WO2023181933A1 - Filtration system and filtration processing equipment - Google Patents
Filtration system and filtration processing equipment Download PDFInfo
- Publication number
- WO2023181933A1 WO2023181933A1 PCT/JP2023/008743 JP2023008743W WO2023181933A1 WO 2023181933 A1 WO2023181933 A1 WO 2023181933A1 JP 2023008743 W JP2023008743 W JP 2023008743W WO 2023181933 A1 WO2023181933 A1 WO 2023181933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filtration
- filtration membrane
- socket
- communication channel
- accommodation space
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 238
- 238000012545 processing Methods 0.000 title description 5
- 239000012528 membrane Substances 0.000 claims abstract description 158
- 230000004308 accommodation Effects 0.000 claims abstract description 37
- 239000000706 filtrate Substances 0.000 claims abstract description 26
- 230000002093 peripheral effect Effects 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000004891 communication Methods 0.000 claims description 38
- 239000013013 elastic material Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 180
- 238000003780 insertion Methods 0.000 description 61
- 230000037431 insertion Effects 0.000 description 61
- 238000012546 transfer Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a filtration system and filtration treatment equipment.
- a filtration system includes a lower communication channel and a lower communication channel.
- the membrane separation device described in Patent Document 1 includes a plurality of membrane modules stacked in multiple stages.
- a membrane module as a filtration system includes a plurality of membrane elements as filtration membrane units and a water collection case.
- the water collection case is provided with a storage space for accommodating filtrate discharged from each of the plurality of membrane elements, an upper connecting section serving as an upper communicating channel, and a lower connecting section serving as a lower communicating channel.
- the upper connection path connects the upper part of the accommodation space to the external space above the accommodation space.
- the lower connecting path connects the lower part of the accommodation space to the external space below the accommodation space.
- the filtrate collected in the storage space from each of the plurality of membrane elements is discharged upward from the upper connection path, and then passes through the lower connection path of the upper membrane module to the upper storage space. leading to.
- the membrane separator collects the filtrate that has been filtered by the plurality of membrane modules while flowing from the lower stage to the upper stage, or collects the filtrate while flowing from the upper stage to the lower stage.
- the present invention has been made in view of the above background, and it is an object of the present invention to provide a filtration system and filtration processing equipment that can suppress a decrease in energy efficiency caused by turbulence generated within a storage space.
- one aspect of the present invention includes a plurality of filtration membrane units through which the filtrate taken into the inside of the filtration membrane flows along the longitudinal direction of the filtration membrane, and a plurality of filtration membrane units that flow from each of the plurality of filtration membrane units.
- an accommodation space that accommodates the filtrate to be discharged; an upper communication channel that communicates the upper part of the accommodation space with an external space above the accommodation space; and the lower part of the accommodation space that communicates with an external space below the accommodation space.
- a filtration system comprising a lower communication flow path communicating with the upper communication flow path, the system comprising a tubular member having a through hole arranged in a peripheral wall, and communicating with the upper communication flow path and the lower communication flow path with the upper communication flow path.
- the device is characterized in that it includes a guide tube that takes the filtrate in the storage space into itself through the through hole while guiding the flow of liquid to and from the lower communication channel.
- FIG. 1 is a diagram showing a schematic configuration of a water treatment facility including a filtration system according to an embodiment. It is a perspective view showing a filtration membrane unit concerning an embodiment. It is a sectional view showing a longitudinal section of a suction side socket of the same filter membrane unit. It is a side view showing the same filter membrane unit from the side.
- FIG. 1 is a perspective view showing a filtration system according to an embodiment. It is an exploded perspective view showing the same filtration system. It is a perspective view showing a water collection cassette of the holding body concerning an embodiment. It is a perspective view showing filtration processing equipment concerning an embodiment.
- FIG. 3 is a perspective view for explaining the flow of treated water in the storage space in an upper stage transfer method in which treated water is transported toward the upper stage. It is a perspective view for explaining the flow of treated water in a storage space in a lower tier transfer method for transferring treated water toward a lower tier. It is a sectional view showing a longitudinal section of two water collection cassettes stacked one above the other in the filtration treatment equipment according to the example, together with a cross section of a connecting pipe.
- FIG. 11 is a cross-sectional view showing a cross section of the connecting pipe in a larger scale than that shown in FIG. 10;
- FIG. 1 is a diagram showing a schematic configuration of a water treatment facility including filtration treatment equipment according to an embodiment.
- This water treatment facility includes a raw water tank 1, a filtered water tank 2, a treated water tank 3, a control device 4, a raw water pump 5, a first water level sensor 6, a raw water transfer pipe 7, a treated water transfer pipe 8, a suction pump 9, and a first water level sensor 6.
- a second water level sensor 11, a third water level sensor 12, etc. are provided.
- the water treatment facility also includes a blower 13, an air supply pipe 14, a pedestal 15, a filtration treatment facility 20, a bubble generator 90, and the like.
- raw water (pre-treatment water) W1 as a liquid is stored.
- a first water level sensor such as an ultrasonic sensor installed in the raw water tank 1, detects the water level (water surface height) of the raw water W1 in the raw water tank 1, and sends the detection result to the control device 4 as a water level signal.
- a raw water pump 5 installed in the raw water tank 1 sucks and discharges the raw water W1 in the raw water tank 1, and sends it to the filtration treatment tank 2 through the raw water transfer pipe 7.
- a submersible pump is illustrated as the raw water pump 5, a land pump may also be used.
- the filtration treatment water tank 2 is a water tank made of reinforced concrete.
- a filtration treatment equipment 20 and a bubble generator 90 are installed in the filtration treatment water tank 2.
- the filtration treatment equipment 20 and the bubble generator 90 are supported by the pedestal 15.
- the pedestal 15 supports the bubble generator 90 in such a manner that it is positioned directly below the filtration treatment equipment 20 .
- Each of the filtration equipment 20 and the bubble generator 90 is immersed in the raw water W1 in the filtration water tank 2.
- the blower 13 discharges air as a gas sucked through the suction port to the air supply pipe 14 through the discharge port.
- the air discharged into the air supply pipe 14 is supplied to the bubble generator 90.
- the bubble generator 90 emits air supplied from the air supply pipe 14 upward as bubbles.
- the released air bubbles rise in the raw water W1 while contacting a plurality of filter membranes mounted on the filtration treatment equipment 20. At this time, the bubbles cause the solid matter adhering to the surface of the filtration membrane to separate from the surface of the filtration membrane. This separation suppresses clogging of the filtration membrane.
- the third water level sensor 12 installed in the filtered water tank 2 detects the water level of the raw water W1 in the filtered water tank 2, and transmits the detection result to the control device 4 as a water level signal.
- the suction pump 9 sucks raw water W 1 in the filtered water tank 2 via the treated water transfer pipe 8 and a plurality of filter membranes, which will be described later, mounted in the filtering equipment 20 .
- the sucked raw water W 1 is filtered by a filter membrane to become treated water W 2 , and then sent to the treated water tank 3 through the treated water transfer pipe 8 .
- the second water level sensor 11 set in the treated water tank 3 detects the water level of the treated water W2 in the treated water tank 3, and transmits the detection result to the control device 4 as a water level signal.
- suction pump 9 a pump that generates suction force using water head pressure may be used.
- the means of suction is not particularly limited.
- the control device 4 When the water level in the treated water tank 3 has not reached the upper limit and predetermined operation execution conditions are met, the control device 4 operates the suction pump 9 and the blower 13 to perform the filtration process on the raw water W1. Execute. However, even if the operation execution conditions are met, if the water level of the raw water W 1 in the raw water tank 1 is below the lower limit, or if the water level of the raw water W 1 in the filtered water tank 2 is below the lower limit. In this case, the control device 4 stops execution of the filtration process.
- the filtration treatment equipment 20 includes a plurality of filtration systems (described in detail later) according to the embodiment.
- Each filtration system includes a plurality of filtration membrane units (described in detail later) according to embodiments.
- FIG. 2 is a perspective view showing the filtration membrane unit 21 according to the embodiment.
- the filtration membrane unit 21 includes a flat filtration membrane 22 .
- the material for the filter membrane 22 include organic materials such as PVDF (polyvinylidene fluoride) and PVC (polyvinyl chloride).
- a ceramic whose main component is alumina, silicon carbide, etc. may be used as the material of the filter membrane 22 .
- the filtration membrane 22 of the filtration membrane unit 21 according to the embodiment is made of a ceramic membrane.
- suction force is applied to the filtration membrane 22 along the longitudinal direction of the filtration membrane 22.
- a suction force is applied to the filtration membrane 22 from one side in the longitudinal direction of the filtration membrane 22 (the right side in the left-right direction in FIG. 4, which will be described later). That is, one side of the filter membrane 22 in the longitudinal direction is a suction side to which suction force is applied.
- the other side in the longitudinal direction of the filtration membrane 22 (the left side in the left-right direction in FIG. 4, which will be described later) is a shielding side that shields the suction force applied to the filtration membrane 22.
- the filtration membrane unit 21 includes a suction side socket 23 and a shielding side socket 24.
- the suction side socket 23 serving as a socket in the present invention is fixed to one end of the filtration membrane 22 in the longitudinal direction in order to hold the filtration membrane 22 on one side (suction side) in the longitudinal direction.
- the shield-side socket 24 is fixed to the other longitudinal end of the filter membrane 22 in order to hold the filter membrane 22 on the other longitudinal side (shield side).
- Each of the suction side socket 23 and the shielding side socket 24 is fixed to the filtration membrane 22 and extends in the lateral direction of the filtration membrane 22 (in the embodiment, the vertical direction along the direction of gravity).
- FIG. 3 is a sectional view showing a longitudinal section of the suction side socket 23.
- the suction side socket 23 includes a socket main body 23a.
- the socket main body 23a has a recess 23d into which one longitudinal end of the filtration membrane (22 in FIG. 2) is inserted, and a channel 23e extending in the extending direction of the socket main body 23a while communicating with the recess 23d. Be prepared.
- the socket main body 23a completely covers the circumferential surface of the filtration membrane (22 in FIG. 2), which is composed of a front surface, a back surface, and two side surfaces at one longitudinal end of the filtration membrane (22 in FIG. 2), by the inner peripheral surface of the recess 23d. Cover all around.
- the inner circumferential surface of the recess 23d covers the entire circumferential surface of one end of the filter membrane (22) in the longitudinal direction, thereby preventing the end from wobbling within the recess 23d.
- the suction side socket 23 includes a first protrusion 23b and a second protrusion 23c.
- Each of the first protruding body 23b and the second protruding body 23c is located on the outside (on the right side in FIG. 3) of the socket main body 23a in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22 in FIG. 2). , are lined up along the extending direction (vertical direction in FIG. 3) of the socket body 23a.
- Each of the first protruding body 23b and the second protruding body 23c extends from one end surface of the socket main body 23a (right side in FIG. 3) to one side in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22). protrude towards.
- each of the first protruding body 23b and the second protruding body 23c is a tubular structure having a hollow (23b-1, 23c-1).
- Each hollow (23b-1, 23c-1) in the first protrusion 23b and the second protrusion 23c communicates with the channel 23e of the socket body 23a.
- the hollows (23b-1, 23c-1) in the first protruding body 23b and the second protruding body 23c are located at both ends of the protruding bodies (23b, 23c) in the extending direction (left-right direction in FIG. 3). is open.
- the opening on one side the right side in FIG.
- the first outlet 23b-2 is a discharge port for discharging the treated water (W 2 in FIG. 1). Further, among the two openings in the hollow 23c-1 of the second protrusion 23c, the opening on one side (the right side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the second protrusion 23c is a flow path.
- the second outlet 23c-2 is a discharge port for discharging the treated water in the second outlet 23e.
- the hollow 23b-1 of the first protruding body 23b has an opening 23b-3 on the other side (the left side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the first protruding body 23b among its two openings. It communicates with the flow path 23e through.
- the hollow 23c-1 of the second protrusion 23c is the opening 23c on the other side (the left side in FIG. 3) of the two openings of the second protrusion 23c in the extending direction (left-right direction in FIG. 3). -3 and communicates with the flow path 23e.
- FIG. 4 is a side view showing the filtration membrane unit 21 from the side.
- the shield-side socket 24 of the filtration membrane unit 21 includes a socket main body 24a and two protrusions 24b.
- the socket main body 24a includes a recess (not shown) into which the other end (left side in FIG. 4) of the filter membrane 22 in the longitudinal direction (left-right direction in FIG. 4) is inserted. Note that the socket main body 24a does not include a flow path communicating with the above-mentioned recess.
- the suction force applied to the filtration membrane 22 is blocked on the other longitudinal side of the filtration membrane 22 by the shielding side socket 24 .
- Each of the two protrusions 24b in the shielding side socket 24 is located outside (on the left side in FIG. 4) of the socket body 24a in the longitudinal direction of the filtration membrane 22 (the left-right direction in FIG. 4), and extends from the socket body 24a. They are lined up along the current direction (vertical direction in FIG. 4).
- the first outlet provided on the first protruding body 23b (23b-2 in FIG. 3) and the second outlet provided on the second protruding body 23c (second outlet 23c-2 in FIG. 3) will be collectively referred to as "suction side”.
- ⁇ Two outlets of socket 23'' When the diameter of the discharge port is set to a predetermined value and the amount of filtrate per unit time by the filtration membrane (22, 122) is set to a predetermined value, the conditions for the flow rate of treated water per unit time passing through the discharge port As such, it is necessary to adopt the following conditions.
- the amount of treated water flowing into the outlet of the filtration membrane unit 121 according to the first comparative example is approximately equal to the amount of treated water flowing into each of the "two outlets of the suction side socket 23" according to the embodiment.
- the condition is to set it twice. Under such conditions, the flow path resistance of the treated water in the filtration membrane unit 21 is made smaller than in the first comparative example, compared to the configuration described in Patent Document 1, which has only one discharge port (filtrate outlet). Therefore, the power of a suction power machine such as a suction pump (9 in FIG. 1) can be made smaller, and energy saving can be achieved.
- each of the first outlet (23b-2 in FIG. 3) and the second outlet (23c-2 in FIG. 3) (hereinafter, this arrangement will be referred to as peripheral arrangement).
- the first outlet 23b-2 and the second outlet 23c-2 are arranged on the tip surface of the protrusion (23b, 23c) (hereinafter, this arrangement is referred to as the tip surface arrangement). ) is more desirable. This is due to the reason explained below.
- the flow of treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) is directed to the discharge ports (first outlet 23b-2, second outlet It is necessary to change direction at an angle of about 90 degrees just before reaching the exit 23c-2).
- This increases the flow path resistance of the filtration membrane unit 21.
- the flow direction of the treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) and the discharge port (first outlet 23b-2) the flow direction of the treated water when passing through the second outlet 23c-2) is the same direction. Therefore, unlike the circumferential arrangement, there is no need to change the direction of the flow of the treated water in the hollows (23b-1, 23c-1), so the flow path resistance is reduced compared to the circumferential arrangement. be able to.
- FIG. 5 is a perspective view showing the filtration system 31 according to the embodiment.
- the filtration system 31 includes a plurality of filtration membrane units 21 and a holder 40 that holds the plurality of filtration membrane units 21.
- the shape of the holder 40 is a frame, and the holder 40 holds a plurality of filtration membrane units 21 within the frame.
- the holding body 40 also includes a water collection cassette 41, a blind cassette 60, a first side cover 65, and a second side cover 66.
- FIG. 6 is an exploded perspective view showing the filtration system 31 according to the embodiment.
- the holder (40 in FIG. 5) is composed of a flat rectangular parallelepiped-shaped water collection cassette 41, a flat plate-shaped first side cover 65, a flat rectangular parallelepiped-shaped blind cassette 60, and a flat plate-shaped second side cover 66. It is formed by combining the shapes.
- the water collection cassette 41 and the blind cassette 60 face each other.
- the first side cover 65 and the second side cover 66 face each other in a direction perpendicular to the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
- Each of the water collection cassette 41 and the blind cassette 60 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the first side cover 65 and the second side cover 66 face each other.
- each of the first side cover 65 and the second side cover 66 is arranged such that its longitudinal direction is aligned with the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
- FIG. 7 is a perspective view showing the water collection cassette 41 of the holder (40 in FIG. 5).
- the water collection cassette 41 includes a top plate 42, a bottom plate 45, a first long side plate 43, a second long side plate 44, a first short side plate 46 shorter than the long side plates (43, 44), and a first short side plate 46, which is shorter than the long side plates (43, 44).
- Two short side plates 47 are combined to form a flat rectangular parallelepiped shape.
- the top plate 42 and the bottom plate 45 face each other.
- the water collection cassette 41 is arranged in such a manner that the top plate 42 and the bottom plate 45 are arranged vertically along the direction of gravity.
- Each of the first long side plate 43 and the second long side plate 44 is arranged in such a manner that its longitudinal direction is along the short side direction of the first short side plate 46 and the second short side plate 47, respectively.
- each of the first short side plate 46 and the second short side plate 47 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the top plate 42 and the bottom plate 45 face each other.
- a first fixing portion 48 protruding from the front surface is provided on the front surface of the first short side plate 46. Furthermore, a second fixing portion 49 is provided on the front surface of the second short side plate 47 and protrudes from the front surface.
- the first elongated side plate 43 is located inside the “frame” than the second elongated side plate 44.
- the first elongated side plate 43 functions as a side plate that holds one longitudinal end of the filtration membrane unit (21 in FIG. 6).
- the first elongated side plate 43 has an insertion hole into which one of the first protrusion (23b in FIG. 3) and the second protrusion (23c in FIG. 3) is inserted, and the first and second protrusion.
- a plurality of hole pairs are provided in which one of the protruding bodies is not inserted into the insertion hole and the other is inserted into the insertion hole. In each of the plurality of hole pairs, the distance between the two insertion holes is the same.
- the two insertion holes of the hole pair are arranged along the short direction of the first long side plate 43 (vertical direction in FIG. 6).
- One of the first protruding body 23b and the second protruding body 23c is inserted into one of the two insertion holes of the hole pair, and the other protruding body is inserted into the other insertion hole.
- each of the two protrusions 24b of the shielding socket 24 has a square or rectangular parallelepiped shape.
- the two protrusions 24b are for positioning the other longitudinal end of the filtration membrane unit (21 in FIG. 6) in the blind cassette (60 in FIG. 6) and holding the other end in the blind cassette. It is.
- each of the two protrusions (23b, 23c) formed integrally with the socket main body 23a has a tubular shape.
- the length in the thickness direction of the flat filter membrane 22 will be referred to as width.
- the inner diameters of the two protrusions (23b, 23c) of the suction side socket 23 be the same as the width of the filtration membrane 22.
- the respective tube peripheral walls of the two protrusions (23b23c) protrude from the socket body 23a in the width direction. That is, the outer diameters of the two protrusions (23b, 23c) are larger than the width of the socket body 23a.
- each of the plurality of hole pairs provided in the first long side plate (43 in FIG. 7) is an insertion hole located on one side in the short direction of the first long side plate (43) among the two insertion holes. are arranged along the longitudinal direction of the first long side plate (43).
- the insertion hole located on the other side in the lateral direction of the first elongated side plate (43) out of the two insertion holes is also located on the other side in the lateral direction of the first elongated side plate (43). Arrange along the direction.
- two insertion holes adjacent to each other along the longitudinal direction will be referred to as "two adjacent insertion holes.”
- the arrangement pitch the arrangement pitch along the longitudinal direction of the first long side plate 43 of the plurality of filtration membrane units (21 in FIG. 6) becomes smaller.
- the distance between "two adjacent insertion holes” becomes shorter. If this distance becomes excessively short, the length between the holes of the first long side plate (43) (the portion between "two adjacent insertion holes") becomes excessively small, and the length between the holes of the first long side plate (43) becomes excessively small. The necessary strength cannot be obtained.
- the hole length (narrow limit value) that provides the minimum strength is the same even if the material and thickness of the first long side plate (43) are the same. is constant.
- the arrangement pitch of the plurality of filtration membrane units 21 is the same, if the outer diameters of the protrusions (23b, 23c) are different, the above-mentioned inter-hole lengths will be different. As the outer diameter of the protrusion (23b, 23c) becomes larger, the length between the holes becomes smaller (the strength of the portion between the holes becomes lower). Therefore, the narrowing of the arrangement pitch of the insertion holes is restricted by the outer diameter of the protrusions (23b, 23c).
- each of the two protrusions (23b, 23c) is arranged in the manner shown in FIG. 3. Specifically, the distance ⁇ from the center in the extending direction of the socket body 23a (the position indicated by the dashed line L1) to the first protrusion 23b and the distance ⁇ from the center to the second protrusion 23c are set to each other. This is an embodiment in which they are different ( ⁇ ).
- the reason why the above-mentioned effects can be achieved is as explained below. That is, there are two types of hole pairs provided in the first long side plate 43 shown in FIG. Among the plurality of hole pairs, the first type hole pair 43c is classified as the first type, and the second type hole pair 43f is classified as the second type.
- the first type hole pairs 43c and the second type hole pairs 43f are arranged alternately along the longitudinal direction (vertical direction in FIG. 7) of the first long side plate 43.
- the distance between the two insertion holes (43a, 43b) in the first type hole pair 43c and the distance between the two insertion holes (43d, 43e) in the second type hole pair 43f are the same.
- the insertion hole 43a located on one side (upper side in FIG. 7) in the lateral direction of the first elongated side plate 43 is the first elongated hole pair 43c. It is arranged at a predetermined first position along the lateral direction of the first long side plate 43 within the plane of the side plate 43 . This first position is indicated by a dashed line L2 in FIG.
- the insertion hole 43d located on one side (upper side in FIG. 7) in the transverse direction of the first elongated side plate 43 is the first elongated hole pair 43f.
- Two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined first posture are inserted into the first type hole pair 43c.
- two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined second attitude are inserted into the second type hole pair 43f.
- the filtration membrane unit (21) that takes the first attitude and the filtration membrane unit (21) that takes the second attitude are located between the center of the suction side socket (23) in the extending direction and the extension of the shielding side socket (24). It is located at a point-symmetrical position (180° rotated position) with respect to the axis passing through the center of the direction (dotted chain line L4 in FIG. 2).
- the positional deviation of the first elongated side plate 43 along the short direction will be simply referred to as positional deviation.
- the insertion hole 43a located at the above-mentioned first position (dotted chain line l2) and the two insertion holes (43a, 43b) of the second type hole pair 43f 43d, 43e) the insertion hole 43e located at the second position (dotted chain line L2) is shifted from the insertion hole 43e.
- One of the two adjacent filtration membrane units (21) inserts the two protrusions (23b, 23c) of the suction side socket (23) into the two insertion holes (43a, 43b) of the first type hole pair 43c. are doing.
- the two protrusions (23b, 23c) of the suction side socket (23) are inserted into the two insertion holes (43d, 43e) of the second type hole pair.
- the longitudinal direction of the first long side plate 43 in the longitudinal direction of the first long side plate 43, the other end of the adjacent insertion hole located on one side of the "two adjacent insertion holes" is connected to the adjacent insertion hole located on the other side. It is possible to secure the portion between the holes of the first elongated side plate 43 while locating it on the other side of the hole rather than one end of the hole. More specifically, in FIG. 7, the longitudinal direction of the first long side plate 43 is generally along the left-right direction in FIG. 7 (strictly speaking, the longitudinal direction is slightly inclined from the left-right direction in FIG. 7). ) Therefore, hereinafter, the longitudinal direction of the first long side plate 43 will be described as the left-right direction in FIG. 7.
- the insertion hole 43a of the first type hole pair 43c located on the leftmost side in the left-right direction in the figure, and the insertion hole 43a on the right side in the left-right direction in the figure.
- the insertion hole 43a of the first seed hole pair 43c is located on the left side in the left-right direction in the figure than the insertion hole 43d of the second seed hole pair 43f.
- the insertion hole 43a of the first type hole pair 43c is the adjacent insertion hole located on the other side in the longitudinal direction of the first long side plate 43 among the two adjacent insertion holes
- the second type hole Attention is focused on an example in which the insertion holes 43d of the pair 43f are adjacent insertion holes located on one side in the longitudinal direction.
- the left (other side) end of the insertion hole 43d of the second type hole pair 43f is located to the left of the right (one side) end of the insertion hole 43a of the first type hole pair 43c.
- an inter-hole portion between the insertion hole 43a and the insertion hole 43d is secured.
- the inter-hole length of the above-mentioned inter-hole portion becomes larger. Therefore, even if the diameter of the two protrusions (23b, 23c) of the suction side socket (23) is increased or the arrangement pitch of the plurality of filtration membrane units (21) is narrowed, the above-mentioned position By increasing the amount of deviation, it is possible to make the length between the holes equal to or greater than the narrowing limit value.
- the arrangement pitch of the plurality of filtration membrane units 21 can be adjusted without causing positional displacement of the plurality of filtration membrane units 21 (positional displacement along the short direction of the first long side plate 43).
- the filtration system 31 can be made smaller by narrowing the filtration system 31.
- the filtration performance of the filtration membrane 22 can be improved by increasing the diameter of the two protrusions (23b, 23c) of the suction side socket (23).
- the blind cassette 60 shown in FIG. 6 includes a plurality of shielding-side insertion holes (not shown) on the surface facing the plurality of filtration membrane units 21. These shield-side insertion holes are insertion holes into which the protrusion 24b of the shield-side socket 24 of the filtration membrane unit 21 is inserted. By inserting each of the two protrusions 24b of the shielding side socket 24 into the shielding side insertion hole provided on the opposing surface, the other end in the longitudinal direction of the filtration membrane unit 21 is inserted into the blind cassette 60. It is positioned against. In addition, the other end of the filter membrane unit 21 in the longitudinal direction is held in the blind cassette 60.
- the rubber member includes a base plate extending along the longitudinal direction of the blind cassette 60, and a plurality of partition plates that protrude from the surface of the base plate and are arranged at a predetermined arrangement pitch along the longitudinal direction of the blind cassette 60. It is.
- the shield-side socket 24 of the filtration membrane unit 21 may be sandwiched between two adjacent partition plates of this rubber member.
- the shape of the filtration membrane 22 is not limited to a flat plate shape, and may be, for example, a corrugated plate shape.
- the first protruding body 23b of the suction side socket 23 is located on one side (in the same figure) of the second protruding body 23c in the transverse direction (vertical direction in FIG. 3) of the filtration membrane (22). (hereinafter, this amount of deviation will be referred to as the "first deviation amount"). Furthermore, the first protruding body 23b is disposed at a position shifted toward the center of the socket body 23a from one end (the upper side in FIG. 3) of the socket body 23a in the lateral direction (hereinafter referred to as This amount of deviation is referred to as the "second deviation amount").
- the one located on one side (upper side in the figure) in the transverse direction (vertical direction in the figure) of the filtration membrane (22) will be referred to as "one side”.
- side protrusion 24b Furthermore, of the two protrusions 24b, the one located on the other side (lower side in the figure) in the transverse direction is referred to as “the other protrusion 24b.”
- “One side protrusion 24b” is located at a position shifted from one end (upper end in the figure) to the other side (lower side in the figure) in the extending direction of the socket body (24a) (hereinafter referred to as , this amount of deviation is called the "third deviation amount").
- the protrusion 24b on the other side is located at a position shifted to one side (upper side in the figure) from the other end (lower end in the figure) in the extending direction of the socket body (24a).
- this amount of deviation will be referred to as the "fourth deviation amount.”
- a comparative example different from the example shown in FIG. 3 will be considered for comparison with the example shown in FIG. 3.
- the first protruding body 23b of the suction side socket 23 is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction.
- the second protruding body 23c of the suction side socket 23 is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
- the "one side protrusion 24b" is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction. Moreover, “the protruding body 24b on the other side” is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
- the "first shift amount”, “second shift amount”, “third shift amount”, and “fourth shift amount” are all zero.
- the distance between the first protrusion 24b and the second protrusion 24c of the suction side socket 23 is longer than the same distance in the filtration membrane unit 21 according to the embodiment.
- the distance between the "one side protrusion 24b" and the “other side protrusion 24b" of the shielding side socket 24 is longer than the same distance in the filtration membrane unit 21 according to the embodiment. .
- the force applied to the region of the filtration membrane 22 near the protrusion is larger than that of the filtration membrane unit 21 according to the embodiment, so that the filtration membrane 22 is likely to be damaged.
- the filtration membrane unit 21 according to the embodiment by not arranging each protrusion at the end of the socket in the lateral direction of the filtration membrane 22, damage to the filtration membrane 22 due to skew force can be suppressed. can.
- the "first deviation amount”, “second deviation amount”, “third deviation amount”, and “fourth deviation amount” should be as large as possible.
- the "first deviation amount” and “second deviation amount” are excessively increased in the suction side socket 23, the amount of water collected from the first protrusion 23b and the amount of water collected from the second protrusion 23c will not be equal. It will be difficult to achieve this goal.
- each of the "first deviation amount” and the “second deviation amount” is set to 1/10 or less of the length in the extending direction of the socket body 23a of the suction side socket 23. This is desirable.
- a range of 1/4 to 1/3 of the length of the socket body 23a of the suction side socket 23 in the extending direction is preferably adopted.
- the first protruding body 23b is disposed at a position shifted to one side (upper side in FIG. 3) from the center of the socket body 23a
- the second protruding body 23c is disposed at a position shifted from the center of the socket body 23a. It is arranged at a position shifted to the other side (lower side in FIG. 3).
- both the first protruding body 23b and the second protruding body 23c are disposed at positions shifted from the center to either one side or the other side, thereby improving the filtration membrane unit (21). Shaking on the side where the protrusion is not arranged is prevented. Therefore, according to the filtration membrane unit (21) according to the embodiment, it is possible to prevent the filtration membrane (22) from being damaged due to the aforementioned vibration.
- the filtration system (31) adopts the so-called single-pull method in which only one side of the longitudinal sides of the filtration membrane 22 is used as the suction side
- the filtration system (31) adopts the so-called double-pull method in which each of both sides is used as the suction side. It's okay.
- suction side sockets 23 having a similar configuration may be provided as the respective sockets on both sides.
- FIG. 8 is a perspective view showing the filtration treatment equipment 20 according to the embodiment.
- the filtration treatment facility 20 includes three filtration systems 31.
- the three filtration systems 31 are lined up along the short direction of the first long side plate (43).
- the structure of the filtration treatment equipment 20 is a three-stage structure in which three filtration systems 31 are stacked in the vertical direction.
- FIG. 9 shows the water collection cassette 41 of the filtration system (31) disposed on one side (upper side in the figure) of the first long side plate (43) in the width direction and the other side (upper side in the figure) of the first elongated side plate (43). It is a perspective view which shows the water collection cassette 41 of the filtration system (31) arrange
- the connecting pipe 70 plays a role of connecting the two water collection cassettes 41.
- three top plate openings 42a are arranged in a manner that they are lined up at predetermined intervals along the longitudinal direction of the top plate 42.
- the top plate opening 42a faces one side (upper side in the figure) of the first long side plate 43 in the lateral direction (vertical direction in the figure).
- first connection sockets 50 are arranged inside the water collection cassette 41. These first connection sockets 50 are fixed to the back surface of the top plate 42 and communicate with the top plate opening 42a.
- Three bottom plate openings 45a are arranged in the bottom plate 45 of each of the three water collection cassettes 41 so as to be lined up at predetermined intervals along the longitudinal direction of the bottom plate 45.
- the bottom plate opening 45a faces the other side (lower side in the figure) of the first long side plate 43 in the lateral direction.
- One of the three top plate openings 42a and one of the three bottom plate openings 45a face each other along the short direction of the first long side plate 43. Further, another one of the three top plate openings 42a and another one of the three bottom plate openings 45a face each other along the lateral direction. Furthermore, the last one of the three top plate openings 42a and the last one of the three bottom plate openings 45a face each other along the lateral direction.
- Three cylindrical second connection sockets 51 are provided inside the water collection cassette 41. These second connection sockets 51 are fixed to the back surface of the bottom plate 45 and communicate with the bottom plate opening 45a.
- the water collection cassette 41 arranged on the lower side of the figure and the water collection cassette 41 arranged on the upper side of the figure are connected by three connecting pipes 70.
- the connecting pipe 70 is arranged in such a manner that the pipe length direction is aligned with the lateral direction (the vertical direction in the figure) of the first elongated side plate 43.
- a ring-shaped recess (not shown) extending over the entire circumference of the pipe circumferential surface is arranged at one end and the other end of the connecting pipe 70 in the transverse direction, respectively.
- An O-ring 71 is fitted into the ring-shaped recess.
- the one end (upper side in the figure) of the connecting pipe 70 in the lateral direction is inserted into the second connection socket 51 of the water collection cassette 41 on the upper side in the figure. Further, the other (lower side in the figure) end of the connecting pipe 70 in the lateral direction is inserted into the first connecting socket 50 of the water collection cassette 41 on the upper side of the figure.
- the accommodation space for the water collection cassette 41 on the upper side of the figure and the accommodation space for the water collection cassette 41 on the lower side of the figure communicate with each other through three connecting pipes 70.
- connection pipes 70 are not inserted into each of the three second connection sockets 51, but are inserted into each of the three second connection sockets 51.
- a sealing plug (not shown) is inserted into the second connection socket 51. This prevents the suction force generated in the accommodation space of the lowermost water collection cassette 41 from leaking to the outside through the second connection socket 51.
- connection pipes 70 are not inserted into the three first connection sockets 50, but are branched for water collection. A tube is inserted. These water collection branch pipes are connected to one treated water transfer pipe (8 in FIG. 1).
- the storage space of the water collection cassette 41 on the lower side of the figure contains treated water that has passed through the filter membranes of a plurality of filter membrane units (not shown) held by the first long side plate 43 of the water collection cassette 41. will flow in.
- treated water that has passed through the filtration membranes of a plurality of filtration membrane units (not shown) held by the first long side plate 43 of this water collection cassette 41 is stored. Water flows in. The treated water present in the accommodation space of the water collection cassette 41 on the lower side of the figure is sucked into the accommodation space of the upper water collection cassette 41 through the connection pipe 70 by the suction force generated inside the connection pipe 70. be done.
- treated water that has passed through each of the plurality of filtration membranes 22 is collected in the water collection cassette 41.
- the treated water in the storage space of the water collection cassette 41 located lower is transferred to the storage space of the water collection cassette 41 located higher. is sucked into.
- the treated water collected in the storage spaces of the three water collection cassettes 41 is finally collected in the storage space of the uppermost water collection cassette 41, and is then transferred to the treated water tank ( It is transferred to 3) in FIG.
- the pipe length direction is along the lateral direction of the first long side plate 43, as described above.
- the O-ring 71 fitted into the end of the connecting pipe 70 on one side (the upper side in the figure) in the short direction prevents the end inserted into the second connecting socket 51 from coming out of the second connecting socket 51. This improves the sealing performance between the end portion and the second connection socket 51.
- a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
- the O-ring 71 fitted into the other (lower side in the figure) end of the connecting pipe 70 in the short direction allows the O-ring 71 to be inserted into the first connecting socket 50 at the end inserted into the first connecting socket 50. This prevents the end portion from coming off and improves the sealing performance between the end portion and the first connection socket 50.
- a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
- the number of the top plate opening 42a, the bottom plate opening 45a, the first connection socket 50, the second connection socket 51, and the connection pipe 70 is not limited to three. It is sufficient if there is one or more.
- a multi-layer system in which a plurality of filtration systems (31) are connected horizontally and a multi-stage system may also be used together. good.
- the filtrate sent from another filtration system is sent into the accommodation space of the water collection cassette 41 along the substantially vertical direction.
- filtrate from a plurality of filtration membrane units communicating with the accommodation space is sent along a substantially horizontal direction.
- such a vertical flow and a horizontal flow may combine, or the inflowing filtrate may not move smoothly toward the downstream channel and may spread.
- Easy to generate turbulence When flow path resistance increases due to turbulence, extra power is required, resulting in a decrease in energy efficiency.
- FIG. 10 is a perspective view showing the guide tube 150.
- the guide tube 150 is made of a cylinder as a tubular member with a plurality of through holes 152 arranged in the peripheral wall.
- the guide pipe 150 communicates with a first connecting socket 50 as an upper communication channel and a second connecting socket 51 as a lower communicating channel, and is connected between the first connecting socket 50 and the second connecting socket 51. Guide the flow of water.
- the guide pipe 150 takes in the treated water in the accommodation space of the water collection cassette (41) into its own pipe through the plurality of through holes 152.
- FIG. 11 is a perspective view for explaining the flow of treated water in the storage space in the upper stage transfer method in which treated water is transported toward the upper stage.
- treated water sent from the lower stage storage space flows into the guide pipe 150 through the second connection socket 51.
- the inflowing treated water is guided toward the first connection socket 50 by a flow path formed by the guide pipe 150 . Therefore, much of the treated water smoothly flows from the second connection socket 51 to the first connection socket 50.
- This flow acts as a suction force toward the first connection socket 50 on the treated water present around the guide pipe 150 .
- the treated water existing around the guide pipe 150 is sucked diagonally upward into the through hole 152 as shown.
- FIG. 12 is a perspective view for explaining the flow of treated water within the storage space in a lower stage transfer method in which treated water is transported toward the lower stage.
- treated water sent from the upper stage storage space flows into the guide pipe 150 through the first connection socket 50.
- the treated water that has flowed in is guided toward the second connection socket 51 by the flow path formed by the guide pipe 150 . Therefore, much of the treated water flows smoothly from the first connection socket 50 to the second connection socket 51.
- This flow acts on the treated water existing around the guide pipe 150 as a suction force toward the second connection socket 51 .
- the treated water existing around the guide pipe 150 is sucked diagonally downward into the through hole 152 as shown in the figure.
- the guide pipe 150 handles not only the treated water flowing into the guide pipe 150 via the first connection socket 50 or the second connection socket 51, but also the treated water existing around the guide pipe 150. It also guides you to move in the desired direction. In this configuration, by guiding the flow of treated water in the storage space in a preferable direction by the guide pipe 150, generation of turbulent flow in the storage space is suppressed, and a decrease in energy efficiency due to turbulence is suppressed. be able to.
- the filtration system (31) of the filtration treatment equipment (20) according to the example is in an upside-down position. Even if the posture of the filtration system (31) is flipped upside down in this way, the two-dimensional layout of each insertion hole on the plane of the first long side plate (43) of the water collection cassette (41) remains the same as before upside down.
- Each insertion hole is arranged so that
- the plate material that functioned as the top plate (42) before being turned upside down functions as the bottom plate (45) after being turned upside down, and functions as the bottom plate (45) before being turned upside down.
- the plate material that was used as a top plate functions as a top plate (42) after being turned upside down.
- the relative positions of the three top plate openings (42a) of the top plate (42) before being turned upside down and the top plate (42) after being turned upside down are ) are the same relative to the three top plate openings (42a). Therefore, in the region from one end to the other end in the longitudinal direction of the water collection cassette 41, the relative positions of the three bottom plate openings (45a) of the bottom plate (45) before being turned upside down and the position of the bottom plate (45) after being turned upside down are The relative positions with the three bottom plate openings (45a) are the same. Therefore, in the filtration treatment equipment (20) according to the embodiment, the filtration system (31) can be handled without worrying about the vertical posture of the filtration system (31).
- FIG. 13 is a cross-sectional view showing a longitudinal cross-section of two water collection cassettes 41 stacked one above the other in the filtration treatment equipment (20) according to the embodiment, along with a cross-section of the connecting pipe 70.
- FIG. 14 is a cross-sectional view showing a cross section of the connecting pipe 70 on a larger scale than in FIG. 10. As shown in FIG.
- each of the three first connection sockets 50 fixed to the top plate 42 of the water collection cassette 41 is provided with a female screw portion 50a on the inner peripheral surface.
- the female threaded portion 50a is provided in an upwardly biased region of the entire length of the first connection socket 50 made of a tube material.
- each of the three second connection sockets 51 fixed to the bottom plate 45 of the water collection cassette 41 includes a female screw portion 51a on the inner peripheral surface.
- the female threaded portion 51a is provided in a region biased toward the lower side of the entire length of the second connection socket 51 made of a tube material.
- the connecting pipe 70 includes a male threaded portion 70a on its outer peripheral surface.
- the male threaded portion 70a is provided in a region biased to one side of the entire length of the connecting pipe 70 in the pipe length direction.
- the connecting pipe 70 is used in such a manner that, of both ends of the connecting pipe 70 in the pipe length direction, the end provided with the male threaded portion 70a is located below the other end.
- each of the three connecting pipes 70 has a male threaded portion 70a attached to the female threaded portion 50a of the first connecting socket 50 of the lower one of the two water collecting cassettes 41. It is inserted into this first connection socket 50 while doing so.
- the above-mentioned screw can prevent the connecting pipe 70 from coming off from the first connecting socket 50.
- each of the three connecting pipes 70 is held in the lower water collection cassette 41. Since the condition can be maintained reliably, the workability of maintenance and inspection can be improved.
- the second connection socket 51 in the water collection cassette 41 of the lowest filtration system (31) is equipped with a connection pipe. 70 is not inserted. Instead, a sealing plug (not shown) having a male thread on its outer peripheral surface is inserted into the second connection socket 51. At this time, the sealing plug is inserted into the second connection socket 51 while threading its male threaded portion into the female threaded portion 51a of the second connection socket 51. The sealing plug inserted into the second connection socket 51 in this manner is prevented from coming off from the second connection socket 51 by the aforementioned screw.
- connection pipe 70 is not inserted into the first connection socket 50 in the water collection cassette 41 of the uppermost filtration system (31). Instead, the above-mentioned water collection branch pipe is inserted into the first connection socket 50. A male threaded portion is provided on the outer peripheral surface of this water collection branch pipe. The water collection branch pipe is inserted into the first connection socket 50 while screwing its own male thread into the female thread of the first connection socket 50. The water collection branch pipe inserted into the first connection socket 50 in this manner is prevented from coming off from the first connection socket 50 by the above-mentioned screw.
- the present invention is not limited to the above-described embodiments and examples, and configurations different from the embodiments and examples may be adopted within the scope where the configuration of the present invention is applicable.
- the present invention provides specific effects for each aspect described below.
- the first aspect includes a plurality of filtration membrane units (e.g., filtration membrane unit 21) that cause the filtrate taken into the filtration membrane (e.g., filtration membrane 22) to flow along the longitudinal direction of the filtration membrane, and a plurality of the filtration membrane units.
- a plurality of filtration membrane units e.g., filtration membrane unit 21
- the filtrate taken into the filtration membrane e.g., filtration membrane 22
- a filtration system for example, a filtration system 31
- a lower communication channel for example, a second connection socket 51
- the filtration system having a plurality of through holes (for example, a through hole) in a peripheral wall. It is made of a tubular member (for example, a cylinder) in which holes 152) are arranged, and communicates with the upper communication channel and the lower communication channel to allow liquid to flow between the upper communication channel and the lower communication channel.
- the device is characterized by comprising a guide tube (for example, guide tube 150) that guides the filtrate in the accommodation space into the interior of the container through the plurality of through holes.
- a second aspect is a filtration system having the configuration of the first aspect, wherein a pair of the upper communication channel and the lower communication channel that face each other along the vertical direction are arranged along the longitudinal direction of the accommodation space.
- the present invention is characterized in that a plurality of guide pipes are arranged and individually communicate the upper communication channel and the lower communication channel in each pair.
- a third aspect is a filtration treatment facility (for example, the filtration treatment facility 20) that includes a plurality of filtration systems arranged in multiple stages, and each of the plurality of filtration systems is the filtration system of the first aspect or the second aspect. It is characterized by this. can.
- a fourth aspect is a filtration treatment facility having the configuration of the third aspect, in which one of the upper communication passages and the other lower communication passage in the two filtration systems that are vertically adjacent to each other,
- Each of the tubes has a female thread on its inner circumferential surface, and is connected to each other by a connecting tube inserted inside each tube, and one longitudinal end of the connecting tube has an O-ring made of an elastic material on its outer circumferential surface.
- the other end of the connecting pipe in the length direction is provided with an O-ring made of an elastic material and a male threaded part disposed closer to the one end than the O-ring on the outer peripheral surface thereof.
- the screws between the female threaded portion and the male threaded portion can prevent the connecting pipe from coming off from the upper communication channel or the lower communication channel.
- the connecting pipe can be lowered when separating the two filtration systems for maintenance and inspection work. Since it can be left naturally in the filtration system on the side, it is possible to improve the workability of maintenance and inspection.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
This filtration system comprises a plurality of filtration membrane units in which a filtrate taken into the interior of the filtration membrane flows along the lengthwise direction of the filtration membrane, an accommodation space for accommodating the filtrate discharged from each of the plurality of filtration membrane units, an upper connecting flow passage (50) connecting an upper portion of the accommodation space to an external space above the accommodation space, and a lower connecting flow passage (51) connecting a lower portion of the accommodation space to an external space below the accommodation space, said filtration system being equipped with a guiding tube 150, which comprises a tubular member in which through-holes 152 are provided in the peripheral wall, is connected to the upper connecting flow passage 50 and the lower connecting flow passage 51 and guides the flow of liquid between the upper connecting flow passage 50 and the lower connecting flow passage 51, and into the interior of which the filtrate in the accommodation space is taken in through the through-holes 152.
Description
本発明は、濾過システム及び濾過処理設備に関する。
The present invention relates to a filtration system and filtration treatment equipment.
従来、濾過膜の内部に取り込んだ濾液を濾過膜の長手方向に沿って流す複数の濾過膜ユニットと、複数の濾過膜ユニットのそれぞれから排出される濾液を収容する収容空間と、上部連通流路と、下部連通流路とを備える濾過システムが知られている。
Conventionally, there have been provided a plurality of filtration membrane units through which the filtrate taken into the filtration membrane flows along the longitudinal direction of the filtration membrane, a storage space for accommodating the filtrate discharged from each of the plurality of filtration membrane units, and an upper communication channel. A filtration system is known that includes a lower communication channel and a lower communication channel.
例えば、特許文献1に記載の膜分離装置は、多段に重ねられた複数の膜モジュールを備える。濾過システムとしての膜モジュールは、濾過膜ユニットとしての膜エレメントを複数備えるとともに、集水ケースを備える。集水ケースには、複数の膜エレメントのそれぞれから排出される濾液を収容する収容空間と、上部連通流路たる上部連結部と、下部連通流路たる下部連結部とが配設される。上部連結路は、収容空間の上部を収容空間よりも上方の外部空間に連通させる。また、下部連結路は、収容空間の下部を収容空間よりも下方の外部空間に連通させる。
For example, the membrane separation device described in Patent Document 1 includes a plurality of membrane modules stacked in multiple stages. A membrane module as a filtration system includes a plurality of membrane elements as filtration membrane units and a water collection case. The water collection case is provided with a storage space for accommodating filtrate discharged from each of the plurality of membrane elements, an upper connecting section serving as an upper communicating channel, and a lower connecting section serving as a lower communicating channel. The upper connection path connects the upper part of the accommodation space to the external space above the accommodation space. Moreover, the lower connecting path connects the lower part of the accommodation space to the external space below the accommodation space.
濾過システムにおいて、複数の膜エレメントのそれぞれから収容空間に集められた濾液は、上部連結路から上方に向けて排出された後、より上段の膜モジュールの下部連結路を経由して上段の収容空間に至る。あるいは、下部連結路から下方に向けて排出された後、より下段に配置された膜モジュールの上部連結路を経由して下段の収容空間に至る。このようにして、膜分離装置は、複数の膜モジュールによって濾過処理された濾液を、下段から上段に向けて流しながら集めるか、あるいは、上段から下段に向けて流しながら集める。
In a filtration system, the filtrate collected in the storage space from each of the plurality of membrane elements is discharged upward from the upper connection path, and then passes through the lower connection path of the upper membrane module to the upper storage space. leading to. Alternatively, after being discharged downward from the lower connecting path, it reaches the lower housing space via the upper connecting path of the membrane module arranged in the lower stage. In this manner, the membrane separator collects the filtrate that has been filtered by the plurality of membrane modules while flowing from the lower stage to the upper stage, or collects the filtrate while flowing from the upper stage to the lower stage.
かかる構成の膜分離装置においては、個々の膜モジュールの収容空間内で発生する乱流による流路抵抗の増加により、動力源のエネルギー効率を低下させてしまうという課題があった。
In a membrane separation device having such a configuration, there is a problem in that the energy efficiency of the power source decreases due to an increase in flow path resistance due to turbulence generated within the housing space of each membrane module.
本発明は、以上の背景に鑑みてなされたものであり、収容空間内で発生する乱流に起因するエネルギー効率の低下を抑えることができる濾過システム、及び濾過処理設備を提供することである。
The present invention has been made in view of the above background, and it is an object of the present invention to provide a filtration system and filtration processing equipment that can suppress a decrease in energy efficiency caused by turbulence generated within a storage space.
前記目的を達成するために、本発明の一態様は、濾過膜の内部に取り込んだ濾液を前記濾過膜の長手方向に沿って流す複数の濾過膜ユニットと、複数の前記濾過膜ユニットのそれぞれから排出される濾液を収容する収容空間と、前記収容空間の上部を前記収容空間よりも上方の外部空間に連通させる上部連通流路と、前記収容空間の下部を前記収容空間よりも下方の外部空間に連通させる下部連通流路とを備える濾過システムであって、周壁に貫通孔を配置した管状部材からなり、前記上部連通流路と前記下部連通流路とに連通して前記上部連通流路と前記下部連通流路との間の液の流通を誘導しつつ、前記貫通孔を通じて、前記収容空間内の濾液を自己の内部に取り込む誘導管を備えることを特徴とするものである。
In order to achieve the above object, one aspect of the present invention includes a plurality of filtration membrane units through which the filtrate taken into the inside of the filtration membrane flows along the longitudinal direction of the filtration membrane, and a plurality of filtration membrane units that flow from each of the plurality of filtration membrane units. an accommodation space that accommodates the filtrate to be discharged; an upper communication channel that communicates the upper part of the accommodation space with an external space above the accommodation space; and the lower part of the accommodation space that communicates with an external space below the accommodation space. A filtration system comprising a lower communication flow path communicating with the upper communication flow path, the system comprising a tubular member having a through hole arranged in a peripheral wall, and communicating with the upper communication flow path and the lower communication flow path with the upper communication flow path. The device is characterized in that it includes a guide tube that takes the filtrate in the storage space into itself through the through hole while guiding the flow of liquid to and from the lower communication channel.
本発明によれば、収容空間内で発生する乱流に起因するエネルギー効率の低下を抑えることができるという優れた効果がある。
According to the present invention, there is an excellent effect of suppressing a decrease in energy efficiency caused by turbulence generated within the accommodation space.
以下、各図を用いて、本発明を適用した濾過処理設備の一実施形態について説明する。実施形態では説明を分かり易くするため、本発明の主要部以外の構造や要素については、簡略化または省略して説明する。また、各図において、同じ要素には同じ符号を付す。なお、各図に示す各要素の形状、寸法などは模式的に示したもので、実際の形状、寸法などを示すものではない。
Hereinafter, one embodiment of a filtration treatment facility to which the present invention is applied will be described using each figure. In the embodiments, structures and elements other than the main parts of the present invention will be simplified or omitted in order to make the description easier to understand. Further, in each figure, the same elements are given the same reference numerals. Note that the shapes, dimensions, etc. of each element shown in each figure are shown schematically, and do not represent actual shapes, dimensions, etc.
図1は、実施形態に係る濾過処理設備を備える水処理施設の概略構成を示す図である。この水処理施設は、原水タンク1、濾過処理水槽2、処理水タンク3、制御装置4、原水ポンプ5、第1水位センサー6、原水移送管7、処理水移送管8、吸引ポンプ9、第2水位センサー11、第3水位センサー12等を備える。また、水処理施設は、ブロワー13、空気供給管14、架台15、濾過処理設備20、気泡発生装置90等を備える。
FIG. 1 is a diagram showing a schematic configuration of a water treatment facility including filtration treatment equipment according to an embodiment. This water treatment facility includes a raw water tank 1, a filtered water tank 2, a treated water tank 3, a control device 4, a raw water pump 5, a first water level sensor 6, a raw water transfer pipe 7, a treated water transfer pipe 8, a suction pump 9, and a first water level sensor 6. A second water level sensor 11, a third water level sensor 12, etc. are provided. The water treatment facility also includes a blower 13, an air supply pipe 14, a pedestal 15, a filtration treatment facility 20, a bubble generator 90, and the like.
原水タンク1内には、液体としての原水(処理前水)W1が貯留される。原水タンク1に設置された超音波センサー等からなる第1水位センサーは、原水タンク1内の原水W1の水位(水面の高さ)を検知して、検知結果を水位信号として制御装置4に送信する。原水タンク1内に設置された原水ポンプ5は、原水タンク1内の原水W1を吸引、吐出して、原水移送管7を通じて濾過処理水槽2に送る。原水ポンプ5として、水中ポンプからなるものを例示したが、陸上ポンプからなるものを用いてもよい。
In the raw water tank 1, raw water (pre-treatment water) W1 as a liquid is stored. A first water level sensor, such as an ultrasonic sensor installed in the raw water tank 1, detects the water level (water surface height) of the raw water W1 in the raw water tank 1, and sends the detection result to the control device 4 as a water level signal. Send. A raw water pump 5 installed in the raw water tank 1 sucks and discharges the raw water W1 in the raw water tank 1, and sends it to the filtration treatment tank 2 through the raw water transfer pipe 7. Although a submersible pump is illustrated as the raw water pump 5, a land pump may also be used.
濾過処理水槽2は、鉄筋コンクリート製の水槽である。濾過処理水槽2内には、濾過処理設備20と、気泡発生装置90とが設置される。濾過処理設備20及び気泡発生装置90は、架台15によって支持される。架台15は、気泡発生装置90を濾過処理設備20の直下に位置させる態様で支持する。濾過処理設備20及び気泡発生装置90のそれぞれは、濾過処理水槽2内の原水W1に浸かっている。
The filtration treatment water tank 2 is a water tank made of reinforced concrete. In the filtration treatment water tank 2, a filtration treatment equipment 20 and a bubble generator 90 are installed. The filtration treatment equipment 20 and the bubble generator 90 are supported by the pedestal 15. The pedestal 15 supports the bubble generator 90 in such a manner that it is positioned directly below the filtration treatment equipment 20 . Each of the filtration equipment 20 and the bubble generator 90 is immersed in the raw water W1 in the filtration water tank 2.
ブロワー13は、吸引口から吸引した気体としての空気を、吐出口を通じて空気供給管14に吐出する。空気供給管14に吐出された空気は、気泡発生装置90に供給される。気泡発生装置90は、空気供給管14から供給される空気を、気泡として上方に向けて放出する。放出された気泡は、濾過処理設備20に搭載される複数の濾過膜に接触しながら原水W1中を上昇する。このとき、気泡は、濾過膜の表面に付着している固形物を濾過膜の表面から離脱させる。この離脱により、濾過膜の目詰まりが抑えられる。
The blower 13 discharges air as a gas sucked through the suction port to the air supply pipe 14 through the discharge port. The air discharged into the air supply pipe 14 is supplied to the bubble generator 90. The bubble generator 90 emits air supplied from the air supply pipe 14 upward as bubbles. The released air bubbles rise in the raw water W1 while contacting a plurality of filter membranes mounted on the filtration treatment equipment 20. At this time, the bubbles cause the solid matter adhering to the surface of the filtration membrane to separate from the surface of the filtration membrane. This separation suppresses clogging of the filtration membrane.
濾過処理水槽2に設置された第3水位センサー12は、濾過処理水槽2内の原水W1の水位を検知して、検知結果を水位信号として制御装置4に送信する。
The third water level sensor 12 installed in the filtered water tank 2 detects the water level of the raw water W1 in the filtered water tank 2, and transmits the detection result to the control device 4 as a water level signal.
吸引ポンプ9は、処理水移送管8と、濾過処理設備20内に搭載された後述の複数の濾過膜とを介して、濾過処理水槽2内の原水W1を吸引する。吸引された原水W1は、濾過膜によって濾過されて処理済水W2となった後、処理水移送管8を通じて処理水タンク3に送られる。処理水タンク3に設定された第2水位センサー11は、処理水タンク3内の処理済水W2の水位を検知して、検知結果を水位信号として制御装置4に送信する。
The suction pump 9 sucks raw water W 1 in the filtered water tank 2 via the treated water transfer pipe 8 and a plurality of filter membranes, which will be described later, mounted in the filtering equipment 20 . The sucked raw water W 1 is filtered by a filter membrane to become treated water W 2 , and then sent to the treated water tank 3 through the treated water transfer pipe 8 . The second water level sensor 11 set in the treated water tank 3 detects the water level of the treated water W2 in the treated water tank 3, and transmits the detection result to the control device 4 as a water level signal.
なお、吸引ポンプ9の代わりに、水頭圧を利用して吸引力を発生させるポンプを使用してもよい。吸引の手段は、特に限定されない。
Note that instead of the suction pump 9, a pump that generates suction force using water head pressure may be used. The means of suction is not particularly limited.
処理水タンク3の水位が上限に達しておらず、且つ所定の運転実行条件が成立している場合、制御装置4は、吸引ポンプ9とブロワー13とを作動させて、原水W1の濾過処理を実行する。但し、運転実行条件が成立していても、原水タンク1内の原水W1の水位が下限以下になっている場合、及び濾過処理水槽2内の原水W1の水位が下限以下になっている場合には、制御装置4は、濾過処理の実行を中止する。
When the water level in the treated water tank 3 has not reached the upper limit and predetermined operation execution conditions are met, the control device 4 operates the suction pump 9 and the blower 13 to perform the filtration process on the raw water W1. Execute. However, even if the operation execution conditions are met, if the water level of the raw water W 1 in the raw water tank 1 is below the lower limit, or if the water level of the raw water W 1 in the filtered water tank 2 is below the lower limit. In this case, the control device 4 stops execution of the filtration process.
濾過処理設備20は、実施形態に係る濾過システム(後に詳述される)を複数備える。それぞれの濾過システムは、実施形態に係る濾過膜ユニット(後に詳述される)を複数備える。
The filtration treatment equipment 20 includes a plurality of filtration systems (described in detail later) according to the embodiment. Each filtration system includes a plurality of filtration membrane units (described in detail later) according to embodiments.
図2は、実施形態に係る濾過膜ユニット21を示す斜視図である。濾過膜ユニット21は、平板状の濾過膜22を備える。濾過膜22の材質としては、PVDF(ポリフッ化ビニリデン)、PVC(ポリ塩化ビニル)等の有機材が挙げられる。また、濾過膜22の材質として、アルミナ、炭化ケイ素などを主成分とするセラミックを用いてもよい。実施形態に係る濾過膜ユニット21の濾過膜22は、セラミック膜からなる。
FIG. 2 is a perspective view showing the filtration membrane unit 21 according to the embodiment. The filtration membrane unit 21 includes a flat filtration membrane 22 . Examples of the material for the filter membrane 22 include organic materials such as PVDF (polyvinylidene fluoride) and PVC (polyvinyl chloride). Further, as the material of the filter membrane 22, a ceramic whose main component is alumina, silicon carbide, etc. may be used. The filtration membrane 22 of the filtration membrane unit 21 according to the embodiment is made of a ceramic membrane.
上述の吸引ポンプ(図1の9)が作動すると、濾過膜22に対して濾過膜22の長手方向に沿った吸引力が付与される。実施形態に係る濾過システムにおいては、濾過膜22に対して濾過膜22の長手方向の一方側(後述の図4における左右方向の右側)から吸引力が付与される。即ち、濾過膜22の長手方向の一方側は、吸引力が付与される吸引側である。濾過膜22の長手方向の他方側(後述の図4における左右方向の左側)は、濾過膜22に付与される吸引力を遮蔽する遮蔽側である。
When the above-mentioned suction pump (9 in FIG. 1) operates, suction force is applied to the filtration membrane 22 along the longitudinal direction of the filtration membrane 22. In the filtration system according to the embodiment, a suction force is applied to the filtration membrane 22 from one side in the longitudinal direction of the filtration membrane 22 (the right side in the left-right direction in FIG. 4, which will be described later). That is, one side of the filter membrane 22 in the longitudinal direction is a suction side to which suction force is applied. The other side in the longitudinal direction of the filtration membrane 22 (the left side in the left-right direction in FIG. 4, which will be described later) is a shielding side that shields the suction force applied to the filtration membrane 22.
濾過膜ユニット21は、上述の濾過膜22に加えて、吸引側ソケット23と、遮蔽側ソケット24とを備える。本発明におけるソケットとしての吸引側ソケット23は、濾過膜22を長手方向の一方側(吸引側)で保持するために濾過膜22における長手方向の一方側の端部に固定される。遮蔽側ソケット24は、濾過膜22を長手方向の他方側(遮蔽側)で保持するために濾過膜22における長手方向の他方側の端部に固定される。吸引側ソケット23及び遮蔽側ソケット24のそれぞれは、濾過膜22に固定された状態で濾過膜22の短手方向(実施形態では重力方向に沿った上下方向)に延在する。
In addition to the above-mentioned filtration membrane 22, the filtration membrane unit 21 includes a suction side socket 23 and a shielding side socket 24. The suction side socket 23 serving as a socket in the present invention is fixed to one end of the filtration membrane 22 in the longitudinal direction in order to hold the filtration membrane 22 on one side (suction side) in the longitudinal direction. The shield-side socket 24 is fixed to the other longitudinal end of the filter membrane 22 in order to hold the filter membrane 22 on the other longitudinal side (shield side). Each of the suction side socket 23 and the shielding side socket 24 is fixed to the filtration membrane 22 and extends in the lateral direction of the filtration membrane 22 (in the embodiment, the vertical direction along the direction of gravity).
図3は、吸引側ソケット23の縦断面を示す断面図である。吸引側ソケット23は、ソケット本体23aを備える。ソケット本体23aは、濾過膜(図2の22)の長手方向の一方側の端部を挿入される凹部23dと、凹部23dに連通しつつソケット本体23aの延在方向に延びる流路23eとを備える。
FIG. 3 is a sectional view showing a longitudinal section of the suction side socket 23. The suction side socket 23 includes a socket main body 23a. The socket main body 23a has a recess 23d into which one longitudinal end of the filtration membrane (22 in FIG. 2) is inserted, and a channel 23e extending in the extending direction of the socket main body 23a while communicating with the recess 23d. Be prepared.
ソケット本体23aは、凹部23dの内周面により、濾過膜(図2の22)の長手方向の一方側の端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆う。凹部23dの内周面が、濾過膜(22)の長手方向の一方側の端部における周面を全域に渡って覆うことで、凹部23d内における前記端部のガタツキが防止される。
The socket main body 23a completely covers the circumferential surface of the filtration membrane (22 in FIG. 2), which is composed of a front surface, a back surface, and two side surfaces at one longitudinal end of the filtration membrane (22 in FIG. 2), by the inner peripheral surface of the recess 23d. Cover all around. The inner circumferential surface of the recess 23d covers the entire circumferential surface of one end of the filter membrane (22) in the longitudinal direction, thereby preventing the end from wobbling within the recess 23d.
吸引側ソケット23は、上述のソケット本体23aに加えて、第1突出体23b及び第2突出体23cを備える。第1突出体23b及び第2突出体23cのそれぞれは、濾過膜(図2の22)の長手方向(図3における左右方向)においてソケット本体23aよりも外側(図3における右側)に位置しつつ、ソケット本体23aの延在方向(図3における上下方向)に沿って並ぶ。
In addition to the socket body 23a described above, the suction side socket 23 includes a first protrusion 23b and a second protrusion 23c. Each of the first protruding body 23b and the second protruding body 23c is located on the outside (on the right side in FIG. 3) of the socket main body 23a in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22 in FIG. 2). , are lined up along the extending direction (vertical direction in FIG. 3) of the socket body 23a.
第1突出体23b及び第2突出体23cのそれぞれは、濾過膜(22)の長手方向(図3における左右方向)において、ソケット本体23aにおける一方側(図3における右側)の端面から一方側に向けて突出する。
Each of the first protruding body 23b and the second protruding body 23c extends from one end surface of the socket main body 23a (right side in FIG. 3) to one side in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22). protrude towards.
かかる構成において、第1突出体23b及び第2突出体23cのそれぞれが、不図示の保持体に設けられた挿入孔に挿入されると、濾過膜ユニット(21)の長手方向の一端部が、保持体に対して位置決めされるとともに、保持体に保持される。第1突出体23bの外周面の面積は、ソケット本体23aの外周面の面積に比べて非常に小さな値になる。また、第2突出体23cの外周面の面積も、ソケット本体23aの外周面の面積に比べて非常に小さな値になる。このため、第1突出体23bの外周と前述の挿入孔の内周とのクリアランス、及び第2突出体23cの外周と前述の挿入孔の内周とのクリアランスを、それぞれほぼ無くしても、それらの突出体(23b、23c)のそれぞれを、個別の挿入孔に容易に挿入することが可能である。このようにクリアランスが設定されると、濾過膜ユニット(21)の長手方向における一方側の端部のガタツキが防止される。よって、実施形態に係る濾過膜ユニット(21)によれば、濾過膜ユニットの長手方向における一方側の端部のガタツキに起因する濾過膜(22)の破損の発生を抑えることができる。
In such a configuration, when each of the first protrusion 23b and the second protrusion 23c is inserted into an insertion hole provided in a holder (not shown), one longitudinal end of the filtration membrane unit (21) It is positioned with respect to the holding body and is held by the holding body. The area of the outer circumferential surface of the first protruding body 23b is much smaller than the area of the outer circumferential surface of the socket main body 23a. Furthermore, the area of the outer circumferential surface of the second protrusion 23c is also much smaller than the area of the outer circumferential surface of the socket body 23a. Therefore, even if the clearance between the outer periphery of the first protrusion 23b and the inner periphery of the insertion hole described above and the clearance between the outer periphery of the second protrusion 23c and the inner periphery of the insertion hole described above are almost eliminated, they are It is possible to easily insert each of the protrusions (23b, 23c) into individual insertion holes. When the clearance is set in this manner, wobbling at one end of the filtration membrane unit (21) in the longitudinal direction is prevented. Therefore, according to the filtration membrane unit (21) according to the embodiment, it is possible to suppress the occurrence of damage to the filtration membrane (22) due to rattling at one end in the longitudinal direction of the filtration membrane unit.
第1突出体23b及び第2突出体23cのそれぞれの構造は、中空(23b-1、23c-1)を有する管状構造である。第1突出体23b及び第2突出体23cにおけるそれぞれの中空(23b-1、23c-1)は、ソケット本体23aの流路23eに連通する。また、第1突出体23b及び第2突出体23cにおけるそれぞれの中空(23b-1、23c-1)は、突出体(23b、23c)の延在方向(図3の左右方向)の両端のそれぞれが開口している。第1突出体23bの中空23b-1における2つの開口のうち、第1突出体23bの延在方向(図3の左右方向)の一方側(図3における右側)の開口は、流路23e内の処理済水(図1のW2)を排出するための排出口としての第1出口23b-2である。また、第2突出体23cの中空23c-1における2つの開口のうち、第2突出体23cの延在方向(図3の左右方向)の一方側(図3における右側)の開口は、流路23e内の処理済水を排出するための排出口としての第2出口23c-2である。
The structure of each of the first protruding body 23b and the second protruding body 23c is a tubular structure having a hollow (23b-1, 23c-1). Each hollow (23b-1, 23c-1) in the first protrusion 23b and the second protrusion 23c communicates with the channel 23e of the socket body 23a. Further, the hollows (23b-1, 23c-1) in the first protruding body 23b and the second protruding body 23c are located at both ends of the protruding bodies (23b, 23c) in the extending direction (left-right direction in FIG. 3). is open. Of the two openings in the hollow 23b-1 of the first protrusion 23b, the opening on one side (the right side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the first protrusion 23b is inside the flow path 23e. The first outlet 23b-2 is a discharge port for discharging the treated water (W 2 in FIG. 1). Further, among the two openings in the hollow 23c-1 of the second protrusion 23c, the opening on one side (the right side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the second protrusion 23c is a flow path. The second outlet 23c-2 is a discharge port for discharging the treated water in the second outlet 23e.
第1突出体23bの中空23b-1は、自己の2つの開口のうち、第1突出体23bの延在方向(図3の左右方向)の他方側(図3における左側)の開口23b-3を通じて流路23eと連通する。また、第2突出体23cの中空23c-1は、自己の2つの開口のうち、第2突出体23cの延在方向(図3の左右方向)の他方側(図3における左側)の開口23c-3を通じて流路23eと連通する。
The hollow 23b-1 of the first protruding body 23b has an opening 23b-3 on the other side (the left side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the first protruding body 23b among its two openings. It communicates with the flow path 23e through. Further, the hollow 23c-1 of the second protrusion 23c is the opening 23c on the other side (the left side in FIG. 3) of the two openings of the second protrusion 23c in the extending direction (left-right direction in FIG. 3). -3 and communicates with the flow path 23e.
吸引ポンプ(図1の9)が作動すると、第1突出体23bの中空23b-1、及び第2突出体23cの中空23c-1のそれぞれに負圧による吸引力が発生する。この吸引力により、ソケット本体23aの流路23e内の処理済水が、第1突出体23bの中空23b-1、及び第2突出体23cの中空23c-1の内部に向けて吸引される。
When the suction pump (9 in FIG. 1) operates, a suction force due to negative pressure is generated in each of the hollow 23b-1 of the first protruding body 23b and the hollow 23c-1 of the second protruding body 23c. Due to this suction force, the treated water in the channel 23e of the socket body 23a is sucked toward the interior of the hollow 23b-1 of the first protrusion 23b and the hollow 23c-1 of the second protrusion 23c.
図4は、濾過膜ユニット21を側方から示す側面図である。濾過膜ユニット21の遮蔽側ソケット24は、ソケット本体24aと、2つの突出体24bとを備える。ソケット本体24aは、濾過膜22の長手方向(図4の左右方向)の他方側(図4の左側)の端部を挿入される凹部(不図示)を備える。なお、ソケット本体24aは、前述の凹部に連通する流路を備えていない。濾過膜22に付与される吸引力は、遮蔽側ソケット24により、濾過膜22の長手方向の他方側で遮蔽される。
FIG. 4 is a side view showing the filtration membrane unit 21 from the side. The shield-side socket 24 of the filtration membrane unit 21 includes a socket main body 24a and two protrusions 24b. The socket main body 24a includes a recess (not shown) into which the other end (left side in FIG. 4) of the filter membrane 22 in the longitudinal direction (left-right direction in FIG. 4) is inserted. Note that the socket main body 24a does not include a flow path communicating with the above-mentioned recess. The suction force applied to the filtration membrane 22 is blocked on the other longitudinal side of the filtration membrane 22 by the shielding side socket 24 .
遮蔽側ソケット24における2つの突出体24bのそれぞれは、濾過膜22の長手方向(図4における左右方向)においてソケット本体24aよりも外側(図4における左側)に位置しつつ、ソケット本体24aの延在方向(図4における上下方向)に沿って並ぶ。
Each of the two protrusions 24b in the shielding side socket 24 is located outside (on the left side in FIG. 4) of the socket body 24a in the longitudinal direction of the filtration membrane 22 (the left-right direction in FIG. 4), and extends from the socket body 24a. They are lined up along the current direction (vertical direction in FIG. 4).
以下、第1突出体23bに設けられる第1出口(図3の23b-2)と、第2突出体23cに設けられる(図3の第2出口23c-2)とを、まとめて「吸引側ソケット23の2つの排出口」と言う。排出口の口径を所定値に設定し、且つ濾過膜(22、122)による単位時間あたりの濾過液量を所定値に設定する場合、排出口に通す処理済水の単位時間あたりの流量の条件として、次のような条件を採用する必要がある。即ち、第1比較例に係る濾過膜ユニット121の排出口に対する処理済水の流入量を、実施形態に係る「吸引側ソケット23の2つの排出口」のそれぞれに対する処理済水の流入量の約2倍に設定するという条件である。かかる条件では、排出口(濾液出口)を1つしか備えていない特許文献1に記載の構成に比べて、濾過膜ユニット21における処理済水の流路抵抗を第1比較例に比べて小さくするので、吸引ポンプ(図1の9)などの吸引動力機の動力をより小さくして、省エネルギー化を図ることができる。
Hereinafter, the first outlet provided on the first protruding body 23b (23b-2 in FIG. 3) and the second outlet provided on the second protruding body 23c (second outlet 23c-2 in FIG. 3) will be collectively referred to as "suction side". ``Two outlets of socket 23''. When the diameter of the discharge port is set to a predetermined value and the amount of filtrate per unit time by the filtration membrane (22, 122) is set to a predetermined value, the conditions for the flow rate of treated water per unit time passing through the discharge port As such, it is necessary to adopt the following conditions. That is, the amount of treated water flowing into the outlet of the filtration membrane unit 121 according to the first comparative example is approximately equal to the amount of treated water flowing into each of the "two outlets of the suction side socket 23" according to the embodiment. The condition is to set it twice. Under such conditions, the flow path resistance of the treated water in the filtration membrane unit 21 is made smaller than in the first comparative example, compared to the configuration described in Patent Document 1, which has only one discharge port (filtrate outlet). Therefore, the power of a suction power machine such as a suction pump (9 in FIG. 1) can be made smaller, and energy saving can be achieved.
第1出口(図3の23b-2)及び第2出口(図3の23c-2)のそれぞれについては、図3に示される態様とは異なり、突出体(23b、23c)の周面における所定位置に配置してもよい(以下、この配置を周面配置と言う)。但し、図3に示されるように、突出体(23b、23c)の先端面に、第1出口23b-2及び第2出口23c-2のそれぞれを配置(以下、この配置を先端面配置と言う)することがより望ましい。これは、次に説明する理由による。即ち、周面配置では、突出体(23b-2、23c-2)の中空(23b-1、23c-1)内における処理済水の流れを、排出口(第1出口23b-2、第2出口23c-2)に至る直前で約90〔°〕の角度で方向転換させる必要がある。これにより、濾過膜ユニット21の流路抵抗を高めてしまう。これに対し、先端面配置では、突出体(23b-2、23c-2)の中空(23b-1、23c-1)内における処理済水の流れ方向と、排出口(第1出口23b-2、第2出口23c-2)を通るときの処理済水の流れ方向とを同方向にする。このため、周面配置とは異なり、中空(23b-1、23c-1)内で処理済水の流れを大きく方向転換させることがなくなるので、周面配置に比べて、流路抵抗を小さくすることができる。
Unlike the embodiment shown in FIG. 3, each of the first outlet (23b-2 in FIG. 3) and the second outlet (23c-2 in FIG. 3) (hereinafter, this arrangement will be referred to as peripheral arrangement). However, as shown in FIG. 3, the first outlet 23b-2 and the second outlet 23c-2 are arranged on the tip surface of the protrusion (23b, 23c) (hereinafter, this arrangement is referred to as the tip surface arrangement). ) is more desirable. This is due to the reason explained below. That is, in the circumferential arrangement, the flow of treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) is directed to the discharge ports (first outlet 23b-2, second outlet It is necessary to change direction at an angle of about 90 degrees just before reaching the exit 23c-2). This increases the flow path resistance of the filtration membrane unit 21. On the other hand, in the distal end arrangement, the flow direction of the treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) and the discharge port (first outlet 23b-2) , the flow direction of the treated water when passing through the second outlet 23c-2) is the same direction. Therefore, unlike the circumferential arrangement, there is no need to change the direction of the flow of the treated water in the hollows (23b-1, 23c-1), so the flow path resistance is reduced compared to the circumferential arrangement. be able to.
図5は、実施形態に係る濾過システム31を示す斜視図である。濾過システム31は、複数の濾過膜ユニット21と、複数の濾過膜ユニット21を保持する保持体40とを備える。保持体40の形状は枠状であり、保持体40は枠内に複数の濾過膜ユニット21を保持する。また、保持体40は、集水カセット41と、ブラインドカセット60と、第1サイドカバー65と、第2サイドカバー66とを備える。
FIG. 5 is a perspective view showing the filtration system 31 according to the embodiment. The filtration system 31 includes a plurality of filtration membrane units 21 and a holder 40 that holds the plurality of filtration membrane units 21. The shape of the holder 40 is a frame, and the holder 40 holds a plurality of filtration membrane units 21 within the frame. The holding body 40 also includes a water collection cassette 41, a blind cassette 60, a first side cover 65, and a second side cover 66.
図6は、実施形態に係る濾過システム31を示す分解斜視図である。保持体(図5の40)は、扁平直方体状の集水カセット41と、平板状の第1サイドカバー65と、扁平直方体状のブラインドカセット60と、平板状の第2サイドカバー66とが枠状に組み合わさって形成されたものである。同図に示される状態とは異なり、複数の濾過膜ユニット21が存在しない状態では、集水カセット41とブラインドカセット60とが相対向する。加えて、前記状態では、第1サイドカバー65と第2サイドカバー66とが、集水カセット41とブラインドカセット60との対向方向と直交する方向に相対向する。
FIG. 6 is an exploded perspective view showing the filtration system 31 according to the embodiment. The holder (40 in FIG. 5) is composed of a flat rectangular parallelepiped-shaped water collection cassette 41, a flat plate-shaped first side cover 65, a flat rectangular parallelepiped-shaped blind cassette 60, and a flat plate-shaped second side cover 66. It is formed by combining the shapes. Unlike the state shown in the figure, in a state where a plurality of filtration membrane units 21 are not present, the water collection cassette 41 and the blind cassette 60 face each other. Additionally, in the above state, the first side cover 65 and the second side cover 66 face each other in a direction perpendicular to the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
集水カセット41及びブラインドカセット60のそれぞれは、自己の長手方向を、第1サイドカバー65と第2サイドカバー66との対向方向に沿わせる態様で配置される。一方、第1サイドカバー65及び第2サイドカバー66のそれぞれは、自己の長手方向を、集水カセット41とブラインドカセット60との対向方向に沿わせる態様で配置される。
Each of the water collection cassette 41 and the blind cassette 60 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the first side cover 65 and the second side cover 66 face each other. On the other hand, each of the first side cover 65 and the second side cover 66 is arranged such that its longitudinal direction is aligned with the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
図7は、保持体(図5の40)の集水カセット41を示す斜視図である。集水カセット41は、天板42と、底板45と、第1長尺側板43と、第2長尺側板44と、長尺側板(43、44)よりも短尺の第1短尺側板46及び第2短尺側板47とが、扁平直方体状に組み合わさって形成されたものである。天板42と底板45とは、相対向する。水処理施設においては、同図に示されるように、天板42と底板45とを重力方向に沿った上下方向に並べる態様で、集水カセット41が配置される。
FIG. 7 is a perspective view showing the water collection cassette 41 of the holder (40 in FIG. 5). The water collection cassette 41 includes a top plate 42, a bottom plate 45, a first long side plate 43, a second long side plate 44, a first short side plate 46 shorter than the long side plates (43, 44), and a first short side plate 46, which is shorter than the long side plates (43, 44). Two short side plates 47 are combined to form a flat rectangular parallelepiped shape. The top plate 42 and the bottom plate 45 face each other. In the water treatment facility, as shown in the figure, the water collection cassette 41 is arranged in such a manner that the top plate 42 and the bottom plate 45 are arranged vertically along the direction of gravity.
第1長尺側板43及び第2長尺側板44のそれぞれは、自己の長手方向を、第1短尺側板46及び第2短尺側板47のそれぞれにおける短手方向に沿わせる態様で配置される。一方、第1短尺側板46及び第2短尺側板47のそれぞれは、自己の長手方向を、天板42と底板45との対向方向に沿わせる態様で配置される。
Each of the first long side plate 43 and the second long side plate 44 is arranged in such a manner that its longitudinal direction is along the short side direction of the first short side plate 46 and the second short side plate 47, respectively. On the other hand, each of the first short side plate 46 and the second short side plate 47 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the top plate 42 and the bottom plate 45 face each other.
第1短尺側板46のおもて面には、前記おもて面から突出する第1固定部48が設けられる。また、第2短尺側板47のおもて面には、前記おもて面から突出する第2固定部49が設けられる。
A first fixing portion 48 protruding from the front surface is provided on the front surface of the first short side plate 46. Furthermore, a second fixing portion 49 is provided on the front surface of the second short side plate 47 and protrudes from the front surface.
以下、枠状の保持体(図5の40)の枠構造を、単に「枠」と言う。第1長尺側板43は、第2長尺側板44よりも「枠」の内側に位置する。第1長尺側板43は、濾過膜ユニット(図6の21)における長手方向の一端部を保持する側板として機能する。
Hereinafter, the frame structure of the frame-shaped holder (40 in FIG. 5) will be simply referred to as a "frame." The first elongated side plate 43 is located inside the "frame" than the second elongated side plate 44. The first elongated side plate 43 functions as a side plate that holds one longitudinal end of the filtration membrane unit (21 in FIG. 6).
第1長尺側板43は、第1突出体(図3の23b)及び第2突出体(図3の23c)のうち、何れか一方を挿入される挿入孔と、第1突出体及び第2突出体のうち、前記挿入孔に挿入されない方を挿入される挿入孔とからなる孔対を複数備える。複数の孔対のそれぞれにおいて、2つの挿入孔の距離は、互いに同じである。
The first elongated side plate 43 has an insertion hole into which one of the first protrusion (23b in FIG. 3) and the second protrusion (23c in FIG. 3) is inserted, and the first and second protrusion. A plurality of hole pairs are provided in which one of the protruding bodies is not inserted into the insertion hole and the other is inserted into the insertion hole. In each of the plurality of hole pairs, the distance between the two insertion holes is the same.
図6に示されるように、孔対の2つの挿入孔のそれぞれは、第1長尺側板43の短手方向(図6の上下方向)に沿って並ぶ。第1突出体23b及び第2突出体23cのうち、何れか一方は、孔対の2つの挿入孔の何れか一方に挿入され、他方の突出体は、他方の挿入孔に挿入される。
As shown in FIG. 6, the two insertion holes of the hole pair are arranged along the short direction of the first long side plate 43 (vertical direction in FIG. 6). One of the first protruding body 23b and the second protruding body 23c is inserted into one of the two insertion holes of the hole pair, and the other protruding body is inserted into the other insertion hole.
図2に示されるように、遮蔽側ソケット24の2つの突出体24bのそれぞれの形状は、正方体状又は直方体状である。2つの突出体24bは、濾過膜ユニット(図6の21)の長手方向の他端部をブラインドカセット(図6の60)に位置決めしつつ、前記他端部をブラインドカセットに保持させるためのものである。
As shown in FIG. 2, each of the two protrusions 24b of the shielding socket 24 has a square or rectangular parallelepiped shape. The two protrusions 24b are for positioning the other longitudinal end of the filtration membrane unit (21 in FIG. 6) in the blind cassette (60 in FIG. 6) and holding the other end in the blind cassette. It is.
吸引側ソケット23において、ソケット本体23aと一体形成される2つの突出体(23b、23c)のそれぞれの形状は、管状である。
以下、各部材において、平板状の濾過膜22の厚み方向に沿った方向の長さを幅と言う。濾過膜22の濾過性能を効率よく引き出すためには、吸引側ソケット23の2つの突出体(23b、23c)の内径を、濾過膜22の幅と同じにすることが望ましい。すると、図2に示されるように、2つの突出体(23b23c)のそれぞれの管周壁が、ソケット本体23aから幅方向に出っ張る。即ち、2つの突出体(23b、23c)の外径が、ソケット本体23aの幅よりも大きくなる。 In thesuction side socket 23, each of the two protrusions (23b, 23c) formed integrally with the socket main body 23a has a tubular shape.
Hereinafter, in each member, the length in the thickness direction of theflat filter membrane 22 will be referred to as width. In order to efficiently bring out the filtration performance of the filtration membrane 22, it is desirable that the inner diameters of the two protrusions (23b, 23c) of the suction side socket 23 be the same as the width of the filtration membrane 22. Then, as shown in FIG. 2, the respective tube peripheral walls of the two protrusions (23b23c) protrude from the socket body 23a in the width direction. That is, the outer diameters of the two protrusions (23b, 23c) are larger than the width of the socket body 23a.
以下、各部材において、平板状の濾過膜22の厚み方向に沿った方向の長さを幅と言う。濾過膜22の濾過性能を効率よく引き出すためには、吸引側ソケット23の2つの突出体(23b、23c)の内径を、濾過膜22の幅と同じにすることが望ましい。すると、図2に示されるように、2つの突出体(23b23c)のそれぞれの管周壁が、ソケット本体23aから幅方向に出っ張る。即ち、2つの突出体(23b、23c)の外径が、ソケット本体23aの幅よりも大きくなる。 In the
Hereinafter, in each member, the length in the thickness direction of the
かかる構成では、濾過システム(図5の31)の小型化が困難になる。具体的には、濾過システムの小型化を図るためには、複数の濾過膜ユニット(図6の21)の並び方向における配設ピッチを、できるだけ小さくすることが望ましい。そして、前述の配設ピッチの狭小化は、吸引側ソケット23の2つの突出体(23b、23c)のそれぞれの外径によって制約を受ける。
With such a configuration, it becomes difficult to downsize the filtration system (31 in FIG. 5). Specifically, in order to reduce the size of the filtration system, it is desirable to make the pitch in the arrangement direction of the plurality of filtration membrane units (21 in FIG. 6) as small as possible. The aforementioned narrowing of the arrangement pitch is restricted by the respective outer diameters of the two protrusions (23b, 23c) of the suction side socket 23.
前述の配設ピッチの狭小化が、突出体(23b、23c)の外径によって制約を受ける理由は、次の通りである。即ち、第1長尺側板(図7の43)に複数設けられる孔対のそれぞれは、2つの挿入孔のうち、第1長尺側板(43)の短手方向の一方側に位置する挿入孔を、第1長尺側板(43)の長手方向に沿って並べる。加えて、複数の孔対のそれぞれは、2つの挿入孔のうち、第1長尺側板(43)の短手方向の他方側に位置する挿入孔も、第1長尺側板(43)の長手方向に沿って並べる。以下、前記長手方向に沿って互いに隣り合う2つの挿入孔を、「2つの隣設挿入孔」と言う。濾過システム(図5の31)の小型化により、複数の濾過膜ユニット(図6の21)の配設ピッチ(第1長尺側板43の長手方向に沿った配設ピッチ)が小さくなるにつれて、「2つの隣設挿入孔」の距離が短くなる。この距離が過剰に短くなると、第1長尺側板(43)の孔間部分(「2つの隣設挿入孔」の間の部分)の孔間長さが過剰に小さくなって、孔間部分において必要な強度が得られなくなる。第1長尺側板(43)の前述の孔間部分において、最低限の強度が得られる孔間長さ(狭小限界値)は、第1長尺側板(43)の材質及び厚みが同じであれば一定である。一方で、複数の濾過膜ユニット21の配設ピッチが同じであっても、突出体(23b、23c)の外径が異なれば、前述の孔間長さが異なる。突出体(23b、23c)の外径が大きくなるほど、孔間長さが小さくなる(孔間部分の強度が低くなる)。よって、挿入孔の配設ピッチの狭小化が、突出体(23b、23c)の外径によって制約を受けることになる。
The reason why the aforementioned narrowing of the arrangement pitch is restricted by the outer diameter of the protrusions (23b, 23c) is as follows. That is, each of the plurality of hole pairs provided in the first long side plate (43 in FIG. 7) is an insertion hole located on one side in the short direction of the first long side plate (43) among the two insertion holes. are arranged along the longitudinal direction of the first long side plate (43). In addition, in each of the plurality of hole pairs, the insertion hole located on the other side in the lateral direction of the first elongated side plate (43) out of the two insertion holes is also located on the other side in the lateral direction of the first elongated side plate (43). Arrange along the direction. Hereinafter, two insertion holes adjacent to each other along the longitudinal direction will be referred to as "two adjacent insertion holes." As the filtration system (31 in FIG. 5) becomes smaller, the arrangement pitch (the arrangement pitch along the longitudinal direction of the first long side plate 43) of the plurality of filtration membrane units (21 in FIG. 6) becomes smaller. The distance between "two adjacent insertion holes" becomes shorter. If this distance becomes excessively short, the length between the holes of the first long side plate (43) (the portion between "two adjacent insertion holes") becomes excessively small, and the length between the holes of the first long side plate (43) becomes excessively small. The necessary strength cannot be obtained. In the above-mentioned hole portion of the first long side plate (43), the hole length (narrow limit value) that provides the minimum strength is the same even if the material and thickness of the first long side plate (43) are the same. is constant. On the other hand, even if the arrangement pitch of the plurality of filtration membrane units 21 is the same, if the outer diameters of the protrusions (23b, 23c) are different, the above-mentioned inter-hole lengths will be different. As the outer diameter of the protrusion (23b, 23c) becomes larger, the length between the holes becomes smaller (the strength of the portion between the holes becomes lower). Therefore, the narrowing of the arrangement pitch of the insertion holes is restricted by the outer diameter of the protrusions (23b, 23c).
そこで、実施形態に係る濾過膜ユニット21の吸引側ソケット(23)においては、2つの突出体(23b、23c)のそれぞれが、図3に示される態様で配置される。具体的には、ソケット本体23aの延在方向の中心(一点鎖線L1によって示される位置)から第1突出体23bまでの距離αと、前記中心から第2突出体23cまでの距離βとを互いに異ならせる(α<β)態様である。かかる構成では、第1長尺側板(43)の孔間部分の孔間長さを狭小限界値まで狭小化しつつ、距離αと距離βとを互いに同じにする場合に比べて、複数の濾過膜ユニット(21)の配設ピッチを小さくするという効果を奏することができる。
Therefore, in the suction side socket (23) of the filtration membrane unit 21 according to the embodiment, each of the two protrusions (23b, 23c) is arranged in the manner shown in FIG. 3. Specifically, the distance α from the center in the extending direction of the socket body 23a (the position indicated by the dashed line L1) to the first protrusion 23b and the distance β from the center to the second protrusion 23c are set to each other. This is an embodiment in which they are different (α<β). In such a configuration, compared to the case where the length between the holes of the first elongated side plate (43) is narrowed to the narrowing limit value, and the distance α and the distance β are made the same, it is possible to reduce the distance between the plurality of filter membranes. The effect of reducing the arrangement pitch of the units (21) can be achieved.
前述の効果を奏することができる理由は、以下に説明する通りである。即ち、図7に示される第1長尺側板43に設けられる複数の孔対は、2つの種類のものが存在する。複数の孔対のうち第1種類に分類されるのが第1種孔対43cであり、第2種類に分類されるのが第2種孔対43fである。第1種孔対43cと、第2種孔対43fとは、第1長尺側板43の長手方向(図7では上下方向)に沿って交互に配置される。第1種孔対43cにおける2つの挿入孔(43a、43b)の距離と、第2種孔対43fにおける2つの挿入孔(43d、43e)の距離とは、互いに同じである。第1種孔対43cの2つの挿入孔(43a、43b)のうち、第1長尺側板43の短手方向の一方側(図7では上側)に位置する挿入孔43aは、第1長尺側板43の面内において第1長尺側板43の短手方向に沿った所定の第1位置に配置される。この第1位置は、図7において一点鎖線L2によって示される。第2種孔対43fの2つの挿入孔(43d、43e)のうち、第1長尺側板43の短手方向の一方側(図7では上側)に位置する挿入孔43dは、第1長尺側板43の面内において第1長尺側板43の短手方向に沿った所定の第2位置に配置される。この第2位置は、図7において一点鎖線L3で示される。第1長尺側板43の短手方向において、前述の第1位置と第2位置とは、互いに異なる。
The reason why the above-mentioned effects can be achieved is as explained below. That is, there are two types of hole pairs provided in the first long side plate 43 shown in FIG. Among the plurality of hole pairs, the first type hole pair 43c is classified as the first type, and the second type hole pair 43f is classified as the second type. The first type hole pairs 43c and the second type hole pairs 43f are arranged alternately along the longitudinal direction (vertical direction in FIG. 7) of the first long side plate 43. The distance between the two insertion holes (43a, 43b) in the first type hole pair 43c and the distance between the two insertion holes (43d, 43e) in the second type hole pair 43f are the same. Of the two insertion holes (43a, 43b) of the first type hole pair 43c, the insertion hole 43a located on one side (upper side in FIG. 7) in the lateral direction of the first elongated side plate 43 is the first elongated hole pair 43c. It is arranged at a predetermined first position along the lateral direction of the first long side plate 43 within the plane of the side plate 43 . This first position is indicated by a dashed line L2 in FIG. Of the two insertion holes (43d, 43e) of the second type hole pair 43f, the insertion hole 43d located on one side (upper side in FIG. 7) in the transverse direction of the first elongated side plate 43 is the first elongated hole pair 43f. It is arranged at a predetermined second position along the lateral direction of the first long side plate 43 within the plane of the side plate 43 . This second position is indicated by a dashed line L3 in FIG. In the lateral direction of the first elongated side plate 43, the above-mentioned first position and second position are different from each other.
第1種孔対43cに対しては、所定の第1姿勢をとる濾過膜ユニット(21)の2つの突出体(23b、23c)が挿入される。これに対し、第2種孔対43fに対しては、所定の第2姿勢をとる濾過膜ユニット(21)の2つの突出体(23b、23c)が挿入される。第1姿勢をとる濾過膜ユニット(21)と、第2姿勢をとる濾過膜ユニット(21)とは、吸引側ソケット(23)の延在方向の中心と、遮蔽側ソケット(24)の延在方向の中心とを通る軸線(図2の一点鎖線L4)を基準にした点対称の位置(180°回転した位置)にある。
Two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined first posture are inserted into the first type hole pair 43c. On the other hand, two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined second attitude are inserted into the second type hole pair 43f. The filtration membrane unit (21) that takes the first attitude and the filtration membrane unit (21) that takes the second attitude are located between the center of the suction side socket (23) in the extending direction and the extension of the shielding side socket (24). It is located at a point-symmetrical position (180° rotated position) with respect to the axis passing through the center of the direction (dotted chain line L4 in FIG. 2).
以下、各部材において、第1長尺側板43の短手方向に沿った位置ずれを、単に位置ずれと言う。第1種孔対43cの2つの挿入孔(43a、43b)のうち、上述の第1位置(一点鎖線l2)に配置される挿入孔43aと、第2種孔対43fの2つの挿入孔(43d、43e)のうち、上述の第2位置(一点鎖線L2)に配置される挿入孔43eとは、互いに位置ずれしている。互いに隣り合う2つの濾過膜ユニット(21)の一方は、吸引側ソケット(23)の2つの突出体(23b、23c)を第1種孔対43cの2つの挿入孔(43a、43b)に挿入している。他方の濾過膜ユニット(21)は、吸引側ソケット(23)の2つの突出体(23b、23c)を第2種孔対の2つの挿入孔(43d、43e)に挿入している。
Hereinafter, in each member, the positional deviation of the first elongated side plate 43 along the short direction will be simply referred to as positional deviation. Among the two insertion holes (43a, 43b) of the first type hole pair 43c, the insertion hole 43a located at the above-mentioned first position (dotted chain line l2) and the two insertion holes (43a, 43b) of the second type hole pair 43f 43d, 43e), the insertion hole 43e located at the second position (dotted chain line L2) is shifted from the insertion hole 43e. One of the two adjacent filtration membrane units (21) inserts the two protrusions (23b, 23c) of the suction side socket (23) into the two insertion holes (43a, 43b) of the first type hole pair 43c. are doing. In the other filtration membrane unit (21), the two protrusions (23b, 23c) of the suction side socket (23) are inserted into the two insertion holes (43d, 43e) of the second type hole pair.
かかる構成では、第1長尺側板43の長手方向において、「2つの隣設挿入孔」のうち、一方側に位置する隣設挿入孔の他方側の端を、他方側に位置する隣設挿入孔の一方側の端よりも他方側に位置させつつ、第1長尺側板43の孔間部分を確保することが可能である。より詳しくは、図7においては、第1長尺側板43の長手方向が、図7の左右方向に概ね沿っている(厳密には、前記長手方向は図7の左右方向から僅かに傾いている)ので、以下、第1長尺側板43の長手方向を、図7の左右方向として説明する。例えば、第1長尺側板43に設けられる複数の孔対のうち、図中の左右方向の最も左側に位置する第1種孔対43cの挿入孔43aと、これに対して左右方向の右側で隣り合っている第2種孔対43fの挿入孔43dとを「2つの隣設挿入孔」として着目してみる。第1種孔対43cの挿入孔43aは、第2種孔対43fの挿入孔43dよりも図中の左右方向の左側に位置する。つまり、第1種孔対43cの挿入孔43aを、「2つの隣設挿入孔」のうち、第1長尺側板43の長手方向の他方側に位置する隣設挿入孔とし、第2種孔対43fの挿入孔43dを、前記長手方向の一方側に位置する隣設挿入孔とする例について着目している。この例では、第2種孔対43fの挿入孔43dの左側(他方側)の端を、第1種孔対43cの挿入孔43aの右側(一方側)の端よりも左側に位置させている。このような位置関係を保ちつつ、第1長尺側板43においては、挿入孔43aと挿入孔43dとの間の孔間部分が確保されている。挿入孔43aと挿入孔43dとの位置ずれ量が大きくなるほど、前述の孔間部分の孔間長さが大きくなる。このため、吸引側ソケット(23)の2つの突出体(23b、23c)を大径化させたり、複数の濾過膜ユニット(21)の配設ピッチを狭小化させたりしても、前述の位置ずれ量をより大きくすることで、孔間長さを狭小限界値と同等以上にすることが可能である。
In this configuration, in the longitudinal direction of the first long side plate 43, the other end of the adjacent insertion hole located on one side of the "two adjacent insertion holes" is connected to the adjacent insertion hole located on the other side. It is possible to secure the portion between the holes of the first elongated side plate 43 while locating it on the other side of the hole rather than one end of the hole. More specifically, in FIG. 7, the longitudinal direction of the first long side plate 43 is generally along the left-right direction in FIG. 7 (strictly speaking, the longitudinal direction is slightly inclined from the left-right direction in FIG. 7). ) Therefore, hereinafter, the longitudinal direction of the first long side plate 43 will be described as the left-right direction in FIG. 7. For example, among the plurality of hole pairs provided in the first elongated side plate 43, the insertion hole 43a of the first type hole pair 43c located on the leftmost side in the left-right direction in the figure, and the insertion hole 43a on the right side in the left-right direction in the figure. Let's focus on the insertion holes 43d of the adjacent second type hole pair 43f as "two adjacent insertion holes." The insertion hole 43a of the first seed hole pair 43c is located on the left side in the left-right direction in the figure than the insertion hole 43d of the second seed hole pair 43f. In other words, the insertion hole 43a of the first type hole pair 43c is the adjacent insertion hole located on the other side in the longitudinal direction of the first long side plate 43 among the two adjacent insertion holes, and the second type hole Attention is focused on an example in which the insertion holes 43d of the pair 43f are adjacent insertion holes located on one side in the longitudinal direction. In this example, the left (other side) end of the insertion hole 43d of the second type hole pair 43f is located to the left of the right (one side) end of the insertion hole 43a of the first type hole pair 43c. . While maintaining such a positional relationship, in the first elongated side plate 43, an inter-hole portion between the insertion hole 43a and the insertion hole 43d is secured. As the amount of positional deviation between the insertion hole 43a and the insertion hole 43d becomes larger, the inter-hole length of the above-mentioned inter-hole portion becomes larger. Therefore, even if the diameter of the two protrusions (23b, 23c) of the suction side socket (23) is increased or the arrangement pitch of the plurality of filtration membrane units (21) is narrowed, the above-mentioned position By increasing the amount of deviation, it is possible to make the length between the holes equal to or greater than the narrowing limit value.
よって、濾過システム31によれば、複数の濾過膜ユニット21の位置ずれ(第1長尺側板43の短手方向に沿った位置ずれ)を引き起こすことなく、複数の濾過膜ユニット21の配設ピッチを狭小化させて、濾過システム31の小型化を図ることができる。加えて、濾過システム31によれば、吸引側ソケット(23)の2つの突出体(23b、23c)を大径化させて、濾過膜22の濾過性能を向上させることもできる。
Therefore, according to the filtration system 31, the arrangement pitch of the plurality of filtration membrane units 21 can be adjusted without causing positional displacement of the plurality of filtration membrane units 21 (positional displacement along the short direction of the first long side plate 43). The filtration system 31 can be made smaller by narrowing the filtration system 31. In addition, according to the filtration system 31, the filtration performance of the filtration membrane 22 can be improved by increasing the diameter of the two protrusions (23b, 23c) of the suction side socket (23).
図6に示されるブラインドカセット60は、複数の濾過膜ユニット21との対向面に、複数の遮蔽側挿入孔(不図示)を備える。それらの遮蔽側挿入孔は、濾過膜ユニット21の遮蔽側ソケット24の突出体24bを挿入するための挿入孔である。遮蔽側ソケット24の2つの突出体24bのそれぞれが、前記対向面に設けられた遮蔽側挿入孔に挿入されることで、濾過膜ユニット21の長手方向における他方側の端部がブラインドカセット60に対して位置決めされる。加えて、濾過膜ユニット21の長手方向における他方側の端部が、ブラインドカセット60に保持される。
The blind cassette 60 shown in FIG. 6 includes a plurality of shielding-side insertion holes (not shown) on the surface facing the plurality of filtration membrane units 21. These shield-side insertion holes are insertion holes into which the protrusion 24b of the shield-side socket 24 of the filtration membrane unit 21 is inserted. By inserting each of the two protrusions 24b of the shielding side socket 24 into the shielding side insertion hole provided on the opposing surface, the other end in the longitudinal direction of the filtration membrane unit 21 is inserted into the blind cassette 60. It is positioned against. In addition, the other end of the filter membrane unit 21 in the longitudinal direction is held in the blind cassette 60.
なお、ブラインドカセット60における複数の濾過膜ユニット21との対向面に複数の遮蔽側挿入孔を配置し、濾過膜ユニット21の遮蔽側ソケット24に2つの突出体24bを設けた例について説明したが、遮蔽側挿入孔、及び突出体24bの付設を省略してもよい。この場合、例えば、次のようなゴム製部材を用いることで、複数の濾過膜ユニット21のそれぞれにおける長手方向の他方側(遮蔽側)の端部を保持することが可能である。即ち、ブラインドカセット60の長手方向に沿って延びるベース板と、ベース板の表面から突出しつつ、ブラインドカセット60の長手方向に沿って所定の配設ピッチで並ぶ複数の仕切板とを備えるゴム製部材である。このゴム製部材における互いに隣り合う2つの仕切板に、濾過膜ユニット21の遮蔽側ソケット24を挟み込ませればよい。
Although an example has been described in which a plurality of shielding side insertion holes are arranged on the face of the blind cassette 60 facing the plurality of filtration membrane units 21, and two protrusions 24b are provided in the shielding side socket 24 of the filtration membrane unit 21. , the shield-side insertion hole, and the protrusion 24b may be omitted. In this case, for example, by using the following rubber member, it is possible to hold the end of each of the plurality of filtration membrane units 21 on the other side (shielding side) in the longitudinal direction. That is, the rubber member includes a base plate extending along the longitudinal direction of the blind cassette 60, and a plurality of partition plates that protrude from the surface of the base plate and are arranged at a predetermined arrangement pitch along the longitudinal direction of the blind cassette 60. It is. The shield-side socket 24 of the filtration membrane unit 21 may be sandwiched between two adjacent partition plates of this rubber member.
また、濾過膜22の形状が平板状である例について説明したが、濾過膜22の形状は平板状に限られず、例えば波板状などでもよい。
Furthermore, although an example in which the filtration membrane 22 has a flat plate shape has been described, the shape of the filtration membrane 22 is not limited to a flat plate shape, and may be, for example, a corrugated plate shape.
濾過膜ユニット21に対しては、濾過膜ユニット21の周囲に存在する原水(W1)の流れ、気泡発生装置90から放出される気泡などにより、応力が加えられる。この応力により、濾過膜ユニット21には、濾過膜22の短手方向を、集水カセット41及びブラインドカセット60のそれぞれの短手方向(図6では上下方向)から傾けようとする力(スキュー力)が加えられる。このスキュー力により、濾過膜22の全域のうち、吸引側ソケット23の第1突出体23bに近い領域、吸引側ソケットの第2突出体23cに近い領域、及び遮蔽側ソケット24の2つの突出体24bに近い領域には、大きな力が加わる。以下、前述の4つの領域をまとめて突出体近傍領域という。
Stress is applied to the filtration membrane unit 21 by the flow of raw water (W 1 ) existing around the filtration membrane unit 21, bubbles released from the bubble generator 90, and the like. Due to this stress, the filtration membrane unit 21 is subjected to a force (skew force) that tends to tilt the lateral direction of the filtration membrane 22 from the lateral direction of each of the water collection cassette 41 and the blind cassette 60 (vertical direction in FIG. 6). ) is added. Due to this skew force, out of the entire area of the filtration membrane 22, the area near the first protrusion 23b of the suction side socket 23, the area near the second protrusion 23c of the suction side socket, and the two protrusions of the shielding side socket 24 are affected. A large force is applied to the region close to 24b. Hereinafter, the above-mentioned four regions will be collectively referred to as a region near the protrusion.
図3に示されるように、吸引側ソケット23の第1突出体23bは、濾過膜(22)の短手方向(図3における上下方向)において、第2突出体23cよりも一方側(同図の上側)にずれた位置に配置される(以下、このずれの量を「第1ずれ量」と言う)。更に、第1突出体23bは、前記短手方向において、ソケット本体23aの一方側(図3における上側)の端よりも、ソケット本体23aの中心の側にずれた位置に配置される(以下、このずれの量を「第2ずれ量」と言う)。
As shown in FIG. 3, the first protruding body 23b of the suction side socket 23 is located on one side (in the same figure) of the second protruding body 23c in the transverse direction (vertical direction in FIG. 3) of the filtration membrane (22). (hereinafter, this amount of deviation will be referred to as the "first deviation amount"). Furthermore, the first protruding body 23b is disposed at a position shifted toward the center of the socket body 23a from one end (the upper side in FIG. 3) of the socket body 23a in the lateral direction (hereinafter referred to as This amount of deviation is referred to as the "second deviation amount").
以下、遮蔽側ソケット24に設けられる2つの突出体24bのうち、濾過膜(22)の短手方向(同図の上下方向)において一方側(同図の上側)に位置する方を、「一方側の突出体24b」と言う。また、2つの突出体24bのうち、前記短手方向において他方側(同図の下側)に位置する方を、「他方側の突出体24b」と言う。「一方側の突出体24b」は、ソケット本体(24a)の延在方向における一方側の端(同図における上端)よりも他方側(同図における下側)にずれた位置に存在する(以下、このずれの量を「第3ずれ量」と言う)。また、「他方側の突出体24b」は、ソケット本体(24a)の延在方向における他方側の端(同図における下端)よりも一方側(同図における上側)にずれた位置に存在する(以下、このずれの量を「第4ずれ量」と言う。
Hereinafter, of the two protrusions 24b provided on the shielding socket 24, the one located on one side (upper side in the figure) in the transverse direction (vertical direction in the figure) of the filtration membrane (22) will be referred to as "one side". side protrusion 24b. Furthermore, of the two protrusions 24b, the one located on the other side (lower side in the figure) in the transverse direction is referred to as "the other protrusion 24b." "One side protrusion 24b" is located at a position shifted from one end (upper end in the figure) to the other side (lower side in the figure) in the extending direction of the socket body (24a) (hereinafter referred to as , this amount of deviation is called the "third deviation amount"). In addition, "the protrusion 24b on the other side" is located at a position shifted to one side (upper side in the figure) from the other end (lower end in the figure) in the extending direction of the socket body (24a). Hereinafter, this amount of deviation will be referred to as the "fourth deviation amount."
図3に示される例とは異なる比較例を、図3に示される例との比較対象として検討を行う。比較例においては、吸引側ソケット23の第1突出体23bが、濾過膜(22)の短手方向における一方側の端(同図における上端)に位置する。また、吸引側ソケット23の第2突出体23cは、濾過膜(22)の短手方向における他方側の端(同図における下端)に位置する。
A comparative example different from the example shown in FIG. 3 will be considered for comparison with the example shown in FIG. 3. In the comparative example, the first protruding body 23b of the suction side socket 23 is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction. Further, the second protruding body 23c of the suction side socket 23 is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
比較例の遮蔽側ソケット24においては、「一方側の突出体24b」が、濾過膜(22)の短手方向における一方側の端(同図における上端)に位置する。また、「他方側の突出体24b」が、濾過膜(22)の短手方向における他方側の端(同図における下端)に位置する。
In the shielding socket 24 of the comparative example, the "one side protrusion 24b" is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction. Moreover, "the protruding body 24b on the other side" is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
つまり、比較例においては、「第1ずれ量」、「第2ずれ量」、「第3ずれ量」、及び「第4ずれ量」が何れも、ゼロになっている。かかる構成の比較例においては、吸引側ソケット23の第1突出体24bと第2突出体24cとの距離が、実施形態に係る濾過膜ユニット21における同距離よりも長くなる。加えて、比較例においては、遮蔽側ソケット24の「一方側の突出体24b」と「他方側の突出体24b」との距離が、実施形態に係る濾過膜ユニット21における同距離よりも長くなる。このため、比較例においては、テコの原理により、濾過膜22の突出体近傍領域に加わる力が、実施形態に係る濾過膜ユニット21よりも大きくなることから、濾過膜22の破損が発生し易くなる。換言すれば、実施形態に係る濾過膜ユニット21は、濾過膜22の短手方向において、各突出体をソケットの端に配置しないことにより、スキュー力に起因する濾過膜22の破損を抑えることができる。
That is, in the comparative example, the "first shift amount", "second shift amount", "third shift amount", and "fourth shift amount" are all zero. In the comparative example with such a configuration, the distance between the first protrusion 24b and the second protrusion 24c of the suction side socket 23 is longer than the same distance in the filtration membrane unit 21 according to the embodiment. In addition, in the comparative example, the distance between the "one side protrusion 24b" and the "other side protrusion 24b" of the shielding side socket 24 is longer than the same distance in the filtration membrane unit 21 according to the embodiment. . Therefore, in the comparative example, due to the lever principle, the force applied to the region of the filtration membrane 22 near the protrusion is larger than that of the filtration membrane unit 21 according to the embodiment, so that the filtration membrane 22 is likely to be damaged. Become. In other words, in the filtration membrane unit 21 according to the embodiment, by not arranging each protrusion at the end of the socket in the lateral direction of the filtration membrane 22, damage to the filtration membrane 22 due to skew force can be suppressed. can.
実施形態に係る濾過膜ユニット21において、濾過膜22の破損を効率よく抑えるためには、「第1ずれ量」、「第2ずれ量」、「第3ずれ量」、及び「第4ずれ量」をできる限り大きくすることが望ましい。但し、吸引側ソケット23において、「第1ずれ量」や「第2ずれ量」を過剰に大きくすると、第1突出体23bからの集水量と、第2突出体23cからの集水量との均一化を図ることが困難になる。前述の均一化を図るためには、「第1ずれ量」、及び「第2ずれ量」のそれぞれを、吸引側ソケット23のソケット本体23aの延在方向の長さの1/10以下にすることが望ましい。より望ましくは、吸引側ソケット23のソケット本体23aの延在方向の長さの1/4から1/3の範囲を採用するのがよい。遮蔽側ソケット24における「第3ずれ量」、及び「第4ずれ量」も同様である。
In the filtration membrane unit 21 according to the embodiment, in order to efficiently suppress damage to the filtration membrane 22, the "first deviation amount", "second deviation amount", "third deviation amount", and "fourth deviation amount" are ” should be as large as possible. However, if the "first deviation amount" and "second deviation amount" are excessively increased in the suction side socket 23, the amount of water collected from the first protrusion 23b and the amount of water collected from the second protrusion 23c will not be equal. It will be difficult to achieve this goal. In order to achieve the above-mentioned uniformity, each of the "first deviation amount" and the "second deviation amount" is set to 1/10 or less of the length in the extending direction of the socket body 23a of the suction side socket 23. This is desirable. More desirably, a range of 1/4 to 1/3 of the length of the socket body 23a of the suction side socket 23 in the extending direction is preferably adopted. The same applies to the "third shift amount" and "fourth shift amount" in the shielding side socket 24.
濾過膜(22)の短手方向において、第1突出体23bは、ソケット本体23aの中心よりも一方側(図3では上側)にずれた位置に配置され、第2突出体23cは、前記中心よりも他方側(図3では下側)にずれた位置に配置される。かかる構成では、第1突出体23b及び第2突出体23cの両方が、前記中心よりも一方側及び他方側のうちの何れかにずれた位置に配置されることによる濾過膜ユニット(21)の突出体非配置側の振れが防止される。よって、実施形態に係る濾過膜ユニット(21)によれば、前述の振れに起因する濾過膜(22)の破損の発生を防止することができる。
In the lateral direction of the filtration membrane (22), the first protruding body 23b is disposed at a position shifted to one side (upper side in FIG. 3) from the center of the socket body 23a, and the second protruding body 23c is disposed at a position shifted from the center of the socket body 23a. It is arranged at a position shifted to the other side (lower side in FIG. 3). In such a configuration, both the first protruding body 23b and the second protruding body 23c are disposed at positions shifted from the center to either one side or the other side, thereby improving the filtration membrane unit (21). Shaking on the side where the protrusion is not arranged is prevented. Therefore, according to the filtration membrane unit (21) according to the embodiment, it is possible to prevent the filtration membrane (22) from being damaged due to the aforementioned vibration.
濾過膜22の長手方向の両側のうち、片側だけを吸引側とするいわゆる片引き方式を採用した濾過システム(31)について説明したが、両側のそれぞれを吸引側とするいわゆる両引き方式を採用してもよい。この場合、両側のそれぞれのソケットとして、同様の構成の吸引側ソケット23を設ければよい。
Although the filtration system (31) adopts the so-called single-pull method in which only one side of the longitudinal sides of the filtration membrane 22 is used as the suction side, the filtration system (31) adopts the so-called double-pull method in which each of both sides is used as the suction side. It's okay. In this case, suction side sockets 23 having a similar configuration may be provided as the respective sockets on both sides.
図8は、実施形態に係る濾過処理設備20を示す斜視図である。濾過処理設備20は、3つの濾過システム31を備える。3つの濾過システム31は、第1長尺側板(43)の短手方向に沿って並ぶ。同図においては、前記短手方向が上下方向に沿っているので、濾過処理設備20の構造は、3つの濾過システム31を上下方向に積み重ねた3段構造になっている。
FIG. 8 is a perspective view showing the filtration treatment equipment 20 according to the embodiment. The filtration treatment facility 20 includes three filtration systems 31. The three filtration systems 31 are lined up along the short direction of the first long side plate (43). In the figure, since the short side direction is along the vertical direction, the structure of the filtration treatment equipment 20 is a three-stage structure in which three filtration systems 31 are stacked in the vertical direction.
図9は、第1長尺側板(43)の短手方向の一方側(同図では上側)に配置された濾過システム(31)の集水カセット41と、前記短手方向の他方側(同図では下側)に配置された濾過システム(31)の集水カセット41と、連結管70とを示す斜視図である。連結管70は、2つの集水カセット41を連結させる役割を担う。図9に示される2つの集水カセット41のそれぞれの天板42には、3つの天板開口42aが天板42の長手方向に沿って所定間隔で並ぶ態様で配置される。天板開口42aは、第1長尺側板43の短手方向(同図では上下方向)の一方側(同図では上側)を向く。
FIG. 9 shows the water collection cassette 41 of the filtration system (31) disposed on one side (upper side in the figure) of the first long side plate (43) in the width direction and the other side (upper side in the figure) of the first elongated side plate (43). It is a perspective view which shows the water collection cassette 41 of the filtration system (31) arrange|positioned at the lower side in a figure, and the connecting pipe 70. The connecting pipe 70 plays a role of connecting the two water collection cassettes 41. In each of the top plates 42 of the two water collection cassettes 41 shown in FIG. 9, three top plate openings 42a are arranged in a manner that they are lined up at predetermined intervals along the longitudinal direction of the top plate 42. The top plate opening 42a faces one side (upper side in the figure) of the first long side plate 43 in the lateral direction (vertical direction in the figure).
集水カセット41の内部には、筒状の第1連結ソケット50が3つ配設される。これらの第1連結ソケット50は、天板42の裏面に固定されて天板開口42aに連通する。
Three cylindrical first connection sockets 50 are arranged inside the water collection cassette 41. These first connection sockets 50 are fixed to the back surface of the top plate 42 and communicate with the top plate opening 42a.
3つの集水カセット41のそれぞれの底板45には、3つの底板開口45aが底板45の長手方向に沿って所定間隔で並ぶ態様で配置される。底板開口45aは、第1長尺側板43の短手方向の他方側(同図では下側)を向く。
Three bottom plate openings 45a are arranged in the bottom plate 45 of each of the three water collection cassettes 41 so as to be lined up at predetermined intervals along the longitudinal direction of the bottom plate 45. The bottom plate opening 45a faces the other side (lower side in the figure) of the first long side plate 43 in the lateral direction.
3つの天板開口42aにおける1つと、3つの底板開口45aにおける1つとは、第1長尺側板43の短手方向に沿って相対向する。また、3つの天板開口42aにおける他の1つと、3つの底板開口45aにおける他の1つとは、前記短手方向に沿って相対向する。更に、また、3つの天板開口42aにおける最後の1つと、3つの底板開口45aにおける最後の1つとは、前記短手方向に沿って相対向する。
One of the three top plate openings 42a and one of the three bottom plate openings 45a face each other along the short direction of the first long side plate 43. Further, another one of the three top plate openings 42a and another one of the three bottom plate openings 45a face each other along the lateral direction. Furthermore, the last one of the three top plate openings 42a and the last one of the three bottom plate openings 45a face each other along the lateral direction.
集水カセット41の内部には、筒状の第2連結ソケット51が3つ配設される。これらの第2連結ソケット51は、底板45の裏面に固定されて底板開口45aに連通する。
Three cylindrical second connection sockets 51 are provided inside the water collection cassette 41. These second connection sockets 51 are fixed to the back surface of the bottom plate 45 and communicate with the bottom plate opening 45a.
同図の下側に配置される集水カセット41と、同図の上側に配置される集水カセット41とは、3つの連結管70によって連結される。連結管70は、管長さ方向を第1長尺側板43の短手方向(同図では上下方向)に沿わせる態様で配置される。連結管70における前記短手方向の一方側の端部、及び他方側の端部のそれぞれには、管周面の全周に渡って延在するリング状凹部(不図示)が配置され、それぞれのリング状凹部にはOリング71が嵌め込まれる。
The water collection cassette 41 arranged on the lower side of the figure and the water collection cassette 41 arranged on the upper side of the figure are connected by three connecting pipes 70. The connecting pipe 70 is arranged in such a manner that the pipe length direction is aligned with the lateral direction (the vertical direction in the figure) of the first elongated side plate 43. A ring-shaped recess (not shown) extending over the entire circumference of the pipe circumferential surface is arranged at one end and the other end of the connecting pipe 70 in the transverse direction, respectively. An O-ring 71 is fitted into the ring-shaped recess.
連結管70の前記短手方向の一方側(同図では上側)の端部は、同図の上側の集水カセット41の第2連結ソケット51に挿入される。また、連結管70の前記短手方向の他方側(同図では下側)の端部は、同図の上側の集水カセット41の第1連結ソケット50に挿入される。同図の上側の集水カセット41の収容空間と、同図の下側の集水カセット41の収容空間とは、3つの連結管70を通じて互いに連通する。
The one end (upper side in the figure) of the connecting pipe 70 in the lateral direction is inserted into the second connection socket 51 of the water collection cassette 41 on the upper side in the figure. Further, the other (lower side in the figure) end of the connecting pipe 70 in the lateral direction is inserted into the first connecting socket 50 of the water collection cassette 41 on the upper side of the figure. The accommodation space for the water collection cassette 41 on the upper side of the figure and the accommodation space for the water collection cassette 41 on the lower side of the figure communicate with each other through three connecting pipes 70.
なお、3段重ねで積み重ねられる3つの集水カセット41のうち、最下段の集水カセット41においては、3つの第2連結ソケット51のそれぞれに連結管70が挿入されるのではなく、それぞれの第2連結ソケット51に封止プラグ(不図示)が挿入される。これにより、最下段の集水カセット41の収容空間に発生する吸引力を、第2連結ソケット51を通じて外部に漏らしてしまうことが防止される。
Note that among the three water collection cassettes 41 stacked in three tiers, in the bottom water collection cassette 41, the connection pipes 70 are not inserted into each of the three second connection sockets 51, but are inserted into each of the three second connection sockets 51. A sealing plug (not shown) is inserted into the second connection socket 51. This prevents the suction force generated in the accommodation space of the lowermost water collection cassette 41 from leaking to the outside through the second connection socket 51.
また、3段重ねで積み重ねられる3つの集水カセット41のうち、最上段の集水カセット41においては、3つの第1連結ソケット50に連結管70が挿入されるのではなく、集水用分岐管が挿入される。これらの集水用分岐管は、1本の処理水移送管(図1の8)に連結される。
Furthermore, among the three water collection cassettes 41 that are stacked in three tiers, in the top water collection cassette 41, the connection pipes 70 are not inserted into the three first connection sockets 50, but are branched for water collection. A tube is inserted. These water collection branch pipes are connected to one treated water transfer pipe (8 in FIG. 1).
同図の下側の集水カセット41の収容空間には、この集水カセット41の第1長尺側板43によって保持される複数の濾過膜ユニット(不図示)の濾過膜を透過した処理済水が流入する。また、同図の上側の集水カセット41の収容空間には、この集水カセット41の第1長尺側板43によって保持される複数の濾過膜ユニット(不図示)の濾過膜を透過した処理済水が流入する。同図の下側の集水カセット41の収容空間に存在する処理済水は、連結管70の内部に発生する吸引力により、連結管70を通じて上側の集水カセット41の収容空間の中に吸引される。
The storage space of the water collection cassette 41 on the lower side of the figure contains treated water that has passed through the filter membranes of a plurality of filter membrane units (not shown) held by the first long side plate 43 of the water collection cassette 41. will flow in. In addition, in the storage space of the water collection cassette 41 on the upper side of the figure, treated water that has passed through the filtration membranes of a plurality of filtration membrane units (not shown) held by the first long side plate 43 of this water collection cassette 41 is stored. Water flows in. The treated water present in the accommodation space of the water collection cassette 41 on the lower side of the figure is sucked into the accommodation space of the upper water collection cassette 41 through the connection pipe 70 by the suction force generated inside the connection pipe 70. be done.
つまり、図8に示される3つの濾過システム31のそれぞれにおいては、複数の濾過膜22のそれぞれを透過した処理済水が集水カセット41に集水される。そして、3つの濾過システム31のそれぞれの集水カセット41においては、より下側に位置する集水カセット41の収容空間の中の処理済水が、より上側に位置する集水カセット41の収容空間の中に吸引される。この結果、3つの集水カセット41のそれぞれの収容空間の中に集水された処理済水は、最終的に最上段の集水カセット41の収容空間に集水された後、処理水タンク(図1の3)に移送される。
That is, in each of the three filtration systems 31 shown in FIG. 8, treated water that has passed through each of the plurality of filtration membranes 22 is collected in the water collection cassette 41. In each of the water collection cassettes 41 of the three filtration systems 31, the treated water in the storage space of the water collection cassette 41 located lower is transferred to the storage space of the water collection cassette 41 located higher. is sucked into. As a result, the treated water collected in the storage spaces of the three water collection cassettes 41 is finally collected in the storage space of the uppermost water collection cassette 41, and is then transferred to the treated water tank ( It is transferred to 3) in FIG.
図9に示される連結管70においては、上述のように、管長さ方向が、第1長尺側板43の短手方向に沿っている。連結管70の前記短手方向の一方側(同図では上側)の端部に嵌め込まれたOリング71は、第2連結ソケット51に挿入された前記端部の第2連結ソケット51からの抜けを回避するとともに、前記端部と第2連結ソケット51との密閉性を向上させる。前述の抜けをより確実に回避したり、前述の密閉性をより高めたりするために、前記短手方向に並ぶ複数のOリング71を前記端部に嵌め込んでもよい。
In the connecting pipe 70 shown in FIG. 9, the pipe length direction is along the lateral direction of the first long side plate 43, as described above. The O-ring 71 fitted into the end of the connecting pipe 70 on one side (the upper side in the figure) in the short direction prevents the end inserted into the second connecting socket 51 from coming out of the second connecting socket 51. This improves the sealing performance between the end portion and the second connection socket 51. In order to more reliably avoid the above-mentioned slippage or to further improve the above-mentioned sealing performance, a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
連結管70の前記短手方向の他方側(同図では下側)の端部に嵌め込まれたOリング71は、第1連結ソケット50に挿入された前記端部の第1連結ソケット50からの抜けを回避するとともに、前記端部と第1連結ソケット50との密閉性を向上させる。前述の抜けをより確実に回避したり、前述の密閉性をより高めたりするために、前記短手方向に並ぶ複数のOリング71を前記端部に嵌め込んでもよい。
The O-ring 71 fitted into the other (lower side in the figure) end of the connecting pipe 70 in the short direction allows the O-ring 71 to be inserted into the first connecting socket 50 at the end inserted into the first connecting socket 50. This prevents the end portion from coming off and improves the sealing performance between the end portion and the first connection socket 50. In order to more reliably avoid the above-mentioned slippage or to further improve the above-mentioned sealing performance, a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
天板開口42a、底板開口45a、第1連結ソケット50、第2連結ソケット51、及び連結管70の数は、3つに限定されない。1つ以上であればよい。
The number of the top plate opening 42a, the bottom plate opening 45a, the first connection socket 50, the second connection socket 51, and the connection pipe 70 is not limited to three. It is sufficient if there is one or more.
複数の濾過システム(31)を多段方式で積み重ねた濾過処理設備(20)について説明したが、複数の濾過システム(31)を水平方式に連結させる多連方式と、多段方式とを併用してもよい。
Although the filtration treatment equipment (20) in which a plurality of filtration systems (31) are stacked in a multi-stage system has been described, a multi-layer system in which a plurality of filtration systems (31) are connected horizontally and a multi-stage system may also be used together. good.
集水カセット41の収容空間に対しては、他の濾過システムから送られてくる濾液が略上下方向に沿って送り込まれる。この一方で、収容空間に連通する複数の濾過膜ユニットからの濾液が略水平方向に沿って送り込まれる。収容空間内においては、そのような上下方向の流れと、水平方向の流れとが相まったり、流入してくる濾液が下流側の流路に向けてスムーズに移動せずに拡散したりして、乱流を発生させ易い。乱流によって流路抵抗が増加すると、その分だけ余計な動力が必要になることから、エネルギー効率が低下してしまう。
The filtrate sent from another filtration system is sent into the accommodation space of the water collection cassette 41 along the substantially vertical direction. On the other hand, filtrate from a plurality of filtration membrane units communicating with the accommodation space is sent along a substantially horizontal direction. In the storage space, such a vertical flow and a horizontal flow may combine, or the inflowing filtrate may not move smoothly toward the downstream channel and may spread. Easy to generate turbulence. When flow path resistance increases due to turbulence, extra power is required, resulting in a decrease in energy efficiency.
そこで、実施形態に係る濾過処理設備(20)は、個々の収容空間内に誘導管を備える。図10は、誘導管150を示す斜視図である。誘導管150は、周壁に複数の貫通孔152を配置した管状部材としての円筒からなる。この誘導管150は、上部連通流路たる第1連結ソケット50と、下部連通流路たる第2連結ソケット51とに連通して第1連結ソケット50と第2連結ソケット51との間の処理済水の流通を誘導する。加えて、誘導管150は、複数の貫通孔152を通じて、集水カセット(41)の収容空間内の処理済水を自己の管内に取り込む。
Therefore, the filtration treatment equipment (20) according to the embodiment is provided with a guide pipe in each accommodation space. FIG. 10 is a perspective view showing the guide tube 150. The guide tube 150 is made of a cylinder as a tubular member with a plurality of through holes 152 arranged in the peripheral wall. The guide pipe 150 communicates with a first connecting socket 50 as an upper communication channel and a second connecting socket 51 as a lower communicating channel, and is connected between the first connecting socket 50 and the second connecting socket 51. Guide the flow of water. In addition, the guide pipe 150 takes in the treated water in the accommodation space of the water collection cassette (41) into its own pipe through the plurality of through holes 152.
図11は、上段に向けて処理済水を移送する上段移送方式における収容空間内の処理済水の流れを説明するための斜視図である。上段移送方式では、下段の収容空間から送られてくる処理済水が、第2連結ソケット51を通じて誘導管150に流入する。流入した処理済水は、誘導管150によって形成される流路によって第1連結ソケット50に向けて誘導される。このため、多くの処理済水は、第2連結ソケット51から第1連結ソケット50に向けてスムーズに流れる。この流れは、第1連結ソケット50に向かう吸引力として、誘導管150の周囲に存在する処理済水に働く。これにより、誘導管150の周囲に存在する処理済水は、図示のように斜め上方に向けて貫通孔152内に吸引される。
FIG. 11 is a perspective view for explaining the flow of treated water in the storage space in the upper stage transfer method in which treated water is transported toward the upper stage. In the upper stage transfer method, treated water sent from the lower stage storage space flows into the guide pipe 150 through the second connection socket 51. The inflowing treated water is guided toward the first connection socket 50 by a flow path formed by the guide pipe 150 . Therefore, much of the treated water smoothly flows from the second connection socket 51 to the first connection socket 50. This flow acts as a suction force toward the first connection socket 50 on the treated water present around the guide pipe 150 . As a result, the treated water existing around the guide pipe 150 is sucked diagonally upward into the through hole 152 as shown.
図12は、下段に向けて処理済水を移送する下段移送方式における収容空間内の処理済水の流れを説明するための斜視図である。下段移送方式では、上段の収容空間から送られてくる処理済水が、第1連結ソケット50を通じて誘導管150に流入する。流入した処理済水は、誘導管150によって形成される流路によって第2連結ソケット51に向けて誘導される。このため、多くの処理済水は、第1連結ソケット50から第2連結ソケット51に向けてスムーズに流れる。この流れは、第2連結ソケット51に向かう吸引力として、誘導管150の周囲に存在する処理済水に働く。これにより、誘導管150の周囲に存在する処理済水は、図示のように斜め下方に向けて貫通孔152内に吸引される。
FIG. 12 is a perspective view for explaining the flow of treated water within the storage space in a lower stage transfer method in which treated water is transported toward the lower stage. In the lower stage transfer method, treated water sent from the upper stage storage space flows into the guide pipe 150 through the first connection socket 50. The treated water that has flowed in is guided toward the second connection socket 51 by the flow path formed by the guide pipe 150 . Therefore, much of the treated water flows smoothly from the first connection socket 50 to the second connection socket 51. This flow acts on the treated water existing around the guide pipe 150 as a suction force toward the second connection socket 51 . As a result, the treated water existing around the guide pipe 150 is sucked diagonally downward into the through hole 152 as shown in the figure.
以上のように、誘導管150は、第1連結ソケット50又は第2連結ソケット51を介して誘導管150内に流入する処理済水だけではなく、誘導管150の周囲に存在する処理済水についても、望ましい方向に移動するように誘導する。かかる構成では、誘導管150によって収容空間内の処理済水の流れを好ましい方向に誘導することで、収容空間内のにおける乱流の発生を抑えて、乱流に起因するエネルギー効率の低下を抑えることができる。
As described above, the guide pipe 150 handles not only the treated water flowing into the guide pipe 150 via the first connection socket 50 or the second connection socket 51, but also the treated water existing around the guide pipe 150. It also guides you to move in the desired direction. In this configuration, by guiding the flow of treated water in the storage space in a preferable direction by the guide pipe 150, generation of turbulent flow in the storage space is suppressed, and a decrease in energy efficiency due to turbulence is suppressed. be able to.
次に、濾過処理設備(20)の実施例について説明する。なお、以下に特筆しない限り、実施例に係る濾過処理設備(20)の構成は、実施形態と同様である。
Next, an example of the filtration treatment equipment (20) will be described. Note that unless otherwise specified below, the configuration of the filtration treatment equipment (20) according to the example is the same as that in the embodiment.
実施例に係る濾過処理設備(20)の濾過システム(31)が、上下を反転させる姿勢になったとする。このように濾過システム(31)の姿勢が上下反転しても、集水カセット(41)の第1長尺側板(43)の平面上における各挿入孔の2次元レイアウトが上下反転前と同じになるように、各挿入孔が配置されている。また、集水カセット(41)においては、上下反転前に天板(42)として機能していた板材が、上下反転後に底板(45)として機能し、上下反転前に底板(45)として機能していた板材が、上下反転後に天板(42)として機能する。集水カセット(41)の長手方向の一端から他端までの領域において、上下反転前の天板(42)の3つの天板開口(42a)の相対位置と、上下反転後の天板(42)の3つの天板開口(42a)との相対位置とは、互いに同じである。このため、集水カセット41の長手方向の一端から他端までの領域において、上下反転前の底板(45)の3つの底板開口(45a)の相対位置と、上下反転後の底板(45)の3つの底板開口(45a)との相対位置とは、互いに同じである。よって、実施例に係る濾過処理設備(20)においては、濾過システム(31)の上下姿勢に気を使うことなく、濾過システム(31)を取り扱うことができる。
It is assumed that the filtration system (31) of the filtration treatment equipment (20) according to the example is in an upside-down position. Even if the posture of the filtration system (31) is flipped upside down in this way, the two-dimensional layout of each insertion hole on the plane of the first long side plate (43) of the water collection cassette (41) remains the same as before upside down. Each insertion hole is arranged so that In addition, in the water collection cassette (41), the plate material that functioned as the top plate (42) before being turned upside down functions as the bottom plate (45) after being turned upside down, and functions as the bottom plate (45) before being turned upside down. The plate material that was used as a top plate functions as a top plate (42) after being turned upside down. In the region from one longitudinal end to the other end of the water collection cassette (41), the relative positions of the three top plate openings (42a) of the top plate (42) before being turned upside down and the top plate (42) after being turned upside down are ) are the same relative to the three top plate openings (42a). Therefore, in the region from one end to the other end in the longitudinal direction of the water collection cassette 41, the relative positions of the three bottom plate openings (45a) of the bottom plate (45) before being turned upside down and the position of the bottom plate (45) after being turned upside down are The relative positions with the three bottom plate openings (45a) are the same. Therefore, in the filtration treatment equipment (20) according to the embodiment, the filtration system (31) can be handled without worrying about the vertical posture of the filtration system (31).
図13は、実施例に係る濾過処理設備(20)において互いに上下に積み重ねられる2つの集水カセット41の縦断面を、連結管70の断面とともに示す断面図である。図14は、連結管70の断面を図10よりも拡大して示す断面図である。
FIG. 13 is a cross-sectional view showing a longitudinal cross-section of two water collection cassettes 41 stacked one above the other in the filtration treatment equipment (20) according to the embodiment, along with a cross-section of the connecting pipe 70. FIG. 14 is a cross-sectional view showing a cross section of the connecting pipe 70 on a larger scale than in FIG. 10. As shown in FIG.
図14に示されるように、集水カセット41の天板42に固定される3つの第1連結ソケット50のそれぞれは、内周面にメスネジ部50aを備える。このメスネジ部50aは、管材からなる第1連結ソケット50の管長さ方向の全域のうち、上側に偏った領域に設けられる。また、集水カセット41の底板45に固定される3つの第2連結ソケット51のそれぞれは、内周面にメスネジ部51aを備える。このメスネジ部51aは、管材からなる第2連結ソケット51の管長さ方向の全域のうち、下側に偏った領域に設けられる。
As shown in FIG. 14, each of the three first connection sockets 50 fixed to the top plate 42 of the water collection cassette 41 is provided with a female screw portion 50a on the inner peripheral surface. The female threaded portion 50a is provided in an upwardly biased region of the entire length of the first connection socket 50 made of a tube material. Further, each of the three second connection sockets 51 fixed to the bottom plate 45 of the water collection cassette 41 includes a female screw portion 51a on the inner peripheral surface. The female threaded portion 51a is provided in a region biased toward the lower side of the entire length of the second connection socket 51 made of a tube material.
集水カセット41の姿勢が上下反転すると、上下反転前に天板42として機能していた板材が、底板45として機能し、且つ上下反転前に第1連結ソケット50として機能していた管材が、第2連結ソケット51として機能する。連結管70は、図14に示されるように、オスネジ部70aを外周面に備える。このオスネジ部70aは、連結管70の管長さ方向の全域のうち、一方側に偏った領域に設けられる。連結管70は、連結管70の管長さ方向の両端部のうち、オスネジ部70aを備える方の端部を、もう一方の端部よりも下側に位置させる態様で用いられる。
When the posture of the water collection cassette 41 is reversed vertically, the plate material that was functioning as the top plate 42 before being reversed vertically functions as the bottom plate 45, and the pipe material that was functioning as the first connection socket 50 before being reversed vertically, It functions as a second connection socket 51. As shown in FIG. 14, the connecting pipe 70 includes a male threaded portion 70a on its outer peripheral surface. The male threaded portion 70a is provided in a region biased to one side of the entire length of the connecting pipe 70 in the pipe length direction. The connecting pipe 70 is used in such a manner that, of both ends of the connecting pipe 70 in the pipe length direction, the end provided with the male threaded portion 70a is located below the other end.
図13において、3つの連結管70のそれぞれは、自己のオスネジ部70aを、2つの集水カセット41のうち、下側に位置する集水カセット41の第1連結ソケット50のメスネジ部50aに螺号させながら、この第1連結ソケット50に挿入される。前述の螺号により、連結管70の第1連結ソケット50内からの抜けを回避することができる。また、保守点検作業のために、上側の集水カセット41と下側の集水カセット41とを分離する場合に、3つの連結管70のそれぞれを、下側の集水カセット41に保持させた状態を確実に維持することが可能なので、保守点検の作業性を向上させることができる。
In FIG. 13, each of the three connecting pipes 70 has a male threaded portion 70a attached to the female threaded portion 50a of the first connecting socket 50 of the lower one of the two water collecting cassettes 41. It is inserted into this first connection socket 50 while doing so. The above-mentioned screw can prevent the connecting pipe 70 from coming off from the first connecting socket 50. Further, when separating the upper water collection cassette 41 and the lower water collection cassette 41 for maintenance and inspection work, each of the three connecting pipes 70 is held in the lower water collection cassette 41. Since the condition can be maintained reliably, the workability of maintenance and inspection can be improved.
濾過処理設備(20)において、3段重ねで段積みされる3つの濾過システム(31)のうち、最下段の濾過システム(31)の集水カセット41における第2連結ソケット51には、連結管70が挿入されない。その代わりに、その第2連結ソケット51には、外周面にオスネジ部を具備する封止プラグ(不図示)が挿入される。このとき、封止プラグは、自己のオスネジ部を第2連結ソケット51のメスネジ部51aに螺号させながら、第2連結ソケット51内に挿入される。このようにして第2連結ソケット51内に挿入された封止プラグは、前述の螺号により、第2連結ソケット51内からの抜けが回避される。
In the filtration treatment equipment (20), among the three filtration systems (31) stacked in three tiers, the second connection socket 51 in the water collection cassette 41 of the lowest filtration system (31) is equipped with a connection pipe. 70 is not inserted. Instead, a sealing plug (not shown) having a male thread on its outer peripheral surface is inserted into the second connection socket 51. At this time, the sealing plug is inserted into the second connection socket 51 while threading its male threaded portion into the female threaded portion 51a of the second connection socket 51. The sealing plug inserted into the second connection socket 51 in this manner is prevented from coming off from the second connection socket 51 by the aforementioned screw.
濾過処理設備(20)における3つの濾過システム(31)のうち、最上段の濾過システム(31)の集水カセット41における第1連結ソケット50には、連結管70が挿入されない。その代わりに、その第1連結ソケット50には、上述の集水用分岐管が挿入される。この集水用分岐管の外周面にはオスネジ部が設けられる。集水用分岐管は、自己のオスネジ部を第1連結ソケット50のメスネジ部に螺号させながら、第1連結ソケット50内に挿入される。このようにして第1連結ソケット50内に挿入された集水用分岐管は、前述の螺号により、第1連結ソケット50内からの抜けが回避される。
Of the three filtration systems (31) in the filtration treatment facility (20), the connection pipe 70 is not inserted into the first connection socket 50 in the water collection cassette 41 of the uppermost filtration system (31). Instead, the above-mentioned water collection branch pipe is inserted into the first connection socket 50. A male threaded portion is provided on the outer peripheral surface of this water collection branch pipe. The water collection branch pipe is inserted into the first connection socket 50 while screwing its own male thread into the female thread of the first connection socket 50. The water collection branch pipe inserted into the first connection socket 50 in this manner is prevented from coming off from the first connection socket 50 by the above-mentioned screw.
本発明は上述の実施形態、及び実施例に限られず、本発明の構成を適用し得る範囲内で、実施形態及び実施例とは異なる構成を採用することもできる。本発明は、以下に説明する態様毎に特有の作用効果を奏する。
The present invention is not limited to the above-described embodiments and examples, and configurations different from the embodiments and examples may be adopted within the scope where the configuration of the present invention is applicable. The present invention provides specific effects for each aspect described below.
〔第1態様〕
第1態様は、濾過膜(例えば濾過膜22)の内部に取り込んだ濾液を前記濾過膜の長手方向に沿って流す複数の濾過膜ユニット(例えば濾過膜ユニット21)と、複数の前記濾過膜ユニットのそれぞれから排出される濾液を収容する収容空間と、前記収容空間の上部を前記収容空間よりも上方の外部空間に連通させる上部連通流路(例えば第1連結ソケット50)と、前記収容空間の下部を前記収容空間よりも下方の外部空間に連通させる下部連通流路(例えば第2連結ソケット51)とを備える濾過システム(例えば濾過システム31)であって、周壁に複数の貫通孔(例えば貫通孔152)を配置した管状部材(例えば円筒)からなり、前記上部連通流路と前記下部連通流路とに連通して前記上部連通流路と前記下部連通流路との間の液の流通を誘導しつつ、複数の前記貫通孔を通じて、前記収容空間内の濾液を自己の内部に取り込む誘導管(例えば誘導管150)を備えることを特徴とするものである。 [First aspect]
The first aspect includes a plurality of filtration membrane units (e.g., filtration membrane unit 21) that cause the filtrate taken into the filtration membrane (e.g., filtration membrane 22) to flow along the longitudinal direction of the filtration membrane, and a plurality of the filtration membrane units. an accommodation space that accommodates the filtrate discharged from each of the accommodation spaces; an upper communication channel (for example, the first connection socket 50) that communicates the upper part of the accommodation space with an external space above the accommodation space; A filtration system (for example, a filtration system 31) comprising a lower communication channel (for example, a second connection socket 51) that communicates a lower part with an external space below the accommodation space, the filtration system having a plurality of through holes (for example, a through hole) in a peripheral wall. It is made of a tubular member (for example, a cylinder) in which holes 152) are arranged, and communicates with the upper communication channel and the lower communication channel to allow liquid to flow between the upper communication channel and the lower communication channel. The device is characterized by comprising a guide tube (for example, guide tube 150) that guides the filtrate in the accommodation space into the interior of the container through the plurality of through holes.
第1態様は、濾過膜(例えば濾過膜22)の内部に取り込んだ濾液を前記濾過膜の長手方向に沿って流す複数の濾過膜ユニット(例えば濾過膜ユニット21)と、複数の前記濾過膜ユニットのそれぞれから排出される濾液を収容する収容空間と、前記収容空間の上部を前記収容空間よりも上方の外部空間に連通させる上部連通流路(例えば第1連結ソケット50)と、前記収容空間の下部を前記収容空間よりも下方の外部空間に連通させる下部連通流路(例えば第2連結ソケット51)とを備える濾過システム(例えば濾過システム31)であって、周壁に複数の貫通孔(例えば貫通孔152)を配置した管状部材(例えば円筒)からなり、前記上部連通流路と前記下部連通流路とに連通して前記上部連通流路と前記下部連通流路との間の液の流通を誘導しつつ、複数の前記貫通孔を通じて、前記収容空間内の濾液を自己の内部に取り込む誘導管(例えば誘導管150)を備えることを特徴とするものである。 [First aspect]
The first aspect includes a plurality of filtration membrane units (e.g., filtration membrane unit 21) that cause the filtrate taken into the filtration membrane (e.g., filtration membrane 22) to flow along the longitudinal direction of the filtration membrane, and a plurality of the filtration membrane units. an accommodation space that accommodates the filtrate discharged from each of the accommodation spaces; an upper communication channel (for example, the first connection socket 50) that communicates the upper part of the accommodation space with an external space above the accommodation space; A filtration system (for example, a filtration system 31) comprising a lower communication channel (for example, a second connection socket 51) that communicates a lower part with an external space below the accommodation space, the filtration system having a plurality of through holes (for example, a through hole) in a peripheral wall. It is made of a tubular member (for example, a cylinder) in which holes 152) are arranged, and communicates with the upper communication channel and the lower communication channel to allow liquid to flow between the upper communication channel and the lower communication channel. The device is characterized by comprising a guide tube (for example, guide tube 150) that guides the filtrate in the accommodation space into the interior of the container through the plurality of through holes.
かかる構成によれば、誘導管によって収容空間内の濾液の流れを好ましい方向に誘導することで、収容空間内のにおける乱流の発生を抑えて、乱流に起因するエネルギー効率の低下を抑えることができる。
According to this configuration, by guiding the flow of the filtrate in the storage space in a preferable direction by the guide pipe, generation of turbulent flow in the storage space can be suppressed, and a decrease in energy efficiency caused by the turbulence can be suppressed. Can be done.
〔第2態様〕
第2態様は、第1態様の構成を備える濾過システムであって、互いに上下方向に沿って対向する前記上部連通流路及び前記下部連通流路の対が、前記収容空間の長手方向に沿って複数配置され、それぞれの前記対における前記上部連通流路と前記下部連通流路とを個別に連通させる複数の前記誘導管が配置されることを特徴とするものである。 [Second aspect]
A second aspect is a filtration system having the configuration of the first aspect, wherein a pair of the upper communication channel and the lower communication channel that face each other along the vertical direction are arranged along the longitudinal direction of the accommodation space. The present invention is characterized in that a plurality of guide pipes are arranged and individually communicate the upper communication channel and the lower communication channel in each pair.
第2態様は、第1態様の構成を備える濾過システムであって、互いに上下方向に沿って対向する前記上部連通流路及び前記下部連通流路の対が、前記収容空間の長手方向に沿って複数配置され、それぞれの前記対における前記上部連通流路と前記下部連通流路とを個別に連通させる複数の前記誘導管が配置されることを特徴とするものである。 [Second aspect]
A second aspect is a filtration system having the configuration of the first aspect, wherein a pair of the upper communication channel and the lower communication channel that face each other along the vertical direction are arranged along the longitudinal direction of the accommodation space. The present invention is characterized in that a plurality of guide pipes are arranged and individually communicate the upper communication channel and the lower communication channel in each pair.
かかる構成によれば、収容空間の長手方向における互いに異なる位置にて濾液の挙動を好ましい方向に誘導することで、乱流の発生をより良好に抑えることができる。
According to this configuration, by guiding the behavior of the filtrate in a preferable direction at mutually different positions in the longitudinal direction of the accommodation space, it is possible to better suppress the occurrence of turbulent flow.
〔第3態様〕
第3態様は、多段に配置される複数の濾過システムを備える濾過処理設備(例えば濾過処理設備20)であって、複数の濾過システムのそれぞれが、第1態様又は第2態様の濾過システムであることを特徴とするものである。
できる。 [Third aspect]
A third aspect is a filtration treatment facility (for example, the filtration treatment facility 20) that includes a plurality of filtration systems arranged in multiple stages, and each of the plurality of filtration systems is the filtration system of the first aspect or the second aspect. It is characterized by this.
can.
第3態様は、多段に配置される複数の濾過システムを備える濾過処理設備(例えば濾過処理設備20)であって、複数の濾過システムのそれぞれが、第1態様又は第2態様の濾過システムであることを特徴とするものである。
できる。 [Third aspect]
A third aspect is a filtration treatment facility (for example, the filtration treatment facility 20) that includes a plurality of filtration systems arranged in multiple stages, and each of the plurality of filtration systems is the filtration system of the first aspect or the second aspect. It is characterized by this.
can.
かかる構成によれば、誘導管によって収容空間内の濾液の流れを好ましい方向に誘導することで、収容空間内のにおける乱流の発生を抑えて、乱流に起因するエネルギー効率の低下を抑えることができる。
According to this configuration, by guiding the flow of the filtrate in the storage space in a preferable direction by the guide pipe, generation of turbulent flow in the storage space can be suppressed, and a decrease in energy efficiency caused by the turbulence can be suppressed. Can be done.
〔第4態様〕
第4態様は、第3態様の構成を備える濾過処理設備であって、互いに上下方向に隣接する2つの前記濾過システムにおける一方の前記上部連通流路と、他方の前記下部連通流路とが、それぞれの内周面にメスネジ部を備え、且つ、それぞれの内側に挿入される連結管によって互いに連結し、前記連結管における長さ方向の一端部が、弾性材料からなるOリングを外周面に備え、前記連結管における長さ方向の他端部が、弾性材料からなるOリングと、これよりも前記一端部の側に配置されたオスネジ部とを外周面に備えることを特徴とするものである。 [Fourth aspect]
A fourth aspect is a filtration treatment facility having the configuration of the third aspect, in which one of the upper communication passages and the other lower communication passage in the two filtration systems that are vertically adjacent to each other, Each of the tubes has a female thread on its inner circumferential surface, and is connected to each other by a connecting tube inserted inside each tube, and one longitudinal end of the connecting tube has an O-ring made of an elastic material on its outer circumferential surface. , the other end of the connecting pipe in the length direction is provided with an O-ring made of an elastic material and a male threaded part disposed closer to the one end than the O-ring on the outer peripheral surface thereof. .
第4態様は、第3態様の構成を備える濾過処理設備であって、互いに上下方向に隣接する2つの前記濾過システムにおける一方の前記上部連通流路と、他方の前記下部連通流路とが、それぞれの内周面にメスネジ部を備え、且つ、それぞれの内側に挿入される連結管によって互いに連結し、前記連結管における長さ方向の一端部が、弾性材料からなるOリングを外周面に備え、前記連結管における長さ方向の他端部が、弾性材料からなるOリングと、これよりも前記一端部の側に配置されたオスネジ部とを外周面に備えることを特徴とするものである。 [Fourth aspect]
A fourth aspect is a filtration treatment facility having the configuration of the third aspect, in which one of the upper communication passages and the other lower communication passage in the two filtration systems that are vertically adjacent to each other, Each of the tubes has a female thread on its inner circumferential surface, and is connected to each other by a connecting tube inserted inside each tube, and one longitudinal end of the connecting tube has an O-ring made of an elastic material on its outer circumferential surface. , the other end of the connecting pipe in the length direction is provided with an O-ring made of an elastic material and a male threaded part disposed closer to the one end than the O-ring on the outer peripheral surface thereof. .
かかる構成によれば、メスネジ部とオスネジ部との螺号により、連結管の上部連通流路又は下部連通流路からの抜けを回避することができる。特に、連結管のオスネジ部と、下側の濾過システムの下部連通流路のメスネジ部とを螺号させれば、保守点検作業のために、2つの濾過システムを分離する場合に、連結管を下側の濾過システムに自然に残すことが可能なので、保守点検の作業性を向上させることができる。
According to such a configuration, the screws between the female threaded portion and the male threaded portion can prevent the connecting pipe from coming off from the upper communication channel or the lower communication channel. In particular, if the male threaded part of the connecting pipe and the female threaded part of the lower communication channel of the lower filtration system are screwed together, the connecting pipe can be lowered when separating the two filtration systems for maintenance and inspection work. Since it can be left naturally in the filtration system on the side, it is possible to improve the workability of maintenance and inspection.
20・・・濾過処理設備、 21・・・濾過膜ユニット、 22・・・濾過膜、 23・・・吸引側ソケット(ソケット)、 23a・・・ソケット本体、 23b・・・第1突出体、 23b-1・・・中空、 23b-2・・・第1出口、 23c・・・第2突出体、 23c-1・・・中空、 23c-2・・・第2出口、 23d・・・凹部、 23e・・・流路、 31・・・濾過システム
20... Filtration processing equipment, 21... Filtration membrane unit, 22... Filtration membrane, 23... Suction side socket (socket), 23a... Socket body, 23b... First protruding body, 23b-1...Hollow, 23b-2...First outlet, 23c...Second protrusion, 23c-1...Hollow, 23c-2...Second outlet, 23d...Concave part , 23e...flow path, 31...filtration system
Claims (4)
- 濾過膜の内部に取り込んだ濾液を前記濾過膜の長手方向に沿って流す複数の濾過膜ユニットと、複数の前記濾過膜ユニットのそれぞれから排出される濾液を収容する収容空間と、前記収容空間の上部を前記収容空間よりも上方の外部空間に連通させる上部連通流路と、前記収容空間の下部を前記収容空間よりも下方の外部空間に連通させる下部連通流路とを備える濾過システムであって、
周壁に貫通孔を配置した管状部材からなり、前記上部連通流路と前記下部連通流路とに連通して前記上部連通流路と前記下部連通流路との間の液の流通を誘導しつつ、前記貫通孔を通じて、前記収容空間内の濾液を自己の内部に取り込む誘導管を備える
ことを特徴とする濾過システム。 A plurality of filtration membrane units through which the filtrate taken into the filtration membrane flows along the longitudinal direction of the filtration membrane, a housing space for accommodating the filtrate discharged from each of the plurality of filtration membrane units, and a housing space in the housing space. A filtration system comprising: an upper communication channel that communicates an upper part with an external space above the accommodation space; and a lower communication channel that communicates a lower part of the accommodation space with an external space below the accommodation space, ,
It is made of a tubular member with a through hole arranged in a peripheral wall, and communicates with the upper communication channel and the lower communication channel to guide the flow of liquid between the upper communication channel and the lower communication channel. A filtration system, comprising: a guide tube that takes the filtrate in the storage space into the filtration system through the through hole. - 請求項1に記載の濾過システムであって、
互いに上下方向に沿って対向する前記上部連通流路及び前記下部連通流路の対が、前記収容空間の長手方向に沿って複数配置され、
それぞれの前記対における前記上部連通流路と前記下部連通流路とを個別に連通させる複数の前記誘導管が配置される
ことを特徴とする濾過システム。 The filtration system according to claim 1,
A plurality of pairs of the upper communication channel and the lower communication channel facing each other along the vertical direction are arranged along the longitudinal direction of the accommodation space,
A filtration system characterized in that a plurality of guide pipes are arranged that individually communicate the upper communication channel and the lower communication channel in each pair. - 多段に配置される複数の濾過システムを備える濾過処理設備であって、
複数の濾過システムのそれぞれが、請求項1又は2に記載の濾過システムである
ことを特徴とする濾過処理設備。 A filtration treatment facility comprising a plurality of filtration systems arranged in multiple stages,
A filtration treatment facility, wherein each of the plurality of filtration systems is the filtration system according to claim 1 or 2. - 請求項3に記載の濾過処理設備であって、
互いに上下方向に隣接する2つの前記濾過システムにおける一方の前記上部連通流路と、他方の前記下部連通流路とが、それぞれの内周面にメスネジ部を備え、且つ、それぞれの内側に挿入される連結管によって互いに連結し、
前記連結管における長さ方向の一端部が、弾性材料からなるOリングを外周面に備え、
前記連結管における長さ方向の他端部が、弾性材料からなるOリングと、これよりも前記一端部の側に配置されたオスネジ部とを外周面に備える
ことを特徴とする濾過処理設備。
The filtration treatment equipment according to claim 3,
In the two filtration systems that are adjacent to each other in the vertical direction, one of the upper communication channels and the other lower communication channel are provided with female threads on their respective inner circumferential surfaces, and are inserted into the respective insides. connected to each other by a connecting pipe,
One longitudinal end of the connecting pipe is provided with an O-ring made of an elastic material on the outer peripheral surface,
A filtration treatment facility characterized in that the other end in the length direction of the connecting pipe is provided with an O-ring made of an elastic material and a male screw portion disposed closer to the one end than the O-ring on the outer peripheral surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022046473A JP7338728B1 (en) | 2022-03-23 | 2022-03-23 | Filtration system and filtration equipment |
JP2022-046473 | 2022-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023181933A1 true WO2023181933A1 (en) | 2023-09-28 |
Family
ID=87882190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/008743 WO2023181933A1 (en) | 2022-03-23 | 2023-03-08 | Filtration system and filtration processing equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7338728B1 (en) |
WO (1) | WO2023181933A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009118785A1 (en) * | 2008-03-27 | 2009-10-01 | 株式会社クボタ | Membrane module and membrane cassette |
US20100051546A1 (en) * | 2008-07-03 | 2010-03-04 | Dxv Water Technologies, Llc | Water treatment systems and methods |
JP2010158599A (en) * | 2009-01-06 | 2010-07-22 | Kubota Corp | Spacing member, membrane element, and immersion type membrane separation apparatus |
JP2017113713A (en) * | 2015-12-25 | 2017-06-29 | 株式会社明電舎 | Membrane cassette and membrane unit |
-
2022
- 2022-03-23 JP JP2022046473A patent/JP7338728B1/en active Active
-
2023
- 2023-03-08 WO PCT/JP2023/008743 patent/WO2023181933A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009118785A1 (en) * | 2008-03-27 | 2009-10-01 | 株式会社クボタ | Membrane module and membrane cassette |
US20100051546A1 (en) * | 2008-07-03 | 2010-03-04 | Dxv Water Technologies, Llc | Water treatment systems and methods |
JP2010158599A (en) * | 2009-01-06 | 2010-07-22 | Kubota Corp | Spacing member, membrane element, and immersion type membrane separation apparatus |
JP2017113713A (en) * | 2015-12-25 | 2017-06-29 | 株式会社明電舎 | Membrane cassette and membrane unit |
Also Published As
Publication number | Publication date |
---|---|
JP2023140572A (en) | 2023-10-05 |
JP7338728B1 (en) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2260926B1 (en) | Membrane module with slidable connectors | |
KR101180722B1 (en) | Hollow fiber membrane module | |
EP3473330B1 (en) | Siphon-type air diffusion device, membrane bioreactor, and water treatment method | |
US20110005993A1 (en) | Membrane separator and membrane cassette | |
WO2023181933A1 (en) | Filtration system and filtration processing equipment | |
WO2023181932A1 (en) | Filtration membrane unit, holding body, filtration system, and filtration treatment equipment | |
JP5137935B2 (en) | Membrane treatment equipment for ballast water treatment | |
JP7392752B2 (en) | Filtration systems and filtration treatment equipment | |
EP2322268B1 (en) | Immersion type membrane separator device | |
JP4918126B2 (en) | Manifold structure | |
WO2023181938A1 (en) | Retainer, filtration system, and filtration treatment facility | |
JP5984135B2 (en) | Membrane separator | |
EP3903899A1 (en) | Degassing system, method for degassing liquids, degassing unit, degassing module, and degassing-system manufacturing method and method of production from natural resources | |
JP2016087567A (en) | Membrane module | |
CN118900720A (en) | Filter membrane unit, holder for holding the filter membrane unit, filter system provided with filter membrane unit and holder, and filter treatment device provided with multiple filter systems | |
WO2018012178A1 (en) | Aeration unit and filtration device | |
JPWO2016158308A1 (en) | Air diffuser and filtration unit | |
JP5281183B2 (en) | Replacement method of membrane cartridge used in membrane treatment equipment for ballast water treatment | |
JP7363950B2 (en) | Filtration treatment equipment | |
KR100921743B1 (en) | Filtering Apparatus of Vacuum Pump | |
CA3113106A1 (en) | Degasification units and methods of liquid degasification | |
EP4458444A1 (en) | Degassing module and method for degassing liquid | |
WO2023167173A1 (en) | Bubble generating device, and liquid filtering device | |
KR20180069848A (en) | Membrane module and water treatment system | |
CN118382494A (en) | Degassing module and liquid degassing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774532 Country of ref document: EP Kind code of ref document: A1 |