WO2023181615A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2023181615A1
WO2023181615A1 PCT/JP2023/002026 JP2023002026W WO2023181615A1 WO 2023181615 A1 WO2023181615 A1 WO 2023181615A1 JP 2023002026 W JP2023002026 W JP 2023002026W WO 2023181615 A1 WO2023181615 A1 WO 2023181615A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
phase
winding
coils
lead
Prior art date
Application number
PCT/JP2023/002026
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 疋田
幸司 森
Original Assignee
株式会社デンソートリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソートリム filed Critical 株式会社デンソートリム
Publication of WO2023181615A1 publication Critical patent/WO2023181615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the description in this specification relates to a rotating electric machine, and is useful for use as a generator or starter for a two-wheeled vehicle, for example.
  • Patent Document 1 describes a winding structure that can selectively change output characteristics.
  • the windings forming the coil will continue from the coil at the beginning of winding to the coil at the end of winding by going around one circumference in the circumferential direction. That is, if there is one system of coils, the winding start position and winding end position of the conducting wire forming the coil can be set close to each other. On the other hand, if multiple systems (n systems) of coils are arranged consecutively within an angle range of 360 degrees divided by n, the winding start position and winding end position of the conducting wire forming the coil will be separated. Therefore, a long lead wire is disposed on the stator up to the connection portion between the conducting wire and the lead wire. However, in the rotating electric machine described in Patent Document 1, the structure of this lead wire has not been considered.
  • the present disclosure aims to increase the vibration resistance of the lead wire and improve the heat dissipation of the coil lead wire to suppress temperature rise by devising the arrangement of the lead wire and the lead wire.
  • a first aspect of the present disclosure includes a rotor having a plurality of permanent magnets arranged in the circumferential direction and rotating together with a shaft, a plurality of teeth and a plurality of coils arranged in the teeth, and a radially outer end of the teeth.
  • This is a rotating electrical machine that includes magnets and a stator facing each other.
  • a first stator of the present disclosure includes a disk-shaped base portion fixed to a fixed portion, x number of teeth portions extending radially outward from the base portion, and winding conductive wires arranged on the teeth portions. It is equipped with x number of coils.
  • a first aspect of the present disclosure is a lead wire electrically connected to a conducting wire, a winding start lead wire and a winding end lead wire that connect the lead wire to a winding start end of a coil and a winding end end of the coil of the conductor; It includes a clip that fixes the connection portion between the winding start lead wire and the winding end lead wire and the lead wire to the stator, and a control device that electrically connects to the lead wire and controls input and output power of the coil.
  • the first aspect of the present disclosure is that the control device controls the energization of the coil to the k phase, the coil is divided into n systems, and n is 2 or more and less than or equal to the number obtained by dividing the x number of the teeth part by the k phase of the coil. is a natural number, and the n-divided coils are continuously arranged within an angular range of 360 degrees divided by n. Then, the conductor is wound continuously in the circumferential direction with coils of the same phase, the number of which is obtained by dividing the x number of the teeth by n and the k phase of the coil, and the number of clips is n, and the clips connect the coils.
  • winding start lead line and the winding end lead line are wired so as to thread between the tooth parts, and converge at a convergence part located near the position where the clip is fixed.
  • a clip for fixing a connecting portion between a lead wire and a lead wire to the stator is fixed to a base portion of the stator near the coil located approximately in the middle of a division line that divides the coil into n. Therefore, the length of the lead line can be shortened. Therefore, in the first aspect of the present disclosure, an increase in the mass of the lead wire is also suppressed, and deterioration of the vibration resistance of the lead wire is also suppressed.
  • the winding start lead line and the winding end lead line are wired so as to thread between the teeth parts, and converge at a convergence part located near the position where the clip is fixed. There is. Therefore, the winding start wire and the winding end lead wire are concentrated particularly at the convergence part, which causes deterioration of heat dissipation.
  • the first embodiment of the present disclosure uses n number of clips, it is possible to reduce the number of lead lines bound by the clips.
  • the number of lead wires covering the coil is reduced, the flow of cooling air around the coil becomes smoother, and heat dissipation performance deteriorates due to the arrangement of the winding start lead wire and winding end lead wire, including the convergence part.
  • the rise in temperature of the coil can also be suppressed.
  • the number of lead wires bundled with clips can also be reduced. Therefore, deterioration in coil heat dissipation due to lead wiring can also be suppressed.
  • a second aspect of the present disclosure is that the base portion of the stator is fixed to the fixed portion through the fixing holes, and the fixing holes are arranged so as to be approximately symmetrical with respect to a dividing line that divides the coil into n. .
  • the vibration resistance of the lead wire and the lead wire can be improved. That is, if the system is not symmetrical, a relatively large vibration stress will not be applied to any of the first to nth systems. By arranging them approximately symmetrically, the vibration stress of the system to which a large vibration stress was applied is reduced.
  • the vibration resistance of the lead wire and the lead wire is improved.
  • the present disclosure does not require strict symmetry, but rather approximate symmetry.
  • the degree of freedom in arrangement is allowed within a range that does not adversely affect the balance, taking into account the assembly position, etc.
  • the third aspect of the present disclosure is that the control device controls the input and output power of the coil to three phases, n is an even number, and the control device controls the winding direction of the coil belonging to the odd-numbered system and the coil belonging to the even-numbered system.
  • the power supply is controlled so that the input and output powers are in opposite phases.
  • a rotating electric machine includes a rotor having a permanent magnet that provides a plurality of magnetic poles arranged along the circumferential direction, a disk-shaped base portion, and a rotor that extends radially outward from the base portion. and includes a plurality of teeth portions whose radially outer ends face the permanent magnets, and a plurality of coils arranged on each of the plurality of teeth portions and formed by winding a conducting wire.
  • a stator, a plurality of winding start lead wires, and a plurality of winding end lead wires extending along the stator from the winding start end of the coil and the winding end end of the coil.
  • the plurality of lead wires electrically connected at the plurality of coupling parts and a plurality of clips fixing the plurality of coupling parts to the stator, the number of poles of the plurality of teeth parts is x, and the plurality of coils is divided into a plurality of systems by the number of divisions n, and the plurality of coils belonging to each system provide windings with the number of phases k, the number of divisions n is 2 or more, and the number of poles x is a natural number equal to or less than the number divided by the number of phases k, and the multiple coils belonging to each system are arranged consecutively within the range of angles obtained by dividing 360 degrees by the number of divisions n, and the number of poles x
  • the number of coils divided by the number of divisions n and the number of phases k is wound in each system by a series of conducting wires that are continuous along the circumferential direction, and the number of multiple clips is equal to the number of divisions.
  • the plurality of clips are fixed to the base portion in the vicinity of the coil located approximately in the middle of the dividing line that divides the plurality of coils, and the winding start lead wire and the winding end lead wire are The wires are wired so as to weave between the teeth of the clips, and converge at a convergence section located near the position where the plurality of clips are fixed.
  • the base portion has a plurality of fixing holes for fixing to the fixed portion that is the fixing target, and the fixing holes are approximately line symmetrical with respect to the dividing line. It is arranged like this.
  • the number of phases k is 3, the number of divisions n is an even number, and the plurality of coils belonging to the odd-numbered system and the plurality of coils belonging to the even-numbered system are , are wound so that the winding directions are opposite to each other.
  • the rotating electric machine further includes a control device that is electrically connected to the plurality of lead wires and controls input and output power of the plurality of coils to an alternating current with a number of phases k. Control is performed so that the input/output power of the plurality of coils belonging to the odd-numbered systems and the input/output power of the plurality of coils belonging to the even-numbered systems are in opposite phases to each other.
  • FIG. 1 is a perspective view of a rotating electrical machine combined with a crankshaft and an engine cover.
  • FIG. 2 is a perspective view showing the rotor and stator.
  • FIG. 3 is a front view showing the stator and sensor case.
  • FIG. 4 is a perspective view showing the stator and the sensor case.
  • FIG. 5 is a wiring diagram showing a coil, a lead wire, and a lead wire.
  • FIG. 6 is a wiring diagram showing a first system of coils, lead wires, and lead wires.
  • FIG. 7 is a wiring diagram showing the coil, lead wire, and lead wire of the second system.
  • FIG. 8 is a wiring diagram showing the coils, lead wires, lead wires, and control devices of the first system and the second system.
  • FIG. 9 is a front view showing the coil and lead wire.
  • FIG. 10 is a front view showing the arrangement of stator fixing holes and clips.
  • FIG. 11 is a front view showing another example of the arrangement of stator fixing holes and clips.
  • FIG. 12 is a front view showing another example of the arrangement of stator fixing holes and clips.
  • FIG. 13 is a front view showing another example of the arrangement of stator fixing holes and clips.
  • FIG. 14 is a sectional view of the rotary electric machine combined with the crankshaft and the engine cover.
  • FIG. 15 is a wiring diagram showing the coils and lead wires of the first and second systems of the reference example.
  • FIG. 16 is a wiring diagram showing expanded lead lines similar to those in FIG. 5.
  • FIG. 15 is a wiring diagram showing the coils and lead wires of the first and second systems of the reference example.
  • FIG. 16 is a wiring diagram showing expanded lead lines similar to those in FIG. 5.
  • FIG. 15 is a wiring diagram showing the coils and lead wires
  • FIG. 17 is a wiring diagram showing a convergence portion of the coils and lead wires of the first system and the second system of the reference example.
  • FIG. 18 is a wiring diagram showing a convergence portion of the lead lines similar to that in FIG. 5.
  • FIG. 19 is a wiring diagram showing a state in which the coils of the first system and the second system are in the same phase.
  • FIG. 20 is a wiring diagram showing a state in which the coils of the first system and the second system are in opposite phases.
  • FIG. 21 is a diagram illustrating the output voltage in a state where the coils of the first system and the second system are in the same phase.
  • FIG. 22 is a diagram illustrating the output voltage in a state where the coils of the first system and the second system are in opposite phases.
  • vision in this disclosure does not only mean the act of dividing one aggregate into two or more individual elements.
  • the term “dividing” in this disclosure may mean the act of determining boundaries between two or more individual elements in one aggregate.
  • a boundary is not a feature that physically isolates an individual element.
  • a boundary is a feature that allows a first individual element to be distinguished from a second individual element.
  • the word “divide” also refers to the act of separating two or more individual elements from one aggregate by boundaries.
  • the "x number” of the teeth means the number of poles x of the teeth.
  • the word “division” may also be appropriate when two or more individual elements are collected to form a single aggregate.
  • FIG. 1 is a perspective view of the rotating electric machine 1 combined with a crankshaft 100 and an engine cover 200.
  • the crank web 101 rotates the crankshaft 100 by receiving the movement of a piston (not shown) reciprocating within a cylinder (not shown) via a connecting rod (not shown).
  • the crankshaft 100 is made of iron and has a diameter of about 20 mm, and is rotatably supported by a cylinder block 110 (shown in FIG. 14).
  • the engine cover 200 covers the opening 111 of the cylinder block 110 and is bolted to the cylinder block 110 through the bolt holes 201.
  • the engine cover 200 is made of die-cast aluminum or aluminum alloy, and has a wall thickness of about 4 mm. Since the engine cover 200 is continuous with the opening 111 of the cylinder block 110, the internal environment is similar to that of the cylinder block 110.
  • a rotor 300 of the rotating electrical machine 1 is fixed to the crankshaft 100 at a base 301 (shown in FIGS. 2 and 14). Therefore, the rotor 300 rotates together with the crankshaft 100.
  • the rotor 300 is made of iron material and includes a disk portion 302 extending radially outward from a base portion 301 that engages with the crankshaft 100, and a cylindrical portion 303 formed at a radially outer portion of the disk portion 302. There is.
  • twelve permanent magnets 304 are arranged in a line in the circumferential direction inside the cylindrical portion 303.
  • the thickness of the permanent magnet 304 is approximately 4 to 5 mm. Note that the number of magnetic poles of the permanent magnet 304 is not limited to 12 poles, and can be set as appropriate, such as 20 poles or 24 poles, depending on the required performance.
  • FIG. 2 is a perspective view of stator 400 viewed from the engine cover 200 side.
  • the stator 400 is formed by laminating a plurality of magnetic steel plates and has a base portion 401 that is attached to the engine cover 200.
  • the engine cover 200 serves as the fixed part.
  • the stator 400 includes a plurality of teeth portions 402 that extend radially outward from the base portion 401 and are integrally formed with the base portion 401 .
  • the number of teeth portions 402 is 18, but the number of teeth portions 402 can be changed as appropriate depending on the required performance and the number of magnetic poles. Further, FIG.
  • FIG. 3 shows the tip of the tooth portion 402 and the coil 404 wound around the tooth portion 402.
  • the outer diameter of the stator 400 is about 110 to 130 mm, and the inner diameter of the rotor 300 is therefore large enough to form a minute gap between the outer diameter of the stator 400 and the permanent magnets 304.
  • Three fixing holes 403 are formed through the base portion 401 for fixing the stator 400 to the engine cover 200 with bolts.
  • the base portion 401 also has one sensor case bolt through hole for fixing a sensor case 500, which will be described later, to the stator 400.
  • FIG. 3 is a front view showing the stator 400 and the sensor case 500 with the rotor 300 removed from FIG.
  • FIG. 4 is a perspective view showing the stator 400 and the sensor case 500 from the opposite direction from FIG.
  • a gap 405 is formed between adjacent coils 404, and the gap 405 becomes wider toward the outside in the radial direction.
  • the space factor may be increased by winding the coil 404 so that the gap 405 is constant.
  • a sensor case 500 is arranged in this gap 405.
  • the sensor case 500 is molded from a resin such as polyamide reinforced with glass fibers.
  • the first to fourth Hall sensors 502 to 505 have a size of about 2 mm x 3 mm, and are molded with resin together with a power supply line, a ground line, and a sensor output line. Note that the first to fourth Hall sensors 502 to 505 themselves are not shown in FIG. Reference numerals 502 to 505 in FIG. 4 indicate parts of the sensor case 500 where the first to fourth Hall sensors are located.
  • the first Hall sensor 502 detects a reference position for ignition control.
  • the first Hall sensor 502 is arranged at a different position in the axial direction of the crankshaft 100 than the other second to fourth Hall sensors 503, 504, and 505. More specifically, the first Hall sensor 502 is arranged at the center position in the axial direction of the gap 405 between the teeth portions 402.
  • the second to fourth Hall sensors 503, 504, and 505 are arranged on the engine cover 200 side of the gap 405.
  • the reference position In the arrangement position of the first Hall sensor 502, there is no reversal from the north pole to the south pole at the reference position, and the north pole is continuous between the three permanent magnets 304. By detecting the succession of these three north poles, the reference position can be detected. Since the rotor 300 rotates integrally with the crankshaft 100, the reference position indicates the position of the crankshaft 100 in the rotational direction. By utilizing the fact that the crankshaft 100 is at the reference position and the switching of the magnetic poles of other Hall sensors, the ignition timing of a spark plug (not shown) disposed in the cylinder of the engine is controlled.
  • the second to fourth Hall sensors 503, 504, and 505 face the permanent magnet 304 in which the north pole and the south pole are alternately magnetized, and detect the position where the north pole and the south pole alternately change.
  • the respective detection positions of the second to fourth Hall sensors 503, 504, and 505 correspond to the energization timing of the three phases (V phase, W phase, and U phase), and the rotating electric machine 1 is activated according to the detection positions.
  • the motor is used as a starter, the supply of voltage to the coils 404 corresponding to the U-phase, V-phase, and W-phase is controlled.
  • the rotating electric machine 1 is used as a generator, it is used as a timing signal for controlling the currents from the coils 404 corresponding to the U-phase, V-phase, and W-phase.
  • the three-phase coil is separated into two systems.
  • the three-phase coil on the right side of the dividing line A shown in FIG. 5 forms a three-phase electric circuit consisting of three-phase windings of U phase, V phase, and W phase.
  • the three-phase coil on the left side also has three-phase electric circuits of X phase, Y phase, and Z phase.
  • Two systems of three-phase coils consisting of these different electric circuits are arranged in left and right divisions.
  • three-phase coils separated into two systems are arranged consecutively, and a line separating the two systems of three-phase coils is shown as a dividing line A. That is, each separated three-phase coil does not cross the dividing line A into the area of another three-phase coil.
  • the wiring between the conducting wire 450 of the coil 404, the winding start lead wires 451, 452, 453 of the three-phase coil, and the winding end lead wires 455, 456, 457 of the three-phase coil is shown in a simplified manner.
  • the conducting wire 450 of the coil 404, the winding start lead wires 451, 452, 453, and the winding end lead wires 455, 456, 457 are continuous wires, and as described above, are made of copper or aluminum.
  • the three-phase coil winding start lead wires 451, 452, 453 and the three-phase coil winding end lead wires 455, 456, 457 are connected to the first to third lead wires 460, 461, 462.
  • the first to third lead wires 460, 461, and 462 are wires made of copper.
  • Reference numerals 470, 471, and 472 indicate connections between the first to third lead wires 460, 461, and 462 to the three-phase coil winding start wires 451, 452, and 453, and the three-phase winding end wires 455, 456, and 457. Show part. They are respectively referred to as a first connecting portion 470, a second connecting portion 471, and a third connecting portion 472.
  • the winding start lead wires 451, 452, 453 and the corresponding winding end lead wires 455, 456, 457 can be connected side by side to one lead wire 460, 461, 462. can.
  • the first lead wire 460 is electrically connected to the winding start lead wire 451 of the U-phase coil at a first connection portion 470 .
  • the winding start wire 451 of the U-phase coil becomes the conducting wire 450 of the coil 404 indicated as U1 in FIG. 5, and is wound around the teeth portion 402 many times. Therefore, the coil 404 has a concentrated winding structure in which the conductive wire is continuously wound many times.
  • the conductive wire of the coil 404 of U1 is continuous with the conductive wire 450 of the coil 404 designated as U2 in FIG.
  • the conductor of coil 404 of U2 is continuous with the conductor 450 of coil 404 designated as U3 in FIG. That is, the conducting wire 450 includes a wire that is wound around the teeth portion 402 and concentrates winding around the coil 404, and a wire that connects the coils 404 (a so-called crossover wire).
  • the second lead wire 461 is electrically connected to the winding start lead wire 451 of the V-phase coil at a second connection portion 471.
  • the winding start wire 452 of the V-phase coil becomes the conducting wire 450 of the coil 404 shown as V1, V2, and V3 in FIG. 5, and is wound around the teeth portion 402 many times to form a concentrated winding coil 404.
  • it also serves as a conducting wire 450 that serves as a crossover wire that connects the coils 404.
  • the third lead wire 462 is electrically connected to the winding start lead wire 452 of the W-phase coil at a third connection portion 472 .
  • the winding start wire 452 of the W-phase coil becomes the conducting wire 450 of the coil 404 shown as W1, W2, and W3 in FIG.
  • the conducting wires 450 indicated as U3, V3, and W3 continue as they are and become the winding end wires 455, 456, and 457 of the three-phase coil.
  • the winding start lead wires 451, 452, 453 of the three-phase coil, the conducting wire 450 of the three-phase coil 404, and the winding end lead wires 455, 456, 457 of the three-phase coil are each one continuous wire. It is.
  • the winding end lead wire 456 of the V-phase coil is electrically connected to a third lead wire 462 at a third connection portion 472 .
  • the winding end lead wire 457 of the W-phase coil is electrically connected to the first lead wire 460 at the first connection portion 470 .
  • each lead wire 460, 461, 462 collectively connects two corresponding winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457.
  • FIG. 6 further shows the wiring with the winding start lead wires 451, 452, 453 of the U-phase coil, V-phase coil, and W-phase coil, the conducting wire 450 of the coil 404, and the winding end lead wires 455, 456, 457 of the U-phase coil, V-phase coil, and W-phase coil in FIG. It is shown in a simplified manner.
  • the first lead wire 460 is connected to a winding start wire 451 of the U-phase coil and a winding end wire 457 of the W-phase coil at a first connecting portion 470 .
  • the second lead wire 461 is connected to a winding start wire 452 of the V-phase coil and a winding end wire 455 of the U-phase coil at a second connection portion 471.
  • the third lead wire 462 is connected to the winding start wire 453 of the W-phase coil and the winding end wire 456 of the V-phase coil at a third connection portion 472.
  • the wiring of the three-phase coil 404 is a delta connection.
  • the three-phase coils (X phase, Y phase, Z phase) on the left side of the dividing line A shown in FIG. 5 are also the same as the three phase coils (U phase, V phase, W phase) on the right side.
  • the X phase, Y phase, and Z phase correspond to the U phase, V phase, and W phase of the three-phase coil, respectively. Therefore, the coils 404 corresponding to U1, U2, and U3 are labeled with X1, X2, and X3.
  • the same reference numerals are also given to lines corresponding to the first lead wire to the third lead wire and portions corresponding to the first connection to the third connection portion.
  • FIG. 7 shows the electrical connection state of the X, Y, and Z phases in delta connection.
  • the first to third lead wires 460, 461, and 462 of the three-phase coils of U-phase, V-phase, and W-phase and the three-phase coils of X-phase, Y-phase, and Z-phase are connected to the control device shown in FIG. Electrically connect to 480.
  • the rotating electric machine 1 when used as a motor for a starter, power is supplied to the coils 404 corresponding to the U phase, V phase, W phase, X phase, Y phase, and Z phase by input from the battery 481.
  • the power generated is controlled by this controller 480.
  • the rotational direction and rotational speed of the rotating electric machine 1 are controlled.
  • the control device performs conversion using both voltage and current, it is collectively referred to as power control.
  • the power output from the coils 404 corresponding to the U phase, V phase, W phase, X phase, Y phase, and Z phase is controlled by the control device 480.
  • the control device 480 converts the three-phase alternating current into direct current power and charges the battery 481.
  • each winding start lead wire 451, 452, 453 and winding end lead wire 455, 456, 457 are converged at one place, and the first to third connecting portions 470, 471 , 472 is also possible.
  • all the winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 will be concentrated, as shown in FIG. In the example of FIG. 15, winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457 are concentrated between the W2 phase coil 404, the U3 phase coil 404, and the V3 phase coil 404.
  • all the winding start lead wires 451, 452, 453 and all the winding end lead wires 455, 456, 457 are passed between a pair of adjacent coils 404, and they are concentrated at that part. Note that the concentrated winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 are bundled by a clip 490, which will be described later.
  • winding start lead wires 451 , 452 , 453 and the winding end lead wires 455 , 456 , 457 of the three-phase coil of the X phase, Y phase, and Z phase are bundled with the second clip 492 .
  • winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 of the three-phase coil are simply shown, but in reality, the winding start lead wires 451 , 452 , 453 and winding end lead wires 455 , 456 , 457 are wired so as to thread between each coil 404 . Therefore, when attempting to converge at one location, as shown in FIG. , 457 will be concentrated. In the example of FIG. 17, a large number of winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457 are wired between the W3 phase coil 404, the X1 layer coil 404, and the Y1 layer coil 404. has been done.
  • the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are divided into two, the winding start lead wires 451, 452, 453 and the winding end lead wires 455 between the coils 404 , 456, 457 can be avoided. As shown in FIG. 18, even if the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are wired so as to thread between the coils 404, they are concentrated between all the coils 404. does not exist.
  • the winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 converge at a converging part 468 located near the first clip 490 and second clip 492.
  • the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are in close contact with the surface of the coil 404 at the convergence portion 468, and are fixed to the coil 404 with adhesive or powder resin.
  • the winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 are oriented from this convergence part 468 toward the first to third connection parts 470, 471, 472.
  • the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are fixed at the convergence part 468 and are oriented, making it easy to solder the lead wires 460, 461, 462. It can be carried out. In addition, it becomes easy to connect the first clip 490 and the second clip 492. Note that the first to third connecting portions 470, 471, and 472 of the two systems are located within the first clip 490 and the second clip 492, respectively.
  • the winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 are each bonded to the coil 404 with adhesive or powder resin.
  • the winding start lead-out lines 451, 452, 453 and the winding end lead-out lines 455, 456, 457 are concentrated, the mass at that part increases, and the resistance to vibration decreases.
  • the rotating electric machine 1 is fixed to the engine cover 200 and used in the same environment as the engine cylinder block 110, deterioration of vibration resistance should be avoided.
  • winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are arranged between the coils 404, if they concentrate, they will obstruct the flow of cooling air passing between the coils 404. It turns out.
  • the coil 404 is cooled by air in the cylinder block 110 and mist of engine oil.
  • the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are routed between the coils 404, so that the space between the coils 404 becomes narrow, creating resistance to the flow of air and engine oil.
  • the three phases on the right side of the dividing line A in FIG. 5 are U phase, V phase, and W phase, and the three phases on the left side are X phase, Y phase, and Z phase.
  • the coil 404 is arranged in a divided manner. Therefore, the above problem caused by concentration of the winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 does not occur.
  • the first to third connection parts 470, 471, and 472 of the U-phase, V-phase, and W-phase are gathered in one place and fixed with a first clip 490. .
  • the three lead wires 461, 462, and 463 are then bundled together to form a lead wire 464.
  • the first to third connection parts 470, 471, 472 of the X phase, Y phase, and Z phase are gathered in one place and fixed with the second clip 492, and the three lead wires 461, 462, 463 are bundled. This is used as a lead wiring 464.
  • the first clip 490 is fixed to the base portion 401 of the stator 400 with a first fixing screw 491.
  • the first clip 490 is placed approximately in the middle of the dividing line A. That is, the first clip 490 that holds the first to third connecting portions 470, 471, and 472 is arranged at a substantially intermediate position with respect to the dividing line A.
  • approximately the middle is the middle in the circumferential direction of a plurality of three-phase coils arranged in the circumferential direction included in one system, and in FIG.
  • the position is around the coil 404.
  • the two winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 can be arranged in a well-balanced manner.
  • the first clip 490 and the second clip 492 are arranged at positions that are symmetrical with respect to the dividing line A.
  • the first clip 490 and the second clip 492 in FIG. 9 are not symmetrical with respect to the dividing line A, but are slightly deviated from each other.
  • the term "substantially symmetrical" in the present disclosure also includes an example as shown in FIG. In order to avoid interference with other parts when the rotating electric machine 1 is assembled to a two-wheeled vehicle, it is permissible to shift the positions of the first clip 490 and the second clip 492 to some extent.
  • the first clip 490 and the second clip 492 of the present disclosure are fixed to the base portion 401 of the stator 400 near the coil 404 located approximately in the middle of the dividing line A. Therefore, first, the position of the coil 404 located approximately in the middle of the dividing line A will be explained.
  • the coil 404 located approximately in the middle of the dividing line A refers to the coil 404 at the symmetrical position and the coil 404 adjacent to the coil 404 when the coil 404 is located at a symmetrical position.
  • the coil 404 closest to the symmetrical position and the coil 404 second closest to the symmetrical position are indicated.
  • the vicinity of the coil 404 located approximately in the middle of the dividing line means that the first clip 490 and the second clip 492 are fixed near the coil 404 specified in this way. Nearby includes positions up to about 5 degrees in the vicinity.
  • connection parts 470, 471, and 472 of the U-phase coil, V-phase coil, and W-phase coil but the first to third connection parts of the X-phase coil, Y-phase coil, and Z-phase coil
  • the first to third connecting portions 470, 471, and 472 of the X-phase coil, Y-phase coil, and Z-phase coil are fixed to the base portion 401 of the stator 400 with second clips 492.
  • a second fixing screw 493 is used for fixing.
  • the first to third connection parts 470, 471, 472 of the U-phase coil, V-phase coil, and W-phase coil and the The first to third connecting portions 470, 471, and 472 are arranged substantially symmetrically on both sides of the dividing line A. This also applies to the relationship between the first clip 490, the first fixing screw 491, the second clip 492, and the second fixing screw 493. Since the positions are substantially symmetrical across the dividing line A, the mass of the lead wiring 464 can be supported on the left and right sides in a well-balanced manner. Note that the length of the lead wiring 464 is approximately 50 to 100 centimeters.
  • the end of the lead wire 464 is a connector 465 connected to a control device 480.
  • stator 400 including lead wires 460, 461, and 462 can be fixed to engine cover 200 in a well-balanced manner.
  • Engine vibrations are transmitted from the cylinder block 110 to the rotating electric machine 1 via the engine cover 200. More specifically, the vibration is transmitted to the rotating electrical machine 1 via the fixing hole 403 of the base portion 401 of the stator 400.
  • the fixing hole 403 be substantially symmetrical with respect to the dividing line A, since this allows the symmetry of the first clip 490 and the second clip 492 to be maintained in the vibration system from the engine. That is, by arranging the fixing hole 403, the first clip 490, and the second clip 492 substantially symmetrically with respect to the dividing line A, the winding start lead-out lines 451, 452 are arranged in the first system and the second system. , 453 and the end-of-winding lead-out lines 455, 456, 457, the first to third connecting portions 470, 471, 472, and the first clip 490 and the second clip 492. can.
  • the fixing screw 491 that fixes the first clip 490 and the fixing screw 493 that fixes the second clip 492 are both located near the fixing hole 403 (about 30 degrees).
  • the vibrations of the stator 400, including resonance, become larger as the distance from the fixing hole 403 increases.
  • the vibration resistance of the first clip 490 and second clip 492 portions can be improved.
  • the lead wires 464 from the first clip 490 and the second clip 492 are drawn out in the same direction. Therefore, the three lead wires 461, 462, 463 and the first to third connecting portions 470, 471, 472 can be soldered from the same direction, improving work efficiency. This also applies to the work of assembling the connector 465 to the control device 480 or to a mating connector extending from the control device 480.
  • vibrations caused by the rotating electric machine 1 itself are also reduced.
  • FIG. 19 it is also possible to wind the conducting wires 450 of two systems of three-phase coils in the same phase by setting the winding directions of the concentrated windings in the same direction (clockwise in FIG. 19).
  • the two systems of three-phase coils have the same output phase. Therefore, as shown in FIG. 21, induced electromotive force is generated in the coil 404 at the same time and in the same vector regardless of whether it is a delta connection or a star connection.
  • one system (U phase, V phase, W phase) and the other system (X phase, Y phase, Z phase) are in the same phase, and the output voltage is not symmetrical at any timing.
  • the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are electrically connected to one corresponding lead wire.
  • the two systems of three-phase coils have output phases that are opposite to each other. That is, in Fig. 20, the first system of U-phase coil, V-phase coil, and W-phase coil is concentratedly wound clockwise, and the second system of X-phase coil, Y-phase coil, and Z-phase coil is concentratedly wound counterclockwise. are doing. In this way, when the winding directions of the concentrated windings are different from each other, the output phases are opposite. Therefore, as shown in FIG. 22, the first system (U phase, V phase, W phase) and the second system (X phase, Y phase, Z phase) are out of phase by 180 degrees.
  • the symmetry of the output voltage is the same when the rotating electric machine 1 is used as a generator, but it is also the same when it is used as a starter.
  • When used as a starter there is symmetry in the input voltage, and there is symmetry when used as both a generator and a starter.
  • vibrations having opposite phases are generated in the stator 400, so that the vibrations can cancel each other out.
  • FIG. 21 whether the winding of the coil 404 is a delta connection or a star connection.
  • FIG. 11 shows an example in which fixing holes 403 are provided at four locations.
  • the fixing holes 403 are also arranged substantially symmetrically with respect to the dividing line A. Even with this arrangement, the stator 400 can be fixed to the engine cover in a well-balanced manner.
  • FIG. 12 shows an example in which there are five fixing holes 403, but even in this arrangement, the fixing holes 403 are arranged approximately symmetrically with respect to the dividing line A. Therefore, even with this arrangement, the stator 400 can be fixed to the engine cover in a well-balanced manner.
  • FIG. 13 shows an example in which the three-phase coil 404 is divided into three systems.
  • the first to third connecting parts 470, 471, and 472 of the third system are fixed to the base part 401 of the stator 400 with a third clip 494 and a third fixing screw 495.
  • the arrangement of the fixing holes 403 also allows the three systems of wiring (first clip 40, second clip 492, third clip 494, etc.) to be arranged in a well-balanced manner. Therefore, in the present disclosure, line symmetry with respect to the dividing line A means, when there are three or more dividing lines, point symmetry with respect to the center point where the dividing lines A intersect.
  • the coil 404 is wound in three phases, but it is also possible to change the number of phases.
  • the present disclosure may be used for a single-phase or a five-phase rotating electric machine 1.
  • the three-phase winding start lead wires 451, 452, 453, the conducting wire 450 of the coil 404, and the winding end lead wires 455, 456, 457 were made into one continuous wire. This is a suitable example because the wiring workability is good. However, the wiring does not necessarily have to be continuous.
  • a coil 404 may be formed by winding around the teeth portion 402, and a wire between the coils 404 may be electrically connected using another conducting wire 450.
  • the three-phase winding start lead wires 451, 452, 453 and the conducting wire 450 of the coil 404 may be electrically connected as separate wires.
  • the conducting wire 450 and the end-of-winding lead-out lines 455, 456, and 457 may be wired separately.

Abstract

In the present invention, a coil is formed by winding a conductive wire around teeth of a stator, and a control device controls the energization of the coil to the k phase. The coil is divided by n into n systems, and the n divided coils are arranged continuously over an angle range obtained by dividing 360 degrees by n. In the conductive wire, a coil in a phase that is the same as the number obtained by dividing the number of teeth x by n and the k phase of the coil is wound so as to be continuous in the circumferential direction. A lead and the winding-starting end of the coil of the conducting wire are linked by a winding-starting leader line, and the lead and the winding-finishing end of the coil of the conducting wire are linked by a winding-finishing leader line. The portion that connects with the lead are secured to the stator by clips. The clips, of which there are n in number, are positioned approximately in the middle of the dividing lines obtained from the n divisions.

Description

回転電機rotating electric machine 関連出願の相互参照Cross-reference of related applications
 この出願は、2022年3月24日に日本に出願された特許出願第2022-49009号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-49009 filed in Japan on March 24, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 本明細書の記載は回転電機に関し、例えば二輪車の発電機や始動機として使用して有用である。 The description in this specification relates to a rotating electric machine, and is useful for use as a generator or starter for a two-wheeled vehicle, for example.
 近年、様々な車両における電力需要増加に伴い、車両用発電機の出力も向上が図られてきている。この出力向上に伴い、回転電機のステータに巻線されたコイルの温度も高くなっていきている。コイルの温度を上昇させないための方策として、コイルへの通電経路を複数経路とすることが考えられる。特許文献1では、選択的に出力特性を変更することができる巻線構造が記載されている。 In recent years, with the increase in demand for electric power in various vehicles, efforts have been made to improve the output of vehicle generators. Along with this increase in output, the temperature of the coil wound around the stator of the rotating electric machine is also increasing. As a measure to prevent the temperature of the coil from rising, it may be possible to provide multiple current paths to the coil. Patent Document 1 describes a winding structure that can selectively change output characteristics.
特許公開第2010-115041号公報Patent Publication No. 2010-115041
 ここで、コイルが1系統であれば、コイルを形成する巻線は巻き始めのコイルから周方向に一周して巻き終わりのコイル迄連続することとなる。即ち、コイルが1系統であれば、コイルを形成する導線の巻き始め位置と巻き終り位置とを近くに設定することができる。一方、コイルを複数系統(n系統)として360度をnで除した角度の範囲に連続して配置すると、コイルを形成する導線の巻き始め位置と巻き終り位置とが引き離されることとなる。その為、導線とリード線との結線部までの引出し線がステータ上に長く配置されることとなる。ただ、特許文献1に記載の回転電機では、この引き出し線の構成までは検討していない。 Here, if there is one system of coils, the windings forming the coil will continue from the coil at the beginning of winding to the coil at the end of winding by going around one circumference in the circumferential direction. That is, if there is one system of coils, the winding start position and winding end position of the conducting wire forming the coil can be set close to each other. On the other hand, if multiple systems (n systems) of coils are arranged consecutively within an angle range of 360 degrees divided by n, the winding start position and winding end position of the conducting wire forming the coil will be separated. Therefore, a long lead wire is disposed on the stator up to the connection portion between the conducting wire and the lead wire. However, in the rotating electric machine described in Patent Document 1, the structure of this lead wire has not been considered.
 本件の開示は、引き出し線とリード線の配置を工夫することで、引き出し線の耐振性を高め、コイルリード線の放熱性を向上させて温度上昇を抑制することを課題とする。 The present disclosure aims to increase the vibration resistance of the lead wire and improve the heat dissipation of the coil lead wire to suppress temperature rise by devising the arrangement of the lead wire and the lead wire.
 本開示の第1は、周方向に永久磁石を複数配置しシャフトと共に回転するロータと、複数のティース部及びこのティース部に配置される複数のコイルを有しティース部の径方向外方端部が磁石と対向するステータとを備える回転電機である。本開示の第1のステータは、固定部に固定される円盤状の基盤部、この基盤部より径方向外方に延びるx数のティース部、及びこのティース部に配置され導線を巻線してなるx数のコイルを備えている。 A first aspect of the present disclosure includes a rotor having a plurality of permanent magnets arranged in the circumferential direction and rotating together with a shaft, a plurality of teeth and a plurality of coils arranged in the teeth, and a radially outer end of the teeth. This is a rotating electrical machine that includes magnets and a stator facing each other. A first stator of the present disclosure includes a disk-shaped base portion fixed to a fixed portion, x number of teeth portions extending radially outward from the base portion, and winding conductive wires arranged on the teeth portions. It is equipped with x number of coils.
 本開示の第1は、導線と電気接続するリード線と、このリード線と導線のコイルの巻き始め端部及びコイルの巻き終わり端部とを連結する巻き始め引き出し線及び巻き終わり引き出し線と、この巻き始め引き出し線及び巻き終わり引き出し線とリード線との連結部をステータに固定するクリップと、リード線と電気接続してコイルの入出力電力を制御する制御装置とを備えている。 A first aspect of the present disclosure is a lead wire electrically connected to a conducting wire, a winding start lead wire and a winding end lead wire that connect the lead wire to a winding start end of a coil and a winding end end of the coil of the conductor; It includes a clip that fixes the connection portion between the winding start lead wire and the winding end lead wire and the lead wire to the stator, and a control device that electrically connects to the lead wire and controls input and output power of the coil.
 本開示の第1は、制御装置がコイルをk相に通電制御し、コイルはn系統にn分割され、nは2以上でティース部のx数をコイルのk相で除した数と同数以下の自然数であり、n分割されたコイルは360度をnで除した角度の範囲に連続して配置されている。そして、導線は、ティース部のx数をnとコイルのk相とで除した数の同じ相のコイルを周方向に連続して巻線し、クリップの数はnであり、クリップはコイルをn分割する分割線の略中間に位置するコイルの近傍でステータの基盤部に固定される。そして、巻き始め引き出し線及び巻き終わり引き出し線は、ティース部間を縫うように配線され、かつ、クリップが固定された位置の近傍に位置する収束部で収束している。 The first aspect of the present disclosure is that the control device controls the energization of the coil to the k phase, the coil is divided into n systems, and n is 2 or more and less than or equal to the number obtained by dividing the x number of the teeth part by the k phase of the coil. is a natural number, and the n-divided coils are continuously arranged within an angular range of 360 degrees divided by n. Then, the conductor is wound continuously in the circumferential direction with coils of the same phase, the number of which is obtained by dividing the x number of the teeth by n and the k phase of the coil, and the number of clips is n, and the clips connect the coils. It is fixed to the base of the stator near the coil located approximately in the middle of the n-dividing line. The winding start lead line and the winding end lead line are wired so as to thread between the tooth parts, and converge at a convergence part located near the position where the clip is fixed.
 本開示の第1では、引き出し線とリード線との連結部をステータに固定するクリップを、コイルをn分割する分割線の略中間に位置するコイルの近傍でステータの基盤部に固定しているので、引き出し線の長さを短くすることができる。そのため、本開示の第1では、引き出し線の質量増加も抑制され、引き出し線の耐振性悪化も抑制できている。 In the first aspect of the present disclosure, a clip for fixing a connecting portion between a lead wire and a lead wire to the stator is fixed to a base portion of the stator near the coil located approximately in the middle of a division line that divides the coil into n. Therefore, the length of the lead line can be shortened. Therefore, in the first aspect of the present disclosure, an increase in the mass of the lead wire is also suppressed, and deterioration of the vibration resistance of the lead wire is also suppressed.
 本開示の第1では、巻き始め引き出し線及び巻き終わり引き出し線は、ティース部間を縫うように配線され、かつ、クリップが固定された位置の近傍に位置する収束部で収束することを前提としている。その為、特に収束部で巻き始め引き出し線及び巻き終わり引き出し線が集中し、放熱性の悪化要因となる。それに対し、本開示の第1はn数のクリップを用いているので、クリップで束ねられる引き出し線の数を少なくすることができる。その結果、コイルを覆う引き出し線の数が少なくなって、コイル周りの冷却風の流れがスムーズになり、収束部を含めて巻き始め引き出し線及び巻き終わり引き出し線の配置に起因する放熱性の悪化の要因を抑えることができている。これにより、コイルの温度上昇も抑制できる。加えて、クリップで束ねられるリード配線の線数も少なくすることができる。その為、リード配線によるコイル放熱性の悪化も抑制できる。 In the first aspect of the present disclosure, it is assumed that the winding start lead line and the winding end lead line are wired so as to thread between the teeth parts, and converge at a convergence part located near the position where the clip is fixed. There is. Therefore, the winding start wire and the winding end lead wire are concentrated particularly at the convergence part, which causes deterioration of heat dissipation. On the other hand, since the first embodiment of the present disclosure uses n number of clips, it is possible to reduce the number of lead lines bound by the clips. As a result, the number of lead wires covering the coil is reduced, the flow of cooling air around the coil becomes smoother, and heat dissipation performance deteriorates due to the arrangement of the winding start lead wire and winding end lead wire, including the convergence part. We have been able to suppress these factors. Thereby, the rise in temperature of the coil can also be suppressed. In addition, the number of lead wires bundled with clips can also be reduced. Therefore, deterioration in coil heat dissipation due to lead wiring can also be suppressed.
 本開示の第2は、ステータの基盤部は固定穴を介して固定部に固定され、固定穴の配置は、コイルをn分割する分割線に対して、略対称となるように配置されている。ステータの固定穴とクリップの配置位置を分割線に対して共に対称に配置することで、n系統の引き出し線及びリード線の振動の挙動を同じにすることができる。これにより、引き出し線及びリード線の耐振性を高めることができる。即ち、対称でない場合には、第1系統から第n系統のいずれかの系統に相対的に大きい振動ストレスが加わることがなくなる。それを略対称配置とすれば、大きい振動ストレスが加わっていた方の系統の振動ストレスが軽減される。その結果、引き出し線及びリード線の耐振性が良くなる。なお、本開示では略対称として、厳密な対称を求めている訳ではない。組付け位置等を考慮してバランスに悪影響を及ぼさない範囲で配置の自由度を許容している。 A second aspect of the present disclosure is that the base portion of the stator is fixed to the fixed portion through the fixing holes, and the fixing holes are arranged so as to be approximately symmetrical with respect to a dividing line that divides the coil into n. . By arranging the stator fixing holes and the clips symmetrically with respect to the dividing line, it is possible to make the vibration behavior of the n-system lead wires and the lead wires the same. Thereby, the vibration resistance of the lead wire and the lead wire can be improved. That is, if the system is not symmetrical, a relatively large vibration stress will not be applied to any of the first to nth systems. By arranging them approximately symmetrically, the vibration stress of the system to which a large vibration stress was applied is reduced. As a result, the vibration resistance of the lead wire and the lead wire is improved. Note that the present disclosure does not require strict symmetry, but rather approximate symmetry. The degree of freedom in arrangement is allowed within a range that does not adversely affect the balance, taking into account the assembly position, etc.
 本開示の第3は、制御装置はコイルの入出力電力を3相に制御し、nは偶数であり、制御装置は奇数番目の系統に属するコイルと偶数番目の系統に属するコイルの巻方向を互いに逆方向とすることで、互いの入出力電力が逆位相となるように通電制御している。これにより、コイルの誘導起電力に起因する回転電機自身の振動も抑制でき、耐振性が一層向上する。 The third aspect of the present disclosure is that the control device controls the input and output power of the coil to three phases, n is an even number, and the control device controls the winding direction of the coil belonging to the odd-numbered system and the coil belonging to the even-numbered system. By setting the directions in opposite directions, the power supply is controlled so that the input and output powers are in opposite phases. As a result, vibrations of the rotating electric machine itself due to the induced electromotive force of the coil can be suppressed, and vibration resistance is further improved.
 本開示の他の態様に係る回転電機では、周方向に沿って配置された複数の磁極を提供する永久磁石を有するロータと、円盤状の基盤部、この基盤部より径方向外方に延びており、径方向外方端部が永久磁石と対向している複数のティース部、および、これら複数のティース部のそれぞれに配置されており、導線を巻線して形成された複数のコイルを備えるステータと、導線によって提供されており、コイルの巻き始めの端部、および、コイルの巻き終わりの端部からステータに沿って延び出す複数の巻き始め引き出し線、および、複数の巻き終わり引き出し線と、複数の連結部において電気的に接続されている複数のリード線と、複数の連結部をステータに固定する複数のクリップとを備え、複数のティース部の極数はxであり、複数のコイルは、分割数nにより複数の系統に分割されており、それぞれの系統に属する複数のコイルは、相数kの巻線を提供しており、分割数nは2以上であって、極数xを相数kで除した数と同数以下の自然数であり、それぞれの系統に属する複数のコイルは、360度を分割数nで除した角度の範囲に連続して配置されており、極数xを、分割数nと相数kとで除した数のコイルは、それぞれの系統において、周方向に沿って連続している一連の導線により巻線されており、複数のクリップの数は分割数nと等しく、複数のクリップは、複数のコイルを分割する分割線の略中間に位置するコイルの近傍において、基盤部に固定されており、巻き始め引き出し線、および、巻き終わり引き出し線は、複数のティース部間を縫うように配線されており、かつ、複数のクリップが固定されている位置の近傍に位置付けられた収束部において収束している。 A rotating electric machine according to another aspect of the present disclosure includes a rotor having a permanent magnet that provides a plurality of magnetic poles arranged along the circumferential direction, a disk-shaped base portion, and a rotor that extends radially outward from the base portion. and includes a plurality of teeth portions whose radially outer ends face the permanent magnets, and a plurality of coils arranged on each of the plurality of teeth portions and formed by winding a conducting wire. A stator, a plurality of winding start lead wires, and a plurality of winding end lead wires extending along the stator from the winding start end of the coil and the winding end end of the coil. , includes a plurality of lead wires electrically connected at the plurality of coupling parts and a plurality of clips fixing the plurality of coupling parts to the stator, the number of poles of the plurality of teeth parts is x, and the plurality of coils is divided into a plurality of systems by the number of divisions n, and the plurality of coils belonging to each system provide windings with the number of phases k, the number of divisions n is 2 or more, and the number of poles x is a natural number equal to or less than the number divided by the number of phases k, and the multiple coils belonging to each system are arranged consecutively within the range of angles obtained by dividing 360 degrees by the number of divisions n, and the number of poles x The number of coils divided by the number of divisions n and the number of phases k is wound in each system by a series of conducting wires that are continuous along the circumferential direction, and the number of multiple clips is equal to the number of divisions. The plurality of clips are fixed to the base portion in the vicinity of the coil located approximately in the middle of the dividing line that divides the plurality of coils, and the winding start lead wire and the winding end lead wire are The wires are wired so as to weave between the teeth of the clips, and converge at a convergence section located near the position where the plurality of clips are fixed.
 本開示の他の態様に係る回転電機では、基盤部は、固定対象である固定部に固定するための複数の固定穴を有し、固定穴は、分割線に対して、略線対称となるように配置されている。 In the rotating electric machine according to another aspect of the present disclosure, the base portion has a plurality of fixing holes for fixing to the fixed portion that is the fixing target, and the fixing holes are approximately line symmetrical with respect to the dividing line. It is arranged like this.
 本開示の他の態様に係る回転電機では、相数kは3であり、分割数nは偶数であり、奇数番目の系統に属する複数のコイルと、偶数番目の系統に属する複数のコイルとは、巻方向が互いに逆方向となるように巻線されている。 In the rotating electric machine according to another aspect of the present disclosure, the number of phases k is 3, the number of divisions n is an even number, and the plurality of coils belonging to the odd-numbered system and the plurality of coils belonging to the even-numbered system are , are wound so that the winding directions are opposite to each other.
 本開示の他の態様に係る回転電機では、さらに、複数のリード線と電気的に接続されており、複数のコイルの入出力電力を相数kの交流に制御する制御装置を備え、制御装置は、奇数番目の系統に属する複数のコイルの入出力電力と、偶数番目の系統に属する複数のコイルの入出力電力とが、互いに逆位相となるように制御する。 The rotating electric machine according to another aspect of the present disclosure further includes a control device that is electrically connected to the plurality of lead wires and controls input and output power of the plurality of coils to an alternating current with a number of phases k. Control is performed so that the input/output power of the plurality of coils belonging to the odd-numbered systems and the input/output power of the plurality of coils belonging to the even-numbered systems are in opposite phases to each other.
図1は、回転電機がクランクシャフト及びエンジンカバーに組み合わされた状態の斜視図である。FIG. 1 is a perspective view of a rotating electrical machine combined with a crankshaft and an engine cover. 図2は、ロータ及びステータを示す斜視図である。FIG. 2 is a perspective view showing the rotor and stator. 図3は、ステータとセンサケースを示す正面図である。FIG. 3 is a front view showing the stator and sensor case. 図4は、ステータとセンサケースを示す斜視図である。FIG. 4 is a perspective view showing the stator and the sensor case. 図5は、コイルと引き出し線及びリード線を示す配線図である。FIG. 5 is a wiring diagram showing a coil, a lead wire, and a lead wire. 図6は、第1系統のコイルと引き出し線及びリード線を示す配線図である。FIG. 6 is a wiring diagram showing a first system of coils, lead wires, and lead wires. 図7は、第2系統のコイルと引き出し線及びリード線を示す配線図である。FIG. 7 is a wiring diagram showing the coil, lead wire, and lead wire of the second system. 図8は、第1系統及び第2系統のコイルと引き出し線及びリード線と制御装置を示す配線図である。FIG. 8 is a wiring diagram showing the coils, lead wires, lead wires, and control devices of the first system and the second system. 図9は、コイルとリード線を示す正面図である。FIG. 9 is a front view showing the coil and lead wire. 図10は、ステータの固定穴とクリップの配置を示す正面図である。FIG. 10 is a front view showing the arrangement of stator fixing holes and clips. 図11は、ステータの固定穴とクリップの配置の他の例を示す正面図である。FIG. 11 is a front view showing another example of the arrangement of stator fixing holes and clips. 図12は、ステータの固定穴とクリップの配置の他の例を示す正面図である。FIG. 12 is a front view showing another example of the arrangement of stator fixing holes and clips. 図13は、ステータの固定穴とクリップの配置の他の例を示す正面図である。FIG. 13 is a front view showing another example of the arrangement of stator fixing holes and clips. 図14は、回転電機がクランクシャフト及びエンジンカバーに組み合わされた状態の断面図である。FIG. 14 is a sectional view of the rotary electric machine combined with the crankshaft and the engine cover. 図15は、参考例の第1系統及び第2系統のコイルと引き出し線を示す配線図である。FIG. 15 is a wiring diagram showing the coils and lead wires of the first and second systems of the reference example. 図16は、図5と同様の引き出し線を展開して示す配線図である。FIG. 16 is a wiring diagram showing expanded lead lines similar to those in FIG. 5. 図17は、参考例の第1系統及び第2系統のコイルと引き出し線の収束部を示す配線図である。FIG. 17 is a wiring diagram showing a convergence portion of the coils and lead wires of the first system and the second system of the reference example. 図18は、図5と同様の引き出し線の収束部を示す配線図である。FIG. 18 is a wiring diagram showing a convergence portion of the lead lines similar to that in FIG. 5. 図19は、第1系統及び第2系統のコイルを同位相とした状態を示す配線図である。FIG. 19 is a wiring diagram showing a state in which the coils of the first system and the second system are in the same phase. 図20は、第1系統及び第2系統のコイルを逆位相とした状態を示す配線図である。FIG. 20 is a wiring diagram showing a state in which the coils of the first system and the second system are in opposite phases. 図21は、第1系統及び第2系統のコイルを同位相とした状態での出力電圧を説明する図である。FIG. 21 is a diagram illustrating the output voltage in a state where the coils of the first system and the second system are in the same phase. 図22は、第1系統及び第2系統のコイルを逆位相とした状態での出力電圧を説明する図である。FIG. 22 is a diagram illustrating the output voltage in a state where the coils of the first system and the second system are in opposite phases.
 以下、本開示の一例を図に基づいて説明する。この開示における「分割」の語は、ひとつの集合体を2以上の個要素に分ける行為を意味するだけではない。この開示における「分割」の語は、ひとつの集合体において、2以上の個要素の間の境界を確定する行為を意味する場合がある。境界は、ひとつの個要素を物理的に孤立させる特徴ではない。境界は、第1の個要素と第2の個要素とを区別できる特徴である。言い換えると、「分割」の語は、ひとつの集合体から2以上の個要素を境界によって区画する行為でもある。また、ティース部の「x数」はティース部の極数xを意味している。「分割」の語は、2以上の個要素を集めてひとつの集合体が形成される場合にも妥当する場合がある。また、「k相」は多相交流電力の相の数kを意味している。「n系統」は系統の分割数nを意味し、「n分割」は分割数nを意味している。図1は、回転電機1がクランクシャフト100及びエンジンカバー200に組み合わされた状態の斜視図である。クランクウェブ101は、図示しないピストンが図示しないシリンダ内を往復動する動きを、図示しないコンロッドを介して受けて、クランクシャフト100を回転させる。クランクシャフト100は、直径20ミリメートル程度の鉄材からなり、シリンダブロック110(図14図示)に回転支持されている。 Hereinafter, an example of the present disclosure will be described based on the drawings. The term "division" in this disclosure does not only mean the act of dividing one aggregate into two or more individual elements. The term "dividing" in this disclosure may mean the act of determining boundaries between two or more individual elements in one aggregate. A boundary is not a feature that physically isolates an individual element. A boundary is a feature that allows a first individual element to be distinguished from a second individual element. In other words, the word "divide" also refers to the act of separating two or more individual elements from one aggregate by boundaries. Further, the "x number" of the teeth means the number of poles x of the teeth. The word "division" may also be appropriate when two or more individual elements are collected to form a single aggregate. Moreover, "k phase" means the number k of phases of multiphase AC power. "n system" means the number n of divisions of the system, and "n division" means the number n of divisions. FIG. 1 is a perspective view of the rotating electric machine 1 combined with a crankshaft 100 and an engine cover 200. The crank web 101 rotates the crankshaft 100 by receiving the movement of a piston (not shown) reciprocating within a cylinder (not shown) via a connecting rod (not shown). The crankshaft 100 is made of iron and has a diameter of about 20 mm, and is rotatably supported by a cylinder block 110 (shown in FIG. 14).
 エンジンカバー200は、シリンダブロック110の開口部111を覆い、ボルト通し穴201により、シリンダブロック110にボルト固定される。エンジンカバー200は、アルミニウム若しくはアルミニウム合金のダイキャスト製であり、肉厚は4ミリメートル程度である。エンジンカバー200は、シリンダブロック110の開口部111に連続するので、内部環境はシリンダブロック110と同様である。 The engine cover 200 covers the opening 111 of the cylinder block 110 and is bolted to the cylinder block 110 through the bolt holes 201. The engine cover 200 is made of die-cast aluminum or aluminum alloy, and has a wall thickness of about 4 mm. Since the engine cover 200 is continuous with the opening 111 of the cylinder block 110, the internal environment is similar to that of the cylinder block 110.
 クランクシャフト100には、回転電機1のロータ300が、基部301(図2、図14図示)で固定されている。従って、ロータ300はクランクシャフト100と一体に回転する。ロータ300は、鉄材料製で、クランクシャフト100と係合する基部301より径方向外方に延びる円盤部302と、この円盤部302の径方向外方部に形成される円筒部303を備えている。図2に示すように、円筒部303の内方には、永久磁石304が12個、周方向に並んで配置されている。永久磁石304の厚みは、4~5ミリメートル程度である。なお、永久磁石304の磁極の数は、12極に限らず、20極や24極等要求性能に応じて適宜設定できる。 A rotor 300 of the rotating electrical machine 1 is fixed to the crankshaft 100 at a base 301 (shown in FIGS. 2 and 14). Therefore, the rotor 300 rotates together with the crankshaft 100. The rotor 300 is made of iron material and includes a disk portion 302 extending radially outward from a base portion 301 that engages with the crankshaft 100, and a cylindrical portion 303 formed at a radially outer portion of the disk portion 302. There is. As shown in FIG. 2, twelve permanent magnets 304 are arranged in a line in the circumferential direction inside the cylindrical portion 303. The thickness of the permanent magnet 304 is approximately 4 to 5 mm. Note that the number of magnetic poles of the permanent magnet 304 is not limited to 12 poles, and can be set as appropriate, such as 20 poles or 24 poles, depending on the required performance.
 ロータ300の内部には、図2及び図14に示すように、ステータ400が配置されている。図2は、ステータ400をエンジンカバー200側から見た斜視図である。ステータ400は、複数の磁性鋼板を積層してなり、エンジンカバー200に取り付けられる基盤部401を有している。本例においては、エンジンカバー200が固定部となる。ステータ400は、基盤部401より径方向外方に延びる複数のティース部402を基盤部401と一体に形成している。図3の例ではティース部402の数は18であるが、ティース部402の数は要求性能や磁極の数に応じて適宜変更可能である。また、図3ではティース部402の先端と、ティース部402に巻装されたコイル404を示している。ステータ400の外径は、110~130ミリメートル程度となっており、従って、ロータ300の内径は、ステータ400の外径と永久磁石304との間に微小間隙が形成される大きさとなっている。 A stator 400 is arranged inside the rotor 300, as shown in FIGS. 2 and 14. FIG. 2 is a perspective view of stator 400 viewed from the engine cover 200 side. The stator 400 is formed by laminating a plurality of magnetic steel plates and has a base portion 401 that is attached to the engine cover 200. In this example, the engine cover 200 serves as the fixed part. The stator 400 includes a plurality of teeth portions 402 that extend radially outward from the base portion 401 and are integrally formed with the base portion 401 . In the example of FIG. 3, the number of teeth portions 402 is 18, but the number of teeth portions 402 can be changed as appropriate depending on the required performance and the number of magnetic poles. Further, FIG. 3 shows the tip of the tooth portion 402 and the coil 404 wound around the tooth portion 402. The outer diameter of the stator 400 is about 110 to 130 mm, and the inner diameter of the rotor 300 is therefore large enough to form a minute gap between the outer diameter of the stator 400 and the permanent magnets 304.
 基盤部401には、エンジンカバー200にステータ400をボルト固定するための固定穴403が3カ所貫通形成されている。また、基盤部401には、後述するセンサケース500をステータ400に固定するためのセンサケースボルト通し穴も1カ所形成されている。 Three fixing holes 403 are formed through the base portion 401 for fixing the stator 400 to the engine cover 200 with bolts. The base portion 401 also has one sensor case bolt through hole for fixing a sensor case 500, which will be described later, to the stator 400.
 ティース部402はポリアミド等の絶縁樹脂からなるインシュレーターで電気絶縁され、インシュレーターの上に銅線若しくはアルミニウム線からなるコイル404が巻装されている。図3は、図2からロータ300を外して、ステータ400とセンサケース500を示す正面図である。図4は、図3とは逆の方向から、ステータ400とセンサケース500を示す斜視図である。 The teeth portion 402 is electrically insulated with an insulator made of insulating resin such as polyamide, and a coil 404 made of copper wire or aluminum wire is wound on the insulator. FIG. 3 is a front view showing the stator 400 and the sensor case 500 with the rotor 300 removed from FIG. FIG. 4 is a perspective view showing the stator 400 and the sensor case 500 from the opposite direction from FIG.
 図3に示すように、隣接するコイル404の間には隙間405が形成され、その隙間405は径方向外側に向けて広くなっている。尤も、隙間405が一定となるようにコイル404を巻装して占積率を上げるようにしても良い。また、図4に示すように、この隙間405にセンサケース500が配置されている。センサケース500は、ガラス繊維で強化したポリアミド等の樹脂でモールド成形されている。 As shown in FIG. 3, a gap 405 is formed between adjacent coils 404, and the gap 405 becomes wider toward the outside in the radial direction. Of course, the space factor may be increased by winding the coil 404 so that the gap 405 is constant. Further, as shown in FIG. 4, a sensor case 500 is arranged in this gap 405. The sensor case 500 is molded from a resin such as polyamide reinforced with glass fibers.
 第1ないし第4ホールセンサ502~505は、2ミリメートル程度×3ミリメートル程度の大きさで、それぞれ電源線、接地線とセンサ出力線と共に、樹脂でモールド成形されている。なお、図4では第1ないし第4ホールセンサ502~505自体は示されていない。図4の符号502~505は、センサケース500のうち第1ないし第4ホールセンサが位置する部位を指している。 The first to fourth Hall sensors 502 to 505 have a size of about 2 mm x 3 mm, and are molded with resin together with a power supply line, a ground line, and a sensor output line. Note that the first to fourth Hall sensors 502 to 505 themselves are not shown in FIG. Reference numerals 502 to 505 in FIG. 4 indicate parts of the sensor case 500 where the first to fourth Hall sensors are located.
 第1ホールセンサ502は、点火制御のための基準位置を検出する。第1ホールセンサ502は、他の第2ないし第4ホールセンサ503、504、505とは、クランクシャフト100の軸方向で異なる位置に配置されている。より具体的には、第1ホールセンサ502は、ティース部402間の隙間405の軸方向の中央位置に配置されている。それに対し、第2ないし第4ホールセンサ503、504、505とは、隙間405のエンジンカバー200側に配置されている。 The first Hall sensor 502 detects a reference position for ignition control. The first Hall sensor 502 is arranged at a different position in the axial direction of the crankshaft 100 than the other second to fourth Hall sensors 503, 504, and 505. More specifically, the first Hall sensor 502 is arranged at the center position in the axial direction of the gap 405 between the teeth portions 402. On the other hand, the second to fourth Hall sensors 503, 504, and 505 are arranged on the engine cover 200 side of the gap 405.
 第1ホールセンサ502の配置位置では、基準位置でN極からS極への反転がなく、N極が3つの永久磁石304で連続する。この3つのN極の連続を検知することで、基準位置が検出できる。ロータ300はクランクシャフト100と一体回転するので、基準位置はクランクシャフト100の回転方向の位置を示すことになる。クランクシャフト100が基準位置にあることと他のホールセンサの磁極の切り替わりを利用して、エンジンのシリンダに配置された図示しないスパークプラグの点火タイミングを制御する。 In the arrangement position of the first Hall sensor 502, there is no reversal from the north pole to the south pole at the reference position, and the north pole is continuous between the three permanent magnets 304. By detecting the succession of these three north poles, the reference position can be detected. Since the rotor 300 rotates integrally with the crankshaft 100, the reference position indicates the position of the crankshaft 100 in the rotational direction. By utilizing the fact that the crankshaft 100 is at the reference position and the switching of the magnetic poles of other Hall sensors, the ignition timing of a spark plug (not shown) disposed in the cylinder of the engine is controlled.
 第2ないし第4ホールセンサ503、504、505はN極とS極とが交互に着磁された永久磁石304と対向して、N極とS極とが交互に変動する位置を検出する。第2ないし第4ホールセンサ503、504、505のそれぞれの検出位置は、三相(V相、W相、U相)の通電時期に対応しており、この検出位置に応じ、回転電機1が始動器としてモータ使用されるときには、U相、V相、W相に対応するコイル404への電圧の供給を制御する。回転電機1が発電機として使用される際にもU相、V相、W相に対応するコイル404からの電流を制御するためのタイミング信号として用いられる。 The second to fourth Hall sensors 503, 504, and 505 face the permanent magnet 304 in which the north pole and the south pole are alternately magnetized, and detect the position where the north pole and the south pole alternately change. The respective detection positions of the second to fourth Hall sensors 503, 504, and 505 correspond to the energization timing of the three phases (V phase, W phase, and U phase), and the rotating electric machine 1 is activated according to the detection positions. When the motor is used as a starter, the supply of voltage to the coils 404 corresponding to the U-phase, V-phase, and W-phase is controlled. Also when the rotating electric machine 1 is used as a generator, it is used as a timing signal for controlling the currents from the coils 404 corresponding to the U-phase, V-phase, and W-phase.
 本開示では、三相コイルを2系統に分離している。図5に示す分割線Aの右側の三相コイルは、U相、V相、W相の三相巻線からなる三相の電気回路が形成されている。同様に、左側の三相コイルもX相、Y相、Z相の三相の電気回路を有する。これら別の電気回路からなる2系統の三相コイルを左右の分割配置としている。換言すれば、本開示は2系統に分離した各三相コイルが連続して配置し、2系統の三相コイルを分離する線が分割線Aとして示される。即ち、分離した各三相コイルは、分割線Aを超えて別の三相コイルの領域に入ることは無い。 In the present disclosure, the three-phase coil is separated into two systems. The three-phase coil on the right side of the dividing line A shown in FIG. 5 forms a three-phase electric circuit consisting of three-phase windings of U phase, V phase, and W phase. Similarly, the three-phase coil on the left side also has three-phase electric circuits of X phase, Y phase, and Z phase. Two systems of three-phase coils consisting of these different electric circuits are arranged in left and right divisions. In other words, in the present disclosure, three-phase coils separated into two systems are arranged consecutively, and a line separating the two systems of three-phase coils is shown as a dividing line A. That is, each separated three-phase coil does not cross the dividing line A into the area of another three-phase coil.
 なお、図5では、コイル404の導線450と三相コイルの巻き始め引き出し線451、452、453及び三相コイルの巻き終わり引き出し線455、456、457との配線を簡略化して示している。コイル404の導線450と巻き始め引き出し線451、452,453及び巻き終わり引き出し線455、456、457は連続した線で、上記の通り、銅若しくはアルミニウム製である。 In addition, in FIG. 5, the wiring between the conducting wire 450 of the coil 404, the winding start lead wires 451, 452, 453 of the three-phase coil, and the winding end lead wires 455, 456, 457 of the three-phase coil is shown in a simplified manner. The conducting wire 450 of the coil 404, the winding start lead wires 451, 452, 453, and the winding end lead wires 455, 456, 457 are continuous wires, and as described above, are made of copper or aluminum.
 三相コイルの巻き始め引き出し線451、452、453及び三相コイルの巻き終わり引き出し線455、456、457は、第1ないし第3リード線460、461、462に接続する。第1ないし第3リード線460、461、462は、銅製の線材である。符号470、471、472は、第1ないし第3リード線460、461、462と三相コイルの巻き始め引き出し線451、452、453及び三相の巻き終わり引き出し線455、456、457との接続部を示す。それぞれ、第1接続部470、第2接続部471、及び第3接続部472とする。これにより、同一系統の三相コイルでは、巻き始め引き出し線451、452、453と対応する巻き終わり引き出し線455、456、457とを、1つのリード線460、461、462に並べて接続することができる。 The three-phase coil winding start lead wires 451, 452, 453 and the three-phase coil winding end lead wires 455, 456, 457 are connected to the first to third lead wires 460, 461, 462. The first to third lead wires 460, 461, and 462 are wires made of copper. Reference numerals 470, 471, and 472 indicate connections between the first to third lead wires 460, 461, and 462 to the three-phase coil winding start wires 451, 452, and 453, and the three-phase winding end wires 455, 456, and 457. Show part. They are respectively referred to as a first connecting portion 470, a second connecting portion 471, and a third connecting portion 472. As a result, in three-phase coils of the same system, the winding start lead wires 451, 452, 453 and the corresponding winding end lead wires 455, 456, 457 can be connected side by side to one lead wire 460, 461, 462. can.
 次に、第1ないし第3リード線460、461、462と、三相コイルの巻き始め引き出し線451、452、453、及びコイル404の導線450との接続状態を説明する。第1リード線460は第1接続部470でU相コイルの巻き始め引き出し線451と電気的に接続される。U相コイルの巻き始め引き出し線451は、図5でU1と示されたコイル404の導線450となりティース部402の周りを多数回巻線する。従って、コイル404は導線が連続して多数回巻装される集中巻となる。図5では省略しているが、U1のコイル404の導線は図5でU2と示されたコイル404の導線450と連続している。また、U2のコイル404の導線は図5でU3と示されたコイル404の導線450と連続している。即ち、導線450はティース部402に巻装されてコイル404を集中巻する線と、コイル404間を繋ぐ線(いわゆる渡線)が連続している。 Next, the connection state between the first to third lead wires 460, 461, 462, the winding start lead wires 451, 452, 453 of the three-phase coil, and the conducting wire 450 of the coil 404 will be described. The first lead wire 460 is electrically connected to the winding start lead wire 451 of the U-phase coil at a first connection portion 470 . The winding start wire 451 of the U-phase coil becomes the conducting wire 450 of the coil 404 indicated as U1 in FIG. 5, and is wound around the teeth portion 402 many times. Therefore, the coil 404 has a concentrated winding structure in which the conductive wire is continuously wound many times. Although not shown in FIG. 5, the conductive wire of the coil 404 of U1 is continuous with the conductive wire 450 of the coil 404 designated as U2 in FIG. Also, the conductor of coil 404 of U2 is continuous with the conductor 450 of coil 404 designated as U3 in FIG. That is, the conducting wire 450 includes a wire that is wound around the teeth portion 402 and concentrates winding around the coil 404, and a wire that connects the coils 404 (a so-called crossover wire).
 同様に、第2リード線461は第2接続部471でV相コイルの巻き始め引き出し線451と電気的に接続される。V相コイルの巻き始め引き出し線452は、図5でV1、V2及びV3と示されたコイル404の導線450となりティース部402の周りを多数回巻線して集中巻のコイル404を形成する。かつ、コイル404間を繋ぐ渡線となる導線450ともなる。 Similarly, the second lead wire 461 is electrically connected to the winding start lead wire 451 of the V-phase coil at a second connection portion 471. The winding start wire 452 of the V-phase coil becomes the conducting wire 450 of the coil 404 shown as V1, V2, and V3 in FIG. 5, and is wound around the teeth portion 402 many times to form a concentrated winding coil 404. In addition, it also serves as a conducting wire 450 that serves as a crossover wire that connects the coils 404.
 W相コイルも同様である。第3リード線462は第3接続部472でW相コイルの巻き始め引き出し線452と電気的に接続される。W相コイルの巻き始め引き出し線452は、図5でW1、W2及びW3と示されたコイル404の導線450となり、かつ、コイル404間を繋ぐ渡線になる導線450ともなる。 The same applies to the W-phase coil. The third lead wire 462 is electrically connected to the winding start lead wire 452 of the W-phase coil at a third connection portion 472 . The winding start wire 452 of the W-phase coil becomes the conducting wire 450 of the coil 404 shown as W1, W2, and W3 in FIG.
 そして、U3、V3及びW3と示された導線450は、そのまま連続して三相コイルの巻き終わり引き出し線455、456、457となる。このように、三相コイルの巻き始め引き出し線451、452、453と三相のコイル404の導線450及び三相コイルの巻き終わり引き出し線455、456、457は、夫々が連続した一本の線である。 Then, the conducting wires 450 indicated as U3, V3, and W3 continue as they are and become the winding end wires 455, 456, and 457 of the three-phase coil. In this way, the winding start lead wires 451, 452, 453 of the three-phase coil, the conducting wire 450 of the three-phase coil 404, and the winding end lead wires 455, 456, 457 of the three-phase coil are each one continuous wire. It is.
 U相コイルのコイル404のうち巻き終わりとなるU3のコイル404からの巻き終わり引き出し線455は第2接続部471で第2リード線461と電気接続する。V相コイルの巻き終わり引き出し線456は、第3接続部472で第3リード線462と電気接続する。そして、W相コイルの巻き終わり引き出し線457は、第1接続部470で第1リード線460と電気接続する。上述の通り、各リード線460、461、462は、対応する巻き始め引き出し線451、452、453と巻き終わり引き出し線455、456、457との2本を纏めて接続する。 A winding end lead wire 455 from the coil 404 of U3, which is the winding end of the coil 404 of the U-phase coil, is electrically connected to a second lead wire 461 at a second connection portion 471. The winding end lead wire 456 of the V-phase coil is electrically connected to a third lead wire 462 at a third connection portion 472 . The winding end lead wire 457 of the W-phase coil is electrically connected to the first lead wire 460 at the first connection portion 470 . As described above, each lead wire 460, 461, 462 collectively connects two corresponding winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457.
 図6は、図5のU相コイル、V相コイル、W相コイルの巻き始め引き出し線451、452、453、コイル404の導線450、及び巻き終わり引き出し線455、456、457との配線を更に簡略化して示している。第1リード線460は第1接続部470でU相コイルの巻き始め引き出し線451及びW相コイルの巻き終わり引き出し線457と接続している。 FIG. 6 further shows the wiring with the winding start lead wires 451, 452, 453 of the U-phase coil, V-phase coil, and W-phase coil, the conducting wire 450 of the coil 404, and the winding end lead wires 455, 456, 457 of the U-phase coil, V-phase coil, and W-phase coil in FIG. It is shown in a simplified manner. The first lead wire 460 is connected to a winding start wire 451 of the U-phase coil and a winding end wire 457 of the W-phase coil at a first connecting portion 470 .
 また、第2リード線461は第2接続部471でV相コイルの巻き始め引き出し線452及びU相コイルの巻き終わり引き出し線455と接続している。同様に、第3リード線462は第3接続部472でW相コイルの巻き始め引き出し線453及びV相コイルの巻き終わり引き出し線456と接続している。図6に示すように、三相のコイル404の配線はデルタ結線となっている。 Further, the second lead wire 461 is connected to a winding start wire 452 of the V-phase coil and a winding end wire 455 of the U-phase coil at a second connection portion 471. Similarly, the third lead wire 462 is connected to the winding start wire 453 of the W-phase coil and the winding end wire 456 of the V-phase coil at a third connection portion 472. As shown in FIG. 6, the wiring of the three-phase coil 404 is a delta connection.
 図5に示す分割線Aの左側の三相コイル(X相、Y相、Z相)も、右側の三相コイル(U相、V相、W相)と同様である。図5においてX相、Y相、Z相がそれぞれ三相コイルのU相、V相、W相に対応する。従って、U1、U2、U3に対応するコイル404には、X1、X2、X3の記号を付す。第1リード線ないし第3リード線に対応する線及び第1接続ないし第3接続部に対応する箇所にも同じ符号を付す。三相コイルの巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457も同様である。図7は図6と同様に、デルタ結線としたX相、Y相、Z相の電気接続状態を示している。 The three-phase coils (X phase, Y phase, Z phase) on the left side of the dividing line A shown in FIG. 5 are also the same as the three phase coils (U phase, V phase, W phase) on the right side. In FIG. 5, the X phase, Y phase, and Z phase correspond to the U phase, V phase, and W phase of the three-phase coil, respectively. Therefore, the coils 404 corresponding to U1, U2, and U3 are labeled with X1, X2, and X3. The same reference numerals are also given to lines corresponding to the first lead wire to the third lead wire and portions corresponding to the first connection to the third connection portion. The same applies to the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 of the three-phase coil. Similar to FIG. 6, FIG. 7 shows the electrical connection state of the X, Y, and Z phases in delta connection.
 U相、V相、W相の三相コイル及びX相、Y相、Z相の三相コイルの第1リード線ないし第3リード線460、461、462のそれぞれは、図8に示す制御装置480に電気接続する。上述の通り、回転電機1が始動機としてモータ使用されるときには、U相、V相、W相及びX相、Y相、Z相に対応するコイル404への電力の供給は、バッテリ481から入力される電力がこの制御装置480により制御される。それにより、回転電機1の回転方向や回転速度が制御される。なお、制御装置は電圧と電流との双方による変換を行うので、総称して電力の制御とする。 The first to third lead wires 460, 461, and 462 of the three-phase coils of U-phase, V-phase, and W-phase and the three-phase coils of X-phase, Y-phase, and Z-phase are connected to the control device shown in FIG. Electrically connect to 480. As described above, when the rotating electric machine 1 is used as a motor for a starter, power is supplied to the coils 404 corresponding to the U phase, V phase, W phase, X phase, Y phase, and Z phase by input from the battery 481. The power generated is controlled by this controller 480. Thereby, the rotational direction and rotational speed of the rotating electric machine 1 are controlled. Note that since the control device performs conversion using both voltage and current, it is collectively referred to as power control.
 また、回転電機1が発電機として使用される際にもU相、V相、W相及びX相、Y相、Z相に対応するコイル404から出力される電力は制御装置480によって制御される。制御装置480により、三相の交流が直流電力に変換されてバッテリ481に充電される。 Also, when the rotating electric machine 1 is used as a generator, the power output from the coils 404 corresponding to the U phase, V phase, W phase, X phase, Y phase, and Z phase is controlled by the control device 480. . The control device 480 converts the three-phase alternating current into direct current power and charges the battery 481.
 ここで、三相コイルを2系統としても、各巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を1カ所で収束させて、第1ないし第3接続部470、471、472で接続することも可能である。ただ、1カ所で収束させた場合には、図15に示すように、全ての巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中してしまう。図15の例では、W2相のコイル404、U3相のコイル404及びV3相のコイル404間に巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中している。即ち、隣接する1組のコイル404の間に、全ての巻き始め引き出し線451、452、453と全ての巻き終わり引き出し線455、456、457とを通すこととなり、その部位で集中してしまう。なお、集中した巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は後述するクリップ490によって束ねられる。 Here, even if there are two systems of three-phase coils, each winding start lead wire 451, 452, 453 and winding end lead wire 455, 456, 457 are converged at one place, and the first to third connecting portions 470, 471 , 472 is also possible. However, if they are converged at one location, all the winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 will be concentrated, as shown in FIG. In the example of FIG. 15, winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457 are concentrated between the W2 phase coil 404, the U3 phase coil 404, and the V3 phase coil 404. That is, all the winding start lead wires 451, 452, 453 and all the winding end lead wires 455, 456, 457 are passed between a pair of adjacent coils 404, and they are concentrated at that part. Note that the concentrated winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 are bundled by a clip 490, which will be described later.
 それに対し、図18に示すように、2系統の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を2つに分ければ、集中の程度は半減する。即ち、隣接するコイル404は2組となり、各々のコイル404間に半分の巻き始め引き出し線451、452、453と半分の巻き終わり引き出し線455、456、457とを通すことができ、集中の程度は半減する。この場合は、U相、V相、W相の三相コイルの巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を第1クリップ490で束ねる。そして、X相、Y相、Z相の三相コイルの巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を第2クリップ492で束ねる。 On the other hand, as shown in FIG. 18, if the two systems of winding start lead-out lines 451, 452, 453 and winding end lead-out lines 455, 456, 457 are divided into two, the degree of concentration is halved. In other words, there are two sets of adjacent coils 404, and between each coil 404, half of the winding start lead wires 451, 452, 453 and half of the winding end lead wires 455, 456, 457 can be passed, and the degree of concentration can be adjusted. will be halved. In this case, the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 of the three-phase coils of U phase, V phase, and W phase are bundled with the first clip 490. Then, the winding start lead wires 451 , 452 , 453 and the winding end lead wires 455 , 456 , 457 of the three-phase coil of the X phase, Y phase, and Z phase are bundled with the second clip 492 .
 なお、図5や図16では、三相コイルの巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を簡略して記載しているが、実際には、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は各コイル404の間を縫うように配線されている。そのため、1カ所で収束させようとすると、図17に示すように、クリップ490の近傍以外のコイル404の間にも、多数の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中することとなる。図17の例では、W3相のコイル404、X1層のコイル404及びY1層のコイル404の間にも多数の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が配線されている。 In addition, in FIGS. 5 and 16, the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 of the three-phase coil are simply shown, but in reality, the winding start lead wires 451 , 452 , 453 and winding end lead wires 455 , 456 , 457 are wired so as to thread between each coil 404 . Therefore, when attempting to converge at one location, as shown in FIG. , 457 will be concentrated. In the example of FIG. 17, a large number of winding start lead wires 451, 452, 453 and winding end lead wires 455, 456, 457 are wired between the W3 phase coil 404, the X1 layer coil 404, and the Y1 layer coil 404. has been done.
 一方、2系統の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を2つに分ければ、コイル404間の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457の集中を避けることができる。図18に示すように、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457がコイル404間を縫うように配線されていても、どのコイル404の間にも集中する部位は存在しない。 On the other hand, if the two winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are divided into two, the winding start lead wires 451, 452, 453 and the winding end lead wires 455 between the coils 404 , 456, 457 can be avoided. As shown in FIG. 18, even if the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are wired so as to thread between the coils 404, they are concentrated between all the coils 404. does not exist.
 特に、図10に示すように、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は第1クリップ490及び第2クリップ492の近傍に位置する収束部468で収束している。即ち、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は、収束部468でコイル404の表面に密着し、コイル404に接着材又は粉体樹脂で固定されている。そして、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457はこの収束部468から第1ないし第3接続部470、471、472に向けて指向している。このように、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が収束部468で固定され、指向することで、リード配線460、461、462とのハンダ固定を容易に行うことができる。かつ、第1クリップ490及び第2クリップ492との結合も容易となる。なお、2系統の第1ないし第3接続部470、471、472は、それぞれ第1クリップ490及び第2クリップ492内に位置している。 In particular, as shown in FIG. 10, the winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 converge at a converging part 468 located near the first clip 490 and second clip 492. There is. That is, the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are in close contact with the surface of the coil 404 at the convergence portion 468, and are fixed to the coil 404 with adhesive or powder resin. The winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 are oriented from this convergence part 468 toward the first to third connection parts 470, 471, 472. In this way, the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are fixed at the convergence part 468 and are oriented, making it easy to solder the lead wires 460, 461, 462. It can be carried out. In addition, it becomes easy to connect the first clip 490 and the second clip 492. Note that the first to third connecting portions 470, 471, and 472 of the two systems are located within the first clip 490 and the second clip 492, respectively.
 上述のように、2系統の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457を1カ所に収束させ、1つの収束部468とした場合には、コイル404間の隙間405に多数の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中することとなる。 As described above, when the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 of the two systems are converged to one place to form one convergence part 468, the gap between the coils 404 A large number of winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 are concentrated at 405.
 そして、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は、それぞれコイル404に接着剤や粉体樹脂により接着している。巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中するとその部位での質量も増え、振動に対する耐性が低下することとなる。特に、回転電機1はエンジンカバー200に固定され、エンジンのシリンダブロック110と同じ環境で使用されるので、耐振性の悪化は避けるべきである。 The winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 are each bonded to the coil 404 with adhesive or powder resin. When the winding start lead-out lines 451, 452, 453 and the winding end lead-out lines 455, 456, 457 are concentrated, the mass at that part increases, and the resistance to vibration decreases. In particular, since the rotating electric machine 1 is fixed to the engine cover 200 and used in the same environment as the engine cylinder block 110, deterioration of vibration resistance should be avoided.
 加えて、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457はコイル404の間に配置されるため、それらが集中するとコイル404間を通過する冷却風の流れを阻害することになる。コイル404はシリンダブロック110内の空気やミスト状のエンジンオイルにより冷却されている。巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457はコイル404間に取り廻される結果、コイル404間が狭くなり、空気やエンジンオイルの流れに対して抵抗となる。 In addition, since the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are arranged between the coils 404, if they concentrate, they will obstruct the flow of cooling air passing between the coils 404. It turns out. The coil 404 is cooled by air in the cylinder block 110 and mist of engine oil. The winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are routed between the coils 404, so that the space between the coils 404 becomes narrow, creating resistance to the flow of air and engine oil.
 本開示では、既述のように、図5の分割線Aを挟んで、右側の三相をU相、V相、W相と、左側の三相をX相、Y相、Z相とにコイル404を分割する分割配置としている。そのため、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457が集中することによる上記の問題は生じない。 In the present disclosure, as described above, the three phases on the right side of the dividing line A in FIG. 5 are U phase, V phase, and W phase, and the three phases on the left side are X phase, Y phase, and Z phase. The coil 404 is arranged in a divided manner. Therefore, the above problem caused by concentration of the winding start lead lines 451, 452, 453 and winding end lead lines 455, 456, 457 does not occur.
 本開示は、図9や図10に示すように、U相、V相、W相の第1ないし第3接続部470、471、472を一カ所に集めて第1クリップ490で固定している。そして、3本のリード線461、462、463を束ねてリード配線464としている。同様に、X相、Y相、Z相の第1ないし第3接続部470、471、472も一カ所に集めて第2クリップ492で固定し、3本のリード配線461、462、463を束ねてリード配線464としている。これにより、引き出し線集中故に生じる上述の不具合は抑制できる。 In the present disclosure, as shown in FIGS. 9 and 10, the first to third connection parts 470, 471, and 472 of the U-phase, V-phase, and W-phase are gathered in one place and fixed with a first clip 490. . The three lead wires 461, 462, and 463 are then bundled together to form a lead wire 464. Similarly, the first to third connection parts 470, 471, 472 of the X phase, Y phase, and Z phase are gathered in one place and fixed with the second clip 492, and the three lead wires 461, 462, 463 are bundled. This is used as a lead wiring 464. Thereby, the above-mentioned problems caused by the concentration of lead lines can be suppressed.
 なお、第1クリップ490は、ステータ400の基盤部401に第1固定ネジ491で固定される。第1クリップ490が配置される場所は分割線Aに対して略中間としている。即ち、第1ないし第3接続部470、471、472を保持する第1クリップ490は、分割線Aに対して略中間の位置に配置されている。ここで、略中間とは、一つの系統に含まれる周方向に複数配置される三相コイルの周方向の中間で、図5ではU1のコイル404とW3のコイル404との中間であるV2のコイル404周辺の位置となる。これにより、2系統の巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457をバランス良く配置することができている。 Note that the first clip 490 is fixed to the base portion 401 of the stator 400 with a first fixing screw 491. The first clip 490 is placed approximately in the middle of the dividing line A. That is, the first clip 490 that holds the first to third connecting portions 470, 471, and 472 is arranged at a substantially intermediate position with respect to the dividing line A. Here, approximately the middle is the middle in the circumferential direction of a plurality of three-phase coils arranged in the circumferential direction included in one system, and in FIG. The position is around the coil 404. Thereby, the two winding start lead lines 451, 452, 453 and the winding end lead lines 455, 456, 457 can be arranged in a well-balanced manner.
 なお、図10では、第1クリップ490と第2クリップ492とは分割線Aを挟んで線対称となる位置に配置されている。一方で、図9の第1クリップ490と第2クリップ492とは、分割線Aを挟んで線対称ではなく、多少ずれている。本開示の略対称とは図9のような例も含んでいる。回転電機1が二輪車に組付けられる時に他の部品との干渉を避けるため、第1クリップ490や第2クリップ492の位置を多少ずらすのは許容される。 Note that in FIG. 10, the first clip 490 and the second clip 492 are arranged at positions that are symmetrical with respect to the dividing line A. On the other hand, the first clip 490 and the second clip 492 in FIG. 9 are not symmetrical with respect to the dividing line A, but are slightly deviated from each other. The term "substantially symmetrical" in the present disclosure also includes an example as shown in FIG. In order to avoid interference with other parts when the rotating electric machine 1 is assembled to a two-wheeled vehicle, it is permissible to shift the positions of the first clip 490 and the second clip 492 to some extent.
 より具体的には、本開示の第1クリップ490や第2クリップ492は、分割線Aの略中間に位置するコイル404の近傍で、ステータ400の基盤部401に固定される。そこで、まず分割線Aの略中間に位置するコイル404の位置を説明する。分割線Aの略中間に位置するコイル404とは、対称位置にコイル404が位置する場合にはその対称位置のコイル404とそのコイル404に隣接するコイル404を指している。また、対称位置にコイル404が存在しない場合は、対称位置に最も近いコイル404と2番目に近いコイル404を指している。 More specifically, the first clip 490 and the second clip 492 of the present disclosure are fixed to the base portion 401 of the stator 400 near the coil 404 located approximately in the middle of the dividing line A. Therefore, first, the position of the coil 404 located approximately in the middle of the dividing line A will be explained. The coil 404 located approximately in the middle of the dividing line A refers to the coil 404 at the symmetrical position and the coil 404 adjacent to the coil 404 when the coil 404 is located at a symmetrical position. Moreover, when the coil 404 does not exist at the symmetrical position, the coil 404 closest to the symmetrical position and the coil 404 second closest to the symmetrical position are indicated.
 そして、分割線の略中間に位置するコイル404の近傍とは、このように特定されたコイル404の近くに第1クリップ490や第2クリップ492が固定されることを意味している。近くとは、角度として5度程度までの位置を近傍に含んでいる。 And, the vicinity of the coil 404 located approximately in the middle of the dividing line means that the first clip 490 and the second clip 492 are fixed near the coil 404 specified in this way. Nearby includes positions up to about 5 degrees in the vicinity.
 以上は、U相コイル、V相コイル、W相コイルの第1ないし第3接続部470、471、472で説明したが、X相コイル、Y相コイル、Z相コイルの第1ないし第3接続部470、471、472でも同様である。X相コイル、Y相コイル、Z相コイルの第1ないし第3接続部470、471、472は、第2クリップ492でステータ400の基盤部401に固定している。固定には第2固定ネジ493を用いる。 The above has been explained using the first to third connection parts 470, 471, and 472 of the U-phase coil, V-phase coil, and W-phase coil, but the first to third connection parts of the X-phase coil, Y-phase coil, and Z-phase coil The same applies to sections 470, 471, and 472. The first to third connecting portions 470, 471, and 472 of the X-phase coil, Y-phase coil, and Z-phase coil are fixed to the base portion 401 of the stator 400 with second clips 492. A second fixing screw 493 is used for fixing.
 そのため、図9や図10に示すように、U相コイル、V相コイル、W相コイルの第1ないし第3接続部470、471、472とX相コイル、Y相コイル、Z相コイルの第1ないし第3接続部470、471、472とは、分割線Aを挟んで左右略対称の配置となる。これは、第1クリップ490、第1固定ネジ491と第2クリップ492、第2固定ネジ493との関係でも同様である。分割線Aを挟んで略対称な位置のため、リード配線464の質量を左右でバランス良く支持することができる。なお、リード配線464の長さは50~100センチメートル程度である。リード配線464の端部は制御装置480に接続されるコネクタ465となっている。 Therefore, as shown in FIGS. 9 and 10, the first to third connection parts 470, 471, 472 of the U-phase coil, V-phase coil, and W-phase coil and the The first to third connecting portions 470, 471, and 472 are arranged substantially symmetrically on both sides of the dividing line A. This also applies to the relationship between the first clip 490, the first fixing screw 491, the second clip 492, and the second fixing screw 493. Since the positions are substantially symmetrical across the dividing line A, the mass of the lead wiring 464 can be supported on the left and right sides in a well-balanced manner. Note that the length of the lead wiring 464 is approximately 50 to 100 centimeters. The end of the lead wire 464 is a connector 465 connected to a control device 480.
 上述のように、エンジンカバー200にステータ400をボルト固定するための固定穴403が、基盤部401に3カ所形成されている。特に、本開示では、この3カ所形成されている固定穴403も分割線Aに対して略左右対称に配置されている。そのため、リード線460、461、462を含めてステータ400をエンジンカバー200にバランス良く固定することができる。エンジンの振動はシリンダブロック110からエンジンカバー200を介して回転電機1に伝達される。より具体的には、振動はステータ400の基盤部401の固定穴403を介して回転電機1に伝達される。その為、固定穴403が分割線Aに対して略対称であるのは、エンジンからの振動系にあって第1クリップ490及び第2クリップ492の対称性を保つことができて望ましい。即ち、分割線Aに対して、固定穴403と第1クリップ490及び第2クリップ492を共に略対称となる配置とすることで、第1系統と第2系統で、巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457と、第1ないし第3接続部470、471、472と、更に、第1クリップ490及び第2クリップ492との全てに亘って挙動を合わせることができる。 As described above, three fixing holes 403 for bolting the stator 400 to the engine cover 200 are formed in the base portion 401. In particular, in the present disclosure, these three fixing holes 403 are also arranged substantially symmetrically with respect to the dividing line A. Therefore, stator 400 including lead wires 460, 461, and 462 can be fixed to engine cover 200 in a well-balanced manner. Engine vibrations are transmitted from the cylinder block 110 to the rotating electric machine 1 via the engine cover 200. More specifically, the vibration is transmitted to the rotating electrical machine 1 via the fixing hole 403 of the base portion 401 of the stator 400. Therefore, it is desirable that the fixing hole 403 be substantially symmetrical with respect to the dividing line A, since this allows the symmetry of the first clip 490 and the second clip 492 to be maintained in the vibration system from the engine. That is, by arranging the fixing hole 403, the first clip 490, and the second clip 492 substantially symmetrically with respect to the dividing line A, the winding start lead-out lines 451, 452 are arranged in the first system and the second system. , 453 and the end-of-winding lead-out lines 455, 456, 457, the first to third connecting portions 470, 471, 472, and the first clip 490 and the second clip 492. can.
 特に本例では、第1クリップ490を固定する固定ネジ491と第2クリップ492を固定する固定ネジ493を、共に固定穴403の近傍(30度程度)に位置している。共振を含めステータ400の振動は固定穴403から離れる程大きくなる。本例では、固定穴403の近傍に位置することで、第1クリップ490及び第2クリップ492部分での耐振性を高めることができる。 In particular, in this example, the fixing screw 491 that fixes the first clip 490 and the fixing screw 493 that fixes the second clip 492 are both located near the fixing hole 403 (about 30 degrees). The vibrations of the stator 400, including resonance, become larger as the distance from the fixing hole 403 increases. In this example, by being located near the fixing hole 403, the vibration resistance of the first clip 490 and second clip 492 portions can be improved.
 かつ、本例では、第1クリップ490及び第2クリップ492からのリード配線464を同一方向に引き出している。そのため、3本のリード線461、462、463と第1ないし第3接続部470、471、472とのハンダ付けも同一方向から行うことができ、作業性も向上する。これは、コネクタ465を制御装置480に組付けたり、制御装置480から延びた相手方のコネクタに組付ける作業においても同様である。 Additionally, in this example, the lead wires 464 from the first clip 490 and the second clip 492 are drawn out in the same direction. Therefore, the three lead wires 461, 462, 463 and the first to third connecting portions 470, 471, 472 can be soldered from the same direction, improving work efficiency. This also applies to the work of assembling the connector 465 to the control device 480 or to a mating connector extending from the control device 480.
 また、本例では2系統とすることで、回転電機1自身に起因する振動も低減している。例えば、図19に示すように、集中巻の巻き線方向を同一方向(図19で時計方向)として2系統の三相コイルの導線450を同位相に巻線することも考えられる。この場合には、2系統の三相コイルが同じ出力位相となる。その為、図21に示すように、デルタ結線であれスター結線であれ、コイル404には誘導起電力が同時に同じベクトルで発生する。即ち、一系統(U相、V相、W相)と他系統(X相、Y相、Z相)とが同位相となり、出力電圧はどのタイミングで見ても対称性がない。なお、スター結線では、巻き始め引き出し線451、452、453と巻き終わり引き出し線455、456、457とを、対応する1本のリード線に電気接続している。 Furthermore, in this example, by using two systems, vibrations caused by the rotating electric machine 1 itself are also reduced. For example, as shown in FIG. 19, it is also possible to wind the conducting wires 450 of two systems of three-phase coils in the same phase by setting the winding directions of the concentrated windings in the same direction (clockwise in FIG. 19). In this case, the two systems of three-phase coils have the same output phase. Therefore, as shown in FIG. 21, induced electromotive force is generated in the coil 404 at the same time and in the same vector regardless of whether it is a delta connection or a star connection. That is, one system (U phase, V phase, W phase) and the other system (X phase, Y phase, Z phase) are in the same phase, and the output voltage is not symmetrical at any timing. In the star connection, the winding start lead wires 451, 452, 453 and the winding end lead wires 455, 456, 457 are electrically connected to one corresponding lead wire.
 それに対し、図20に示すように、2系統の三相コイルの導線450を逆位相に巻線すると、2系統の三相コイルは互いに逆となる出力位相となる。即ち、図20ではU相コイル、V相コイル、W相コイルの第1系統を時計方向に集中巻し、X相コイル、Y相コイル、Z相コイルの第2系統は反時計方向に集中巻している。このように集中巻の巻き線方向が互いに異なる方向である場合に逆となる出力位相になる。その為、図22に示すように、第1系統(U相、V相、W相)と第2系統(X相、Y相、Z相)とが180度ずれた位相となる。その結果、どのタイミングで見ても出力電圧に対称性がある。出力電圧の対称性は回転電機1を発電機として利用する場合であるが、始動機として利用する場合も同様である。始動機として利用する場合には入力電圧に対称性があり、発電機及び始動機のいずれの利用においても対称性を有する。これにより、ステータ400には互いに逆位相となる振動が生ずることとなって、振動を互いに打ち消し合うことができる。結果として、ステータ400がコイル404の励磁によって振動するのが抑制でき、磁歪音というステータ400振動に起因する異音の発生も抑制できる。コイル404の巻線がデルタ結線であってもスター結線であっても同様なことは図21の例と同様である。 On the other hand, as shown in FIG. 20, when the conducting wires 450 of the two systems of three-phase coils are wound in opposite phases, the two systems of three-phase coils have output phases that are opposite to each other. That is, in Fig. 20, the first system of U-phase coil, V-phase coil, and W-phase coil is concentratedly wound clockwise, and the second system of X-phase coil, Y-phase coil, and Z-phase coil is concentratedly wound counterclockwise. are doing. In this way, when the winding directions of the concentrated windings are different from each other, the output phases are opposite. Therefore, as shown in FIG. 22, the first system (U phase, V phase, W phase) and the second system (X phase, Y phase, Z phase) are out of phase by 180 degrees. As a result, there is symmetry in the output voltage regardless of the timing. The symmetry of the output voltage is the same when the rotating electric machine 1 is used as a generator, but it is also the same when it is used as a starter. When used as a starter, there is symmetry in the input voltage, and there is symmetry when used as both a generator and a starter. As a result, vibrations having opposite phases are generated in the stator 400, so that the vibrations can cancel each other out. As a result, it is possible to suppress the stator 400 from vibrating due to the excitation of the coil 404, and it is also possible to suppress the generation of abnormal noise called magnetostrictive noise due to the vibration of the stator 400. The same thing is true of the example of FIG. 21 whether the winding of the coil 404 is a delta connection or a star connection.
 本例では、上記内容を踏まえて、2系統の三相コイルを逆位相となるように配置している。なお、図19及び図20では、導線450のみを記載して巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457は記載していないが、導線450と巻き始め引き出し線451、452、453及び巻き終わり引き出し線455、456、457とが連続した線であることは、上記の通りである。 In this example, based on the above, two systems of three-phase coils are arranged so that they have opposite phases. In addition, in FIGS. 19 and 20, only the conducting wire 450 is shown, and the winding start drawn out lines 451, 452, 453 and the winding end drawn out lines 455, 456, 457 are not shown. , 452, 453 and the winding end lead lines 455, 456, 457 are continuous lines as described above.
 なお、固定穴403の数は3カ所に限るものではない。図11は固定穴403を4カ所に設けた例を示している。この図11の例でも、固定穴403も分割線Aに対して略左右対称に配置されている。この配置でも、ステータ400をエンジンカバーにバランス良く固定することができる。 Note that the number of fixing holes 403 is not limited to three. FIG. 11 shows an example in which fixing holes 403 are provided at four locations. In the example of FIG. 11 as well, the fixing holes 403 are also arranged substantially symmetrically with respect to the dividing line A. Even with this arrangement, the stator 400 can be fixed to the engine cover in a well-balanced manner.
 図12は、固定穴403を5カ所とした例であるが、この配置でも、固定穴403は分割線Aに対して略左右対称に配置されている。従って、この配置でもステータ400をエンジンカバーにバランス良く固定することができる。 FIG. 12 shows an example in which there are five fixing holes 403, but even in this arrangement, the fixing holes 403 are arranged approximately symmetrically with respect to the dividing line A. Therefore, even with this arrangement, the stator 400 can be fixed to the engine cover in a well-balanced manner.
 また、上述の例ではコイル404を2系統に分割したが、3系統以上に分割することも可能である。図13は三相のコイル404を3系統に分割した例を示す。この例では、3系統目の第1ないし第3接続部470、471、472を第3クリップ494と第3固定ネジ495でステータ400の基盤部401に固定している。図13の例では固定穴403は3カ所で、固定穴403の配置は分割線Aの中心点に対して略対称になっている。この固定穴403の配置によっても、3系統の配線(第1クリップ40、第2クリップ492、第3クリップ494等)をバランス良く配置することができている。従って、本開示において分割線Aに対して線対称とは、分割線が3本以上の場合、分割線Aが交わる中心点に対して点対称であることを意味する。 Furthermore, in the above example, the coil 404 is divided into two systems, but it is also possible to divide it into three or more systems. FIG. 13 shows an example in which the three-phase coil 404 is divided into three systems. In this example, the first to third connecting parts 470, 471, and 472 of the third system are fixed to the base part 401 of the stator 400 with a third clip 494 and a third fixing screw 495. In the example of FIG. 13, there are three fixing holes 403, and the arrangement of the fixing holes 403 is approximately symmetrical with respect to the center point of the dividing line A. The arrangement of the fixing holes 403 also allows the three systems of wiring (first clip 40, second clip 492, third clip 494, etc.) to be arranged in a well-balanced manner. Therefore, in the present disclosure, line symmetry with respect to the dividing line A means, when there are three or more dividing lines, point symmetry with respect to the center point where the dividing lines A intersect.
 上述の例では、コイル404を三相に巻線したが、相数を変えることも可能である。本開示は、単相にしてもよく、5相の回転電機1に使用しても良い。また、上述の例では、三相の巻き始め引き出し線451、452、453、コイル404の導線450及び巻き終わり引き出し線455、456、457を連続した1本の線としていた。配線の作業性が良く、好適な例である。ただ、配線は必ずしも連続している必要は無い。ティース部402の回りに巻装してコイル404を形成しておき、コイル404間の渡線を別の導線450で電気接続するようにしても良い。三相の巻き始め引き出し線451、452、453と、コイル404の導線450とを別の配線として電気接続するようにしても良い。同様に、導線450と巻き終わり引き出し線455、456、457とを別の配線としても良い。 In the above example, the coil 404 is wound in three phases, but it is also possible to change the number of phases. The present disclosure may be used for a single-phase or a five-phase rotating electric machine 1. Further, in the above example, the three-phase winding start lead wires 451, 452, 453, the conducting wire 450 of the coil 404, and the winding end lead wires 455, 456, 457 were made into one continuous wire. This is a suitable example because the wiring workability is good. However, the wiring does not necessarily have to be continuous. A coil 404 may be formed by winding around the teeth portion 402, and a wire between the coils 404 may be electrically connected using another conducting wire 450. The three-phase winding start lead wires 451, 452, 453 and the conducting wire 450 of the coil 404 may be electrically connected as separate wires. Similarly, the conducting wire 450 and the end-of-winding lead-out lines 455, 456, and 457 may be wired separately.
 また、上述の例で示した材料や寸法は一例であり、求められる性能等に応じて種々変更可能である。

 
Moreover, the materials and dimensions shown in the above-mentioned examples are merely examples, and can be variously changed depending on the required performance and the like.

Claims (7)

  1.  周方向に永久磁石を複数配置し、シャフトと共に回転するロータ(300)と、
     固定部に固定される円盤状の基盤部(401)、この基盤部より径方向外方に延びるx数のティース部(402)、及びこのティース部に配置され導線(450)を巻線してなるx数のコイル(404)を備え、前記ティース部の径方向外方端部が前記永久磁石と対向するステータ(400)と、
     前記導線と電気接続するリード線(460、461、462)と、
     このリード線と前記導線の前記コイルの巻き始め端部及び前記コイルの巻き終わり端部とを連結する巻き始め引き出し線(451、452、453)及び巻き終わり引き出し線(455、456、457)と、
     前記巻き始め引き出し線及び前記巻き終わり引き出し線と前記リード線との連結部を前記ステータに固定するクリップ(490、492、494)と、
     前記リード線と電気接続して前記コイルの入出力電力を制御する制御装置(480)とを備え、
     前記制御装置は前記コイルをk相に通電制御し、
     前記コイルはn系統にn分割され、nは2以上で前記ティース部のx数を前記コイルのk相で除した数と同数以下の自然数であり、n分割された前記コイルは360度をnで除した角度の範囲に連続して配置され、
     前記導線は、前記ティース部のx数をnと前記コイルのk相とで除した数の同じ相の前記コイルを周方向に連続して巻線し、
     前記クリップの数はnであり、
     前記クリップは前記コイルをn分割する分割線の略中間に位置する前記コイルの近傍で前記ステータの前記基盤部に固定され、
     前記巻き始め引き出し線及び前記巻き終わり引き出し線は、前記ティース部間を縫うように配線され、かつ、前記クリップが固定された位置の近傍に位置する収束部(468)で収束する回転電機。
    A rotor (300) having a plurality of permanent magnets arranged in the circumferential direction and rotating together with the shaft;
    A disk-shaped base part (401) fixed to a fixed part, x number of teeth parts (402) extending radially outward from this base part, and a conductive wire (450) arranged on these teeth parts and wound therein. a stator (400) comprising x number of coils (404), with radially outer ends of the teeth facing the permanent magnets;
    Lead wires (460, 461, 462) electrically connected to the conductive wire;
    A winding start lead wire (451, 452, 453) and a winding end lead wire (455, 456, 457) which connect this lead wire with the winding start end of the coil and the winding end end of the coil of the conductor wire. ,
    a clip (490, 492, 494) for fixing a connection portion between the winding start lead wire and the winding end lead wire and the lead wire to the stator;
    a control device (480) that is electrically connected to the lead wire and controls input and output power of the coil;
    The control device controls energization of the coil to the k phase,
    The coil is divided into n systems, where n is a natural number greater than or equal to 2 and less than or equal to the number obtained by dividing the x number of the teeth portion by the k phase of the coil, and the coil divided into n is divided into n systems. are placed continuously within the range of angles divided by
    The conducting wire is formed by continuously winding the coils of the same phase in the circumferential direction, the number of which is obtained by dividing the x number of the teeth portion by n and the k phase of the coil,
    the number of clips is n;
    The clip is fixed to the base portion of the stator near the coil located approximately in the middle of a dividing line that divides the coil into n parts,
    The winding start lead line and the winding end lead line are wired so as to weave between the teeth parts, and converge at a convergence part (468) located near the position where the clip is fixed.
  2.  前記基盤部は固定穴を介して前記固定部に固定され、
     前記固定穴は、前記コイルをn分割する分割線に対して、略線対称となるように配置される請求項1に記載の回転電機。
    the base part is fixed to the fixed part through a fixing hole,
    The rotating electric machine according to claim 1, wherein the fixing hole is arranged so as to be approximately symmetrical with respect to a dividing line that divides the coil into n parts.
  3.  前記制御装置は前記コイルの入出力電力を3相に制御し、
     前記nは偶数であり、
     前記制御装置は奇数番目の系統に属する前記コイルと偶数番目の系統に属する前記コイルとを巻方向が互いに逆方向とすることで互いの入出力電力が逆位相となるように通電制御する請求項1又は2に記載の回転電機。
    The control device controls input and output power of the coil to three phases,
    The n is an even number,
    The control device controls energization so that the coils belonging to odd-numbered systems and the coils belonging to even-numbered systems have winding directions opposite to each other so that their input and output powers are in opposite phases. The rotating electric machine according to 1 or 2.
  4.  周方向に沿って配置された複数の磁極を提供する永久磁石を有するロータ(300)と、
     円盤状の基盤部(401)、この基盤部より径方向外方に延びており、径方向外方端部が前記永久磁石と対向している複数のティース部(402)、および、これら複数のティース部のそれぞれに配置されており、導線(450)を巻線して形成された複数のコイル(404)を備えるステータ(400)と、
     前記導線によって提供されており、前記コイルの巻き始めの端部、および、前記コイルの巻き終わりの端部から前記ステータに沿って延び出す複数の巻き始め引き出し線(451、452、453)、および、複数の巻き終わり引き出し線(455、456、457)と、複数の連結部において電気的に接続されている複数のリード線(460、461、462)と、
     複数の前記連結部を前記ステータに固定する複数のクリップ(490、492、494)とを備え、
     複数の前記ティース部の極数はxであり、
     複数の前記コイルは、分割数nにより複数の系統に分割されており、
     それぞれの系統に属する複数の前記コイルは、相数kの巻線を提供しており、
     前記分割数nは2以上であって、前記極数xを前記相数kで除した数と同数以下の自然数であり、
     それぞれの系統に属する複数の前記コイルは、360度を前記分割数nで除した角度の範囲に連続して配置されており、
     前記極数xを、分割数nと相数kとで除した数の前記コイルは、それぞれの系統において、周方向に沿って連続している一連の前記導線により巻線されており、
     複数の前記クリップの数は前記分割数nと等しく、
     複数の前記クリップは、複数の前記コイルを分割する分割線の略中間に位置する前記コイルの近傍において、前記基盤部に固定されており、
     前記巻き始め引き出し線、および、前記巻き終わり引き出し線は、複数の前記ティース部間を縫うように配線されており、かつ、複数の前記クリップが固定されている位置の近傍に位置付けられた収束部(468)において収束している回転電機。
    a rotor (300) having a permanent magnet providing a plurality of circumferentially arranged magnetic poles;
    A disk-shaped base portion (401), a plurality of teeth portions (402) extending radially outward from the base portion, and having radially outer ends facing the permanent magnet; a stator (400) provided with a plurality of coils (404) arranged in each of the teeth portions and formed by winding a conducting wire (450);
    A plurality of winding start lead-out wires (451, 452, 453) provided by the conductive wire and extending along the stator from the winding start end of the coil and the winding end end of the coil, and , a plurality of winding end lead wires (455, 456, 457), and a plurality of lead wires (460, 461, 462) electrically connected at a plurality of connecting portions;
    a plurality of clips (490, 492, 494) for fixing the plurality of connecting portions to the stator;
    The number of poles of the plurality of teeth portions is x,
    The plurality of coils are divided into a plurality of systems by a division number n,
    The plurality of coils belonging to each system provide windings with a number of phases k,
    The number of divisions n is a natural number greater than or equal to 2 and less than or equal to the number obtained by dividing the number of poles x by the number of phases k,
    The plurality of coils belonging to each system are consecutively arranged in an angular range obtained by dividing 360 degrees by the division number n,
    In each system, the coils whose number is obtained by dividing the number of poles x by the number of divisions n and the number of phases k are wound by a series of the conductive wires that are continuous along the circumferential direction,
    The number of the plurality of clips is equal to the division number n,
    The plurality of clips are fixed to the base portion in the vicinity of the coil located approximately in the middle of a dividing line that divides the plurality of coils,
    The winding start lead-out line and the winding end lead-out line are wired so as to thread between the plurality of teeth parts, and the convergence part is located near the position where the plurality of clips are fixed. A rotating electric machine converging at (468).
  5.  前記基盤部は、固定対象である固定部に固定するための複数の固定穴を有し、
     前記固定穴は、前記分割線に対して、略線対称となるように配置されている請求項4に記載の回転電機。
    The base part has a plurality of fixing holes for fixing to a fixed part to be fixed,
    The rotating electrical machine according to claim 4, wherein the fixing hole is arranged so as to be approximately line symmetrical with respect to the dividing line.
  6.  前記相数kは3であり、
     前記分割数nは偶数であり、
     奇数番目の系統に属する複数の前記コイルと、偶数番目の系統に属する複数の前記コイルとは、巻方向が互いに逆方向となるように巻線されている請求項4または5に記載の回転電機。
    The phase number k is 3,
    The number of divisions n is an even number,
    The rotating electric machine according to claim 4 or 5, wherein the plurality of coils belonging to odd-numbered systems and the plurality of coils belonging to even-numbered systems are wound so that their winding directions are opposite to each other. .
  7.  さらに、複数の前記リード線と電気的に接続されており、複数の前記コイルの入出力電力を相数kの交流に制御する制御装置(480)を備え、
     前記制御装置は、奇数番目の系統に属する複数の前記コイルの入出力電力と、偶数番目の系統に属する複数の前記コイルの入出力電力とが、互いに逆位相となるように制御する請求項6に記載の回転電機。

     
    Further, it includes a control device (480) that is electrically connected to the plurality of lead wires and controls the input and output power of the plurality of coils to an alternating current with a number of phases k,
    6. The control device controls the input/output power of the plurality of coils belonging to odd-numbered systems and the input/output power of the plurality of coils belonging to even-numbered systems to be in opposite phases to each other. The rotating electric machine described in .

PCT/JP2023/002026 2022-03-24 2023-01-24 Rotary electric machine WO2023181615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049009 2022-03-24
JP2022049009A JP7328588B1 (en) 2022-03-24 2022-03-24 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2023181615A1 true WO2023181615A1 (en) 2023-09-28

Family

ID=87563080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002026 WO2023181615A1 (en) 2022-03-24 2023-01-24 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP7328588B1 (en)
WO (1) WO2023181615A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222412A (en) * 2003-01-15 2004-08-05 Honda Motor Co Ltd Process for manufacturing stator of generator/motor and its assembling jig
JP2016093132A (en) * 2014-11-14 2016-05-26 株式会社マキタ Electric working machine
WO2018179790A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Busbar unit and motor provided with same
WO2019065452A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Busbar unit and motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222412A (en) * 2003-01-15 2004-08-05 Honda Motor Co Ltd Process for manufacturing stator of generator/motor and its assembling jig
JP2016093132A (en) * 2014-11-14 2016-05-26 株式会社マキタ Electric working machine
WO2018179790A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Busbar unit and motor provided with same
WO2019065452A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Busbar unit and motor

Also Published As

Publication number Publication date
JP7328588B1 (en) 2023-08-17
JP2023142230A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP6977556B2 (en) Rotating machine
US10910899B2 (en) Rotary electric machine
US8878413B2 (en) Alternating-current generator having a stator and a stator winding made of winding elements inserted in stator slots and a method for producing a stator of the present invention
US8519590B2 (en) Magneto generator with multiple sets of three-phase windings
JP2020025438A (en) Rotating electric machine
KR100488408B1 (en) Vehicle ac generator having vibration-resistant stator
US20210234415A1 (en) Rotating electric machine
US7038348B2 (en) Dynamo electric machine
US20100072853A1 (en) Three-phase magneto generator and transport apparatus
KR100454837B1 (en) Electronically switched two phases reluctance machine
US7528517B2 (en) Distribution of motor heat sources
WO2023181615A1 (en) Rotary electric machine
JP6958504B2 (en) Rotating machine stator
CN105453389B (en) Motor
JP5554997B2 (en) Brushless motor stator and brushless motor
JP2009232650A (en) Rotating electrical machine
JP5569109B2 (en) AC generator for vehicles
JP4107609B2 (en) Magnet generator
EP1589639A1 (en) Improved multipolar magnetogenerator charging system
JP2010081670A (en) Alternating current generator
CN112840526B (en) Rotary electric machine
JP2009124784A (en) Magneto generator
JP2013051784A (en) Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774216

Country of ref document: EP

Kind code of ref document: A1