WO2023181838A1 - Composition for resin starting material, organic solvent solution, curable resin composition, varnish, prepreg, and cured product - Google Patents
Composition for resin starting material, organic solvent solution, curable resin composition, varnish, prepreg, and cured product Download PDFInfo
- Publication number
- WO2023181838A1 WO2023181838A1 PCT/JP2023/007940 JP2023007940W WO2023181838A1 WO 2023181838 A1 WO2023181838 A1 WO 2023181838A1 JP 2023007940 W JP2023007940 W JP 2023007940W WO 2023181838 A1 WO2023181838 A1 WO 2023181838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- composition
- raw material
- resin raw
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/12—Acetic acid esters
- C07C69/14—Acetic acid esters of monohydroxylic compounds
- C07C69/145—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols
- C07C69/157—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/34—Monomers containing two or more unsaturated aliphatic radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/06—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
- C08F283/08—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/105—Esters; Ether-esters of monocarboxylic acids with phenols
- C08K5/107—Esters; Ether-esters of monocarboxylic acids with phenols with polyphenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
Definitions
- the present invention relates to compositions for resin raw materials, organic solvent solutions, curable resin compositions, varnishes, prepregs, and their curing to obtain cured products having excellent dielectric properties, sufficient mechanical strength, and excellent heat resistance. relating to things.
- Bisphenol compounds having an allyl group are used as raw materials for resin materials such as phenol resins, epoxy resins, bismaleimide resins, and polyphenylene ether resins, and for example, diallylbisphenol A is conventionally known.
- a compound obtained by modifying the hydroxyl group of a bisphenol compound having an allyl group is also used as such a raw material.
- diallyl bisphenol A having an acetyl group is used as a curing agent for epoxy resin (Patent Document 1). ing.
- An object of the present invention is to provide a resin raw material composition for obtaining a cured product having excellent dielectric properties, sufficient mechanical strength, and excellent heat resistance.
- the invention is as follows. 1. Contains 2,2-bis(4-acetoxy-3-allylphenyl)propane (compound (1)), has a solvent content of 5% by weight or less, and has a refractive index of 1.546 at 25°C A composition for a resin raw material having a value of 1.551 or less. 2.2-(4-hydroxy-3-allylphenyl)-2-(4-acetoxy-3-allylphenyl)propane (compound (2)) and 2,2-bis(4-hydroxy-3-allylphenyl) ) containing propane (compound (3)); 1. The composition for resin raw materials described in . 3.
- a curing agent comprising the resin raw material composition according to any one of 7. 6.
- the resin raw material composition of the present invention has excellent dielectric properties.
- a curing agent containing this is used for curing polyphenylene ether resin, a cured product having sufficient mechanical strength and excellent heat resistance can be obtained.
- the curable resin composition of the present invention using a curing agent containing this composition for resin raw materials having excellent dielectric properties can provide a cured product having sufficient mechanical strength and excellent heat resistance.
- 1 is a graph showing the relationship between the refractive index of each of the resin raw material compositions of Examples 1 to 4 and the glass transition temperature of a resin film obtained from them.
- the resin raw material composition of the present invention contains 2,2-bis(4-acetoxy-3-allylphenyl)propane (compound (1)), has a solvent content of 5% by weight or less, and has 25% by weight or less.
- the refractive index at °C is in the range of 1.546 or more and 1.551 or less.
- the solvent content in the present invention means a value calculated by HS-GC (headspace gas chromatography) analysis, as explained in the Examples below.
- the solvent content of the resin raw material composition of the present invention is preferably 3% by weight or less, more preferably 2% by weight or less, and particularly preferably 1% by weight or less.
- the refractive index in the present invention means a value measured using a refractometer at 25° C.
- the resin raw material composition of the present invention preferably has a refractive index at 25° C.
- the refractive index of the composition for resin raw materials of the present invention if it is not solvent-free (neat), use HS-GC (headspace gas chromatography) by distillation or evaporation of the solvent. The solvent may be removed so that the solvent content calculated by analysis is less than 1% by weight.
- the resin raw material composition of the present invention is a compound of 2-(4-hydroxy-3-allylphenyl)-2-(4-acetoxy-3-allylphenyl)propane (compound (2), which is an intermediate in the acetylation reaction described below). )) or 2,2-bis(4-hydroxy-3-allylphenyl)propane (compound (3)), which is a raw material, may be contained, and the content thereof is determined at 25°C There is no restriction as long as the refractive index is within the above range.
- the present inventors have found that the refractive index in the present invention correlates with the content ratio of compounds (1), (2), and (3) each having a different refractive index, and that compound (1), which is a diacetyl compound, and compound (1), which is a monoacetylated compound, It was revealed that the larger the content ratio (acetylation ratio) of a certain compound (2), the lower the refractive index.
- the acetylation rate in the present invention refers to the compounds (1) and (2) detected by analyzing the resin raw material composition by high performance liquid chromatography (HPLC) under the analysis conditions described in detail in the examples below. , (3) is calculated using the following "calculation formula" based on the area percentage of each peak.
- Acetylation rate [(a ⁇ 2+b) ⁇ 100 ⁇ 0.5] ⁇ (a+b+c) a: Area% of compound (1) b: Area% of compound (2) c: Area% of compound (3)
- the acetylation rate at which the resin raw material composition of the present invention has a refractive index of 1.546 or more and 1.551 or less at 25° C. is in the range of 60% to 99%.
- This acetylation rate is preferably in the range of 70% to 99%, more preferably in the range of 80% to 99%, even more preferably in the range of 85 to 99%, and even more preferably in the range of 90% to 99%.
- Particularly preferred is a range of %.
- the total amount of compounds (1), (2), and (3) contained in the resin raw material composition of the present invention is the peak of all components detected when performing the same HPLC analysis as the acetylated product rate.
- the ratio of the total area of peaks where compounds (1), (2), and (3) are detected to the total area preferably 75 area% or more, more preferably 80 area% or more .
- compound (3) and acetic anhydride are subjected to an acetylation reaction under predetermined conditions to obtain compound (2) as an intermediate.
- compound (1) there is a method for obtaining compound (1).
- the conditions for the acetylation reaction described below can be adjusted as appropriate.
- the amount of acetic anhydride used is 4,4'-(propane-2,2-diyl)-bis(2-allylphenol)(2,2-bis(4-hydroxy-3-allylphenyl)propane: Compound (3) )) It is generally used in an amount of 2 moles or more, preferably 2 to 5 moles, more preferably 3 to 5 moles, even more preferably 4 to 5 moles, per mole.
- a solvent may not be used unless there is a problem with the operability or reaction rate during industrial production. Not only is it economically advantageous to carry out the process without a solvent, but it is also preferable in terms of reducing the solvent content in the resin raw material composition of the present invention.
- the raw material 4,4'-(propane-2,2-diyl)-bis(2-allylphenol) (2,2-bis( 4-Hydroxy-3-allylphenyl)propane: 0.3 to 10 parts by weight or less, preferably 0.5 to 6 parts by weight, per 1 part by weight of compound (3)).
- the solvent to be used is not particularly limited as long as it does not adversely affect the reaction, but in order to reduce the solvent content in the resin raw material composition of the present invention, a solvent that can be easily removed by vacuum distillation or the like is preferred.
- aromatic hydrocarbons such as toluene, xylene, and ethylbenzene
- halogenated hydrocarbons such as dichloroethane
- ketones such as methyl ethyl ketone and methyl isobutyl ketone
- ethers such as tetrahydrofuran, cyclopentyl methyl ether, and diphenyl ether.
- solvents may be used alone or in combination of two or more.
- the temperature of the acetylation reaction is usually in the range of 120 to 150°C, preferably in the range of 130 to 140°C. It is preferable to carry out the reaction within this range because the reaction proceeds quickly and is therefore efficient.
- the reaction is usually carried out under normal pressure, but depending on the boiling point of the solvent used, the reaction may be carried out under increased pressure or reduced pressure so that the reaction temperature is within the above range.
- the acetylation reaction time is in the range of 0.5 to 10 hours.
- the obtained reaction mixture can be used to obtain a resin raw material composition containing the target compound (1) by a known method, and is subjected to water washing, crystallization, filtration, distillation, and column treatment. Purification and isolation can be achieved by performing post-treatment operations such as separation by chromatography.
- the resulting reaction mixture is first dissolved in an organic solvent that dissolves the reaction mixture and separates it from water.
- the organic solvent that can be used may be the solvent used in the above reaction step, the same type of solvent may be added or added, and aliphatic hydrocarbons such as cyclohexane and n-heptane may be used. can be used.
- a solvent that is easily removed by vacuum distillation or the like In order to reduce the solvent content in the resin raw material composition of the present invention, it is preferable to use a solvent that is easily removed by vacuum distillation or the like, and among them, it is more preferable to use toluene.
- the amount of solvent used is in the range of 1 to 5 times the weight of the compound (3) used during the reaction.
- An alkaline aqueous solution in which alkaline compounds such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, sodium carbonate, and potassium carbonate are dissolved is added to the oil layer of the organic solvent solution to produce acetic anhydride, which is a raw material, and a by-product.
- the aqueous layer consisting of an alkaline aqueous solution is separated and removed from the oil layer by standing.
- the amount of basic water used is in the range of 1 to 5 times the weight of the compound (3) used during the reaction.
- an acid such as phosphoric acid or hydrochloric acid and water are added to the oil layer to neutralize it, and after separating the aqueous layer, water is added and the operations of stirring, standing still, and separating and removing the aqueous layer are performed multiple times. Clean the oil layer.
- the solvent is removed from the oil layer that has been sufficiently washed with water by distillation to obtain the desired composition for resin raw material having a solvent content reduced to 5% by weight or less.
- the composition for resin raw materials of the present invention may be prepared by mixing two or more types of compositions for resin raw materials having different refractive indexes, or the composition for resin raw materials of the present invention may be prepared by mixing separately produced compound (1). It may also be prepared by mixing it into a composition.
- the composition for resin raw materials of the present invention can be used as a curing agent for polyphenylene ether resin, and since it has an allyloxy group, it can be used as a raw material for bismaleimide resin, a curable resin that is cured by reaction with a polythiol compound and enethiol. It can be used as a raw material, etc.
- the resin raw material composition of the present invention can be made into an organic solvent solution.
- organic solvents that can be used include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, halogenated hydrocarbons such as dichloroethane, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ .
- Ester solvents such as caprolactone, ⁇ -methyl- ⁇ -butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate; carbonate solvents such as ethylene carbonate and propylene carbonate; glycols such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether; Ketone solvents such as cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, cyclopentyl methyl ether, diphenyl ether, etc.
- Ether solvents and other general-purpose solvents include acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate. , chloroform, turpentine, mineral spirits, petroleum naphtha-based solvents, etc., and two or more of these may be used as a mixture.
- the composition ratio of the composition for resin raw materials and the organic solvent is determined depending on the use of the organic solvent solution as the solid content concentration when the composition for resin raw materials of the present invention is dissolved in an organic solvent to form a solution.
- the resin raw material composition of the present invention is oily, its organic solvent solution must be transported into and discharged from the manufacturing equipment, as well as when the organic solvent solution is packed in a container and stored or transported. In addition, handling becomes easier. It can also be used when preparing a curable resin composition, which will be described later, by uniformly mixing it, or when producing a varnish containing a curable resin composition.
- the curable resin composition of the present invention contains a polyphenylene ether resin as component (A), and the polyphenylene ether resin that can be used is not particularly limited.
- specific examples of such polyphenylene ether resins include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2- methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g.
- polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols, bisphenols, or trisphenols 2,6- Examples include polyphenylene ether copolymers obtained by coupling dimethylphenol and other phenols with biphenols, bisphenols, or trisphenols.
- a polyphenylene ether in which the terminal hydroxyl group of the polyphenylene ether resin is modified with a functional group having an unsaturated double bond such as allyl ether, acryloyl, methacryloyl, vinyl ether, etc.
- An acrylated product of polyphenylene ether which is a copolymer of 6-dimethylphenol and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, is preferred.
- the curable resin composition of the present invention contains at least the composition for resin raw materials of the present invention as a curing agent as component (B), but it is also possible to use only the composition for resin raw materials of the present invention.
- other conventionally known curing agents may be used in combination, but it is preferable to use only the resin raw material composition of the present invention.
- curing agents that can be used in combination include trialkenyl isocyanurate compounds such as triallylisocyanurate, polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule, and polyfunctional methacrylates having two or more methacrylic groups in the molecule.
- component (B) in the curable resin composition of the present invention is preferably in the range of 1 to 20 parts by weight, and preferably in the range of 1 to 10 parts by weight, based on 100 parts by weight of component (A). More preferably, the amount is in the range of 1 to 7 parts by weight, and particularly preferably in the range of 1 to 6 parts by weight.
- the curable resin composition of the present invention preferably contains a reaction initiator as component (C) in addition to component (A) and component (B).
- Component (C) is added to promote the crosslinking reaction of the curable resin composition containing component (A) and component (B).
- Component (C) is not particularly limited as long as it promotes the crosslinking reaction, and examples thereof include imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes, and organophosphines.
- ionic catalysts such as organophosphonium salts, organic peroxides, hydroperoxides, radical polymerization initiators such as azoisobutyronitrile, and the like.
- organic peroxides include di-t-butyl peroxide, dilauroyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and 2,2-bis(t-butyl peroxide).
- fats such as oxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne, di-n-propylperoxydicarbonate, etc.
- Group organic peroxides dibenzoyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butylcumyl peroxide, bis(1-t-butylperoxy-1-methylethyl) ) benzene, 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane, ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, ⁇ , ⁇ '-bis(t-butyl Examples include aromatic organic peroxides containing an aromatic ring, such as peroxy-m-isopropyl)benzene and di-t-butylperoxyisophthalate.
- aromatic organic peroxides examples include dicumyl peroxide, t-butylcumyl peroxide, bis(1-t-butylperoxy-1-methylethyl)benzene, 2-phenyl-2-[(2-phenylpropane- 2-yl)peroxy]propane is more preferred, and 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane is particularly preferred.
- the curable resin composition of the present invention preferably contains component (C) in an amount of 0.05 to 0.9% by weight based on the total amount of the curable resin composition, and preferably 0.15 to 0.8% by weight. %, more preferably 0.3 to 0.7% by weight, particularly preferably 0.35 to 0.6% by weight.
- Component (C) may be used alone or in combination of two or more.
- the curable resin composition of the present invention preferably contains a filler as component (D) in addition to component (A), component (B), and optionally component (C). It is preferable to contain component (D) in a range of 10 to 150 parts by weight, more preferably in a range of 10 to 100 parts by weight, based on 100 parts by weight of the curable resin composition.
- Component (D) is not particularly limited as long as it is a filler that is normally used in curable resin compositions, and includes, for example, silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, Inorganic fillers such as silicon carbide and hexagonal boron nitride can be used in combination.
- the curable resin composition of the present invention may contain a solvent as component (E), and is particularly preferably in the form of a varnish in which component (E) is dissolved or dispersed.
- Component (E) is not particularly limited as long as it dissolves or disperses the curable resin composition of the present invention, and examples thereof include aromatic compounds such as toluene and xylene, methyl ethyl ketone, cyclopentanone, and cyclohexanone. Examples include ketone compounds and chlorine organic solvents such as chloroform.
- aromatic compounds such as toluene and xylene, ketone compounds such as methyl ethyl ketone, cyclopentanone, and cyclohexanone are preferred, aromatic compounds such as toluene and xylene are more preferred, and toluene is particularly preferred.
- component (E) in a range of 50 to 200 parts by weight, more preferably in a range of 70 to 150 parts by weight, based on 100 parts by weight of the curable resin composition.
- the method for preparing the curable resin composition of the present invention is not particularly limited, and includes, for example, a method in which the above-mentioned components are mixed and mixed or dispersed using a stirrer.
- the prepreg of the present invention comprises a curable resin composition containing component (A) and component (B), optionally containing component (C) and further component (D), and a reinforcing component (F). It can be obtained by mixing it with fibers.
- the mixing method include a method of applying a varnish containing a curable resin composition to the reinforcing fiber as component (F), a method of impregnating the reinforcing fiber, and the like.
- Component (F) in the present invention is not particularly limited as long as it is a reinforcing fiber that is normally used in prepregs, and examples include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, Various inorganic fibers or organic fibers such as alumina fibers and silicon nitride fibers can be used. Among these, from the viewpoint of specific strength and specific elasticity, carbon fibers, aramid fibers, glass fibers, boron fibers, alumina fibers, and silicon nitride fibers may be mentioned. Among these, carbon fiber is preferred from the viewpoint of mechanical properties and weight reduction.
- the thickness of the fiber base material is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.1 mm or less.
- Component (F) may be used alone or in combination of two or more.
- the cured product in the present invention can be obtained by curing the curable resin composition of the present invention.
- the method for producing the cured product of the present invention includes, for example, a film of a curable resin composition formed by casting a varnish onto a support such as a polyimide or polyester film or a glass substrate and drying it, or a film of the above-mentioned prepreg.
- the heat curing temperature can be appropriately determined within the range of 105 to 270°C.
- the analysis method in the present invention is as follows. ⁇ Analysis method> (1) Solvent content of resin raw material composition 0.5 g of the resin raw material composition was weighed, and a solution was prepared by adding 9.5 g of N-methylpyrrolidone (NMP). 3g of it was weighed and put into an HS vial, and analyzed using HS-GC as described below. A calibration curve for toluene was also created from the following analysis conditions, and the solvent content in the resin raw material composition was determined.
- NMP N-methylpyrrolidone
- the acetylated product ratio in the present invention is the compound detected by analyzing the resin raw material composition by high performance liquid chromatography (HPLC) under the following analysis conditions. It was calculated using the following "calculation formula” based on the area percentages of each peak (1), (2), and (3).
- [a formula] Acetylation rate [(a ⁇ 2+b) ⁇ 100 ⁇ 0.5] ⁇ (a+b+c) a: Area% of compound (1) b: Area% of compound (2) c: Area% of compound (3) ⁇ HPLC analysis conditions> 0.1 g of the resin raw material composition was weighed into a 50 mL volumetric flask and diluted with methanol.
- Example 1 (a) Production of a resin raw material composition containing compound (1) 2.0 g of 2,2-bis(4-hydroxy-3-allylphenyl)propane (3) was placed in a test tube and the mixture was heated at 38 to 42°C. While maintaining the temperature, 2.6 g of acetic anhydride was added, and then the reaction temperature was raised to 138 to 142°C, and the mixture was stirred at the same temperature for 3.5 hours. After the reaction was completed, the mixture was cooled to 40° C., and 2.0 g of toluene as a solvent and 10.3 g of a 20% aqueous sodium carbonate solution for washing the oil layer were added and stirred. After standing still, the aqueous layer was removed.
- the inorganic salts were removed by adding 2.0 g of water to the obtained oil layer, stirring it, allowing it to stand, and then removing the aqueous layer twice.
- the solvent of the obtained oil layer was removed by vacuum distillation to obtain an oily resin raw material composition containing 2,2-bis(4-acetoxy-3-allylphenyl)propane (1).
- Amount of remaining solvent 0.1% by weight or less
- Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
- Refractive index 1.5462
- Acetylated product rate 97.3% (HPLC area %: compound (1) 77.8%, compound (2) 3.4%, compound (3) 0.5%)
- Component (A) is a copolymer of 2,6-dimethylphenol and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane. 100 parts by weight of an acrylate of a certain polyphenylene ether (hereinafter referred to as PPE resin A), 100 parts by weight of toluene as component (E), and 5 parts of the resin raw material composition produced in the above (a) as component (B).
- PPE resin A an acrylate of a certain polyphenylene ether
- Example 2 A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after heating was changed to 1 hour. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above. The analysis results based on the above analysis method are shown below. Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less. Refractive index: 1.5474 Acetylated product rate: 82.0% (HPLC area %: compound (1) 54.8%, compound (2) 26.5%, compound (3) 1.7%) Glass transition temperature (Tg) of resin film: 170.8°C
- Example 3 Using the resin raw material compositions obtained in Example 1 and Example 2 above, resin raw material compositions having the following refractive index were prepared. Using this, a resin film was obtained by the same manufacturing method as in Example 1 (b) above. The analysis results based on the above analysis method are shown below. Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less. Refractive index: 1.5467 Acetylated product rate: 88.5% (HPLC area %: compound (1) 67.1%, compound (2) 16.0%, compound (3) 1.8%) Glass transition temperature (Tg) of resin film: 181.7°C
- Example 4 A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after heating was changed to 30 minutes. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above. The analysis results based on the above analysis method are shown below. Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less. Refractive index: 1.5504 Acetylated product rate: 61.0% (HPLC area %: compound (1) 27.9%, compound (2) 56.7%, compound (3) 7.7%) Glass transition temperature (Tg) of resin film: 160.9°C
- Example 1 A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after temperature rise was set to 0 minutes. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above. The analysis results based on the above analysis method are shown below. Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
- the resin raw material composition of the present invention has a dielectric property. It has been revealed that this material has a low dielectric constant and excellent dielectric properties.
- the resin raw material composition of Comparative Example 1 and the cured product of the polyphenylene ether resin using 2,2-bis(4-hydroxy-3-allylphenyl)propane used in Comparative Example 2 only yielded brittle films.
- the mechanical strength was so insufficient that the glass transition temperature could not be measured by TMA analysis under tensile load.
- the glass transition temperature can be measured by TMA analysis under tensile load, and it has been revealed that the composition has sufficient mechanical strength.
- the relationship between the refractive index of the resin raw material compositions of Examples 1 to 4 and the glass transition temperature of the resin film obtained from them is shown in FIG.
- the resin raw material composition of the present invention having a refractive index in the range of 1.546 or more and 1.551 or less has a glass transition temperature of 160°C or more of the polyphenylene ether resin film obtained using the composition. It became clear that a cured product with excellent heat resistance could be obtained. It has been revealed that when the composition for resin raw materials of the present invention is used for curing polyphenylene ether resin, a cured product having sufficient mechanical strength and excellent heat resistance can be obtained. It has also been revealed that the curable resin composition of the present invention contains a resin raw material composition with excellent dielectric properties, and can yield a cured product having sufficient mechanical strength and excellent heat resistance.
- the curable resin composition using a curing agent containing the resin raw material composition having excellent dielectric properties of the present invention can be used as a substrate material for a printed wiring board, for example, to produce a printed wiring board with excellent electrical properties. You can expect to get.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、誘電特性に優れ、さらに、十分な機械強度と優れた耐熱性を有する硬化物を得るための樹脂原料用組成物、有機溶媒溶液、硬化性樹脂組成物、ワニス、プリプレグ及びその硬化物に関する。 The present invention relates to compositions for resin raw materials, organic solvent solutions, curable resin compositions, varnishes, prepregs, and their curing to obtain cured products having excellent dielectric properties, sufficient mechanical strength, and excellent heat resistance. relating to things.
フェノール樹脂、エポキシ樹脂、ビスマレイミド樹脂、ポリフェニレンエーテル樹脂等の樹脂材料の原料として、アリル基を有するビスフェノール化合物が利用されており、例えば、ジアリルビスフェノールAが従来公知である。
アリル基を有するビスフェノール化合物の水酸基を修飾した化合物も同様にかかる原料として利用されており、例えば、エポキシ樹脂の硬化剤としてアセチル基を有するジアリルビスフェノールAを使用すること(特許文献1)が知られている。
BACKGROUND ART Bisphenol compounds having an allyl group are used as raw materials for resin materials such as phenol resins, epoxy resins, bismaleimide resins, and polyphenylene ether resins, and for example, diallylbisphenol A is conventionally known.
A compound obtained by modifying the hydroxyl group of a bisphenol compound having an allyl group is also used as such a raw material. For example, it is known that diallyl bisphenol A having an acetyl group is used as a curing agent for epoxy resin (Patent Document 1). ing.
本発明は、誘電特性に優れ、さらに、十分な機械強度と優れた耐熱性を有する硬化物を得るための樹脂原料用組成物の提供を課題とする。 An object of the present invention is to provide a resin raw material composition for obtaining a cured product having excellent dielectric properties, sufficient mechanical strength, and excellent heat resistance.
本発明者は、上述の課題解決のために鋭意検討した結果、溶媒含有量が特定量以下であり、かつ、特定の範囲の屈折率を示す、2,2-ビス(4-アセトキシ-3-アリルフェニル)プロパンを含有する組成物が誘電特性に優れ、これをポリフェニレンエーテル樹脂の硬化のための硬化剤として使用することにより、十分な機械強度と優れた耐熱性を有する硬化物が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have discovered that 2,2-bis(4-acetoxy-3- A composition containing (arylphenyl)propane has excellent dielectric properties, and by using this as a curing agent for curing polyphenylene ether resin, a cured product having sufficient mechanical strength and excellent heat resistance can be obtained. They discovered this and completed the present invention.
本発明は以下の通りである。
1.2,2-ビス(4-アセトキシ-3-アリルフェニル)プロパン(化合物(1))を含有し、溶媒含有量が5重量%以下であり、かつ、25℃における屈折率が1.546以上1.551以下の範囲である、樹脂原料用組成物。
2.2-(4-ヒドロキシ-3-アリルフェニル)-2-(4-アセトキシ-3-アリルフェニル)プロパン(化合物(2))及び、2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン(化合物(3))を含有する、1.に記載の樹脂原料用組成物。
3.前記樹脂原料用組成物を高速液体クロマトグラフィーにより分析して検出される、前記化合物(1)、化合物(2)及び、化合物(3)の各ピークの面積百分率に基づき、下記[計算式]により算出するアセチル化物率が60%~99%の範囲である、2.に記載の樹脂原料用組成物。
[計算式]
アセチル化物率=[(a×2+b)×100×0.5]÷(a+b+c)
a:化合物(1)の面積%
b:化合物(2)の面積%
c:化合物(3)の面積%
4.前記樹脂原料用組成物に含まれる前記化合物(1)、(2)及び(3)の合計の量が、高速液体クロマトグラフィーにより分析をした際に検出される全成分のピークの面積の合計に対する、化合物(1)、(2)、(3)が検出されたピークの面積の合計の割合で、75面積%以上である、3.に記載の樹脂原料用組成物。
5.1.~4.の何れか1項に記載の樹脂原料用組成物の有機溶媒溶液。
6.成分(A)及び成分(B)を含有する、硬化性樹脂組成物。
(A):ポリフェニレンエーテル樹脂
(B):少なくとも1.~4.の何れか1項に記載の樹脂原料用組成物を含む硬化剤
7.成分(C)を含有する、6.に記載の硬化性樹脂組成物。
(C):反応開始剤
8.さらに、成分(D)を含有する、7.に記載の硬化性樹脂組成物。
(D):充填剤
9.6.に記載の硬化性樹脂組成物と、成分(E)を含有するワニス。
(E):溶剤
10.6.に記載の硬化性樹脂組成物と、成分(F)を含有するプリプレグ。
(F):強化繊維
11.6.に記載の硬化性樹脂組成物を硬化させた硬化物。
12.10.に記載のプリプレグを硬化させた硬化物。
The invention is as follows.
1. Contains 2,2-bis(4-acetoxy-3-allylphenyl)propane (compound (1)), has a solvent content of 5% by weight or less, and has a refractive index of 1.546 at 25°C A composition for a resin raw material having a value of 1.551 or less.
2.2-(4-hydroxy-3-allylphenyl)-2-(4-acetoxy-3-allylphenyl)propane (compound (2)) and 2,2-bis(4-hydroxy-3-allylphenyl) ) containing propane (compound (3)); 1. The composition for resin raw materials described in .
3. Based on the area percentage of each peak of the compound (1), compound (2), and compound (3) detected by analyzing the composition for resin raw material by high performance liquid chromatography, according to the following [calculation formula] 2. The calculated acetylation rate is in the range of 60% to 99%. The composition for resin raw materials described in .
[a formula]
Acetylation rate = [(a×2+b)×100×0.5]÷(a+b+c)
a: Area% of compound (1)
b: Area% of compound (2)
c: Area% of compound (3)
4. The total amount of the compounds (1), (2) and (3) contained in the resin raw material composition is relative to the total area of the peaks of all components detected when analyzed by high performance liquid chromatography. , the ratio of the total area of peaks in which compounds (1), (2), and (3) were detected is 75 area% or more; 3. The composition for resin raw materials described in .
5.1. ~4. An organic solvent solution of the resin raw material composition according to any one of the above.
6. A curable resin composition containing component (A) and component (B).
(A): Polyphenylene ether resin (B): At least 1. ~4. 7. A curing agent comprising the resin raw material composition according to any one of 7. 6. Contains component (C). The curable resin composition described in .
(C): Reaction initiator8. 7. further containing component (D); The curable resin composition described in .
(D): Filler 9.6. A varnish containing the curable resin composition described above and component (E).
(E): Solvent 10.6. A prepreg containing the curable resin composition described above and component (F).
(F): Reinforced fiber 11.6. A cured product obtained by curing the curable resin composition described in .
12.10. A cured product obtained by curing the prepreg described in .
本発明の樹脂原料用組成物は、優れた誘電特性を有する。そして、これを含有する硬化剤をポリフェニレンエーテル樹脂の硬化のために使用すると、十分な機械強度と優れた耐熱性を有する硬化物が得られる。また、この誘電特性に優れる樹脂原料用組成物を含む硬化剤を用いた本発明の硬化性樹脂組成物は、十分な機械強度と優れた耐熱性を有する硬化物を得ることができる。 The resin raw material composition of the present invention has excellent dielectric properties. When a curing agent containing this is used for curing polyphenylene ether resin, a cured product having sufficient mechanical strength and excellent heat resistance can be obtained. Further, the curable resin composition of the present invention using a curing agent containing this composition for resin raw materials having excellent dielectric properties can provide a cured product having sufficient mechanical strength and excellent heat resistance.
本発明の樹脂原料用組成物は、2,2-ビス(4-アセトキシ-3-アリルフェニル)プロパン(化合物(1))を含有し、溶媒含有量が5重量%以下であり、かつ、25℃における屈折率が1.546以上1.551以下の範囲のものである。
本発明における溶媒含有量は、後述する実施例において説明するとおり、HS-GC(ヘッドスペース-ガスクロマトグラフィー)分析により算出した値を意味する。本発明の樹脂原料用組成物の溶媒含有量は、3重量%以下であることが好ましく、2重量%以下であることがさらに好ましく、1重量%以下であることが特に好ましい。
本発明における屈折率は、後述する実施例において説明するとおり、屈折計を用いて、25℃における樹脂原料用組成物を無溶媒(neat状)で測定した値を意味する。なお、「無溶媒(neat状)」であるとは、有機溶媒を完全に含まないということまでは意味せず、後述する実施例において説明する、HS-GC(ヘッドスペース-ガスクロマトグラフィー)分析により算出される溶媒含有量が1重量%未満であることを意味する。実施例において溶媒を定量するために作成した検量線はトルエンについて説明したが、他の溶媒も同様に作成した検量線に基づいて定量することができる。
樹脂原料用組成物中に複数の溶媒が含まれる場合は、かかる分析方法で定量可能な溶媒の含有量の合計が溶媒含有量である。
本発明の樹脂原料用組成物は、25℃における屈折率が1.546以上1.550以下の範囲のものが好ましく、1.546以上1.549以下の範囲のものがより好ましく、1.546以上1.548以下の範囲のものが特に好ましい。
本発明の樹脂原料用組成物の屈折率の測定をするにあたり、無溶媒(neat状)では無い場合は、蒸留操作や、溶媒を揮発させるなどにより、HS-GC(ヘッドスペース-ガスクロマトグラフィー)分析により算出される溶媒含有量が1重量%未満となるように溶媒を除去すればよい。
The resin raw material composition of the present invention contains 2,2-bis(4-acetoxy-3-allylphenyl)propane (compound (1)), has a solvent content of 5% by weight or less, and has 25% by weight or less. The refractive index at °C is in the range of 1.546 or more and 1.551 or less.
The solvent content in the present invention means a value calculated by HS-GC (headspace gas chromatography) analysis, as explained in the Examples below. The solvent content of the resin raw material composition of the present invention is preferably 3% by weight or less, more preferably 2% by weight or less, and particularly preferably 1% by weight or less.
The refractive index in the present invention means a value measured using a refractometer at 25° C. without a solvent (neat state) of the resin raw material composition, as explained in the examples below. Note that "solvent-free (neat)" does not mean that it is completely free of organic solvents, and it does not mean that it is completely free of organic solvents. It means that the solvent content calculated by is less than 1% by weight. In the examples, the calibration curve created for quantifying the solvent was explained for toluene, but other solvents can also be quantified based on the calibration curve created in the same way.
When a plurality of solvents are contained in the resin raw material composition, the total solvent content that can be quantified by such an analysis method is the solvent content.
The resin raw material composition of the present invention preferably has a refractive index at 25° C. in a range of 1.546 or more and 1.550 or less, more preferably in a range of 1.546 or more and 1.549 or less, and 1.546 Particularly preferred is a range of 1.548 or more.
When measuring the refractive index of the composition for resin raw materials of the present invention, if it is not solvent-free (neat), use HS-GC (headspace gas chromatography) by distillation or evaporation of the solvent. The solvent may be removed so that the solvent content calculated by analysis is less than 1% by weight.
本発明の樹脂原料用組成物は、後述するアセチル化反応における中間体である2-(4-ヒドロキシ-3-アリルフェニル)-2-(4-アセトキシ-3-アリルフェニル)プロパン(化合物(2))や、原料である2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン(化合物(3))を含有しても良く、これらの含有量は、樹脂原料用組成物の25℃における屈折率が上記範囲となれば制限されない。
本発明者らは、本発明における屈折率が、各々屈折率が異なる化合物(1)、(2)、(3)の含有割合と相関し、ジアセチル化合物である化合物(1)とモノアセチル化物である化合物(2)の含有割合(アセチル化物率)が大きくなるほど、屈折率が低いことを明らかにした。本発明におけるアセチル化物率は、後述する実施例において詳細に説明する分析条件で、高速液体クロマトグラフィー(HPLC)により樹脂原料用組成物を分析して検出される、化合物(1)、(2)、(3)の各ピークの面積百分率に基づき、下記「計算式」により算出する。
[計算式]
アセチル化物率=[(a×2+b)×100×0.5]÷(a+b+c)
a:化合物(1)の面積%
b:化合物(2)の面積%
c:化合物(3)の面積%
本発明の樹脂原料用組成物の25℃における屈折率が1.546以上1.551以下の範囲内となるアセチル化物率は、60%~99%の範囲である。このアセチル化率は、70%~99%の範囲であることが好ましく、80%~99%の範囲であることがより好ましく、85~99%の範囲であることが更に好ましく、90%~99%の範囲であることが特に好ましい。
また、本発明の樹脂原料用組成物に含まれる化合物(1)、(2)、(3)の合計の量は、アセチル化物率と同じHPLC分析をした際に検出される全成分のピークの面積の合計に対する、化合物(1)、(2)、(3)が検出されたピークの面積の合計の割合で、75面積%以上であることが好ましく、80面積%以上であることがより好ましい。
The resin raw material composition of the present invention is a compound of 2-(4-hydroxy-3-allylphenyl)-2-(4-acetoxy-3-allylphenyl)propane (compound (2), which is an intermediate in the acetylation reaction described below). )) or 2,2-bis(4-hydroxy-3-allylphenyl)propane (compound (3)), which is a raw material, may be contained, and the content thereof is determined at 25°C There is no restriction as long as the refractive index is within the above range.
The present inventors have found that the refractive index in the present invention correlates with the content ratio of compounds (1), (2), and (3) each having a different refractive index, and that compound (1), which is a diacetyl compound, and compound (1), which is a monoacetylated compound, It was revealed that the larger the content ratio (acetylation ratio) of a certain compound (2), the lower the refractive index. The acetylation rate in the present invention refers to the compounds (1) and (2) detected by analyzing the resin raw material composition by high performance liquid chromatography (HPLC) under the analysis conditions described in detail in the examples below. , (3) is calculated using the following "calculation formula" based on the area percentage of each peak.
[a formula]
Acetylation rate = [(a×2+b)×100×0.5]÷(a+b+c)
a: Area% of compound (1)
b: Area% of compound (2)
c: Area% of compound (3)
The acetylation rate at which the resin raw material composition of the present invention has a refractive index of 1.546 or more and 1.551 or less at 25° C. is in the range of 60% to 99%. This acetylation rate is preferably in the range of 70% to 99%, more preferably in the range of 80% to 99%, even more preferably in the range of 85 to 99%, and even more preferably in the range of 90% to 99%. Particularly preferred is a range of %.
In addition, the total amount of compounds (1), (2), and (3) contained in the resin raw material composition of the present invention is the peak of all components detected when performing the same HPLC analysis as the acetylated product rate. The ratio of the total area of peaks where compounds (1), (2), and (3) are detected to the total area, preferably 75 area% or more, more preferably 80 area% or more .
本発明の樹脂原料用組成物の製造方法として、例えば、下記反応式に示すように、化合物(3)と無水酢酸を所定の条件でアセチル化反応を行い、中間体として化合物(2)を得て、次いで、化合物(1)を得る方法が挙げられる。
無水酢酸の使用量は、4,4’-(プロパン-2,2-ジイル)-ビス(2-アリルフェノール)(2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン:化合物(3))1モルに対して通常2モル倍以上、好ましくは2~5モル倍の範囲、より好ましくは3~5モル倍の範囲、さらに好ましくは4~5モル倍の範囲で用いられる。
反応に際し、溶媒は工業的生産時の操作性や反応速度に対して問題がなければ使用しなくてもよい。無溶媒で行う方が経済的に有利であるほか、本発明の樹脂原料用組成物における溶媒含有量を低減する上で好ましい。溶媒を用いる場合、溶媒の使用量は、特に制限はないが、通常、原料の4,4’-(プロパン-2,2-ジイル)-ビス(2-アリルフェノール)(2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン:化合物(3))1重量部に対して0.3~10重量部の範囲以下であり、好ましくは0.5~6重量部の範囲である。また、用いられる溶媒としては反応に悪影響がなければ、特に制限はないが、本発明の樹脂原料用組成物における溶媒含有量を低減する上で、減圧蒸留等で除去しやすい溶媒が好ましい。具体的には例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類、ジクロロエタン等のハロゲン化炭化水素類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、シクロペンチルメチルエーテル、ジフェニルエーテル等のエーテル類等を挙げることができる。このような溶媒は、単独で用いても、また2種類以上を併用して用いてもよい。
アセチル化反応の温度は、通常、120~150℃の範囲、好ましくは130~140℃の範囲である。この範囲で反応を行うと、反応が速やかに進行するため効率的であり、好ましい。
反応は通常、常圧下で行われるが、用いる溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧下又は減圧下に行ってもよい。
アセチル化反応の時間は、0.5~10時間の範囲で行う。
As a method for producing the resin raw material composition of the present invention, for example, as shown in the reaction formula below, compound (3) and acetic anhydride are subjected to an acetylation reaction under predetermined conditions to obtain compound (2) as an intermediate. Next, there is a method for obtaining compound (1).
The amount of acetic anhydride used is 4,4'-(propane-2,2-diyl)-bis(2-allylphenol)(2,2-bis(4-hydroxy-3-allylphenyl)propane: Compound (3) )) It is generally used in an amount of 2 moles or more, preferably 2 to 5 moles, more preferably 3 to 5 moles, even more preferably 4 to 5 moles, per mole.
During the reaction, a solvent may not be used unless there is a problem with the operability or reaction rate during industrial production. Not only is it economically advantageous to carry out the process without a solvent, but it is also preferable in terms of reducing the solvent content in the resin raw material composition of the present invention. When a solvent is used, there is no particular restriction on the amount of the solvent used, but usually the raw material 4,4'-(propane-2,2-diyl)-bis(2-allylphenol) (2,2-bis( 4-Hydroxy-3-allylphenyl)propane: 0.3 to 10 parts by weight or less, preferably 0.5 to 6 parts by weight, per 1 part by weight of compound (3)). The solvent to be used is not particularly limited as long as it does not adversely affect the reaction, but in order to reduce the solvent content in the resin raw material composition of the present invention, a solvent that can be easily removed by vacuum distillation or the like is preferred. Specifically, for example, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, halogenated hydrocarbons such as dichloroethane, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and ethers such as tetrahydrofuran, cyclopentyl methyl ether, and diphenyl ether. can be mentioned. Such solvents may be used alone or in combination of two or more.
The temperature of the acetylation reaction is usually in the range of 120 to 150°C, preferably in the range of 130 to 140°C. It is preferable to carry out the reaction within this range because the reaction proceeds quickly and is therefore efficient.
The reaction is usually carried out under normal pressure, but depending on the boiling point of the solvent used, the reaction may be carried out under increased pressure or reduced pressure so that the reaction temperature is within the above range.
The acetylation reaction time is in the range of 0.5 to 10 hours.
反応終了後、得られた反応終了混合物は、公知の方法によりこの混合物から、目的とする化合物(1)を含む樹脂原料用組成物を得ることができ、水洗、晶析、ろ過、蒸留、カラムクロマトグラフィーによる分離などの後処理操作を行うことで、精製、単離することができる。
例えば、まず、反応混合物を溶解し、かつ、水と分離する有機溶媒に、得られた反応混合物を溶解する。使用できる有機溶媒としては、上記反応工程で使用していた溶媒であってもよく、同種の溶媒を添加若しくは追加してもよいし、その他、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系を使用することができる。本発明の樹脂原料用組成物における溶媒含有量を低減する上で、減圧蒸留等で除去しやすい溶媒が好ましく、中でも、トルエンを使用することがより好ましい。
使用する溶媒量は、反応時に使用した化合物(3)の量に対して、1~5重量倍の範囲である。
有機溶媒の溶液の油層に水酸化ナトリウム水溶液や水酸化カリウム水溶液、炭酸ナトリウム、炭酸カリウムのようなアルカリ性化合物が溶解されてなるアルカリ性水溶液を加えて、原料である無水酢酸並びに、副生成物である酢酸を有機溶媒層から除去するために十分撹拌後に、静置してアルカリ性水溶液からなる水層を油層から分離除去する。
使用する塩基水の量は、反応時に使用した化合物(3)の量に対して、1~5重量倍の範囲である。
次いで、油層にリン酸や塩酸等の酸と水を加えて中和し、その後、水層を分離した後、水を加えて撹拌、静置、水層分離除去の操作を複数回実施して油層を洗浄する。
十分に水洗された油層を蒸留により溶媒を除去して、溶媒含有量が5重量%以下に低減された目的の樹脂原料用組成物を得ることができる。
本発明の樹脂原料用組成物は、上記製造方法の他、異なる屈折率の樹脂原料用組成物2種以上を混合して調製してもよいし、別途製造した化合物(1)を樹脂原料用組成物に混合することで調製してもよい。
After the completion of the reaction, the obtained reaction mixture can be used to obtain a resin raw material composition containing the target compound (1) by a known method, and is subjected to water washing, crystallization, filtration, distillation, and column treatment. Purification and isolation can be achieved by performing post-treatment operations such as separation by chromatography.
For example, the resulting reaction mixture is first dissolved in an organic solvent that dissolves the reaction mixture and separates it from water. The organic solvent that can be used may be the solvent used in the above reaction step, the same type of solvent may be added or added, and aliphatic hydrocarbons such as cyclohexane and n-heptane may be used. can be used. In order to reduce the solvent content in the resin raw material composition of the present invention, it is preferable to use a solvent that is easily removed by vacuum distillation or the like, and among them, it is more preferable to use toluene.
The amount of solvent used is in the range of 1 to 5 times the weight of the compound (3) used during the reaction.
An alkaline aqueous solution in which alkaline compounds such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, sodium carbonate, and potassium carbonate are dissolved is added to the oil layer of the organic solvent solution to produce acetic anhydride, which is a raw material, and a by-product. After sufficient stirring to remove acetic acid from the organic solvent layer, the aqueous layer consisting of an alkaline aqueous solution is separated and removed from the oil layer by standing.
The amount of basic water used is in the range of 1 to 5 times the weight of the compound (3) used during the reaction.
Next, an acid such as phosphoric acid or hydrochloric acid and water are added to the oil layer to neutralize it, and after separating the aqueous layer, water is added and the operations of stirring, standing still, and separating and removing the aqueous layer are performed multiple times. Clean the oil layer.
The solvent is removed from the oil layer that has been sufficiently washed with water by distillation to obtain the desired composition for resin raw material having a solvent content reduced to 5% by weight or less.
In addition to the production method described above, the composition for resin raw materials of the present invention may be prepared by mixing two or more types of compositions for resin raw materials having different refractive indexes, or the composition for resin raw materials of the present invention may be prepared by mixing separately produced compound (1). It may also be prepared by mixing it into a composition.
本発明の樹脂原料用組成物は、後述するように、ポリフェニレンエーテル樹脂の硬化剤として使用できるほか、アリルオキシ基を有するので、ビスマレイミド樹脂の原料、ポリチオール化合物とエンチオール反応により硬化させる硬化性樹脂の原料等として利用することができる。 As described later, the composition for resin raw materials of the present invention can be used as a curing agent for polyphenylene ether resin, and since it has an allyloxy group, it can be used as a raw material for bismaleimide resin, a curable resin that is cured by reaction with a polythiol compound and enethiol. It can be used as a raw material, etc.
本発明の樹脂原料用組成物は、有機溶媒溶液とすることが出来る。使用できる有機溶媒としては、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類、ジクロロエタン等のハロゲン化炭化水素類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、クロロホルム、ターペン、ミネラルスピリット、石油ナフサ系溶媒などが挙げられ、これらを2種類以上混合して用いてもよい。 The resin raw material composition of the present invention can be made into an organic solvent solution. Examples of organic solvents that can be used include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, halogenated hydrocarbons such as dichloroethane, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, and ε. - Ester solvents such as caprolactone, α-methyl-γ-butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate; carbonate solvents such as ethylene carbonate and propylene carbonate; glycols such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether; Ketone solvents such as cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, cyclopentyl methyl ether, diphenyl ether, etc. Ether solvents and other general-purpose solvents include acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate. , chloroform, turpentine, mineral spirits, petroleum naphtha-based solvents, etc., and two or more of these may be used as a mixture.
樹脂原料用組成物と有機溶媒との組成比としては、本発明の樹脂原料用組成物を有機溶媒に溶解して溶液とするとき、その固形分濃度としては、有機溶媒溶液の用途に応じて適宜選択することが出来るので、特に制限はない。
本発明の樹脂原料用組成物は油状であるため、その有機溶媒溶液は、製造装置内への搬入や製造装置内からの排出のほか、その有機溶媒溶液を容器に詰めて保管、輸送する際に、取り扱いが容易となる。また、後述する硬化性樹脂組成物を均一に混合して調製する場合や、硬化性樹脂組成物を含むワニスを製造する場合にも利用することができる。
The composition ratio of the composition for resin raw materials and the organic solvent is determined depending on the use of the organic solvent solution as the solid content concentration when the composition for resin raw materials of the present invention is dissolved in an organic solvent to form a solution. There is no particular restriction as it can be selected as appropriate.
Since the resin raw material composition of the present invention is oily, its organic solvent solution must be transported into and discharged from the manufacturing equipment, as well as when the organic solvent solution is packed in a container and stored or transported. In addition, handling becomes easier. It can also be used when preparing a curable resin composition, which will be described later, by uniformly mixing it, or when producing a varnish containing a curable resin composition.
<成分(A)>
本発明の硬化性樹脂組成物は、成分(A)としてポリフェニレンエーテル樹脂を含有するものであり、使用できるポリフェニレンエーテル樹脂は特に制限はない。
かかるポリフェニレンエーテル樹脂の具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)の共重合体、2,6-ジメチルフェノールとビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体、2,6-ジメチルフェノール及び他のフェノール類と、ビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体などが挙げられる。
また、ポリフェニレンエーテル樹脂の末端のヒドロキシ基を、アリルエーテル、アクリロイル、メタクリロイル、ビニルエーテルなどの不飽和二重結合を有する官能基で修飾されたポリフェニレンエーテルを用いてもよく、その中でも、例えば、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルのアクリレート化物が好適である。
<Component (A)>
The curable resin composition of the present invention contains a polyphenylene ether resin as component (A), and the polyphenylene ether resin that can be used is not particularly limited.
Specific examples of such polyphenylene ether resins include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2- methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g. trimethylphenol, 2-methyl-6-butylphenol, etc.), polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols, bisphenols, or trisphenols, 2,6- Examples include polyphenylene ether copolymers obtained by coupling dimethylphenol and other phenols with biphenols, bisphenols, or trisphenols.
Furthermore, a polyphenylene ether in which the terminal hydroxyl group of the polyphenylene ether resin is modified with a functional group having an unsaturated double bond such as allyl ether, acryloyl, methacryloyl, vinyl ether, etc. may be used, among which, for example, 2, An acrylated product of polyphenylene ether, which is a copolymer of 6-dimethylphenol and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, is preferred.
<成分(B)>
本発明の硬化性樹脂組成物は、成分(B)として、少なくとも本発明の樹脂原料用組成物を硬化剤として含有するものであるが、本発明の樹脂原料用組成物のみを使用してもよいし、その他従来公知の硬化剤を併用してもよいが、本発明の樹脂原料用組成物のみを使用することが好ましい。
併用できる硬化剤として、例えば、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、分子中にアリルエーテル基を2個以上有する多官能アリルエーテル化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及び分子中にビニルベンジル基を2個以上有するビニルベンジル化合物等が挙げられる。
本発明の硬化性樹脂組成物における成分(B)の含有量は、成分(A)100重量部に対して、1~20重量部の範囲であることが好ましく、1~10重量部の範囲であることがより好ましく、1~7重量部の範囲であることがさらに好ましく、1~6重量部の範囲であることが特に好ましい。
<Component (B)>
The curable resin composition of the present invention contains at least the composition for resin raw materials of the present invention as a curing agent as component (B), but it is also possible to use only the composition for resin raw materials of the present invention. Alternatively, other conventionally known curing agents may be used in combination, but it is preferable to use only the resin raw material composition of the present invention.
Examples of curing agents that can be used in combination include trialkenyl isocyanurate compounds such as triallylisocyanurate, polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule, and polyfunctional methacrylates having two or more methacrylic groups in the molecule. compounds, polyfunctional acrylate compounds with two or more acrylic groups in the molecule, vinyl compounds (polyfunctional vinyl compounds) with two or more vinyl groups in the molecule, such as polybutadiene, and 2 vinylbenzyl groups in the molecule. Examples include vinylbenzyl compounds having at least 100%.
The content of component (B) in the curable resin composition of the present invention is preferably in the range of 1 to 20 parts by weight, and preferably in the range of 1 to 10 parts by weight, based on 100 parts by weight of component (A). More preferably, the amount is in the range of 1 to 7 parts by weight, and particularly preferably in the range of 1 to 6 parts by weight.
<成分(C)>
本発明の硬化性樹脂組成物は、成分(A)と成分(B)に加えて成分(C)として反応開始剤を含有することが好ましい。成分(C)は、成分(A)と成分(B)を含有する硬化性樹脂組成物の架橋反応を促進するために添加するものである。
成分(C)としては、架橋反応を促進するものであれば特に制限されるものではなく、例えば、イミダゾール類、第3級アミン類、第4級アンモニウム塩類、三フッ化ホウ素アミン錯体、オルガノホスフィン類、オルガノホスホニウム塩等のイオン触媒、有機過酸化物、ヒドロペルオキシド、アゾイソブチロニトリル等のラジカル重合開始剤などが挙げられる。これらの中でも、有機過酸化物を用いることが好ましい。
有機過酸化物としては、ジ-t-ブチルパーオキサイド、ジラウロイルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジ-n-プロピルパーオキシジカルボネート等の脂肪族有機過酸化物、ジベンゾイルパーオキシド、ジクミルパーオキシド、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパン、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルパーオキシイソフタレートなど、芳香環を含む芳香族有機過酸化物が挙げられる。これらの中でも、芳香族有機過酸化物を用いることが好ましい。
芳香族有機過酸化物としては、ジクミルパーオキシド、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンがより好ましく、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンが特に好ましい。
<Component (C)>
The curable resin composition of the present invention preferably contains a reaction initiator as component (C) in addition to component (A) and component (B). Component (C) is added to promote the crosslinking reaction of the curable resin composition containing component (A) and component (B).
Component (C) is not particularly limited as long as it promotes the crosslinking reaction, and examples thereof include imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes, and organophosphines. , ionic catalysts such as organophosphonium salts, organic peroxides, hydroperoxides, radical polymerization initiators such as azoisobutyronitrile, and the like. Among these, it is preferable to use organic peroxides.
Examples of organic peroxides include di-t-butyl peroxide, dilauroyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and 2,2-bis(t-butyl peroxide). fats such as oxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne, di-n-propylperoxydicarbonate, etc. Group organic peroxides, dibenzoyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butylcumyl peroxide, bis(1-t-butylperoxy-1-methylethyl) ) benzene, 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane, α,α'-di(t-butylperoxy)diisopropylbenzene, α,α'-bis(t-butyl Examples include aromatic organic peroxides containing an aromatic ring, such as peroxy-m-isopropyl)benzene and di-t-butylperoxyisophthalate. Among these, it is preferable to use aromatic organic peroxides.
Examples of aromatic organic peroxides include dicumyl peroxide, t-butylcumyl peroxide, bis(1-t-butylperoxy-1-methylethyl)benzene, 2-phenyl-2-[(2-phenylpropane- 2-yl)peroxy]propane is more preferred, and 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane is particularly preferred.
本発明の硬化性樹脂組成物は、成分(C)を硬化性樹脂組成物全量に対して0.05~0.9重量%の範囲で含有することが好ましく、0.15~0.8重量%の範囲で含有することがより好ましく、0.3~0.7重量%の範囲で含有することがさらに好ましく、0.35~0.6重量%の範囲で含有することが特に好ましい。
成分(C)は、1種単独で用いてもよいし、2種以上を併用してもよい。
The curable resin composition of the present invention preferably contains component (C) in an amount of 0.05 to 0.9% by weight based on the total amount of the curable resin composition, and preferably 0.15 to 0.8% by weight. %, more preferably 0.3 to 0.7% by weight, particularly preferably 0.35 to 0.6% by weight.
Component (C) may be used alone or in combination of two or more.
<成分(D)>
本発明の硬化性樹脂組成物は、成分(A)と成分(B)及び必要に応じて成分(C)に加えて、成分(D)として充填剤を含有することが好ましい。
硬化性樹脂組成物100重量部に対して、成分(D)を10~150重量部の範囲で含有することが好ましく、10~100重量部の範囲で含有することがさらに好ましい。
成分(D)としては、通常、硬化性樹脂組成物に用いられる充填剤であれば特に制限されるものではなく、例えば、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、六方晶窒化ホウ素等の無機フィラーを混合して使用することができる。
<Component (D)>
The curable resin composition of the present invention preferably contains a filler as component (D) in addition to component (A), component (B), and optionally component (C).
It is preferable to contain component (D) in a range of 10 to 150 parts by weight, more preferably in a range of 10 to 100 parts by weight, based on 100 parts by weight of the curable resin composition.
Component (D) is not particularly limited as long as it is a filler that is normally used in curable resin compositions, and includes, for example, silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, Inorganic fillers such as silicon carbide and hexagonal boron nitride can be used in combination.
<成分(E)>
本発明の硬化性樹脂組成物は、成分(E)として溶剤を含有してもよく、特に、成分(E)に溶解若しくは分散させたワニスの形態とすることが好ましい。
成分(E)としては、本発明の硬化性樹脂組成物を溶解若しくは分散させるものであれば特に制限はなく、例えば、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物、及びクロロホルムなどの塩素系有機溶媒が挙げられる。
中でも、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物が好ましく、トルエン、キシレン等の芳香族系化合物がより好ましく、特にトルエンが好適である。
硬化性樹脂組成物100重量部に対して、成分(E)を50~200重量部の範囲で含有することが好ましく、70~150重量部の範囲で含有することがより好ましい。
<Component (E)>
The curable resin composition of the present invention may contain a solvent as component (E), and is particularly preferably in the form of a varnish in which component (E) is dissolved or dispersed.
Component (E) is not particularly limited as long as it dissolves or disperses the curable resin composition of the present invention, and examples thereof include aromatic compounds such as toluene and xylene, methyl ethyl ketone, cyclopentanone, and cyclohexanone. Examples include ketone compounds and chlorine organic solvents such as chloroform.
Among these, aromatic compounds such as toluene and xylene, ketone compounds such as methyl ethyl ketone, cyclopentanone, and cyclohexanone are preferred, aromatic compounds such as toluene and xylene are more preferred, and toluene is particularly preferred.
It is preferable to contain component (E) in a range of 50 to 200 parts by weight, more preferably in a range of 70 to 150 parts by weight, based on 100 parts by weight of the curable resin composition.
本発明の硬化性樹脂組成物の調製方法は特に限定されるものではなく、例えば、上述の成分を混合し、撹拌機によって混合や分散する方法が挙げられる。 The method for preparing the curable resin composition of the present invention is not particularly limited, and includes, for example, a method in which the above-mentioned components are mixed and mixed or dispersed using a stirrer.
<プリプレグ>
本発明のプリプレグは、成分(A)及び成分(B)を含み、必要に応じて成分(C)、さらに成分(D)を含有させた硬化性樹脂組成物と、成分(F)である強化繊維とを混合させて得ることができる。この混合する方法としては、例えば、成分(F)である強化繊維に硬化性樹脂組成物を含むワニスを塗布する方法や、含浸する方法などが挙げられる。
<Prepreg>
The prepreg of the present invention comprises a curable resin composition containing component (A) and component (B), optionally containing component (C) and further component (D), and a reinforcing component (F). It can be obtained by mixing it with fibers. Examples of the mixing method include a method of applying a varnish containing a curable resin composition to the reinforcing fiber as component (F), a method of impregnating the reinforcing fiber, and the like.
<成分(F)>
本発明における成分(F)としては、通常プリプレグに用いられる強化繊維であれば特に制限されるものではなく、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維等の各種の無機繊維または有機繊維を用いることができる。これらの中でも、比強度、比弾性の観点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が挙げられる。中でも、機械物性や軽量化の観点から炭素繊維が好ましい。強化繊維として炭素繊維を用いる場合、金属による表面処理を施してもよい。
繊維基材の厚みとしては、0.3mm以下が好ましく、0.15mm以下がより好ましく、0.1mm以下がさらに好ましい。
成分(F)は、1種を単独で用いてもよく、2種以上を組み合わせて併用してもよい。
<Component (F)>
Component (F) in the present invention is not particularly limited as long as it is a reinforcing fiber that is normally used in prepregs, and examples include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, Various inorganic fibers or organic fibers such as alumina fibers and silicon nitride fibers can be used. Among these, from the viewpoint of specific strength and specific elasticity, carbon fibers, aramid fibers, glass fibers, boron fibers, alumina fibers, and silicon nitride fibers may be mentioned. Among these, carbon fiber is preferred from the viewpoint of mechanical properties and weight reduction. When using carbon fiber as the reinforcing fiber, surface treatment with metal may be performed.
The thickness of the fiber base material is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.1 mm or less.
Component (F) may be used alone or in combination of two or more.
<硬化物の製造方法>
本発明における硬化物は、本発明の硬化性樹脂組成物を硬化させて得ることができる。
本発明の硬化物の製造方法としては、例えば、ワニスをポリイミドやポリエステルのフィルム、ガラス基板等の支持体上に流延し、乾燥させることで形成した硬化性樹脂組成物の膜、または上記プリプレグを、所定の温度まで加熱して硬化させる方法、本発明の硬化性樹脂組成物を金型などに充填するか、本発明の硬化性樹脂組成物を加熱融解させて金型等に注入するなどした後、所定の温度まで加熱して硬化させる方法等を挙げることができる。
加熱硬化温度としては、105~270℃の範囲で適宜決定することが出来る。
<Method for producing cured product>
The cured product in the present invention can be obtained by curing the curable resin composition of the present invention.
The method for producing the cured product of the present invention includes, for example, a film of a curable resin composition formed by casting a varnish onto a support such as a polyimide or polyester film or a glass substrate and drying it, or a film of the above-mentioned prepreg. A method of curing by heating to a predetermined temperature, filling a mold etc. with the curable resin composition of the present invention, or heating and melting the curable resin composition of the present invention and injecting it into a mold etc. After that, a method of curing by heating to a predetermined temperature can be mentioned.
The heat curing temperature can be appropriately determined within the range of 105 to 270°C.
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本発明における分析方法は以下のとおりである。
<分析方法>
(1)樹脂原料用組成物の溶媒含有量
樹脂原料用組成物を0.5g秤量し、N-メチルピロリドン(NMP)を9.5g添加した溶液を調製した。それをHSバイアルに3g秤量して入れ、以下のHS-GCにて分析を行った。トルエンの検量線も以下の分析条件から作成し、樹脂原料用組成物中の溶媒含有量を求めた。
(HS-GC分析条件)
GC条件
装置:(株)島津製作所製:GC-2010plus
カラム:Inert-CaP1 60m×0.25mmΦ、膜厚0.25μm
検出器:FID
INJ温度:300℃、FID温度:310℃
昇温条件:40℃(10分)→20℃/分→300℃(5分)
カラム線速度:19.9cm/秒
HS条件
機器:パーキンエルマー社製:TurboMatrix HS 40
キャリアガス圧:154kPa
バイアル加熱温度:100℃
注入時間:0.05分
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
The analysis method in the present invention is as follows.
<Analysis method>
(1) Solvent content of resin raw material composition 0.5 g of the resin raw material composition was weighed, and a solution was prepared by adding 9.5 g of N-methylpyrrolidone (NMP). 3g of it was weighed and put into an HS vial, and analyzed using HS-GC as described below. A calibration curve for toluene was also created from the following analysis conditions, and the solvent content in the resin raw material composition was determined.
(HS-GC analysis conditions)
GC conditions Equipment: Shimadzu Corporation: GC-2010plus
Column: Inert-CaP1 60m x 0.25mmΦ, film thickness 0.25μm
Detector: FID
INJ temperature: 300℃, FID temperature: 310℃
Temperature rising conditions: 40℃ (10 minutes) → 20℃/min → 300℃ (5 minutes)
Column linear velocity: 19.9 cm/sec HS conditions Equipment: PerkinElmer: TurboMatrix HS 40
Carrier gas pressure: 154kPa
Vial heating temperature: 100℃
Injection time: 0.05 minutes
(2)樹脂原料用組成物の屈折率測定
樹脂原料用組成物の屈折率は、下記装置を用いて25℃条件下、無溶媒(neat状)で測定した。
装置:京都電子工業(株)製屈折計RA-500
(3)硬化性樹脂組成物の硬化物の耐熱性評価:ガラス転移温度(Tg)
硬化性樹脂組成物を硬化して得られた樹脂フィルムを、下記装置を用いて、下記条件下で測定し、外挿法により変曲点の前後に引いた接線の交点よりガラス転移温度(Tg)を算出した。
装置:(株)日立ハイテクサイエンス製TMA7100
サンプルサイズ:幅3mm、長さ20mm
条件:窒素雰囲気下、荷重200mN、温度範囲30℃~300℃、昇温速度4℃/分
測定モード:引張
(2) Measurement of refractive index of composition for resin raw material The refractive index of the composition for resin raw material was measured without solvent (neat state) at 25° C. using the following apparatus.
Equipment: Refractometer RA-500 manufactured by Kyoto Electronics Industry Co., Ltd.
(3) Heat resistance evaluation of cured product of curable resin composition: Glass transition temperature (Tg)
The resin film obtained by curing the curable resin composition was measured using the following equipment under the following conditions, and the glass transition temperature (Tg ) was calculated.
Equipment: TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd.
Sample size: width 3mm, length 20mm
Conditions: Under nitrogen atmosphere, load 200 mN, temperature range 30°C to 300°C, heating rate 4°C/min Measurement mode: Tension
(4)樹脂原料用組成物のアセチル化物率の測定
本発明におけるアセチル化物率は、下記分析条件での高速液体クロマトグラフィー(HPLC)により樹脂原料用組成物の分析を行って検出される、化合物(1)、(2)、(3)の各ピークの面積百分率に基づき、下記「計算式」により算出した。
[計算式]
アセチル化物率=[(a×2+b)×100×0.5]÷(a+b+c)
a:化合物(1)の面積%
b:化合物(2)の面積%
c:化合物(3)の面積%
<HPLC分析条件>
樹脂原料用組成物0.1gを50mLメスフラスコに秤量し、メタノールで希釈した。調製した試料の下記の高速液体クロマトグラフィーによる純度分析を行い、化合物(1)、化合物(2)、化合物(3)の各ピークの面積百分率%を求め、上記の「計算式」よりアセチル化物率を算出した。
純度分析(分析値は面積百分率)
測定装置 :高速液体クロマトグラフィー分析装置Prominence UFLC((株)島津製作所製)
ポンプ :LC-20AD
カラムオーブン :CTO-20A
検出器 :SPD-20A
カラム :HALO-C18(内径3mm、長さ75mm)
オーブン温度 :50℃
流量 :0.7mL/min
移動相 :(A)0.1体積%酢酸水溶液、(B)メタノール
グラジエント条件:(A)体積%(分析開始からの時間)50%(0min)→100%(7.5min)→100%(20min)
試料注入量 :5μL
検出波長 :280nm
(4) Measurement of the acetylated product ratio of the resin raw material composition The acetylated product ratio in the present invention is the compound detected by analyzing the resin raw material composition by high performance liquid chromatography (HPLC) under the following analysis conditions. It was calculated using the following "calculation formula" based on the area percentages of each peak (1), (2), and (3).
[a formula]
Acetylation rate = [(a×2+b)×100×0.5]÷(a+b+c)
a: Area% of compound (1)
b: Area% of compound (2)
c: Area% of compound (3)
<HPLC analysis conditions>
0.1 g of the resin raw material composition was weighed into a 50 mL volumetric flask and diluted with methanol. Perform purity analysis of the prepared sample by high performance liquid chromatography as described below, determine the area percentage of each peak of compound (1), compound (2), and compound (3), and calculate the acetylation rate using the above "calculation formula". was calculated.
Purity analysis (analysis value is area percentage)
Measuring device: High performance liquid chromatography analyzer Prominence UFLC (manufactured by Shimadzu Corporation)
Pump: LC-20AD
Column oven: CTO-20A
Detector: SPD-20A
Column: HALO-C18 (inner diameter 3mm, length 75mm)
Oven temperature: 50℃
Flow rate: 0.7mL/min
Mobile phase: (A) 0.1 volume % acetic acid aqueous solution, (B) methanol Gradient conditions: (A) Volume % (time from start of analysis) 50% (0 min) → 100% (7.5 min) → 100% ( 20min)
Sample injection volume: 5μL
Detection wavelength: 280nm
<実施例1>
(a)化合物(1)を含有する樹脂原料用組成物の製造
2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン(3)2.0gを試験管に入れて、38~42℃を保ちながら、無水酢酸2.6gを添加し、その後反応温度を138~142℃まで昇温し、同じ温度で3.5時間撹拌した。反応終了後40℃まで冷却し、溶媒としてトルエン2.0gと、油層を洗浄するために20%炭酸ナトリウム水溶液を10.3g加えて撹拌し、静置後水層を除去した。得られた油層に水2.0gを加えて撹拌し、静置後水層を除去する操作を2回繰り返して、無機塩を除去した。得られた油層の溶媒を減圧蒸留により除去し、2,2-ビス(4-アセトキシ-3-アリルフェニル)プロパン(1)含む油状の樹脂原料用組成物を取得した。
上記分析方法に基づく分析結果を下記に示す。
残存溶媒量:0.1重量%以下
原料である無水酢酸及び副生成物である酢酸は非検出であり、反応後処理に使用したトルエンは0.1重量%以下であった。
屈折率:1.5462
アセチル化物率:97.3%(HPLC面積%:化合物(1)77.8%、化合物(2)3.4%、化合物(3)0.5%)
<Example 1>
(a) Production of a resin raw material composition containing compound (1) 2.0 g of 2,2-bis(4-hydroxy-3-allylphenyl)propane (3) was placed in a test tube and the mixture was heated at 38 to 42°C. While maintaining the temperature, 2.6 g of acetic anhydride was added, and then the reaction temperature was raised to 138 to 142°C, and the mixture was stirred at the same temperature for 3.5 hours. After the reaction was completed, the mixture was cooled to 40° C., and 2.0 g of toluene as a solvent and 10.3 g of a 20% aqueous sodium carbonate solution for washing the oil layer were added and stirred. After standing still, the aqueous layer was removed. The inorganic salts were removed by adding 2.0 g of water to the obtained oil layer, stirring it, allowing it to stand, and then removing the aqueous layer twice. The solvent of the obtained oil layer was removed by vacuum distillation to obtain an oily resin raw material composition containing 2,2-bis(4-acetoxy-3-allylphenyl)propane (1).
The analysis results based on the above analysis method are shown below.
Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
Refractive index: 1.5462
Acetylated product rate: 97.3% (HPLC area %: compound (1) 77.8%, compound (2) 3.4%, compound (3) 0.5%)
(b)硬化性樹脂組成物とその硬化物の製造
成分(A)として、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルのアクリレート化物(以下、PPE樹脂Aと称する)を100重量部、成分(E)としてトルエンを100重量部、成分(B)として上記(a)で製造した樹脂原料用組成物を5.5重量部、及び成分(C)の反応開始剤として過酸化物であるジクミルパーオキサイド(日本油脂株式会社製:商品名「パークミルD」)を0.68重量部配合し、マグネチックスターラーにて室温で撹拌し、ワニスを調製した。
20cm角ポリイミドフィルム(宇部興産株式会社製:商品名「ユーピレックス」)に、調製したワニスを0.2mmの厚さで塗布し、室温で乾燥させた。硬化性樹脂組成物の塗膜に残る溶媒を、真空乾燥機により105℃で1時間乾燥して除去することで硬化性樹脂組成物の半硬化物を得た。
その後、9cm×4cmの穴をあけたアルミ箔(厚さ:0.12mm)の型枠を作成し、半硬化物を両側から挟み、さらに別の2枚のポリイミドフィルムで両側に被せた後、25cm×25cmの金属板で両面から挟みこんだ。その後、真空熱プレス機(東洋精機株式会社製)で硬化を行った(加熱温度105℃、圧力10MPa、30分;加熱温度150℃、圧力10MPa、1時間;加熱温度200℃、圧力10MPa、1時間;加熱温度250℃、圧力10MPa、1時間;加熱温度270℃、圧力10MPa、1時間)。得られた硬化物に付着しているポリイミドフィルムを外して、樹脂フィルムを得た。
得られた樹脂フィルムのガラス転移温度(Tg)を、上記分析方法に基づき測定した結果、200.9℃であった。
(b) Production of a curable resin composition and its cured product Component (A) is a copolymer of 2,6-dimethylphenol and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane. 100 parts by weight of an acrylate of a certain polyphenylene ether (hereinafter referred to as PPE resin A), 100 parts by weight of toluene as component (E), and 5 parts of the resin raw material composition produced in the above (a) as component (B). .5 parts by weight, and 0.68 parts by weight of dicumyl peroxide, a peroxide (manufactured by NOF Corporation: trade name "Percumyl D") as a reaction initiator for component (C), and stirred with a magnetic stirrer. The mixture was stirred at room temperature to prepare a varnish.
The prepared varnish was applied to a thickness of 0.2 mm on a 20 cm square polyimide film (manufactured by Ube Industries, Ltd., trade name "Upilex") and dried at room temperature. The solvent remaining on the coating film of the curable resin composition was removed by drying at 105° C. for 1 hour using a vacuum dryer, thereby obtaining a semi-cured product of the curable resin composition.
After that, a formwork of aluminum foil (thickness: 0.12mm) with a hole of 9cm x 4cm was made, the semi-cured product was sandwiched from both sides, and both sides were covered with another two polyimide films. It was sandwiched between two 25 cm x 25 cm metal plates from both sides. Thereafter, curing was performed using a vacuum heat press machine (manufactured by Toyo Seiki Co., Ltd.) (heating temperature 105°C, pressure 10MPa, 30 minutes; heating temperature 150°C, pressure 10MPa, 1 hour; heating temperature 200°C, pressure 10MPa, 1 hour). Time: heating temperature 250°C, pressure 10MPa, 1 hour; heating temperature 270°C, pressure 10MPa, 1 hour). The polyimide film adhering to the obtained cured product was removed to obtain a resin film.
The glass transition temperature (Tg) of the obtained resin film was measured based on the above analysis method and was found to be 200.9°C.
<実施例2>
上記実施例1の(a)において、昇温後の撹拌時間を1時間とした以外は同じ製造方法により、樹脂原料用組成物を取得した。また、上記実施例1の(b)と同じ製造方法に基づいて、樹脂フィルムを得た。
上記分析方法に基づく分析結果を下記に示す。
残存溶媒量:0.1重量%以下
原料である無水酢酸及び副生成物である酢酸は非検出であり、反応後処理に使用したトルエンは0.1重量%以下であった。
屈折率:1.5474
アセチル化物率:82.0%(HPLC面積%:化合物(1)54.8%、化合物(2)26.5%、化合物(3)1.7%)
樹脂フィルムのガラス転移温度(Tg):170.8℃
<Example 2>
A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after heating was changed to 1 hour. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above.
The analysis results based on the above analysis method are shown below.
Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
Refractive index: 1.5474
Acetylated product rate: 82.0% (HPLC area %: compound (1) 54.8%, compound (2) 26.5%, compound (3) 1.7%)
Glass transition temperature (Tg) of resin film: 170.8°C
<実施例3>
上記実施例1と実施例2で得られた樹脂原料用組成物を用いて、下記屈折率を示す樹脂原料用組成物を調製した。これを用いて、上記実施例1の(b)と同じ製造方法により樹脂フィルムを得た。
上記分析方法に基づく分析結果を下記に示す。
残存溶媒量:0.1重量%以下
原料である無水酢酸及び副生成物である酢酸は非検出であり、反応後処理に使用したトルエンは0.1重量%以下であった。
屈折率:1.5467
アセチル化物率:88.5%(HPLC面積%:化合物(1)67.1%、化合物(2)16.0%、化合物(3)1.8%)
樹脂フィルムのガラス転移温度(Tg):181.7℃
<Example 3>
Using the resin raw material compositions obtained in Example 1 and Example 2 above, resin raw material compositions having the following refractive index were prepared. Using this, a resin film was obtained by the same manufacturing method as in Example 1 (b) above.
The analysis results based on the above analysis method are shown below.
Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
Refractive index: 1.5467
Acetylated product rate: 88.5% (HPLC area %: compound (1) 67.1%, compound (2) 16.0%, compound (3) 1.8%)
Glass transition temperature (Tg) of resin film: 181.7°C
<実施例4>
上記実施例1の(a)において、昇温後の撹拌時間を30分とした以外は同じ製造方法により、樹脂原料用組成物を取得した。また、上記実施例1の(b)と同じ製造方法に基づいて、樹脂フィルムを得た。
上記分析方法に基づく分析結果を下記に示す。
残存溶媒量:0.1重量%以下
原料である無水酢酸及び副生成物である酢酸は非検出であり、反応後処理に使用したトルエンは0.1重量%以下であった。
屈折率:1.5504
アセチル化物率:61.0%(HPLC面積%:化合物(1)27.9%、化合物(2)56.7%、化合物(3)7.7%)
樹脂フィルムのガラス転移温度(Tg):160.9℃
<Example 4>
A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after heating was changed to 30 minutes. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above.
The analysis results based on the above analysis method are shown below.
Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
Refractive index: 1.5504
Acetylated product rate: 61.0% (HPLC area %: compound (1) 27.9%, compound (2) 56.7%, compound (3) 7.7%)
Glass transition temperature (Tg) of resin film: 160.9°C
<比較例1>
上記実施例1の(a)において、昇温後の撹拌時間を0分とした以外は同じ製造方法により、樹脂原料用組成物を取得した。また、上記実施例1の(b)と同じ製造方法に基づいて、樹脂フィルムを得た。
上記分析方法に基づく分析結果を下記に示す。
残存溶媒量:0.1重量%以下
原料である無水酢酸及び副生成物である酢酸は非検出であり、反応後処理に使用したトルエンは0.1重量%以下であった。
屈折率:1.5657
アセチル化物率:28.0%(HPLC面積%:化合物(1)3.5%、化合物(2)47.4%、化合物(3)46.1%)
樹脂フィルムのガラス転移温度(Tg):得られたフィルムが脆く、測定することが出来なかった。
<Comparative example 1>
A resin raw material composition was obtained by the same manufacturing method as in Example 1 (a) except that the stirring time after temperature rise was set to 0 minutes. Further, a resin film was obtained based on the same manufacturing method as in Example 1 (b) above.
The analysis results based on the above analysis method are shown below.
Amount of remaining solvent: 0.1% by weight or less Acetic anhydride as a raw material and acetic acid as a by-product were not detected, and toluene used for post-reaction treatment was 0.1% by weight or less.
Refractive index: 1.5657
Acetylated product rate: 28.0% (HPLC area %: compound (1) 3.5%, compound (2) 47.4%, compound (3) 46.1%)
Glass transition temperature (Tg) of resin film: The obtained film was brittle and could not be measured.
<比較例2>
2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン(3)を用いて、上記実施例1の(b)と同じ製造方法に基づいて、樹脂フィルムを得た。
上記分析方法に基づく分析結果を下記に示す。
屈折率:1.5870
アセチル化物率:0%(HPLC面積%:化合物(1)0%、化合物(2)0%、化合物(3)95.6%)
樹脂フィルムのガラス転移温度(Tg):得られたフィルムが脆く、測定することが出来なかった。
<Comparative example 2>
A resin film was obtained using 2,2-bis(4-hydroxy-3-allylphenyl)propane (3) based on the same manufacturing method as in Example 1 (b) above.
The analysis results based on the above analysis method are shown below.
Refractive index: 1.5870
Acetylated product rate: 0% (HPLC area %: compound (1) 0%, compound (2) 0%, compound (3) 95.6%)
Glass transition temperature (Tg) of resin film: The obtained film was brittle and could not be measured.
実施例1~4、比較例1、2の分析結果から、化合物(1)と化合物(2)の含有割合(アセチル化物率)が大きくなるほど、樹脂原料用組成物の屈折率が低下することが確認された。
物質の誘電特性のうち誘電率(ε)は、マクスウェル方程式によれば、その物質の屈折率(n)との間に、「ε=n2」の関係が成立する(この関係式は例えば、斎藤省吾、電子写真、第11巻、第1号、第26-32頁、1972年、に記載されている)。すなわち、物質の屈折率が小さいほど、その物質の誘電率が低いといえる。
すなわち、比較例1の樹脂原料用組成物及び、比較例2で用いた2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパンと比較して、本発明の樹脂原料用組成物は誘電率が低く、誘電特性に優れる材料であることが明らかになった。
From the analysis results of Examples 1 to 4 and Comparative Examples 1 and 2, it was found that as the content ratio (acetylated product ratio) of compound (1) and compound (2) increases, the refractive index of the resin raw material composition decreases. confirmed.
According to Maxwell's equations, the relationship between the dielectric constant (ε) of the dielectric properties of a substance and the refractive index (n) of the substance is ``ε=n 2 '' (this relational expression is, for example, Shogo Saito, Electronic Photography, Vol. 11, No. 1, pp. 26-32, 1972). That is, it can be said that the lower the refractive index of a substance, the lower the dielectric constant of that substance.
That is, compared to the resin raw material composition of Comparative Example 1 and the 2,2-bis(4-hydroxy-3-allylphenyl)propane used in Comparative Example 2, the resin raw material composition of the present invention has a dielectric property. It has been revealed that this material has a low dielectric constant and excellent dielectric properties.
比較例1の樹脂原料用組成物及び、比較例2で用いた2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパンをそれぞれ使用したポリフェニレンエーテル樹脂の硬化物は、脆いフィルムしか得ることができず、引張加重を加えるTMA分析でガラス転移温度が測定できないほど機械強度が不十分であった。
一方、本発明の樹脂原料用組成物を使用すると、引張加重を加えるTMA分析によるガラス転移温度が測定可能であり、十分な機械強度を有することが明らかとなった。
実施例1~4の樹脂原料用組成物の屈折率と、それらから得られた樹脂フィルムのガラス転移温度との関係性を、図1に示した。
図1に示すとおり、屈折率が1.546以上1.551以下の範囲にある本発明の樹脂原料用組成物は、それを用いて得られるポリフェニレンエーテルの樹脂フィルムのガラス転移温度が160℃以上を示すことから、耐熱性に優れる硬化物が得られることが明らかとなった。
本発明の樹脂原料用組成物は、ポリフェニレンエーテル樹脂の硬化のために使用することにより、十分な機械強度と優れた耐熱性を有する硬化物が得られることが明らかになった。また、本発明の硬化性樹脂組成物は、誘電特性に優れる樹脂原料用組成物を含有し、十分な機械強度と優れた耐熱性を有する硬化物を得ることができることも明らかになった。これら特性により、本発明の誘電特性に優れる樹脂原料用組成物を含む硬化剤を用いた硬化性樹脂組成物は、例えば、プリント配線板の基板材料として用いると、電気特性が優れたプリント配線板を得られることが期待できる。
The resin raw material composition of Comparative Example 1 and the cured product of the polyphenylene ether resin using 2,2-bis(4-hydroxy-3-allylphenyl)propane used in Comparative Example 2 only yielded brittle films. The mechanical strength was so insufficient that the glass transition temperature could not be measured by TMA analysis under tensile load.
On the other hand, when the resin raw material composition of the present invention is used, the glass transition temperature can be measured by TMA analysis under tensile load, and it has been revealed that the composition has sufficient mechanical strength.
The relationship between the refractive index of the resin raw material compositions of Examples 1 to 4 and the glass transition temperature of the resin film obtained from them is shown in FIG.
As shown in Figure 1, the resin raw material composition of the present invention having a refractive index in the range of 1.546 or more and 1.551 or less has a glass transition temperature of 160°C or more of the polyphenylene ether resin film obtained using the composition. It became clear that a cured product with excellent heat resistance could be obtained.
It has been revealed that when the composition for resin raw materials of the present invention is used for curing polyphenylene ether resin, a cured product having sufficient mechanical strength and excellent heat resistance can be obtained. It has also been revealed that the curable resin composition of the present invention contains a resin raw material composition with excellent dielectric properties, and can yield a cured product having sufficient mechanical strength and excellent heat resistance. Due to these properties, the curable resin composition using a curing agent containing the resin raw material composition having excellent dielectric properties of the present invention can be used as a substrate material for a printed wiring board, for example, to produce a printed wiring board with excellent electrical properties. You can expect to get.
Claims (12)
[計算式]
アセチル化物率=[(a×2+b)×100×0.5]÷(a+b+c)
a:化合物(1)の面積%
b:化合物(2)の面積%
c:化合物(3)の面積% Based on the area percentage of each peak of the compound (1), compound (2), and compound (3) detected by analyzing the composition for resin raw material by high performance liquid chromatography, according to the following [calculation formula] The resin raw material composition according to claim 2, wherein the calculated acetylation rate is in the range of 60% to 99%.
[a formula]
Acetylation rate = [(a×2+b)×100×0.5]÷(a+b+c)
a: Area% of compound (1)
b: Area% of compound (2)
c: Area% of compound (3)
(A):ポリフェニレンエーテル樹脂
(B):少なくとも請求項1~4の何れか1項に記載の樹脂原料用組成物を含む硬化剤 A curable resin composition containing component (A) and component (B).
(A): Polyphenylene ether resin (B): Curing agent containing at least the composition for resin raw material according to any one of claims 1 to 4.
(C):反応開始剤 The curable resin composition according to claim 6, containing component (C).
(C): Reaction initiator
(D):充填剤 The curable resin composition according to claim 7, further comprising component (D).
(D): Filler
(E):溶剤 A varnish containing the curable resin composition according to claim 6 and component (E).
(E): Solvent
(F):強化繊維 A prepreg containing the curable resin composition according to claim 6 and component (F).
(F): Reinforced fiber
A cured product obtained by curing the prepreg according to claim 10.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022-048282 | 2022-03-24 | ||
| JP2022048282 | 2022-03-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2023181838A1 true WO2023181838A1 (en) | 2023-09-28 |
Family
ID=88100581
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/007940 Ceased WO2023181838A1 (en) | 2022-03-24 | 2023-03-03 | Composition for resin starting material, organic solvent solution, curable resin composition, varnish, prepreg, and cured product |
Country Status (2)
| Country | Link |
|---|---|
| TW (1) | TW202344593A (en) |
| WO (1) | WO2023181838A1 (en) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08245735A (en) * | 1995-03-10 | 1996-09-24 | Toagosei Co Ltd | Thermosetting resin composition |
| JPH08245506A (en) * | 1995-03-10 | 1996-09-24 | Toagosei Co Ltd | Compound having allyl and/or methallyl group |
| JPH09194545A (en) * | 1996-01-17 | 1997-07-29 | Toagosei Co Ltd | Thermosetting resin composition and its laminated board |
| JP2002003752A (en) * | 2000-06-21 | 2002-01-09 | Jsr Corp | Composition for forming film and material for forming insulating film |
| US20100113643A1 (en) * | 2007-04-09 | 2010-05-06 | Designer Molecules, Inc. | Curatives for epoxy adhesive compositions |
| CN105199296A (en) * | 2015-09-02 | 2015-12-30 | 铜陵翔宇商贸有限公司 | Preparation method of resin gel for producing copper-clad plate |
| KR20170092468A (en) * | 2016-02-03 | 2017-08-11 | 한국생산기술연구원 | Compound having alkoxysilyl group and active ester group, preparing method thereof, composition comprising the same, and use thereof |
| CN109796745A (en) * | 2017-11-16 | 2019-05-24 | 台光电子材料(昆山)有限公司 | Resin combination and the article being made from it |
| WO2019131306A1 (en) * | 2017-12-28 | 2019-07-04 | パナソニックIpマネジメント株式会社 | Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board |
| JP2020522532A (en) * | 2017-06-05 | 2020-07-30 | コリア インスティチュート オブ インダストリアル テクノロジー | Compound having alkoxysilyl group and active ester group, method for producing the same, composition containing the same and use |
| WO2023026845A1 (en) * | 2021-08-23 | 2023-03-02 | 本州化学工業株式会社 | Curable resin composition, varnish, prepreg, cured product |
-
2023
- 2023-03-03 WO PCT/JP2023/007940 patent/WO2023181838A1/en not_active Ceased
- 2023-03-10 TW TW112108992A patent/TW202344593A/en unknown
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08245735A (en) * | 1995-03-10 | 1996-09-24 | Toagosei Co Ltd | Thermosetting resin composition |
| JPH08245506A (en) * | 1995-03-10 | 1996-09-24 | Toagosei Co Ltd | Compound having allyl and/or methallyl group |
| JPH09194545A (en) * | 1996-01-17 | 1997-07-29 | Toagosei Co Ltd | Thermosetting resin composition and its laminated board |
| JP2002003752A (en) * | 2000-06-21 | 2002-01-09 | Jsr Corp | Composition for forming film and material for forming insulating film |
| US20100113643A1 (en) * | 2007-04-09 | 2010-05-06 | Designer Molecules, Inc. | Curatives for epoxy adhesive compositions |
| CN105199296A (en) * | 2015-09-02 | 2015-12-30 | 铜陵翔宇商贸有限公司 | Preparation method of resin gel for producing copper-clad plate |
| KR20170092468A (en) * | 2016-02-03 | 2017-08-11 | 한국생산기술연구원 | Compound having alkoxysilyl group and active ester group, preparing method thereof, composition comprising the same, and use thereof |
| JP2020522532A (en) * | 2017-06-05 | 2020-07-30 | コリア インスティチュート オブ インダストリアル テクノロジー | Compound having alkoxysilyl group and active ester group, method for producing the same, composition containing the same and use |
| CN109796745A (en) * | 2017-11-16 | 2019-05-24 | 台光电子材料(昆山)有限公司 | Resin combination and the article being made from it |
| WO2019131306A1 (en) * | 2017-12-28 | 2019-07-04 | パナソニックIpマネジメント株式会社 | Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board |
| WO2023026845A1 (en) * | 2021-08-23 | 2023-03-02 | 本州化学工業株式会社 | Curable resin composition, varnish, prepreg, cured product |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202344593A (en) | 2023-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6971222B2 (en) | Thermosetting resin composition, prepreg and its cured product | |
| JP4311927B2 (en) | Compound having (meth) acryloyl group and method for producing the same | |
| KR20080106118A (en) | Curable Resin Compositions, Curable Films, and Cured Products thereof | |
| JP7375144B2 (en) | Polyphenylene ether, curable compositions containing polyphenylene ether, dry films, prepregs, cured products, laminates, and electronic components | |
| JP7530718B2 (en) | Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component | |
| CN113490715A (en) | Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board | |
| Ma et al. | Phthalonitrile-PPO blends: cure behavior and properties | |
| WO2022244728A1 (en) | Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate, and wiring board | |
| EP1925630A1 (en) | Thermosetting resin composition | |
| JP2020090683A (en) | Process for making stable thermopolymerizable vinyl, amino, or oligomeric phenoxybenzoxycyclobutene monomers with improved cure rate | |
| Hannoda et al. | Bio-based thermosetting bismaleimide resins using cardany linolenate and allyl cardanyl ether | |
| KR102652027B1 (en) | Poly phenylene ether resin composition | |
| WO2023181838A1 (en) | Composition for resin starting material, organic solvent solution, curable resin composition, varnish, prepreg, and cured product | |
| JP7294834B2 (en) | Curable compositions, dry films, cured products, laminates and electronic components | |
| WO2023089982A1 (en) | Curable resin composition, varnish, prepreg, and cured product | |
| JP6935402B2 (en) | Maleimide resin composition, prepreg, cured product thereof and semiconductor device | |
| JP7705269B2 (en) | Curable resin laminates, dry films and cured products, electronic components | |
| JP7727426B2 (en) | Curable composition containing polyphenylene ether, dry film, cured product, and electronic component | |
| WO2023026845A1 (en) | Curable resin composition, varnish, prepreg, cured product | |
| WO2025115450A1 (en) | Cured product and prepreg | |
| JP2008201955A (en) | Thermosetting resin composition containing polyfunctional (meth)acrylate | |
| JP7705268B2 (en) | Curable resin laminates, dry films and cured products, electronic components | |
| JP2023057389A (en) | Curable resin composition, dry film, cured product, and electronic component | |
| WO2023166948A1 (en) | (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same | |
| JP2025006571A (en) | Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, and electronic component |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774437 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 23774437 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |