WO2023181736A1 - Composition and method for manufacturing light-emitting element using same - Google Patents

Composition and method for manufacturing light-emitting element using same Download PDF

Info

Publication number
WO2023181736A1
WO2023181736A1 PCT/JP2023/005678 JP2023005678W WO2023181736A1 WO 2023181736 A1 WO2023181736 A1 WO 2023181736A1 JP 2023005678 W JP2023005678 W JP 2023005678W WO 2023181736 A1 WO2023181736 A1 WO 2023181736A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bonded
formula
polymer compound
substituent
Prior art date
Application number
PCT/JP2023/005678
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 林
敏之 横藤田
秀信 柿本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023181736A1 publication Critical patent/WO2023181736A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a composition and a method for manufacturing a light emitting device using the same.
  • Patent Document 1 describes a composition containing a polymer phosphor, a nonionic surfactant, and a solvent as a composition used in a wet method.
  • the polymer phosphor is a polymer compound that does not contain a structural unit represented by formula (1) described below.
  • an object of the present invention is to provide a composition useful for manufacturing a light emitting element with excellent luminous efficiency.
  • Another object of the present invention is to provide a method for manufacturing a light emitting device formed using the composition.
  • Ar represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ars may be the same or different.
  • Ar' is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ar's may be the same or different.
  • Z is a condensed ring arylene group or a condensed ring divalent heterocyclic group, and these groups may have a substituent.
  • B 1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom;
  • the group may have a substituent.
  • a plurality of substituents When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • a plurality of B 1 's may be the same or different.
  • s represents an integer greater than or equal to 0.
  • a plurality of s may be the same or different.
  • composition according to any one of [1] to [4], which is a divalent heterocyclic group of the formula, and these groups may have a substituent.
  • [6] Z is a tricyclic arylene group or a tricyclic divalent heterocyclic group, and these groups may have a substituent, [1] to [5] The composition according to any one of. [7] The composition according to any one of [1] to [6], wherein B 1 is an alkyl group or an aryl group, and these groups may have a substituent.
  • the polymer compound A further includes at least one structural unit selected from the group consisting of a structural unit represented by formula (Y) and a structural unit represented by formula (X), [1] The composition according to any one of [7] to [7].
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded;
  • the group may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. and these groups may have a substituent.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • the polymer compound A includes a structural unit represented by formula (Y-1) or a structural unit represented by formula (Y-2) as the structural unit represented by formula (Y). , the composition according to [8].
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R Y1s may be the same or different, and may be bonded to each other to form a ring with the carbon atoms to which they are bonded.
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have.
  • At least two of the two or more solvents are at least two selected from the group consisting of aromatic hydrocarbon solvents and aromatic ether solvents.
  • a method for manufacturing a light-emitting element comprising an anode, a cathode, and one or more organic layers provided between the anode and the cathode,
  • the method for manufacturing the light-emitting device comprising the step of forming at least one of the organic layers by a wet method using the composition according to any one of [1] to [14].
  • a composition useful for manufacturing a light emitting element with excellent luminous efficiency can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a light emitting element formed using the composition.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • a solid line representing a bond with the central metal means an ionic bond, a covalent bond, or a coordinate bond.
  • Low molecular compound means a compound that has no molecular weight distribution and has a molecular weight of 1 ⁇ 10 4 or less.
  • polymer compound means a polymer having a molecular weight distribution and a number average molecular weight in terms of polystyrene of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms.
  • the terminal group of the polymer compound is preferably a stable group because when the polymer compound is used in a light emitting device, the light emitting device has excellent light emitting characteristics.
  • the terminal group of the polymer compound is preferably a group that is conjugated to the main chain of the polymer compound, such as an aryl group or a group that is conjugated to the main chain of the polymer compound via a carbon-carbon bond. valent heterocyclic groups.
  • "Structural unit” means one or more units present in a polymer compound. A structural unit that exists two or more in a polymer compound is generally also called a "repeat unit.”
  • the "alkyl group” may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkyl group, not including the number of carbon atoms in substituents, is usually 1 to 50, preferably 1 to 30, more preferably 1 to 20, and even more preferably 1. ⁇ 10.
  • the number of carbon atoms in the branched alkyl group, not including the number of carbon atoms in the substituents is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, and still more preferably 4 to 50. It is 10.
  • the alkyl group may have a substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, and heptyl group.
  • cycloalkyl group octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group, dodecyl group, and hydrogen atoms in these groups
  • the number of carbon atoms in the "cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, and still more preferably 4. ⁇ 10.
  • the cycloalkyl group may have a substituent.
  • the cycloalkyl group include a cyclohexyl group, a methylcyclohexyl group, an ethylcyclohexyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with a substituent.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms in the aryl group, not including the number of carbon atoms in substituents, is usually 6 to 60, preferably 6 to 40, more preferably 6 to 20, and still more preferably 6 to 10. be.
  • the aryl group may have a substituent.
  • the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents. Examples include substituted groups.
  • the "alkoxy group” may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkoxy group, not including the number of carbon atoms in substituents, is usually 1 to 50, preferably 1 to 20, and more preferably 1 to 10.
  • the number of carbon atoms in the branched alkoxy group, not including the number of carbon atoms in substituents is usually 3 to 50, preferably 4 to 20, more preferably 4 to 10.
  • the alkoxy group may have a substituent.
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the number of carbon atoms in the "cycloalkoxy group”, not including the number of carbon atoms in substituents, is usually 3 to 40, preferably 4 to 10.
  • the cycloalkoxy group may have a substituent.
  • Examples of the cycloalkoxy group include a cyclohexyloxy group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
  • the number of carbon atoms in the "aryloxy group” is usually 6 to 60, preferably 6 to 40, more preferably 6 to 20, and still more preferably 6. ⁇ 10.
  • the aryloxy group may have a substituent.
  • aryloxy group examples include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1-pyrenyloxy group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents.
  • a "p-valent heterocyclic group" (p represents an integer of 1 or more) means a heterocyclic compound in which p hydrogen atoms are directly bonded to carbon atoms or heteroatoms constituting the ring. means the remaining atomic group excluding the hydrogen atom. Among p-valent heterocyclic groups, it is an atomic group remaining after removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from an aromatic heterocyclic compound. A "p-valent aromatic heterocyclic group” is preferred.
  • Aromatic heterocyclic compounds are heterocyclic compounds such as oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • Compounds in which the ring itself is aromatic, and heterocycles such as phenoxazine, phenothiazine, dibenzoborole, dibenzosilole, benzopyran, etc., have an aromatic ring condensed to the heterocycle even if they do not themselves exhibit aromaticity. means a compound.
  • the number of carbon atoms in the monovalent heterocyclic group is usually 1 to 60, preferably 2 to 40, and more preferably 3 to 20.
  • the number of heteroatoms in the monovalent heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the monovalent heterocyclic group may have a substituent. Examples of monovalent heterocyclic groups include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and some of the hydrogen atoms in these groups. Or a group completely substituted with a substituent can be mentioned.
  • Halogen atom refers to a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the "amino group” may have a substituent, and a substituted amino group is preferable.
  • the substituent that the amino group has is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • the substituted amino group may further have a substituent. Examples of substituted amino groups include dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • amino groups and substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl)amino group, bis(3,5- Examples include di-tert-butylphenyl)amino groups, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the "alkenyl group” may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkenyl group, not including the number of carbon atoms in substituents, is usually 2 to 50, preferably 2 to 20, and more preferably 2 to 10.
  • the number of carbon atoms in the branched alkenyl group, not including the number of carbon atoms in substituents is usually 3 to 50, preferably 4 to 20, and more preferably 4 to 10.
  • the number of carbon atoms in the "cycloalkenyl group" not including the number of carbon atoms in substituents is usually 3 to 30, preferably 4 to 20, and more preferably 4 to 10.
  • the alkenyl group and cycloalkenyl group may have a substituent.
  • alkenyl group and cycloalkenyl group examples include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, Examples include -hexenyl group, 7-octenyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the "alkynyl group” may be either straight chain or branched.
  • the number of carbon atoms in the alkynyl group, excluding carbon atoms of substituents, is usually 2 to 50, preferably 3 to 20, and more preferably 3 to 10.
  • the number of carbon atoms in the branched alkynyl group, excluding carbon atoms of substituents, is usually 4 to 30, preferably 4 to 20, and more preferably 4 to 10.
  • the number of carbon atoms in the "cycloalkynyl group", excluding carbon atoms of substituents is usually 4 to 50, preferably 5 to 20, and more preferably 6 to 10.
  • the alkynyl group and cycloalkynyl group may have a substituent.
  • alkynyl group and cycloalkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 5 Examples include -hexynyl groups and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • Arylene group means an atomic group remaining after removing two hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms in the arylene group, not including the number of carbon atoms in substituents, is usually 6 to 60, preferably 6 to 40, and more preferably 6 to 20.
  • the arylene group may have a substituent.
  • Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylene diyl group, a chrysenediyl group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents, and groups represented by formulas (A-1) to (A-20) are preferred.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine group. represents an atom, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R's may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R a 's may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
  • the number of carbon atoms in the divalent heterocyclic group is usually 1 to 60, preferably 2 to 40, more preferably 3 to 20.
  • the number of heteroatoms in the divalent heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the divalent heterocyclic group may have a substituent.
  • divalent heterocyclic groups examples include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, dihydrophenazine, furan, and thiophene.
  • a divalent group obtained by removing two hydrogen atoms directly bonded to a carbon atom or a heteroatom constituting a ring from azole, diazole, or triazole, and a portion of the hydrogen atoms in the group.
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded. [In the formula, R and R a have the same meanings as above. ]
  • a “crosslinking group” is a group that can form a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet ray irradiation, visible light irradiation, infrared ray irradiation, radical reaction, etc.
  • the crosslinking group is preferably a group represented by any one of formulas (XL-1) to (XL-19).
  • the crosslinking group may have a substituent.
  • R XL represents a methylene group, an oxygen atom, or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL 's exist they may be the same or different.
  • a plurality of nXLs may be the same or different.
  • substituted amino group examples include alkenyl groups, cycloalkenyl groups, alkynyl groups and cycloalkynyl groups.
  • the substituent may be a bridging group.
  • substituents when a plurality of substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded, but it is preferable that they do not form a ring.
  • composition of this embodiment contains a polymer compound A containing a structural unit represented by formula (1), a polymer compound B containing a structural unit represented by formula (2), and a solvent. It is a composition.
  • the polymer compound A, the polymer compound B, and the solvent are different components.
  • the composition of this embodiment may contain only one type of each of polymer compound A, polymer compound B, and solvent, or may contain two or more types of polymer compound A, polymer compound B, and solvent.
  • the composition of this embodiment can be suitably used, for example, as a composition for a light emitting device.
  • a light-emitting element formed using the composition of this embodiment (hereinafter also referred to as "light-emitting element of this embodiment”) has better luminous efficiency.
  • the total content of polymer compound A, polymer compound B, and solvent is such that the function as a composition (for example, a composition for a light emitting device, and the same applies hereinafter) is determined. It may be within the range that can be played.
  • the total content of the polymer compound A, the polymer compound B, and the solvent may be, for example, 1 to 100% by mass based on the total amount of the composition. Since the luminous efficiency of the device is better, the amount is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. The content is particularly preferably 90 to 100% by mass.
  • the content of the polymer compound A may be within a range that allows the composition to function as a composition.
  • the content of the polymer compound A may be, for example, more than 0 mass ppm, 10 mass ppm or more, or 100 mass ppm with respect to the content of the solvent. It may be more than 1000 mass ppm, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably more than 1000 mass ppm, more preferably more than 1000 mass ppm 100% by mass.
  • the content is preferably 7000 ppm or more and 2% by mass or less, particularly preferably 7000 ppm or more and 2% by mass or less.
  • the content of the polymer compound B may be within a range that allows the composition to function as a composition.
  • the content of the polymer compound B may be, for example, more than 0 mass ppm and 100 mass% or less, or more than 0 mass ppm and 50 mass% or less, with respect to the content of the solvent. It may be more than 0 mass ppm and 10 mass % or less, and it may be more than 0 mass ppm and 1 mass % or less, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 0 mass ppm.
  • the luminous efficiency of the light emitting element of this embodiment is Since it is even better, it is preferably 0.1 mass ppm or more and 1000 mass ppm or less, more preferably 0.5 mass ppm or more and 1000 mass ppm or less, and even more preferably 1 mass ppm or more and less than 1000 mass ppm.
  • the content is 5 ppm or more and 500 ppm or less, particularly preferably 10 ppm or more and 100 ppm or less.
  • the content of polymer compound A is preferably greater than the content of polymer compound B, since the luminous efficiency of the light emitting element of this embodiment is more excellent.
  • the content of the solvent is preferably greater than the content of polymer compound A, since the luminous efficiency of the light emitting element of this embodiment is more excellent.
  • the content of polymer compound A is greater than the content of polymer compound B, and the content of the solvent is It is preferable that the content is higher than the content of polymer compound A.
  • the polymer compound A is a polymer compound containing a structural unit represented by formula (1). It is preferable that the polymer compound A is a polymer compound that does not contain the structural unit represented by formula (2).
  • Ar is preferably an arylene group which may have a substituent, since the light emitting element of this embodiment has better luminous efficiency.
  • Examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar are respectively the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described below.
  • the examples and preferred ranges of the substituents that the group represented by Ar may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 described below may have, respectively.
  • Ar' is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably an aryl group or a monovalent heterocyclic group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. It is a heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ar' are the examples of the aryl group and monovalent heterocyclic group in the substituent that the group represented by Ar Y1 described below may have, respectively. and the same as the preferred range.
  • the examples and preferred ranges of the substituents that the group represented by Ar' may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 described below may have, respectively. .
  • Ar be an arylene group which may have a substituent and Ar' be an aryl group which may have a substituent.
  • Ar is a phenylene group which may have a substituent, and more preferably Ar' is a phenyl group which may have a substituent.
  • Z is preferably an arylene group which is a condensed ring and which may have a substituent since the light emitting element of this embodiment has better luminous efficiency.
  • the arylene group which is a condensed ring at least one ring constituting the condensed ring may be an aromatic hydrocarbon ring.
  • the number of carbon atoms in the arylene group, which is a condensed ring is usually 7 to 60, preferably 8 to 40, more preferably 9 to 30, and still more preferably It is 10-20.
  • the arylene group that is a condensed ring include aromatic hydrocarbons that are condensed rings (for example, bicyclic aromatic hydrocarbons such as naphthalene, indene, naphthoquinone, indenone, and tetralone; anthracene, phenanthrene, dihydrophenanthrene, and fluorene).
  • anthraquinone, phenanthquinone and fluorenone tetracyclic aromatic hydrocarbons such as benzanthracene, benzophenanthrene, benzofluorene, pyrene and fluoranthene; dibenzoanthracene, dibenzophenanthrene, dibenzofluorene , pentacyclic aromatic hydrocarbons such as indenofluorene, perylene and benzofluoranthene; hexacyclic aromatic hydrocarbons such as spirobifluorene; and benzospirobifluorene and acenaphthofluoranthene.
  • n Z1 cyclic (n Z1 represents an integer of 2 or more) A group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon of It may have.
  • the arylene group which is a condensed ring, is preferably a bicyclic, tricyclic, tetracyclic, pentacyclic, or hexacyclic arylene group, since the luminous efficiency of the light emitting device of this embodiment is more excellent. More preferred are bicyclic, tricyclic, tetracyclic or pentacyclic arylene groups; bicyclic or tricyclic arylene groups; particularly preferred are tricyclic arylene groups; The group may have a substituent.
  • the arylene group which is a condensed ring, is preferably a naphthalenediyl group, anthracenediyl group, phenanthrenediyl group, dihydrophenanthrenediyl group, naphthacenediyl group, fluorenediyl group, since the luminous efficiency of the light emitting element of this embodiment is further improved.
  • the number of carbon atoms of the divalent heterocyclic group that is a condensed ring is usually 2 to 60, preferably 5 to 40, and more preferably 8 to 30, not including the number of carbon atoms of substituents. , more preferably 10 to 20.
  • the number of heteroatoms of the divalent heterocyclic group that is a condensed ring is usually 1 to 30, preferably 1 to 10, and more preferably 1 to 5, not including the number of heteroatoms of substituents. , more preferably 1 to 3.
  • the divalent heterocyclic group that is a condensed ring may be any type as long as at least one ring constituting the condensed ring is a heterocycle.
  • divalent heterocyclic groups that are condensed rings include heterocyclic compounds that are condensed rings (e.g., azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole).
  • heterocyclic compounds that are condensed rings e.g., azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole.
  • bicyclic heterocyclic compounds such as benzothiadiazole, benzotriazole, benzothiophene dioxide, benzothiophene oxide and benzopyranone; dibenzofuran, dibenzothiophene, dibenzothiophene dioxide, dibenzothiophene oxide, dibenzopyranone, dibenzoborole, Dibenzosilole, dibenzophosphole, dibenzoselenophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, acridone, fenazaborin, phenophosfazine, phenoselenazine , phenazacillin, azaanthracene, diazaanthracene, azaphenanthrene and diazaphenanthrene; tricyclic heterocyclic compounds such as he
  • n Z2 cyclic divalent heterocyclic group A group in which two hydrogen atoms directly bonded to the atom are removed is also referred to as an "n Z2 cyclic divalent heterocyclic group", and the group may have a substituent.
  • the divalent heterocyclic group which is a condensed ring includes a group in which a plurality of the above-mentioned groups are bonded.
  • the divalent heterocyclic group that is a condensed ring is preferably a bicyclic, tricyclic, tetracyclic, pentacyclic, or hexacyclic divalent heterocyclic group, since the luminous efficiency of the light emitting device of this embodiment is better.
  • a valent heterocyclic group more preferably a bicyclic, tricyclic, tetracyclic or pentacyclic divalent heterocyclic group; a bicyclic or tricyclic divalent heterocyclic group;
  • a tricyclic divalent heterocyclic group is particularly preferred, and these groups may have a substituent.
  • the divalent heterocyclic group which is a condensed ring is preferably azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, or phenothiazine, since the light emitting device of this embodiment has better luminous efficiency.
  • 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene or diazaphenanthrene, from which two hydrogen atoms directly bonded to atoms constituting the ring are removed More preferably, from azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine or 9,10-dihydroacridine, two hydrogen atoms directly bonded to atoms constituting the ring are removed.
  • a group, more preferably a group represented by formula (AA-7) to formula (AA-22), particularly preferably a group represented by formula (AA-10) to formula (AA-22) These groups may have a substituent.
  • the structural unit represented by formula (1) is preferably a structural unit represented by formula (X-4) to formula (X-7), since the light emitting element of this embodiment has better luminous efficiency. , more preferably structural units represented by formulas (X-4) to formula (X-6), still more preferably structural units represented by formula (X-4).
  • R X4 and R X5 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or It represents a fluorine atom, and these groups may have a substituent.
  • substituents When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • a plurality of R X4s may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • a plurality of R X5s may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • R X4 and R X5 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. or a substituted amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, particularly preferably a hydrogen atom, an alkyl group, or a cycloalkyl group or an aryl group, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group , monovalent heterocyclic group, and substituted amino group in R X4 and R Examples and preferred ranges of the valent heterocyclic group and substituted amino group are the same.
  • Examples and preferred ranges of substituents that R X4 and R X5 may have are respectively the same as examples and preferred ranges of substituents that the group represented by Ar Y1 described below may have.
  • Examples of the structural unit represented by formula (1) include structural units represented by formulas (X1-7) to (X1-19).
  • the content of the structural unit represented by formula (1) contained in the polymer compound A may be within a range that allows the polymer compound A to function.
  • the content of the structural unit represented by formula (1) contained in the polymer compound A is, for example, 0.01 to 100 mol% with respect to the total content of the structural units contained in the polymer compound A.
  • the amount is preferably 0.05 to 90 mol%, more preferably 0.1 to 70 mol%, and still more preferably 0.2 to 50 mol%, since the luminous efficiency of the light emitting element of this embodiment is better.
  • % particularly preferably from 0.5 to 30 mol %, particularly preferably from 1 to 10 mol %.
  • the polymer compound A may contain only one type of structural unit represented by formula (1), or may contain two or more types of structural units.
  • the polymer compound A is at least one type selected from the group consisting of the structural unit represented by formula (X) and the structural unit represented by formula (Y), since the light emitting element of this embodiment has better luminous efficiency. It is preferable to further include a structural unit. That is, the polymer compound A has at least one kind of structural unit selected from the group consisting of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y), and the structural unit represented by the formula (1). It is preferable that it is a polymeric compound containing a structural unit.
  • the polymer compound A includes at least one structural unit selected from the group consisting of the structural unit represented by formula (X) and the structural unit represented by formula (Y), and the structure represented by formula (1).
  • the structural unit represented by formula (1) is different from the structural unit represented by formula (X) and the structural unit represented by formula (Y).
  • the polymer compound A preferably further contains a structural unit represented by the formula (Y), since the light emitting element of this embodiment has more excellent luminous efficiency. It is preferable that the polymer compound A further contains a structural unit represented by formula (X), since the hole transporting property of the polymer compound A is excellent and the luminous efficiency of the light emitting element of this embodiment is even more excellent. .
  • the polymer compound A has excellent hole transport properties and the luminous efficiency of the light emitting element of this embodiment is even better. It is preferable to further include the structural unit represented.
  • polymer compound A contains a structural unit represented by formula (Y)
  • the content of the structural unit represented by formula (Y) may be within a range that allows the polymer compound A to function.
  • the content of the structural unit represented by formula (Y) is relative to the total content of structural units contained in polymer compound A. For example, it is 1 to 99.99 mol%, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 10 to 99.95 mol%, more preferably 30 to 99.9 mol%. It is more preferably 50 to 99.8 mol%, particularly preferably 70 to 99.5 mol%, particularly preferably 90 to 99 mol%.
  • the polymer compound A may contain only one type of structural unit represented by formula (Y), or may contain two or more types of structural units.
  • polymer compound A contains a structural unit represented by formula (X)
  • the content of the structural unit represented by formula (X) may be within a range that allows the polymer compound A to function.
  • the content of the structural unit represented by formula (X) is relative to the total content of structural units contained in polymer compound A. For example, it is 0.01 to 99.9 mol%, and the hole transporting property of the polymer compound A is excellent, and the luminous efficiency of the light emitting element of this embodiment is even more excellent, so it is preferably 0.05 to 99.9 mol%.
  • the polymer compound A may contain only one type of structural unit represented by formula (X), or may contain two or more types of structural units.
  • the luminous efficiency of the light emitting element of this embodiment is more excellent, so it is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably. is 50 to 100 mol%, particularly preferably 70 to 100 mol%, particularly preferably 90 to 100 mol%.
  • the arylene group represented by Ar Y1 is preferably a phenylene group, naphthalenediyl group, anthracenediyl group, or phenanthrene group, since the light emitting element of this embodiment has better luminous efficiency.
  • the arylene group represented by Ar Y1 is preferably one of formulas (A-1) to (A-14), formula (A-19), or formula ( A-20), more preferably formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) , formula (A-13) or formula (A-19), more preferably a group represented by formula (A-1), formula (A-7), formula (A-9) or formula (A-19). -19).
  • the divalent heterocyclic group represented by Ar Y1 is preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, or dibenzothiophene, since the light emitting element of this embodiment has better luminous efficiency.
  • phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed and more preferably pyridine, diazabenzene, triazine.
  • the divalent heterocyclic group represented by Ar Y1 is preferably one of formulas (AA-1) to (AA-15) and formula (AA-18), since the luminous efficiency of the light emitting device of this embodiment is even more excellent.
  • a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded includes, for example, a group represented by the following formula, and these The group may have a substituent.
  • Ar Y1 is preferably an arylene group which may have a substituent, since the light emitting element of this embodiment has better luminous efficiency.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group, since the light emitting element of this embodiment has better luminous efficiency.
  • group aryloxy group, monovalent heterocyclic group, substituted amino group, or fluorine atom, more preferably an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, monovalent heterocyclic group, or A substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, particularly preferably an alkyl group, a cycloalkyl group, or an aryl group;
  • the group may further have a substituent.
  • the aryl group in the substituent that the group represented by Ar Y1 may have is preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, or fluorene, since the luminous efficiency of the light emitting element of this embodiment is more excellent.
  • the monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have is preferably pyridine, diazabenzene, triazine, or azanaphthalene, since the luminous efficiency of the light emitting element of this embodiment is more excellent. , diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine, with one hydrogen atom directly bonded to the atom constituting the ring removed.
  • it is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from pyridine, diazabenzene, triazine, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, or phenothiazine, and even more preferably pyridine.
  • diazabenzene or triazine from which one hydrogen atom directly bonded to the atom constituting the ring has been removed, and these groups may further have a substituent.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and The group may further have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the aryl group and monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have, respectively.
  • the examples and preferred ranges of the groups are the same.
  • the substituent that the group represented by Ar Y1 may further include is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or an aryloxy group. group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, even more preferably an alkyl group, a substituted amino group, or a fluorine atom.
  • the examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the group represented by may have are the same.
  • the structural unit represented by formula (Y) is preferably a structural unit represented by formula (Y-1) or formula (Y-2), since the light emitting element of this embodiment has better luminous efficiency. More preferably, it is a structural unit represented by formula (Y-2).
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. More preferably, it is a hydrogen atom or an alkyl group, and these groups may have a substituent.
  • R Y1 is preferably an alkyl group or a cycloalkyl group, since the light emitting element of this embodiment has better luminous efficiency.
  • group an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group.
  • It is a cyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, and these groups may have a substituent.
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. , more preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and even more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. You can.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in R Y1 and R Y2 are the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the group represented by Ar Y1 may have, respectively.
  • the examples and preferred ranges of the heterocyclic group and substituted amino group are the same.
  • Examples and preferred ranges of substituents that R Y1 and R Y2 may have are the same as the examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
  • the combination of two R Y2s in the group represented by -C(R Y2 ) 2 - is preferably such that both are an alkyl group or a cycloalkyl group, both are an aryl group, and both are a monovalent hetero cyclic group, or one is an alkyl group or cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, as a group represented by -C(R Y2 ) 2 - is preferably a group represented by formula (Y-A1) to formula (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. You may do so.
  • R Y2s in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably an alkyl group or a substituent which may have a substituent. It is a cycloalkyl group which may have.
  • a plurality of R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 -
  • the group represented by is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are It may have a substituent.
  • R Y2 represents the same meaning as above. ]
  • X Y1 is preferably a group represented by -C(R Y2 ) 2 - or -C(R Y2 ) 2 -C(R Y2 ) 2 -, since the luminous efficiency of the light emitting element of this embodiment is more excellent. More preferably, it is a group represented by -C( RY2 ) 2 -.
  • Examples of the structural unit represented by formula (Y) include structural units represented by the following formula.
  • R X1 , R X2 , and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably an aryl group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in R X1 , R X2 and R The examples and preferred ranges of the cyclic group are the same.
  • Examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar X1 , Ar X2 , Ar X3 and Ar be.
  • Examples and preferred arylene groups and divalent heterocyclic groups in the divalent groups represented by Ar X2 and Ar X4 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded The ranges are the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar Y1 , respectively.
  • the divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded in Ar X2 and Ar Examples include those similar to divalent groups directly bonded to a valent heterocyclic group.
  • Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably arylene groups which may have substituents, since the light emitting element of this embodiment has better luminous efficiency.
  • Examples of the structural unit represented by formula (X) include structural units represented by the following formula.
  • polymer compound A examples include polymer compounds P-1 to P-4 shown in Table 1 below.
  • other structural units mean structural units other than the structural unit represented by formula (1), the structural unit represented by formula (Y), and the structural unit represented by formula (X). do.
  • the polymer compound A may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms, but it may be made by combining multiple types of raw material monomers. Preferably, it is a copolymer.
  • the number average molecular weight of the polymer compound A in terms of polystyrene is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , even more preferably 2 ⁇ 10 4 to It is 2 ⁇ 10 5 .
  • the weight average molecular weight of the polymer compound A in terms of polystyrene is preferably 1 ⁇ 10 4 to 2 ⁇ 10 6 , more preferably 2 ⁇ 10 4 to 1 ⁇ 10 6 , even more preferably 5 ⁇ 10 4 to It is 5 ⁇ 10 5 .
  • Polymer compound A can be produced using known polymerization methods such as those described in Chem. Rev., Vol. 109, pp. 897-1091 (2009), such as Suzuki reaction, Yamamoto reaction, Examples of polymerization methods include coupling reactions using transition metal catalysts such as Buchwald reaction, Stille reaction, Negishi reaction, and Kumada reaction.
  • the monomers can be charged in one go by charging the entire amount of the monomers into the reaction system, or after charging a part of the monomers and reacting, the remaining monomers can be added in one go. Examples include a method of continuously or dividedly charging a monomer, a method of continuously or dividingly charging a monomer, and the like.
  • transition metal catalysts include palladium catalysts and nickel catalysts.
  • Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination.
  • a lower alcohol such as methanol
  • filtering the precipitate and then drying. Use these methods alone or in combination.
  • the purity of the polymer compound A is low, it can be purified by conventional methods such as recrystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
  • the polymer compound B is a polymer compound containing a structural unit represented by formula (2). It is preferable that the polymer compound A is a polymer compound that does not contain the structural unit represented by formula (1).
  • B 1 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, an aryloxy group, or a monovalent hetero group, since the luminous efficiency of the light emitting element of this embodiment is more excellent.
  • a cyclic group or a substituted amino group more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, or an aryloxy group, and still more preferably an alkyl group or a cycloalkyl group.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in B1 are the aryl group, monovalent heterocyclic group, and the substituent that the group represented by Ar Y1 may have, respectively. and the examples and preferred ranges of substituted amino groups.
  • Examples of the hydroxyalkyl group for B 1 include an alkyl group in which one of the hydrogen atoms is substituted with a hydroxy group.
  • the examples and preferred ranges of the substituents that B 1 may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 may have, respectively.
  • the repeating number (degree of polymerization) of the structural unit represented by formula (2) contained in the polymer compound B is usually an integer of 5 to 10,000, which is preferable since the light emitting element of this embodiment has better luminous efficiency. is an integer of 10 to 5,000, more preferably an integer of 20 to 2,000, more preferably an integer of 50 to 1,000.
  • s is usually an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0.
  • Examples of the structural unit represented by formula (2) include structural units represented by the following formula.
  • the content of the structural unit represented by formula (2) contained in the polymer compound B may be within a range that allows the polymer compound B to function.
  • the content of the structural unit represented by formula (2) contained in the polymer compound B is, for example, 1 to 100 mol% with respect to the total content of the structural units contained in the polymer compound B, Since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, and particularly preferably 70 to 100 mol%. ⁇ 100 mol%, particularly preferably 90 ⁇ 100 mol%.
  • Polymer compound B may contain only one type of structural unit represented by formula (2), or may contain two or more types of structural units.
  • Polymer compound B is available from Dow-Toray Industries, Shin-Etsu Chemical Co., Ltd., Bic-Chemie Japan Co., Ltd., etc. In addition, it can be produced using known polymerization methods described in, for example, Japanese Patent Publication No. 2011-505448, Japanese Patent Application Publication No. 2012-68417, and Japanese Patent Application Publication No. 2015-147930.
  • the polymer compound B may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms, and may be a copolymer of multiple types of raw material monomers. It may also be a copolymer.
  • the number average molecular weight of the polymer compound B in terms of polystyrene is preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 2 ⁇ 10 3 to 5 ⁇ 10 5 , even more preferably 2 ⁇ 10 3 to It is 2 ⁇ 10 5 .
  • the weight average molecular weight of the polymer compound B in terms of polystyrene is preferably 2 ⁇ 10 3 to 2 ⁇ 10 6 , more preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , even more preferably 5 ⁇ 10 3 to It is 5 ⁇ 10 5 .
  • solvent The solvent contained in the composition of this embodiment (hereinafter also referred to as "ink solvent”) dissolves or disperses polymer compound A and polymer compound B, and reacts with polymer compound A and polymer compound B. There is no particular limitation as long as it does not. It is preferable to use the ink solvent alone because it facilitates the production of the composition of this embodiment. Moreover, since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferable to use a mixture of two or more kinds of ink solvents.
  • ink solvents examples include chlorine solvents, aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, alcohol solvents, ketone solvents, amide solvents, and esters.
  • chlorine-based solvents, aromatic hydrocarbon-based solvents, aromatic ether-based solvents, and aliphatic hydrocarbon-based solvents are used, since the luminous efficiency of the light-emitting element of this embodiment is more excellent.
  • aliphatic ether solvents, ketone solvents, amide solvents, or ester solvents more preferably aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, and aliphatic ether solvents.
  • a ketone solvent or an ester solvent more preferably an aromatic hydrocarbon solvent, an aromatic ether solvent, an aliphatic hydrocarbon solvent or an aliphatic ether solvent, particularly preferably an aromatic hydrocarbon solvent. type solvent or aromatic ether type solvent.
  • At least one of the ink solvents is preferably a chlorine-based solvent, an aromatic hydrocarbon-based solvent, or an aromatic ether, since the luminous efficiency of the light-emitting element of this embodiment is better.
  • Hydrogen solvent, aliphatic ether solvent, ketone solvent or ester solvent more preferably aromatic hydrocarbon solvent, aromatic ether solvent, aliphatic hydrocarbon solvent or aliphatic ether solvent.
  • aromatic hydrocarbon solvents or aromatic ether solvents are particularly preferred.
  • at least two of the ink solvents are preferably chlorine-based solvents, aromatic hydrocarbon-based solvents, or aromatic ethers, since the luminous efficiency of the light-emitting element of this embodiment is better.
  • a combination of at least two of the ink solvents is preferably an aromatic hydrocarbon solvent and an aromatic ether solvent, since the light emitting efficiency of the light emitting element of this embodiment is better. and one of aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, ketone solvents, amide solvents, and ester solvents.
  • aromatic hydrocarbon solvents and aromatic ether solvents More preferably, one of aromatic hydrocarbon solvents and aromatic ether solvents, and aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic A combination with one of an ether solvent, a ketone solvent, and an ester solvent, more preferably a combination of two aromatic hydrocarbon solvents, a combination of two aromatic ether solvents, or an aromatic It is a combination of a group hydrocarbon solvent and an aromatic ether solvent.
  • chlorinated solvents examples include dichloroethane, trichloroethane, chlorobenzene, and dichlorobenzene.
  • aromatic hydrocarbon solvents include toluene, xylene, ethylbenzene, trimethylbenzene, tetramethylbenzene, propylbenzene, butylbenzene, pentylbenzene, cyclopentylbenzene, methylcyclopentylbenzene, hexylbenzene, cyclohexylbenzene, methylcyclohexylbenzene, Mention may be made of heptylbenzene, cycloheptylbenzene, methylcycloheptylbenzene, octylbenzene, nonylbenzene, decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, tetradecylbenzene
  • aromatic ether solvents examples include anisole, dimethoxybenzene, trimethoxybenzene, ethoxybenzene, propoxybenzene, butoxybenzene, methylpropoxybenzene, butoxybenzene, methoxytoluene, ethoxytoluene, methoxynaphthalene, ethoxynaphthalene, and phenoxytoluene.
  • aromatic ether solvents include anisole, dimethoxybenzene, trimethoxybenzene, ethoxybenzene, propoxybenzene, butoxybenzene, methylpropoxybenzene, butoxybenzene, methoxytoluene, ethoxytoluene, methoxynaphthalene, ethoxynaphthalene, and phenoxytoluene.
  • aliphatic hydrocarbon solvents examples include cyclohexane, methylcyclohexane, pentane, hex
  • aliphatic ether solvent examples include diisopropyl ether, methyl butyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether.
  • alcoholic solvents examples include ethanol, propanol, butanol, pentanol, cyclopentanol, hexanol, cyclohexanol, heptanol, octanol, benzyl alcohol, phenylethanol, ethylene glycol, propylene glycol, diethylene glycol monomethyl ether, propanediol, and glycerin. can be mentioned.
  • ketone solvents include acetone, methyl ethyl ketone, methyl butyl ketone, dibutyl ketone, cyclohexanone, methylcyclohexanone, hexanone, octanone, nonanone, phenylacetone, acetylacetone, acetonylacetone, acetophenone, methylnaphthyl ketone, and isophorone.
  • the amide solvent include N-methylpyrrolidone, N-ethylpyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone.
  • ester solvents include butyl acetate, ethyl acetate, propyl acetate, pentyl acetate, ethyl propionate, ethyl butyrate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate.
  • carbonate-based solvents include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • At least one of the ink solvents has a boiling point of usually 40° C. to 500° C. at 1 atm, which is preferable because the luminous efficiency of the light emitting element of the present embodiment is more excellent.
  • the temperature is 60°C to 450°C, more preferably 80°C to 400°C, even more preferably 100°C to 300°C.
  • at least one of the ink solvents has a boiling point at 1 atm of preferably 100° C. to 450° C., more preferably is 150°C to 400°C, more preferably 200°C to 300°C.
  • the luminous efficiency of the light emitting element of this embodiment is further improved.
  • the boiling point of the species at 1 atm is 200°C or more and 450°C or less, and the boiling point of at least one of the species is 80°C or more and 195°C or less at 1 atm, and the boiling point of at least one of the species is 210°C or less at 1 atm. More preferably, the boiling point at 1 atm of at least one is 100°C or more and 190°C or less, and the boiling point of at least one at 1 atm is 220°C or more and 300°C or less. More preferred.
  • the content of the ink solvent with the lowest content among the ink solvents is such that, when the total content of the ink solvents is 100 parts by mass, the luminous efficiency of the light emitting element of this embodiment is The amount is preferably 1 to 50 parts by weight, more preferably 5 to 45 parts by weight, and still more preferably 10 to 40 parts by weight.
  • the luminous efficiency of the light emitting element of this embodiment is better, so the boiling point at 1 atm of the ink solvent with the lowest content among the ink solvents is preferably 60°C or more and less than 200°C.
  • the temperature is more preferably 80°C or more and 195°C or less, and even more preferably 100°C or more and 190°C or less.
  • the content of the ink solvent with the highest content among the ink solvents is such that, when the total content of the ink solvents is 100 parts by mass, the luminous efficiency of the light emitting element of this embodiment is The amount is preferably 50 to 99 parts by weight, more preferably 55 to 95 parts by weight, and still more preferably 60 to 90 parts by weight.
  • the luminous efficiency of the light emitting element of this embodiment is better, so the boiling point at 1 atm of the ink solvent with the largest content among the ink solvents is preferably 200°C or more and 450°C or less.
  • the temperature is more preferably 210°C or more and 400°C or less, and even more preferably 220°C or more and 300°C or less.
  • the number of types of ink solvents is usually 2 to 20 types, which facilitates the production of the composition of this embodiment, and increases the luminous efficiency of the light emitting element of this embodiment.
  • the mixed solvent is liquid at 25° C. and 1 atm.
  • the composition of this embodiment is selected from the group consisting of a polymer compound A, a polymer compound B, a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, and an antioxidant.
  • the composition may contain at least one type.
  • the hole transport material, hole injection material, electron transport material, electron injection material, and light emitting material are different from polymer compound A and polymer compound B.
  • Hole transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the hole transport material may have a crosslinking group.
  • low-molecular compounds include triphenylamine and its derivatives, N,N'-di-1-naphthyl-N,N'-diphenylbenzidine ( ⁇ -NPD), and N,N'-diphenyl-N, Examples include aromatic amine compounds such as N'-di(m-tolyl)benzidine (TPD).
  • the polymer compound include polyvinylcarbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron-accepting site is bonded, such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone.
  • the content of the hole transporting material is usually, when the total content of polymer compound A and polymer compound B is 100 parts by mass. The amount is 1 to 10,000 parts by mass.
  • the hole transport materials may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • low-molecular compounds include metal complexes with 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. , and derivatives thereof.
  • Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with metal.
  • the content of the electron transporting material is usually 1 to 1 when the total content of polymer compound A and polymer compound B is 100 parts by mass. It is 10,000 parts by mass.
  • the electron transport materials may be used alone or in combination of two or more.
  • Hole-injecting materials and electron-injecting materials are classified into low-molecular compounds and high-molecular compounds, respectively.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymeric compounds include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; conductive polymers containing an aromatic amine structure in the main chain or side chain. Polymers can be mentioned.
  • a hole injection material and/or an electron injection material when included, the contents of the hole injection material and the electron injection material are the total of the polymer compound A and the polymer compound B, respectively. When the content is 100 parts by mass, it is usually 1 to 10,000 parts by mass.
  • the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the hole injection material or electron injection material may be doped with ions.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S/cm to 1 ⁇ 10 3 S/cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the types of ions to be doped into the hole injection material or electron injection material include, for example, an anion in the case of a hole injection material, and a cation in the case of an electron injection material.
  • anion examples include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • cations include lithium ions, sodium ions, potassium ions, and tetrabutylammonium ions.
  • the ions to be doped may be used singly or in combination of two or more.
  • Luminescent materials are classified into low molecular compounds and high molecular compounds.
  • the luminescent material may have a crosslinking group.
  • the low-molecular compound include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and phosphorescent compounds having iridium, platinum, or europium as the central metal.
  • the polymer compound include a polymer compound containing a structural unit represented by formula (Y) and/or a structural unit represented by formula (X).
  • Examples of the phosphorescent compound include the following metal complexes.
  • the content of the luminescent material is usually 1 to 10,000 parts by mass when the total content of polymer compound A and polymer compound B is 100 parts by mass. Department.
  • the luminescent materials may be used alone or in combination of two or more.
  • the antioxidant may be any compound as long as it is soluble in the same solvent as polymer compound A and polymer compound B and does not inhibit luminescence and charge transport.
  • phenolic antioxidants and phosphorus antioxidants may be used. Can be mentioned.
  • the content of the antioxidant is usually 0.001 to 10 parts by mass when polymer compound A and polymer compound B are 100 parts by mass. It is.
  • the antioxidants may be used alone or in combination of two or more.
  • the film can be formed using the composition of this embodiment, for example, by spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, or spray coating. It can be produced by a wet method such as a method, a screen printing method, a flexo printing method, an offset printing method, an inkjet printing method, a capillary coating method, a nozzle coating method, or the like.
  • a wet method such as a method, a screen printing method, a flexo printing method, an offset printing method, an inkjet printing method, a capillary coating method, a nozzle coating method, or the like.
  • the ink solvent is removed as necessary. Examples of methods for removing the ink solvent include natural drying, vacuum drying, and heat drying, and preferably natural drying or vacuum drying.
  • the drying temperature is usually 0°C to 300°C, preferably 5°C to 150°C, more preferably 10°C to 75°C, even more preferably 15°C to 40°C.
  • the viscosity of the composition of the present embodiment may be adjusted depending on the type of wet method, but when applied to a printing method such as an inkjet printing method in which the solution passes through a discharge device, clogging during discharge and flight deflection may occur. Since this is difficult to occur, the temperature is preferably 1 to 50 mPa ⁇ s, more preferably 1 to 20 mPa ⁇ s at 25°C.
  • the film is suitable as a light emitting layer, a hole transport layer or a hole injection layer in a light emitting device. The thickness of the film is typically 1 nm to 1 ⁇ m.
  • a method for manufacturing a light emitting device is a method for manufacturing a light emitting device having an anode, a cathode, and one or more organic layers provided between the anode and the cathode.
  • This is a method for manufacturing a light emitting device, including a step of forming at least one layer using the composition of this embodiment by a wet method.
  • the light emitting element of this embodiment is a light emitting element having at least one organic layer formed by a wet method using the composition of this embodiment.
  • the structure of the light emitting element of this embodiment includes, for example, an electrode consisting of an anode and a cathode, and at least one organic layer formed by a wet method using the composition of this embodiment provided between the electrodes.
  • the wet method includes the wet method described in the section of ⁇ Film> above.
  • the ink solvent is removed as necessary. Examples of the method for removing the ink solvent include the method for removing the ink solvent described in the section ⁇ Membrane> above.
  • the organic layer included in a light emitting element is usually one or more of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer.
  • the at least one organic layer formed by a wet method using the composition of this embodiment is usually one or more layers of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. It is preferably a light emitting layer, a hole transport layer or a hole injection layer, and more preferably a light emitting layer. These layers each include a luminescent material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material.
  • These layers are prepared by dissolving a luminescent material, a hole transporting material, a hole injection material, an electron transporting material, and an electron injection material in the above-mentioned ink solvent, preparing a composition, and using it to prepare the above-mentioned film. It can be formed using the same method as .
  • a light emitting element has a light emitting layer between an anode and a cathode.
  • the light emitting device of this embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer, From the viewpoint of electron injection properties and electron transport properties, it is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • the hole transport layer, electron transport layer, light emitting layer, hole injection layer, and electron injection layer may each include the hole transport material, electron transport material, light emitting material, or hole transport material described above. It can be formed using an injection material, an electron injection material, or the like.
  • the material for the hole transport layer, the material for the electron transport layer, and the material for the emissive layer are based on the solvent used when forming the hole transport layer, the electron transport layer, and the layer adjacent to the emissive layer, respectively, in the production of the light emitting device.
  • the material has a crosslinking group in order to avoid dissolving the material in the solvent. After each layer is formed using a material having a crosslinking group, the layer can be made insolubilized by crosslinking the crosslinking group.
  • the method for forming each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer includes, for example, vacuum Examples include dry methods such as a vapor deposition method, and wet methods. When using a polymer compound, for example, a wet method may be used.
  • each of the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, and cathode may be provided with two or more layers as necessary.
  • a plurality of anodes, hole injection layers, hole transport layers, light emitting layers, electron transport layers, electron injection layers and cathodes are present, they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 2 nm. ⁇ 500 nm, more preferably 5 nm ⁇ 150 nm.
  • the order, number, and thickness of the layers to be laminated may be adjusted in consideration of the brightness life, driving voltage, and luminous efficiency of the light emitting device.
  • the substrate in the light emitting element may be any substrate as long as it is capable of forming an electrode and is not chemically changed during the formation of an organic layer, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferred that the electrode furthest from the substrate be transparent or translucent.
  • the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. conductive compounds; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, and copper.
  • the cathode material examples include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of these; and one of them. Alloys of at least one species selected from the group consisting of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the anode and the cathode may each have a laminated structure of two or more layers.
  • the light emitting device of this embodiment can be manufactured, for example, by sequentially stacking each layer on a substrate. Specifically, an anode is provided on a substrate, a hole injection layer, a hole transport layer, etc. are provided on the anode, a light emitting layer is provided on top of the anode, and an electron transport layer, an electron injection layer, etc. are provided on top of the anode.
  • a light emitting device can be manufactured by providing a layer and further laminating a cathode thereon.
  • Another manufacturing method is to provide a cathode on a substrate, provide layers such as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer on top of the cathode, and then provide an anode on top of the cathode.
  • a light emitting device can be manufactured by laminating the layers.
  • it can be manufactured by joining an anode or an anode side base material in which each layer is laminated on the anode and a cathode or a cathode side base material in which each layer is laminated on the cathode so that they face each other. can.
  • the light emitting element of this embodiment is suitable as a light source for backlight of a liquid crystal display device, a light source for illumination, an organic EL lighting, a display device (for example, an organic EL display and an organic EL television) for computers, televisions, mobile terminals, etc. It can be used for.
  • the number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. .
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 2.0 mL/min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Shimadzu Corporation, trade name: SPD-10Avp was used as a detector.
  • Compound M9 was synthesized according to the method described in JP-A-2011-174062.
  • Compound M10 was synthesized according to the method described in JP-A-2008-106241.
  • Compound M11 was synthesized according to the method described in International Publication No. 2012/133256.
  • Compound M13 was synthesized according to the method described in International Publication No. 2014/157016.
  • Compound M14 was synthesized according to the method described in WO 2008/143272.
  • Compound M15 was synthesized according to the method described in WO 2004/060970.
  • Polymer Compound 2 was synthesized using Compound M4, Compound M1, Compound M5, and Compound M6 according to the method described in International Publication No. 2011/081065.
  • the Mn of polymer compound 2 was 1.6 ⁇ 10 5 and the Mw was 4.9 ⁇ 10 5 .
  • polymer compound 2 consists of structural units derived from compound M4, structural units derived from compound M1, structural units derived from compound M5, and structural units derived from compound M6. It is a copolymer in which the structural units to be derived are constituted in a molar ratio of 36:14:44:6.
  • Polymer Compound 4 was synthesized using Compound M1 and Compound M2 according to the method described in JP-A-2012-36381.
  • the Mn of polymer compound 4 was 8.1 ⁇ 10 4 and the Mw was 3.4 ⁇ 10 5 .
  • polymer compound 4 is a copolymer composed of structural units derived from compound M1 and structural units derived from compound M2 in a molar ratio of 50:50. It is a combination.
  • Polymer Compound 5 was synthesized using Compound M9, Compound M6, Compound M7, and Compound M10 according to the method described in JP-A-2012-144722.
  • the Mn of polymer compound 5 was 7.8 ⁇ 10 4 and the Mw was 2.6 ⁇ 10 5 .
  • polymer compound 5 consists of a structural unit derived from compound M9, a structural unit derived from compound M6, a structural unit derived from compound M7, and a structural unit derived from compound M10.
  • the derived structural units are a copolymer constituted in a molar ratio of 50:30:12.5:7.5.
  • Polymer Compound 7 was prepared using Compound M4, Compound M1, Compound M5, Compound M8, Compound M14, and Compound M15 according to the method described in JP-A No. 2015-35600. Synthesized. Mn of polymer compound 7 was 9.1 ⁇ 10 4 and Mw was 2.3 ⁇ 10 5 . According to the theoretical value determined from the amount of raw materials, polymer compound 7 consists of a structural unit derived from compound M4, a structural unit derived from compound M1, a structural unit derived from compound M5, and a structural unit derived from compound M8. A copolymer composed of a structural unit derived from compound M14, a structural unit derived from compound M15, and a structural unit derived from compound M15 in a molar ratio of 36:14:41:5:3:1. be.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • Polymer compound 2 was dissolved in organic solvent 1 at a concentration of 0.9% by mass based on the amount of organic solvent 1. Using the obtained solution, a film with a thickness of 60 nm was formed by spin coating on the hole transport layer, and the film was heated at 180°C for 10 minutes on a hot plate in a nitrogen gas atmosphere to emit light. formed a layer.
  • EL light emission was observed by applying a voltage to the light emitting element CD1.
  • the luminous efficiency of the light emitting element CD1 at 1000 cd/m 2 was 3.9 cd/A.
  • Example D1 Production and evaluation of light emitting element D1
  • organic solvent 1 organic solvent 1
  • KF-96 1000cs Shin-Etsu Chemical Co., Ltd.
  • organic solvent 1 a polymer compound B having a structural unit represented by formula (2) (in the formula, B 1 is a methyl group and s is 0) and has a degree of polymerization of 300 to 400.
  • Light-emitting element D1 was produced in the same manner as Comparative Example CD1, except that a solvent mixed at a concentration of 10 mass ppm with respect to the amount of organic solvent 1 was used. EL light emission was observed by applying a voltage to the light emitting element D1.
  • the luminous efficiency of the light emitting element D1 at 1000 cd/m 2 was 4.5 cd/A.
  • Example D2 Preparation and evaluation of light-emitting element D2
  • organic solvent 1 formation of light-emitting layer
  • KF-96 1000cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • EL light emission was observed by applying a voltage to the light emitting element D2.
  • the luminous efficiency of the light emitting element D2 at 1000 cd/m 2 was 4.8 cd/A.
  • Example D3 Production and evaluation of light-emitting element D3
  • KF-96 1000cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • Light-emitting element D3 was produced in the same manner as Comparative Example CD1, except that a "solvent mixed with the following at a concentration of 1000 ppm by mass based on the amount of organic solvent 1" was used.
  • EL light emission was observed by applying a voltage to the light emitting element D3.
  • the luminous efficiency of the light emitting element D3 at 1000 cd/m 2 was 4.2 cd/A.
  • Table 2 shows the results of Comparative Example CD1 and Examples D1, D2, and D3.
  • Comparative Example CD2 Fabrication and Evaluation of Light Emitting Device CD2
  • the same procedure as Comparative Example CD1 was performed except that “polymer compound 3” was used instead of “polymer compound 2” in (formation of the light emitting layer) of comparative example CD1.
  • a light emitting device CD2 was produced in the same manner. EL light emission was observed by applying a voltage to the light emitting element CD2.
  • the luminous efficiency of the light emitting element CD2 at 1000 cd/m 2 was 3.8 cd/A.
  • Example CD5 Production and evaluation of light emitting device CD5 Same as Example D3 except that "polymer compound 3" was used instead of “polymer compound 2" in (formation of light emitting layer) of example D3. A light emitting device CD5 was produced in the same manner. EL light emission was observed by applying a voltage to the light emitting element CD5. The luminous efficiency of the light emitting element CD5 at 1000 cd/m 2 was 2.6 cd/A.
  • Example CD9 Preparation and evaluation of light emitting device CD9 Same as Example D3 except that "polymer compound 4" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D3. A light emitting device CD9 was produced in the same manner. EL light emission was observed by applying a voltage to the light emitting element CD9. The luminous efficiency of the light emitting element CD9 at 1000 cd/m 2 was 0.2 cd/A.
  • Comparative Example CD1 formation of light emitting layer
  • organic A light-emitting layer was formed in the same manner as Comparative Example CD1, except that a solution in which polymer compound 6 was dissolved in solvent 2 at a concentration of 0.9% by mass based on the amount of organic solvent 2 was used.
  • the luminous efficiency of the light emitting element CD10 at 1000 cd/m 2 was 1.9 cd/A.
  • Example D4 Production and evaluation of light-emitting element D4 In place of “organic solvent 2" in Comparative Example CD10 (formation of light-emitting layer), "KF-50 100cs (Shin-Etsu Chemical Co., Ltd.), which is a silicone oil, was added to organic solvent 2.
  • Example D5 Production and evaluation of light-emitting element D5
  • "KF-50 100cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • EL light emission was observed by applying a voltage to the light emitting element D5.
  • the luminous efficiency of the light emitting element D5 at 1000 cd/m 2 was 4.3 cd/A.
  • Example D6 Preparation and evaluation of light emitting element D6
  • organic solvent 2 formation of light emitting layer
  • KF-50 100cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • Light-emitting element D6 was produced in the same manner as Comparative Example CD10, except that a "solvent mixed with the following at a concentration of 1000 ppm by mass based on the amount of organic solvent 2" was used.
  • EL light emission was observed by applying a voltage to the light emitting element D6.
  • the luminous efficiency of the light emitting element D6 at 1000 cd/m 2 was 2.2 cd/A.
  • Table 5 shows the results of Comparative Example CD10 and Examples D4, D5, and D6.
  • Example D7 Preparation and evaluation of light emitting element D7
  • organic solvent 2 formation of light emitting layer
  • KF-50 100cs Shin-Etsu Chemical Co., Ltd.
  • EL light emission was observed by applying a voltage to the light emitting element D7.
  • the luminous efficiency of light emitting element D7 at 1000 cd/m2 was 5.6 cd/A.
  • Example D8 Preparation and evaluation of light-emitting element D8
  • "KF-50 100cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • EL light emission was observed by applying a voltage to the light emitting element D8.
  • the luminous efficiency of light emitting element D8 at 1000 cd/m 2 was 6.0 cd/A.
  • Example D9 Production and evaluation of light-emitting element D9
  • "KF-50 100cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • EL light emission was observed by applying a voltage to the light emitting element D9.
  • the luminous efficiency of light emitting element D9 at 1000 cd/m 2 was 3.8 cd/A.
  • Table 6 shows the results of Comparative Example CD11 and Examples D7, D8, and D9.
  • Polymer compound 2, polymer compound 6, and polymer compound 7 correspond to polymer compound A and contain the structural unit represented by formula (1), and KF-96 1000cs and KF-50 100cs are polymer compound A. This corresponds to molecular compound B.
  • the polymer compound 2, the polymer compound 6, and the polymer compound 7 have a structural unit derived from a diamine having an arylene group that is a condensed ring, but the condensed ring generally tends to have a planar structure.
  • the structural unit represented by formula (1) having a condensed ring tends to have a shape in which the intermolecular condensed ring structures overlap, and when such intermolecular interaction occurs, a non-radiative deactivation process is promoted and light emission occurs. Efficiency may be reduced.
  • the present inventors conjectured that by using polymer compound A and polymer compound B together, the intermolecular interaction between polymer compounds A was inhibited, and as a result, the luminous efficiency was improved.
  • polymer compound B was suitable as a material to be used in combination with polymer compound A because it has excellent chemical stability and does not deteriorate the light emitting characteristics of the organic EL element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a composition useful for manufacturing a light-emitting element having excellent light-emitting efficiency. Further provided is a method for manufacturing the light-emitting element formed using the composition. The composition contains a polymer compound A that includes structural units represented by formula (1), a polymer compound B that includes structural units represented by formula (2), and a solvent.

Description

組成物及びそれを用いた発光素子の製造方法Composition and method for producing light emitting device using the same
 本発明は、組成物及びそれを用いた発光素子の製造方法に関する。 The present invention relates to a composition and a method for manufacturing a light emitting device using the same.
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。発光素子の有機層を形成する方法は、大面積素子への製造工程の簡略化、製造コストの低減の観点からは、溶媒を用いた湿式法が有利である。例えば、特許文献1には、湿式法に用いられる組成物として、高分子蛍光体と非イオン系界面活性剤と溶媒とを含有する組成物が記載されている。なお、該高分子蛍光体は後述の式(1)で表される構成単位を含まない高分子化合物である。 Light-emitting devices such as organic electroluminescent devices can be suitably used for display and lighting applications. As a method for forming an organic layer of a light-emitting device, a wet method using a solvent is advantageous from the viewpoint of simplifying the manufacturing process for a large-area device and reducing manufacturing costs. For example, Patent Document 1 describes a composition containing a polymer phosphor, a nonionic surfactant, and a solvent as a composition used in a wet method. Note that the polymer phosphor is a polymer compound that does not contain a structural unit represented by formula (1) described below.
特開2004-315679号公報Japanese Patent Application Publication No. 2004-315679
 しかし、上記組成物を用いて形成された発光素子は、発光効率が必ずしも十分ではなかった。
 そこで、本発明は、発光効率が優れる発光素子の製造に有用な組成物を提供することを目的とする。本発明はまた、当該組成物を用いて形成された発光素子の製造方法を提供することを目的とする。
However, light emitting devices formed using the above compositions did not necessarily have sufficient luminous efficiency.
Therefore, an object of the present invention is to provide a composition useful for manufacturing a light emitting element with excellent luminous efficiency. Another object of the present invention is to provide a method for manufacturing a light emitting device formed using the composition.
 本発明は、以下の[1]~[15]を提供する。
[1] 式(1)で表される構成単位を含む高分子化合物Aと、式(2)で表される構成単位を含む高分子化合物Bと、溶媒とを含有する、組成物。
Figure JPOXMLDOC01-appb-C000006
[式中、
 Arは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するArは、同一であっても異なっていてもよい。
 Ar’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するAr’は、同一であっても異なっていてもよい。
 Zは、縮合環であるアリーレン基又は縮合環である2価の複素環基であり、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000007
[式中、
 B1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、ヒドロキシアルキル基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するB1は、同一であっても異なっていてもよい。
 sは0以上の整数を表す。複数存在するsは、同一であっても異なっていてもよい。]
[2] 前記高分子化合物Aの含有量が、前記溶媒に対して1000質量ppm超えであり、且つ、前記高分子化合物Bの含有量が、前記溶媒に対して0質量ppmを超え1000質量ppm以下である、[1]に記載の組成物。
[3] 前記Arが置換基を有していてもよいアリーレン基であり、且つ、前記Ar’が置換基を有していてもよいアリール基である、[1]又は[2]に記載の組成物。
[4] 前記Arが置換基を有していてもよいフェニレン基であり、且つ、前記Ar’が置換基を有していてもよいフェニル基である、[1]~[3]のいずれかに記載の組成物。
[5] 前記Zが、2環式、3環式、4環式、5環式若しくは6環式のアリーレン基、又は、2環式、3環式、4環式、5環式若しくは6環式の2価の複素環基であり、これらの基は置換基を有していてもよい、[1]~[4]のいずれかに記載の組成物。
[6] 前記Zが、3環式のアリーレン基、又は、3環式の2価の複素環基であり、これらの基は置換基を有していてもよい、[1]~[5]のいずれかに記載の組成物。
[7] 前記B1が、アルキル基又はアリール基であり、これらの基は置換基を有していてもよい、[1]~[6]のいずれかに記載の組成物。
[8] 前記高分子化合物Aが、式(Y)で表される構成単位及び式(X)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を更に含む、[1]~[7]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000008
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000009
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。ArX4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2が複数存在する場合、それらは同一でも異なっていてもよい。RX3が複数存在する場合、それらは同一でも異なっていてもよい。]
[9] 前記高分子化合物Aが、前記式(Y)で表される構成単位として、式(Y-1)で表される構成単位又は式(Y-2)で表される構成単位を含む、[8]に記載の組成物。
Figure JPOXMLDOC01-appb-C000010
[式中、
 RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY1は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 XY1は、-C(RY22-、-C(RY2)=C(RY2)-又は-C(RY22-C(RY22-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[10] 前記溶媒が、芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である、[1]~[9]のいずれかに記載の組成物。
[11] 前記溶媒が2種以上の溶媒を含む、[1]~[10]のいずれかに記載の組成物。
[12] 前記2種以上の溶媒のうちの少なくとも1種が、芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である、[11]に記載の組成物。
[13] 前記2種以上の溶媒のうちの少なくとも2種が、芳香族炭化水素系溶媒及び芳香族エーテル系溶媒からなる群より選ばれる少なくとも2種である、[11]又は[12]に記載の組成物。
[14] 正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、[1]~[13]のいずれかに記載の組成物。
[15] 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた1又は複数の有機層と、を有する発光素子の製造方法であり、
 前記有機層の少なくとも1層を[1]~[14]のいずれかに記載の組成物を用いて湿式法により形成する工程を含む、前記発光素子の製造方法。
The present invention provides the following [1] to [15].
[1] A composition containing a polymer compound A containing a structural unit represented by formula (1), a polymer compound B containing a structural unit represented by formula (2), and a solvent.
Figure JPOXMLDOC01-appb-C000006
[In the formula,
Ar represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ars may be the same or different.
Ar' is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ar's may be the same or different.
Z is a condensed ring arylene group or a condensed ring divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
Figure JPOXMLDOC01-appb-C000007
[In the formula,
B 1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom; The group may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of B 1 's may be the same or different.
s represents an integer greater than or equal to 0. A plurality of s may be the same or different. ]
[2] The content of the polymer compound A is more than 1000 mass ppm relative to the solvent, and the content of the polymer compound B is more than 0 mass ppm and 1000 mass ppm relative to the solvent. The composition according to [1] below.
[3] The method according to [1] or [2], wherein the Ar is an arylene group that may have a substituent, and the Ar′ is an aryl group that may have a substituent. Composition.
[4] Any one of [1] to [3], wherein the Ar is a phenylene group that may have a substituent, and the Ar' is a phenyl group that may have a substituent. The composition described in .
[5] The above Z is a bicyclic, tricyclic, tetracyclic, pentacyclic or hexacyclic arylene group, or a bicyclic, tricyclic, tetracyclic, pentacyclic or hexacyclic arylene group. The composition according to any one of [1] to [4], which is a divalent heterocyclic group of the formula, and these groups may have a substituent.
[6] Z is a tricyclic arylene group or a tricyclic divalent heterocyclic group, and these groups may have a substituent, [1] to [5] The composition according to any one of.
[7] The composition according to any one of [1] to [6], wherein B 1 is an alkyl group or an aryl group, and these groups may have a substituent.
[8] The polymer compound A further includes at least one structural unit selected from the group consisting of a structural unit represented by formula (Y) and a structural unit represented by formula (X), [1] The composition according to any one of [7] to [7].
Figure JPOXMLDOC01-appb-C000008
[In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; The group may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
Figure JPOXMLDOC01-appb-C000009
[In the formula,
a X1 and a X2 each independently represent an integer of 0 or more.
Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When there is a plurality of Ar x2 , they may be the same or different. When a plurality of Ar X4 's exist, they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When a plurality of R x2s exist, they may be the same or different. When a plurality of R X3s exist, they may be the same or different. ]
[9] The polymer compound A includes a structural unit represented by formula (Y-1) or a structural unit represented by formula (Y-2) as the structural unit represented by formula (Y). , the composition according to [8].
Figure JPOXMLDOC01-appb-C000010
[In the formula,
R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R Y1s may be the same or different, and may be bonded to each other to form a ring with the carbon atoms to which they are bonded.
X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )-, or -C(R Y2 ) 2 -C(R Y2 ) 2 -. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R Y2s may be the same or different, and may be bonded to each other to form a ring with the carbon atoms to which they are bonded. ]
[10] The composition according to any one of [1] to [9], wherein the solvent is an aromatic hydrocarbon solvent or an aromatic ether solvent.
[11] The composition according to any one of [1] to [10], wherein the solvent contains two or more types of solvents.
[12] The composition according to [11], wherein at least one of the two or more solvents is an aromatic hydrocarbon solvent or an aromatic ether solvent.
[13] According to [11] or [12], at least two of the two or more solvents are at least two selected from the group consisting of aromatic hydrocarbon solvents and aromatic ether solvents. Composition of.
[14] Any of [1] to [13], further containing at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, and an antioxidant. The composition according to crab.
[15] A method for manufacturing a light-emitting element comprising an anode, a cathode, and one or more organic layers provided between the anode and the cathode,
The method for manufacturing the light-emitting device, comprising the step of forming at least one of the organic layers by a wet method using the composition according to any one of [1] to [14].
 本発明によれば、発光効率が優れる発光素子の製造に有用な組成物を提供することができる。また本発明によれば、当該組成物を用いて形成された発光素子の製造方法を提供することができる。 According to the present invention, a composition useful for manufacturing a light emitting element with excellent luminous efficiency can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a light emitting element formed using the composition.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Explanation of common terms>
Terms commonly used herein have the following meanings unless otherwise specified.
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、高分子化合物を発光素子に用いた場合、発光素子の発光特性が優れるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは、高分子化合物の主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。高分子化合物中に2個以上存在する構成単位は、一般に、「繰り返し単位」とも呼ばれる。
Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, i-Pr represents an isopropyl group, and t-Bu represents a tert-butyl group.
The hydrogen atom may be a deuterium atom or a light hydrogen atom.
In the formula representing a metal complex, a solid line representing a bond with the central metal means an ionic bond, a covalent bond, or a coordinate bond.
"Low molecular compound" means a compound that has no molecular weight distribution and has a molecular weight of 1×10 4 or less.
The term "polymer compound" means a polymer having a molecular weight distribution and a number average molecular weight in terms of polystyrene of 1×10 3 to 1×10 8 .
The polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms.
The terminal group of the polymer compound is preferably a stable group because when the polymer compound is used in a light emitting device, the light emitting device has excellent light emitting characteristics. The terminal group of the polymer compound is preferably a group that is conjugated to the main chain of the polymer compound, such as an aryl group or a group that is conjugated to the main chain of the polymer compound via a carbon-carbon bond. valent heterocyclic groups.
"Structural unit" means one or more units present in a polymer compound. A structural unit that exists two or more in a polymer compound is generally also called a "repeat unit."
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~20であり、更に好ましくは1~10である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20であり、更に好ましくは4~10である。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基及び6-エチルオキシヘキシル基)が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20であり、更に好ましくは4~10である。
 シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20であり、更に好ましくは6~10である。
 アリール基は、置換基を有していてもよい。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkyl group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkyl group, not including the number of carbon atoms in substituents, is usually 1 to 50, preferably 1 to 30, more preferably 1 to 20, and even more preferably 1. ~10. The number of carbon atoms in the branched alkyl group, not including the number of carbon atoms in the substituents, is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, and still more preferably 4 to 50. It is 10.
The alkyl group may have a substituent. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, and heptyl group. group, octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group, dodecyl group, and hydrogen atoms in these groups A group in which part or all of 4-methylphenyl)propyl group, 3-(3,5-di-hexylphenyl)propyl group and 6-ethyloxyhexyl group).
The number of carbon atoms in the "cycloalkyl group" is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, and still more preferably 4. ~10.
The cycloalkyl group may have a substituent. Examples of the cycloalkyl group include a cyclohexyl group, a methylcyclohexyl group, an ethylcyclohexyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with a substituent.
"Aryl group" means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms in the aryl group, not including the number of carbon atoms in substituents, is usually 6 to 60, preferably 6 to 40, more preferably 6 to 20, and still more preferably 6 to 10. be.
The aryl group may have a substituent. Examples of the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents. Examples include substituted groups.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~20であり、より好ましくは1~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは4~20であり、より好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20であり、更に好ましくは6~10である。
 アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkoxy group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkoxy group, not including the number of carbon atoms in substituents, is usually 1 to 50, preferably 1 to 20, and more preferably 1 to 10. The number of carbon atoms in the branched alkoxy group, not including the number of carbon atoms in substituents, is usually 3 to 50, preferably 4 to 20, more preferably 4 to 10.
The alkoxy group may have a substituent. Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
The number of carbon atoms in the "cycloalkoxy group", not including the number of carbon atoms in substituents, is usually 3 to 40, preferably 4 to 10.
The cycloalkoxy group may have a substituent. Examples of the cycloalkoxy group include a cyclohexyloxy group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
The number of carbon atoms in the "aryloxy group" is usually 6 to 60, preferably 6 to 40, more preferably 6 to 20, and still more preferably 6. ~10.
The aryloxy group may have a substituent. Examples of the aryloxy group include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1-pyrenyloxy group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents.
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
A "p-valent heterocyclic group" (p represents an integer of 1 or more) means a heterocyclic compound in which p hydrogen atoms are directly bonded to carbon atoms or heteroatoms constituting the ring. means the remaining atomic group excluding the hydrogen atom. Among p-valent heterocyclic groups, it is an atomic group remaining after removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from an aromatic heterocyclic compound. A "p-valent aromatic heterocyclic group" is preferred.
"Aromatic heterocyclic compounds" are heterocyclic compounds such as oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc. Compounds in which the ring itself is aromatic, and heterocycles such as phenoxazine, phenothiazine, dibenzoborole, dibenzosilole, benzopyran, etc., have an aromatic ring condensed to the heterocycle even if they do not themselves exhibit aromaticity. means a compound.
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。1価の複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 1価の複素環基は、置換基を有していてもよい。1価の複素環基はとしては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the monovalent heterocyclic group, not including the number of carbon atoms in substituents, is usually 1 to 60, preferably 2 to 40, and more preferably 3 to 20. The number of heteroatoms in the monovalent heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
The monovalent heterocyclic group may have a substituent. Examples of monovalent heterocyclic groups include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and some of the hydrogen atoms in these groups. Or a group completely substituted with a substituent can be mentioned.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 "Halogen atom" refers to a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、これらの基は更に置換基を有していてもよい。
 置換アミノ基は、置換基を更に有していてもよい。置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基、ジアリールアミノ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 アミノ基及び置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "amino group" may have a substituent, and a substituted amino group is preferable. The substituent that the amino group has is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
The substituted amino group may further have a substituent. Examples of substituted amino groups include dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
Examples of amino groups and substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl)amino group, bis(3,5- Examples include di-tert-butylphenyl)amino groups, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~50であり、好ましくは2~20であり、より好ましくは2~10である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは4~20であり、より好ましくは4~10である。 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20であり、より好ましくは4~10である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよい。アルケニル基及びシクロアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkenyl group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkenyl group, not including the number of carbon atoms in substituents, is usually 2 to 50, preferably 2 to 20, and more preferably 2 to 10. The number of carbon atoms in the branched alkenyl group, not including the number of carbon atoms in substituents, is usually 3 to 50, preferably 4 to 20, and more preferably 4 to 10. The number of carbon atoms in the "cycloalkenyl group", not including the number of carbon atoms in substituents, is usually 3 to 30, preferably 4 to 20, and more preferably 4 to 10.
The alkenyl group and cycloalkenyl group may have a substituent. Examples of the alkenyl group and cycloalkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, Examples include -hexenyl group, 7-octenyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~50であり、好ましくは3~20であり、より好ましくは3~10である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20であり、より好ましくは4~10である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~50であり、好ましくは5~20であり、より好ましくは6~10である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよい。アルキニル基及びシクロアルキニル基としは、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkynyl group" may be either straight chain or branched. The number of carbon atoms in the alkynyl group, excluding carbon atoms of substituents, is usually 2 to 50, preferably 3 to 20, and more preferably 3 to 10. The number of carbon atoms in the branched alkynyl group, excluding carbon atoms of substituents, is usually 4 to 30, preferably 4 to 20, and more preferably 4 to 10.
The number of carbon atoms in the "cycloalkynyl group", excluding carbon atoms of substituents, is usually 4 to 50, preferably 5 to 20, and more preferably 6 to 10.
The alkynyl group and cycloalkynyl group may have a substituent. Examples of the alkynyl group and cycloalkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 5 Examples include -hexynyl groups and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 アリーレン基は、置換基を有していてもよい。アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRaは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
"Arylene group" means an atomic group remaining after removing two hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon. The number of carbon atoms in the arylene group, not including the number of carbon atoms in substituents, is usually 6 to 60, preferably 6 to 40, and more preferably 6 to 20.
The arylene group may have a substituent. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylene diyl group, a chrysenediyl group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents, and groups represented by formulas (A-1) to (A-20) are preferred. The arylene group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[In the formula, R and R a are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine group. represents an atom, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R's may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R a 's may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。2価の複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 2価の複素環基は、置換基を有していてもよい。2価の複素環基としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、ジヒドロフェナジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基、及び、該基における水素原子の一部又は全部が置換基で置換された2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[式中、R及びRaは、前記と同じ意味を表す。]
The number of carbon atoms in the divalent heterocyclic group, not including the number of carbon atoms in substituents, is usually 1 to 60, preferably 2 to 40, more preferably 3 to 20. The number of heteroatoms in the divalent heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
The divalent heterocyclic group may have a substituent. Examples of divalent heterocyclic groups include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, dihydrophenazine, furan, and thiophene. , a divalent group obtained by removing two hydrogen atoms directly bonded to a carbon atom or a heteroatom constituting a ring from azole, diazole, or triazole, and a portion of the hydrogen atoms in the group. or a divalent group entirely substituted with a substituent, preferably groups represented by formulas (AA-1) to (AA-34). The divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[In the formula, R and R a have the same meanings as above. ]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基としては、好ましくは、式(XL-1)~式(XL-19)のいずれかで表される基である。架橋基は、置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000022
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnXLは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
A "crosslinking group" is a group that can form a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet ray irradiation, visible light irradiation, infrared ray irradiation, radical reaction, etc. The crosslinking group is preferably a group represented by any one of formulas (XL-1) to (XL-19). The crosslinking group may have a substituent.
Figure JPOXMLDOC01-appb-C000022
[In the formula, R XL represents a methylene group, an oxygen atom, or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL 's exist, they may be the same or different. A plurality of nXLs may be the same or different. *1 represents the bonding position. These crosslinking groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基及びシクロアルキニル基が挙げられる。置換基は架橋基であってもよい。なお、置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。 Examples of the "substituent" include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Examples include alkenyl groups, cycloalkenyl groups, alkynyl groups and cycloalkynyl groups. The substituent may be a bridging group. In addition, when a plurality of substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded, but it is preferable that they do not form a ring.
 <本実施形態の組成物>
 本実施形態の組成物は、式(1)で表される構成単位を含む高分子化合物Aと、式(2)で表される構成単位を含む高分子化合物Bと、溶媒とを含有する、組成物である。
 本実施形態の組成物において、高分子化合物Aと、高分子化合物Bと、溶媒とはそれぞれ異なる成分である。
 本実施形態の組成物は、高分子化合物A、高分子化合物B及び溶媒を、それぞれ、1種のみ含有していてもよく、2種以上含有していてもよい。
 本実施形態の組成物は、例えば、発光素子用組成物として好適に用いることができる。 本実施形態の組成物を用いて形成された発光素子(以下、「本実施形態の発光素子」ともいう。)は、発光効率がより優れる。
<Composition of this embodiment>
The composition of the present embodiment contains a polymer compound A containing a structural unit represented by formula (1), a polymer compound B containing a structural unit represented by formula (2), and a solvent. It is a composition.
In the composition of this embodiment, the polymer compound A, the polymer compound B, and the solvent are different components.
The composition of this embodiment may contain only one type of each of polymer compound A, polymer compound B, and solvent, or may contain two or more types of polymer compound A, polymer compound B, and solvent.
The composition of this embodiment can be suitably used, for example, as a composition for a light emitting device. A light-emitting element formed using the composition of this embodiment (hereinafter also referred to as "light-emitting element of this embodiment") has better luminous efficiency.
 本実施形態の組成物において、高分子化合物A、高分子化合物B及び溶媒の合計の含有量は、組成物(例えば、発光素子用組成物であり、以下、同様である。)としての機能が奏される範囲であればよい。本実施形態の組成物において、高分子化合物A、高分子化合物B及び溶媒の合計の含有量は、例えば、組成物の全量基準で1~100質量%であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100質量%であり、より好ましくは30~100質量%であり、更に好ましくは50~100質量%であり、特に好ましくは70~100質量%であり、とりわけ好ましくは90~100質量%である。 In the composition of this embodiment, the total content of polymer compound A, polymer compound B, and solvent is such that the function as a composition (for example, a composition for a light emitting device, and the same applies hereinafter) is determined. It may be within the range that can be played. In the composition of the present embodiment, the total content of the polymer compound A, the polymer compound B, and the solvent may be, for example, 1 to 100% by mass based on the total amount of the composition. Since the luminous efficiency of the device is better, the amount is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. The content is particularly preferably 90 to 100% by mass.
 本実施形態の組成物において、高分子化合物Aの含有量は、組成物としての機能が奏される範囲であればよい。本実施形態の組成物において、高分子化合物Aの含有量は、溶媒の含有量に対して、例えば、0質量ppm超えであってもよく、10質量ppm以上であってもよく、100質量ppm以上であってもよく、1000質量ppm以上であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは1000質量ppm超えであり、より好ましくは1000質量ppm超え100質量%以下であり、更に好ましくは1000質量ppm超え50質量%以下であり、特に好ましくは1000質量ppm超え30質量%以下であり、とりわけ好ましくは3000質量ppm以上10質量%以下であり、一層好ましくは5000質量ppm以上5質量%以下であり、殊更に好ましくは7000質量ppm以上2質量%以下である。 In the composition of this embodiment, the content of the polymer compound A may be within a range that allows the composition to function as a composition. In the composition of the present embodiment, the content of the polymer compound A may be, for example, more than 0 mass ppm, 10 mass ppm or more, or 100 mass ppm with respect to the content of the solvent. It may be more than 1000 mass ppm, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably more than 1000 mass ppm, more preferably more than 1000 mass ppm 100% by mass. or less, more preferably more than 1000 mass ppm and 50 mass% or less, particularly preferably more than 1000 mass ppm and 30 mass% or less, particularly preferably 3000 mass ppm or more and 10 mass% or less, even more preferably 5000 mass ppm or less The content is preferably 7000 ppm or more and 2% by mass or less, particularly preferably 7000 ppm or more and 2% by mass or less.
 本実施形態の組成物において、高分子化合物Bの含有量は、組成物としての機能が奏される範囲であればよい。本実施形態の組成物において、高分子化合物Bの含有量は、溶媒の含有量に対して、例えば、0質量ppm超え100質量%以下であってもよく、0質量ppm超え50質量%以下であってもよく、0質量ppm超え10質量%以下であってもよく、0質量ppm超え1質量%以下であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは0質量ppm超え5000質量ppm以下であり、より好ましくは0質量ppm超え1000質量ppm以下であり、更に好ましくは0.01質量ppm以上1000質量ppm以下であり、本実施形態の発光素子の発光効率がより一層優れるので、好ましくは0.1質量ppm以上1000質量ppm以下であり、より好ましくは0.5質量ppm以上1000質量ppm以下であり、更に好ましくは1質量ppm以上1000質量ppm未満であり、特に好ましくは5質量ppm以上500質量ppm以下であり、とりわけ好ましくは10質量ppm以上100質量ppm以下である。 In the composition of the present embodiment, the content of the polymer compound B may be within a range that allows the composition to function as a composition. In the composition of the present embodiment, the content of the polymer compound B may be, for example, more than 0 mass ppm and 100 mass% or less, or more than 0 mass ppm and 50 mass% or less, with respect to the content of the solvent. It may be more than 0 mass ppm and 10 mass % or less, and it may be more than 0 mass ppm and 1 mass % or less, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 0 mass ppm. It is more than 0 mass ppm and 5000 mass ppm or less, more preferably more than 0 mass ppm and 1000 mass ppm or less, and even more preferably 0.01 mass ppm or more and 1000 mass ppm or less, and the luminous efficiency of the light emitting element of this embodiment is Since it is even better, it is preferably 0.1 mass ppm or more and 1000 mass ppm or less, more preferably 0.5 mass ppm or more and 1000 mass ppm or less, and even more preferably 1 mass ppm or more and less than 1000 mass ppm. Particularly preferably, the content is 5 ppm or more and 500 ppm or less, particularly preferably 10 ppm or more and 100 ppm or less.
 本実施形態の組成物において、高分子化合物Aの含有量は、本実施形態の発光素子の発光効率がより優れるので、高分子化合物Bの含有量よりも多いことが好ましい。本実施形態の組成物において、本実施形態の発光素子の発光効率がより優れるので、溶媒の含有量は、高分子化合物Aの含有量よりも多いことが好ましい。本実施形態の組成物において、本実施形態の発光素子の発光効率がより優れるので、高分子化合物Aの含有量は、高分子化合物Bの含有量よりも多く、且つ、溶媒の含有量は、高分子化合物Aの含有量よりも多いことが好ましい。 In the composition of this embodiment, the content of polymer compound A is preferably greater than the content of polymer compound B, since the luminous efficiency of the light emitting element of this embodiment is more excellent. In the composition of this embodiment, the content of the solvent is preferably greater than the content of polymer compound A, since the luminous efficiency of the light emitting element of this embodiment is more excellent. In the composition of this embodiment, since the luminous efficiency of the light emitting element of this embodiment is more excellent, the content of polymer compound A is greater than the content of polymer compound B, and the content of the solvent is It is preferable that the content is higher than the content of polymer compound A.
 [高分子化合物A]
 高分子化合物Aは、式(1)で表される構成単位を含む高分子化合物である。高分子化合物Aは、式(2)で表される構成単位を含まない高分子化合物であることが好ましい。
[Polymer compound A]
The polymer compound A is a polymer compound containing a structural unit represented by formula (1). It is preferable that the polymer compound A is a polymer compound that does not contain the structural unit represented by formula (2).
 (式(1)で表される構成単位)
 Arは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、置換基を有していてもよいアリーレン基である。
 Arにおけるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、後述のArY1で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 Arで表される基が有してもよい置換基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
(Constituent unit represented by formula (1))
Ar is preferably an arylene group which may have a substituent, since the light emitting element of this embodiment has better luminous efficiency.
Examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar are respectively the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described below.
The examples and preferred ranges of the substituents that the group represented by Ar may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 described below may have, respectively.
 Ar’は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 Ar’におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 Ar’で表される基が有してもよい置換基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
Ar' is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably an aryl group or a monovalent heterocyclic group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. It is a heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ar' are the examples of the aryl group and monovalent heterocyclic group in the substituent that the group represented by Ar Y1 described below may have, respectively. and the same as the preferred range.
The examples and preferred ranges of the substituents that the group represented by Ar' may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 described below may have, respectively. .
 本実施形態の発光素子の発光効率がより優れるので、Arが置換基を有していてもよいアリーレン基であり、且つ、Ar’が置換基を有していてもよいアリール基であることが好ましく、Arが置換基を有していてもよいフェニレン基であり、且つ、Ar’が置換基を有していてもよいフェニル基であることがより好ましい。 Since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferable that Ar be an arylene group which may have a substituent and Ar' be an aryl group which may have a substituent. Preferably, Ar is a phenylene group which may have a substituent, and more preferably Ar' is a phenyl group which may have a substituent.
 Zは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、置換基を有していてもよい、縮合環であるアリーレン基である。縮合環であるアリーレン基としては、縮合環を構成する少なくとも一つの環が、芳香族炭化水素環であればよい。 Z is preferably an arylene group which is a condensed ring and which may have a substituent since the light emitting element of this embodiment has better luminous efficiency. As for the arylene group which is a condensed ring, at least one ring constituting the condensed ring may be an aromatic hydrocarbon ring.
 縮合環であるアリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常7~60であり、好ましくは8~40であり、より好ましくは9~30であり、更に好ましくは10~20である。
 縮合環であるアリーレン基としては、例えば、縮合環である芳香族炭化水素(例えば、ナフタレン、インデン、ナフトキノン、インデノン及びテトラロン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、アントラキノン、フェナントキノン及びフルオレノン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ピレン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する炭素原子に直接結合する水素原子2個を除いた基(以下、nZ1環式(nZ1は2以上の整数を表す。)の芳香族炭化水素から、環を構成する炭素原子に直接結合する水素原子2個を除いた基を「nZ1環式のアリーレン基」ともいう。)が挙げられ、該基は置換基を有していてもよい。縮合環であるアリーレン基は、前述の基が複数結合した基を含む。
 縮合環であるアリーレン基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、2環式、3環式、4環式、5環式又は6環式のアリーレン基であり、より好ましくは2環式、3環式、4環式又は5環式のアリーレン基であり、2環式又は3環式のアリーレン基であり、特に好ましくは3環式のアリーレン基であり、これらの基は置換基を有していてもよい。
 縮合環であるアリーレン基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基又はクリセンジイル基であり、より好ましくは、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基又はフルオレンジイル基であり、更に好ましくは、式(A-4)~式(A-9)、式(A-11)、式(A-12)、式(A-19)又は式(A-20)で表される基であり、特に好ましくは、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
The number of carbon atoms in the arylene group, which is a condensed ring, is usually 7 to 60, preferably 8 to 40, more preferably 9 to 30, and still more preferably It is 10-20.
Examples of the arylene group that is a condensed ring include aromatic hydrocarbons that are condensed rings (for example, bicyclic aromatic hydrocarbons such as naphthalene, indene, naphthoquinone, indenone, and tetralone; anthracene, phenanthrene, dihydrophenanthrene, and fluorene). , anthraquinone, phenanthquinone and fluorenone; tetracyclic aromatic hydrocarbons such as benzanthracene, benzophenanthrene, benzofluorene, pyrene and fluoranthene; dibenzoanthracene, dibenzophenanthrene, dibenzofluorene , pentacyclic aromatic hydrocarbons such as indenofluorene, perylene and benzofluoranthene; hexacyclic aromatic hydrocarbons such as spirobifluorene; and benzospirobifluorene and acenaphthofluoranthene. A group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring (hereinafter referred to as n Z1 cyclic (n Z1 represents an integer of 2 or more) A group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon of It may have. The arylene group, which is a condensed ring, includes a group in which a plurality of the above-mentioned groups are bonded.
The arylene group, which is a condensed ring, is preferably a bicyclic, tricyclic, tetracyclic, pentacyclic, or hexacyclic arylene group, since the luminous efficiency of the light emitting device of this embodiment is more excellent. More preferred are bicyclic, tricyclic, tetracyclic or pentacyclic arylene groups; bicyclic or tricyclic arylene groups; particularly preferred are tricyclic arylene groups; The group may have a substituent.
The arylene group, which is a condensed ring, is preferably a naphthalenediyl group, anthracenediyl group, phenanthrenediyl group, dihydrophenanthrenediyl group, naphthacenediyl group, fluorenediyl group, since the luminous efficiency of the light emitting element of this embodiment is further improved. A pyrenediyl group, a perylenediyl group, or a chrysendiyl group, more preferably a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, or a fluorenediyl group, still more preferably a formula (A-4) to A group represented by formula (A-9), formula (A-11), formula (A-12), formula (A-19) or formula (A-20), particularly preferably a group represented by formula (A- 7), a group represented by formula (A-9) or formula (A-19), and these groups may have a substituent.
 縮合環である2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは5~40であり、より好ましくは8~30であり、更に好ましくは10~20である。縮合環である2価の複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。また、縮合環である2価の複素環基としては、縮合環を構成する少なくとも一つの環が、複素環であればよい。
 縮合環である2価の複素環基としては、例えば、縮合環である複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンジオキシド、ベンゾチオフェンオキシド及びベンゾピラノン等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド、ジベンゾピラノン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アクリドン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン及びベンゾナフトチオフェン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール及びジアザインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール及びジベンゾインデノカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子2個を除いた基(以下、nZ2環式(nZ2は2以上の整数を表す。)の複素環式化合物から、環を構成する原子に直接結合する水素原子2個を除いた基を「nZ2環式の2価の複素環基」ともいう。)が挙げられ、該基は置換基を有していてもよい。縮合環である2価の複素環基は、前述の基が複数結合した基を含む。
 縮合環である2価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、2環式、3環式、4環式、5環式又は6環式の2価の複素環基であり、より好ましくは2環式、3環式、4環式又は5環式の2価の複素環基であり、2環式又は3環式の2価の複素環基であり、特に好ましくは3環式の2価の複素環基であり、これらの基は置換基を有していてもよい。
 縮合環である2価の複素環基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン又はジアザフェナントレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン又は9,10-ジヒドロアクリジンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、式(AA-7)~式(AA-22)で表される基であり、特に好ましくは、式(AA-10)~式(AA-22)で表される基であり、これらの基は置換基を有していてもよい。
The number of carbon atoms of the divalent heterocyclic group that is a condensed ring is usually 2 to 60, preferably 5 to 40, and more preferably 8 to 30, not including the number of carbon atoms of substituents. , more preferably 10 to 20. The number of heteroatoms of the divalent heterocyclic group that is a condensed ring is usually 1 to 30, preferably 1 to 10, and more preferably 1 to 5, not including the number of heteroatoms of substituents. , more preferably 1 to 3. Furthermore, the divalent heterocyclic group that is a condensed ring may be any type as long as at least one ring constituting the condensed ring is a heterocycle.
Examples of divalent heterocyclic groups that are condensed rings include heterocyclic compounds that are condensed rings (e.g., azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole). , bicyclic heterocyclic compounds such as benzothiadiazole, benzotriazole, benzothiophene dioxide, benzothiophene oxide and benzopyranone; dibenzofuran, dibenzothiophene, dibenzothiophene dioxide, dibenzothiophene oxide, dibenzopyranone, dibenzoborole, Dibenzosilole, dibenzophosphole, dibenzoselenophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, acridone, fenazaborin, phenophosfazine, phenoselenazine , phenazacillin, azaanthracene, diazaanthracene, azaphenanthrene and diazaphenanthrene; tricyclic heterocyclic compounds such as hexaazatriphenylene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran and benzonaphthothiophene 4-ring heterocyclic compounds such as dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole and diazaindenocarbazole; Formula compounds; hexacyclic heterocyclic compounds such as carbazolocarbazole, benzindolocarbazole and benziindenocarbazole; and heptacyclic heterocyclic compounds such as dibenzindolocarbazole and dibenzindenocarbazole. ) from which two hydrogen atoms directly bonded to the atoms constituting the ring have been removed (hereinafter, a heterocyclic compound of n Z2 cyclic (n Z2 represents an integer of 2 or more)) A group in which two hydrogen atoms directly bonded to the atom are removed is also referred to as an "n Z2 cyclic divalent heterocyclic group"), and the group may have a substituent. The divalent heterocyclic group which is a condensed ring includes a group in which a plurality of the above-mentioned groups are bonded.
The divalent heterocyclic group that is a condensed ring is preferably a bicyclic, tricyclic, tetracyclic, pentacyclic, or hexacyclic divalent heterocyclic group, since the luminous efficiency of the light emitting device of this embodiment is better. a valent heterocyclic group, more preferably a bicyclic, tricyclic, tetracyclic or pentacyclic divalent heterocyclic group; a bicyclic or tricyclic divalent heterocyclic group; A tricyclic divalent heterocyclic group is particularly preferred, and these groups may have a substituent.
The divalent heterocyclic group which is a condensed ring is preferably azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, or phenothiazine, since the light emitting device of this embodiment has better luminous efficiency. , 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene or diazaphenanthrene, from which two hydrogen atoms directly bonded to atoms constituting the ring are removed, More preferably, from azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine or 9,10-dihydroacridine, two hydrogen atoms directly bonded to atoms constituting the ring are removed. A group, more preferably a group represented by formula (AA-7) to formula (AA-22), particularly preferably a group represented by formula (AA-10) to formula (AA-22) These groups may have a substituent.
 Zで表される基が有してもよい置換基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 The examples and preferred ranges of substituents that the group represented by Z may have are the same as the examples and preferred ranges of substituents that the group represented by Ar Y1 described below may have.
 式(1)で表される構成単位は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(X-4)~式(X-7)で表される構成単位であり、より好ましくは、式(X-4)~式(X-6)で表される構成単位であり、更に好ましくは、式(X-4)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRX4は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRX5は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
The structural unit represented by formula (1) is preferably a structural unit represented by formula (X-4) to formula (X-7), since the light emitting element of this embodiment has better luminous efficiency. , more preferably structural units represented by formulas (X-4) to formula (X-6), still more preferably structural units represented by formula (X-4).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[In the formula, R X4 and R X5 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or It represents a fluorine atom, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R X4s may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R X5s may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
 RX4及びRX5は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 RX4及びRX5におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RX4及びRX5が有してもよい置換基の例及び好ましい範囲は、それぞれ、後述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
R X4 and R X5 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. or a substituted amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, particularly preferably a hydrogen atom, an alkyl group, or a cycloalkyl group or an aryl group, and these groups may further have a substituent.
Examples and preferred ranges of the aryl group , monovalent heterocyclic group, and substituted amino group in R X4 and R Examples and preferred ranges of the valent heterocyclic group and substituted amino group are the same.
Examples and preferred ranges of substituents that R X4 and R X5 may have are respectively the same as examples and preferred ranges of substituents that the group represented by Ar Y1 described below may have.
 式(1)で表される構成単位としては、例えば、式(X1-7)~式(X1-19)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Examples of the structural unit represented by formula (1) include structural units represented by formulas (X1-7) to (X1-19).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 高分子化合物Aに含まれる式(1)で表される構成単位の含有量は、高分子化合物Aとしての機能が奏される範囲であればよい。高分子化合物Aに含まれる式(1)で表される構成単位の含有量は、高分子化合物Aに含まれる構成単位の合計の含有量に対して、例えば、0.01~100モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.05~90モル%であり、より好ましくは0.1~70モル%であり、更に好ましくは0.2~50モル%であり、特に好ましくは0.5~30モル%であり、とりわけ好ましくは1~10モル%である。式(1)で表される構成単位は、高分子化合物A中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The content of the structural unit represented by formula (1) contained in the polymer compound A may be within a range that allows the polymer compound A to function. The content of the structural unit represented by formula (1) contained in the polymer compound A is, for example, 0.01 to 100 mol% with respect to the total content of the structural units contained in the polymer compound A. The amount is preferably 0.05 to 90 mol%, more preferably 0.1 to 70 mol%, and still more preferably 0.2 to 50 mol%, since the luminous efficiency of the light emitting element of this embodiment is better. %, particularly preferably from 0.5 to 30 mol %, particularly preferably from 1 to 10 mol %. The polymer compound A may contain only one type of structural unit represented by formula (1), or may contain two or more types of structural units.
 (その他の構成単位)
 高分子化合物Aは、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を更に含むことが好ましい。即ち、高分子化合物Aは、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位と、式(1)で表される構成単位とを含む高分子化合物であることが好ましい。
 高分子化合物Aが、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位と、式(1)で表される構成単位とを含む場合、式(1)で表される構成単位と、式(X)で表される構成単位及び式(Y)で表される構成単位とは異なることが好ましい。
高分子化合物Aは、本実施形態の発光素子の発光効率がより優れるので、式(Y)で表される構成単位を更に含むことが好ましい。
 高分子化合物Aは、高分子化合物Aの正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位を更に含むことが好ましい。 高分子化合物Aは、高分子化合物Aの正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率が更に優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位を更に含むことが好ましい。
(Other constituent units)
The polymer compound A is at least one type selected from the group consisting of the structural unit represented by formula (X) and the structural unit represented by formula (Y), since the light emitting element of this embodiment has better luminous efficiency. It is preferable to further include a structural unit. That is, the polymer compound A has at least one kind of structural unit selected from the group consisting of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y), and the structural unit represented by the formula (1). It is preferable that it is a polymeric compound containing a structural unit.
The polymer compound A includes at least one structural unit selected from the group consisting of the structural unit represented by formula (X) and the structural unit represented by formula (Y), and the structure represented by formula (1). unit, it is preferable that the structural unit represented by formula (1) is different from the structural unit represented by formula (X) and the structural unit represented by formula (Y).
The polymer compound A preferably further contains a structural unit represented by the formula (Y), since the light emitting element of this embodiment has more excellent luminous efficiency.
It is preferable that the polymer compound A further contains a structural unit represented by formula (X), since the hole transporting property of the polymer compound A is excellent and the luminous efficiency of the light emitting element of this embodiment is even more excellent. . The polymer compound A has excellent hole transport properties and the luminous efficiency of the light emitting element of this embodiment is even better. It is preferable to further include the structural unit represented.
 高分子化合物Aが式(Y)で表される構成単位を含む場合、式(Y)で表される構成単位の含有量は、高分子化合物Aとしての機能が奏される範囲であればよい。高分子化合物Aが式(Y)で表される構成単位を含む場合、式(Y)で表される構成単位の含有量は、高分子化合物Aに含まれる構成単位の合計の含有量に対して、例えば、1~99.99モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~99.95モル%であり、より好ましくは30~99.9モル%であり、更に好ましくは50~99.8モル%であり、特に好ましくは70~99.5モル%であり、とりわけ好ましくは90~99モル%である。
 式(Y)で表される構成単位は、高分子化合物A中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
When polymer compound A contains a structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) may be within a range that allows the polymer compound A to function. . When polymer compound A contains a structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) is relative to the total content of structural units contained in polymer compound A. For example, it is 1 to 99.99 mol%, and since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 10 to 99.95 mol%, more preferably 30 to 99.9 mol%. It is more preferably 50 to 99.8 mol%, particularly preferably 70 to 99.5 mol%, particularly preferably 90 to 99 mol%.
The polymer compound A may contain only one type of structural unit represented by formula (Y), or may contain two or more types of structural units.
 高分子化合物Aが式(X)で表される構成単位を含む場合、式(X)で表される構成単位の含有量は、高分子化合物Aとしての機能が奏される範囲であればよい。高分子化合物Aが式(X)で表される構成単位を含む場合、式(X)で表される構成単位の含有量は、高分子化合物Aに含まれる構成単位の合計の含有量に対して、例えば、0.01~99.9モル%であり、高分子化合物Aの正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.05~90モル%であり、より好ましくは0.1~70モル%であり、更に好ましくは0.2~50モル%であり、特に好ましくは0.5~30モル%であり、とりわけ好ましくは1~10モル%である。
 式(X)で表される構成単位は、高分子化合物A中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
When polymer compound A contains a structural unit represented by formula (X), the content of the structural unit represented by formula (X) may be within a range that allows the polymer compound A to function. . When polymer compound A contains a structural unit represented by formula (X), the content of the structural unit represented by formula (X) is relative to the total content of structural units contained in polymer compound A. For example, it is 0.01 to 99.9 mol%, and the hole transporting property of the polymer compound A is excellent, and the luminous efficiency of the light emitting element of this embodiment is even more excellent, so it is preferably 0.05 to 99.9 mol%. 90 mol%, more preferably 0.1 to 70 mol%, even more preferably 0.2 to 50 mol%, particularly preferably 0.5 to 30 mol%, particularly preferably 1 to 70 mol%. It is 10 mol%.
The polymer compound A may contain only one type of structural unit represented by formula (X), or may contain two or more types of structural units.
 高分子化合物Aが、式(X)で表される構成単位及び/又は式(Y)で表される構成単位、並びに、式(1)で表される構成単位を含む場合、式(X)で表される構成単位、式(Y)で表される構成単位及び式(1)で表される構成単位の合計の含有量は、高分子化合物Aとしての機能が奏される範囲であればよい。高分子化合物Aが、式(X)で表される構成単位及び/又は式(Y)で表される構成単位、並びに、式(1)で表される構成単位を含む場合、式(X)で表される構成単位、式(Y)で表される構成単位及び式(1)で表される構成単位の合計の含有量は、高分子化合物Aに含まれる構成単位の合計の含有量に対して、例えば、1~100モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100モル%であり、より好ましくは30~100モル%であり、更に好ましくは50~100モル%であり、特に好ましくは70~100モル%であり、とりわけ好ましくは90~100モル%である。 When polymer compound A contains a structural unit represented by formula (X) and/or a structural unit represented by formula (Y), and a structural unit represented by formula (1), formula (X) The total content of the structural unit represented by , the structural unit represented by formula (Y), and the structural unit represented by formula (1) is within the range where the function as polymer compound A can be performed. good. When polymer compound A contains a structural unit represented by formula (X) and/or a structural unit represented by formula (Y), and a structural unit represented by formula (1), formula (X) The total content of the structural unit represented by , the structural unit represented by formula (Y), and the structural unit represented by formula (1) is the total content of the structural units contained in polymer compound A. On the other hand, it is, for example, 1 to 100 mol%, and the luminous efficiency of the light emitting element of this embodiment is more excellent, so it is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably. is 50 to 100 mol%, particularly preferably 70 to 100 mol%, particularly preferably 90 to 100 mol%.
 ・式(Y)で表される構成単位
 ArY1で表されるアリーレン基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、フルオレンジイル基又はピレンジイル基であり、より好ましくは、フェニレン基、フェナントレンジイル基、ジヒドロフェナントレンジイル基又はフルオレンジイル基であり、これらの基は置換基を有していてもよい。
 ArY1で表されるアリーレン基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、式(A-1)~式(A-14)、式(A-19)又は式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)又は式(A-19)で表される基であり、更に好ましくは、式(A-1)、式(A-7)、式(A-9)又は式(A-19)で表される基である。
- The structural unit represented by formula (Y) The arylene group represented by Ar Y1 is preferably a phenylene group, naphthalenediyl group, anthracenediyl group, or phenanthrene group, since the light emitting element of this embodiment has better luminous efficiency. A diyl group, a dihydrophenanthrenediyl group, a fluorenediyl group, or a pyrenediyl group, more preferably a phenylene group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, or a fluorenediyl group, and these groups have a substituent. You can leave it there.
The arylene group represented by Ar Y1 is preferably one of formulas (A-1) to (A-14), formula (A-19), or formula ( A-20), more preferably formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) , formula (A-13) or formula (A-19), more preferably a group represented by formula (A-1), formula (A-7), formula (A-9) or formula (A-19). -19).
 ArY1で表される2価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、式(AA-1)~式(AA-15)、式(AA-18)~式(AA-22)、式(AA-33)又は式(AA-34)で表される基であり、より好ましくは、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-15)又は式(AA-18)~式(AA-22)であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-13)、式(AA-15)、式(AA-18)又は式(AA-20)で表される基であり、特に好ましくは、式(AA-4)、式(AA-10)、式(AA-18)又は式(AA-20)で表される基である。
The divalent heterocyclic group represented by Ar Y1 is preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, or dibenzothiophene, since the light emitting element of this embodiment has better luminous efficiency. , phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed, and more preferably pyridine, diazabenzene, triazine. , carbazole, dibenzofuran, dibenzothiophene, phenoxazine, or phenothiazine from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed, and these groups may have a substituent.
The divalent heterocyclic group represented by Ar Y1 is preferably one of formulas (AA-1) to (AA-15) and formula (AA-18), since the luminous efficiency of the light emitting device of this embodiment is even more excellent. ) to a group represented by formula (AA-22), formula (AA-33) or formula (AA-34), more preferably a group represented by formula (AA-1) to formula (AA-6) or formula ( AA-10) to formula (AA-15) or formula (AA-18) to formula (AA-22), more preferably formula (AA-4), formula (AA-10), or formula (AA- 13), a group represented by the formula (AA-15), the formula (AA-18) or the formula (AA-20), particularly preferably a group represented by the formula (AA-4), the formula (AA-10) or the formula (AA-18) or a group represented by formula (AA-20).
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の好ましい範囲は、それぞれ、ArY1で表されるアリーレン基及び2価の複素環基の好ましい範囲と同じである。
 ArY1において、「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
In the divalent group represented by Ar Y1 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, the preferred ranges of the arylene group and the divalent heterocyclic group are as follows: The preferred ranges are the same as the arylene group and divalent heterocyclic group represented by Ar Y1 .
In Ar Y1 , "a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded" includes, for example, a group represented by the following formula, and these The group may have a substituent.
Figure JPOXMLDOC01-appb-C000030
 ArY1は、本実施形態の発光素子の発光効率がより優れるので、置換基を有していてもよいアリーレン基であることが好ましい。 Ar Y1 is preferably an arylene group which may have a substituent, since the light emitting element of this embodiment has better luminous efficiency.
 ArY1で表される基が有していてもよい置換基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有していてもよい置換基におけるアリール基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、フェニル基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有していてもよい置換基における1価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン又はトリアジンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group, since the light emitting element of this embodiment has better luminous efficiency. group, aryloxy group, monovalent heterocyclic group, substituted amino group, or fluorine atom, more preferably an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, monovalent heterocyclic group, or A substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, particularly preferably an alkyl group, a cycloalkyl group, or an aryl group; The group may further have a substituent.
The aryl group in the substituent that the group represented by Ar Y1 may have is preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, or fluorene, since the luminous efficiency of the light emitting element of this embodiment is more excellent. is a group from which one hydrogen atom directly bonded to an atom constituting a ring is removed, more preferably a group from which one hydrogen atom directly bonded to an atom constituting a ring is removed from benzene, phenanthrene, dihydrophenanthrene, or fluorene. More preferably, it is a phenyl group, and these groups may further have a substituent.
The monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have is preferably pyridine, diazabenzene, triazine, or azanaphthalene, since the luminous efficiency of the light emitting element of this embodiment is more excellent. , diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine, with one hydrogen atom directly bonded to the atom constituting the ring removed. More preferably, it is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from pyridine, diazabenzene, triazine, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, or phenothiazine, and even more preferably pyridine. , diazabenzene or triazine from which one hydrogen atom directly bonded to the atom constituting the ring has been removed, and these groups may further have a substituent.
In the substituted amino group among the substituents that the group represented by Ar Y1 may have, the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and The group may further have a substituent. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the aryl group and monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have, respectively. The examples and preferred ranges of the groups are the same.
 ArY1で表される基が有してもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArY1で表される基が有してもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
The substituent that the group represented by Ar Y1 may further include is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or an aryloxy group. group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, even more preferably an alkyl group, a substituted amino group, or a fluorine atom. group, cycloalkyl group, or aryl group, particularly preferably an alkyl group or cycloalkyl group, and these groups may further have a substituent, but it is preferable that they do not further have a substituent. .
Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the group represented by Ar Y1 may further include are Ar Y1 The examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the group represented by may have are the same.
 式(Y)で表される構成単位としては、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(Y-1)又は式(Y-2)で表される構成単位であり、より好ましくは、式(Y-2)で表される構成単位である。 The structural unit represented by formula (Y) is preferably a structural unit represented by formula (Y-1) or formula (Y-2), since the light emitting element of this embodiment has better luminous efficiency. More preferably, it is a structural unit represented by formula (Y-2).
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、更に好ましくは、水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. More preferably, it is a hydrogen atom or an alkyl group, and these groups may have a substituent.
 式(Y-1)において、RY1の少なくとも1つは(好ましくは、RY1の少なくとも2つは)、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基であり、これらの基は置換基を有していてもよい。 In formula (Y-1), at least one of R Y1 (preferably at least two of R Y1 ) is preferably an alkyl group or a cycloalkyl group, since the light emitting element of this embodiment has better luminous efficiency. group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. It is a cyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, and these groups may have a substituent.
 RY2は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. , more preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and even more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. You can.
 RY1及びRY2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RY1及びRY2が有していてもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in R Y1 and R Y2 are the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the group represented by Ar Y1 may have, respectively. The examples and preferred ranges of the heterocyclic group and substituted amino group are the same.
Examples and preferred ranges of substituents that R Y1 and R Y2 may have are the same as the examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
 XY1において、-C(RY22-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基もしくはシクロアルキル基、双方がアリール基、双方が1価の複素環基、又は、一方がアルキル基もしくはシクロアルキル基で他方がアリール基もしくは1価の複素環基であり、より好ましくは一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY22-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000031
In X Y1 , the combination of two R Y2s in the group represented by -C(R Y2 ) 2 - is preferably such that both are an alkyl group or a cycloalkyl group, both are an aryl group, and both are a monovalent hetero cyclic group, or one is an alkyl group or cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or cycloalkyl group and the other is an aryl group, and these groups may have a substituent. Two R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, as a group represented by -C(R Y2 ) 2 - is preferably a group represented by formula (Y-A1) to formula (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. You may do so.
Figure JPOXMLDOC01-appb-C000031
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基もしくはシクロアルキル基、又は、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2s in the group represented by -C(R Y2 )=C(R Y2 )- is preferably such that both are an alkyl group or a cycloalkyl group, or one is an alkyl group. Alternatively, one is a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
 XY1において、-C(RY22-C(RY22-で表される基中の4個のRY2は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基である。複数存在するRY2は互いに結合して、それぞれが結合する原子とともに環を形成していてもよく、RY2が環を形成する場合、-C(RY22-C(RY22-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000032
[式中、RY2は前記と同じ意味を表す。]
In X Y1 , four R Y2s in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably an alkyl group or a substituent which may have a substituent. It is a cycloalkyl group which may have. A plurality of R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 - The group represented by is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are It may have a substituent.
Figure JPOXMLDOC01-appb-C000032
[In the formula, R Y2 represents the same meaning as above. ]
 XY1は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、-C(RY22-又は-C(RY22-C(RY22-で表される基であり、より好ましくは、-C(RY22-で表される基である。 X Y1 is preferably a group represented by -C(R Y2 ) 2 - or -C(R Y2 ) 2 -C(R Y2 ) 2 -, since the luminous efficiency of the light emitting element of this embodiment is more excellent. More preferably, it is a group represented by -C( RY2 ) 2 -.
 式(Y)で表される構成単位としては、例えば、下記式で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Examples of the structural unit represented by formula (Y) include structural units represented by the following formula.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 ・式(X)で表される構成単位
 aX1及びaX2は、通常0~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~5の整数であり、より好ましくは0~3の整数であり、更に好ましくは0~2の整数であり、特に好ましくは0又は1である。
- The structural units represented by formula (X) a X1 and a , more preferably an integer of 0 to 3, still more preferably an integer of 0 to 2, particularly preferably 0 or 1.
 RX1、RX2及びRX3は、本実施形態の発光素子の発光効率がより優れるので、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 RX1、RX2及びRX3におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
R X1 , R X2 , and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably an aryl group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group in R X1 , R X2 and R The examples and preferred ranges of the cyclic group are the same.
 ArX1、ArX2、ArX3及びArX4におけるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 ArX2及びArX4における少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、ArY1における少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArX1、ArX2、ArX3及びArX4は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、置換基を有していてもよいアリーレン基である。
Examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar X1 , Ar X2 , Ar X3 and Ar be.
Examples and preferred arylene groups and divalent heterocyclic groups in the divalent groups represented by Ar X2 and Ar X4 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded The ranges are the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar Y1 , respectively.
The divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded in Ar X2 and Ar Examples include those similar to divalent groups directly bonded to a valent heterocyclic group.
Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably arylene groups which may have substituents, since the light emitting element of this embodiment has better luminous efficiency.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R Same as range.
 式(X)で表される構成単位としては、本実施形態の発光素子の発光効率がより優れるので、好ましくは式(X-1)~式(X-3)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
[式中、RX4は前記と同じ意味を表す。]
As the structural unit represented by formula (X), structural units represented by formulas (X-1) to (X-3) are preferable because the luminous efficiency of the light emitting element of this embodiment is more excellent. .
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
[In the formula, R X4 represents the same meaning as above. ]
 式(X)で表される構成単位としては、下記式で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Examples of the structural unit represented by formula (X) include structural units represented by the following formula.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 高分子化合物Aとしては、下記表1に示した高分子化合物P-1~P-4が挙げられる。ここで、「その他」の構成単位とは、式(1)で表される構成単位、式(Y)で表される構成単位及び式(X)で表される構成単位以外の構成単位を意味する。 Examples of the polymer compound A include polymer compounds P-1 to P-4 shown in Table 1 below. Here, "other" structural units mean structural units other than the structural unit represented by formula (1), the structural unit represented by formula (Y), and the structural unit represented by formula (X). do.
Figure JPOXMLDOC01-appb-T000051
[表1においてr’、s’、t’及びu’は、各構成単位のモル比率(モル%)を表す。r’+s’+t’+u’=100であり、且つ、70≦r’+s’+t’≦100である。]
Figure JPOXMLDOC01-appb-T000051
[In Table 1, r', s', t' and u' represent the molar ratio (mol%) of each structural unit. r'+s'+t'+u'=100, and 70≦r'+s'+t'≦100. ]
 高分子化合物Aは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。 The polymer compound A may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms, but it may be made by combining multiple types of raw material monomers. Preferably, it is a copolymer.
 高分子化合物Aのポリスチレン換算の数平均分子量は、好ましくは5×103~1×106であり、より好ましくは1×104~5×105であり、更に好ましくは2×104~2×105である。高分子化合物Aのポリスチレン換算の重量平均分子量は、好ましくは1×104~2×106であり、より好ましくは2×104~1×106であり、更に好ましくは5×104~5×105である。 The number average molecular weight of the polymer compound A in terms of polystyrene is preferably 5×10 3 to 1×10 6 , more preferably 1×10 4 to 5×10 5 , even more preferably 2×10 4 to It is 2×10 5 . The weight average molecular weight of the polymer compound A in terms of polystyrene is preferably 1×10 4 to 2×10 6 , more preferably 2×10 4 to 1×10 6 , even more preferably 5×10 4 to It is 5×10 5 .
 (高分子化合物Aの製造方法)
 高分子化合物Aは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 上記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子化合物Aの純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
(Method for producing polymer compound A)
Polymer compound A can be produced using known polymerization methods such as those described in Chem. Rev., Vol. 109, pp. 897-1091 (2009), such as Suzuki reaction, Yamamoto reaction, Examples of polymerization methods include coupling reactions using transition metal catalysts such as Buchwald reaction, Stille reaction, Negishi reaction, and Kumada reaction.
In the above polymerization method, the monomers can be charged in one go by charging the entire amount of the monomers into the reaction system, or after charging a part of the monomers and reacting, the remaining monomers can be added in one go. Examples include a method of continuously or dividedly charging a monomer, a method of continuously or dividingly charging a monomer, and the like.
Examples of transition metal catalysts include palladium catalysts and nickel catalysts.
Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination. When the purity of the polymer compound A is low, it can be purified by conventional methods such as recrystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
 [高分子化合物B]
 高分子化合物Bは、式(2)で表される構成単位を含む高分子化合物である。高分子化合物Aは、式(1)で表される構成単位を含まない高分子化合物であることが好ましい。
[Polymer compound B]
The polymer compound B is a polymer compound containing a structural unit represented by formula (2). It is preferable that the polymer compound A is a polymer compound that does not contain the structural unit represented by formula (1).
 (式(2)で表される構成単位)
 B1は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、ヒドロキシアルキル基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、ヒドロキシアルキル基、シクロアルコキシ基、アリール基又はアリールオキシ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はアリール基であり、とりわけ好ましくはアルキル基であり、これらの基は置換基を有していてもよい。
 B1におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 B1におけるヒドロキシアルキル基としては、水素原子の一つがヒドロキシ基で置換されたアルキル基が挙げられる。
 B1が有してもよい置換基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
(Constituent unit represented by formula (2))
B 1 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, an aryloxy group, or a monovalent hetero group, since the luminous efficiency of the light emitting element of this embodiment is more excellent. A cyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, or an aryloxy group, and still more preferably an alkyl group or a cycloalkyl group. or an aryl group, particularly preferably an alkyl group or an aryl group, particularly preferably an alkyl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in B1 are the aryl group, monovalent heterocyclic group, and the substituent that the group represented by Ar Y1 may have, respectively. and the examples and preferred ranges of substituted amino groups.
Examples of the hydroxyalkyl group for B 1 include an alkyl group in which one of the hydrogen atoms is substituted with a hydroxy group.
The examples and preferred ranges of the substituents that B 1 may have are the same as the examples and preferred ranges of the substituents that the group represented by Ar Y1 may have, respectively.
 高分子化合物Bに含まれる式(2)で表される構成単位の繰り返し数(重合度)は、通常5~10000の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~5000の整数であり、より好ましくは20~2000の整数であり、より好ましくは50~1000の整数である。 The repeating number (degree of polymerization) of the structural unit represented by formula (2) contained in the polymer compound B is usually an integer of 5 to 10,000, which is preferable since the light emitting element of this embodiment has better luminous efficiency. is an integer of 10 to 5,000, more preferably an integer of 20 to 2,000, more preferably an integer of 50 to 1,000.
 sは、通常0~10の整数であり、好ましくは0~5の整数であり、より好ましくは、0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。 s is usually an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0.
 式(2)で表される構成単位としては、例えば、下記式で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Examples of the structural unit represented by formula (2) include structural units represented by the following formula.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 高分子化合物Bに含まれる式(2)で表される構成単位の含有量は、高分子化合物Bとしての機能が奏される範囲であればよい。高分子化合物Bに含まれる式(2)で表される構成単位の含有量は、高分子化合物Bに含まれる構成単位の合計の含有量に対して、例えば、1~100モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100モル%であり、より好ましくは30~100モル%であり、更に好ましくは50~100モル%であり、特に好ましくは70~100モル%であり、とりわけ好ましくは90~100モル%である。式(2)で表される構成単位は、高分子化合物B中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The content of the structural unit represented by formula (2) contained in the polymer compound B may be within a range that allows the polymer compound B to function. The content of the structural unit represented by formula (2) contained in the polymer compound B is, for example, 1 to 100 mol% with respect to the total content of the structural units contained in the polymer compound B, Since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, and particularly preferably 70 to 100 mol%. ~100 mol%, particularly preferably 90~100 mol%. Polymer compound B may contain only one type of structural unit represented by formula (2), or may contain two or more types of structural units.
 高分子化合物Bは、ダウ・東レ株式会社、信越化学工業株式会社及びビックケミー・ジャパン株式会社等から入手可能である。その他には、例えば、特表2011-505448号公報、特開2012-68417号公報及び特開2015-147930号公報等に記載の公知の重合方法を用いて製造することができる。 Polymer compound B is available from Dow-Toray Industries, Shin-Etsu Chemical Co., Ltd., Bic-Chemie Japan Co., Ltd., etc. In addition, it can be produced using known polymerization methods described in, for example, Japanese Patent Publication No. 2011-505448, Japanese Patent Application Publication No. 2012-68417, and Japanese Patent Application Publication No. 2015-147930.
 高分子化合物Bは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよく、その他の態様であってもよく、複数種の原料モノマーを共重合した共重合体であってもよい。 The polymer compound B may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms, and may be a copolymer of multiple types of raw material monomers. It may also be a copolymer.
 高分子化合物Bのポリスチレン換算の数平均分子量は、好ましくは1×103~1×106であり、より好ましくは2×103~5×105であり、更に好ましくは2×103~2×105である。高分子化合物Bのポリスチレン換算の重量平均分子量は、好ましくは2×103~2×106であり、より好ましくは5×103~1×106であり、更に好ましくは5×103~5×105である。 The number average molecular weight of the polymer compound B in terms of polystyrene is preferably 1×10 3 to 1×10 6 , more preferably 2×10 3 to 5×10 5 , even more preferably 2×10 3 to It is 2×10 5 . The weight average molecular weight of the polymer compound B in terms of polystyrene is preferably 2×10 3 to 2×10 6 , more preferably 5×10 3 to 1×10 6 , even more preferably 5×10 3 to It is 5×10 5 .
 [溶媒]
 本実施形態の組成物に含有される溶媒(以下、「インク溶媒」ともいう。)は、高分子化合物A及び高分子化合物Bを溶解又は分散し、高分子化合物A及び高分子化合物Bと反応しないものであれば特に限定されない。
 インク溶媒は、本実施形態の組成物の製造が容易になるので、単独で用いることが好ましい。また、インク溶媒は、本実施形態の発光素子の発光効率がより優れるので、2種以上を混合して用いることが好ましい。
 インク溶媒としては、例えば、塩素系溶媒、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、カーボネート系溶媒が挙げられ、本実施形態の発光素子の発光効率がより優れるので、好ましくは、塩素系溶媒、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒、アミド系溶媒又はエステル系溶媒であり、より好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒又はエステル系溶媒であり、更に好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒又は脂肪族エーテル系溶媒であり、特に好ましくは芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である。
[solvent]
The solvent contained in the composition of this embodiment (hereinafter also referred to as "ink solvent") dissolves or disperses polymer compound A and polymer compound B, and reacts with polymer compound A and polymer compound B. There is no particular limitation as long as it does not.
It is preferable to use the ink solvent alone because it facilitates the production of the composition of this embodiment. Moreover, since the luminous efficiency of the light emitting element of this embodiment is more excellent, it is preferable to use a mixture of two or more kinds of ink solvents.
Examples of ink solvents include chlorine solvents, aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, alcohol solvents, ketone solvents, amide solvents, and esters. Preferably, chlorine-based solvents, aromatic hydrocarbon-based solvents, aromatic ether-based solvents, and aliphatic hydrocarbon-based solvents are used, since the luminous efficiency of the light-emitting element of this embodiment is more excellent. , aliphatic ether solvents, ketone solvents, amide solvents, or ester solvents, more preferably aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, and aliphatic ether solvents. , a ketone solvent or an ester solvent, more preferably an aromatic hydrocarbon solvent, an aromatic ether solvent, an aliphatic hydrocarbon solvent or an aliphatic ether solvent, particularly preferably an aromatic hydrocarbon solvent. type solvent or aromatic ether type solvent.
 インク溶媒を2種以上用いる場合、インク溶媒のうち、少なくとも1種は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、塩素系溶媒、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒、アミド系溶媒又はエステル系溶媒であり、より好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒又はエステル系溶媒であり、更に好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒又は脂肪族エーテル系溶媒であり、特に好ましくは芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である。
 インク溶媒を2種以上用いる場合、インク溶媒のうち、少なくとも2種は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、塩素系溶媒、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒、アミド系溶媒及びエステル系溶媒からなる群より選ばれる少なくとも2種であり、より好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒及びエステル系溶媒からなる群より選ばれる少なくとも2種であり、更に好ましくは、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒及び脂肪族エーテル系溶媒からなる群より選ばれる少なくとも2種であり、特に好ましくは芳香族炭化水素系溶媒及び芳香族エーテル系溶媒からなる群より選ばれる少なくとも2種である。
 インク溶媒を2種以上用いる場合、インク溶媒のうち、少なくとも2種の組み合わせは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、芳香族炭化水素系溶媒及び芳香族エーテル系溶媒のうちの1種と、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒、アミド系溶媒及びエステル系溶媒のうちの1種との組み合わせであり、より好ましくは、芳香族炭化水素系溶媒及び芳香族エーテル系溶媒のうちの1種と、芳香族炭化水素系溶媒、芳香族エーテル系溶媒、脂肪族炭化水素系溶媒、脂肪族エーテル系溶媒、ケトン系溶媒及びエステル系溶媒のうちの1種との組み合わせであり、更に好ましくは、芳香族炭化水素系溶媒2種の組み合わせ、芳香族エーテル系溶媒2種の組み合わせ、又は、芳香族炭化水素系溶媒と芳香族エーテル系溶媒との組み合わせである。
When two or more kinds of ink solvents are used, at least one of the ink solvents is preferably a chlorine-based solvent, an aromatic hydrocarbon-based solvent, or an aromatic ether, since the luminous efficiency of the light-emitting element of this embodiment is better. solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, ketone solvents, amide solvents, or ester solvents, and more preferably aromatic hydrocarbon solvents, aromatic ether solvents, and aliphatic carbonized solvents. Hydrogen solvent, aliphatic ether solvent, ketone solvent or ester solvent, more preferably aromatic hydrocarbon solvent, aromatic ether solvent, aliphatic hydrocarbon solvent or aliphatic ether solvent. Among them, aromatic hydrocarbon solvents or aromatic ether solvents are particularly preferred.
When two or more kinds of ink solvents are used, at least two of the ink solvents are preferably chlorine-based solvents, aromatic hydrocarbon-based solvents, or aromatic ethers, since the luminous efficiency of the light-emitting element of this embodiment is better. At least two types selected from the group consisting of solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, ketone solvents, amide solvents, and ester solvents, more preferably aromatic hydrocarbon solvents, At least two types selected from the group consisting of aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, ketone solvents, and ester solvents, more preferably aromatic hydrocarbon solvents, aromatic At least two types selected from the group consisting of group ether solvents, aliphatic hydrocarbon solvents, and aliphatic ether solvents, and particularly preferably selected from the group consisting of aromatic hydrocarbon solvents and aromatic ether solvents. There are at least two types.
When two or more kinds of ink solvents are used, a combination of at least two of the ink solvents is preferably an aromatic hydrocarbon solvent and an aromatic ether solvent, since the light emitting efficiency of the light emitting element of this embodiment is better. and one of aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic ether solvents, ketone solvents, amide solvents, and ester solvents. More preferably, one of aromatic hydrocarbon solvents and aromatic ether solvents, and aromatic hydrocarbon solvents, aromatic ether solvents, aliphatic hydrocarbon solvents, aliphatic A combination with one of an ether solvent, a ketone solvent, and an ester solvent, more preferably a combination of two aromatic hydrocarbon solvents, a combination of two aromatic ether solvents, or an aromatic It is a combination of a group hydrocarbon solvent and an aromatic ether solvent.
 塩素系溶媒としては、例えば、ジクロロエタン、トリクロロエタン、クロロベンゼン及びジクロロベンゼンが挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、テトラメチルベンゼン、プロピルベンゼン、ブチルベンゼン、ペンチルベンゼン、シクロペンチルベンゼン、メチルシクロペンチルベンゼン、ヘキシルベンゼン、シクロヘキシルベンゼン、メチルシクロヘキシルベンゼン、ヘプチルベンゼン、シクロヘプチルベンゼン、メチルシクロヘプチルベンゼン、オクチルベンゼン、ノニルベンゼン、デシルベンゼン、ウンデシルベンゼン、ドデシルベンゼン、トリデシルベンゼン、テトラデシルベンゼン及びテトラリンが挙げられる。
 芳香族エーテル系溶媒としては、例えば、アニソール、ジメトキベンゼン、トリメトキシベンゼン、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、メチルプロポキシベンゼン、ブトキシベンゼン、メトキシトルエン、エトキシトルエン、メトキシナフタレン、エトキシナフタレン及びフェノキシトルエンが挙げられる。
 脂肪族炭化水素系溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ドデカン及びビシクロヘキシルが挙げられる。
 脂肪族エーテル系溶媒としては、例えば、ジイソプロピルエーテル、メチルブチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル及びトリエチレングリコールジメチルエーテルが挙げられる。
 アルコール系溶媒としては、例えば、エタノール、プロパノール、ブタノール、ペンタノール、シクロペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、ベンジルアルコール、フェニルエタノール、エチレングリコール、プロピレングリコール、ジエチレングリコールモノメチルエーテル、プロパンジオール及びグリセリンが挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、ジブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ヘキサノン、オクタノン、ノナノン、フェニルアセトン、アセチルアセトン、アセトニルアセトン、アセトフェノン、メチルナフチルケトン及びイソホロンが挙げられる。
 アミド系溶媒としては、例えば、N-メチルピロリドン、N-エチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド及び1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 エステル系溶媒としては、例えば、酢酸ブチル、酢酸エチル、酢酸プロピル、酢酸ペンチル、プロピオン酸エチル、酪酸エチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシピロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸プロピル、乳酸プロピル、フェニル酢酸エチル、安息香酸エチル、β-プロピオラクトン、γ-ブチロラクトン、及び、δ-バレロラクトンが挙げられる。
 カーボネート系溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、及び、プロピレンカーボネートが挙げられる。
Examples of chlorinated solvents include dichloroethane, trichloroethane, chlorobenzene, and dichlorobenzene.
Examples of aromatic hydrocarbon solvents include toluene, xylene, ethylbenzene, trimethylbenzene, tetramethylbenzene, propylbenzene, butylbenzene, pentylbenzene, cyclopentylbenzene, methylcyclopentylbenzene, hexylbenzene, cyclohexylbenzene, methylcyclohexylbenzene, Mention may be made of heptylbenzene, cycloheptylbenzene, methylcycloheptylbenzene, octylbenzene, nonylbenzene, decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, tetradecylbenzene and tetralin.
Examples of aromatic ether solvents include anisole, dimethoxybenzene, trimethoxybenzene, ethoxybenzene, propoxybenzene, butoxybenzene, methylpropoxybenzene, butoxybenzene, methoxytoluene, ethoxytoluene, methoxynaphthalene, ethoxynaphthalene, and phenoxytoluene. can be mentioned.
Examples of aliphatic hydrocarbon solvents include cyclohexane, methylcyclohexane, pentane, hexane, heptane, octane, nonane, decane, dodecane, and bicyclohexyl.
Examples of the aliphatic ether solvent include diisopropyl ether, methyl butyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether.
Examples of alcoholic solvents include ethanol, propanol, butanol, pentanol, cyclopentanol, hexanol, cyclohexanol, heptanol, octanol, benzyl alcohol, phenylethanol, ethylene glycol, propylene glycol, diethylene glycol monomethyl ether, propanediol, and glycerin. can be mentioned.
Examples of ketone solvents include acetone, methyl ethyl ketone, methyl butyl ketone, dibutyl ketone, cyclohexanone, methylcyclohexanone, hexanone, octanone, nonanone, phenylacetone, acetylacetone, acetonylacetone, acetophenone, methylnaphthyl ketone, and isophorone.
Examples of the amide solvent include N-methylpyrrolidone, N-ethylpyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone.
Examples of ester solvents include butyl acetate, ethyl acetate, propyl acetate, pentyl acetate, ethyl propionate, ethyl butyrate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate. , ethyl-3-ethoxypyrropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, propyl formate, propyl lactate, ethyl phenylacetate, ethyl benzoate, β-propiolactone, γ-butyrolactone, and δ-valerolactone.
Examples of carbonate-based solvents include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
 本実施形態の組成物において、インク溶媒のうち、少なくとも1種は、1気圧における沸点が、通常、40℃~500℃であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは60℃~450℃であり、より好ましくは80℃~400℃であり、更に好ましくは100℃~300℃である。
 インク溶媒を2種以上用いる場合、インク溶媒のうち、少なくとも1種は、本実施形態の発光素子の発光効率がより優れるので、1気圧における沸点が、好ましく100℃~450℃であり、より好ましくは150℃~400℃であり、更に好ましくは200℃~300℃である。
 インク溶媒を2種以上用いる場合、本実施形態の発光素子の発光効率が更に優れるので、インク溶媒のうち、少なくとも1種の1気圧における沸点が60℃以上200℃未満であり、且つ、少なくとも1種の1気圧における沸点が200℃以上450℃以下であることが好ましく、少なくとも1種の1気圧における沸点が80℃以上195℃以下であり、且つ、少なくとも1種の1気圧における沸点が210℃以上400℃以下であることがより好ましく、少なくとも1種の1気圧における沸点が100℃以上190℃以下であり、且つ、少なくとも1種の1気圧における沸点が220℃以上300℃以下であることが更に好ましい。
 インク溶媒を2種以上用いる場合、インク溶媒のうち、最も含有量の少ないインク溶媒の含有量は、インク溶媒の合計含有量を100質量部とした場合、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~50質量部であり、より好ましくは5~45質量部であり、更に好ましくは10~40質量部である。
 インク溶媒を2種以上用いる場合、本実施形態の発光素子の発光効率がより優れるので、インク溶媒のうち、最も含有量の少ないインク溶媒の1気圧における沸点は、好ましくは60℃以上200℃未満であり、より好ましくは80℃以上195℃以下であり、更に好ましくは100℃以上190℃以下である。
 インク溶媒を2種以上用いる場合、インク溶媒のうち、最も含有量の多いインク溶媒の含有量は、インク溶媒の合計含有量を100質量部とした場合、本実施形態の発光素子の発光効率がより優れるので、好ましくは50~99質量部であり、より好ましくは55~95質量部であり、更に好ましくは60~90質量部である。
 インク溶媒を2種以上用いる場合、本実施形態の発光素子の発光効率がより優れるので、インク溶媒のうち、最も含有量の多いインク溶媒の1気圧における沸点は、好ましくは200℃以上450℃以下であり、より好ましくは210℃以上400℃以下であり、更に好ましくは220℃以上300℃以下である。
 インク溶媒を2種以上用いる場合、インク溶媒の種類は、通常、2種~20種であり、本実施形態の組成物の製造が容易になり、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは2種~10種であり、より好ましくは2~5種であり、更に好ましくは2種又は3種であり、特に好ましくは2種である。
 インク溶媒を2種以上用いる場合、混合溶媒が25℃及び1気圧にて液体であればよい。
In the composition of the present embodiment, at least one of the ink solvents has a boiling point of usually 40° C. to 500° C. at 1 atm, which is preferable because the luminous efficiency of the light emitting element of the present embodiment is more excellent. The temperature is 60°C to 450°C, more preferably 80°C to 400°C, even more preferably 100°C to 300°C.
When two or more kinds of ink solvents are used, at least one of the ink solvents has a boiling point at 1 atm of preferably 100° C. to 450° C., more preferably is 150°C to 400°C, more preferably 200°C to 300°C.
When two or more types of ink solvents are used, the luminous efficiency of the light emitting element of this embodiment is further improved. It is preferable that the boiling point of the species at 1 atm is 200°C or more and 450°C or less, and the boiling point of at least one of the species is 80°C or more and 195°C or less at 1 atm, and the boiling point of at least one of the species is 210°C or less at 1 atm. More preferably, the boiling point at 1 atm of at least one is 100°C or more and 190°C or less, and the boiling point of at least one at 1 atm is 220°C or more and 300°C or less. More preferred.
When two or more types of ink solvents are used, the content of the ink solvent with the lowest content among the ink solvents is such that, when the total content of the ink solvents is 100 parts by mass, the luminous efficiency of the light emitting element of this embodiment is The amount is preferably 1 to 50 parts by weight, more preferably 5 to 45 parts by weight, and still more preferably 10 to 40 parts by weight.
When two or more types of ink solvents are used, the luminous efficiency of the light emitting element of this embodiment is better, so the boiling point at 1 atm of the ink solvent with the lowest content among the ink solvents is preferably 60°C or more and less than 200°C. The temperature is more preferably 80°C or more and 195°C or less, and even more preferably 100°C or more and 190°C or less.
When two or more kinds of ink solvents are used, the content of the ink solvent with the highest content among the ink solvents is such that, when the total content of the ink solvents is 100 parts by mass, the luminous efficiency of the light emitting element of this embodiment is The amount is preferably 50 to 99 parts by weight, more preferably 55 to 95 parts by weight, and still more preferably 60 to 90 parts by weight.
When two or more types of ink solvents are used, the luminous efficiency of the light emitting element of this embodiment is better, so the boiling point at 1 atm of the ink solvent with the largest content among the ink solvents is preferably 200°C or more and 450°C or less. The temperature is more preferably 210°C or more and 400°C or less, and even more preferably 220°C or more and 300°C or less.
When two or more types of ink solvents are used, the number of types of ink solvents is usually 2 to 20 types, which facilitates the production of the composition of this embodiment, and increases the luminous efficiency of the light emitting element of this embodiment. Since they are more excellent, preferably 2 to 10 types, more preferably 2 to 5 types, still more preferably 2 or 3 types, particularly preferably 2 types.
When two or more kinds of ink solvents are used, it is sufficient that the mixed solvent is liquid at 25° C. and 1 atm.
 [その他の成分]
 本実施形態の組成物は、高分子化合物Aと、高分子化合物Bと、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種とを含有する組成物であってもよい。但し、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、高分子化合物A及び高分子化合物Bとは異なる。
[Other ingredients]
The composition of this embodiment is selected from the group consisting of a polymer compound A, a polymer compound B, a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, and an antioxidant. The composition may contain at least one type. However, the hole transport material, hole injection material, electron transport material, electron injection material, and light emitting material are different from polymer compound A and polymer compound B.
 (正孔輸送材料)
 正孔輸送材料は、低分子化合物と高分子化合物とに分類される。正孔輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン(α-NPD)、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)等の芳香族アミン化合物が挙げられる。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
 本実施形態の組成物において、正孔輸送材料が含まれる場合、正孔輸送材料の含有量は、高分子化合物A及び高分子化合物Bの合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
(hole transport material)
Hole transport materials are classified into low molecular weight compounds and high molecular weight compounds. The hole transport material may have a crosslinking group.
Examples of low-molecular compounds include triphenylamine and its derivatives, N,N'-di-1-naphthyl-N,N'-diphenylbenzidine (α-NPD), and N,N'-diphenyl-N, Examples include aromatic amine compounds such as N'-di(m-tolyl)benzidine (TPD).
Examples of the polymer compound include polyvinylcarbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof. The polymer compound may be a compound to which an electron-accepting site is bonded, such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone.
In the composition of the present embodiment, when a hole transporting material is included, the content of the hole transporting material is usually, when the total content of polymer compound A and polymer compound B is 100 parts by mass. The amount is 1 to 10,000 parts by mass.
The hole transport materials may be used alone or in combination of two or more.
 (電子輸送材料)
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本実施形態の組成物において、電子輸送材料が含まれる場合、電子輸送材料の含有量は、高分子化合物A及び高分子化合物Bの合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
(electron transport material)
Electron transport materials are classified into low molecular compounds and high molecular compounds. The electron transport material may have a crosslinking group.
Examples of low-molecular compounds include metal complexes with 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. , and derivatives thereof.
Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof. The polymer compound may be doped with metal.
In the composition of the present embodiment, when an electron transporting material is included, the content of the electron transporting material is usually 1 to 1 when the total content of polymer compound A and polymer compound B is 100 parts by mass. It is 10,000 parts by mass.
The electron transport materials may be used alone or in combination of two or more.
 (正孔注入材料及び電子注入材料)
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 本実施形態の組成物において、正孔注入材料及び/又は電子注入材料が含まれる場合、正孔注入材料及び電子注入材料の含有量は、各々、高分子化合物A及び高分子化合物Bの合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
(Hole injection material and electron injection material)
Hole-injecting materials and electron-injecting materials are classified into low-molecular compounds and high-molecular compounds, respectively. The hole injection material and the electron injection material may have a crosslinking group.
Examples of low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
Examples of polymeric compounds include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; conductive polymers containing an aromatic amine structure in the main chain or side chain. Polymers can be mentioned.
In the composition of this embodiment, when a hole injection material and/or an electron injection material are included, the contents of the hole injection material and the electron injection material are the total of the polymer compound A and the polymer compound B, respectively. When the content is 100 parts by mass, it is usually 1 to 10,000 parts by mass.
The hole injection material and the electron injection material may be used alone or in combination of two or more.
 ・イオンドープ
 正孔注入材料又は電子注入材料は、イオンがドープされていてもよい。例えば、正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 正孔注入材料又は電子注入材料にドープするイオンの種類は、例えば、正孔注入材料であればアニオンが挙げられ、電子注入材料であればカチオンが挙げられる。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン及び樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン及びテトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
- Ion doping The hole injection material or electron injection material may be doped with ions. For example, when the hole injection material or electron injection material contains a conductive polymer, the electrical conductivity of the conductive polymer is preferably 1×10 −5 S/cm to 1×10 3 S/cm. In order to keep the electrical conductivity of the conductive polymer within this range, the conductive polymer can be doped with an appropriate amount of ions.
The types of ions to be doped into the hole injection material or electron injection material include, for example, an anion in the case of a hole injection material, and a cation in the case of an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of cations include lithium ions, sodium ions, potassium ions, and tetrabutylammonium ions.
The ions to be doped may be used singly or in combination of two or more.
 (発光材料)
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする燐光発光性化合物が挙げられる。
 高分子化合物としては、例えば、式(Y)で表される構成単位及び/又は式(X)で表される構成単位を含む高分子化合物が挙げられる。
(Light-emitting material)
Luminescent materials are classified into low molecular compounds and high molecular compounds. The luminescent material may have a crosslinking group.
Examples of the low-molecular compound include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and phosphorescent compounds having iridium, platinum, or europium as the central metal.
Examples of the polymer compound include a polymer compound containing a structural unit represented by formula (Y) and/or a structural unit represented by formula (X).
 燐光発光性化合物としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Examples of the phosphorescent compound include the following metal complexes.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 本実施形態の組成物において、発光材料が含まれる場合、発光材料の含有量は、高分子化合物A及び高分子化合物Bの合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
In the composition of the present embodiment, when a luminescent material is included, the content of the luminescent material is usually 1 to 10,000 parts by mass when the total content of polymer compound A and polymer compound B is 100 parts by mass. Department.
The luminescent materials may be used alone or in combination of two or more.
 (酸化防止剤)
 酸化防止剤は、高分子化合物A及び高分子化合物Bと同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤及びリン系酸化防止剤が挙げられる。
 本実施形態の組成物において、酸化防止剤が含まれる場合、酸化防止剤の含有量は、高分子化合物A及び高分子化合物Bを100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
(Antioxidant)
The antioxidant may be any compound as long as it is soluble in the same solvent as polymer compound A and polymer compound B and does not inhibit luminescence and charge transport. For example, phenolic antioxidants and phosphorus antioxidants may be used. Can be mentioned.
In the composition of the present embodiment, when an antioxidant is included, the content of the antioxidant is usually 0.001 to 10 parts by mass when polymer compound A and polymer compound B are 100 parts by mass. It is.
The antioxidants may be used alone or in combination of two or more.
 <膜>
 膜は、本実施形態の組成物を用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の湿式法により作製することができる。
 本実施形態の組成物を用いて湿式法により膜を作製する場合、必要に応じて、インク溶媒を除去する。インク溶媒を除去する方法としては、例えば、自然乾燥、真空乾燥及び加熱乾燥が挙げられ、好ましくは、自然乾燥又は真空乾燥である。乾燥する温度は、通常0℃~300℃であり、好ましくは5℃~150℃であり、より好ましくは10℃~75℃であり、更に好ましくは15℃~40℃である。
 本実施形態の組成物の粘度は、湿式法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~50mPa・sであり、より好ましくは1~20mPa・sである。
 膜は、発光素子における発光層、正孔輸送層又は正孔注入層として好適である。
 膜の厚さは、通常、1nm~1μmである。
<Membrane>
The film can be formed using the composition of this embodiment, for example, by spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, or spray coating. It can be produced by a wet method such as a method, a screen printing method, a flexo printing method, an offset printing method, an inkjet printing method, a capillary coating method, a nozzle coating method, or the like.
When producing a film by a wet method using the composition of this embodiment, the ink solvent is removed as necessary. Examples of methods for removing the ink solvent include natural drying, vacuum drying, and heat drying, and preferably natural drying or vacuum drying. The drying temperature is usually 0°C to 300°C, preferably 5°C to 150°C, more preferably 10°C to 75°C, even more preferably 15°C to 40°C.
The viscosity of the composition of the present embodiment may be adjusted depending on the type of wet method, but when applied to a printing method such as an inkjet printing method in which the solution passes through a discharge device, clogging during discharge and flight deflection may occur. Since this is difficult to occur, the temperature is preferably 1 to 50 mPa·s, more preferably 1 to 20 mPa·s at 25°C.
The film is suitable as a light emitting layer, a hole transport layer or a hole injection layer in a light emitting device.
The thickness of the film is typically 1 nm to 1 μm.
 <発光素子の製造方法>
 本実施形態の発光素子の製造方法は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた1又は複数の有機層と、を有する発光素子の製造方法であり、前記有機層の少なくとも1層を本実施形態の組成物を用いて湿式法により形成する工程を含む、発光素子の製造方法である。
 本実施形態の発光素子は、本実施形態の組成物を用いて湿式法により形成された少なくとも一層の有機層を有する発光素子である。
 本実施形態の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本実施形態の組成物を用いて湿式法により形成された少なくとも一層の有機層とを有する。
 本実施形態の発光素子において、湿式法としては、前記<膜>の項で説明した湿式法が挙げられる。
 本実施形態の組成物を用いて湿式法により有機層を形成する工程において、必要に応じて、インク溶媒を除去する。インク溶媒を除去する方法としては、前記<膜>の項で説明したインク溶媒を除去する方法が挙げられる。
<Method for manufacturing light emitting device>
A method for manufacturing a light emitting device according to the present embodiment is a method for manufacturing a light emitting device having an anode, a cathode, and one or more organic layers provided between the anode and the cathode. This is a method for manufacturing a light emitting device, including a step of forming at least one layer using the composition of this embodiment by a wet method.
The light emitting element of this embodiment is a light emitting element having at least one organic layer formed by a wet method using the composition of this embodiment.
The structure of the light emitting element of this embodiment includes, for example, an electrode consisting of an anode and a cathode, and at least one organic layer formed by a wet method using the composition of this embodiment provided between the electrodes. have
In the light emitting element of this embodiment, the wet method includes the wet method described in the section of <Film> above.
In the step of forming an organic layer by a wet method using the composition of this embodiment, the ink solvent is removed as necessary. Examples of the method for removing the ink solvent include the method for removing the ink solvent described in the section <Membrane> above.
 [層構成]
 発光素子が有する有機層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層である。本実施形態の組成物を用いて湿式法により形成された少なくとも一層の有機層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、発光層、正孔輸送層又は正孔注入層であり、より好ましくは発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述したインク溶媒に溶解させ、組成物を調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
[Layer structure]
The organic layer included in a light emitting element is usually one or more of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. The at least one organic layer formed by a wet method using the composition of this embodiment is usually one or more layers of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. It is preferably a light emitting layer, a hole transport layer or a hole injection layer, and more preferably a light emitting layer. These layers each include a luminescent material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material. These layers are prepared by dissolving a luminescent material, a hole transporting material, a hole injection material, an electron transporting material, and an electron injection material in the above-mentioned ink solvent, preparing a composition, and using it to prepare the above-mentioned film. It can be formed using the same method as .
 発光素子は、陽極と陰極の間に発光層を有する。本実施形態の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。 A light emitting element has a light emitting layer between an anode and a cathode. From the viewpoint of hole injection and hole transport properties, the light emitting device of this embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer, From the viewpoint of electron injection properties and electron transport properties, it is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
 正孔輸送層、電子輸送層、発光層、正孔注入層及び電子注入層としては、本実施形態の組成物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料及び電子注入材料等を用いて形成することができる。 In addition to the composition of this embodiment, the hole transport layer, electron transport layer, light emitting layer, hole injection layer, and electron injection layer may each include the hole transport material, electron transport material, light emitting material, or hole transport material described above. It can be formed using an injection material, an electron injection material, or the like.
 正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。 The material for the hole transport layer, the material for the electron transport layer, and the material for the emissive layer are based on the solvent used when forming the hole transport layer, the electron transport layer, and the layer adjacent to the emissive layer, respectively, in the production of the light emitting device. When dissolved, it is preferable that the material has a crosslinking group in order to avoid dissolving the material in the solvent. After each layer is formed using a material having a crosslinking group, the layer can be made insolubilized by crosslinking the crosslinking group.
 本実施形態の発光素子の製造方法において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、真空蒸着法等の乾式法、及び、湿式法が挙げられ、高分子化合物を用いる場合、例えば、湿式法が挙げられる。 In the method for manufacturing a light emitting device of the present embodiment, the method for forming each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer includes, for example, vacuum Examples include dry methods such as a vapor deposition method, and wet methods. When using a polymer compound, for example, a wet method may be used.
 本実施形態の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 本実施形態の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極の厚さは、それぞれ、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
 本実施形態の発光素子において、積層する層の順番、数、及び厚さは、発光素子の輝度寿命、駆動電圧及び発光効率を勘案して調整すればよい。
In the light emitting device of this embodiment, each of the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, and cathode may be provided with two or more layers as necessary. . When a plurality of anodes, hole injection layers, hole transport layers, light emitting layers, electron transport layers, electron injection layers and cathodes are present, they may be the same or different.
In the light emitting device of this embodiment, the thickness of the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 μm, preferably 2 nm. ~500 nm, more preferably 5 nm ~ 150 nm.
In the light emitting device of this embodiment, the order, number, and thickness of the layers to be laminated may be adjusted in consideration of the brightness life, driving voltage, and luminous efficiency of the light emitting device.
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
[Substrate/electrode]
The substrate in the light emitting element may be any substrate as long as it is capable of forming an electrode and is not chemically changed during the formation of an organic layer, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferred that the electrode furthest from the substrate be transparent or translucent.
Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. conductive compounds; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, and copper.
Examples of the cathode material include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of these; and one of them. Alloys of at least one species selected from the group consisting of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
The anode and the cathode may each have a laminated structure of two or more layers.
 本実施形態の発光素子は、例えば、基板上に各層を順次積層することにより製造することができる。具体的には、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、発光素子を製造することができる。他の製造方法としては、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を設け、更にその上に、陽極を積層することにより、発光素子を製造することができる。更に他の製造方法としては、陽極又は陽極上に各層を積層した陽極側基材と陰極又は陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより製造することができる。 The light emitting device of this embodiment can be manufactured, for example, by sequentially stacking each layer on a substrate. Specifically, an anode is provided on a substrate, a hole injection layer, a hole transport layer, etc. are provided on the anode, a light emitting layer is provided on top of the anode, and an electron transport layer, an electron injection layer, etc. are provided on top of the anode. A light emitting device can be manufactured by providing a layer and further laminating a cathode thereon. Another manufacturing method is to provide a cathode on a substrate, provide layers such as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer on top of the cathode, and then provide an anode on top of the cathode. A light emitting device can be manufactured by laminating the layers. Furthermore, as another manufacturing method, it can be manufactured by joining an anode or an anode side base material in which each layer is laminated on the anode and a cathode or a cathode side base material in which each layer is laminated on the cathode so that they face each other. can.
 [用途]
 本実施形態の発光素子は、液晶表示装置のバックライト用の光源、照明用の光源、有機EL照明、コンピュータ、テレビ及び携帯端末等の表示装置(例えば、有機ELディスプレイ及び有機ELテレビ)として好適に用いることができる。
[Application]
The light emitting element of this embodiment is suitable as a light source for backlight of a liquid crystal display device, a light source for illumination, an organic EL lighting, a display device (for example, an organic EL display and an organic EL television) for computers, televisions, mobile terminals, etc. It can be used for.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動層にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。なお、SECの測定条件は、次のとおりである。 In the examples, the number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. . The measurement conditions for SEC are as follows.
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。 The polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 μL was injected into SEC. The mobile phase was run at a flow rate of 2.0 mL/min. PLgel MIXED-B (manufactured by Polymer Laboratories) was used as the column. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as a detector.
 <合成例1> 化合物M1~M15の合成
 化合物M1、化合物M2及び化合物M7は、国際公開第2002/045184号に記載の方法に準じて合成した。
 化合物M3は、国際公開第2005/052027号に記載の方法に従って合成した。
 化合物M4は、国際公開第2012/086671号に記載の方法に従って合成した。
 化合物M5及び化合物M12は、特開2012-144722号公報に記載の方法に従って合成した。
 化合物M6は、国際公開第2005/049546号に記載の方法に従って合成した。
 化合物M8は、特開2004-143419号公報に記載の方法に従って合成した。
 化合物M9は、特開2011-174062号公報に記載の方法に従って合成した。
 化合物M10は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物M11は、国際公報第2012/133256号に記載の方法に従って合成した。
 化合物M13は、国際公開第2014/157016号に記載の方法に従って合成した。
 化合物M14は、国際公開第2008/143272号に記載の方法に従って合成した。
 化合物M15は、国際公開第2004/060970号に記載の方法に従って合成した。
<Synthesis Example 1> Synthesis of Compounds M1 to M15 Compound M1, Compound M2, and Compound M7 were synthesized according to the method described in WO 2002/045184.
Compound M3 was synthesized according to the method described in WO 2005/052027.
Compound M4 was synthesized according to the method described in International Publication No. 2012/086671.
Compound M5 and compound M12 were synthesized according to the method described in JP-A-2012-144722.
Compound M6 was synthesized according to the method described in WO 2005/049546.
Compound M8 was synthesized according to the method described in JP-A-2004-143419.
Compound M9 was synthesized according to the method described in JP-A-2011-174062.
Compound M10 was synthesized according to the method described in JP-A-2008-106241.
Compound M11 was synthesized according to the method described in International Publication No. 2012/133256.
Compound M13 was synthesized according to the method described in International Publication No. 2014/157016.
Compound M14 was synthesized according to the method described in WO 2008/143272.
Compound M15 was synthesized according to the method described in WO 2004/060970.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 <合成例2> 高分子化合物1の合成
 高分子化合物1は、化合物M1、化合物M2及び化合物M3を用いて、国際公開第2011/049241号に記載の方法に従って合成した。高分子化合物1のMnは8.9×104であり、Mwは4.2×105であった。
 高分子化合物1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、50:42.5:7.5のモル比で構成された共重合体である。
<Synthesis Example 2> Synthesis of Polymer Compound 1 Polymer Compound 1 was synthesized using Compound M1, Compound M2, and Compound M3 according to the method described in International Publication No. 2011/049241. Mn of polymer compound 1 was 8.9×10 4 and Mw was 4.2×10 5 .
In the polymer compound 1, the number of structural units derived from compound M1, structural units derived from compound M2, and structural units derived from compound M3 is 50: It is a copolymer composed of a molar ratio of 42.5:7.5.
 <合成例3> 高分子化合物2の合成
 高分子化合物2は、化合物M4、化合物M1、化合物M5及び化合物M6を用いて、国際公開第2011/081065号に記載の方法に従って合成した。高分子化合物2のMnは1.6×105であり、Mwは4.9×105であった。
 高分子化合物2は、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M1から誘導される構成単位と、化合物M5から誘導される構成単位と、化合物M6から誘導される構成単位とが、36:14:44:6のモル比で構成された共重合体である。
<Synthesis Example 3> Synthesis of Polymer Compound 2 Polymer Compound 2 was synthesized using Compound M4, Compound M1, Compound M5, and Compound M6 according to the method described in International Publication No. 2011/081065. The Mn of polymer compound 2 was 1.6×10 5 and the Mw was 4.9×10 5 .
According to the theoretical value determined from the amount of raw materials, polymer compound 2 consists of structural units derived from compound M4, structural units derived from compound M1, structural units derived from compound M5, and structural units derived from compound M6. It is a copolymer in which the structural units to be derived are constituted in a molar ratio of 36:14:44:6.
 <合成例4> 高分子化合物3の合成
 高分子化合物3は、化合物M4、化合物M7及び化合物M8を用いて、特開2012-216815号公報に記載の方法に従って合成した。高分子化合物3のMnは1.0×105であり、Mwは2.6×105であった。
 高分子化合物3は、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M7から誘導される構成単位と、化合物M8から誘導される構成単位とが、50:45:5のモル比で構成された共重合体である。
<Synthesis Example 4> Synthesis of Polymer Compound 3 Polymer Compound 3 was synthesized using Compound M4, Compound M7, and Compound M8 according to the method described in JP-A-2012-216815. Mn of polymer compound 3 was 1.0×10 5 and Mw was 2.6×10 5 .
According to the theoretical value obtained from the amount of the raw materials to be charged, the polymer compound 3 has a composition unit derived from compound M4, a composition unit derived from compound M7, and a composition unit derived from compound M8 of 50: It is a copolymer composed of a molar ratio of 45:5.
 <合成例5> 高分子化合物4の合成
 高分子化合物4は、化合物M1及び化合物M2を用いて、特開2012-36381号公報に記載の方法に従って合成した。高分子化合物4のMnは8.1×104であり、Mwは3.4×105であった。
 高分子化合物4は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
<Synthesis Example 5> Synthesis of Polymer Compound 4 Polymer Compound 4 was synthesized using Compound M1 and Compound M2 according to the method described in JP-A-2012-36381. The Mn of polymer compound 4 was 8.1×10 4 and the Mw was 3.4×10 5 .
According to the theoretical value obtained from the amount of raw materials, polymer compound 4 is a copolymer composed of structural units derived from compound M1 and structural units derived from compound M2 in a molar ratio of 50:50. It is a combination.
 <合成例6> 高分子化合物5の合成
 高分子化合物5は、化合物M9、化合物M6、化合物M7及び化合物M10を用いて、特開2012-144722号公報に記載の方法に従って合成した。高分子化合物5のMnは7.8×10であり、Mwは2.6×10であった。
 高分子化合物5は、仕込み原料の量から求めた理論値では、化合物M9から誘導される構成単位と、化合物M6から誘導される構成単位と、化合物M7から誘導される構成単位と、化合物M10から誘導される構成単位とが、50:30:12.5:7.5のモル比で構成された共重合体である。
<Synthesis Example 6> Synthesis of Polymer Compound 5 Polymer Compound 5 was synthesized using Compound M9, Compound M6, Compound M7, and Compound M10 according to the method described in JP-A-2012-144722. The Mn of polymer compound 5 was 7.8×10 4 and the Mw was 2.6×10 5 .
According to the theoretical value determined from the amount of raw materials, polymer compound 5 consists of a structural unit derived from compound M9, a structural unit derived from compound M6, a structural unit derived from compound M7, and a structural unit derived from compound M10. The derived structural units are a copolymer constituted in a molar ratio of 50:30:12.5:7.5.
 <合成例7> 高分子化合物6の合成
 高分子化合物6は、化合物M11、化合物M12及び化合物M13を用いて、国際公報第2012/133256号に記載の方法に準じて合成した。高分子化合物6のMnは8.1×10であり、Mwは2.4×10であった。
 高分子化合物6は、仕込み原料の量から求めた理論値では、化合物M11から誘導される構成単位と、化合物M12から誘導される構成単位と、化合物M13から誘導される構成単位とが、50:45:5のモル比で構成された共重合体である。
<Synthesis Example 7> Synthesis of Polymer Compound 6 Polymer Compound 6 was synthesized using Compound M11, Compound M12, and Compound M13 according to the method described in International Publication No. 2012/133256. The Mn of polymer compound 6 was 8.1×10 4 and the Mw was 2.4×10 5 .
In the polymer compound 6, according to the theoretical value determined from the amount of raw materials, the number of structural units derived from compound M11, structural units derived from compound M12, and structural units derived from compound M13 is 50: It is a copolymer composed of a molar ratio of 45:5.
 <合成例8> 高分子化合物7の合成
 高分子化合物7は、化合物M4、化合物M1、化合物M5、化合物M8、化合物M14及び化合物M15を用いて、特開2015-35600号公報に記載の方法に従って合成した。高分子化合物7のMnは9.1×10であり、Mwは2.3×10であった。 高分子化合物7は、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M1から誘導される構成単位と、化合物M5から誘導される構成単位と、化合物M8から誘導される構成単位と、化合物M14から誘導される構成単位と、化合物M15から誘導される構成単位とが、36:14:41:5:3:1のモル比で構成された共重合体である。
<Synthesis Example 8> Synthesis of Polymer Compound 7 Polymer Compound 7 was prepared using Compound M4, Compound M1, Compound M5, Compound M8, Compound M14, and Compound M15 according to the method described in JP-A No. 2015-35600. Synthesized. Mn of polymer compound 7 was 9.1×10 4 and Mw was 2.3×10 5 . According to the theoretical value determined from the amount of raw materials, polymer compound 7 consists of a structural unit derived from compound M4, a structural unit derived from compound M1, a structural unit derived from compound M5, and a structural unit derived from compound M8. A copolymer composed of a structural unit derived from compound M14, a structural unit derived from compound M15, and a structural unit derived from compound M15 in a molar ratio of 36:14:41:5:3:1. be.
 <比較例CD1> 発光素子CD1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。正孔注入層を積層した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
<Comparative Example CD1> Production and evaluation of light emitting device CD1 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating. The substrate on which the hole injection layer was laminated was heated on a hot plate at 50° C. for 3 minutes in an air atmosphere, and then further heated at 230° C. for 15 minutes to form a hole injection layer.
(正孔輸送層の形成)
 シクロヘキシルベンゼンとキシレンとを質量比で61.8:38.2となるように混合した溶媒(以下、「有機溶媒1」ともいう。)に、高分子化合物1を有機溶媒1の量に対して0.6質量%の濃度で溶解させた。得られた溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることにより、正孔輸送層を形成した。
(Formation of hole transport layer)
Add polymer compound 1 to the amount of organic solvent 1 in a solvent containing cyclohexylbenzene and xylene in a mass ratio of 61.8:38.2 (hereinafter also referred to as "organic solvent 1"). It was dissolved at a concentration of 0.6% by mass. Using the obtained solution, a film with a thickness of 20 nm was formed by spin coating on the hole injection layer, and a positive injection layer was formed by heating it on a hot plate at 200°C for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
(発光層の形成)
 有機溶媒1に、高分子化合物2を有機溶媒1の量に対して0.9質量%の濃度で溶解させた。得られた溶液を用いて、正孔輸送層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、10分間加熱させることにより、発光層を形成した。
(Formation of light emitting layer)
Polymer compound 2 was dissolved in organic solvent 1 at a concentration of 0.9% by mass based on the amount of organic solvent 1. Using the obtained solution, a film with a thickness of 60 nm was formed by spin coating on the hole transport layer, and the film was heated at 180°C for 10 minutes on a hot plate in a nitrogen gas atmosphere to emit light. formed a layer.
(電子注入層及び陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、発光層の上に、電子注入材料であるフッ化ナトリウムを4nm蒸着して電子注入層を形成し、次いで、電子注入層の上に、アルミニウムを約80nm蒸着して陰極を形成した。蒸着後、ガラス基板を用いて封止することにより、発光素子CD1を作製した。
(Formation of electron injection layer and cathode)
After reducing the pressure of the substrate on which the light-emitting layer has been formed to 1×10 −4 Pa or less in a vapor deposition machine, sodium fluoride, which is an electron injection material, is vapor-deposited to a thickness of 4 nm on the light-emitting layer to form an electron injection layer. Next, aluminum was deposited to a thickness of about 80 nm on the electron injection layer to form a cathode. After the vapor deposition, the light emitting element CD1 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子CD1に電圧を印加することにより、EL発光が観測された。発光素子CD1の1000cd/mにおける発光効率は、3.9cd/Aであった。
(Evaluation of light emitting device)
EL light emission was observed by applying a voltage to the light emitting element CD1. The luminous efficiency of the light emitting element CD1 at 1000 cd/m 2 was 3.9 cd/A.
 <実施例D1> 発光素子D1の作製と評価
 比較例CD1の(発光層の形成)における、「有機溶媒1」に代えて、「有機溶媒1に、シリコーンオイルであるKF-96 1000cs(信越化学工業社製、式(2)(式中、B1がメチル基であり、sが0である)で表される構成単位を有し、重合度が300~400である高分子化合物B)を、有機溶媒1の量に対して10質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD1と同様にして、発光素子D1を作製した。
 発光素子D1に電圧を印加することにより、EL発光が観測された。発光素子D1の1000cd/mにおける発光効率は、4.5cd/Aであった。
<Example D1> Production and evaluation of light emitting element D1 In place of "organic solvent 1" in Comparative Example CD1 (formation of light emitting layer), "KF-96 1000cs (Shin-Etsu Chemical Co., Ltd.), which is a silicone oil, was added to organic solvent 1. Manufactured by Kogyo Co., Ltd., a polymer compound B) having a structural unit represented by formula (2) (in the formula, B 1 is a methyl group and s is 0) and has a degree of polymerization of 300 to 400. Light-emitting element D1 was produced in the same manner as Comparative Example CD1, except that a solvent mixed at a concentration of 10 mass ppm with respect to the amount of organic solvent 1 was used.
EL light emission was observed by applying a voltage to the light emitting element D1. The luminous efficiency of the light emitting element D1 at 1000 cd/m 2 was 4.5 cd/A.
 <実施例D2> 発光素子D2の作製と評価
 比較例CD1の(発光層の形成)における、「有機溶媒1」に代えて、「有機溶媒1に、KF-96 1000cs(信越化学工業社製)を、有機溶媒1の量に対して100質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD1と同様にして、発光素子D2を作製した。
 発光素子D2に電圧を印加することにより、EL発光が観測された。発光素子D2の1000cd/mにおける発光効率は、4.8cd/Aであった。
<Example D2> Preparation and evaluation of light-emitting element D2 In place of "organic solvent 1" in Comparative example CD1 (formation of light-emitting layer), "KF-96 1000cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to organic solvent 1. Light-emitting element D2 was produced in the same manner as Comparative Example CD1, except that a "solvent mixed with the following at a concentration of 100 mass ppm relative to the amount of organic solvent 1" was used.
EL light emission was observed by applying a voltage to the light emitting element D2. The luminous efficiency of the light emitting element D2 at 1000 cd/m 2 was 4.8 cd/A.
 <実施例D3> 発光素子D3の作製と評価
 比較例CD1の(発光層の形成)における、「有機溶媒1」に代えて、「有機溶媒1に、KF-96 1000cs(信越化学工業社製)を、有機溶媒1の量に対して1000質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD1と同様にして、発光素子D3を作製した。
 発光素子D3に電圧を印加することにより、EL発光が観測された。発光素子D3の1000cd/mにおける発光効率は、4.2cd/Aであった。
<Example D3> Production and evaluation of light-emitting element D3 In place of "organic solvent 1" in Comparative Example CD1 (formation of light-emitting layer), KF-96 1000cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to "organic solvent 1". Light-emitting element D3 was produced in the same manner as Comparative Example CD1, except that a "solvent mixed with the following at a concentration of 1000 ppm by mass based on the amount of organic solvent 1" was used.
EL light emission was observed by applying a voltage to the light emitting element D3. The luminous efficiency of the light emitting element D3 at 1000 cd/m 2 was 4.2 cd/A.
 比較例CD1、並びに、実施例D1、D2及びD3の結果を表2に示す。 Table 2 shows the results of Comparative Example CD1 and Examples D1, D2, and D3.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 <比較例CD2> 発光素子CD2の作製と評価
 比較例CD1の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物3」を用いた以外は、比較例CD1と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することにより、EL発光が観測された。発光素子CD2の1000cd/mにおける発光効率は、3.8cd/Aであった。
<Comparative Example CD2> Fabrication and Evaluation of Light Emitting Device CD2 The same procedure as Comparative Example CD1 was performed except that “polymer compound 3” was used instead of “polymer compound 2” in (formation of the light emitting layer) of comparative example CD1. A light emitting device CD2 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD2. The luminous efficiency of the light emitting element CD2 at 1000 cd/m 2 was 3.8 cd/A.
 <比較例CD3> 発光素子CD3の作製と評価
 実施例D1の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物3」を用いた以外は、実施例D1と同様にして、発光素子CD3を作製した。
 発光素子CD3に電圧を印加することにより、EL発光が観測された。発光素子CD3の1000cd/mにおける発光効率は、3.0cd/Aであった。
<Comparative Example CD3> Preparation and evaluation of light emitting device CD3 Same as Example D1 except that "polymer compound 3" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D1. A light emitting device CD3 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD3. The luminous efficiency of the light emitting element CD3 at 1000 cd/m 2 was 3.0 cd/A.
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D2の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物3」を用いた以外は、実施例D2と同様にして、発光素子CD4を作製した。
 発光素子CD4に電圧を印加することにより、EL発光が観測された。発光素子CD4の1000cd/mにおける発光効率は、2.9cd/Aであった。
<Comparative Example CD4> Production and evaluation of light emitting device CD4 Same as Example D2 except that "polymer compound 3" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D2. A light emitting device CD4 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD4. The luminous efficiency of the light emitting element CD4 at 1000 cd/m 2 was 2.9 cd/A.
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D3の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物3」を用いた以外は、実施例D3と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することにより、EL発光が観測された。発光素子CD5の1000cd/mにおける発光効率は、2.6cd/Aであった。
<Comparative Example CD5> Production and evaluation of light emitting device CD5 Same as Example D3 except that "polymer compound 3" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D3. A light emitting device CD5 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD5. The luminous efficiency of the light emitting element CD5 at 1000 cd/m 2 was 2.6 cd/A.
 比較例CD2、CD3、CD4及びCD5の結果を表3に示す。 The results of Comparative Examples CD2, CD3, CD4, and CD5 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 <比較例CD6> 発光素子CD6の作製と評価
 比較例CD1の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物4」を用いた以外は、比較例CD1と同様にして、発光素子CD6を作製した。
 発光素子CD6に電圧を印加することにより、EL発光が観測された。発光素子CD6の1000cd/mにおける発光効率は、0.2cd/Aであった。
<Comparative Example CD6> Fabrication and Evaluation of Light-emitting Element CD6 Comparative Example CD1 and Comparative Example CD1 except that “Polymer Compound 4” was used instead of “Polymer Compound 2” in (formation of the light-emitting layer) of Comparative Example CD1. A light emitting device CD6 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD6. The luminous efficiency of the light emitting element CD6 at 1000 cd/m 2 was 0.2 cd/A.
 <比較例CD7> 発光素子CD7の作製と評価
 実施例D1の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物4」を用いた以外は、実施例D1と同様にして、発光素子CD7を作製した。
 発光素子CD7に電圧を印加することにより、EL発光が観測された。発光素子CD7の1000cd/mにおける発光効率は、0.2cd/Aであった。
<Comparative Example CD7> Preparation and evaluation of light emitting device CD7 Same as Example D1 except that "polymer compound 4" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D1. A light emitting device CD7 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD7. The luminous efficiency of the light emitting element CD7 at 1000 cd/m 2 was 0.2 cd/A.
 <比較例CD8> 発光素子CD8の作製と評価
 実施例D2の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物4」を用いた以外は、実施例D2と同様にして、発光素子CD8を作製した。
 発光素子CD8に電圧を印加することにより、EL発光が観測された。発光素子CD8の1000cd/mにおける発光効率は、0.2cd/Aであった。
<Comparative Example CD8> Preparation and evaluation of light emitting device CD8 Same as Example D2 except that "polymer compound 4" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D2. A light emitting device CD8 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD8. The luminous efficiency of the light emitting element CD8 at 1000 cd/m 2 was 0.2 cd/A.
 <比較例CD9> 発光素子CD9の作製と評価
 実施例D3の(発光層の形成)における、「高分子化合物2」に代えて、「高分子化合物4」を用いた以外は、実施例D3と同様にして、発光素子CD9を作製した。
 発光素子CD9に電圧を印加することにより、EL発光が観測された。発光素子CD9の1000cd/mにおける発光効率は、0.2cd/Aであった。
<Comparative Example CD9> Preparation and evaluation of light emitting device CD9 Same as Example D3 except that "polymer compound 4" was used instead of "polymer compound 2" in (formation of light emitting layer) of example D3. A light emitting device CD9 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element CD9. The luminous efficiency of the light emitting element CD9 at 1000 cd/m 2 was 0.2 cd/A.
 比較例CD6、CD7、CD8及びCD9の結果を表4に示す。 The results of Comparative Examples CD6, CD7, CD8 and CD9 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 <比較例CD10> 発光素子CD10の作製と評価
 正孔輸送層及び発光層を以下のようにして形成したこと以外は比較例CD1と同様にして、発光素子CD10を作製した。
<Comparative Example CD10> Production and Evaluation of Light Emitting Device CD10 A light emitting device CD10 was produced in the same manner as Comparative Example CD1 except that the hole transport layer and the light emitting layer were formed as follows.
(正孔輸送層の形成)
 シクロヘキシルベンゼン、4-メトキシトルエン、3-フェノキシトルエン、及び2,6-ジ-tert-ブチル-4-メチルフェノールを質量比で48.39:29.97:21.63:0.01となるように混合した溶媒(以下、「有機溶媒2」ともいう。)に、高分子化合物5を有機溶媒2の量に対して0.6質量%の濃度で溶解させた。得られた溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることにより、正孔輸送層を形成した。
(Formation of hole transport layer)
Cyclohexylbenzene, 4-methoxytoluene, 3-phenoxytoluene, and 2,6-di-tert-butyl-4-methylphenol were mixed in a mass ratio of 48.39:29.97:21.63:0.01. Polymer compound 5 was dissolved in a solvent mixed with (hereinafter also referred to as "organic solvent 2") at a concentration of 0.6% by mass based on the amount of organic solvent 2. Using the obtained solution, a film with a thickness of 20 nm was formed by spin coating on the hole injection layer, and a positive injection layer was formed by heating it on a hot plate at 200°C for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
(発光層の形成)
 比較例CD1の(発光層の形成)における、「有機溶媒1に、高分子化合物2を有機溶媒1の量に対して0.9質量%の濃度で溶解させた溶液」に代えて、「有機溶媒2に、高分子化合物6を有機溶媒2の量に対して0.9質量%の濃度で溶解させた溶液」を用いた以外は、比較例CD1と同様にして、発光層を形成した。
(Formation of light emitting layer)
In Comparative Example CD1 (formation of light emitting layer), instead of "a solution in which polymer compound 2 was dissolved in organic solvent 1 at a concentration of 0.9% by mass based on the amount of organic solvent 1", "organic A light-emitting layer was formed in the same manner as Comparative Example CD1, except that a solution in which polymer compound 6 was dissolved in solvent 2 at a concentration of 0.9% by mass based on the amount of organic solvent 2 was used.
 発光素子CD10に電圧を印加することにより、EL発光が観測された。発光素子CD10の1000cd/mにおける発光効率は、1.9cd/Aであった。 EL light emission was observed by applying a voltage to the light emitting element CD10. The luminous efficiency of the light emitting element CD10 at 1000 cd/m 2 was 1.9 cd/A.
 <実施例D4> 発光素子D4の作製と評価
 比較例CD10の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、シリコーンオイルであるKF-50 100cs(信越化学工業社製、式(2)(式中、B1がメチル基であり、sが0である)で表される構成単位と、式(2)(式中、Bがフェニル基であり、sが0である)で表される構成単位とを有する高分子化合物B)を、有機溶媒2の量に対して10質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD10と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することにより、EL発光が観測された。発光素子D4の1000cd/mにおける発光効率は、4.2cd/Aであった。
<Example D4> Production and evaluation of light-emitting element D4 In place of "organic solvent 2" in Comparative Example CD10 (formation of light-emitting layer), "KF-50 100cs (Shin-Etsu Chemical Co., Ltd.), which is a silicone oil, was added to organic solvent 2. Manufactured by Kogyo Co., Ltd., a structural unit represented by formula (2) (in which B 1 is a methyl group and s is 0), and a structural unit represented by formula (2) (in which B 1 is a phenyl group, Comparative Example CD10 except that a solvent in which a polymer compound B) having a structural unit represented by s is 0 was mixed at a concentration of 10 ppm by mass with respect to the amount of organic solvent 2 was used. Light emitting device D4 was produced in the same manner.
EL light emission was observed by applying a voltage to the light emitting element D4. The luminous efficiency of light emitting element D4 at 1000 cd/m 2 was 4.2 cd/A.
 <実施例D5> 発光素子D5の作製と評価
 比較例CD10の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、KF-50 100cs(信越化学工業社製)を、有機溶媒2の量に対して100質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD10と同様にして、発光素子D5を作製した。
 発光素子D5に電圧を印加することにより、EL発光が観測された。発光素子D5の1000cd/mにおける発光効率は、4.3cd/Aであった。
<Example D5> Production and evaluation of light-emitting element D5 In place of "organic solvent 2" in Comparative Example CD10 (formation of light-emitting layer), "KF-50 100cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to organic solvent 2. Light-emitting element D5 was produced in the same manner as Comparative Example CD10, except that a "solvent mixed at a concentration of 100 mass ppm with respect to the amount of organic solvent 2" was used.
EL light emission was observed by applying a voltage to the light emitting element D5. The luminous efficiency of the light emitting element D5 at 1000 cd/m 2 was 4.3 cd/A.
 <実施例D6> 発光素子D6の作製と評価
 比較例CD10の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、KF-50 100cs(信越化学工業社製)を、有機溶媒2の量に対して1000質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD10と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することにより、EL発光が観測された。発光素子D6の1000cd/mにおける発光効率は、2.2cd/Aであった。
<Example D6> Preparation and evaluation of light emitting element D6 In place of "organic solvent 2" in Comparative example CD10 (formation of light emitting layer), "KF-50 100cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to organic solvent 2. Light-emitting element D6 was produced in the same manner as Comparative Example CD10, except that a "solvent mixed with the following at a concentration of 1000 ppm by mass based on the amount of organic solvent 2" was used.
EL light emission was observed by applying a voltage to the light emitting element D6. The luminous efficiency of the light emitting element D6 at 1000 cd/m 2 was 2.2 cd/A.
 比較例CD10、並びに、実施例D4、D5及びD6の結果を表5に示す。 Table 5 shows the results of Comparative Example CD10 and Examples D4, D5, and D6.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 <比較例CD11> 発光素子CD11の作製と評価
 比較例CD10の(発光層の形成)における、「高分子化合物6」に代えて、「高分子化合物7」を有機溶媒2の量に対して1.2質量%の濃度で溶解させた溶液を用いて、85nmの厚さで成膜した以外は、比較例CD10と同様にして、発光素子CD11を作製した。
 発光素子CD11に電圧を印加することにより、EL発光が観測された。発光素子CD11の1000cd/mにおける発光効率は、3.6cd/Aであった。
<Comparative Example CD11> Preparation and Evaluation of Light-emitting Element CD11 In place of "High-molecular compound 6" in Comparative Example CD10 (formation of light-emitting layer), "High-molecular compound 7" was added at a ratio of 1% to the amount of organic solvent 2. A light emitting device CD11 was produced in the same manner as Comparative Example CD10, except that a film having a thickness of 85 nm was formed using a solution dissolved at a concentration of .2% by mass.
EL light emission was observed by applying a voltage to the light emitting element CD11. The luminous efficiency of the light emitting element CD11 at 1000 cd/m 2 was 3.6 cd/A.
 <実施例D7> 発光素子D7の作製と評価
 比較例CD11の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、シリコーンオイルであるKF-50 100cs(信越化学工業社製)を、有機溶媒2の量に対して10質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD11と同様にして、発光素子D7を作製した。
 発光素子D7に電圧を印加することにより、EL発光が観測された。発光素子D7の1000cd/m2における発光効率は、5.6cd/Aであった。
<Example D7> Preparation and evaluation of light emitting element D7 In place of "organic solvent 2" in Comparative example CD11 (formation of light emitting layer), "KF-50 100cs (Shin-Etsu Chemical Co., Ltd.), which is a silicone oil, was added to organic solvent 2. Light-emitting element D7 was produced in the same manner as Comparative Example CD11, except that a "solvent prepared by mixing the following compounds (manufactured by Kogyo Co., Ltd.) at a concentration of 10 mass ppm with respect to the amount of organic solvent 2" was used.
EL light emission was observed by applying a voltage to the light emitting element D7. The luminous efficiency of light emitting element D7 at 1000 cd/m2 was 5.6 cd/A.
 <実施例D8> 発光素子D8の作製と評価
 比較例CD11の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、KF-50 100cs(信越化学工業社製)を、有機溶媒2の量に対して100質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD11と同様にして、発光素子D8を作製した。
 発光素子D8に電圧を印加することにより、EL発光が観測された。発光素子D8の1000cd/mにおける発光効率は、6.0cd/Aであった。
<Example D8> Preparation and evaluation of light-emitting element D8 In place of "organic solvent 2" in Comparative example CD11 (formation of light-emitting layer), "KF-50 100cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to organic solvent 2. Light-emitting element D8 was produced in the same manner as Comparative Example CD11, except that a "solvent mixed at a concentration of 100 mass ppm with respect to the amount of organic solvent 2" was used.
EL light emission was observed by applying a voltage to the light emitting element D8. The luminous efficiency of light emitting element D8 at 1000 cd/m 2 was 6.0 cd/A.
 <実施例D9> 発光素子D9の作製と評価
 比較例CD11の(発光層の形成)における、「有機溶媒2」に代えて、「有機溶媒2に、KF-50 100cs(信越化学工業社製)を、有機溶媒2の量に対して1000質量ppmの濃度で混合した溶媒」を用いた以外は、比較例CD11と同様にして、発光素子D9を作製した。
 発光素子D9に電圧を印加することにより、EL発光が観測された。発光素子D9の1000cd/mにおける発光効率は、3.8cd/Aであった。
<Example D9> Production and evaluation of light-emitting element D9 In place of "organic solvent 2" in Comparative Example CD11 (formation of light-emitting layer), "KF-50 100cs (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to organic solvent 2. Light-emitting element D9 was produced in the same manner as Comparative Example CD11, except that a "solvent mixed at a concentration of 1000 ppm by mass with respect to the amount of organic solvent 2" was used.
EL light emission was observed by applying a voltage to the light emitting element D9. The luminous efficiency of light emitting element D9 at 1000 cd/m 2 was 3.8 cd/A.
 比較例CD11、並びに、実施例D7、D8及びD9の結果を表6に示す。 Table 6 shows the results of Comparative Example CD11 and Examples D7, D8, and D9.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 高分子化合物2及びKF-96 1000csを使用した実施例D1、D2及びD3、並びに、高分子化合物6及びKF-50 100csを使用した実施例D4、D5及びD6、並びに、高分子化合物7及びKF-50 100csを使用した実施例D7、D8及びD9は、優れた発光効率を有していた。高分子化合物2、高分子化合物6及び高分子化合物7は、高分子化合物Aに該当し、式(1)で表される構成単位を含んでおり、KF-96 1000cs及びKF-50 100csは高分子化合物Bに該当する。実施例D1~D9が、優れた発光効率を有する理由を、本発明者らは、高分子化合物Aと高分子化合物Bとを併用しているためであると推測した。高分子化合物2、高分子化合物6及び高分子化合物7は、縮合環であるアリーレン基を有するジアミンに由来する構成単位を有しているが、縮合環は一般に平面構造になりやすい。縮合環を有する式(1)で表される構成単位は、分子間の縮合環構造が重なり合った形状を取りやすく、その様な分子間相互作用が生じると無放射失活過程が促進され、発光効率が低下する可能性がある。しかしながら、高分子化合物Aと高分子化合物Bとを併用することにより、高分子化合物A同士の分子間相互作用が阻害され、その結果発光効率が向上したと本発明者らは推測した。なお、高分子化合物Bは、化学的安定性に優れており、有機EL素子の発光特性を低下させることが無いため、高分子化合物Aと併用する材料として好適であった。 Examples D1, D2 and D3 using polymer compound 2 and KF-96 1000cs, Examples D4, D5 and D6 using polymer compound 6 and KF-50 100cs, and polymer compound 7 and KF Examples D7, D8, and D9 using −50 100 cs had excellent luminous efficiency. Polymer compound 2, polymer compound 6, and polymer compound 7 correspond to polymer compound A and contain the structural unit represented by formula (1), and KF-96 1000cs and KF-50 100cs are polymer compound A. This corresponds to molecular compound B. The present inventors speculated that the reason why Examples D1 to D9 had excellent luminous efficiency was that polymer compound A and polymer compound B were used together. The polymer compound 2, the polymer compound 6, and the polymer compound 7 have a structural unit derived from a diamine having an arylene group that is a condensed ring, but the condensed ring generally tends to have a planar structure. The structural unit represented by formula (1) having a condensed ring tends to have a shape in which the intermolecular condensed ring structures overlap, and when such intermolecular interaction occurs, a non-radiative deactivation process is promoted and light emission occurs. Efficiency may be reduced. However, the present inventors conjectured that by using polymer compound A and polymer compound B together, the intermolecular interaction between polymer compounds A was inhibited, and as a result, the luminous efficiency was improved. Note that polymer compound B was suitable as a material to be used in combination with polymer compound A because it has excellent chemical stability and does not deteriorate the light emitting characteristics of the organic EL element.

Claims (15)

  1.  式(1)で表される構成単位を含む高分子化合物Aと、式(2)で表される構成単位を含む高分子化合物Bと、溶媒とを含有する、組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Arは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するArは、同一であっても異なっていてもよい。
     Ar’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するAr’は、同一であっても異なっていてもよい。
     Zは、縮合環であるアリーレン基又は縮合環である2価の複素環基であり、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     B1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、ヒドロキシアルキル基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するB1は、同一であっても異なっていてもよい。
     sは0以上の整数を表す。複数存在するsは、同一であっても異なっていてもよい。]
    A composition containing a polymer compound A containing a structural unit represented by formula (1), a polymer compound B containing a structural unit represented by formula (2), and a solvent.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    Ar represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ars may be the same or different.
    Ar' is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of Ar's may be the same or different.
    Z is a condensed ring arylene group or a condensed ring divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula,
    B 1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a hydroxyalkyl group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom; The group may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of B 1 's may be the same or different.
    s represents an integer greater than or equal to 0. A plurality of s may be the same or different. ]
  2.  前記高分子化合物Aの含有量が、前記溶媒に対して1000質量ppm超えであり、且つ、前記高分子化合物Bの含有量が、前記溶媒に対して0質量ppmを超え1000質量ppm以下である、請求項1に記載の組成物。 The content of the polymer compound A is more than 1000 mass ppm relative to the solvent, and the content of the polymer compound B is more than 0 mass ppm and 1000 mass ppm or less relative to the solvent. , the composition of claim 1.
  3.  前記Arが置換基を有していてもよいアリーレン基であり、且つ、前記Ar’が置換基を有していてもよいアリール基である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the Ar is an arylene group which may have a substituent, and the Ar' is an aryl group which may have a substituent.
  4.  前記Arが置換基を有していてもよいフェニレン基であり、且つ、前記Ar’が置換基を有していてもよいフェニル基である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the Ar is a phenylene group that may have a substituent, and the Ar' is a phenyl group that may have a substituent.
  5.  前記Zが、2環式、3環式、4環式、5環式若しくは6環式のアリーレン基、又は、2環式、3環式、4環式、5環式若しくは6環式の2価の複素環基であり、これらの基は置換基を有していてもよい、請求項1又は2に記載の組成物。 Z is a bicyclic, tricyclic, tetracyclic, pentacyclic or hexacyclic arylene group, or a bicyclic, tricyclic, tetracyclic, pentacyclic or hexacyclic arylene group; The composition according to claim 1 or 2, which is a valent heterocyclic group, and these groups may have a substituent.
  6.  前記Zが、3環式のアリーレン基、又は、3環式の2価の複素環基であり、これらの基は置換基を有していてもよい、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the Z is a tricyclic arylene group or a tricyclic divalent heterocyclic group, and these groups may have a substituent. .
  7.  前記B1が、アルキル基又はアリール基であり、これらの基は置換基を有していてもよい、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the B 1 is an alkyl group or an aryl group, and these groups may have a substituent.
  8.  前記高分子化合物Aが、式(Y)で表される構成単位及び式(X)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を更に含む、請求項1又は2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
     ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。ArX4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2が複数存在する場合、それらは同一でも異なっていてもよい。RX3が複数存在する場合、それらは同一でも異なっていてもよい。]
    3. The polymer compound A further comprises at least one structural unit selected from the group consisting of a structural unit represented by formula (Y) and a structural unit represented by formula (X). Compositions as described.
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; The group may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the formula,
    a X1 and a X2 each independently represent an integer of 0 or more.
    Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
    Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. These groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When a plurality of Ar X2 's exist, they may be the same or different. When a plurality of Ar X4 's exist, they may be the same or different.
    R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When a plurality of R x2s exist, they may be the same or different. When a plurality of R X3s exist, they may be the same or different. ]
  9.  前記高分子化合物Aが、前記式(Y)で表される構成単位として、式(Y-1)で表される構成単位又は式(Y-2)で表される構成単位を含む、請求項8に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY1は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     XY1は、-C(RY22-、-C(RY2)=C(RY2)-又は-C(RY22-C(RY22-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
    A claim in which the polymer compound A includes a structural unit represented by formula (Y-1) or a structural unit represented by formula (Y-2) as the structural unit represented by formula (Y). 8. The composition according to 8.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula,
    R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R Y1s may be the same or different, and may be bonded to each other to form a ring with the carbon atoms to which they are bonded.
    X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )-, or -C(R Y2 ) 2 -C(R Y2 ) 2 -. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups are substituents. It may have. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. A plurality of R Y2s may be the same or different, and may be bonded to each other to form a ring with the carbon atoms to which they are bonded. ]
  10.  前記溶媒が、芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the solvent is an aromatic hydrocarbon solvent or an aromatic ether solvent.
  11.  前記溶媒が2種以上の溶媒を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the solvent contains two or more types of solvents.
  12.  前記2種以上の溶媒のうちの少なくとも1種が、芳香族炭化水素系溶媒又は芳香族エーテル系溶媒である、請求項11に記載の組成物。 The composition according to claim 11, wherein at least one of the two or more solvents is an aromatic hydrocarbon solvent or an aromatic ether solvent.
  13.  前記2種以上の溶媒のうちの少なくとも2種が、芳香族炭化水素系溶媒及び芳香族エーテル系溶媒からなる群より選ばれる少なくとも2種である、請求項11に記載の組成物。 The composition according to claim 11, wherein at least two of the two or more solvents are at least two selected from the group consisting of aromatic hydrocarbon solvents and aromatic ether solvents.
  14.  正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, further comprising at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, and an antioxidant.
  15.  陽極と、陰極と、前記陽極及び前記陰極の間に設けられた1又は複数の有機層と、を有する発光素子の製造方法であり、
     前記有機層の少なくとも1層を請求項1又は2に記載の組成物を用いて湿式法により形成する工程を含む、前記発光素子の製造方法。
    A method for manufacturing a light-emitting element having an anode, a cathode, and one or more organic layers provided between the anode and the cathode,
    A method for manufacturing the light emitting device, comprising the step of forming at least one of the organic layers by a wet method using the composition according to claim 1 or 2.
PCT/JP2023/005678 2022-03-25 2023-02-17 Composition and method for manufacturing light-emitting element using same WO2023181736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049232 2022-03-25
JP2022-049232 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181736A1 true WO2023181736A1 (en) 2023-09-28

Family

ID=88021644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005678 WO2023181736A1 (en) 2022-03-25 2023-02-17 Composition and method for manufacturing light-emitting element using same

Country Status (3)

Country Link
JP (1) JP7348417B1 (en)
TW (1) TW202348779A (en)
WO (1) WO2023181736A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001328A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Polymer compound, and light emitting device using the same
WO2019078080A1 (en) * 2017-10-20 2019-04-25 Dic株式会社 Leveling agent, ink composition for formation of functional layer, and layered electronic component
JP2020068308A (en) * 2018-10-25 2020-04-30 住友化学株式会社 Light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001328A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Polymer compound, and light emitting device using the same
WO2019078080A1 (en) * 2017-10-20 2019-04-25 Dic株式会社 Leveling agent, ink composition for formation of functional layer, and layered electronic component
JP2020068308A (en) * 2018-10-25 2020-04-30 住友化学株式会社 Light emitting element

Also Published As

Publication number Publication date
JP7348417B1 (en) 2023-09-20
JP2023143711A (en) 2023-10-06
TW202348779A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
WO2017170313A1 (en) Light-emitting element
KR20190052114A (en) A light emitting device and a composition useful for manufacturing the light emitting device
JP7346015B2 (en) light emitting element
US20210159416A1 (en) Light emitting device
JP2018157207A (en) Light emitting element
WO2017154884A1 (en) Light-emitting element
WO2018198974A1 (en) Light-emitting element
JP6399243B2 (en) Light emitting element
JP7348417B1 (en) Composition and method for producing light emitting device using the same
KR20230073271A (en) Light emitting device and composition
JP7439312B2 (en) Composition and method for producing light emitting device using the same
WO2023181738A1 (en) Composition and method for manufacturing light-emitting element using same
JP6600110B1 (en) Light emitting element
US11158829B2 (en) Method for producing a composition for a light-emitting element and method for evaluating same
WO2017221822A1 (en) Light emitting element
WO2017154883A1 (en) Light-emitting element
JP2017183723A (en) Light-emitting element
JP6399248B2 (en) Light emitting element
KR20230074202A (en) Light emitting device and composition
WO2023204174A1 (en) Composition and light emitting element using same
JP2024070816A (en) Composition and light-emitting device containing same
KR20230070280A (en) Light emitting device and composition
JP2023050137A (en) Composition and light emitting element containing the same
KR20230074204A (en) Light emitting device and composition
CN116917371A (en) Polymer compound, composition, and light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774335

Country of ref document: EP

Kind code of ref document: A1