WO2018012178A1 - Aeration unit and filtration device - Google Patents

Aeration unit and filtration device Download PDF

Info

Publication number
WO2018012178A1
WO2018012178A1 PCT/JP2017/021721 JP2017021721W WO2018012178A1 WO 2018012178 A1 WO2018012178 A1 WO 2018012178A1 JP 2017021721 W JP2017021721 W JP 2017021721W WO 2018012178 A1 WO2018012178 A1 WO 2018012178A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
air
gas
header
tubes
Prior art date
Application number
PCT/JP2017/021721
Other languages
French (fr)
Japanese (ja)
Inventor
岳 松本
森田 徹
池田 啓一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018012178A1 publication Critical patent/WO2018012178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration

Definitions

  • the present invention relates to an air diffusion unit and a filtration device.
  • This application claims priority based on Japanese Patent Application No. 2016-140580 filed on July 15, 2016, and incorporates all the description content described in the above Japanese application.
  • An aeration unit is an aeration unit that supplies a cleaning gas of an immersion type filtration device, and has a gas introduction port into which the cleaning gas is introduced, with a central axis in a horizontal direction.
  • a straight tubular diffuser header disposed; and a plurality of straight tubular diffuser pipes communicating with the diffuser header, extending from a side wall of the diffuser header, and having a plurality of diffuser holes, The lowest position of the inner surfaces of the plurality of diffuser tubes is close to the lowest position of the inner surface of the diffuser header in the vertical direction.
  • a filtration device is an immersion type filtration device including a plurality of filtration modules having a plurality of hollow fiber membranes and a gas supply module that supplies bubbles from below the plurality of filtration modules.
  • the gas supply module includes the aeration unit.
  • FIG. 2 is a schematic plan view of the air diffusion unit of FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view taken along line AA of the air diffusion unit of FIG. 2.
  • It is a typical front view which shows a filtration apparatus provided with the aeration unit of FIG.
  • It is a typical side view of the filtration apparatus of FIG.
  • It is a typical side view which shows the filtration apparatus which concerns on embodiment different from the filtration apparatus of FIG.
  • It is a typical partial front view which shows the gas supply module of the filtration apparatus of FIG.
  • It is a typical perspective view which shows the intermittent bubble generation unit of the gas supply module of FIG.
  • FIG. 9 is a schematic plan view of the intermittent bubble generation module of FIG. 8.
  • FIG. 10 is a cross-sectional view of the intermittent bubble generation module of FIG. 9 taken along line BB.
  • FIG. 10 is a sectional view taken along line CC of the intermittent bubble generation module of FIG. 9.
  • a filtration apparatus having a filtration module in which a plurality of hollow fiber membranes are collected is used.
  • a filtration device is used by being immersed in a liquid to be treated.
  • the hollow fiber membrane surface prevents permeation of impurities contained in the liquid to be treated, and the filtration treatment is performed by allowing other than the impurities to permeate inside.
  • such a filtering device prevents the permeation of impurities contained in the liquid to be treated by the surface of the hollow fiber membrane, so that impurities that have not permeated inside adhere to the surface of the hollow fiber membrane. Therefore, in this filtration device, there is a possibility that the filtration efficiency of the liquid that should be originally filtered is reduced by the impurities attached to the surface of the hollow fiber membrane.
  • the filtration device described in Patent Literature 1 includes an air diffuser that discharges air bubbles between a plurality of hollow fiber membranes constituting a filtration module.
  • the air diffuser has one or a plurality of air holes, the bubbles released from the air holes rub against the surface of the hollow fiber membrane, and the impurities are removed by swinging the hollow fiber membrane. can do.
  • a plurality of air diffuser tubes are connected to a straight tubular header, and bubbles can be released from the air diffuser holes of the plurality of air diffuser tubes by introducing gas into the header. it can.
  • the amount of bubbles released from the diffuser holes of the diffuser pipe connected to the vicinity of the gas inlet part of the header is away from the gas inlet part of the header. It tends to be larger than the amount of bubbles released from the air diffuser holes of the air diffuser connected to the. Therefore, this filtration apparatus has the subject that it is difficult to equalize the discharge amount of the bubbles from the plurality of diffusion holes of the plurality of diffusion tubes.
  • An object is to provide an air diffusion unit and a filtration device.
  • An aeration unit is an aeration unit that supplies a cleaning gas of an immersion type filtration device, and has a gas introduction port into which the cleaning gas is introduced, and a central axis is A straight tubular diffuser header disposed in a horizontal direction, and a plurality of straight tubular diffuser tubes communicating with the diffuser header, extending from a side wall of the diffuser header, and having a plurality of diffuser holes. And the lowest position of the inner surfaces of the plurality of diffuser tubes is close to the lowest position of the inner surface of the diffuser header in the vertical direction.
  • the diffuser unit is configured to be able to release the gas introduced from the gas inlet port of the diffuser header through the diffuser holes of the diffuser tubes. Since the lowest position of the inner surface of the plurality of diffuser tubes is close to the lowermost position of the inner surface of the diffuser header in the vertical direction, the diffuser unit is configured to transfer the gas introduced into the diffuser header to the plurality of diffuser tubes. Easy to supply uniformly. Therefore, the air diffuser unit can achieve a uniform discharge amount of air bubbles from a plurality of air diffuser holes of a plurality of air diffuser tubes, thereby achieving a uniform cleaning effect of the plurality of filtration modules. .
  • the vertical distance between the uppermost position of the inner surfaces of the plurality of diffuser tubes and the uppermost position of the inner surfaces of the diffuser headers is such that the lowest position of the inner surfaces of the diffuser tubes and the innermost surfaces of the diffuser headers. It may be larger than the vertical distance from the lower position.
  • the vertical distance between the uppermost position of the inner surfaces of the plurality of diffuser tubes and the uppermost position of the inner surfaces of the diffuser headers is the vertical distance between the lowest position of the inner surfaces of the diffuser tubes and the lowest position of the inner surfaces of the diffuser headers.
  • the interface between the gas layer and the liquid to be treated it is easy to supply gas uniformly to the plurality of diffuser tubes, so that bubbles are released from the plural diffuser holes of the multiple diffuser tubes. A uniform amount can be promoted.
  • the liquid to be processed in the diffuser header can be easily and reliably drained through the plurality of air diffusers.
  • the gas introduction port may be provided above the uppermost position of the inner surfaces of the plurality of diffuser tubes.
  • a filtration device includes a plurality of filtration modules having a plurality of hollow fiber membranes, and an immersion type including a gas supply module that supplies bubbles from below the plurality of filtration modules.
  • the gas supply module includes the air diffusion unit.
  • the filtration device includes the aeration unit, as described above, it is possible to equalize the amount of bubbles released from the plurality of aeration holes of the plurality of aeration tubes, thereby cleaning the plurality of filtration modules.
  • the effect can be homogenized.
  • the gas supply module may further include a plurality of intermittent bubble generation units disposed vertically above the plurality of air diffusion holes. Since the gas supply module further includes a plurality of intermittent bubble generating units disposed vertically above the plurality of air diffusion holes, relatively large bubbles can be discharged, thereby increasing the energy of each bubble. The cleaning effect on the surface of the plurality of hollow fiber membranes can be further enhanced. In addition, if there are diffused holes with a small amount of released pores, the diameter of bubbles discharged from the intermittent bubble generating unit disposed vertically above the diffused holes is reduced and the discharge interval is extended, thereby improving the cleaning effect. However, when the amount of bubbles released from the plurality of air diffusion holes is uniform, the cleaning effect can be easily and reliably improved by each intermittent bubble generation module.
  • the “horizontal direction” is not limited to a strict horizontal direction, and includes a direction inclined at an angle of 5 ° or less, preferably 3 ° or less with respect to the horizontal direction.
  • the “side walls of the diffuser header” refers to a pair of walls that face in the horizontal direction in a cross section perpendicular to the central axis of the diffuser header.
  • the aeration unit 1 in FIGS. 1 and 2 supplies a cleaning gas for an immersion type filtration apparatus.
  • the filtration device include a microfiltration device and an ultrafiltration device including a filtration module having a plurality of hollow fiber membranes and a gas supply module that supplies bubbles from below the filtration module.
  • the air diffusion unit 1 is used for this gas supply module.
  • the air diffusion unit 1 is used in a state immersed in the liquid to be treated.
  • the air diffusion unit 1 has a gas introduction port 11 into which cleaning gas is introduced, a straight tubular air diffusion header 2 whose central axis is disposed in the horizontal direction, and the air diffusion header 2. And a plurality of straight tubular air diffusion tubes 3 having a plurality of air diffusion holes 12 extending from the two side walls. As shown in FIG. 3, in the air diffusion unit 1, the lowest position h 1 on the inner surface of the plurality of air diffusion tubes 3 is close to the lowest position h 2 on the inner surface of the air diffusion header 2 in the vertical direction.
  • the diffuser unit 1 has a plurality of diffuser tubes 3 arranged in the horizontal direction, and the lowest position h 1 on the inner surface of the diffuser tube 3 connected to the diffuser header 2. There are close at the lowest position h 2 to the vertical direction of the inner surface of the air diffuser header 2.
  • the diffuser unit 1 when gas is introduced into the diffuser header 2 from the gas inlet 11 of the diffuser header 2, a gas layer and a liquid layer (processed liquid layer) are formed in the diffuser header 2. . That is, since the diffuser header 2 is used in a state of being immersed in the liquid to be processed, the liquid to be processed is filled inside before introducing the gas. When the gas is introduced from the gas inlet 11 in this state, the specific gravity of the gas is smaller than the specific gravity of the liquid to be processed, so that the gas fills the space between the upper inner surface of the diffuser header 2 and the liquid to be processed. . In the air diffusion unit 1, similarly to the air diffusion header 2, the liquid to be processed is filled in the plurality of air diffusion pipes 3 before the gas is introduced.
  • the diffuser unit 1 is configured such that the gas is introduced into the diffuser header 2, and the interface between the gas layer and the liquid layer is lowered below the uppermost position h 3 on the inner surface of the diffuser tubes 3 .
  • a gas flows between the upper inner surface of the air diffusion tube 3 and the liquid to be processed.
  • the air diffusion unit 1 since the plurality of air diffusion tubes 3 have the plurality of air diffusion holes 12, the gas flowing through the plurality of air diffusion tubes 3 is released as bubbles from the plurality of air diffusion holes 12, thereby A plurality of hollow fiber membranes can be washed.
  • the uppermost position h3 on the inner surface of all the diffuser tubes 3 is equal.
  • the diffuser unit 1 has a plurality of gases introduced into the diffuser header 2 because the lowest position h 1 on the inner surface of the plurality of diffuser tubes 3 is close to the lowest position h 2 on the inner surface of the diffuser header 2. It is easy to supply the air diffuser 3 evenly. For this reason, the air diffusion unit 1 can achieve a uniform discharge amount of bubbles from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3, thereby achieving a uniform cleaning effect of the plurality of filtration modules. Can do.
  • the air diffuser unit 1 can uniformly discharge the air bubbles from the air diffuser holes 12 of the air diffuser tubes 3 . Since the air diffusion unit is used by being immersed in the liquid to be processed, the liquid to be processed easily enters the air diffusion unit when immersed in the liquid to be processed. In this regard, in the conventional air diffusion unit, the lowermost position of the inner surface of the plurality of air diffusion pipes is disposed relatively higher than the lowermost position of the inner surface of the air diffusion header. The non-treatment liquid easily collects at a position lower than the lowest position on the inner surface of the air diffusion tube.
  • the conventional air diffuser unit is configured such that when the gas is introduced into the air diffuser header, the liquid level of the liquid to be processed accumulated in the air diffuser header is corrugated, and the course of the gas is hindered due to the corrugation. Gas cannot be uniformly supplied to a plurality of diffuser tubes.
  • the lowest position h 1 on the inner surface of the plurality of air diffusion pipes 3 is close to the lowest position h 2 on the inner surface of the air diffusion header 2 in the vertical direction.
  • the non-treatment liquid hardly accumulates at a position lower than the lowest position h 1 on the inner surface of the plurality of diffusion tubes 3, and the gas is caused by the undulation of the liquid surface of the liquid to be treated in the diffusion header 2. Since the path is difficult to be obstructed, the bubbles can be uniformly discharged from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3.
  • the lowest position h 1 of the diffuser of the inner surface of the trachea 3 is a neighbor lowest position h 2 of the inner surface of the air diffuser header 2.
  • the diffuser header 2 has a straight tubular shape as described above, and specifically has a shape having a hollow internal space by sealing both ends in the central axis direction with end walls.
  • the cross-sectional shape of the inner surface perpendicular to the central axis of the diffuser header 2 is not particularly limited, and examples thereof include a rectangular shape, an elliptical shape, a perfect circular shape, an inverted T shape, and an L shape. Of these, the cross-sectional shape is preferably an inverted T-shape. This is because if the cross-sectional shape is an inverted T-shape, it is easy to form a gas layer above the diffuser header 2 while reducing the size of the filter device including the diffuser header 2 and thus the diffuser unit 1.
  • the inner surface of the diffuser header 2 may be elliptical as described above, but it is preferable to have a horizontal lower surface from the viewpoint of suppressing the liquid to be treated from accumulating inside.
  • the diffuser header 2 has a plurality of diffuser tubes 3 extending from a pair of opposing side walls, so that the amount of air bubbles released from the diffuser tubes 3 is increased.
  • the cross-sectional shape perpendicular to the central axis is symmetrical.
  • Aeration header 2, above the the uppermost position h 3 of the inner surface of the plurality of diffuser tubes 3 preferably has a gas layer formation region for forming a gas layer by a gas introduced from the gas inlet 11 . Moreover, it is preferable that this gas layer formation area is provided ranging over the whole area
  • This gas layer forming region can be formed, for example, by making the uppermost position h 4 on the inner surface of the diffuser header 2 higher than the uppermost position h 3 on the inner surfaces of the plurality of diffuser tubes 3 by a certain level or more.
  • the gas inlet 11 is formed on one end side in the central axis direction of the diffuser header 2.
  • the gas inlet 11 may be formed on the upper wall of the diffuser header 2 or the end wall on the one end side in the central axis direction of the diffuser header 2.
  • the gas introduction port 11 is configured to be able to introduce gas supplied from the gas pressure feeding unit 2 into the diffuser header 2 by being connected to a gas pressure feeding unit (not shown).
  • the gas inlet 11 is provided above the uppermost position h 3 on the inner surface of the plurality of diffuser tubes 3.
  • Aeration unit 1, by gas inlet 11 is provided from the highest position h 3 of the inner surface of the plurality of diffuser tubes 3 upward, air diffuser header 2 by the gas introduced into the air diffuser header 2
  • a gas layer can be easily formed above the substrate. Therefore, by gradually lowering the interface between the gas layer and the liquid to be treated, the gas can be uniformly supplied to the plurality of diffusion tubes 3, and the plurality of diffusion holes 12 of the plurality of diffusion tubes 3 can be supplied. It is possible to promote the uniform discharge of bubbles. Further, by gradually lowering the interface between the gas layer and the liquid to be processed, the liquid to be processed in the diffuser header 2 can be easily and reliably drained through the plurality of air diffusers 3.
  • the lower limit of the length in the central axis direction of the diffuser header 2 is preferably 0.5 m, and more preferably 1.0 m.
  • the upper limit of the length in the central axis direction is preferably 3 m, and more preferably 2 m. If the length in the central axis direction is less than the lower limit, it may not be usable for a large-sized filtration device. If the length in the central axis direction exceeds the upper limit, the amount of gas supplied to the plurality of diffuser tubes 3 becomes insufficient, and it may be difficult to sufficiently increase the cleaning efficiency.
  • the main component of the diffuser header 2 is not particularly limited, and metals such as stainless steel, steel, copper and aluminum, acrylic resin, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer (ABS resin) ) And the like.
  • the “main component” means a component having the highest content, for example, a component having a content of 50% by mass or more.
  • the plurality of diffuser tubes 3 communicate with the diffuser header 2 and extend outward from the pair of side walls facing the diffuser header 2 in the opposite direction. Moreover, it is preferable that the plurality of diffuser tubes 3 extend from the opposed positions of the pair of side walls opposed to the diffuser header 2.
  • the plurality of air diffusing tubes 3 have a central axis arranged in the horizontal direction.
  • the plurality of diffuser tubes 3 are formed in the same shape. In addition, it is preferable that the lowest positions h 1 on the inner surfaces of the plurality of diffusion tubes 3 are all the same, and the uppermost positions h 3 on the inner surfaces of the plurality of the diffusion tubes 3 are all the same.
  • the plurality of air diffusion tubes 3 are preferably arranged at equal intervals in the direction of the central axis of the air diffusion head 2 from a pair of side walls opposed to the air diffusion head 2.
  • the plurality of air diffusion tubes 3 are disposed at equal intervals in the central axis direction of the air diffusion head 2 from a pair of opposing side walls of the air diffusion head 2.
  • the air diffusing tube 3 can be easily arranged, and thereby the cleaning effect of the plurality of filtration modules can be enhanced.
  • the lower limit of the number of the plurality of air diffusion tubes 3 extending from the respective side walls of the air diffusion head 2 can be appropriately changed according to the number of filtration modules provided in the filtration device. More preferred. As the upper limit of the number, for example, 40 is preferable and 30 is more preferable.
  • the plurality of air diffusion tubes 3 are disposed between the plurality of filtration modules of the filtration device as described above, so that a pair of filtration modules adjacent to each air diffusion tube 3 in plan view (however, located on the outermost side).
  • the air diffuser 3 disposed outside the filtration module is configured to be capable of cleaning a plurality of hollow fiber membranes of one adjacent filtration module).
  • the number of the plurality of diffuser tubes 3 is less than the lower limit, the interval between the adjacent diffuser tubes 3 becomes too large, and the interval between the filtration module and the diffuser tube 3 in a plan view increases. There is a possibility that the cleaning effect of the plurality of hollow fiber membranes of the plurality of filtration modules cannot be sufficiently enhanced. On the contrary, when the number of the plurality of diffuser tubes 3 exceeds the above upper limit, the interval between the adjacent diffuser tubes 3 becomes too small and it is difficult to arrange the plurality of diffuser tubes 3 between the pair of adjacent filtration modules. There is a risk.
  • the lower limit of the interval between adjacent diffuser tubes 3 is preferably 20 mm, and more preferably 30 mm. As an upper limit of the said space
  • the lowest position h 1 on the inner surface of the plurality of diffuser tubes 3 is close to the lowest position h 2 on the inner surface of the diffuser header 2 in the vertical direction.
  • the lowermost position h 1 of the inner surface of the plurality of diffuser tubes 3 are either the lowest position h 2 and peers of the inner surface of the air diffuser header 2, or air diffuser header 2 from the lowest position h 2 of the inner surface Is also expensive.
  • the upper limit of the vertical distance between the lowest position h 2 of the inner surface of the lowermost position h 1 and aeration header 2 of the inner surface of the plurality of diffuser tubes 3, 10 mm are preferred, 6 mm, more preferably 3 mm is more preferable, and 0 mm is most preferable.
  • the non-processed liquid When the vertical distance exceeds the upper limit, the non-processed liquid easily accumulates at a position lower than the lowest position h 1 of the plurality of air diffusers 3 in the air diffuser header 2.
  • the liquid level of the liquid to be processed in the diffuser header 2 may wave, and the gas may not be uniformly supplied to the plural diffuser tubes 3.
  • the “lowermost position of the inner surface of the diffuser tube” means, for example, the position of the bottom surface when the inner surface of the diffuser tube has a horizontal bottom surface, and the lower inner surface of the diffuser tube is curved. Means the lowest position of the inner surface in the vertical direction.
  • the “lowermost position of the inner surface of the diffuser header” is also the same as the lowest position of the inner surface of the diffuser pipe.
  • the vertical distance between the uppermost position of the inner surface of the plurality of diffusion tubes 3 and the uppermost position of the inner surface of the diffusion header 2 is the lowest position of the inner surfaces of the plurality of diffusion tubes 3 and the lowermost position of the inner surface of the diffusion header 2. It is preferable that it is larger than the vertical distance from the position.
  • Aeration unit 1 vertical distance between the inner surface of the uppermost position h 4 of the uppermost h 3 and diffuser header of the inner surface of the plurality of diffuser tubes are lowest position h 1 of the inner surface of the plurality of diffuser tubes 3 and by greater than the vertical distance between the lowest position h 2 of the inner surface of the diffuser header, easy to form the gas layer above the inside air diffuser header 2 by the gas introduced into the air diffuser header 2.
  • the “uppermost position of the inner surface of the diffuser tube” means, for example, the position of this upper surface when the inner surface of the diffuser tube has a horizontal upper surface, and when the upper inner surface of the diffuser tube is curved. It means the uppermost position in the vertical direction of this inner surface. Further, “the uppermost position of the inner surface of the diffuser header” is the same as the uppermost position of the inner surface of the diffuser pipe.
  • the upper limit of the vertical distance can be set to, for example, 50 mm from the viewpoint of reducing the size of the air diffusion head 2.
  • Each diffuser tube 3 is formed in a straight tube shape having both ends opened in the central axis direction.
  • the cross-sectional shape perpendicular to the central axis direction of each air diffuser 3 is not particularly limited, but may be, for example, an annular shape or a square shape.
  • the lower limit of the inner diameter of each air diffuser 3 is preferably 6 mm, more preferably 10 mm, and even more preferably 15 mm.
  • the upper limit of the inner diameter of each air diffuser 3 is preferably 70 mm, more preferably 60 mm, and even more preferably 50 mm. If the inner diameter of each air diffuser 3 is less than the lower limit, there is a possibility that gas cannot be sufficiently supplied to each air diffuser 3. On the contrary, if the inner diameter of each air diffuser 3 exceeds the above upper limit, the volume in the tube increases, and solids such as impurities may easily stay in the air diffuser 3.
  • the inner diameter when the cross-sectional shape in the central axis direction of the inner surface of the air diffusing tube 3 is other than a circle means the inner diameter when converted to a perfect circle.
  • the lower limit of the average tube thickness of each air diffuser 3 is preferably 1 mm, more preferably 2 mm.
  • the upper limit of the average tube thickness of each air diffuser 3 is preferably 6 mm, and more preferably 4 mm. If the average tube thickness of each air diffuser 3 is less than the lower limit, sufficient strength may not be obtained. If the average tube thickness of each air diffuser 3 exceeds the above upper limit, the outer diameter may become unnecessarily large.
  • the shape of the plurality of air diffusion holes 12 is not particularly limited, but a circular shape is preferable. As shown in FIGS. 1 and 2, the plurality of air diffusion holes 12 are preferably the same size and arranged at equal intervals in the central axis direction of each air diffusion tube 3.
  • the air diffuser unit 1 has a plurality of air diffuser holes 12 arranged at equal intervals in the central axis direction of each air diffuser 3, while sending the gas supplied from the air diffuser header 2 to the front end side in the extending direction, It can discharge substantially uniformly along the central axis direction.
  • the plurality of air diffusion holes 12 can be formed by, for example, laser processing.
  • each air diffuser 3 preferably has no opening other than the air diffuser 12 on its peripheral surface.
  • the diffuser unit 1 can continuously discharge the cleaning gas from the diffuser holes 12 while sending the gas into the pipe by arranging the diffuser holes 12 in this manner.
  • the lower limit of the average diameter of the plurality of air diffusion holes 12 is preferably 1 mm, and more preferably 2 mm.
  • the upper limit of the average diameter of the plurality of air diffusion holes 12 is preferably 10 mm, and more preferably 8 mm. If the average diameter is less than the lower limit, bubbles may not be released sufficiently. On the other hand, when the average diameter exceeds the upper limit, the amount of bubbles released from each air diffuser 12 becomes too large, so that when the gas is supplied from the air diffuser header 2, this gas becomes the air diffuser header 2 side. There is a possibility that the amount of discharge from the front end side in the extending direction may not be sufficiently obtained due to excessive discharge from the air diffuser 12 disposed in the.
  • the average diameter in case the diffuser hole 12 is other than a circle means the average diameter when converted into a perfect circle.
  • the lower limit of the average pitch (center-to-center distance) of the plurality of air diffusion holes 12 is preferably 10 mm, and more preferably 20 mm.
  • the upper limit of the average pitch of the plurality of air diffusion holes 12 is preferably 150 mm, and more preferably 100 mm. If the average pitch is less than the lower limit, when gas is supplied from the diffuser header 2, the gas is excessively released from the diffuser holes 12 disposed on the diffuser header 2 side, and the leading end side in the extending direction There is a risk that a sufficient amount of release will not be obtained. When the average pitch exceeds the upper limit, there is a possibility that a region where gas is hardly supplied in the filtration module may be generated.
  • the main components of the air diffuser 3 include metals such as stainless steel, steel, copper and aluminum, and synthetic resins such as acrylic resin, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer (ABS resin). Of these, polyvinyl chloride is preferable because of its excellent durability and relatively low cost.
  • the cleaning gas introduced into the diffuser unit 1 is required to have a specific gravity smaller than that of the liquid to be processed so that a gas layer can be formed above the diffuser header 2.
  • the cleaning gas introduced into the air diffusion unit 1 is preferably an inert gas. Although it does not specifically limit as such gas, Typically, air is mentioned.
  • the filtration device 21 in FIGS. 4 and 5 is an immersion type filtration device.
  • the filtration device 21 includes a plurality of filtration modules 22 having a plurality of hollow fiber membranes 31 and a gas supply module 23 that supplies bubbles from below the plurality of filtration modules 22.
  • the gas supply module 23 includes the air diffusion unit 1 shown in FIG.
  • the plurality of filtration modules 22 and the gas supply module 23 are integrally held by being connected to the frame 24.
  • the filtration device 21 includes the air diffusion unit 1, it is possible to equalize the amount of air bubbles released from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3 as described above. The homogenization of the cleaning effect of 22 can be achieved.
  • Each filtration module 22 includes a plurality of hollow fiber membranes 31, a rod-like upper holding member 32 that holds the upper ends of the plurality of hollow fiber membranes 31, and a rod-like shape that holds the lower ends of the plurality of hollow fiber membranes 31.
  • Lower holding member 33 The plurality of hollow fiber membranes 31 are aligned in the vertical direction.
  • the plurality of hollow fiber membranes 31 are connected to substantially the entire lower surface of the upper holding member 32 and the upper surface of the lower holding member 33.
  • each filtration module 22 has a thickness (the length in the central axis direction of the upper holding member 32 and the lower holding member 33) as a whole and the thickness (the central axis direction of the upper holding member 32 and the lower holding member 33).
  • the upper holding member 32 is formed in a hollow shape.
  • the upper holding member 32 is connected to a discharge mechanism (not shown) that discharges the processed liquid filtered by the filtration module 22.
  • the filtration apparatus 21 is comprised so that the processed liquid which permeate
  • the plurality of filtration modules 22 are arranged in two rows in front view as shown in FIG. Moreover, the several filtration module 22 is arrange
  • the hollow fiber membrane 31 is formed by tubularly forming a porous membrane that permeates water while preventing permeation of impurities contained in the liquid to be treated.
  • a hollow fiber membrane 31 that uses a thermoplastic resin as a main component is used. Can do.
  • the average length of the bundle of a plurality of hollow fiber membranes 31 in each filtration module 22 in the width direction of the filtration module 22 can be, for example, 300 mm or more and 1200 mm or less.
  • the average length of the bundle of a plurality of hollow fiber membranes 31 in each filtration module 22 in the thickness direction of the filtration module 22 may be, for example, 10 mm or more and 100 mm or less.
  • the average length of the plurality of hollow fiber membranes 31 between the lower end of the upper holding member 32 and the upper end of the lower holding member 33 can be, for example, 1 m or more and 6 m or less.
  • the gas supply module 23 includes an air diffusion unit 1 and a gas pressure feeding unit (not shown) that supplies gas to the gas introduction port of the air diffusion header of the air diffusion unit 1.
  • the gas pressure feeding unit is not particularly limited, and examples thereof include a known blower and a compressor.
  • the air diffusion unit 1 discharges bubbles from below the plurality of filtration modules 22 toward the plurality of hollow fiber membranes 31 of the plurality of filtration modules 22.
  • the air diffusion unit 1 is arranged such that the central axis of the air diffusion header coincides with the center between the rows of the plurality of filtration modules 22 arranged in two rows in a plan view. Further, the air diffusion unit 1 is arranged such that a plurality of air diffusion tubes 3 are positioned between adjacent filtration modules 22 in each row in a plan view. Further, in the air diffuser unit 1, each pair of air diffuser tubes 3 located at both ends in the central axis direction of the air diffuser header is located outside in a plan view of each pair of filtration modules 22 located on the outermost side in each row. Arranged. It is preferable that the space
  • the filtration device 41 in FIG. 6 is an immersion type filtration device.
  • the filtration device 41 includes a plurality of filtration modules 22 having a plurality of hollow fiber membranes 31 and a gas supply module 43 that supplies air bubbles from below the plurality of filtration modules 22.
  • the plurality of filtration modules 22 in the filtration device 41 are the same as the plurality of filtration modules 22 of the filtration device 21 in FIGS.
  • the gas supply module 43 includes a plurality of intermittent bubble generation units disposed vertically above the air diffuser unit 1 of FIG. 1 and the air diffuser holes 12 of the air diffuser unit 1. 44 and a gas pumping unit (not shown) for supplying gas to the gas inlet of the air diffuser head of the air diffuser unit 1.
  • the gas pressure feeding unit the same gas pressure feeding unit as that of the filtration device 21 of FIGS. 4 and 5 can be adopted. That is, the filtration device 41 has the same configuration as the filtration device 21 of FIGS. 4 and 5 except that it has a plurality of intermittent bubble generation units 44.
  • the gas supply module 43 includes a plurality of intermittent bubble generation units 44 disposed vertically above the plurality of air diffusion holes 12, the filtration device 41 can discharge relatively large bubbles. By increasing the energy of the bubbles, the cleaning effect on the surface of the plurality of hollow fiber membranes 31 can be further enhanced. In addition, if there are diffused holes with a small amount of released pores, the diameter of bubbles discharged from the intermittent bubble generating unit disposed vertically above the diffused holes is reduced and the discharge interval is extended, thereby improving the cleaning effect. However, since the filtering device 41 can discharge bubbles uniformly from the plurality of air diffusion holes 12, the intermittent bubble generation unit 44 can easily and reliably improve the cleaning effect. .
  • the intermittent bubble generating unit 44 is arranged in a one-to-one correspondence above the plurality of air diffusion holes 12 of the air diffusion unit 1.
  • the intermittent bubble generating unit 44 includes a base 51 and a protruding portion 52 that protrudes above the base 51 (upward in the Z direction in FIG. 8).
  • the protruding portion 52 has a front wall 52 a and a rear wall 52 b facing each other, and a rear surface (an outer surface of the rear wall 52 b) is formed flush with the rear surface of the base 51.
  • the intermittent bubble generating unit 44 has an opening 53 below the base 51.
  • the intermittent bubble generating unit 44 is provided with a discharge port 54 at the upper end of the protruding portion 52.
  • the intermittent bubble generating unit 44 is configured to be capable of intermittently discharging upward from the discharge port 54 after introducing the bubbles released from the diffuser holes 12 through the opening 53.
  • “front” means the positive side in the X direction (front side of the paper) in FIG. 8, and “rear” means the negative side in the X direction (depth side of the paper), “Left” means the positive side in the Y direction, and “right” is defined for convenience as meaning the negative side in the Y direction.
  • the specific configuration of the intermittent bubble generating unit 44 is specified. Not what you want.
  • the intermittent bubble generation unit 44 includes a gas introduction chamber 55, a gas induction chamber 56, and a gas discharge chamber 57.
  • the intermittent bubble generating unit 44 has an opening 53 formed at the lower end of the gas introduction chamber 55.
  • the intermittent bubble generating unit 44 has a discharge port 54 formed at the upper end of the gas discharge chamber 57.
  • the gas introduction chamber 55 is formed in a rectangular parallelepiped shape in the base 51.
  • the gas introduction chamber 55 is partitioned from a gas induction chamber 56 and a gas discharge chamber 57 by a partition wall 58.
  • the partition wall 58 continuously extends downward from the lower end of the front wall 52a of the protrusion 52.
  • An opening 60 is formed in the upper end portion of the partition wall 58 that partitions the gas introduction chamber 55 and the gas induction chamber 56. Thereby, the gas introduction chamber 55 and the gas induction chamber 56 communicate with each other through the opening 60.
  • the gas induction chamber 56 is formed in a rectangular parallelepiped shape in the base 51.
  • the gas induction chamber 56 is formed on the left side (Y direction positive side) of the protrusion 52 in plan view.
  • the gas induction chamber 56 is partitioned from the gas introduction chamber 55 by the partition wall 58 and is partitioned from the gas discharge chamber 57 by the partition wall 59.
  • An opening 61 is formed in the lower end portion of the partition wall 59 that partitions the gas induction chamber 56 and the gas discharge chamber 57. Thereby, the gas induction chamber 56 and the gas discharge chamber 57 communicate with each other through the opening 61.
  • the gas discharge chamber 57 is formed in a rectangular parallelepiped shape so as to communicate with the inside of the base portion 51 and the protruding portion 52.
  • the gas discharge chamber 57 is partitioned from the gas introduction chamber 55 by the partition wall 58 and is partitioned from the gas induction chamber 56 by the partition wall 59.
  • the gas introduced into the gas introduction chamber 55 first moves to the upper portion of the gas introduction chamber 55.
  • the gas moved to the upper part is introduced into the gas induction chamber 56 through the opening 60.
  • the gas introduced into the gas introduction chamber 55 is stored near the upper ends of the gas introduction chamber 55 and the gas induction chamber 56.
  • the interface between the gas and the liquid to be processed is divided into the gas introduction chamber 55 and the gas induction chamber 56, respectively, while maintaining the same horizontal level position. Move to.
  • the gas in the gas induction chamber 56 exceeds a predetermined amount, the gas is guided from the opening 61 to the gas discharge chamber 57, and relatively large bubbles are intermittently discharged from the discharge port 54.
  • the configuration in which one gas guide chamber is formed on the left side of the projecting portion in plan view is described.
  • the gas guide chamber may be formed on the right side of the projecting portion.
  • a pair may be formed on the left and right, or may be formed in the center.
  • the gas supply module 43 includes a plurality of intermittent bubble generation units 44 having the above-described configuration, in parallel with the central axis direction of the air diffusion tube 3 with the left side wall and the right side wall facing each other. It is arranged continuously. Further, in the gas supply module 43, each air diffuser 12 of each air diffuser 3 is arranged vertically below the opening 53 of each intermittent bubble generating unit 44.
  • the diffuser header forms a gas layer with the gas introduced from the gas introduction port above the uppermost position h 3 on the inner surface of the multiple diffuser tubes 3. It is preferable to have a gas layer forming region for the purpose.
  • the filtering device 41 disposes a plurality of intermittent bubble generation units 44 vertically above the plurality of air diffusion holes 12, thereby removing bubbles released from the air diffusion holes 12 by the intermittent bubble generation units 44.
  • the filtration device 41 includes the gas supply module 43 having the plurality of intermittent bubble generation units 44, thereby increasing the energy of bubbles released from the plurality of air diffusion holes 12, and more reliably filtering the bubbles. It can be introduced between the modules 22.
  • the upper limit of the vertical distance between the plurality of air diffusion holes 12 and the openings 53 of the plurality of intermittent bubble generation units 44 is preferably 20 mm, and more preferably 15 mm. If the vertical distance exceeds the upper limit, it may be difficult to reliably introduce bubbles released from the plurality of air diffusion holes 12 into the opening 53. Although it does not specifically limit as a minimum of the said perpendicular distance, For example, it can be 1 mm.
  • the filtration device 41 has an air diffuser in plan view because the upper outer surface of the diffuser header protrudes higher than the upper outer surface of the plurality of diffuser tubes 3.
  • the filtering device 41 has an inverted T-shaped outer shape perpendicular to the central axis of the diffuser header, thereby providing a gas layer formation region in the diffuser header and intermittently on both sides of the protruding portion.
  • a static bubble generating unit 44 can be provided.
  • the intermittent bubble generating unit 44 can be disposed at a position corresponding to the air diffuser 12, thereby sufficient cleaning. The effect can be improved.
  • a plurality of diffuser tubes do not need to extend from a pair of side walls of the diffuser header, and a plurality of diffuser tubes may extend from only one side wall. Each one aeration tube may extend.
  • the gas inlet of the diffuser header does not necessarily have to be provided above the uppermost position on the inner surface of the plurality of diffuser tubes.
  • the gas inlet may be formed in the lower part of the end wall on the one end side in the central axis direction of the air diffusion header.
  • the gas inlet does not necessarily have to be formed at one end side in the central axis direction of the diffuser header, for example, it may be formed at both ends in the central axis direction of the diffuser header. You may form in the center of an axial direction.
  • ⁇ Multiple diffusers do not necessarily have the same shape.
  • the plurality of air diffusers may have different lengths in the central axis direction and may have different diameters. Further, the lowermost position and the uppermost position of the inner surfaces of the plurality of diffusion tubes may be different from each other.
  • the air diffuser unit may have a tubular solid content discharge section that is provided continuously at the tip edge of the air diffuser and is inclined downward from the central axis direction of the air diffuser. Since the air diffusion unit has the solid content discharge unit, the solid content that has entered the air diffusion tube can be smoothly discharged from the outlet of the solid content discharge unit (the end opposite to the air diffusion tube) with the pressure of the gas. . As a result, the aeration unit can prevent the solid content from staying without disturbing the supply of the cleaning gas to the plurality of filtration modules.
  • the diffuser header may have a gas merging pipe that is communicated so as to integrate the ends in the extending direction of a plurality of diffuser pipes and is disposed in the horizontal direction.
  • the diffuser header has such a gas merging tube, and the gas in each diffusing tube is integrated by the gas merging tube to improve the uniformity of pressure in the plurality of diffusing tubes. Uniformity of the amount of bubbles released from the pores can be promoted.
  • the specific configuration of the intermittent bubble generation unit is not limited to the above-described configuration, and various configurations capable of intermittently discharging bubbles can be employed.
  • An air diffusing unit comprising a plurality of straight tubular air diffusing tubes having air diffusing holes was prepared.
  • As the diffuser header one in which the gas inlet was formed above the uppermost position of the inner surfaces of the diffuser holes on one end side in the central axis direction of the diffuser header was used.
  • the length of the diffuser header in the central axis direction is 1.74 m, and the number of diffuser tubes extending from each side wall is 25 (50 in total).
  • each diffuser tube is arranged at equal intervals on each side wall. It had been. Further, the length of each diffuser tube in the central axis direction was 0.8 m, and each diffuser tube was provided with six diffuser holes at equal intervals. Further, the vertical distance between the lowest position of the inner surface of the plurality of diffuser tubes and the lowest position of the inner surface of the diffuser header is 6 mm, and the uppermost position of the inner surface of the diffuser header and the inner surfaces of the plurality of diffuser tubes are The vertical distance from the uppermost position was 40 mm, and the cross-sectional area of the internal space in the direction perpendicular to the central axis direction of the diffuser header was 90 cm 2 .
  • This aeration unit was immersed in the water tank so that the uppermost position of the plurality of aeration pipes had a water depth of 10 cm. Air was introduced from the gas inlet of this air diffusion unit so that the air volume per air hole was 23.3 L / min.
  • An air diffusing unit comprising a plurality of straight tubular air diffusing tubes having air diffusing holes was prepared.
  • the diffuser header one in which the gas inlet was formed above the uppermost position of the inner surfaces of the diffuser holes on one end side in the central axis direction of the diffuser header was used.
  • the length of the diffuser header in the central axis direction, the number of diffuser tubes extending from each side wall, the positions of these diffuser tubes, and the specific configuration of the multiple diffuser tubes are No.
  • the vertical distance between the lowest position of the inner surfaces of the plurality of diffuser tubes and the lowest position of the inner surface of the diffuser header is 116 mm, and the uppermost position of the inner surfaces of the diffuser header and the uppermost position of the inner surfaces of the multiple diffuser tubes
  • the cross-sectional area of the inner space in the direction perpendicular to the central axis direction of the diffuser header was 90 cm 2 .
  • This aeration unit was immersed in the water tank so that the uppermost position of the plurality of aeration pipes had a water depth of 10 cm. Air was introduced from the gas inlet of this air diffusion unit so that the air volume per air hole was 23.3 L / min.
  • Air diffuser unit 2 Air diffuser header 3 Air diffuser pipe 11 Gas inlet 12 Air diffuser hole 21, 41 Filtration device 22 Filtration module 23, 43 Gas supply module 24 Frame 31 Hollow fiber membrane 32 Upper holding member 33 Lower holding member 44 Intermittent bubble Generating unit 51 Base 52 Projection 52a Front wall 52b Rear wall 53, 60, 61 Open 54 Discharge port 55 Gas introduction chamber 56 Gas induction chamber 57 Gas discharge chamber 58, 59 Partition wall h 1 Lowermost position of inner surface of air diffuser h 2 Scatter The lowest position of the inner surface of the air header h 3 The uppermost position of the inner surface of the air diffuser h 4 The uppermost position of the inner surface of the air diffuser header

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The aeration unit of an embodiment of the present invention for supplying a cleaning gas for an immersed filtration device is provided with: a straight tubular aeration header, which has a gas introduction port through which the cleaning gas is introduced and the center axis of which is disposed in the horizontal direction; and multiple straight tubular aeration pipes, which are in communication with the aeration header, extend from the side walls of the aeration header, and have multiple aeration holes. The lowest position of the inner surface of the multiple aeration pipes is near the lowest position of the inner surface of the aeration header in the vertical direction.

Description

散気ユニット及び濾過装置Aeration unit and filtration device
 本発明は、散気ユニット及び濾過装置に関する。
 本出願は、2016年7月15日出願の日本出願第2016-140580号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to an air diffusion unit and a filtration device.
This application claims priority based on Japanese Patent Application No. 2016-140580 filed on July 15, 2016, and incorporates all the description content described in the above Japanese application.
 特開2011-115794号公報に記載の濾過装置では、濾過モジュールを構成する複数本の中空糸膜間に気泡を導入し、この気泡によって中空糸膜表面に付着した不純物を除去する構成が採用されている。 In the filtration device described in Japanese Patent Application Laid-Open No. 2011-115794, a configuration is adopted in which bubbles are introduced between a plurality of hollow fiber membranes constituting the filtration module and impurities adhering to the surface of the hollow fiber membranes are removed by the bubbles. ing.
特開2011-115794号公報JP 2011-115794 A
 本発明の一態様に係る散気ユニットは、浸漬式の濾過装置の洗浄気体を供給する散気ユニットであって、上記洗浄気体が導入される気体導入口を有し、中心軸が水平方向に配設される直管状の散気ヘッダと、上記散気ヘッダに連通し、上記散気ヘッダの側壁から延出し、かつ複数の散気孔を有する複数本の直管状の散気管とを備え、上記複数本の散気管の内面の最下位置が上記散気ヘッダの内面の最下位置と鉛直方向において近接している。 An aeration unit according to an aspect of the present invention is an aeration unit that supplies a cleaning gas of an immersion type filtration device, and has a gas introduction port into which the cleaning gas is introduced, with a central axis in a horizontal direction. A straight tubular diffuser header disposed; and a plurality of straight tubular diffuser pipes communicating with the diffuser header, extending from a side wall of the diffuser header, and having a plurality of diffuser holes, The lowest position of the inner surfaces of the plurality of diffuser tubes is close to the lowest position of the inner surface of the diffuser header in the vertical direction.
 本発明の一態様に係る濾過装置は、複数本の中空糸膜を有する複数の濾過モジュールと、この複数の濾過モジュールの下方から気泡を供給する気体供給モジュールとを備える浸漬式の濾過装置であって、上記気体供給モジュールが、当該散気ユニットを備える。 A filtration device according to an aspect of the present invention is an immersion type filtration device including a plurality of filtration modules having a plurality of hollow fiber membranes and a gas supply module that supplies bubbles from below the plurality of filtration modules. The gas supply module includes the aeration unit.
本発明の第一実施形態に係る散気ユニットを示す模式的正面図である。It is a typical front view showing the aeration unit concerning a first embodiment of the present invention. 図1の散気ユニットの模式的平面図である。FIG. 2 is a schematic plan view of the air diffusion unit of FIG. 1. 図2の散気ユニットのA-A線部分拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along line AA of the air diffusion unit of FIG. 2. 図1の散気ユニットを備える濾過装置を示す模式的正面図である。It is a typical front view which shows a filtration apparatus provided with the aeration unit of FIG. 図4の濾過装置の模式的側面図である。It is a typical side view of the filtration apparatus of FIG. 図4の濾過装置とは異なる実施形態に係る濾過装置を示す模式的側面図である。It is a typical side view which shows the filtration apparatus which concerns on embodiment different from the filtration apparatus of FIG. 図6の濾過装置の気体供給モジュールを示す模式的部分正面図である。It is a typical partial front view which shows the gas supply module of the filtration apparatus of FIG. 図7の気体供給モジュールの間欠的気泡発生ユニットを示す模式的斜視図である。It is a typical perspective view which shows the intermittent bubble generation unit of the gas supply module of FIG. 図8の間欠的気泡発生モジュールの模式的平面図である。FIG. 9 is a schematic plan view of the intermittent bubble generation module of FIG. 8. 図9の間欠的気泡発生モジュールのB-B線断面図である。FIG. 10 is a cross-sectional view of the intermittent bubble generation module of FIG. 9 taken along line BB. 図9の間欠的気泡発生モジュールのC-C線断面図である。FIG. 10 is a sectional view taken along line CC of the intermittent bubble generation module of FIG. 9.
[本開示が解決しようとする課題]
 汚水処理や医薬等の製造工程における固液分離処理装置として、複数本の中空糸膜を集束した濾過モジュールを有する濾過装置が用いられる。このような濾過装置は、被処理液中に浸漬して用いられ、この被処理液に含まれる不純物の透過を中空糸膜表面によって防ぐと共に、この不純物以外を内部に透過させることで濾過処理を行う。
[Problems to be solved by the present disclosure]
As a solid-liquid separation processing apparatus in a manufacturing process such as sewage treatment or medicine, a filtration apparatus having a filtration module in which a plurality of hollow fiber membranes are collected is used. Such a filtration device is used by being immersed in a liquid to be treated. The hollow fiber membrane surface prevents permeation of impurities contained in the liquid to be treated, and the filtration treatment is performed by allowing other than the impurities to permeate inside. Do.
 しかしながら、このような濾過装置は、被処理液に含まれる不純物の透過を中空糸膜の表面によって防ぐものであるため、中空糸膜の表面には内部に透過されなかった不純物が付着する。そのため、この濾過装置は、中空糸膜表面に付着した不純物によって本来濾過されるべき液体の濾過効率が低下するおそれがある。 However, such a filtering device prevents the permeation of impurities contained in the liquid to be treated by the surface of the hollow fiber membrane, so that impurities that have not permeated inside adhere to the surface of the hollow fiber membrane. Therefore, in this filtration device, there is a possibility that the filtration efficiency of the liquid that should be originally filtered is reduced by the impurities attached to the surface of the hollow fiber membrane.
 このような問題に鑑みて、特許文献1に記載の濾過装置が発案されている。特許文献1に記載の濾過装置は、濾過モジュールを構成する複数本の中空糸膜間に気泡を放出する散気管を有する。この濾過装置は、散気管が1又は複数の散気孔を有し、この散気孔から放出される気泡が中空糸膜の表面を擦過し、さらにこの中空糸膜を揺動することで不純物を除去することができる。 In view of such a problem, a filtering device described in Patent Document 1 has been proposed. The filtration device described in Patent Literature 1 includes an air diffuser that discharges air bubbles between a plurality of hollow fiber membranes constituting a filtration module. In this filtration device, the air diffuser has one or a plurality of air holes, the bubbles released from the air holes rub against the surface of the hollow fiber membrane, and the impurities are removed by swinging the hollow fiber membrane. can do.
 特許文献1に記載の濾過装置では、直管状のヘッダーに複数本の散気管が接続されており、このヘッダーに気体を導入することで複数本の散気管の散気孔から気泡を放出することができる。しかしながら、1つのヘッダーに複数本の散気管が接続されている場合、ヘッダーの気体導入部近辺に接続される散気管の散気孔からの気泡の放出量が、ヘッダーの気体導入部から離れた位置に接続されている散気管の散気孔からの気泡の放出量よりも多くなり易い。そのため、この濾過装置は、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図り難いという課題を有する。 In the filtering device described in Patent Document 1, a plurality of air diffuser tubes are connected to a straight tubular header, and bubbles can be released from the air diffuser holes of the plurality of air diffuser tubes by introducing gas into the header. it can. However, when multiple diffuser pipes are connected to one header, the amount of bubbles released from the diffuser holes of the diffuser pipe connected to the vicinity of the gas inlet part of the header is away from the gas inlet part of the header. It tends to be larger than the amount of bubbles released from the air diffuser holes of the air diffuser connected to the. Therefore, this filtration apparatus has the subject that it is difficult to equalize the discharge amount of the bubbles from the plurality of diffusion holes of the plurality of diffusion tubes.
 上述のような事情に鑑み、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュールの洗浄効果の均質化を図ることができる散気ユニット及び濾過装置を提供することを目的とする。 In view of the circumstances as described above, it is possible to equalize the discharge amount of bubbles from a plurality of air diffuser holes of a plurality of air diffuser tubes, thereby achieving a uniform cleaning effect of the plurality of filtration modules. An object is to provide an air diffusion unit and a filtration device.
[本開示の効果]
 本開示によれば、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュールの洗浄効果の均質化を図ることができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to equalize the amount of bubbles released from the plurality of air diffusion holes of the plurality of air diffusion tubes, and thereby to achieve uniform cleaning effects of the plurality of filtration modules.
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 (1)本発明の一態様に係る散気ユニットは、浸漬式の濾過装置の洗浄気体を供給する散気ユニットであって、上記洗浄気体が導入される気体導入口を有し、中心軸が水平方向に配設される直管状の散気ヘッダと、上記散気ヘッダに連通し、上記散気ヘッダの側壁から延出し、かつ複数の散気孔を有する複数本の直管状の散気管とを備え、上記複数本の散気管の内面の最下位置が上記散気ヘッダの内面の最下位置と鉛直方向において近接している。 (1) An aeration unit according to an aspect of the present invention is an aeration unit that supplies a cleaning gas of an immersion type filtration device, and has a gas introduction port into which the cleaning gas is introduced, and a central axis is A straight tubular diffuser header disposed in a horizontal direction, and a plurality of straight tubular diffuser tubes communicating with the diffuser header, extending from a side wall of the diffuser header, and having a plurality of diffuser holes. And the lowest position of the inner surfaces of the plurality of diffuser tubes is close to the lowest position of the inner surface of the diffuser header in the vertical direction.
 当該散気ユニットは、散気ヘッダの気体導入口から導入された気体を複数本の散気管の複数の散気孔から放出可能に構成されている。当該散気ユニットは、複数本の散気管の内面の最下位置が散気ヘッダの内面の最下位置と鉛直方向において近接しているので散気ヘッダに導入された気体を複数本の散気管に均一に供給し易い。そのため、当該散気ユニットは、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュールの洗浄効果の均質化を図ることができる。 The diffuser unit is configured to be able to release the gas introduced from the gas inlet port of the diffuser header through the diffuser holes of the diffuser tubes. Since the lowest position of the inner surface of the plurality of diffuser tubes is close to the lowermost position of the inner surface of the diffuser header in the vertical direction, the diffuser unit is configured to transfer the gas introduced into the diffuser header to the plurality of diffuser tubes. Easy to supply uniformly. Therefore, the air diffuser unit can achieve a uniform discharge amount of air bubbles from a plurality of air diffuser holes of a plurality of air diffuser tubes, thereby achieving a uniform cleaning effect of the plurality of filtration modules. .
 (2)上記複数本の散気管の内面の最上位置と散気ヘッダの内面の最上位置との鉛直方向距離が、上記複数本の散気管の内面の最下位置と散気ヘッダの内面の最下位置との鉛直方向距離よりも大きいとよい。複数本の散気管の内面の最上位置と散気ヘッダの内面の最上位置との鉛直方向距離が、複数本の散気管の内面の最下位置と散気ヘッダの内面の最下位置との鉛直方向距離よりも大きいことによって、散気ヘッダ内に導入された気体によって散気ヘッダ内の上方に気体層を形成し易い。そのため、この気体層と被処理液との界面を徐々に下げていくことで複数本の散気管に気体を均等に供給し易いので、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を促進することができる。また、気体層と被処理液との界面を徐々に下げていくことで散気ヘッダ内の被処理液を複数本の散気管を介して容易かつ確実に排液することができる。 (2) The vertical distance between the uppermost position of the inner surfaces of the plurality of diffuser tubes and the uppermost position of the inner surfaces of the diffuser headers is such that the lowest position of the inner surfaces of the diffuser tubes and the innermost surfaces of the diffuser headers. It may be larger than the vertical distance from the lower position. The vertical distance between the uppermost position of the inner surfaces of the plurality of diffuser tubes and the uppermost position of the inner surfaces of the diffuser headers is the vertical distance between the lowest position of the inner surfaces of the diffuser tubes and the lowest position of the inner surfaces of the diffuser headers. By being larger than the directional distance, it is easy to form a gas layer above the diffuser header by the gas introduced into the diffuser header. Therefore, by gradually lowering the interface between the gas layer and the liquid to be treated, it is easy to supply gas uniformly to the plurality of diffuser tubes, so that bubbles are released from the plural diffuser holes of the multiple diffuser tubes. A uniform amount can be promoted. In addition, by gradually lowering the interface between the gas layer and the liquid to be processed, the liquid to be processed in the diffuser header can be easily and reliably drained through the plurality of air diffusers.
 (3)上記気体導入口が上記複数本の散気管の内面の最上位置より上方に設けられているとよい。気体導入口が複数本の散気管の内面の最上位置より上方に設けられていることによって、散気ヘッダ内に導入された気体によって散気ヘッダ内の上方に気体層を容易に形成することができる。そのため、この気体層と被処理液との界面を徐々に下げていくことで複数本の散気管に気体を均等に供給することができ、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を促進することができる。また、気体層と被処理液との界面を徐々に下げていくことで散気ヘッダ内の被処理液を複数本の散気管を介して容易かつ確実に排液することができる。 (3) The gas introduction port may be provided above the uppermost position of the inner surfaces of the plurality of diffuser tubes. By providing the gas inlets above the uppermost position of the inner surfaces of the plurality of diffuser tubes, it is possible to easily form a gas layer above the diffuser header by the gas introduced into the diffuser header. it can. Therefore, by gradually lowering the interface between the gas layer and the liquid to be treated, gas can be evenly supplied to the plurality of diffuser tubes, and bubbles from the plurality of diffuser holes of the plurality of diffuser tubes can be supplied. Uniformity of the release amount can be promoted. In addition, by gradually lowering the interface between the gas layer and the liquid to be processed, the liquid to be processed in the diffuser header can be easily and reliably drained through the plurality of air diffusers.
 (4)本発明の他の一態様に係る濾過装置は、複数本の中空糸膜を有する複数の濾過モジュールと、この複数の濾過モジュールの下方から気泡を供給する気体供給モジュールとを備える浸漬式の濾過装置であって、上記気体供給モジュールが、当該散気ユニットを備える。 (4) A filtration device according to another aspect of the present invention includes a plurality of filtration modules having a plurality of hollow fiber membranes, and an immersion type including a gas supply module that supplies bubbles from below the plurality of filtration modules. The gas supply module includes the air diffusion unit.
 当該濾過装置は、当該散気ユニットを備えるので、上述のように複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュールの洗浄効果の均質化を図ることができる。 Since the filtration device includes the aeration unit, as described above, it is possible to equalize the amount of bubbles released from the plurality of aeration holes of the plurality of aeration tubes, thereby cleaning the plurality of filtration modules. The effect can be homogenized.
 (5)上記気体供給モジュールが、上記複数の散気孔の鉛直上方に配設される複数の間欠的気泡発生ユニットをさらに備えるとよい。気体供給モジュールが複数の散気孔の鉛直上方に配設される複数の間欠的気泡発生ユニットをさらに備えることによって、比較的大きな気泡を吐出することができるので、個々の気泡が持つエネルギーを高めて、複数本の中空糸膜表面の洗浄効果をさらに高めることができる。また、気孔の放出量の少ない散気孔が存在すると、この散気孔の鉛直上方に配設される間欠的気泡発生ユニットからの吐出される気泡の小径化や吐出間隔の延長を引き起こし洗浄効果の向上を図り難い場合があるが、複数の散気孔からの気泡の放出量が均一である場合、各間欠的気泡発生モジュールによって洗浄効果を容易かつ確実に向上することができる。 (5) The gas supply module may further include a plurality of intermittent bubble generation units disposed vertically above the plurality of air diffusion holes. Since the gas supply module further includes a plurality of intermittent bubble generating units disposed vertically above the plurality of air diffusion holes, relatively large bubbles can be discharged, thereby increasing the energy of each bubble. The cleaning effect on the surface of the plurality of hollow fiber membranes can be further enhanced. In addition, if there are diffused holes with a small amount of released pores, the diameter of bubbles discharged from the intermittent bubble generating unit disposed vertically above the diffused holes is reduced and the discharge interval is extended, thereby improving the cleaning effect. However, when the amount of bubbles released from the plurality of air diffusion holes is uniform, the cleaning effect can be easily and reliably improved by each intermittent bubble generation module.
 なお、本発明において「水平方向」とは、厳密な水平方向に限定されるものではなく、水平方向に対して5°以下、好ましくは3°以下の角度で傾斜した方向を含む。また、「散気ヘッダの側壁」とは、散気ヘッダの中心軸と垂直な断面において水平方向に対向する一対の壁をいう。 In the present invention, the “horizontal direction” is not limited to a strict horizontal direction, and includes a direction inclined at an angle of 5 ° or less, preferably 3 ° or less with respect to the horizontal direction. Further, the “side walls of the diffuser header” refers to a pair of walls that face in the horizontal direction in a cross section perpendicular to the central axis of the diffuser header.
[本発明の実施形態の詳細]
 以下、図面を参照しつつ、本発明に係る散気ユニット及び濾過装置について詳説する。
[Details of the embodiment of the present invention]
Hereinafter, an air diffusion unit and a filtration device according to the present invention will be described in detail with reference to the drawings.
[第一実施形態]
<散気ユニット>
 図1及び図2の散気ユニット1は、浸漬式の濾過装置の洗浄気体を供給する。濾過装置としては、例えば複数本の中空糸膜を有する濾過モジュールと、この濾過モジュールの下方から気泡を供給する気体供給モジュールとを備える精密濾過装置及び限外濾過装置が挙げられる。散気ユニット1は、この気体供給モジュールに用いられる。散気ユニット1は、被処理液中に浸漬した状態で用いられる。
[First embodiment]
<Aeration unit>
The aeration unit 1 in FIGS. 1 and 2 supplies a cleaning gas for an immersion type filtration apparatus. Examples of the filtration device include a microfiltration device and an ultrafiltration device including a filtration module having a plurality of hollow fiber membranes and a gas supply module that supplies bubbles from below the filtration module. The air diffusion unit 1 is used for this gas supply module. The air diffusion unit 1 is used in a state immersed in the liquid to be treated.
 散気ユニット1は、洗浄気体が導入される気体導入口11を有し、中心軸が水平方向に配設される直管状の散気ヘッダ2と、散気ヘッダ2に連通し、散気ヘッダ2の側壁から延出し、かつ複数の散気孔12を有する複数本の直管状の散気管3とを備える。散気ユニット1は、図3に示すように、複数本の散気管3の内面の最下位置hが散気ヘッダ2の内面の最下位置hと鉛直方向において近接している。具体的には、散気ユニット1は、複数本の散気管3が水平方向に配設されており、複数本の散気管3の散気ヘッダ2との接続部分における内面の最下位置hが散気ヘッダ2の内面の最下位置hと鉛直方向において近接している。 The air diffusion unit 1 has a gas introduction port 11 into which cleaning gas is introduced, a straight tubular air diffusion header 2 whose central axis is disposed in the horizontal direction, and the air diffusion header 2. And a plurality of straight tubular air diffusion tubes 3 having a plurality of air diffusion holes 12 extending from the two side walls. As shown in FIG. 3, in the air diffusion unit 1, the lowest position h 1 on the inner surface of the plurality of air diffusion tubes 3 is close to the lowest position h 2 on the inner surface of the air diffusion header 2 in the vertical direction. Specifically, the diffuser unit 1 has a plurality of diffuser tubes 3 arranged in the horizontal direction, and the lowest position h 1 on the inner surface of the diffuser tube 3 connected to the diffuser header 2. There are close at the lowest position h 2 to the vertical direction of the inner surface of the air diffuser header 2.
 散気ユニット1は、散気ヘッダ2の気体導入口11から散気ヘッダ2内に気体が導入されると、散気ヘッダ2内に気体層及び液層(被処理液層)が形成される。つまり、散気ヘッダ2は、被処理液中に浸漬された状態で用いられるため、気体導入前においては、内部に被処理液が満たされている。この状態で気体導入口11から気体が導入されると、気体の比重が被処理液の比重よりも小さいため、気体は散気ヘッダ2の上側の内面と被処理液との間を満たしていく。また、散気ユニット1は、散気ヘッダ2と同様、複数本の散気管3内にも気体導入前には被処理液が満たされている。散気ユニット1は、散気ヘッダ2内に気体が導入され、気体層と液層との界面が複数本の散気管3の内面の最上位置hよりも下方まで下がることで、複数本の散気管3の上側の内面と被処理液との間を気体が流れる。散気ユニット1は、複数本の散気管3が複数の散気孔12を有するので、複数本の散気管3内を流れる気体が複数の散気孔12から気泡として放出されることで、濾過モジュールの複数本の中空糸膜を洗浄可能に構成されている。なお、散気ユニット1は、気体層から全ての散気管3に同時に気体を供給するためには全ての散気管3の内面の最上位置hが等しいことが好ましい。 In the diffuser unit 1, when gas is introduced into the diffuser header 2 from the gas inlet 11 of the diffuser header 2, a gas layer and a liquid layer (processed liquid layer) are formed in the diffuser header 2. . That is, since the diffuser header 2 is used in a state of being immersed in the liquid to be processed, the liquid to be processed is filled inside before introducing the gas. When the gas is introduced from the gas inlet 11 in this state, the specific gravity of the gas is smaller than the specific gravity of the liquid to be processed, so that the gas fills the space between the upper inner surface of the diffuser header 2 and the liquid to be processed. . In the air diffusion unit 1, similarly to the air diffusion header 2, the liquid to be processed is filled in the plurality of air diffusion pipes 3 before the gas is introduced. The diffuser unit 1 is configured such that the gas is introduced into the diffuser header 2, and the interface between the gas layer and the liquid layer is lowered below the uppermost position h 3 on the inner surface of the diffuser tubes 3 . A gas flows between the upper inner surface of the air diffusion tube 3 and the liquid to be processed. In the air diffusion unit 1, since the plurality of air diffusion tubes 3 have the plurality of air diffusion holes 12, the gas flowing through the plurality of air diffusion tubes 3 is released as bubbles from the plurality of air diffusion holes 12, thereby A plurality of hollow fiber membranes can be washed. In order to supply gas from the gas layer to all the diffuser tubes 3 simultaneously, it is preferable that the uppermost position h3 on the inner surface of all the diffuser tubes 3 is equal.
 散気ユニット1は、複数本の散気管3の内面の最下位置hが散気ヘッダ2の内面の最下位置hと近接しているので散気ヘッダ2に導入された気体を複数本の散気管3に均一に供給し易い。そのため、散気ユニット1は、複数本の散気管3の複数の散気孔12からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュールの洗浄効果の均質化を図ることができる。 The diffuser unit 1 has a plurality of gases introduced into the diffuser header 2 because the lowest position h 1 on the inner surface of the plurality of diffuser tubes 3 is close to the lowest position h 2 on the inner surface of the diffuser header 2. It is easy to supply the air diffuser 3 evenly. For this reason, the air diffusion unit 1 can achieve a uniform discharge amount of bubbles from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3, thereby achieving a uniform cleaning effect of the plurality of filtration modules. Can do.
 散気ユニット1が複数本の散気管3の複数の散気孔12から気泡を均一に放出することができる理由を以下に説明する。
 散気ユニットは、被処理液中に浸漬して用いられるものであるため、被処理液に浸漬した際に散気ユニット内にこの被処理液が浸入し易い。この点、従来の散気ユニットは、複数本の散気管の内面の最下位置が散気ヘッダの内面の最下位置よりも比較的上方に配設されていたため、この散気ヘッダにおける複数本の散気管の内面の最下位置よりも低位の位置に非処理液が溜まり易い。そのため、従来の散気ユニットは、散気ヘッダ内に気体を導入した際に散気ヘッダ内に溜まった被処理液の液面が波打ち、この波打ちに起因して気体の進路が妨げられることで複数本の散気管に均一に気体を供給することができない。
 これに対し、散気ユニット1は、複数本の散気管3の内面の最下位置hが散気ヘッダ2の内面の最下位置hと鉛直方向において近接しているので、この散気ヘッダ2における複数本の散気管3の内面の最下位置hよりも低位の位置に非処理液が溜まり難く、散気ヘッダ2内の被処理液の液面の波打ちに起因して気体の進路が妨げられ難いので、複数本の散気管3の複数の散気孔12から気泡を均一に放出することができる。なお、散気ユニット1は、散気ヘッダ2における複数本の散気管3の内面の最下位置hよりも低位の位置に非処理液が溜まることをより的確に抑制するためには、全ての散気管3の内面の最下位置hが散気ヘッダ2の内面の最下位置hと近接していることが好ましい。
The reason why the air diffuser unit 1 can uniformly discharge the air bubbles from the air diffuser holes 12 of the air diffuser tubes 3 will be described below.
Since the air diffusion unit is used by being immersed in the liquid to be processed, the liquid to be processed easily enters the air diffusion unit when immersed in the liquid to be processed. In this regard, in the conventional air diffusion unit, the lowermost position of the inner surface of the plurality of air diffusion pipes is disposed relatively higher than the lowermost position of the inner surface of the air diffusion header. The non-treatment liquid easily collects at a position lower than the lowest position on the inner surface of the air diffusion tube. For this reason, the conventional air diffuser unit is configured such that when the gas is introduced into the air diffuser header, the liquid level of the liquid to be processed accumulated in the air diffuser header is corrugated, and the course of the gas is hindered due to the corrugation. Gas cannot be uniformly supplied to a plurality of diffuser tubes.
On the other hand, in the air diffusion unit 1, the lowest position h 1 on the inner surface of the plurality of air diffusion pipes 3 is close to the lowest position h 2 on the inner surface of the air diffusion header 2 in the vertical direction. In the header 2, the non-treatment liquid hardly accumulates at a position lower than the lowest position h 1 on the inner surface of the plurality of diffusion tubes 3, and the gas is caused by the undulation of the liquid surface of the liquid to be treated in the diffusion header 2. Since the path is difficult to be obstructed, the bubbles can be uniformly discharged from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3. In order to more accurately suppress the non-treatment liquid from accumulating at a position lower than the lowest position h 1 on the inner surface of the plurality of air diffusion tubes 3 in the air diffusion header 2 in the air diffusion unit 1, it is preferable that the lowest position h 1 of the diffuser of the inner surface of the trachea 3 is a neighbor lowest position h 2 of the inner surface of the air diffuser header 2.
(散気ヘッダ)
 散気ヘッダ2は、上述のように直管状であり、詳細には中心軸方向の両端が端壁によって封止されることで中空状の内部空間を有する形状とされている。散気ヘッダ2の中心軸に垂直な内面の断面形状としては、特に限定されるものではなく、例えば矩形状、楕円状、真円状、逆T字状、L字状等が挙げられる。中でも、上記断面形状としては、逆T字状が好ましい。断面形状が逆T字状であれば、散気ヘッダ2、ひいては散気ユニット1を備える濾過装置の小型化を図りつつ、散気ヘッダ2内の上方に気体層を形成し易いからである。
(Aeration header)
The diffuser header 2 has a straight tubular shape as described above, and specifically has a shape having a hollow internal space by sealing both ends in the central axis direction with end walls. The cross-sectional shape of the inner surface perpendicular to the central axis of the diffuser header 2 is not particularly limited, and examples thereof include a rectangular shape, an elliptical shape, a perfect circular shape, an inverted T shape, and an L shape. Of these, the cross-sectional shape is preferably an inverted T-shape. This is because if the cross-sectional shape is an inverted T-shape, it is easy to form a gas layer above the diffuser header 2 while reducing the size of the filter device including the diffuser header 2 and thus the diffuser unit 1.
 散気ヘッダ2の内面は、上述のように楕円状等であってもよいが、被処理液が内部に溜まるのを抑制する点からは、水平な下面を有することが好ましい。さらに、散気ヘッダ2は、図1及び図2に示すように、対向する一対の側壁からそれぞれ複数本の散気管3が延出するため、これら複数本の散気管3からの気泡の放出量の均一化を図る上では、中心軸に垂直な断面形状は左右対称であることが好ましい。 The inner surface of the diffuser header 2 may be elliptical as described above, but it is preferable to have a horizontal lower surface from the viewpoint of suppressing the liquid to be treated from accumulating inside. Further, as shown in FIGS. 1 and 2, the diffuser header 2 has a plurality of diffuser tubes 3 extending from a pair of opposing side walls, so that the amount of air bubbles released from the diffuser tubes 3 is increased. In order to achieve uniformity, it is preferable that the cross-sectional shape perpendicular to the central axis is symmetrical.
 散気ヘッダ2は、複数本の散気管3の内面の最上位置hよりも上方に、気体導入口11から導入された気体によって気体層を形成するための気体層形成領域を有することが好ましい。また、この気体層形成領域は、複数本の散気管3が配設される中心軸方向の全領域に跨って設けられることが好ましい。この気体層形成領域は、例えば散気ヘッダ2の内面の最上位置hを複数本の散気管3の内面の最上位置hよりも一定以上高くすることで形成可能である。 Aeration header 2, above the the uppermost position h 3 of the inner surface of the plurality of diffuser tubes 3 preferably has a gas layer formation region for forming a gas layer by a gas introduced from the gas inlet 11 . Moreover, it is preferable that this gas layer formation area is provided ranging over the whole area | region of the central-axis direction in which the several diffuser tube 3 is arrange | positioned. This gas layer forming region can be formed, for example, by making the uppermost position h 4 on the inner surface of the diffuser header 2 higher than the uppermost position h 3 on the inner surfaces of the plurality of diffuser tubes 3 by a certain level or more.
 気体導入口11は、散気ヘッダ2の中心軸方向の一端側に形成されている。気体導入口11の形成箇所としては、例えば図2に示すように散気ヘッダ2の上壁であってもよく、散気ヘッダ2の中心軸方向の一端側の端壁であってもよい。気体導入口11は、気体圧送ユニット(図示せず)と接続されることで、この気体圧送ユニットから供給される気体を散気ヘッダ2内に導入可能に構成されている。 The gas inlet 11 is formed on one end side in the central axis direction of the diffuser header 2. For example, as shown in FIG. 2, the gas inlet 11 may be formed on the upper wall of the diffuser header 2 or the end wall on the one end side in the central axis direction of the diffuser header 2. The gas introduction port 11 is configured to be able to introduce gas supplied from the gas pressure feeding unit 2 into the diffuser header 2 by being connected to a gas pressure feeding unit (not shown).
 気体導入口11は、複数本の散気管3の内面の最上位置hより上方に設けられていることが好ましい。散気ユニット1は、気体導入口11が複数本の散気管3の内面の最上位置hより上方に設けられていることによって、散気ヘッダ2内に導入された気体によって散気ヘッダ2内の上方に気体層を容易に形成することができる。そのため、この気体層と被処理液との界面を徐々に下げていくことで複数本の散気管3に気体を均等に供給することができ、複数本の散気管3の複数の散気孔12からの気泡の放出量の均一化を促進することができる。また、気体層と被処理液との界面を徐々に下げていくことで散気ヘッダ2内の被処理液を複数本の散気管3を介して容易かつ確実に排液することができる。 It is preferable that the gas inlet 11 is provided above the uppermost position h 3 on the inner surface of the plurality of diffuser tubes 3. Aeration unit 1, by gas inlet 11 is provided from the highest position h 3 of the inner surface of the plurality of diffuser tubes 3 upward, air diffuser header 2 by the gas introduced into the air diffuser header 2 A gas layer can be easily formed above the substrate. Therefore, by gradually lowering the interface between the gas layer and the liquid to be treated, the gas can be uniformly supplied to the plurality of diffusion tubes 3, and the plurality of diffusion holes 12 of the plurality of diffusion tubes 3 can be supplied. It is possible to promote the uniform discharge of bubbles. Further, by gradually lowering the interface between the gas layer and the liquid to be processed, the liquid to be processed in the diffuser header 2 can be easily and reliably drained through the plurality of air diffusers 3.
 散気ヘッダ2の中心軸方向長さの下限としては、0.5mが好ましく、1.0mがより好ましい。上記中心軸方向長さの上限としては、3mが好ましく、2mがより好ましい。上記中心軸方向長さが上記下限に満たないと、大型の濾過装置に使用できなくなるおそれがある。上記中心軸方向長さが上記上限を超えると、複数本の散気管3への気体の供給量が不十分となり、十分に洗浄効率を高め難くなるおそれがある。 The lower limit of the length in the central axis direction of the diffuser header 2 is preferably 0.5 m, and more preferably 1.0 m. The upper limit of the length in the central axis direction is preferably 3 m, and more preferably 2 m. If the length in the central axis direction is less than the lower limit, it may not be usable for a large-sized filtration device. If the length in the central axis direction exceeds the upper limit, the amount of gas supplied to the plurality of diffuser tubes 3 becomes insufficient, and it may be difficult to sufficiently increase the cleaning efficiency.
 散気ヘッダ2の中心軸に垂直な内部空間の断面積の下限としては、15cmが好ましく、40cmがより好ましい。上記断面積の上限としては、150cmが好ましく、120cmがより好ましい。上記断面積が上記下限に満たないと、散気ヘッダ2の内部に上述の気体層形成領域を形成し難くなるおそれや、気体導入口11と比較的離れた位置に配設される散気管3に気体を十分に供給し難くなるおそれがある。上記断面積が上記上限を超えると、散気ヘッド2が大きくなり過ぎることで散気ユニット1を濾過装置に装着し難くなるおそれがある。 The lower limit of the cross-sectional area perpendicular inner space to the central axis of the air diffuser header 2, preferably 15cm 2, 40 cm 2 is more preferable. As an upper limit of the cross-sectional area, 150 cm 2 is preferable, and 120 cm 2 is more preferable. If the cross-sectional area is less than the lower limit, it may be difficult to form the gas layer forming region inside the diffuser header 2, or the diffuser tube 3 disposed at a position relatively distant from the gas inlet 11. There is a risk that it will be difficult to sufficiently supply gas. If the cross-sectional area exceeds the upper limit, the air diffuser head 2 becomes too large, and it may be difficult to attach the air diffuser unit 1 to the filtration device.
 散気ヘッダ2の主成分としては、特に限定されるものではなく、ステンレス、鋼、銅、アルミニウム等の金属や、アクリル樹脂、ポリエチレン、ポリ塩化ビニル、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等の合成樹脂が挙げられる。なお、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上である成分をいう。 The main component of the diffuser header 2 is not particularly limited, and metals such as stainless steel, steel, copper and aluminum, acrylic resin, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer (ABS resin) ) And the like. The “main component” means a component having the highest content, for example, a component having a content of 50% by mass or more.
(散気管)
 複数本の散気管3は、散気ヘッダ2に連通し、散気ヘッダ2の対向する一対の側壁から対向方向外側に向けて延出している。また、複数本の散気管3は、散気ヘッダ2の対向する一対の側壁の対向位置から延出することが好ましい。複数本の散気管3は、中心軸が水平方向に配設されている。
(Air diffuser)
The plurality of diffuser tubes 3 communicate with the diffuser header 2 and extend outward from the pair of side walls facing the diffuser header 2 in the opposite direction. Moreover, it is preferable that the plurality of diffuser tubes 3 extend from the opposed positions of the pair of side walls opposed to the diffuser header 2. The plurality of air diffusing tubes 3 have a central axis arranged in the horizontal direction.
 複数本の散気管3は同形状に形成されている。また、複数本の散気管3の内面の最下位置hはすべて同位であり、かつ複数本の散気管3の内面の最上位置hはすべて同位であることが好ましい。 The plurality of diffuser tubes 3 are formed in the same shape. In addition, it is preferable that the lowest positions h 1 on the inner surfaces of the plurality of diffusion tubes 3 are all the same, and the uppermost positions h 3 on the inner surfaces of the plurality of the diffusion tubes 3 are all the same.
 複数本の散気管3は、散気ヘッド2の対向する一対の側壁から散気ヘッド2の中心軸方向に等間隔で配設されることが好ましい。複数本の散気管3は、散気ヘッド2の対向する一対の側壁から散気ヘッド2の中心軸方向に等間隔で配設されることで、濾過装置の複数の濾過モジュール間に複数本の散気管3を配置し易く、これにより複数の濾過モジュールの洗浄効果を高めることができる。 The plurality of air diffusion tubes 3 are preferably arranged at equal intervals in the direction of the central axis of the air diffusion head 2 from a pair of side walls opposed to the air diffusion head 2. The plurality of air diffusion tubes 3 are disposed at equal intervals in the central axis direction of the air diffusion head 2 from a pair of opposing side walls of the air diffusion head 2. The air diffusing tube 3 can be easily arranged, and thereby the cleaning effect of the plurality of filtration modules can be enhanced.
 散気ヘッド2の各側壁から延出する複数本の散気管3の個数の下限としては、濾過装置における濾過モジュールの配設数に応じて適宜変更可能であるが、例えば5が好ましく、10がより好ましい。上記個数の上限としては、例えば40が好ましく、30がより好ましい。複数本の散気管3は、上述のように濾過装置の複数の濾過モジュール間に配設されることで、各散気管3に平面視で隣接する一対の濾過モジュール(但し、最も外側に位置する濾過モジュールの外側に配設される散気管3については隣接する1つの濾過モジュール)の複数本の中空糸膜を洗浄可能に構成される。この点に関し、複数本の散気管3の個数が上記下限に満たないと、隣接する散気管3同士の間隔が大きくなり過ぎて、平面視における濾過モジュールと散気管3との間隔が大きくなり、複数の濾過モジュールの複数本の中空糸膜の洗浄効果を十分に高められないおそれがある。逆に、複数本の散気管3の個数が上記上限を超えると、隣接する散気管3同士の間隔が小さくなり過ぎて、複数本の散気管3を隣接する一対の濾過モジュール間に配置し難くなるおそれがある。 The lower limit of the number of the plurality of air diffusion tubes 3 extending from the respective side walls of the air diffusion head 2 can be appropriately changed according to the number of filtration modules provided in the filtration device. More preferred. As the upper limit of the number, for example, 40 is preferable and 30 is more preferable. The plurality of air diffusion tubes 3 are disposed between the plurality of filtration modules of the filtration device as described above, so that a pair of filtration modules adjacent to each air diffusion tube 3 in plan view (however, located on the outermost side). The air diffuser 3 disposed outside the filtration module is configured to be capable of cleaning a plurality of hollow fiber membranes of one adjacent filtration module). In this regard, if the number of the plurality of diffuser tubes 3 is less than the lower limit, the interval between the adjacent diffuser tubes 3 becomes too large, and the interval between the filtration module and the diffuser tube 3 in a plan view increases. There is a possibility that the cleaning effect of the plurality of hollow fiber membranes of the plurality of filtration modules cannot be sufficiently enhanced. On the contrary, when the number of the plurality of diffuser tubes 3 exceeds the above upper limit, the interval between the adjacent diffuser tubes 3 becomes too small and it is difficult to arrange the plurality of diffuser tubes 3 between the pair of adjacent filtration modules. There is a risk.
 隣接する散気管3同士の間隔の下限としては、20mmが好ましく、30mmがより好ましい。上記間隔の上限としては、200mmが好ましく、150mmがより好ましい。上記間隔が上記下限に満たないと、隣接する散気管3同士の間隔が小さくなり過ぎて、複数本の散気管3を隣接する一対の濾過モジュール間に配置し難くなるおそれがある。上記間隔が上記上限を超えると、平面視における濾過モジュールと散気管3との間隔が大きくなり過ぎて、複数の濾過モジュールの洗浄効果を十分に高められないおそれがある。 The lower limit of the interval between adjacent diffuser tubes 3 is preferably 20 mm, and more preferably 30 mm. As an upper limit of the said space | interval, 200 mm is preferable and 150 mm is more preferable. If the interval is less than the lower limit, the interval between adjacent diffuser tubes 3 becomes too small, and it may be difficult to dispose a plurality of diffuser tubes 3 between a pair of adjacent filtration modules. If the interval exceeds the upper limit, the interval between the filtration module and the air diffuser 3 in a plan view becomes too large, and the cleaning effect of the plurality of filtration modules may not be sufficiently improved.
 上述のように、複数本の散気管3の内面の最下位置hは散気ヘッダ2の内面の最下位置hと鉛直方向において近接している。また、複数本の散気管3の内面の最下位置hは、散気ヘッダ2の内面の最下位置hと同位であるか、又は散気ヘッダ2の内面の最下位置hよりも高い。具体的には、複数本の散気管3の内面の最下位置hと散気ヘッダ2の内面の最下位置hとの鉛直方向距離の上限としては、10mmが好ましく、6mmがより好ましく、3mmがさらに好ましく、0mmが最も好ましい。上記鉛直方向距離が上記上限を超えると、散気ヘッダ2内における複数本の散気管3の最下位置hよりも低位の位置に非処理液が溜まり易くなり、これにより散気ヘッダ2内に気体を導入した際に散気ヘッダ2内の被処理液の液面が波打ち、複数本の散気管3に均一に気体を供給することができないおそれがある。なお、「散気管の内面の最下位置」とは、例えば散気管の内面が水平な底面を有する場合はこの底面の位置を意味し、散気管の下方側の内面が湾曲している場合にはこの内面の鉛直方向における最も下方の位置を意味する。また、「散気ヘッダの内面の最下位置」についても、散気管の内面の最下位置と同様である。 As described above, the lowest position h 1 on the inner surface of the plurality of diffuser tubes 3 is close to the lowest position h 2 on the inner surface of the diffuser header 2 in the vertical direction. Further, the lowermost position h 1 of the inner surface of the plurality of diffuser tubes 3 are either the lowest position h 2 and peers of the inner surface of the air diffuser header 2, or air diffuser header 2 from the lowest position h 2 of the inner surface Is also expensive. Specifically, the upper limit of the vertical distance between the lowest position h 2 of the inner surface of the lowermost position h 1 and aeration header 2 of the inner surface of the plurality of diffuser tubes 3, 10 mm are preferred, 6 mm, more preferably 3 mm is more preferable, and 0 mm is most preferable. When the vertical distance exceeds the upper limit, the non-processed liquid easily accumulates at a position lower than the lowest position h 1 of the plurality of air diffusers 3 in the air diffuser header 2. When the gas is introduced into the air, the liquid level of the liquid to be processed in the diffuser header 2 may wave, and the gas may not be uniformly supplied to the plural diffuser tubes 3. The “lowermost position of the inner surface of the diffuser tube” means, for example, the position of the bottom surface when the inner surface of the diffuser tube has a horizontal bottom surface, and the lower inner surface of the diffuser tube is curved. Means the lowest position of the inner surface in the vertical direction. The “lowermost position of the inner surface of the diffuser header” is also the same as the lowest position of the inner surface of the diffuser pipe.
 複数本の散気管3の内面の最上位置と散気ヘッダ2の内面の最上位置との鉛直方向距離は、複数本の散気管3の内面の最下位置と散気ヘッダ2の内面の最下位置との鉛直方向距離よりも大きいことが好ましい。散気ユニット1は、複数本の散気管の内面の最上位置hと散気ヘッダの内面の最上位置hとの鉛直方向距離が、複数本の散気管3の内面の最下位置hと散気ヘッダの内面の最下位置hとの鉛直方向距離よりも大きいことによって、散気ヘッダ2内に導入された気体によって散気ヘッダ2内の上方に気体層を形成し易い。そのため、この気体層と被処理液との界面を徐々に下げていくことで複数本の散気管3に気体を均等に供給し易いので、複数本の散気管3の複数の散気孔12からの気泡の放出量の均一化を促進することができる。また、複数本の散気管3の内面の最下位置hと散気ヘッダ2の内面の最下位置hとの鉛直方向距離が、複数本の散気管3の内面の最上位置hと散気ヘッダ2の内面の最上位置hとの鉛直方向距離よりも小さいことによって、気体層と被処理液との界面を徐々に下げていくことで散気ヘッダ2内の被処理液を複数本の散気管3を介して容易かつ確実に排液することができる。なお、「散気管の内面の最上位置」とは、例えば散気管の内面が水平な上面を有する場合はこの上面の位置を意味し、散気管の上方側の内面が湾曲している場合にはこの内面の鉛直方向における最も上方の位置を意味する。また、「散気ヘッダの内面の最上位置」についても、散気管の内面の最上位置と同様である。 The vertical distance between the uppermost position of the inner surface of the plurality of diffusion tubes 3 and the uppermost position of the inner surface of the diffusion header 2 is the lowest position of the inner surfaces of the plurality of diffusion tubes 3 and the lowermost position of the inner surface of the diffusion header 2. It is preferable that it is larger than the vertical distance from the position. Aeration unit 1, vertical distance between the inner surface of the uppermost position h 4 of the uppermost h 3 and diffuser header of the inner surface of the plurality of diffuser tubes are lowest position h 1 of the inner surface of the plurality of diffuser tubes 3 and by greater than the vertical distance between the lowest position h 2 of the inner surface of the diffuser header, easy to form the gas layer above the inside air diffuser header 2 by the gas introduced into the air diffuser header 2. Therefore, by gradually lowering the interface between the gas layer and the liquid to be treated, it is easy to uniformly supply the gas to the plurality of diffuser tubes 3. It is possible to promote the uniform discharge of bubbles. Further, the vertical distance between the lowest position h 1 and lowermost position h 2 of the inner surface of the air diffuser header 2 of the inner surface of the plurality of diffuser tubes 3, the uppermost position h 3 of the inner surface of the plurality of diffuser tubes 3 by less than the vertical distance between the uppermost position h 4 of the inner surface of the air diffuser header 2, a plurality of liquid to be treated in the aeration header 2 by the interface between the gas layer and the liquid to be treated gradually lowered The liquid can be easily and reliably discharged through the air diffuser 3. The “uppermost position of the inner surface of the diffuser tube” means, for example, the position of this upper surface when the inner surface of the diffuser tube has a horizontal upper surface, and when the upper inner surface of the diffuser tube is curved. It means the uppermost position in the vertical direction of this inner surface. Further, “the uppermost position of the inner surface of the diffuser header” is the same as the uppermost position of the inner surface of the diffuser pipe.
 散気ヘッダ2の内面の最上位置hと複数本の散気管3の内面の最上位置hとの鉛直方向距離の下限としては、15mmが好ましく、25mmがより好ましく、30mmがさらに好ましい。上記鉛直方向距離が上記下限に満たないと、気体導入口11から導入された気体によって複数本の散気管3の内面の最上位置hよりも上方に気体層を十分に形成し難くなるおそれがある。上記鉛直方向距離の上限としては、散気ヘッド2の小型化を図る点から、例えば50mmとすることができる。 The lower limit of the vertical distance between the uppermost position h 3 of the inner surface of the uppermost h 4 and a plurality of diffuser tubes 3 of the inner surface of the air diffuser header 2, 15 mm is preferable, 25 mm, and still more preferably 30 mm. If the vertical distance is less than the lower limit, it is difficult to sufficiently form a gas layer above the uppermost position h 3 on the inner surface of the plurality of air diffusers 3 by the gas introduced from the gas inlet 11. is there. The upper limit of the vertical distance can be set to, for example, 50 mm from the viewpoint of reducing the size of the air diffusion head 2.
 各散気管3は、中心軸方向の両端が開口した直管状に形成されている。各散気管3の中心軸方向と垂直な断面形状は特に限定されないが、例えば円環状や四角環状とすることができる。 Each diffuser tube 3 is formed in a straight tube shape having both ends opened in the central axis direction. The cross-sectional shape perpendicular to the central axis direction of each air diffuser 3 is not particularly limited, but may be, for example, an annular shape or a square shape.
 各散気管3の内径の下限としては、6mmが好ましく、10mmがより好ましく、15mmがさらに好ましい。各散気管3の内径の上限としては、70mmが好ましく、60mmがより好ましく、50mmがさらに好ましい。各散気管3の内径が上記下限に満たないと、各散気管3に気体を十分に供給できないおそれがある。逆に、各散気管3の内径が上記上限を超えると、管内の体積が大きくなり、不純物等の固形物が散気管3内に滞留し易くなるおそれがある。なお、散気管3の内面の中心軸方向の断面形状が円形以外である場合の内径は、真円に換算した場合の内径を意味する。 The lower limit of the inner diameter of each air diffuser 3 is preferably 6 mm, more preferably 10 mm, and even more preferably 15 mm. The upper limit of the inner diameter of each air diffuser 3 is preferably 70 mm, more preferably 60 mm, and even more preferably 50 mm. If the inner diameter of each air diffuser 3 is less than the lower limit, there is a possibility that gas cannot be sufficiently supplied to each air diffuser 3. On the contrary, if the inner diameter of each air diffuser 3 exceeds the above upper limit, the volume in the tube increases, and solids such as impurities may easily stay in the air diffuser 3. The inner diameter when the cross-sectional shape in the central axis direction of the inner surface of the air diffusing tube 3 is other than a circle means the inner diameter when converted to a perfect circle.
 各散気管3の平均管厚の下限としては、1mmが好ましく、2mmがより好ましい。各散気管3の平均管厚の上限としては、6mmが好ましく、4mmがより好ましい。各散気管3の平均管厚が上記下限に満たないと、十分な強度が得られないおそれがある。各散気管3の平均管厚が上記上限を超えると、外径が不必要に大きくなるおそれがある。 The lower limit of the average tube thickness of each air diffuser 3 is preferably 1 mm, more preferably 2 mm. The upper limit of the average tube thickness of each air diffuser 3 is preferably 6 mm, and more preferably 4 mm. If the average tube thickness of each air diffuser 3 is less than the lower limit, sufficient strength may not be obtained. If the average tube thickness of each air diffuser 3 exceeds the above upper limit, the outer diameter may become unnecessarily large.
 複数の散気孔12の形状は特に限定されないが、円形が好ましい。複数の散気孔12は、図1及び図2に示すように、同じ大きさで、各散気管3の中心軸方向に等間隔で配設されていることが好ましい。散気ユニット1は、複数の散気孔12が各散気管3の中心軸方向に等間隔で配設されることによって、散気ヘッダ2から供給される気体を延出方向先端側に送りつつ、中心軸方向に沿って略均一に放出することができる。なお、複数の散気孔12は、例えばレーザー加工によって形成することができる。 The shape of the plurality of air diffusion holes 12 is not particularly limited, but a circular shape is preferable. As shown in FIGS. 1 and 2, the plurality of air diffusion holes 12 are preferably the same size and arranged at equal intervals in the central axis direction of each air diffusion tube 3. The air diffuser unit 1 has a plurality of air diffuser holes 12 arranged at equal intervals in the central axis direction of each air diffuser 3, while sending the gas supplied from the air diffuser header 2 to the front end side in the extending direction, It can discharge substantially uniformly along the central axis direction. The plurality of air diffusion holes 12 can be formed by, for example, laser processing.
 また、複数の散気孔12の中心は、各散気管3の中心軸を含む鉛直断面と一致するよう配設されていることが好ましい。つまり、複数の散気孔12の中心は、各散気管3の中心軸を含む鉛直断面に含まれることが好ましい。さらに、各散気管3は、その周面に散気孔12以外の開口を有しないことが好ましい。散気ユニット1は、複数の散気孔12がこのように配設されることによって、管内に気体を送りつつ、洗浄気体を複数の散気孔12から連続的に放出することができる。 Further, it is preferable that the centers of the plurality of air diffusion holes 12 are arranged so as to coincide with the vertical cross section including the central axis of each air diffusion tube 3. That is, it is preferable that the centers of the plurality of air diffusion holes 12 are included in a vertical section including the central axis of each air diffusion tube 3. Further, each air diffuser 3 preferably has no opening other than the air diffuser 12 on its peripheral surface. The diffuser unit 1 can continuously discharge the cleaning gas from the diffuser holes 12 while sending the gas into the pipe by arranging the diffuser holes 12 in this manner.
 複数の散気孔12の平均径の下限としては、1mmが好ましく、2mmがより好ましい。複数の散気孔12の平均径の上限としては、10mmが好ましく、8mmがより好ましい。上記平均径が上記下限に満たないと、十分に気泡を放出できないおそれがある。逆に、上記平均径が上記上限を超えると、各散気孔12からの気泡の放出量が多くなり過ぎることにより、散気ヘッダ2から気体が供給された場合にこの気体が散気ヘッダ2側に配設される散気孔12から放出され過ぎて、延出方向先端側からの放出量が十分に得られないおそれがある。なお、散気孔12が円形以外の場合の平均径は、真円に換算した場合の平均径を意味する。 The lower limit of the average diameter of the plurality of air diffusion holes 12 is preferably 1 mm, and more preferably 2 mm. The upper limit of the average diameter of the plurality of air diffusion holes 12 is preferably 10 mm, and more preferably 8 mm. If the average diameter is less than the lower limit, bubbles may not be released sufficiently. On the other hand, when the average diameter exceeds the upper limit, the amount of bubbles released from each air diffuser 12 becomes too large, so that when the gas is supplied from the air diffuser header 2, this gas becomes the air diffuser header 2 side. There is a possibility that the amount of discharge from the front end side in the extending direction may not be sufficiently obtained due to excessive discharge from the air diffuser 12 disposed in the. In addition, the average diameter in case the diffuser hole 12 is other than a circle means the average diameter when converted into a perfect circle.
 複数の散気孔12の平均ピッチ(中心間距離)の下限としては、10mmが好ましく、20mmがより好ましい。複数の散気孔12の平均ピッチの上限としては、150mmが好ましく、100mmがより好ましい。上記平均ピッチが上記下限に満たないと、散気ヘッダ2から気体が供給された場合にこの気体が散気ヘッダ2側に配設される散気孔12から放出され過ぎて、延出方向先端側からの放出量が十分に得られなくなるおそれがある。上記平均ピッチが上記上限を超えると、濾過モジュールにおいて気体が供給され難い領域が発生するおそれがある。 The lower limit of the average pitch (center-to-center distance) of the plurality of air diffusion holes 12 is preferably 10 mm, and more preferably 20 mm. The upper limit of the average pitch of the plurality of air diffusion holes 12 is preferably 150 mm, and more preferably 100 mm. If the average pitch is less than the lower limit, when gas is supplied from the diffuser header 2, the gas is excessively released from the diffuser holes 12 disposed on the diffuser header 2 side, and the leading end side in the extending direction There is a risk that a sufficient amount of release will not be obtained. When the average pitch exceeds the upper limit, there is a possibility that a region where gas is hardly supplied in the filtration module may be generated.
 散気管3の主成分としては、ステンレス、鋼、銅、アルミニウム等の金属や、アクリル樹脂、ポリエチレン、ポリ塩化ビニル、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等の合成樹脂が挙げられる。中でも、耐久性に優れると共に比較的安価なポリ塩化ビニルが好ましい。 The main components of the air diffuser 3 include metals such as stainless steel, steel, copper and aluminum, and synthetic resins such as acrylic resin, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer (ABS resin). Of these, polyvinyl chloride is preferable because of its excellent durability and relatively low cost.
(洗浄気体)
 散気ユニット1に導入される洗浄気体としては、散気ヘッダ2の内の上方に気体層を形成できるよう、被処理液よりも比重が小さいことが必要とされる。また、散気ユニット1に導入される洗浄気体としては、不活性ガスが好ましい。このような気体としては、特に限定されないが、典型的には空気が挙げられる。
(Cleaning gas)
The cleaning gas introduced into the diffuser unit 1 is required to have a specific gravity smaller than that of the liquid to be processed so that a gas layer can be formed above the diffuser header 2. The cleaning gas introduced into the air diffusion unit 1 is preferably an inert gas. Although it does not specifically limit as such gas, Typically, air is mentioned.
<濾過装置>
 図4及び図5の濾過装置21は、浸漬式の濾過装置である。濾過装置21は、複数本の中空糸膜31を有する複数の濾過モジュール22と、複数の濾過モジュール22の下方から気泡を供給する気体供給モジュール23とを備える。また、気体供給モジュール23は、図1の散気ユニット1を備える。複数の濾過モジュール22及び気体供給モジュール23は、フレーム24に連結されることで一体的に保持されている。
<Filtration device>
The filtration device 21 in FIGS. 4 and 5 is an immersion type filtration device. The filtration device 21 includes a plurality of filtration modules 22 having a plurality of hollow fiber membranes 31 and a gas supply module 23 that supplies bubbles from below the plurality of filtration modules 22. The gas supply module 23 includes the air diffusion unit 1 shown in FIG. The plurality of filtration modules 22 and the gas supply module 23 are integrally held by being connected to the frame 24.
 濾過装置21は、散気ユニット1を備えるので、上述のように複数本の散気管3の複数の散気孔12からの気泡の放出量の均一化を図ることができ、これにより複数の濾過モジュール22の洗浄効果の均質化を図ることができる。 Since the filtration device 21 includes the air diffusion unit 1, it is possible to equalize the amount of air bubbles released from the plurality of air diffusion holes 12 of the plurality of air diffusion tubes 3 as described above. The homogenization of the cleaning effect of 22 can be achieved.
(濾過モジュール)
 各濾過モジュール22は、複数本の中空糸膜31と、複数本の中空糸膜31の上端部を保持する棒状の上部保持部材32と、複数本の中空糸膜31の下端部を保持する棒状の下部保持部材33とを有する。複数本の中空糸膜31は、上下方向に引き揃えられている。複数本の中空糸膜31は、上部保持部材32の下面及び下部保持部材33の上面の略全面に連結される。かかる構成により、各濾過モジュール22は、全体として幅(上部保持部材32及び下部保持部材33の中心軸方向長さ)に対して厚さ(上部保持部材32及び下部保持部材33の中心軸方向と垂直な水平方向長さ)が小さい略直方体状に形成されている。上部保持部材32は中空状に形成されている。上部保持部材32は、濾過モジュール22によって濾過された処理済液を排出する排出機構(図示せず)と接続されている。これにより、濾過装置21は、複数の濾過モジュール22の複数本の中空糸膜31を透過した処理済液を排出機構を介して排出可能に構成されている。
(Filtration module)
Each filtration module 22 includes a plurality of hollow fiber membranes 31, a rod-like upper holding member 32 that holds the upper ends of the plurality of hollow fiber membranes 31, and a rod-like shape that holds the lower ends of the plurality of hollow fiber membranes 31. Lower holding member 33. The plurality of hollow fiber membranes 31 are aligned in the vertical direction. The plurality of hollow fiber membranes 31 are connected to substantially the entire lower surface of the upper holding member 32 and the upper surface of the lower holding member 33. With this configuration, each filtration module 22 has a thickness (the length in the central axis direction of the upper holding member 32 and the lower holding member 33) as a whole and the thickness (the central axis direction of the upper holding member 32 and the lower holding member 33). It is formed in a substantially rectangular parallelepiped shape with a small vertical horizontal length). The upper holding member 32 is formed in a hollow shape. The upper holding member 32 is connected to a discharge mechanism (not shown) that discharges the processed liquid filtered by the filtration module 22. Thereby, the filtration apparatus 21 is comprised so that the processed liquid which permeate | transmitted the several hollow fiber membrane 31 of the several filtration module 22 can be discharged | emitted via a discharge mechanism.
 複数の濾過モジュール22は、図4に示すように、正面視において2列に配置されている。また、複数の濾過モジュール22は、図5に示すように、各列において等間隔かつ平行に配置されている。具体的には、濾過装置21は、幅方向の端縁同士が隣接するように一対の濾過モジュール22が2列に配置され、各列において複数の濾過モジュール22が厚さ方向に対向するように等間隔で配置されている。 The plurality of filtration modules 22 are arranged in two rows in front view as shown in FIG. Moreover, the several filtration module 22 is arrange | positioned in parallel at equal intervals in each row | line | column, as shown in FIG. Specifically, in the filtration device 21, a pair of filtration modules 22 are arranged in two rows so that edges in the width direction are adjacent to each other, and a plurality of filtration modules 22 are opposed in the thickness direction in each row. They are arranged at equal intervals.
 中空糸膜31は、水を透過させる一方、被処理液に含まれる不純物の透過を阻止する多孔性の膜を管状に成形したものであり、例えば熱可塑性樹脂を主成分とするものを用いることができる。各濾過モジュール22おける複数本の中空糸膜31の束の濾過モジュール22の幅方向における平均長さとしては、例えば300mm以上1200mm以下とすることができる。各濾過モジュール22における複数本の中空糸膜31の束の濾過モジュール22の厚さ方向における平均長さとしては、例えば10mm以上100mm以下とすることができる。上側保持部材32の下端及び下側保持部材33の上端間における複数本の中空糸膜31の平均長さとしては、例えば1m以上6m以下とすることができる。 The hollow fiber membrane 31 is formed by tubularly forming a porous membrane that permeates water while preventing permeation of impurities contained in the liquid to be treated. For example, a hollow fiber membrane 31 that uses a thermoplastic resin as a main component is used. Can do. The average length of the bundle of a plurality of hollow fiber membranes 31 in each filtration module 22 in the width direction of the filtration module 22 can be, for example, 300 mm or more and 1200 mm or less. The average length of the bundle of a plurality of hollow fiber membranes 31 in each filtration module 22 in the thickness direction of the filtration module 22 may be, for example, 10 mm or more and 100 mm or less. The average length of the plurality of hollow fiber membranes 31 between the lower end of the upper holding member 32 and the upper end of the lower holding member 33 can be, for example, 1 m or more and 6 m or less.
(気体供給モジュール)
 気体供給モジュール23は、散気ユニット1と、散気ユニット1の散気ヘッダの気体導入口に気体を供給する気体圧送ユニット(図示せず)とを有する。気体圧送ユニットとしては、特に限定されるものではなく、例えば公知のブロワ、圧縮機等が挙げられる。
(Gas supply module)
The gas supply module 23 includes an air diffusion unit 1 and a gas pressure feeding unit (not shown) that supplies gas to the gas introduction port of the air diffusion header of the air diffusion unit 1. The gas pressure feeding unit is not particularly limited, and examples thereof include a known blower and a compressor.
 散気ユニット1は、複数の濾過モジュール22の下方からこれら複数の濾過モジュール22の複数本の中空糸膜31に向けて気泡を放出する。散気ユニット1は、散気ヘッダの中心軸が、2列に配置される複数の濾過モジュール22の列間の中心と平面視で一致するよう配設される。また、散気ユニット1は、平面視で複数本の散気管3が各列において隣接する濾過モジュール22間に位置するよう配設される。さらに、散気ユニット1は、散気ヘッダの中心軸方向の両端に位置する各一対の散気管3が、各列において最も外側に位置する各一対の濾過モジュール22の平面視における外側に位置するよう配設される。複数の濾過モジュール22と複数本の散気管3との平面視における間隔は等しいことが好ましい。 The air diffusion unit 1 discharges bubbles from below the plurality of filtration modules 22 toward the plurality of hollow fiber membranes 31 of the plurality of filtration modules 22. The air diffusion unit 1 is arranged such that the central axis of the air diffusion header coincides with the center between the rows of the plurality of filtration modules 22 arranged in two rows in a plan view. Further, the air diffusion unit 1 is arranged such that a plurality of air diffusion tubes 3 are positioned between adjacent filtration modules 22 in each row in a plan view. Further, in the air diffuser unit 1, each pair of air diffuser tubes 3 located at both ends in the central axis direction of the air diffuser header is located outside in a plan view of each pair of filtration modules 22 located on the outermost side in each row. Arranged. It is preferable that the space | interval in planar view of the several filtration module 22 and the several diffuser tube 3 is equal.
[第二実施形態]
<濾過装置>
 図6の濾過装置41は、浸漬式の濾過装置である。濾過装置41は、複数本の中空糸膜31を有する複数の濾過モジュール22と、複数の濾過モジュール22の下方から気泡を供給する気体供給モジュール43とを備える。濾過装置41における複数の濾過モジュール22は、図4及び図5の濾過装置21の複数の濾過モジュール22と同様のため、同一符号を付して説明を省略する。
[Second Embodiment]
<Filtration device>
The filtration device 41 in FIG. 6 is an immersion type filtration device. The filtration device 41 includes a plurality of filtration modules 22 having a plurality of hollow fiber membranes 31 and a gas supply module 43 that supplies air bubbles from below the plurality of filtration modules 22. The plurality of filtration modules 22 in the filtration device 41 are the same as the plurality of filtration modules 22 of the filtration device 21 in FIGS.
(気体供給モジュール)
 気体供給モジュール43は、図6及び図7に示すように、図1の散気ユニット1と、散気ユニット1の複数の散気孔12の鉛直上方に配設される複数の間欠的気泡発生ユニット44と、散気ユニット1の散気ヘッドの気体導入口に気体を供給する気体圧送ユニット(図示せず)とを有する。気体圧送ユニットとしては、図4及び図5の濾過装置21の気体圧送ユニットと同様のものを採用することができる。つまり、濾過装置41は、複数の間欠的気泡発生ユニット44を有する以外は、図4及び図5の濾過装置21と同様の構成を有する。
(Gas supply module)
As shown in FIGS. 6 and 7, the gas supply module 43 includes a plurality of intermittent bubble generation units disposed vertically above the air diffuser unit 1 of FIG. 1 and the air diffuser holes 12 of the air diffuser unit 1. 44 and a gas pumping unit (not shown) for supplying gas to the gas inlet of the air diffuser head of the air diffuser unit 1. As the gas pressure feeding unit, the same gas pressure feeding unit as that of the filtration device 21 of FIGS. 4 and 5 can be adopted. That is, the filtration device 41 has the same configuration as the filtration device 21 of FIGS. 4 and 5 except that it has a plurality of intermittent bubble generation units 44.
 濾過装置41は、気体供給モジュール43が複数の散気孔12の鉛直上方に配設される複数の間欠的気泡発生ユニット44を備えることによって、比較的大きな気泡を吐出することができるので、個々の気泡が持つエネルギーを高めて、複数本の中空糸膜31表面の洗浄効果をさらに高めることができる。また、気孔の放出量の少ない散気孔が存在すると、この散気孔の鉛直上方に配設される間欠的気泡発生ユニットからの吐出される気泡の小径化や吐出間隔の延長を引き起こし洗浄効果の向上を図り難い場合があるが、濾過装置41は、複数の散気孔12から均一に気泡を放出することができるので、各間欠的気泡発生ユニット44により洗浄効果を容易かつ確実に向上することができる。 Since the gas supply module 43 includes a plurality of intermittent bubble generation units 44 disposed vertically above the plurality of air diffusion holes 12, the filtration device 41 can discharge relatively large bubbles. By increasing the energy of the bubbles, the cleaning effect on the surface of the plurality of hollow fiber membranes 31 can be further enhanced. In addition, if there are diffused holes with a small amount of released pores, the diameter of bubbles discharged from the intermittent bubble generating unit disposed vertically above the diffused holes is reduced and the discharge interval is extended, thereby improving the cleaning effect. However, since the filtering device 41 can discharge bubbles uniformly from the plurality of air diffusion holes 12, the intermittent bubble generation unit 44 can easily and reliably improve the cleaning effect. .
(間欠的気泡発生ユニット44)
 間欠的気泡発生ユニット44は、散気ユニット1の複数の散気孔12の鉛直上方に1対1対応で配設されている。間欠的気泡発生ユニット44は、図8に示すように、基部51と、基部51の上方(図8のZ方向上方)に突出する突出部52とを有する。突出部52は、図9に示すように、互いに対向する前壁52a及び後壁52bを有し、後面(後壁52bの外面)が基部51の後面と面一状に形成されている。間欠的気泡発生ユニット44は、基部51の下方に開口53が形成されている。また、間欠的気泡発生ユニット44は、突出部52の上端に吐出口54が設けられている。間欠的気泡発生ユニット44は、散気孔12から放出される気泡を開口53から導入した上、吐出口54から上方に間欠的に吐出可能に構成されている。なお、間欠的気泡発生ユニット44における「前」とは、図8のX方向正側(紙面手前側)を意味し、「後」とは、X方向負側(紙面奥行き側)を意味し、「左」とは、Y方向正側を意味し、「右」とは、Y方向負側を意味するものとして便宜上に規定したものであって、間欠的気泡発生ユニット44の具体的構成を規定するものではない。
(Intermittent bubble generation unit 44)
The intermittent bubble generating unit 44 is arranged in a one-to-one correspondence above the plurality of air diffusion holes 12 of the air diffusion unit 1. As shown in FIG. 8, the intermittent bubble generating unit 44 includes a base 51 and a protruding portion 52 that protrudes above the base 51 (upward in the Z direction in FIG. 8). As shown in FIG. 9, the protruding portion 52 has a front wall 52 a and a rear wall 52 b facing each other, and a rear surface (an outer surface of the rear wall 52 b) is formed flush with the rear surface of the base 51. The intermittent bubble generating unit 44 has an opening 53 below the base 51. Further, the intermittent bubble generating unit 44 is provided with a discharge port 54 at the upper end of the protruding portion 52. The intermittent bubble generating unit 44 is configured to be capable of intermittently discharging upward from the discharge port 54 after introducing the bubbles released from the diffuser holes 12 through the opening 53. In the intermittent bubble generation unit 44, “front” means the positive side in the X direction (front side of the paper) in FIG. 8, and “rear” means the negative side in the X direction (depth side of the paper), “Left” means the positive side in the Y direction, and “right” is defined for convenience as meaning the negative side in the Y direction. The specific configuration of the intermittent bubble generating unit 44 is specified. Not what you want.
 図9~図11を参照して、間欠的気泡発生ユニット44の具体的構成について詳説する。間欠的気泡発生ユニット44は、気体導入室55と、気体誘導室56と、気体吐出室57とを有する。間欠的気泡発生ユニット44は、気体導入室55の下端に開口53が形成されている。間欠的気泡発生ユニット44は、気体吐出室57の上端に吐出口54が形成されている。 9 to FIG. 11, the specific configuration of the intermittent bubble generating unit 44 will be described in detail. The intermittent bubble generation unit 44 includes a gas introduction chamber 55, a gas induction chamber 56, and a gas discharge chamber 57. The intermittent bubble generating unit 44 has an opening 53 formed at the lower end of the gas introduction chamber 55. The intermittent bubble generating unit 44 has a discharge port 54 formed at the upper end of the gas discharge chamber 57.
 気体導入室55は、基部51内に直方体状に形成されている。気体導入室55は、仕切り壁58によって気体誘導室56及び気体吐出室57と区画されている。仕切り壁58は、突出部52の前壁52aの下端から連続して下方に延出している。気体導入室55及び気体誘導室56を区画する仕切り壁58の上端部分には開口60が形成されている。これにより、気体導入室55及び気体誘導室56は開口60によって連通している。 The gas introduction chamber 55 is formed in a rectangular parallelepiped shape in the base 51. The gas introduction chamber 55 is partitioned from a gas induction chamber 56 and a gas discharge chamber 57 by a partition wall 58. The partition wall 58 continuously extends downward from the lower end of the front wall 52a of the protrusion 52. An opening 60 is formed in the upper end portion of the partition wall 58 that partitions the gas introduction chamber 55 and the gas induction chamber 56. Thereby, the gas introduction chamber 55 and the gas induction chamber 56 communicate with each other through the opening 60.
 気体誘導室56は、基部51内に直方体状に形成されている。気体誘導室56は、平面視における突出部52の左側(Y方向正側)に形成されている。気体誘導室56は、仕切り壁58によって気体導入室55と区画され、仕切り壁59によって気体吐出室57と区画されている。気体誘導室56及び気体吐出室57を区画する仕切り壁59の下端部分には開口61が形成されている。これにより、気体誘導室56及び気体吐出室57は開口61によって連通している。 The gas induction chamber 56 is formed in a rectangular parallelepiped shape in the base 51. The gas induction chamber 56 is formed on the left side (Y direction positive side) of the protrusion 52 in plan view. The gas induction chamber 56 is partitioned from the gas introduction chamber 55 by the partition wall 58 and is partitioned from the gas discharge chamber 57 by the partition wall 59. An opening 61 is formed in the lower end portion of the partition wall 59 that partitions the gas induction chamber 56 and the gas discharge chamber 57. Thereby, the gas induction chamber 56 and the gas discharge chamber 57 communicate with each other through the opening 61.
 気体吐出室57は、基部51及び突出部52内を連通して直方体状に形成されている。気体吐出室57は、仕切り壁58によって気体導入室55と区画され、仕切り壁59によって気体誘導室56と区画されている。 The gas discharge chamber 57 is formed in a rectangular parallelepiped shape so as to communicate with the inside of the base portion 51 and the protruding portion 52. The gas discharge chamber 57 is partitioned from the gas introduction chamber 55 by the partition wall 58 and is partitioned from the gas induction chamber 56 by the partition wall 59.
 間欠的気泡発生ユニット44は、上述のような構成を有するので、気体導入室55に導入された気体は、まず気体導入室55の上部に移動する。この上部に移動した気体は、開口60から気体誘導室56に導入される。その結果、気体導入室55に導入された気体は、気体導入室55及び気体誘導室56の上端付近に貯留される。その後、さらに気体導入室55に気体が導入されると、気体と被処理液との界面は、気体導入室55及び気体誘導室56にそれぞれ分割され、同程度の水平レベル位置を維持しつつ下方に移動する。そして、気体誘導室56内の気体が所定量を超えると、開口61から気体吐出室57に気体が誘導され、比較的大きな気泡が吐出口54から間欠的に吐出される。なお、本実施形態では、一つの気体誘導室が平面視において突出部の左側に形成される構成について記載したが、この気体誘導室は、突出部の右側に形成されてもよく、突出部の左右に一対形成されてもよく、中央に形成されてもよい。 Since the intermittent bubble generating unit 44 has the above-described configuration, the gas introduced into the gas introduction chamber 55 first moves to the upper portion of the gas introduction chamber 55. The gas moved to the upper part is introduced into the gas induction chamber 56 through the opening 60. As a result, the gas introduced into the gas introduction chamber 55 is stored near the upper ends of the gas introduction chamber 55 and the gas induction chamber 56. Thereafter, when the gas is further introduced into the gas introduction chamber 55, the interface between the gas and the liquid to be processed is divided into the gas introduction chamber 55 and the gas induction chamber 56, respectively, while maintaining the same horizontal level position. Move to. When the gas in the gas induction chamber 56 exceeds a predetermined amount, the gas is guided from the opening 61 to the gas discharge chamber 57, and relatively large bubbles are intermittently discharged from the discharge port 54. In the present embodiment, the configuration in which one gas guide chamber is formed on the left side of the projecting portion in plan view is described. However, the gas guide chamber may be formed on the right side of the projecting portion. A pair may be formed on the left and right, or may be formed in the center.
 図7に示すように、気体供給モジュール43は、上述の構成を有する複数の間欠的気泡発生ユニット44が、左側の側壁と右側の側壁とを対向させつつ散気管3の中心軸方向と平行に連続して配設されている。また、気体供給モジュール43は、各散気管3の各の散気孔12が各間欠的気泡発生ユニット44の開口53の鉛直下方に配設されている。 As shown in FIG. 7, the gas supply module 43 includes a plurality of intermittent bubble generation units 44 having the above-described configuration, in parallel with the central axis direction of the air diffusion tube 3 with the left side wall and the right side wall facing each other. It is arranged continuously. Further, in the gas supply module 43, each air diffuser 12 of each air diffuser 3 is arranged vertically below the opening 53 of each intermittent bubble generating unit 44.
 濾過装置41にあっては、上述のように、散気ヘッダは、複数本の散気管3の内面の最上位置hよりも上方に、気体導入口から導入された気体によって気体層を形成するための気体層形成領域を有することが好ましい。しかしながら、散気ヘッダがこのような気体層形成領域を有する場合、複数の散気孔12と複数の濾過モジュール22との鉛直方向の間隔が大きくなり過ぎて、複数の散気孔12から放出される気泡を複数の濾過モジュール22間に的確に導入し難くなるおそれがある。この点に関し、濾過装置41は、複数の散気孔12の鉛直上方に複数の間欠的気泡発生ユニット44を配設することで、この間欠的気泡発生ユニット44によって散気孔12から放出される気泡をガイドすることできる。従って、濾過装置41は、気体供給モジュール43が複数の間欠的気泡発生ユニット44を有することによって、複数の散気孔12から放出される気泡のエネルギーを高めると共に、この気泡をより確実に複数の濾過モジュール22間に導入することができる。 In the filtering device 41, as described above, the diffuser header forms a gas layer with the gas introduced from the gas introduction port above the uppermost position h 3 on the inner surface of the multiple diffuser tubes 3. It is preferable to have a gas layer forming region for the purpose. However, when the diffuser header has such a gas layer forming region, the vertical spacing between the plurality of diffuser holes 12 and the plurality of filtration modules 22 becomes too large, and the bubbles discharged from the diffuser holes 12 May not be accurately introduced between the plurality of filtration modules 22. In this regard, the filtering device 41 disposes a plurality of intermittent bubble generation units 44 vertically above the plurality of air diffusion holes 12, thereby removing bubbles released from the air diffusion holes 12 by the intermittent bubble generation units 44. Can guide. Accordingly, the filtration device 41 includes the gas supply module 43 having the plurality of intermittent bubble generation units 44, thereby increasing the energy of bubbles released from the plurality of air diffusion holes 12, and more reliably filtering the bubbles. It can be introduced between the modules 22.
 複数の散気孔12と複数の間欠的気泡発生ユニット44の開口53との鉛直方向距離の上限としては、20mmが好ましく、15mmがより好ましい。上記鉛直方向距離が上記上限を超えると、複数の散気孔12から放出される気泡を開口53に確実に導入し難くなるおそれがある。上記鉛直方向距離の下限としては、特に限定されるものではないが、例えば1mmとすることができる。 The upper limit of the vertical distance between the plurality of air diffusion holes 12 and the openings 53 of the plurality of intermittent bubble generation units 44 is preferably 20 mm, and more preferably 15 mm. If the vertical distance exceeds the upper limit, it may be difficult to reliably introduce bubbles released from the plurality of air diffusion holes 12 into the opening 53. Although it does not specifically limit as a minimum of the said perpendicular distance, For example, it can be 1 mm.
 また、濾過装置41は、散気ヘッダが気体層形成領域を有する場合、散気ヘッダの上側の外面が複数本の散気管3の上側の外面よりも上方に突出するため、平面視で散気ヘッダと重なる領域に間欠的気泡発生ユニット44を配設し難くなるおそれがある。この点、濾過装置41は、散気ヘッダの中心軸に垂直な断面の外形を逆T字状とすることで、散気ヘッダ内に気体層形成領域を設けると共に、突出部分の両側にそれぞれ間欠的気泡発生ユニット44を配設することができる。そのため、かかる構成によると、散気ヘッダと近接する位置に散気孔12を設けてもこの散気孔12に対応する位置に間欠的気泡発生ユニット44を配設することができ、これにより十分な洗浄効果を上げることができる。 In addition, when the diffuser header has a gas layer forming region, the filtration device 41 has an air diffuser in plan view because the upper outer surface of the diffuser header protrudes higher than the upper outer surface of the plurality of diffuser tubes 3. There is a possibility that it is difficult to dispose the intermittent bubble generating unit 44 in a region overlapping with the header. In this respect, the filtering device 41 has an inverted T-shaped outer shape perpendicular to the central axis of the diffuser header, thereby providing a gas layer formation region in the diffuser header and intermittently on both sides of the protruding portion. A static bubble generating unit 44 can be provided. Therefore, according to such a configuration, even if the air diffuser 12 is provided in a position close to the air diffuser header, the intermittent bubble generating unit 44 can be disposed at a position corresponding to the air diffuser 12, thereby sufficient cleaning. The effect can be improved.
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 例えば、散気ユニットは、散気ヘッダの一対の側壁からそれぞれ複数本の散気管が延出する必要はなく、一方の側壁のみから複数本の散気管が延出してもよく、一対の側壁から各1つの散気管が延出してもよい。 For example, in the diffuser unit, a plurality of diffuser tubes do not need to extend from a pair of side walls of the diffuser header, and a plurality of diffuser tubes may extend from only one side wall. Each one aeration tube may extend.
 散気ヘッダの気体導入口は、必ずしも複数本の散気管の内面の最上位置よりも上方に設けられていなくてもよい。例えば散気ユニットは、気体導入口が散気ヘッダの中心軸方向の一端側の端壁の下部に形成されていてもよい。また、気体導入口は、必ずしも散気ヘッダの中心軸方向の一端側に形成されていなくてもよく、例えば散気ヘッダの中心軸方向の両端に形成されていてもよく、散気ヘッダの中心軸方向の中央に形成されていてもよい。 The gas inlet of the diffuser header does not necessarily have to be provided above the uppermost position on the inner surface of the plurality of diffuser tubes. For example, in the air diffusion unit, the gas inlet may be formed in the lower part of the end wall on the one end side in the central axis direction of the air diffusion header. In addition, the gas inlet does not necessarily have to be formed at one end side in the central axis direction of the diffuser header, for example, it may be formed at both ends in the central axis direction of the diffuser header. You may form in the center of an axial direction.
 複数本の散気管は、必ずしも同形状である必要はない。例えば複数本の散気管は、中心軸方向の長さが異なっていてもよく、径が異なっていてもよい。また、複数本の散気管の内面の最下位置及び最上位置はそれぞれ異なっていてもよい。 ¡Multiple diffusers do not necessarily have the same shape. For example, the plurality of air diffusers may have different lengths in the central axis direction and may have different diameters. Further, the lowermost position and the uppermost position of the inner surfaces of the plurality of diffusion tubes may be different from each other.
 散気ユニットは、散気管の先端縁に連続して設けられ、散気管の中心軸方向から下方に傾斜した管状の固体分排出部を有していてもよい。散気ユニットは、固体分排出部を有することによって、散気管に侵入した固形分を固形分排出部の出口(散気管と反対側の端部)から気体による圧力で滑らかに排出することができる。その結果、散気ユニットは、複数の濾過モジュールへの洗浄気体の供給を妨げることなく、固形分の滞留を防止することができる。 The air diffuser unit may have a tubular solid content discharge section that is provided continuously at the tip edge of the air diffuser and is inclined downward from the central axis direction of the air diffuser. Since the air diffusion unit has the solid content discharge unit, the solid content that has entered the air diffusion tube can be smoothly discharged from the outlet of the solid content discharge unit (the end opposite to the air diffusion tube) with the pressure of the gas. . As a result, the aeration unit can prevent the solid content from staying without disturbing the supply of the cleaning gas to the plurality of filtration modules.
 散気ヘッダは、複数本の散気管の延出方向の先端同士を統合するよう連通し、水平方向に配設される気体合流管を有していてもよい。散気ヘッダは、このような気体合流管を有することによって、この気体合流管によって各散気管内の気体を統合することで複数本の散気管内の圧力の均一化を向上し、複数の散気孔からの気泡の放出量の均一化を促進することができる。 The diffuser header may have a gas merging pipe that is communicated so as to integrate the ends in the extending direction of a plurality of diffuser pipes and is disposed in the horizontal direction. The diffuser header has such a gas merging tube, and the gas in each diffusing tube is integrated by the gas merging tube to improve the uniformity of pressure in the plurality of diffusing tubes. Uniformity of the amount of bubbles released from the pores can be promoted.
 間欠的気泡発生ユニットの具体的構成は上述の構成に限定されるものではなく、気泡を間欠的に吐出可能な種々の構成を採用可能である。 The specific configuration of the intermittent bubble generation unit is not limited to the above-described configuration, and various configurations capable of intermittently discharging bubbles can be employed.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例]
[No.1]
 洗浄気体が導入される気体導入口を有し、中心軸が水平方向に配設される直管状の散気ヘッダと、この散気ヘッダの対向する一対の側壁から水平方向に延出し、複数の散気孔を有する複数の直管状の散気管とを備える散気ユニットを用意した。散気ヘッダとしては、気体導入口が散気ヘッダの中心軸方向の一端側における複数の散気孔の内面の最上位置よりも上方に形成されたものを用いた。散気ヘッダの中心軸方向長さは1.74mであり、各側壁から延出する散気管の数は25本(合計50本)であり、これらの散気管は各側壁に等間隔で配設されていた。また、各散気管の中心軸方向長さは0.8mであり、各散気管には等間隔で6個の散気孔が設けられていた。さらに、複数本の散気管の内面の最下位置と散気ヘッダの内面の最下位置との鉛直方向距離は6mmであり、散気ヘッダの内面の最上位置と複数本の散気管の内面の最上位置との鉛直方向距離は40mmであり、散気ヘッダの中心軸方向と垂直な方向の内部空間の断面積は90cmであった。
[Example]
[No. 1]
A straight tubular diffuser header having a gas introduction port into which the cleaning gas is introduced and having a central axis disposed in the horizontal direction, and a pair of side walls opposed to the diffuser header extending in the horizontal direction. An air diffusing unit comprising a plurality of straight tubular air diffusing tubes having air diffusing holes was prepared. As the diffuser header, one in which the gas inlet was formed above the uppermost position of the inner surfaces of the diffuser holes on one end side in the central axis direction of the diffuser header was used. The length of the diffuser header in the central axis direction is 1.74 m, and the number of diffuser tubes extending from each side wall is 25 (50 in total). These diffuser tubes are arranged at equal intervals on each side wall. It had been. Further, the length of each diffuser tube in the central axis direction was 0.8 m, and each diffuser tube was provided with six diffuser holes at equal intervals. Further, the vertical distance between the lowest position of the inner surface of the plurality of diffuser tubes and the lowest position of the inner surface of the diffuser header is 6 mm, and the uppermost position of the inner surface of the diffuser header and the inner surfaces of the plurality of diffuser tubes are The vertical distance from the uppermost position was 40 mm, and the cross-sectional area of the internal space in the direction perpendicular to the central axis direction of the diffuser header was 90 cm 2 .
 この散気ユニットを、複数本の散気管の最上位置が水深10cmとなるように水槽内に浸漬した。この散気ユニットの気体導入口から1つの散気孔毎の風量が23.3L/minとなるように空気を導入した。 This aeration unit was immersed in the water tank so that the uppermost position of the plurality of aeration pipes had a water depth of 10 cm. Air was introduced from the gas inlet of this air diffusion unit so that the air volume per air hole was 23.3 L / min.
[比較例]
[No.2]
 洗浄気体が導入される気体導入口を有し、中心軸が水平方向に配設される直管状の散気ヘッダと、この散気ヘッダの対向する一対の側壁から水平方向に延出し、複数の散気孔を有する複数の直管状の散気管とを備える散気ユニットを用意した。散気ヘッダとしては、気体導入口が散気ヘッダの中心軸方向の一端側における複数の散気孔の内面の最上位置よりも上方に形成されたものを用いた。散気ヘッダの中心軸方向長さ、各側壁から延出する散気管の数、これらの散気管の配設位置及び複数本の散気管の具体的構成はNo.1と同様とした。複数本の散気管の内面の最下位置と散気ヘッダの内面の最下位置との鉛直方向距離は116mmであり、散気ヘッダの内面の最上位置と複数本の散気管の内面の最上位置との鉛直方向距離は12mmであり、散気ヘッダの中心軸方向と垂直な方向の内部空間の断面積は90cmであった。
[Comparative example]
[No. 2]
A straight tubular diffuser header having a gas introduction port into which the cleaning gas is introduced and having a central axis disposed in the horizontal direction, and a pair of side walls opposed to the diffuser header extending in the horizontal direction. An air diffusing unit comprising a plurality of straight tubular air diffusing tubes having air diffusing holes was prepared. As the diffuser header, one in which the gas inlet was formed above the uppermost position of the inner surfaces of the diffuser holes on one end side in the central axis direction of the diffuser header was used. The length of the diffuser header in the central axis direction, the number of diffuser tubes extending from each side wall, the positions of these diffuser tubes, and the specific configuration of the multiple diffuser tubes are No. Same as 1. The vertical distance between the lowest position of the inner surfaces of the plurality of diffuser tubes and the lowest position of the inner surface of the diffuser header is 116 mm, and the uppermost position of the inner surfaces of the diffuser header and the uppermost position of the inner surfaces of the multiple diffuser tubes The cross-sectional area of the inner space in the direction perpendicular to the central axis direction of the diffuser header was 90 cm 2 .
 この散気ユニットを、複数本の散気管の最上位置が水深10cmとなるように水槽内に浸漬した。この散気ユニットの気体導入口から1つの散気孔毎の風量が23.3L/minとなるように空気を導入した。 This aeration unit was immersed in the water tank so that the uppermost position of the plurality of aeration pipes had a water depth of 10 cm. Air was introduced from the gas inlet of this air diffusion unit so that the air volume per air hole was 23.3 L / min.
<散気性>
 No.1では、全ての散気孔から気泡が放出されるのが目視にて確認できた。これにより、No.1で用いた散気ユニットは、複数本の散気管の複数の散気孔からの気泡の放出量の均一化を図ることができることが分かった。これに対し、No.2では、気体導入口から離れた位置に配設される複数本の散気管の複数の散気孔からの気泡の放出が目視にて確認できなかった。具体的には、No.2では、約半数の散気孔において気泡の放出が確認できなかった。
<Aeration>
No. 1, it was confirmed visually that bubbles were released from all the air holes. As a result, no. It was found that the air diffusing unit used in No. 1 can achieve uniform discharge of bubbles from a plurality of air diffusing holes of a plurality of air diffusing tubes. In contrast, no. In No. 2, it was not possible to visually confirm the release of bubbles from the plurality of diffuser holes of the plurality of diffuser tubes disposed at positions away from the gas inlet. Specifically, no. In 2, the release of bubbles could not be confirmed in about half of the air holes.
 1 散気ユニット
 2 散気ヘッダ
 3 散気管
 11 気体導入口
 12 散気孔
 21,41 濾過装置
 22 濾過モジュール
 23,43 気体供給モジュール
 24 フレーム
 31 中空糸膜
 32 上部保持部材
 33 下部保持部材
 44 間欠的気泡発生ユニット 
 51 基部
 52 突出部
 52a 前壁
 52b 後壁
 53,60,61 開口
 54 吐出口
 55 気体導入室
 56 気体誘導室
 57 気体吐出室
 58,59 仕切り壁
 h 散気管の内面の最下位置
 h 散気ヘッダの内面の最下位置
 h 散気管の内面の最上位置
 h 散気ヘッダの内面の最上位置
 
DESCRIPTION OF SYMBOLS 1 Air diffuser unit 2 Air diffuser header 3 Air diffuser pipe 11 Gas inlet 12 Air diffuser hole 21, 41 Filtration device 22 Filtration module 23, 43 Gas supply module 24 Frame 31 Hollow fiber membrane 32 Upper holding member 33 Lower holding member 44 Intermittent bubble Generating unit
51 Base 52 Projection 52a Front wall 52b Rear wall 53, 60, 61 Open 54 Discharge port 55 Gas introduction chamber 56 Gas induction chamber 57 Gas discharge chamber 58, 59 Partition wall h 1 Lowermost position of inner surface of air diffuser h 2 Scatter The lowest position of the inner surface of the air header h 3 The uppermost position of the inner surface of the air diffuser h 4 The uppermost position of the inner surface of the air diffuser header

Claims (5)

  1.  浸漬式の濾過装置の洗浄気体を供給する散気ユニットであって、
     上記洗浄気体が導入される気体導入口を有し、中心軸が水平方向に配設される直管状の散気ヘッダと、
     上記散気ヘッダに連通し、上記散気ヘッダの側壁から延出し、かつ複数の散気孔を有する複数本の直管状の散気管と
     を備え、
     上記複数本の散気管の内面の最下位置が上記散気ヘッダの内面の最下位置と鉛直方向において近接している散気ユニット。
    An air diffuser unit for supplying a cleaning gas for an immersion type filtration device,
    A straight tubular diffuser header having a gas inlet through which the cleaning gas is introduced, the central axis being disposed in a horizontal direction;
    A plurality of straight tubular air diffusers that communicate with the air diffuser header, extend from the side walls of the air diffuser header, and have a plurality of air diffuser holes;
    A diffuser unit in which the lowest position of the inner surfaces of the plurality of diffuser tubes is close to the lowest position of the inner surface of the diffuser header in the vertical direction.
  2.  上記複数本の散気管の内面の最上位置と散気ヘッダの内面の最上位置との鉛直方向距離が、上記複数本の散気管の内面の最下位置と散気ヘッダの内面の最下位置との鉛直方向距離よりも大きい請求項1に記載の散気ユニット。 The vertical distance between the uppermost position of the inner surfaces of the plurality of diffuser tubes and the uppermost position of the inner surfaces of the diffuser headers is the lowest position of the inner surfaces of the diffuser tubes and the lowest position of the inner surfaces of the diffuser headers. The aeration unit according to claim 1, wherein the aeration unit is larger than the vertical distance.
  3.  上記気体導入口が上記複数本の散気管の内面の最上位置より上方に設けられている請求項2に記載の散気ユニット。 The air diffusion unit according to claim 2, wherein the gas introduction port is provided above the uppermost position on the inner surface of the plurality of air diffusion tubes.
  4.  複数本の中空糸膜を有する複数の濾過モジュールと、この複数の濾過モジュールの下方から気泡を供給する気体供給モジュールとを備える浸漬式の濾過装置であって、
     上記気体供給モジュールが、請求項1、請求項2又は請求項3に記載の散気ユニットを備える濾過装置。
    An immersion type filtration device comprising a plurality of filtration modules having a plurality of hollow fiber membranes, and a gas supply module for supplying bubbles from below the plurality of filtration modules,
    A filtration apparatus provided with the aeration unit according to claim 1, claim 2 or claim 3, wherein the gas supply module.
  5.  上記気体供給モジュールが、上記複数の散気孔の鉛直上方に配設される複数の間欠的気泡発生ユニットをさらに備える請求項4に記載の濾過装置。 The filtration device according to claim 4, wherein the gas supply module further includes a plurality of intermittent bubble generation units disposed vertically above the plurality of air diffusion holes.
PCT/JP2017/021721 2016-07-15 2017-06-13 Aeration unit and filtration device WO2018012178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140580A JP2018008249A (en) 2016-07-15 2016-07-15 Aeration unit and filter device
JP2016-140580 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012178A1 true WO2018012178A1 (en) 2018-01-18

Family

ID=60952469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021721 WO2018012178A1 (en) 2016-07-15 2017-06-13 Aeration unit and filtration device

Country Status (3)

Country Link
JP (1) JP2018008249A (en)
TW (1) TW201803640A (en)
WO (1) WO2018012178A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188351A (en) * 2018-04-26 2019-10-31 住友電気工業株式会社 Diffuser pipe and intermittent bubble generating module
WO2021015156A1 (en) * 2019-07-25 2021-01-28 三菱ケミカルアクア・ソリューションズ株式会社 Membrane separation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119354A (en) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd Biological treatment apparatus and method
JP2011110520A (en) * 2009-11-30 2011-06-09 Kubota Corp Apparatus for treating organic waste water and method of treating organic waste water
JP2015085314A (en) * 2013-09-26 2015-05-07 三菱レイヨン株式会社 Air diffusion device and water treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119354A (en) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd Biological treatment apparatus and method
JP2011110520A (en) * 2009-11-30 2011-06-09 Kubota Corp Apparatus for treating organic waste water and method of treating organic waste water
JP2015085314A (en) * 2013-09-26 2015-05-07 三菱レイヨン株式会社 Air diffusion device and water treatment apparatus

Also Published As

Publication number Publication date
TW201803640A (en) 2018-02-01
JP2018008249A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
US10828607B2 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
CN103442789B (en) Filter plant and the hollow fiber membrane module for this filter plant
JP2008229628A (en) Water treatment apparatus and water treatment method
JP5803293B2 (en) Air diffuser
JP6477999B2 (en) Siphon diffuser, membrane separation activated sludge device, water treatment method
WO2013008522A1 (en) Air diffuser
WO2018012178A1 (en) Aeration unit and filtration device
JP5823489B2 (en) Membrane separator
US11524264B2 (en) Aerator device and filter system including the same
WO2016171011A1 (en) Filtration device
WO2018092342A1 (en) Filtration module and filtration device
WO2017061141A1 (en) Filter unit
JP2018008246A (en) Aeration unit
CN103842056B (en) Aeration unit and include its defecator
JP7131346B2 (en) Air diffuser and membrane separation activated sludge system
WO2011150206A2 (en) Hollow fiber membrane module
JP2019188351A (en) Diffuser pipe and intermittent bubble generating module
WO2016158308A1 (en) Diffuser tube and filtration unit
JP2018103135A (en) Aeration device
WO2017061475A1 (en) Filtration unit
KR101530298B1 (en) Membrane elements, membrane module, and membrane separation system
US20180369754A1 (en) Aeration tube and filtration unit
WO2018109964A1 (en) Filtration device
CA2977459A1 (en) Filtration unit
WO2018131150A1 (en) Filtration apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827310

Country of ref document: EP

Kind code of ref document: A1