を効果させてなる。
 この樹脂膜は、たとえば永久膜、レジストなどの電子装置用の樹脂膜を形成するために用いられる。これらの中でも、低温で樹脂膜が得られる観点、優れた加工性を有する観点、および、信頼性に優れる樹脂膜が得られる観点から、永久膜を用いる用途に用いられることが好ましい。
 本実施形態によれば、たとえば、感光性樹脂組成物を用いて得られる樹脂膜について、電子装置等を作製するために有用な樹脂膜とする上で求められる、加工性または信頼性に優れる膜を得ることも可能となる。
[Cured resin film]
A resin film is obtained by curing the photosensitive resin composition in this embodiment. Moreover, the resin film in this embodiment is a dried film or a cured film of a photosensitive resin composition. That is, the resin film is formed by drying or curing a photosensitive resin composition, preferably by making the photosensitive resin composition effective.
This resin film is used to form a resin film for electronic devices, such as a permanent film or a resist. Among these, it is preferable to use it in applications using permanent films from the viewpoints of obtaining a resin film at low temperatures, excellent workability, and obtaining a resin film with excellent reliability.
According to the present embodiment, for example, a resin film obtained using a photosensitive resin composition has excellent processability or reliability, which is required for a resin film useful for manufacturing electronic devices, etc. It is also possible to obtain.
 上記永久膜は、感光性樹脂組成物に対してプリベーク、露光および現像をおこない、所望の形状にパターニングした後、ポストベークすることによって硬化させることにより得られた樹脂膜で構成される。永久膜は、バッファーコート膜等の電子装置の保護膜、再配線用絶縁膜等の層間膜、ダム材などに用いることができる。 The permanent film is composed of a resin film obtained by pre-baking, exposing and developing a photosensitive resin composition, patterning it into a desired shape, and then curing it by post-baking. The permanent film can be used as a protective film for electronic devices such as a buffer coat film, an interlayer film such as an insulating film for rewiring, a dam material, and the like.
 レジストは、たとえば、ネガ型感光性樹脂組成物をスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の方法で、レジストにとってマスクされる対象に塗工し、ネガ型感光性樹脂組成物から溶媒を除去することにより得られた樹脂膜で構成される。 For example, a resist is made by applying a negative photosensitive resin composition to an object to be masked by the resist using a method such as spin coating, roll coating, flow coating, dip coating, spray coating, or doctor coating. It is composed of a resin film obtained by removing the solvent from a resin composition.
 図1は、本実施形態における樹脂膜を有する電子装置の構成例を示す断面図である。
 図1に示した電子装置100は、上記樹脂膜を備える電子装置とすることができる。具体的には、電子装置100のうち、パッシベーション膜32、絶縁層42および絶縁層44からなる群の1つ以上を、樹脂膜とすることができる。ここで、樹脂膜は、上述した永久膜であることが好ましい。
FIG. 1 is a cross-sectional view showing a configuration example of an electronic device having a resin film according to the present embodiment.
The electronic device 100 shown in FIG. 1 can be an electronic device including the resin film described above. Specifically, in the electronic device 100, one or more of the group consisting of the passivation film 32, the insulating layer 42, and the insulating layer 44 can be made of a resin film. Here, the resin film is preferably the above-mentioned permanent film.
 電子装置100は、たとえば半導体チップである。この場合、たとえば電子装置100を、バンプ52を介して配線基板上に搭載することにより半導体パッケージが得られる。電子装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層(図示せず。)と、を備えている。多層配線層のうち最上層には、層間絶縁膜30と、層間絶縁膜30上に設けられた最上層配線34が設けられている。最上層配線34は、たとえば、アルミニウムAlにより構成される。また、層間絶縁膜30上および最上層配線34上には、パッシベーション膜32が設けられている。パッシベーション膜32の一部には、最上層配線34が露出する開口が設けられている。 The electronic device 100 is, for example, a semiconductor chip. In this case, for example, a semiconductor package can be obtained by mounting the electronic device 100 on a wiring board via the bumps 52. The electronic device 100 includes a semiconductor substrate provided with semiconductor elements such as transistors, and a multilayer wiring layer (not shown) provided on the semiconductor substrate. An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer. The uppermost layer wiring 34 is made of aluminum Al, for example. Further, a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. A part of the passivation film 32 is provided with an opening through which the uppermost layer wiring 34 is exposed.
 パッシベーション膜32上には、再配線層40が設けられている。再配線層40は、パッシベーション膜32上に設けられた絶縁層42と、絶縁層42上に設けられた再配線46と、絶縁層42上および再配線46上に設けられた絶縁層44と、を有する。絶縁層42には、最上層配線34に接続する開口が形成されている。再配線46は、絶縁層42上および絶縁層42に設けられた開口内に形成され、最上層配線34に接続されている。絶縁層44には、再配線46に接続する開口が設けられている。 A rewiring layer 40 is provided on the passivation film 32. The rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, has. An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42 . The rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34. The insulating layer 44 is provided with an opening connected to the rewiring 46 .
 絶縁層44に設けられた開口内には、たとえばUBM(Under Bump Metallurgy)層50を介してバンプ52が形成される。電子装置100は、たとえばバンプ52を介して配線基板等に接続される。 A bump 52 is formed in the opening provided in the insulating layer 44 via, for example, a UBM (under bump metallurgy) layer 50. The electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above can also be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1~7、比較例1)
 表1に記載の配合にて感光性樹脂組成物を調製した。具体的には、まず、表1に従い配合された各成分を、窒素雰囲気下で撹拌混合後、孔径0.2μmのポリエチレン製フィルターで濾過することにより、ワニス状の感光性樹脂組成物を得た。表1に記載の各成分の詳細を以下に示す。
(Examples 1 to 7, Comparative Example 1)
A photosensitive resin composition was prepared according to the formulation shown in Table 1. Specifically, first, each component formulated according to Table 1 was stirred and mixed in a nitrogen atmosphere, and then filtered through a polyethylene filter with a pore size of 0.2 μm to obtain a varnish-like photosensitive resin composition. . Details of each component listed in Table 1 are shown below.
(フェノール樹脂(A))
 (ビフェニル型フェノール樹脂(a1))
・フェノール樹脂a1-1:以下の方法で製造した、式(a1-1)を有するビフェニル型フェノール樹脂、住友ベークライト社製、PR-X21024、Mw=45,000
(フェノール樹脂a1-1の製造)
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口のガラス製丸底フラスコ内に、4,4'-ビフェノール186.2g(1.00mol)と、p-クレゾール86.5g(0.8mol)とホルムアルデヒド28.5g(0.94mol)とp-トルエンスルホン酸15.5g(0.09mol)と、308gのγ-ブチロラクトンとを仕込んだ後、窒素を流しながらかかる丸底フラスコを、油浴中で反応液を還流させながら100℃で5.5時間の重縮合反応を行った。次に、得られた反応液を室温まで冷却した後、411gのアセトンを添加し均一になるまで撹拌混合した。その後、丸底フラスコ内にある反応液を水10Lに滴下混合することにより、樹脂成分を析出させた。次に、析出した樹脂成分を濾別して回収した後、60℃での真空乾燥を行うことにより、下記式(a1-1)で表されるフェノール樹脂を得た。得られたフェノール樹脂(a1-1)の重量平均分子量は、45,000であった。
Figure JPOXMLDOC01-appb-I000004
(Phenol resin (A))
(Biphenyl type phenolic resin (a1))
・Phenol resin a1-1: Biphenyl type phenol resin having formula (a1-1) manufactured by the following method, manufactured by Sumitomo Bakelite Co., Ltd., PR-X21024, Mw = 45,000
(Production of phenolic resin a1-1)
186.2 g (1.00 mol) of 4,4'-biphenol and 86.2 g (1.00 mol) of p-cresol were placed in a four-neck glass round-bottomed flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet. After charging 5 g (0.8 mol), 28.5 g (0.94 mol) of formaldehyde, 15.5 g (0.09 mol) of p-toluenesulfonic acid, and 308 g of γ-butyrolactone, the round bottom was heated while flowing nitrogen. A polycondensation reaction was carried out in the flask at 100° C. for 5.5 hours while refluxing the reaction solution in an oil bath. Next, the obtained reaction solution was cooled to room temperature, and then 411 g of acetone was added and mixed with stirring until uniform. Thereafter, the reaction solution in the round bottom flask was added dropwise to 10 L of water to precipitate the resin component. Next, the precipitated resin component was collected by filtration, and then vacuum-dried at 60°C to obtain a phenol resin represented by the following formula (a1-1). The weight average molecular weight of the obtained phenol resin (a1-1) was 45,000.
Figure JPOXMLDOC01-appb-I000004
・フェノール樹脂a1-2:以下の方法で製造した、式(a1-2)を有するビフェニル型フェノール樹脂、住友ベークライト社製、Mw=45,000
(フェノール樹脂a1-1の製造)
温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口のガラス製丸底フラスコ内に、4,4'-ビフェノール186.2g(1.00mol)と、p-クレゾール86.5g(0.8mol)とホルムアルデヒド24.0g(0.8mol)とシュウ酸・2水和物11.3g(0.09mol)と、308gのγ-ブチロラクトンとを仕込んだ後、窒素を流しながらかかる丸底フラスコを、油浴中で反応液を還流させながら100℃で6時間の重縮合反応を行った。次に、得られた反応液を室温まで冷却した後、411gのアセトンを添加し均一になるまで撹拌混合した。その後、丸底フラスコ内にある反応液を水10Lに滴下混合することにより、樹脂成分を析出させた。次に、析出した樹脂成分を濾別して回収した後、60℃での真空乾燥を行うことにより、下記式(a1-2)で表されるフェノール樹脂を得た。得られたフェノール樹脂(a1-2)の重量平均分子量は、11,000であった。
Figure JPOXMLDOC01-appb-I000005
・Phenol resin a1-2: Biphenyl type phenol resin having formula (a1-2) manufactured by the following method, manufactured by Sumitomo Bakelite Co., Ltd., Mw = 45,000
(Production of phenolic resin a1-1)
186.2 g (1.00 mol) of 4,4'-biphenol and 86.2 g (1.00 mol) of p-cresol were placed in a four-neck glass round-bottomed flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet. After charging 5 g (0.8 mol), 24.0 g (0.8 mol) of formaldehyde, 11.3 g (0.09 mol) of oxalic acid dihydrate, and 308 g of γ-butyrolactone, the mixture was heated while flowing nitrogen. A polycondensation reaction was carried out in a round bottom flask at 100° C. for 6 hours while refluxing the reaction solution in an oil bath. Next, the obtained reaction solution was cooled to room temperature, and then 411 g of acetone was added and mixed with stirring until uniform. Thereafter, the reaction solution in the round bottom flask was added dropwise to 10 L of water to precipitate the resin component. Next, the precipitated resin component was collected by filtration, and then vacuum-dried at 60°C to obtain a phenol resin represented by the following formula (a1-2). The weight average molecular weight of the obtained phenol resin (a1-2) was 11,000.
Figure JPOXMLDOC01-appb-I000005
(架橋剤(B))
 (尿素樹脂系架橋剤(b1))
・架橋剤b1-1:1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、ダイトーケミックス社製、CROLIN-318
架橋剤b1-2:1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、株式会社三和ケミカル社製、ニカラック MX-279
架橋剤b1-3:1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン、株式会社三和ケミカル社製、ニカラック MX-280
 (エポキシ樹脂系架橋剤(b2))
架橋剤b2-1:フェノキシ型エポキシ樹脂、三菱ケミカル社製、YX-7105
架橋剤b2-2:エポキシ樹脂(ビスフェノールA型フェノキシ)、三菱ケミカル株式会社社製、JER-1256
架橋剤b2-3:ビスフェノールA型エポキシ樹脂、株式会社大阪ソーダ社製、LX-01
(Crosslinking agent (B))
(Urea resin crosslinking agent (b1))
・Crosslinking agent b1-1: 1,3,4,6-tetrakis(methoxymethyl)glycoluril, manufactured by Daito Chemix Co., Ltd., CROLIN-318
Crosslinking agent b1-2: 1,3,4,6-tetrakis(butoxymethyl)glycoluril, manufactured by Sanwa Chemical Co., Ltd., Nikalac MX-279
Crosslinking agent b1-3: 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone, manufactured by Sanwa Chemical Co., Ltd., Nikalac MX-280
(Epoxy resin crosslinking agent (b2))
Crosslinking agent b2-1: Phenoxy type epoxy resin, manufactured by Mitsubishi Chemical Corporation, YX-7105
Crosslinking agent b2-2: Epoxy resin (bisphenol A type phenoxy), manufactured by Mitsubishi Chemical Corporation, JER-1256
Crosslinking agent b2-3: Bisphenol A type epoxy resin, manufactured by Osaka Soda Co., Ltd., LX-01
(感光剤(C))
 (熱酸発生剤(c1))
・熱酸発生剤c1-1:式(c1-1)で表される化合物(三進化学株式会社製、サンエイド SI-150)
Figure JPOXMLDOC01-appb-I000006
 (光酸発生剤(c2))
・光酸発生剤c2-1:4,4'-(1-{4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル}エチリデン)ジフェノールの3-ジアゾ-3,4-ジヒドロ-4-オキソ-1-ナフタレンスルホン酸エステル、ダイトーケミックス社製、DS-427、
(Photosensitizer (C))
(Thermal acid generator (c1))
・Thermal acid generator c1-1: Compound represented by formula (c1-1) (SAN-AID SI-150, manufactured by Sankegaku Co., Ltd.)
Figure JPOXMLDOC01-appb-I000006
(Photoacid generator (c2))
・Photoacid generator c2-1: 3-diazo-3,4- of 4,4'-(1-{4-[1-(4-hydroxyphenyl)-1-methylethyl]phenyl}ethylidene)diphenol Dihydro-4-oxo-1-naphthalenesulfonic acid ester, manufactured by Daito Chemix Co., Ltd., DS-427,
(密着助剤)
・密着助剤1:3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製、KBM-403E
(Adhesion aid)
・Adhesion aid 1: 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E
(界面活性剤)
・界面活性剤1:フッ素系界面活性剤、スリーエムジャパン社製、FC4432(10%GBL)
(溶媒)
・溶媒1:γ-ブチロラクトン、三和油化工業社製
(surfactant)
・Surfactant 1: Fluorine surfactant, manufactured by 3M Japan, FC4432 (10% GBL)
(solvent)
・Solvent 1: γ-butyrolactone, manufactured by Sanwa Yuka Kogyo Co., Ltd.
 得られた樹脂組成物について、以下の物性を測定した。 The following physical properties were measured for the obtained resin composition.
(低温硬化性(硬化温度))
 上記で得た感光性樹脂組成物を、8インチシリコンウェハ上に、乾燥後の膜厚が10μmとなるようにスピンコートし、イナートオーブン(光洋サーモシステム社製、品番CLH-21CD-(V)-S)中、窒素雰囲気下、下記の温度設定および測定内部温度に従って熱処理することにより硬化した。硬化温度を表1に示す。
・180℃硬化:常温(30℃)→30分かけて180℃まで昇温→180℃で2時間維持→30分かけて常温に降温
(Low temperature curability (curing temperature))
The photosensitive resin composition obtained above was spin-coated onto an 8-inch silicon wafer so that the film thickness after drying was 10 μm, and then placed in an inert oven (manufactured by Koyo Thermosystems, product number CLH-21CD-(V)). -S) under a nitrogen atmosphere according to the following temperature settings and measured internal temperatures. The curing temperatures are shown in Table 1.
・180℃ curing: Room temperature (30℃) → Heat up to 180℃ over 30 minutes → Maintain at 180℃ for 2 hours → Cool down to room temperature over 30 minutes
(引張破断伸び率)
 各例で得られた感光性樹脂組成物を180℃、120分の条件で硬化して硬化膜を形成した。得られた硬化膜から、6.5mm×20mm×10μm厚の試験片を作製した。
 試料の引張試験を、JIS K7161に基づき、オリエンテック社製引張試験機(テンシロンRTA-100)、23℃、試験速度5mm/minの条件で実施した。1つの試料について8回測定をおこない、その平均値(表1中「ave.」)を引張伸び率(%)とした。結果を表1に示す。
(Tensile elongation at break)
The photosensitive resin composition obtained in each example was cured at 180° C. for 120 minutes to form a cured film. A 6.5 mm x 20 mm x 10 μm thick test piece was prepared from the obtained cured film.
A tensile test of the sample was carried out in accordance with JIS K7161 using a tensile tester (Tensilon RTA-100) manufactured by Orientech Co., Ltd. at 23° C. and a test speed of 5 mm/min. Each sample was measured eight times, and the average value ("ave." in Table 1) was taken as the tensile elongation rate (%). The results are shown in Table 1.
(破断応力)
 上述の試験片について、オリエンテック社製の引張試験機(テンシロンRTC-1210A)を用いて引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。膜が破断した強度から膜強度(MPa)を算出した。結果を表1に示す。
(rupture stress)
A tensile test (stretching speed: 5 mm/min) was conducted on the above-mentioned test piece in an atmosphere at 23° C. using a tensile tester (Tensilon RTC-1210A) manufactured by Orientec. The membrane strength (MPa) was calculated from the strength at which the membrane broke. The results are shown in Table 1.
(ガラス転移温度(Tg)、線膨張係数(CTE)))
 各例で得られた感光性樹脂組成物の硬化膜を180℃、120分の条件で作製し、得られた硬化膜から幅3mm×長さ10mm×厚み10mmの試験片を得た。
 各例の試験片に対し、熱機械分析装置(TMA、Seiko Instruments Inc社製、SS6000)を用いて、開始温度30℃、測定温度範囲30~440℃、昇温速度10℃/minの条件下で測定をおこない、測定結果より、Tg(℃)および50~100℃の温度領域の線膨張係数(ppm/℃)を求めた。結果を表1に示す。
(Glass transition temperature (Tg), coefficient of linear expansion (CTE)))
A cured film of the photosensitive resin composition obtained in each example was produced at 180° C. for 120 minutes, and a test piece with a width of 3 mm x length of 10 mm x thickness of 10 mm was obtained from the obtained cured film.
The test pieces of each example were analyzed using a thermomechanical analyzer (TMA, manufactured by Seiko Instruments Inc., SS6000) under conditions of a starting temperature of 30°C, a measurement temperature range of 30 to 440°C, and a heating rate of 10°C/min. Measurements were carried out, and from the measurement results, Tg (°C) and linear expansion coefficient (ppm/°C) in the temperature range of 50 to 100°C were determined. The results are shown in Table 1.
(現像性)
 上記で得られた感光性樹脂組成物を、それぞれ、8インチシリコンウエハ上にスピンコーターを用いて塗布した後、ホットプレートにて100℃で4分間プリベークし、膜厚約6.0μmの塗膜を得た。この塗膜に凸版印刷社製マスク(テストチャートNo.1:幅0.88~50μmの残しパターン及び抜きパターンが描かれている)を通して、i線ステッパー(ニコン社製・NSR-4425i)を用いて、露光量を変化させて照射した。
 次に、現像液として2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用い、プリベーク後の膜厚と現像後の膜厚の差が1.0μmになるように現像時間を調節して2回パドル現像を行うことによって露光部を溶解除去した後、純水で10秒間リンスした。100μmの正方形のビアホールのパターンが形成される最低露光量+100mJ/cmのエネルギーで露光されたパターンにてラインパターンの解像度を評価した。解像度は、10μm間隔のラインパターンにて開口しているかを確認した。開口している場合は、「A」、開口していない場合は「B」として、表1に示す。
(Developability)
Each of the photosensitive resin compositions obtained above was applied onto an 8-inch silicon wafer using a spin coater, and then prebaked on a hot plate at 100°C for 4 minutes to form a coating film with a thickness of approximately 6.0 μm. I got it. This coating film was passed through a mask manufactured by Toppan Printing Co., Ltd. (Test Chart No. 1: a left pattern and a cutout pattern with a width of 0.88 to 50 μm are drawn) using an i-line stepper (manufactured by Nikon Corporation, NSR-4425i). Then, irradiation was performed while changing the exposure amount.
Next, using a 2.38% tetramethylammonium hydroxide aqueous solution as a developer, the development time was adjusted so that the difference between the film thickness after pre-baking and the film thickness after development was 1.0 μm, and the puddle was applied twice. After the exposed area was dissolved and removed by development, it was rinsed with pure water for 10 seconds. The resolution of the line pattern was evaluated using a pattern exposed with an energy of the minimum exposure amount + 100 mJ/cm 2 to form a pattern of 100 μm square via holes. Regarding the resolution, it was confirmed whether the openings were formed in a line pattern with an interval of 10 μm. Table 1 indicates that the opening is marked as "A", and the case of not opening is marked as "B".
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 この出願は、2022年3月24日に出願された日本出願特願2022-048073号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-048073 filed on March 24, 2022, and the entire disclosure thereof is incorporated herein.
30 層間絶縁膜
32 パッシベーション膜
34 最上層配線
40 再配線層
42、44 絶縁層
46 再配線
50 UBM層
52 バンプ
100 電子装置
30 Interlayer insulating film 32 Passivation film 34 Top layer wiring 40 Rewiring layers 42, 44 Insulating layer 46 Rewiring 50 UBM layer 52 Bump 100 Electronic device

Claims (11)

  1.  半導体装置の再配線層に用いられるポジ型感光性樹脂組成物であって、
     当該感光性樹脂組成物は、
     (A)ビフェノール構造を有するフェノール樹脂、
     (B)架橋剤、および
     (C)感光剤、を含み、
     当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張破断強度は、100MPa以上である、ポジ型感光性樹脂組成物。
    A positive photosensitive resin composition used for a rewiring layer of a semiconductor device, the composition comprising:
    The photosensitive resin composition is
    (A) Phenol resin having a biphenol structure,
    (B) a crosslinking agent, and (C) a photosensitizer,
    A positive photosensitive resin composition, wherein the cured product obtained by curing the positive photosensitive resin composition at 180° C. has a tensile strength at break of 100 MPa or more.
  2.  請求項1に記載のポジ型感光性樹脂組成物であって、
     当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物の引張伸び率は、20%以上である、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to claim 1,
    A positive photosensitive resin composition, wherein the cured product obtained by curing the positive photosensitive resin composition at 180° C. has a tensile elongation of 20% or more.
  3.  請求項1または2に記載のポジ型感光性樹脂組成物であって、
     当該ポジ型感光性樹脂組成物を180℃で硬化して得られる硬化物のガラス転移温度は、200℃以上300℃以下である、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to claim 1 or 2,
    A positive photosensitive resin composition, wherein the cured product obtained by curing the positive photosensitive resin composition at 180°C has a glass transition temperature of 200°C or more and 300°C or less.
  4.  請求項1乃至3のいずれかに記載のポジ型感光性樹脂組成物であって、
     前記(A)ビフェノール構造を有するフェノール樹脂の重量平均分子量は、12,000以上500,000以下である、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to any one of claims 1 to 3,
    A positive photosensitive resin composition, wherein the weight average molecular weight of the phenol resin having a biphenol structure (A) is 12,000 or more and 500,000 or less.
  5.  請求項1乃至4のいずれかに記載のポジ型感光性樹脂組成物であって、
     前記(B)架橋剤は、1,3,4,6-テトラキス(メトキシメチル)グリコールウリルを含む、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to any one of claims 1 to 4,
    A positive photosensitive resin composition in which the crosslinking agent (B) contains 1,3,4,6-tetrakis(methoxymethyl)glycoluril.
  6.  請求項1乃至5のいずれかに記載のポジ型感光性樹脂組成物であって、
     (D)柔軟性エポキシ樹脂をさらに含む、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to any one of claims 1 to 5,
    (D) A positive photosensitive resin composition further comprising a flexible epoxy resin.
  7.  請求項6に記載のポジ型感光性樹脂組成物であって、
     前記(D)柔軟性エポキシ樹脂は、炭素数4以上のエーテル結合を有するアルキレン構造を有するエポキシ樹脂である、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to claim 6,
    The flexible epoxy resin (D) is a positive photosensitive resin composition, wherein the flexible epoxy resin is an epoxy resin having an alkylene structure with an ether bond having 4 or more carbon atoms.
  8.  請求項1乃至7のいずれかに記載のポジ型感光性樹脂組成物であって、
     (E)密着助剤をさらに含む、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to any one of claims 1 to 7,
    (E) A positive photosensitive resin composition further containing an adhesion aid.
  9.  請求項1乃至8のいずれかに記載のポジ型感光性樹脂組成物であって、
     前記(C)感光剤は、熱酸発生剤もしくは光酸発生剤、またはこれらの組み合わせを含む、ポジ型感光性樹脂組成物。
    The positive photosensitive resin composition according to any one of claims 1 to 8,
    The photosensitive agent (C) is a positive photosensitive resin composition containing a thermal acid generator, a photoacid generator, or a combination thereof.
  10.  請求項1乃至9のいずれかに記載のポジ型感光性樹脂組成物を硬化させて得られる硬化膜。 A cured film obtained by curing the positive photosensitive resin composition according to any one of claims 1 to 9.
  11.  半導体素子と、
     前記半導体素子の表面上に設けられた再配線層と、を備える半導体装置であって、
     前記再配線層中の絶縁層が、請求項10に記載の硬化膜から構成される、半導体装置。
    a semiconductor element;
    A rewiring layer provided on the surface of the semiconductor element, the semiconductor device comprising:
    A semiconductor device, wherein the insulating layer in the rewiring layer is composed of the cured film according to claim 10.
PCT/JP2023/010281 2022-03-24 2023-03-16 Positive-type photosensitive resin composition, cured film, and semiconductor device WO2023182136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022048073 2022-03-24
JP2022-048073 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182136A1 true WO2023182136A1 (en) 2023-09-28

Family

ID=88100841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010281 WO2023182136A1 (en) 2022-03-24 2023-03-16 Positive-type photosensitive resin composition, cured film, and semiconductor device

Country Status (2)

Country Link
TW (1) TW202348662A (en)
WO (1) WO2023182136A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088469A1 (en) * 2016-11-11 2018-05-17 住友ベークライト株式会社 Photosensitive resin composition, resin film, cured film, semiconductor device production method, and semiconductor device
JP2019053220A (en) * 2017-09-15 2019-04-04 住友ベークライト株式会社 Photosensitive resin composition, semiconductor device and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088469A1 (en) * 2016-11-11 2018-05-17 住友ベークライト株式会社 Photosensitive resin composition, resin film, cured film, semiconductor device production method, and semiconductor device
JP2019053220A (en) * 2017-09-15 2019-04-04 住友ベークライト株式会社 Photosensitive resin composition, semiconductor device and electronic equipment

Also Published As

Publication number Publication date
TW202348662A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP5987984B2 (en) Resin composition, photosensitive resin composition, insulating film and method for producing the same, and electronic component
JP7111129B2 (en) Semiconductor device manufacturing method
JP2008268788A (en) Photosensitive resin composition
KR101846114B1 (en) Photosensitive resin composition, cured film, protective film, insulating film, and electronic device
WO2014069091A1 (en) Photosensitive resin composition, cured film, protective film, insulating film, and electronic device
JP5176768B2 (en) Positive photosensitive insulating resin composition
JP6451065B2 (en) Photosensitive resin composition, cured film, protective film, insulating film, and electronic device
WO2013122208A1 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP2015007674A (en) Positive photosensitive resin composition, cured film, protective film, insulation film, semiconductor device, display device, and production method of positive photosensitive resin composition
KR102153873B1 (en) Photosensitive resin material and resin film
JP7256015B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
WO2023182136A1 (en) Positive-type photosensitive resin composition, cured film, and semiconductor device
JP2020056847A (en) Photosensitive resin composition, dry film, cured product, and electronic component
JP7191622B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP7211560B2 (en) Photosensitive resin composition
JP2023073661A (en) Photosensitive resin composition, cured film and semiconductor device
WO2020066540A1 (en) Photosensitive resin composition, dry film, cured product, and electronic component
JP6915340B2 (en) Photosensitive resin composition, cured film and electrical / electronic equipment
WO2020188921A1 (en) Ester-diamine-containing polybenzoxazole precursor, photosensitive resin composition, dry film, cured product, and electronic component
JP2020154246A (en) Photosensitive resin composition, dry film, cured product, and electronic component
JP2020071280A (en) Photosensitive resin composition and electronic device manufacturing method
JP7408992B2 (en) Photosensitive resin composition and method for producing electronic devices
JP7312536B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
KR102477633B1 (en) Alkali soluble resin, photosensitive resin composition including the same, photosensitive resin layer and display device
JP2023050691A (en) Negative photosensitive resin composition, cured film, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774732

Country of ref document: EP

Kind code of ref document: A1