WO2023181532A1 - Metal-ceramic composite material - Google Patents

Metal-ceramic composite material Download PDF

Info

Publication number
WO2023181532A1
WO2023181532A1 PCT/JP2022/046567 JP2022046567W WO2023181532A1 WO 2023181532 A1 WO2023181532 A1 WO 2023181532A1 JP 2022046567 W JP2022046567 W JP 2022046567W WO 2023181532 A1 WO2023181532 A1 WO 2023181532A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
metal
composite material
phase
ceramic composite
Prior art date
Application number
PCT/JP2022/046567
Other languages
French (fr)
Japanese (ja)
Inventor
寛紀 竹下
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2024509757A priority Critical patent/JPWO2023181532A1/ja
Publication of WO2023181532A1 publication Critical patent/WO2023181532A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Definitions

  • the present invention relates to metal-ceramic composite materials. More specifically, the present invention relates to a metal-ceramic composite material in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are dispersed and mixed with each other and have an antibacterial effect.
  • Ceramic materials formed from silicon carbide are lightweight and have excellent wear resistance, high-temperature mechanical strength, and corrosion resistance.
  • silicon carbide is a brittle material with low toughness, so by combining silicon carbide with copper (Cu) or a copper alloy, which is a highly thermally conductive material, a composite material with an excellent balance of toughness and thermal conductivity is created.
  • Cu copper
  • copper alloy which is a highly thermally conductive material
  • Patent Document 2 describes a metal-ceramic composite material that includes a Si--Cu alloy and a SiC ceramic, and in which the Si:Cu content of the Si--Cu alloy is 60 to 30% by mass: 40 to 70% by mass. is disclosed. According to this document, it is reported that by including such a Si:Cu content, a composite material with improved toughness and suppressed decrease in Young's modulus and increase in density is provided.
  • Patent Document 3 discloses a highly thermally conductive composite material in which a porous SiC preform having a skeletal structure is infiltrated with Cu to form a reaction prevention layer between the two. According to this document, it is reported that a composite material having high thermal conductivity and a low coefficient of thermal expansion, which is suitable as a heat dissipation material for electronic equipment and semiconductor devices, is provided.
  • Slatted flooring made of concrete or cast metal has traditionally been used as flooring material for livestock barns, and attempts have been made to improve its durability and antibacterial properties.
  • slatted flooring made of concrete or cast iron did not have sufficient antibacterial and antiviral properties.
  • a composite material containing silicon carbide and copper that has been demonstrated to exhibit sufficient antibacterial properties has not been reported to date.
  • the present inventors have investigated that it is not easy to impregnate the ceramic phase of silicon carbide with copper or a copper alloy, particularly a metal phase forming substance containing Cu and Si, and this is due to the low impregnating property. It has been found that it is difficult to achieve both mechanical properties such as strength and hardness and antibacterial properties in such composite materials, and internal cracks may occur in some cases. Therefore, it is desired to develop a composite material containing silicon carbide and copper that has good mechanical properties such as strength and hardness and also exhibits excellent antibacterial properties.
  • the first problem to be solved by the present invention is to create a novel metal ceramic, which has an antibacterial effect, in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are mutually dispersed and mixed, which is not found in the prior art.
  • Our goal is to provide composite materials.
  • a further problem to be solved by the present invention is to provide a ceramic phase containing silicon carbide and a metal phase containing Cu and Si, which have good mechanical properties such as strength and hardness and exhibit excellent antibacterial properties.
  • the object of the present invention is to provide a novel metal-ceramic composite material in which the metals and ceramics are dispersed and mixed with each other.
  • the present inventors have found that when impregnating ceramics containing silicon carbide with an alloy and/or intermetallic compound consisting of Cu and Si, the alloy and/or intermetallic compound contains Cu or Si. This can be significantly improved by containing a predetermined amount of an additive element that is at least one metal other than the above, and by adjusting the resulting metal-ceramic composite material so that the ceramic phase and the metal phase have a predetermined area ratio.
  • the present inventors have discovered that a metal-ceramic composite material can be formed that has an excellent impregnated state and at the same time exhibits an excellent antibacterial effect, and has completed the present invention.
  • a ceramic phase containing silicon carbide, and A metal-ceramic composite material comprising an alloy consisting of Cu and Si and/or a metal phase containing an intermetallic compound in a mutually dispersed state
  • the metal phase contains an additive element M that is at least one metal other than Cu or Si
  • the silicon carbide accounts for the majority of the total mass of the constituent materials of the ceramic phase, here,
  • SEM scanning electron microscope
  • a novel metal-ceramic composite material which has antibacterial and antiviral effects, in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are mutually dispersed and mixed, which is not found in the prior art.
  • Ru a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are mutually dispersed and mixed, which is not found in the prior art.
  • Ru a metal-ceramic composite material according to the present invention, the presence of a predetermined amount of the additive element M in the metal phase containing Cu and Si brings about a good impregnation state of the metal-ceramic composite material, and thus Due to the good impregnation state, excellent mechanical properties such as strength and hardness, as well as excellent antibacterial and antiviral properties due to copper can be exhibited.
  • the area ratio of the ceramic phase containing silicon carbide to the metal phase containing Cu and Si, the mass ratio of the additive element M to Si in the metal phase is adjusted by adjusting the mass ratio of Cu to Si in the metal phase within a predetermined range, the impregnation state of the metal-ceramic composite material becomes even better, resulting in improved mechanical properties, especially porosity (density of the sintered body). , bending strength and hardness (e.g. Vickers hardness: indentation hardness), and excellent antibacterial and antiviral effects can be achieved in a well-balanced manner.
  • FIG. 1 is an example of an image taken by a scanning electron microscope (SEM) at a magnification of 500 of a metal-ceramic composite material according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • the metal-ceramic composite material according to the present invention comprises a ceramic phase containing silicon carbide (SiC) and a metal phase containing an alloy and/or an intermetallic compound of Cu and Si in a mutually dispersed state.
  • this metallic phase contains an additive element M that is at least one metal other than Cu or Si, and the silicon carbide accounts for a majority of the total mass of the constituent materials of the ceramic phase.
  • the respective amounts (mass%) of silicon carbide, free carbon, Cu, Si, and additive elements M constituting the metal phase in the metal-ceramic composite material and unavoidable impurities were measured using XRF (X-ray fluorescence spectroscopy). ), an ICP emission spectrometer, and a carbon analyzer (combustion-infrared absorption method).
  • XRF X-ray fluorescence spectroscopy
  • ICP emission spectrometer an ICP emission spectrometer
  • carbon analyzer combustion-infrared absorption method
  • the ceramic phase containing silicon carbide of the metal-ceramic composite material is not limited except that silicon carbide occupies a majority of the total mass of the constituent materials of the ceramic phase, that is, more than 50% by mass.
  • the ceramic phase of the metal-ceramic composite material may contain less than 50% by mass of ceramic materials other than silicon carbide. Examples of such ceramic materials other than silicon carbide include, but are not limited to, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN), titanium nitride (TiN), and zirconium nitride (ZrN).
  • the proportion of silicon carbide in the ceramic phase of the metal-ceramic composite material is more preferably 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass.
  • the content may be 90% by mass or more, 95% by mass or more, 96% by mass or more, 97% by mass or more, 98% by mass or more, 99% by mass or more, or substantially 100% by mass.
  • the ceramic phase may be formed solely of silicon carbide (without other ceramic materials) with the exception of a small amount of free carbon. The higher the proportion of silicon carbide in the ceramic phase within the range of more than 50% by mass, the higher the wear resistance, corrosion resistance, and strength, which are the characteristics of silicon carbide, can be exhibited in the metal-ceramic composite material.
  • the ceramic phase of the metal-ceramic composite material may contain a small amount of free carbon.
  • Free carbon refers to carbon atoms that exist alone without forming chemical bonds with silicon atoms or other metal atoms in the ceramic phase or near the interface of the ceramic phase with the metal phase.
  • the content of free carbon in the ceramic phase is not particularly limited, but may be, for example, usually 5% by mass or less, typically 3% by mass or less, based on the total weight of the ceramic phase.
  • the proportion of Cu to the total mass of the metal phase of the metal-ceramic composite material may be generally 60% by mass or more and 95% by mass or less, preferably 65% by mass or more and 90% by mass or less. Further, the proportion of Si to the total mass of the metal phase of the metal-ceramic composite material may be generally 3% by mass or more and 35% by mass or less, preferably 5% by mass or more and 30% by mass or less.
  • the proportion of the alloy and/or intermetallic compound consisting of Cu and Si with respect to the total mass of the metal phase of the metal-ceramic composite material is usually more than 70 mass%, preferably 71 mass% or more, 72 mass% or more, 73 mass%
  • the content may be 74% by mass or more, 75% by mass or more, 76% by mass or more, or 77% by mass or more.
  • this proportion is usually less than 99.7% by mass, preferably 99.5% by mass or less, 99% by mass or less, 98% by mass or less, 97% by mass or less, 96% by mass or less, 95% by mass or less, It may be 94% by weight or less, 93% by weight or less, 92% by weight or less, 91% by weight or less, 90% by weight or less, 88% by weight or less, 86% by weight or less, or 84% by weight or less.
  • the proportion of the alloy and/or intermetallic compound consisting of Cu and Si in the metal phase within the above range, the strength and thermal conductivity, which are the characteristics of copper, as well as antibacterial and antiviral properties can be achieved in the metal-ceramic composite material. can be expressed higher.
  • the proportion of the alloy and/or intermetallic compound consisting of Cu and Si with respect to the total mass of the metal phase of the metal-ceramic composite material may be generally more than 70% by mass and less than 99.7% by mass, preferably 70% by mass or more. -99.5% by mass or less, 70% by mass or more - 99% by mass or less, 70% by mass or more - 98% by mass or less, 70% by mass or more - 97% by mass or less, 70% by mass or more - 96% by mass or less, 70% by mass % to 95 mass%, 70 mass% to 94 mass%, 70 mass% to 93 mass%, 70 mass% to 92 mass%, 70 mass% to 91 mass%, 70 mass% % to 90 mass%, 70 mass% to 88 mass%, 70 mass% to 86 mass%, 70 mass% to 84 mass%, 71 mass% to less than 99.7 mass%, 71% by mass or more - 99.5% by mass or less, 71% by mass or more - 99% by mass or less
  • the additive element M which is at least one metal other than Cu or Si in the metal phase of the metal-ceramic composite material, is not particularly limited except that it is an element other than Cu or Si, and may include Ni (nickel), Pd (palladium), Mg (magnesium), Ca (calcium), Zn (zinc), Ti (titanium), Zr (zirconium), S (sulfur), Mo (molybdenum), W (tungsten), Fe (iron), Mn (manganese), It may contain at least one member selected from the group containing V (vanadium), Nb (niobium), Ta (tantalum), and Y (yttrium).
  • the additive element M may include at least one selected from the group including Ni, Mg, Zn, and Ti.
  • the additive element M more preferably includes Ni.
  • the additive elements M include two of the above-mentioned Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. It may include a combination or a combination of three or more elements.
  • the additive element M may include a combination of two of Ni, Mg, Zn, and Ti, or a combination of three or more elements.
  • the combination may be, for example, Ni/Mg, Ni/Zn, Ni/Ti, Mg/Zn, Mg/Ti, or Zn/Ti.
  • the additive element M includes a combination of three elements
  • the combination may be, for example, Ni/Mg/Zn, Ni/Mg/Ti, or Mg/Zn/Ti.
  • the additive element M is at least selected from the group including Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. It is only one type and does not contain any other elements. In a preferred embodiment, the additive element M is at least one selected from the group containing Ni, Mg, Zn, and Ti, and does not contain any other elements. In another embodiment, the additive element M is two elements selected from Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y.
  • the additive element M is three elements among Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. or a combination of three elements, Ni/Mg/Zn, Ni/Mg/Ti, or Mg/Zn/Ti, containing no other elements. Does not include.
  • the mass ratio of Ni to the total mass of the additive element M may be 5% by mass or more and 100% by mass or less (that is, Ni only), preferably 10% by mass or more and 100% by mass. % or less, 20% by mass or more - 100% by mass or less, 30% by mass or more - 100% by mass or less, 40% by mass or more - 100% by mass or less, 50% by mass or more - 100% by mass or less, 60% by mass or more - 100% by mass % or less, 70% by mass or more and 100% by mass or less, 80% by mass or more and 100% by mass or less, or 90% by mass or more and 100% by mass or less.
  • the metal phase of the metal-ceramic composite material contains impurities that are unavoidably mixed without active addition operations, so-called unavoidable impurities. Contains impurities. Unavoidable impurities may include any impurities known to be included in known metal-ceramic composite materials. Unavoidable impurities are not particularly limited, but include, for example, Mn, Sr, Sn, P, and Cr. The content of unavoidable impurities in the metal phase is not particularly limited, but may be 5% by mass or less based on the total mass of the metal phase.
  • the total area of the ceramic phase was When the percentage (%) is A and the percentage (%) of the total area of the metal phase is B, the area ratio A/B of the ceramic phase/metal phase is 2 or more and 60 or less.
  • the mass percentage (%) of Si is a and the mass percentage (%) of the additive element M is m with respect to its total mass, the following The relational expression holds true. 0.01 ⁇ m/a ⁇ 1.4, and 0.3 ⁇ m ⁇ 20
  • the ceramic phase/metal phase area ratio A/B within the above specific range and the above two relational expressions are all satisfied, so that the ceramic phase containing silicon carbide and the Cu It becomes easy to form a good impregnated state in which the metal phases containing Si and Si are sufficiently dispersed and mixed with each other.
  • the wear resistance, corrosion resistance, and strength which are the inherent characteristics of silicon carbide contained in the ceramic phase, as well as the characteristics inherent to the copper of the copper alloy contained in the metal phase, are improved. The strength, thermal conductivity, and antibacterial/antiviral properties can be more effectively exhibited.
  • the state of impregnation of the metal phase into the ceramic phase is improved.
  • metal ceramics with improved mechanical properties especially porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), and a better balance of antibacterial and antiviral effects.
  • Composite materials can be obtained.
  • the metal-ceramic composite material of the present invention contains a ceramic phase containing silicon carbide and a metal phase containing an alloy and/or an intermetallic compound of Cu and Si in a mutually dispersed state, that is, a ceramic phase and a metal phase.
  • a state is formed in which these are dispersed and intermingled with each other. Therefore, when using a scanning electron microscope (SEM) on a metal-ceramic composite material to obtain an image with an area of 256 ⁇ m x 192 ⁇ m at a magnification of 500, it is difficult to detect images due to the dispersion and mixing of the ceramic phase and the metal phase.
  • SEM scanning electron microscope
  • the image to be acquired is usually only one arbitrary field of view is sufficient. From the viewpoint of further increasing the accuracy of the calculation reproducibility of A/B, images are acquired from two or more arbitrary fields of view, the average value of the area ratio A/B in those images is calculated, and this is It may be considered as the area ratio A/B for the material.
  • FIG. 1 shows an example of an image taken by a scanning electron microscope (SEM) at a magnification of 500 of a metal-ceramic composite material according to an embodiment of the present invention.
  • the embodiment shown in this image is an example in which Ni, which is an additive element M, is added in an amount of 5% by mass based on the total mass of the metal phase of the composite material.
  • the white part is the metal phase containing the copper alloy and the additive element Ni
  • the gray part is the ceramic phase whose main component is SiC, and it can be seen that both phases are dispersed and mixed with each other. .
  • the ceramic phase/metal phase was The area ratio A/B is 2 or more and 60 or less, preferably 2.5 or more and 50 or less, 3 or more and 45 or less, 3 or more and 40 or less, 3 or more and 35 or less, 3 or more and 30 or less, 3 or more and 25 or less, 3 or more and 20 or less, 3 or more and 15 or less, 3 or more and 10 or less, 3 or more and 8 or less, 3.3 or more and 8 or less, 3.5 or more and 8 or less, 3.7 or more and 8 or less, 3 or more and 5 or less, 3.3 or more 5 or less, 3.5 or more and 5 or less, 3.7 or more and 5 or less, 3 or more and 4.5 or less, 3.3 or more and 4.5 or less, 3.3 or more and 4.5 or less, 3.5 or more and 4.5 or less, or 3.7 and 4.5 or less, 3.3 or more and 4.5 or less, 3.5 or more and 4.5 or less, or 3.7 and 4.5 or less, 3.3 or more and 4.5 or less,
  • the impregnation of the metal phase into the ceramic phase progresses favorably. It has a good balance of properties, effectively suppressing the decline in porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), as well as antibacterial and antiviral effects.
  • a metal-ceramic composite material can be obtained.
  • the range of m is not particularly limited, but for example, 0.5 ⁇ m ⁇ 20, 1 ⁇ m ⁇ 20, 2 ⁇ m ⁇ 20, 3 ⁇ m ⁇ 20, 4 ⁇ m ⁇ 20, 5 ⁇ m ⁇ 20, 0.3 ⁇ m ⁇ 18, 0.5 ⁇ m ⁇ 18, 1 ⁇ m ⁇ 18, 2 ⁇ m ⁇ 18, 3 ⁇ m ⁇ 18, 4 ⁇ m ⁇ 18, 5 ⁇ m ⁇ 18 , 0.3 ⁇ m ⁇ 16, 0.5 ⁇ m ⁇ 16, 1 ⁇ m ⁇ 16, 2 ⁇ m ⁇ 16, 3 ⁇ m ⁇ 16, 4 ⁇ m ⁇ 16, or 5 ⁇ m ⁇ 16.
  • the impregnation of the metal phase into the ceramic phase can proceed favorably.
  • the porosity density of the sintered body
  • a good balance of properties between bending strength and hardness for example, Vickers hardness: indentation hardness
  • the area ratio A/B of the ceramic phase/metal phase to the area of the entire scanning electron microscope (SEM) image is more than 5 (and less than 60). In some cases, it is preferable that the ratio between the mass percentage m (%) of the additive element M and the mass percentage a (%) of Si is m/a ⁇ 1.
  • the area ratio A/B of the ceramic phase/metal phase is more than 5 (and less than 60), that is, even when the proportion of the metal phase impregnated into the ceramic phase is relatively small, m
  • the porosity density of the sintered body
  • bending strength and hardness e.g. Vickers hardness: Indentation hardness
  • the mass percentage (%) of Cu is b and the mass percentage (%) of Si is a, based on the total mass, b/a
  • the relational expression ⁇ 2.5 holds true.
  • a metal ceramic whose porosity (density of the sintered body), bending strength and hardness, and the balance between antibacterial and antiviral effects are further improved by having the mass ratio of Cu and Si in the metal phase satisfy this relational expression.
  • Composite materials can be obtained. From the viewpoint of improving the balance of these various properties, it is recommended that the relational expression b/a ⁇ 3 holds between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase.
  • b/a ⁇ 3.5 is even more preferable, and b/a ⁇ 4 is even more preferable.
  • the difference between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is b/a. It is more preferable that the relational expression ⁇ 4.5 holds true, and even more preferable that b/a ⁇ 5.
  • the upper limit of the ratio b/a between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is not particularly limited, but may be From the viewpoint of obtaining a sufficient amount, it is preferable that the relational expression b/a ⁇ 20 holds true, and it is more preferable that b/a ⁇ 18, b/a ⁇ 16, or b/a ⁇ 14.
  • the ratio b/a between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is preferably 2.5 ⁇ b/a ⁇ 20, 2.5 ⁇ b/a ⁇ 18, 2.5 ⁇ b/a ⁇ 16, 2.5 ⁇ b/a ⁇ 14, 3 ⁇ b/a ⁇ 20, 3 ⁇ b/a ⁇ 18, 3 ⁇ b/a ⁇ 16, 3 ⁇ b/a ⁇ 14, 3.5 ⁇ b/a ⁇ 20, 3.5 ⁇ b/a ⁇ 18, 3.5 ⁇ b/a ⁇ 16, 3.5 ⁇ b/a ⁇ 14, 4 ⁇ b/a ⁇ 20, 4 ⁇ b/a ⁇ 18, 4 ⁇ b/a ⁇ 16, 4 ⁇ b/a ⁇ 14, 4.5 ⁇ b/a ⁇ 20, 4.5 ⁇ b/a ⁇ 18, 4.5 ⁇ b/a ⁇ 16, or 4.5 ⁇ b/a ⁇ 14.
  • the metal phase of the metal-ceramic composite material includes unavoidable impurities such as Mn, Sr, Sn, P, and Cr.
  • the sum of the mass percentage a (%), the mass percentage b (%) of Cu, and the mass percentage m (%) of the additional element M does not equal 100 mass %.
  • a+b+m ⁇ 95 (mass%), and a+b+m ⁇ It is more preferable that it is 96 (mass%), and even more preferable that a+b+m ⁇ 97 (mass%), a+b+m ⁇ 98 (mass%) or a+b+m ⁇ 99 (mass%).
  • the area ratio A/B of the ceramic phase/metal phase to the area of the entire scanning electron microscope (SEM) image is 5 or less (and 2 or more), and in the metal phase, the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m/a ⁇ 1 (and 0.01 or more), and It is more preferable that the ratio between the mass percentage b (%) of Cu and the mass percentage a (%) of Si is b/a ⁇ 3.
  • the area ratio A/B of the ceramic phase/metal phase is 4.5 or less, and the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m It is even more preferable that /a ⁇ 0.9 and the ratio of the mass percentage b (%) of Cu to the mass percentage a (%) of Si is b/a ⁇ 3.5.
  • the area ratio A/B of the ceramic phase/metal phase is 4.5 or less, and the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m It is even more preferable that /a ⁇ 0.8 and the ratio of the mass percentage b (%) of Cu to the mass percentage a (%) of Si is b/a ⁇ 4.
  • the metal-ceramic composite material according to the present invention can be used as an anti-pathogen material that exhibits anti-bacterial and anti-viral effects, that is, as an anti-bacterial and anti-viral material.
  • Target bacteria include, for example, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Moraxella bacteria, and methicillin-resistant Staphylococcus aureus.
  • target viruses include bacteriophage Q ⁇ , bacteriophage ⁇ 6, influenza virus, coronavirus, and human immunodeficiency virus.
  • the antibacterial effect and antiviral effect can be evaluated by the test described below.
  • the metal-ceramic composite material according to the present invention has an antibacterial effect R of 2.2 as measured using Staphylococcus aureus as a test bacterium in accordance with JIS Z2801:2012 and JIS R1752:2020 that cites this. It may be 0 or more.
  • JIS Z2801:2012 stipulates an action temperature of 35 ⁇ 1°C and an action time of 24 ⁇ 1 hour as the culture conditions for a test piece inoculated with a test bacterial solution in measuring the antibacterial effect. ⁇ Measurements are carried out in the dark at an action temperature of 25°C and an action time of 6 hours.
  • JIS R1752:2020 stipulates that the duration of light irradiation on a test piece inoculated with a test bacterial solution is 8 hours, but the culture and measurement here are performed without light irradiation and with a duration of 6 hours. Do it in the dark.
  • Specific conditions for measuring the antibacterial effect can typically be set as follows.
  • This antibacterial effect R is more preferably 2.5 or more, even more preferably 3.0 or more, even more preferably 3.5 or more, even more preferably 3.9 or more, even more preferably 4.2 or more. , most preferably 4.5 or more.
  • the upper limit of this antibacterial effect R is not particularly limited, but may actually be about 5.5 to 6. Since the antibacterial effect R of the metal-ceramic composite material according to the present invention is 2.0 or more, or preferably within the above range, the composite material can be suitably used as a material having antibacterial properties in a wide range of applications. .
  • the metal-ceramic composite material according to the present invention has an antiviral effect R of 2 as measured using bacteriophage Q ⁇ or bacteriophage ⁇ 6 as a test phage in accordance with ISO18071:2016 and JIS R1756:2020. It may be .5 or more.
  • ISO18071:2016 and JIS R1756:2020 stipulate that the action time of visible light irradiation is 4 hours as the culture condition for the test piece inoculated with the test solution in measuring the antiviral effect. ⁇ Measurements are carried out in the dark without light irradiation and with an action time of 6 hours. Specific conditions for measuring the antiviral effect can typically be set as follows.
  • This antiviral effect R is more preferably 3.0 or more, even more preferably 3.5 or more, even more preferably 4.0 or more, even more preferably 4.5 or more, and even more preferably 4.6. More preferably, it may be 4.7 or more.
  • the upper limit of this antiviral effect R is not particularly limited, but may actually be about 6.5 to 7. Since the antiviral effect R of the metal-ceramic composite material according to the present invention is 2.5 or more, or preferably within the above range, the composite material can be suitably used as a material having antiviral properties in a wide range of applications. I can do it.
  • the above-mentioned working temperature and working time in the culture conditions for measuring the antibacterial effect and antiviral effect can be changed depending on the bacteria or virus employed.
  • the operating temperature can be appropriately selected within the range of 10°C to 40°C.
  • the culture when conducting a test by culturing Escherichia coli, the culture can be carried out by setting the operating temperature to 37° C., where Escherichia coli grows actively.
  • the culture may be carried out for an appropriate action time in the range of 2 hours to 72 hours, or for a longer action time. For example, in the case of a virus with a slow growth rate, culture can be performed with the action time set to 96 hours.
  • the metal-ceramic composite material of the preferred embodiment of the present invention can be used as an anti-pathogen material that exhibits sufficient anti-bacterial and anti-viral effects even in the dark. That is, according to the metal-ceramic composite material of the preferred embodiment, it is possible to provide an anti-pathogen material that exhibits anti-bacterial and anti-viral effects regardless of illuminance.
  • the metal-ceramic composite material according to the present invention may have a porosity of 10% or less as measured by the Archimedes method according to JIS R1634:1998. This porosity is more preferably 9% or less, even more preferably 8% or less, even more preferably 7% or less, even more preferably 6% or less, even more preferably 5% or less, and most preferably 4%. It may be the following.
  • the lower limit of this porosity is not particularly limited (as long as it is 0% or more), but in reality, the lower limit may be about 2 to 3%. Since the porosity of the metal-ceramic composite material according to the present invention is 10% or less, or preferably within the above range, the density of the sintered body is further improved, and it is easy to obtain a composite material with higher hardness. become.
  • the metal-ceramic composite material according to the present invention has a bulk density D1 of the metal-ceramic composite material and a true density D2 of the metal phase of the metal-ceramic composite material when measured by the Archimedes method according to JIS R1634:1998.
  • the relative density [D1/D2]*100 may be 90% or more. This relative density may be more preferably 91% or more, even more preferably 92% or more, even more preferably 93% or more, even more preferably 94% or more, and most preferably 95% or more.
  • the relative density of the metal-ceramic composite material according to the present invention is 90% or more, or preferably within the above range, the denseness of the sintered body can be further improved as in the case where the porosity is below the predetermined upper limit. , it becomes easier to obtain composite materials with higher hardness.
  • the metal-ceramic composite material according to the present invention may have a bending strength of 230 MPa or more as measured by a three-point bending strength test according to JIS R1601:2008.
  • This bending strength may be more preferably 250 MPa or more, even more preferably 270 MPa or more, even more preferably 280 MPa or more, even more preferably 290 MPa or more, and most preferably 300 MPa or more. Since the bending strength of the metal-ceramic composite material according to the present invention is 230 MPa or more, or preferably within the above range, the mechanical strength against bending operations is further improved, making it suitable for a wide range of applications requiring high bending resistance. It can be suitably used.
  • the metal-ceramic composite material according to the present invention may have a Vickers hardness of 25 GPa or more measured as a five-point average in a one-point load test according to JIS R1610:2003.
  • the Vickers hardness may be more preferably 26 GPa or higher, even more preferably 26.5 GPa or higher, even more preferably 27 GPa or higher, even more preferably 27.5 GPa or higher, and most preferably 28 GPa or higher. Since the Vickers hardness of the metal-ceramic composite material according to the present invention is 25 GPa or more, or preferably within the above range, its robustness against indentation operations is further improved, and it can be suitably used for a wide range of applications that require high rigidity. can do.
  • the metal-ceramic composite material according to the present invention can be processed into various shapes and used. Although its shape is not particularly limited, it may be a film, a sheet, a thin plate, a thick plate, a substantially prismatic column, a substantially circular column, or the like. Further, the metal-ceramic composite material according to the present invention can be used in a wide range of applications requiring antibacterial and antiviral properties.
  • the composite materials are used, for example, as components for various articles, structural materials constituting buildings, bridges, ships, railways, roads, ports, etc., and architectural materials such as flooring materials, wall materials, and ceilings of buildings, including flooring materials for livestock sheds. It can be suitably used as a material or the like.
  • Method for manufacturing metal-ceramic composite material is not particularly limited as long as a metal-ceramic composite material having the above-mentioned configuration and characteristics can be obtained as a result.
  • the metal-ceramic composite material according to the present invention can be manufactured, for example, as described below.
  • a preform of a porous ceramic sintered body is formed from a ceramic phase-forming material containing a majority of silicon carbide (SiC), and in the second step, this preform is heated at a high temperature.
  • the metal-ceramic composite material according to the present invention can be manufactured by impregnating a metal phase-forming material containing a molten alloy and/or intermetallic compound of Cu and Si and an additive element M under pressure.
  • Other substances other than silicon carbide that can be included in the ceramic phase-forming material, the additive element M included in the metal phase-forming material, and the types of inevitable impurities are as described above for the metal-ceramic composite material.
  • Mass ratio of ceramic phase forming material used in the first step and metal phase forming material used in the second step, mass ratio of Cu and Si in the alloy and/or intermetallic compound, Cu in the metal phase forming material By appropriately adjusting the mass ratio of the alloy and/or intermetallic compound consisting of Si and Si and the additive element M, the area ratio A/B of the ceramic phase/metallic phase within a predetermined range, and the mass of the additive element M within a predetermined range.
  • a preform of a porous ceramic sintered body is produced by, for example, molding a ceramic phase-forming material containing a majority of silicon carbide by a molding method such as molding, and then molding the material at a temperature of usually 2000°C or higher, preferably 2200°C or higher. It can be produced by a so-called recrystallization method in which high temperature is maintained.
  • a preform of a porous ceramic sintered body containing silicon carbide can be obtained by heating a mixture containing high-purity silicon (Si) particles and carbon (C) particles at 1400°C or higher and performing reaction sintering. It is possible.
  • a binder substrate that carbonizes by sintering
  • Carbon fibers can also be used as a carbon source.
  • the porosity of the preform of the porous ceramic sintered body obtained in this first step is not particularly limited, but may be, for example, 10% to 70%.
  • the metal phase-forming material containing the alloy and/or intermetallic compound of Cu and Si and the additive element M may be melted in advance at a high temperature of usually over 1000°C, preferably over 1200°C. can.
  • the metal phase-forming material containing the alloy and/or intermetallic compound of Cu and Si melted at a high temperature and the additive element M is usually heated in a high-pressure container under a pressure of more than 1 MPa, preferably 3 MPa or more, as described above. It can be impregnated into the preform of the porous ceramic sintered body obtained in the first step.
  • Another method is to form a preform as a precursor of a ceramic sintered body from a ceramic phase-forming material containing a majority of silicon carbide (SiC), and to sinter this preform and form a ceramic phase-forming material containing a majority of silicon carbide (SiC). Impregnation of the preform with a metal phase-forming material containing the alloy and/or intermetallic compound and the additive element M can also be carried out simultaneously.
  • the alloy and/or intermetallic compound consisting of Cu and Si is not particularly limited, but may be any known alloy and/or intermetallic compound. For example, Cu 3 Si, Cu 5 Si, Cu 6 Si, Cu 7 Si, etc. may be used as the alloy.
  • porous ceramics are formed in a metal phase-forming material containing an alloy and/or intermetallic compound of Cu and Si melted at a high temperature and an additive element M for a predetermined period of time (for example, 10 seconds to 200 seconds).
  • the sintered preform is held in an immersed state, and then the immersed preform is placed under pressure for a predetermined period of time (for example, 30 seconds to 300 seconds) to progress impregnation to the entire preform. be able to.
  • the preform Prior to immersing the preform of the porous ceramic sintered body in the metal phase forming material melted at a high temperature, the preform may also be heated in advance, separately from the heating and melting of the metal phase forming material.
  • Cooling can be quickly performed by introducing and circulating cooling gas into the high-pressure container in which melt impregnation has been performed. Alternatively, cooling can also be performed by contacting the preform after melt impregnation with a cooling metal.
  • Example 1 The metal-ceramic composite material of Example 1 was manufactured as follows. ⁇ First step> 70% by mass of commercially available SiC powder fine particles (manufactured by Saint-Gobain, average particle size 3 ⁇ m) and 30% by mass of coarse particles (manufactured by Shinano Electric Refining Co., Ltd., average particle size 20 ⁇ m) were mixed with 10% by mass (10% by mass) of phenolic resin as an organic binder. After mixing (3% by mass in terms of carbon) and press molding, heat treatment was performed at a temperature of 1000° C. for 3 hours in a nitrogen atmosphere to form a preform having a filling rate of 75% by volume in which the phenol resin was carbonized.
  • the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step is set to 1:1, and among the metal phase forming materials, copper (Cu) and silicon ( The ratio of Si) was 7:3, and the mass ratio of the additional element Ni to the total mass of the metal phase forming material was 0.5% by mass.
  • a metal-ceramic composite material was produced by infiltrating the preform obtained in the first step with a Cu--Si--Ni alloy that was melted by holding it at a temperature of 1500° C. for 3 hours in an argon atmosphere.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.5, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .0.
  • the mass proportion of Si was 19.8 mass%
  • the mass proportion of Cu was 79.6 mass%
  • the mass proportion of additional element Ni was 0.5 mass% with respect to the total mass of the metal phase forming material (Measurement method described below).
  • Example 2 A metal-ceramic composite material was produced in the same manner as in Example 1, except that the mass ratio of the additional element Ni to the total mass of the metal phase forming material was changed to 5.0 mass%.
  • the ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .2.
  • the mass proportion of Si is 18.0 mass%
  • the mass proportion of Cu is 76.0 mass%
  • the mass proportion of the additional element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Example 3 A metal-ceramic composite material was produced in the same manner as in Example 1, except that the mass ratio of the additional element Ni to the total mass of the metal phase forming material was changed to 16.0 mass%.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 4.7, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 5. It was .7.
  • the mass proportion of Si is 11.8 mass%
  • the mass proportion of Cu is 67.2 mass%
  • the mass proportion of the additive element Ni is 16.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Example 4 Except that Mg powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 180 ⁇ m or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Mg to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1.
  • the ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .3.
  • the mass ratio of Si to the total mass of the metal phase of the obtained metal-ceramic composite material was 17.8% by mass
  • the mass ratio of Cu was 76.0% by mass
  • the mass ratio of the additive element Mg was 5.0%. % by mass (measurement method will be described later).
  • Example 5 Except that Zn powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 75 ⁇ m or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Zn to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1.
  • the ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.9, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .2.
  • the mass proportion of Si was 18.0 mass%
  • the mass proportion of Cu was 76.0 mass%
  • the mass proportion of the additive element Zn was 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Example 6 Except that Ti powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 45 ⁇ m or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Ti to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1.
  • the ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .1.
  • the mass proportion of Si is 18.7 mass%
  • the mass proportion of Cu is 76.0 mass%
  • the mass proportion of the additive element Ti is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Example 7 A mixture of Ni/Ti powder (mass ratio 2:1) was used instead of Ni powder as the additive element, and the mass ratio of the Ni/Ti mixture to the total mass of the metal phase forming material was changed to 6.0% by mass.
  • a metal-ceramic composite material was produced in the same manner as in Example 1 except for this.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.7, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .8.
  • the mass ratio of Si was 15.8% by mass
  • the mass ratio of Cu was 75.2% by mass
  • the mass ratio of additional elements Ni/Ti was 6% by mass with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. .0% by mass (measurement method will be described later).
  • Example 8 Except that the ratio of copper (Cu) to silicon (Si) in the metal phase forming material was changed to 6:4, and the mass ratio of the added element Ni to the total mass of the metal phase forming material was changed to 5.0% by mass.
  • a metal-ceramic composite material was produced in the same manner as in Example 1.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.5
  • the mass ratio b/a of Cu to Si in the metal phase is 2. It was .7.
  • the mass proportion of Si is 25.1 mass%
  • the mass proportion of Cu is 67.9 mass%
  • the mass proportion of the additive element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Example 9 Except that the ratio of copper (Cu) and silicon (Si) in the metal phase forming material was changed to 8:2, and the mass ratio of the added element Ni to the total mass of the metal phase forming material was changed to 5.0% by mass.
  • a metal-ceramic composite material was produced in the same manner as in Example 1.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.7, and the mass ratio b/a of Cu to Si (measurement method described later) in the metal phase is 13. It was .2.
  • the mass proportion of Si is 6.5 mass%
  • the mass proportion of Cu is 85.5 mass%
  • the mass proportion of additional element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
  • Comparative example 1 The mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step and the mass ratio of the additional element Ni to the total mass of the metal phase forming material were changed to 23% by mass.
  • a metal-ceramic composite material was produced in the same manner as in Example 1 except for the following.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 15.0
  • the mass ratio b/a of Cu to Si in the metal phase is 5. It was .7.
  • the mass proportion of Si was 15 mass%
  • the mass proportion of Cu was 85 mass%
  • the mass proportion of the additive element Ni was 23 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material (Measurement method described below).
  • Comparative example 2 The same process as in Example 1 was carried out except that the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step was changed and the additive element M was not added.
  • a ceramic composite material was manufactured.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 1.5
  • the mass ratio b/a of Cu to Si in the metal phase is 4. It was .0.
  • the mass proportion of Si was 20 mass% and the mass proportion of Cu was 80 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material (measurement method described later).
  • Comparative example 3 The same process as in Example 1 was carried out except that the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step was changed and the additive element M was not added.
  • a ceramic composite material was manufactured.
  • the ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material was 63.3, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) was 4. It was .0.
  • the mass proportion of Si was 20 mass% and the mass proportion of Cu was 80 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material (measurement method described later).
  • Comparative example 4 A silicon carbide (SiC) sintered body was manufactured from the ceramic phase forming material by the same procedure as in Example 1. The characteristics were measured and evaluated for comparison without impregnating this with the metal phase forming material.
  • Measurement of various properties of composite materials (1) Measurement and calculation of area ratio A/B of ceramic phase/metal phase Example 1 9 and Comparative Examples 1 to 3, images with an area of 256 ⁇ m ⁇ 192 ⁇ m were obtained at a magnification of 500. With respect to the area of the entire image, the percentage (%) of the total area of the ceramic phase (gray area) is defined as A, and the percentage (%) of the total area of the metal phase (white area) is defined as B. The area ratio A/B was calculated. In principle, the total area percentage of each of both phases was measured from an image of one field of view, and the area ratio was calculated.
  • An optional additional step is to acquire images in any two or more fields of view and calculate the average value of the area ratio A/B in those images, which is the same as that obtained from the images of said one field of view. It may be confirmed that the area ratio is substantially the same.
  • Table 1 shows the ceramic phase/metal phase area ratio A/B for each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 3.
  • XRF X-ray fluorescence spectrometry
  • X-ray fluorescence spectrometry is used to identify the main components and impurity elements contained in the sample, such as ceramics, copper, silicon, and additive metals, by placing the sample after crushing in a cup holder dedicated to powder analysis.
  • fluorescent X-ray analyzer "Supermini 20" manufactured by Rigaku Co., Ltd. was used.
  • ICP emission spectrometry is a quantitative analysis of elements measured by XRF by adding hydrochloric acid to the crushed sample, decomposing the components at room temperature, and measuring the emission intensity of each element using an ICP emission spectrometer. was carried out.
  • the ICP emission spectrometer used was "Agilent 5110" manufactured by Agilent Technologies.
  • Free carbon and silicon carbide were measured using a carbon/sulfur analyzer (combustion-infrared absorption method). The measurements were conducted in accordance with JIS R 2011:2007 "Chemical analysis method for refractories containing carbon and silicon carbide.” Note that silicon carbide (SiC) was measured using an indirect method (total carbon and free carbon are measured, and the difference in carbon is converted to silicon carbide).
  • the carbon/sulfur analyzer used was ⁇ EMIA-810W'' manufactured by Horiba, Ltd., which utilizes combustion in an oxygen stream (tubular electric furnace method) and infrared absorption method.
  • the amount of metal in the metal phase-forming material prepared as a powder mixture before impregnation is greater than the amount of metal impregnated into the preform of the ceramic phase-forming material, and Since each metal type including the additive element M constituting the forming material may not be mixed completely uniformly, the mass percentage of the additive element M in the metal phase forming material and the actually produced metal-ceramic composite material may be different. It is considered theoretically possible that the mass percentage of the additive element M in the metal phase does not completely match. In each of Examples 1 to 9 and Comparative Example 1 above, the mass percentage of the additive element M in the metal phase forming material and the mass percentage of the additive element M in the metal phase of the metal-ceramic composite material actually manufactured are It was a match.
  • antibacterial effect R For each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4, yellow grape vine was used as a test bacterium in accordance with JIS Z2801:2012 and JIS R1752:2020. Using cocci, the antibacterial effect R was measured in the dark at an action temperature of 25°C and an action time of 6 hours.
  • the specific conditions for measuring the antibacterial effect R were as follows.
  • antiviral effect R The metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4 were tested as test viruses in accordance with ISO18071:2016 and JIS R 1756:2020.
  • the antiviral effect R was measured using macrophage Q ⁇ at an action temperature of 25° C. and an action time of 6 hours in the dark.
  • the specific conditions for measuring the antiviral effect R were as follows.
  • the preferred metal-ceramic composite material according to the present invention provides a good impregnated state and has excellent mechanical properties such as strength and hardness, as well as excellent mechanical properties due to copper.
  • porosity density of the sintered body
  • bending strength and hardness e.g. Vickers hardness: indentation hardness
  • antibacterial and antiviral effects are exhibited. Everything was well balanced and at a high level.
  • Comparative Example 1 in which the additive element M is excessively contained in the metal phase
  • Comparative Example 2 in which the ceramic phase has a smaller area ratio than the predetermined area ratio with respect to the metal phase
  • Comparative Example 2 in which the ceramic phase has a larger area ratio than the predetermined area ratio with respect to the metal phase.
  • a ceramic phase containing silicon carbide, and A metal-ceramic composite material comprising an alloy consisting of Cu and Si and/or a metal phase containing an intermetallic compound in a mutually dispersed state
  • the metal phase contains an additive element M that is at least one metal other than Cu or Si
  • the silicon carbide accounts for the majority of the total mass of the constituent materials of the ceramic phase, here,
  • SEM scanning electron microscope
  • the metal-ceramic composite material according to item 1 above which satisfies the following. [3].
  • the area ratio A/B of the ceramic phase/metal phase is 5 or less, and m/a ⁇ 1, and b/a ⁇ 3.
  • the metal-ceramic composite material according to any one of items 1 to 4 above which has an antibacterial effect R of 2.0 or more as measured under conditions using Staphylococcus aureus as a test bacterium in accordance with JIS Z2801:2012. [6].
  • the metal-ceramic composite material according to any one of items 1 to 5 above which is used as an anti-pathogen material. [7].
  • the relative density [D1/D2]*100 of the bulk density D1 of the metal-ceramic composite material to the true density D2 of the metal phase of the metal-ceramic composite material is 90% or more.
  • the metal-ceramic composite material according to any one of items 1 to 9 above which has a Vickers hardness of 25 GPa or more as measured at a five-point average in a one-point load test according to JIS R1610:2003. [11].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The purpose of the present disclosure is to provide a novel metal-ceramic composite material having an antimicrobial effect, the metal-ceramic composite material being such that a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are dispersed and mixed with each other. Disclosed is a metal-ceramic composite material that contains a ceramic phase of silicon carbide and a metal phase of an alloy and/or intermetallic compound composed of Cu and Si in a state in which the two phases are dispersed in each other, the metal phase containing an added element M that is at least one metal other than Cu or Si, the silicon carbide accounting for more than half of the total mass of the constituent material of the ceramic phase, and the relational expressions 0.01≤m/a≤1.4 and 0.3≤m≤20 being satisfied, where the mass ratio A/B of the ceramic phase and the metal phase is 2-60 inclusive, a is the mass percentage (%) of Si in the metal phase, and m is the mass percentage (%) of the added element M, as seen when an image having an area of 256 μm×192 μm is captured at a magnification of 500× using a scanning electron microscope (SEM).

Description

金属セラミックス複合材料metal ceramic composite material
 本発明は、金属セラミックス複合材料に関する。より具体的には、本発明は、炭化ケイ素を含むセラミックス相、ならびにCuおよびSiを含む金属相が互いに分散・混在し、抗菌効果を有する金属セラミックス複合材料に関する。 The present invention relates to metal-ceramic composite materials. More specifically, the present invention relates to a metal-ceramic composite material in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are dispersed and mixed with each other and have an antibacterial effect.
 炭化ケイ素(SiC)から形成されたセラミックス材料は、軽量であると共に、耐摩耗性、高温機械強度、耐食性に優れる。その一方、炭化ケイ素は靭性が低い脆性材料であるため、炭化ケイ素と高熱伝導性材料である銅(Cu)または銅合金とを組み合わせることにより、靭性及び熱伝導性の優れたバランスを有する複合材料の開発が進められてきた。このような炭化ケイ素および銅を含む複合材料は、電子機器、半導体デバイス等のヒートシンク材料やパッケージ材料、半導体基板、ブレーキディスクなどの広範な用途のために用いられ得ることが知られている(例えば、特許文献1参照)。 Ceramic materials formed from silicon carbide (SiC) are lightweight and have excellent wear resistance, high-temperature mechanical strength, and corrosion resistance. On the other hand, silicon carbide is a brittle material with low toughness, so by combining silicon carbide with copper (Cu) or a copper alloy, which is a highly thermally conductive material, a composite material with an excellent balance of toughness and thermal conductivity is created. has been under development. It is known that such composite materials containing silicon carbide and copper can be used for a wide range of applications such as heat sink materials and packaging materials for electronic equipment, semiconductor devices, semiconductor substrates, brake discs, etc. (e.g. , see Patent Document 1).
 例えば、特許文献2には、Si-Cu合金とSiCセラミックスとを含んでなり、Si-Cu合金のSi:Cu含有率が60~30質量%:40~70質量%である金属-セラミックス複合材料が開示されている。この文献によれば、このようなSi:Cu含有率を備えることによって、靭性を改善すると共に、ヤング率の低下および密度の増大が抑制された複合材料が提供されることが報告されている。
 また、特許文献3には、骨格構造をなす多孔質SiCプリフォームにCuを溶浸させ、両者の間に反応防止層を形成した高熱伝導性複合材料が開示されている。この文献によれば、電子機器や半導体デバイス用熱放散材料として適した、高熱伝導性と低熱膨張係数を具備した複合材料が提供されることが報告されている。
For example, Patent Document 2 describes a metal-ceramic composite material that includes a Si--Cu alloy and a SiC ceramic, and in which the Si:Cu content of the Si--Cu alloy is 60 to 30% by mass: 40 to 70% by mass. is disclosed. According to this document, it is reported that by including such a Si:Cu content, a composite material with improved toughness and suppressed decrease in Young's modulus and increase in density is provided.
Furthermore, Patent Document 3 discloses a highly thermally conductive composite material in which a porous SiC preform having a skeletal structure is infiltrated with Cu to form a reaction prevention layer between the two. According to this document, it is reported that a composite material having high thermal conductivity and a low coefficient of thermal expansion, which is suitable as a heat dissipation material for electronic equipment and semiconductor devices, is provided.
 ところで、従来から、人間および動物の健康・衛生を促進し、伝染病を予防する等の観点から、各種物品に用いられる板状部材や、建物、橋、船、鉄道、道路、港湾などを構成する構造材料や、床材、壁材、天井などの建築資材として、改善された抗菌性・抗ウィルス性を有する材料を開発する試みが継続的になされている。また、悪性の感冒や伝染病の発生が多い近年の社会状況においては益々そのような要請は高まっている。例えば、牛・豚・鳥などの家畜の畜舎においては、主に伝染病を予防し、製品の安定供給を図るため、細菌の増殖を防止することで衛生環境を高める必要がある。畜舎の床材として、従来からコンクリート製や鋳物製のスノコ状床材が用いられており、耐久性や抗菌性を高める試みがなされている。しかし、そのようなコンクリート製や鋳物製のスノコ状床材は、十分な抗菌性・抗ウィルス性を奏するものではなかった。 By the way, from the viewpoint of promoting the health and hygiene of humans and animals and preventing infectious diseases, it has been traditionally used for plate-shaped members used in various products, buildings, bridges, ships, railways, roads, ports, etc. Attempts are continually being made to develop materials with improved antibacterial and antiviral properties for use in structural materials such as flooring, wall materials, ceilings, and other building materials. In addition, such demands are increasing in recent social conditions where there are many outbreaks of malignant colds and infectious diseases. For example, in barns for livestock such as cows, pigs, and birds, it is necessary to improve the sanitary environment by preventing the proliferation of bacteria, mainly to prevent infectious diseases and ensure a stable supply of products. Slatted flooring made of concrete or cast metal has traditionally been used as flooring material for livestock barns, and attempts have been made to improve its durability and antibacterial properties. However, such slatted flooring made of concrete or cast iron did not have sufficient antibacterial and antiviral properties.
特開2003-165787号公報Japanese Patent Application Publication No. 2003-165787 特開2004-035307号公報Japanese Patent Application Publication No. 2004-035307 特開2003-002770号公報Japanese Patent Application Publication No. 2003-002770
 十分な抗菌性を奏することが実証された炭化ケイ素および銅を含む複合材料は、これまで報告されていなかった。本発明者らが検討したところ、炭化ケイ素のセラミックス相に銅または銅合金、特にはCuおよびSiを含む金属相の形成物質を含侵させることは容易でなく、含浸性が低いことに起因して、その複合材料において強度および硬度などの機械的物性と抗菌性とを両立させることが困難であり、場合によって内部クラックが生じ得ることが分かった。従って、良好な強度および硬度などの機械的物性を有すると共に、優れた抗菌性を奏する炭化ケイ素および銅を含む複合材料を開発することが望まれている。 A composite material containing silicon carbide and copper that has been demonstrated to exhibit sufficient antibacterial properties has not been reported to date. The present inventors have investigated that it is not easy to impregnate the ceramic phase of silicon carbide with copper or a copper alloy, particularly a metal phase forming substance containing Cu and Si, and this is due to the low impregnating property. It has been found that it is difficult to achieve both mechanical properties such as strength and hardness and antibacterial properties in such composite materials, and internal cracks may occur in some cases. Therefore, it is desired to develop a composite material containing silicon carbide and copper that has good mechanical properties such as strength and hardness and also exhibits excellent antibacterial properties.
 従って、本発明が解決しようとする第一の課題は、従来技術にない、炭化ケイ素を含むセラミックス相、ならびにCuおよびSiを含む金属相が互いに分散・混在し、抗菌効果を有する新規な金属セラミックス複合材料を提供することである。
 また、本発明が解決しようとする更なる課題は、良好な強度および硬度などの機械的物性を有すると共に、優れた抗菌性を奏する、炭化ケイ素を含むセラミックス相、ならびにCuおよびSiを含む金属相が互いに分散・混在した新規な金属セラミックス複合材料を提供することである。
Therefore, the first problem to be solved by the present invention is to create a novel metal ceramic, which has an antibacterial effect, in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are mutually dispersed and mixed, which is not found in the prior art. Our goal is to provide composite materials.
Further, a further problem to be solved by the present invention is to provide a ceramic phase containing silicon carbide and a metal phase containing Cu and Si, which have good mechanical properties such as strength and hardness and exhibit excellent antibacterial properties. The object of the present invention is to provide a novel metal-ceramic composite material in which the metals and ceramics are dispersed and mixed with each other.
 本発明者らは、鋭意研究した結果、炭化ケイ素を含むセラミックスに対して、CuおよびSiからなる合金および/または金属間化合物を含浸させる際に、この合金および/または金属間化合物にCuまたはSi以外の少なくとも1種の金属である添加元素を所定量で含有させると共に、得られる金属セラミックス複合材料においてセラミックス相と金属相とが所定の面積比を有するように調整することによって、大幅に改善された含浸状態を備えると同時に、優れた抗菌効果を奏する金属セラミックス複合材料が形成されることを見出し、本発明を完成させた。 As a result of extensive research, the present inventors have found that when impregnating ceramics containing silicon carbide with an alloy and/or intermetallic compound consisting of Cu and Si, the alloy and/or intermetallic compound contains Cu or Si. This can be significantly improved by containing a predetermined amount of an additive element that is at least one metal other than the above, and by adjusting the resulting metal-ceramic composite material so that the ceramic phase and the metal phase have a predetermined area ratio. The present inventors have discovered that a metal-ceramic composite material can be formed that has an excellent impregnated state and at the same time exhibits an excellent antibacterial effect, and has completed the present invention.
 すなわち、上記課題の解決手段である本発明の主態様は、以下のとおりである。
 炭化ケイ素を含むセラミックス相、ならびに、
 CuおよびSiからなる合金および/または金属間化合物を含む金属相
を互いに分散した状態で含んでなる金属セラミックス複合材料であって、
 前記金属相は、CuまたはSi以外の少なくとも1種の金属である添加元素Mを含み、かつ、
 前記炭化ケイ素は、前記セラミックス相の構成材料の総質量の過半量を占め、
 ここで、
 前記金属セラミックス複合材料に対して、走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得した際、この画像全体の面積に対して、前記セラミックス相の合計面積の百分率(%)をA、前記金属相の合計面積の百分率(%)をBとするとき、セラミックス相/金属相の面積比A/Bが2以上60以下であり、かつ、
 前記金属相において、
 その総質量に対して、Siの質量百分率(%)をa、添加元素Mの質量百分率(%)をmとするとき、下記の関係式:
 0.01≦m/a≦1.4、および
 0.3≦m≦20
を満たす、金属セラミックス複合材料。
That is, the main aspects of the present invention, which is a means for solving the above problems, are as follows.
a ceramic phase containing silicon carbide, and
A metal-ceramic composite material comprising an alloy consisting of Cu and Si and/or a metal phase containing an intermetallic compound in a mutually dispersed state,
The metal phase contains an additive element M that is at least one metal other than Cu or Si, and
The silicon carbide accounts for the majority of the total mass of the constituent materials of the ceramic phase,
here,
When an image with an area of 256 μm x 192 μm is obtained for the metal-ceramic composite material using a scanning electron microscope (SEM) at a magnification of 500, the percentage of the total area of the ceramic phase with respect to the area of the entire image (%) is A, and the percentage (%) of the total area of the metal phase is B, the area ratio A/B of the ceramic phase/metal phase is 2 or more and 60 or less, and
In the metal phase,
When the mass percentage (%) of Si is a and the mass percentage (%) of the additional element M is m with respect to the total mass, the following relational expression:
0.01≦m/a≦1.4, and 0.3≦m≦20
A metal-ceramic composite material that meets the following requirements.
 本発明によれば、従来技術にない、炭化ケイ素を含むセラミックス相、ならびにCuおよびSiを含む金属相が互いに分散・混在し、抗菌効果・抗ウィルス効果を有する新規な金属セラミックス複合材料が提供される。
 本発明に係る金属セラミックス複合材料の好ましい一実施形態によれば、CuおよびSiを含む金属相における所定量の添加元素Mの存在によって金属セラミックス複合材料の良好な含浸状態がもたらされ、ひいてはその良好な含浸状態に起因して、優れた強度および硬度などの機械的物性と共に、銅に起因する優れた抗菌性および抗ウィルス性が奏され得る。
 本発明に係る金属セラミックス複合材料の好ましい他の一実施形態によれば、炭化ケイ素を含むセラミックス相とCuおよびSiを含む金属相との面積比、金属相におけるSiに対する添加元素Mの質量割合、ならびに金属相のSiに対するCuの質量割合が所定範囲に調整されることによって、金属セラミックス複合材料の含浸状態が更に良好になり、向上した機械的物性、特に気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)、ならびに優れた抗菌効果および抗ウィルス効果がバランス良く達成され得る。
According to the present invention, there is provided a novel metal-ceramic composite material, which has antibacterial and antiviral effects, in which a ceramic phase containing silicon carbide and a metal phase containing Cu and Si are mutually dispersed and mixed, which is not found in the prior art. Ru.
According to a preferred embodiment of the metal-ceramic composite material according to the present invention, the presence of a predetermined amount of the additive element M in the metal phase containing Cu and Si brings about a good impregnation state of the metal-ceramic composite material, and thus Due to the good impregnation state, excellent mechanical properties such as strength and hardness, as well as excellent antibacterial and antiviral properties due to copper can be exhibited.
According to another preferred embodiment of the metal-ceramic composite material according to the present invention, the area ratio of the ceramic phase containing silicon carbide to the metal phase containing Cu and Si, the mass ratio of the additive element M to Si in the metal phase, In addition, by adjusting the mass ratio of Cu to Si in the metal phase within a predetermined range, the impregnation state of the metal-ceramic composite material becomes even better, resulting in improved mechanical properties, especially porosity (density of the sintered body). , bending strength and hardness (e.g. Vickers hardness: indentation hardness), and excellent antibacterial and antiviral effects can be achieved in a well-balanced manner.
図1は、本発明の一実施形態に係る金属セラミックス複合材料の倍率500の走査電子顕微鏡(SEM)による画像の一例である。FIG. 1 is an example of an image taken by a scanning electron microscope (SEM) at a magnification of 500 of a metal-ceramic composite material according to an embodiment of the present invention.
1.金属セラミックス複合材料
 本発明による金属セラミックス複合材料は、炭化ケイ素(SiC)を含むセラミックス相、ならびに、CuおよびSiからなる合金および/または金属間化合物を含む金属相を互いに分散した状態で含んでなり、この金属相は、CuまたはSi以外の少なくとも1種の金属である添加元素Mを含み、かつ、前記炭化ケイ素は、前記セラミックス相の構成材料の総質量の過半量を占める。
1. Metal-ceramic composite material The metal-ceramic composite material according to the present invention comprises a ceramic phase containing silicon carbide (SiC) and a metal phase containing an alloy and/or an intermetallic compound of Cu and Si in a mutually dispersed state. , this metallic phase contains an additive element M that is at least one metal other than Cu or Si, and the silicon carbide accounts for a majority of the total mass of the constituent materials of the ceramic phase.
 金属セラミックス複合材料中の炭化ケイ素、遊離炭素(フリーカーボン)、金属相を構成するCu、Si、および添加元素M、ならびに不可避不純物のそれぞれの量(質量%)を、XRF(蛍光X線分析法)およびICP発光分光分析装置と、カーボン分析装置(燃焼-赤外線吸収法)とを用いて同定することができる。
 本明細書においては、そのように同定された全分析元素(各質量%)から、炭化ケイ素および遊離炭素を除いた部分を、不可避不純物を含む金属相とみなして、金属相中の元素の比率を算出するものとする。
The respective amounts (mass%) of silicon carbide, free carbon, Cu, Si, and additive elements M constituting the metal phase in the metal-ceramic composite material and unavoidable impurities were measured using XRF (X-ray fluorescence spectroscopy). ), an ICP emission spectrometer, and a carbon analyzer (combustion-infrared absorption method).
In this specification, the portion excluding silicon carbide and free carbon from all analyzed elements (each mass %) identified in this way is regarded as a metal phase containing unavoidable impurities, and the ratio of elements in the metal phase is calculated. shall be calculated.
 金属セラミックス複合材料の炭化ケイ素を含むセラミックス相は、炭化ケイ素がセラミックス相の構成材料の総質量の過半量、すなわち50質量%超を占める以外は限定されない。
 金属セラミックス複合材料のセラミックス相には炭化ケイ素以外のセラミックス材料が50質量%未満含まれていてよい。このような炭化ケイ素以外のセラミックス材料の例として、特に限定されないが、窒化ケイ素(Si)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、炭化ホウ素(BC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化クロム(Cr)、炭化モリブデン(MoC)、炭化タングステン(WC)などが挙げられる。
 金属セラミックス複合材料のセラミックス相における炭化ケイ素の割合は、より好ましくは55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、85質量%以上、90質量%以上、95質量%以上、96質量%以上、97質量%以上、98質量%以上、99質量%以上、または、実質的に100質量%であってよい。一実施形態において、セラミックス相は、少量の遊離炭素を除いて炭化ケイ素のみで(他のセラミックス材料を含まずに)形成されていてよい。セラミックス相中の炭化ケイ素の割合が50質量%超の範囲内にて高いほど、金属セラミックス複合材料において炭化ケイ素の特性である耐摩耗性、耐食性および強度がより高く発現され得る。
The ceramic phase containing silicon carbide of the metal-ceramic composite material is not limited except that silicon carbide occupies a majority of the total mass of the constituent materials of the ceramic phase, that is, more than 50% by mass.
The ceramic phase of the metal-ceramic composite material may contain less than 50% by mass of ceramic materials other than silicon carbide. Examples of such ceramic materials other than silicon carbide include, but are not limited to, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN), titanium nitride (TiN), and zirconium nitride (ZrN). , boron carbide ( B4C ), tantalum carbide (TaC), niobium carbide (NbC), titanium carbide (TiC), zirconium carbide ( ZrC ), chromium carbide ( Cr3C2 ), molybdenum carbide ( Mo2C ), Examples include tungsten carbide (WC).
The proportion of silicon carbide in the ceramic phase of the metal-ceramic composite material is more preferably 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass. The content may be 90% by mass or more, 95% by mass or more, 96% by mass or more, 97% by mass or more, 98% by mass or more, 99% by mass or more, or substantially 100% by mass. In one embodiment, the ceramic phase may be formed solely of silicon carbide (without other ceramic materials) with the exception of a small amount of free carbon. The higher the proportion of silicon carbide in the ceramic phase within the range of more than 50% by mass, the higher the wear resistance, corrosion resistance, and strength, which are the characteristics of silicon carbide, can be exhibited in the metal-ceramic composite material.
 金属セラミックス複合材料のセラミックス相は、少量の遊離炭素(フリーカーボン)を含んでいてよい。遊離炭素は、セラミックス相において、あるいはセラミックス相の金属相との界面近傍において、ケイ素原子または他の金属原子と化学的な結合を形成せずに単独で存在する炭素原子を指す。セラミックス相における遊離炭素の含有量は、特に限定されないが、例えばセラミックス相の総重量に対して通常5質量%以下、典型的には3質量%以下であってよい。 The ceramic phase of the metal-ceramic composite material may contain a small amount of free carbon. Free carbon refers to carbon atoms that exist alone without forming chemical bonds with silicon atoms or other metal atoms in the ceramic phase or near the interface of the ceramic phase with the metal phase. The content of free carbon in the ceramic phase is not particularly limited, but may be, for example, usually 5% by mass or less, typically 3% by mass or less, based on the total weight of the ceramic phase.
 金属セラミックス複合材料の金属相の総質量に対するCuの割合は、通常60質量以上~95質量%以下、好ましくは65質量%以上~90質量%以下であってよい。また、金属セラミックス複合材料の金属相の総質量に対するSiの割合は、通常3質量%以上~35質量%以下、好ましくは5質量%以上~30質量%以下であってよい。 The proportion of Cu to the total mass of the metal phase of the metal-ceramic composite material may be generally 60% by mass or more and 95% by mass or less, preferably 65% by mass or more and 90% by mass or less. Further, the proportion of Si to the total mass of the metal phase of the metal-ceramic composite material may be generally 3% by mass or more and 35% by mass or less, preferably 5% by mass or more and 30% by mass or less.
 金属セラミックス複合材料の金属相の総質量に対するCuおよびSiからなる合金および/または金属間化合物の割合は、通常70質量%超であり、好ましくは71質量%以上、72質量%以上、73質量%以上、74質量%以上、75質量%以上、76質量%以上または77質量%以上であってよい。また、この割合は、通常99.7質量%未満であり、好ましくは99.5質量%以下、99質量%以下、98質量%以下、97質量%以下、96質量%以下、95質量%以下、94質量%以下、93質量%以下、92質量%以下、91質量%以下、90質量%以下、88質量%以下、86質量%以下または84質量%以下であってよい。金属相中のCuおよびSiからなる合金および/または金属間化合物の割合が上記範囲内であることによって、金属セラミックス複合材料において銅の特性である強度および熱伝導性、更には抗菌・抗ウィルス性がより高く発現され得る。
 金属セラミックス複合材料の金属相の総質量に対するCuおよびSiからなる合金および/または金属間化合物の割合は、通常70質量%超~99.7質量%未満であってよく、好ましくは70質量%以上~99.5質量%以下、70質量%以上~99質量%以下、70質量%以上~98質量%以下、70質量%以上~97質量%以下、70質量%以上~96質量%以下、70質量%以上~95質量%以下、70質量%以上~94質量%以下、70質量%以上~93質量%以下、70質量%以上~92質量%以下、70質量%以上~91質量%以下、70質量%以上~90質量%以下、70質量%以上~88質量%以下、70質量%以上~86質量%以下、70質量%以上~84質量%以下、71質量%以上~99.7質量%未満、71質量%以上~99.5質量%以下、71質量%以上~99質量%以下、71質量%以上~98質量%以下、71質量%以上~97質量%以下、71質量%以上~96質量%以下、71質量%以上~95質量%以下、71質量%以上~94質量%以下、71質量%以上~93質量%以下、71質量%以上~92質量%以下、71質量%以上~91質量%以下、71質量%以上~90質量%以下、71質量%以上~88質量%以下、71質量%以上~86質量%以下、71質量%以上~84質量%以下、72質量%以上~99.7質量%未満、72質量%以上~99.5質量%以下、72質量%以上~99質量%以下、72質量%以上~98質量%以下、72質量%以上~97質量%以下、72質量%以上~96質量%以下、72質量%以上~95質量%以下、72質量%以上~94質量%以下、72質量%以上~93質量%以下、72質量%以上~92質量%以下、72質量%以上~91質量%以下、72質量%以上~90質量%以下、72質量%以上~88質量%以下、72質量%以上~86質量%以下、72質量%以上~84質量%以下、73質量%以上~99.7質量%未満、73質量%以上~99.5質量%以下、73質量%以上~99質量%以下、73質量%以上~98質量%以下、73質量%以上~97質量%以下、73質量%以上~96質量%以下、73質量%以上~95質量%以下、73質量%以上~94質量%以下、73質量%以上~93質量%以下、73質量%以上~92質量%以下、73質量%以上~91質量%以下、73質量%以上~90質量%以下、73質量%以上~88質量%以下、73質量%以上~86質量%以下、73質量%以上~84質量%以下、74質量%以上~99.7質量%未満、74質量%以上~99.5質量%以下、74質量%以上~99質量%以下、74質量%以上~98質量%以下、74質量%以上~97質量%以下、74質量%以上~96質量%以下、74質量%以上~95質量%以下、74質量%以上~94質量%以下、74質量%以上~93質量%以下、74質量%以上~92質量%以下、74質量%以上~91質量%以下、74質量%以上~90質量%以下、74質量%以上~88質量%以下、74質量%以上~86質量%以下、74質量%以上~84質量%以下、75質量%以上~99.7質量%未満、75質量%以上~99.5質量%以下、75質量%以上~99質量%以下、75質量%以上~98質量%以下、75質量%以上~97質量%以下、75質量%以上~96質量%以下、75質量%以上~95質量%以下、75質量%以上~94質量%以下、75質量%以上~93質量%以下、75質量%以上~92質量%以下、75質量%以上~91質量%以下、75質量%以上~90質量%以下、75質量%以上~88質量%以下、75質量%以上~86質量%以下、75質量%以上~84質量%以下、76質量%以上~99.7質量%未満、76質量%以上~99.5質量%以下、76質量%以上~99質量%以下、76質量%以上~98質量%以下、76質量%以上~97質量%以下、76質量%以上~96質量%以下、76質量%以上~95質量%以下、76質量%以上~94質量%以下、76質量%以上~93質量%以下、76質量%以上~92質量%以下、76質量%以上~91質量%以下、76質量%以上~90質量%以下、76質量%以上~88質量%以下、76質量%以上~86質量%以下、76質量%以上~84質量%以下、77質量%以上~99.7質量%未満、77質量%以上~99.5質量%以下、77質量%以上~99質量%以下、77質量%以上~98質量%以下、77質量%以上~97質量%以下、77質量%以上~96質量%以下、77質量%以上~95質量%以下、77質量%以上~94質量%以下、77質量%以上~93質量%以下、77質量%以上~92質量%以下、77質量%以上~91質量%以下、77質量%以上~90質量%以下、77質量%以上~88質量%以下、77質量%以上~86質量%以下、または77質量%以上~84質量%以下であってよい。
The proportion of the alloy and/or intermetallic compound consisting of Cu and Si with respect to the total mass of the metal phase of the metal-ceramic composite material is usually more than 70 mass%, preferably 71 mass% or more, 72 mass% or more, 73 mass% The content may be 74% by mass or more, 75% by mass or more, 76% by mass or more, or 77% by mass or more. Further, this proportion is usually less than 99.7% by mass, preferably 99.5% by mass or less, 99% by mass or less, 98% by mass or less, 97% by mass or less, 96% by mass or less, 95% by mass or less, It may be 94% by weight or less, 93% by weight or less, 92% by weight or less, 91% by weight or less, 90% by weight or less, 88% by weight or less, 86% by weight or less, or 84% by weight or less. By having the proportion of the alloy and/or intermetallic compound consisting of Cu and Si in the metal phase within the above range, the strength and thermal conductivity, which are the characteristics of copper, as well as antibacterial and antiviral properties can be achieved in the metal-ceramic composite material. can be expressed higher.
The proportion of the alloy and/or intermetallic compound consisting of Cu and Si with respect to the total mass of the metal phase of the metal-ceramic composite material may be generally more than 70% by mass and less than 99.7% by mass, preferably 70% by mass or more. -99.5% by mass or less, 70% by mass or more - 99% by mass or less, 70% by mass or more - 98% by mass or less, 70% by mass or more - 97% by mass or less, 70% by mass or more - 96% by mass or less, 70% by mass % to 95 mass%, 70 mass% to 94 mass%, 70 mass% to 93 mass%, 70 mass% to 92 mass%, 70 mass% to 91 mass%, 70 mass% % to 90 mass%, 70 mass% to 88 mass%, 70 mass% to 86 mass%, 70 mass% to 84 mass%, 71 mass% to less than 99.7 mass%, 71% by mass or more - 99.5% by mass or less, 71% by mass or more - 99% by mass or less, 71% by mass or more - 98% by mass or less, 71% by mass or more - 97% by mass or less, 71% by mass or more - 96% by mass Below, 71% to 95% by mass, 71% to 94% by mass, 71% to 93% by mass, 71% to 92% by mass, 71% to 91% by mass 71% by mass or more and 90% by mass or less, 71% by mass or more and 88% by mass or less, 71% by mass or more and 86% by mass or less, 71% by mass or more and 84% by mass or less, 72% by mass or more and 99.7% by mass or less less than 72% by mass to 99.5% by mass, 72% to 99% by mass, 72% to 98% by mass, 72% to 97% by mass, 72% by mass or more -96% by mass or less, 72% by mass or more - 95% by mass or less, 72% by mass or more - 94% by mass or less, 72% by mass or more - 93% by mass or less, 72% by mass or more - 92% by mass or less, 72% by mass or more ~91 mass% or less, 72 mass% or more and 90 mass% or less, 72 mass% or more and 88 mass% or less, 72 mass% or more and 86 mass% or less, 72 mass% or more and 84 mass% or less, 73 mass% or more - less than 99.7% by mass, 73% by mass or more - 99.5% by mass or less, 73% by mass or more - 99% by mass or less, 73% by mass or more - 98% by mass or less, 73% by mass or more - 97% by mass or less, 73 mass% or more and 96 mass% or less, 73 mass% or more and 95 mass% or less, 73 mass% or more and 94 mass% or less, 73 mass% or more and 93 mass% or less, 73 mass% or more and 92 mass% or less, 73 mass% to 91 mass%, 73 mass% to 90 mass%, 73 mass% to 88 mass%, 73 mass% to 86 mass%, 73 mass% to 84 mass%, 74 mass% or more and less than 99.7 mass%, 74 mass% or more and 99.5 mass% or less, 74 mass% or more and 99 mass% or less, 74 mass% or more and 98 mass% or less, 74 mass% or more and 97 mass% or less, 74 mass% or more to 96 mass% or less, 74 mass% or more to 95 mass% or less, 74 mass% or more to 94 mass% or less, 74 mass% or more to 93 mass% or less, 74 mass% or more to 92 mass% mass% or less, 74 mass% or more to 91 mass% or less, 74 mass% or more to 90 mass% or less, 74 mass% or more to 88 mass% or less, 74 mass% or more to 86 mass% or less, 74 mass% or more to 84 mass% mass% or less, 75 mass% or more and less than 99.7 mass%, 75 mass% or more and 99.5 mass% or less, 75 mass% or more and 99 mass% or less, 75 mass% or more and 98 mass% or less, 75 mass% % to 97 mass%, 75 mass% to 96 mass%, 75 mass% to 95 mass%, 75 mass% to 94 mass%, 75 mass% to 93 mass%, 75 mass% % to 92 mass%, 75 mass% to 91 mass%, 75 mass% to 90 mass%, 75 mass% to 88 mass%, 75 mass% to 86 mass%, 75 mass% % to 84 mass%, 76 mass% to less than 99.7 mass%, 76 mass% to 99.5 mass%, 76 mass% to 99 mass%, 76 mass% to 98 mass% 76% by mass or more and 97% by mass or less, 76% by mass or more and 96% by mass or less, 76% by mass or more and 95% by mass or less, 76% by mass or more and 94% by mass or less, 76% by mass or more and 93% by mass Below, 76% by mass to 92% by mass, 76% to 91% by mass, 76% to 90% by mass, 76% to 88% by mass, 76% to 86% by mass 76% by mass or more and 84% by mass or less, 77% by mass or more and less than 99.7% by mass, 77% by mass or more and 99.5% by mass or less, 77% by mass or more and 99% by mass or less, 77% by mass or more -98% by mass or less, 77% by mass or more - 97% by mass or less, 77% by mass or more - 96% by mass or less, 77% by mass or more - 95% by mass or less, 77% by mass or more - 94% by mass or less, 77% by mass or more -93% by mass or less, 77% by mass or more - 92% by mass or less, 77% by mass or more - 91% by mass or less, 77% by mass or more - 90% by mass or less, 77% by mass or more - 88% by mass or less, 77% by mass or more It may be 86% by mass or less, or 77% by mass or more and 84% by mass or less.
 金属セラミックス複合材料の金属相におけるCuまたはSi以外の少なくとも1種の金属である添加元素Mは、CuまたはSi以外の元素である以外は特に限定されないが、Ni(ニッケル)、Pd(パラジウム)、Mg(マグネシウム)、Ca(カルシウム)、Zn(亜鉛)、Ti(チタン)、Zr(ジルコニウム)、S(硫黄)、Mo(モリブデン)、W(タングステン)、Fe(鉄)、Mn(マンガン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、およびY(イットリウム)を含む群から選択される少なくとも1種を含んでいてよい。好ましくは、添加元素Mは、Ni、Mg、ZnおよびTiを含む群から選択される少なくとも1種を含んでいてよい。添加元素Mは、より好ましくはNiを含む。 The additive element M, which is at least one metal other than Cu or Si in the metal phase of the metal-ceramic composite material, is not particularly limited except that it is an element other than Cu or Si, and may include Ni (nickel), Pd (palladium), Mg (magnesium), Ca (calcium), Zn (zinc), Ti (titanium), Zr (zirconium), S (sulfur), Mo (molybdenum), W (tungsten), Fe (iron), Mn (manganese), It may contain at least one member selected from the group containing V (vanadium), Nb (niobium), Ta (tantalum), and Y (yttrium). Preferably, the additive element M may include at least one selected from the group including Ni, Mg, Zn, and Ti. The additive element M more preferably includes Ni.
 添加元素Mは、上で例示されたNi、Pd、Mg、Ca、Zn、Ti、Zr、S、Mo、W、Fe、Mn、V、Nb、Ta、およびYのうちの2種の元素の組み合わせ、または3種以上の元素の組み合わせを含んでよい。好ましくは、添加元素Mは、Ni、Mg、ZnおよびTiのうちの2種の元素の組み合わせ、または3種以上の元素の組み合わせを含んでよい。添加元素Mが2種の元素の組み合わせを含む場合、例えば、その組み合わせはNi/Mg、Ni/Zn、Ni/Ti、Mg/Zn、Mg/Ti、またはZn/Tiであってよい。添加元素Mが3種の元素の組み合わせを含む場合、例えば、その組み合わせはNi/Mg/Zn、Ni/Mg/Ti、またはMg/Zn/Tiであってもよい。 The additive elements M include two of the above-mentioned Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. It may include a combination or a combination of three or more elements. Preferably, the additive element M may include a combination of two of Ni, Mg, Zn, and Ti, or a combination of three or more elements. When the additive element M includes a combination of two elements, the combination may be, for example, Ni/Mg, Ni/Zn, Ni/Ti, Mg/Zn, Mg/Ti, or Zn/Ti. When the additive element M includes a combination of three elements, the combination may be, for example, Ni/Mg/Zn, Ni/Mg/Ti, or Mg/Zn/Ti.
 一実施形態において、添加元素Mは、Ni、Pd、Mg、Ca、Zn、Ti、Zr、S、Mo、W、Fe、Mn、V、Nb、Ta、およびYを含む群から選択される少なくとも1種のみであって、それ以外の元素を含まない。好ましい一実施形態において、添加元素Mは、Ni、Mg、ZnおよびTiを含む群から選択される少なくとも1種のみであって、それ以外の元素を含まない。他の一実施形態において添加元素Mは、Ni、Pd、Mg、Ca、Zn、Ti、Zr、S、Mo、W、Fe、Mn、V、Nb、Ta、およびYのうちの2種の元素の組み合わせであって、それ以外の元素を含まないか、あるいは、Ni/Mg、Ni/Zn、Ni/Ti、Mg/Zn、Mg/Ti、またはZn/Tiの2種の元素の組み合わせであって、それ以外の元素を含まない。更なる一実施形態において添加元素Mは、Ni、Pd、Mg、Ca、Zn、Ti、Zr、S、Mo、W、Fe、Mn、V、Nb、Ta、およびYのうちの3種の元素の組み合わせであって、それ以外の元素を含まないか、あるいは、Ni/Mg/Zn、Ni/Mg/Ti、またはMg/Zn/Tiの3種の元素の組み合わせであって、それ以外の元素を含まない。 In one embodiment, the additive element M is at least selected from the group including Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. It is only one type and does not contain any other elements. In a preferred embodiment, the additive element M is at least one selected from the group containing Ni, Mg, Zn, and Ti, and does not contain any other elements. In another embodiment, the additive element M is two elements selected from Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. or a combination of two elements: Ni/Mg, Ni/Zn, Ni/Ti, Mg/Zn, Mg/Ti, or Zn/Ti. It contains no other elements. In a further embodiment, the additive element M is three elements among Ni, Pd, Mg, Ca, Zn, Ti, Zr, S, Mo, W, Fe, Mn, V, Nb, Ta, and Y. or a combination of three elements, Ni/Mg/Zn, Ni/Mg/Ti, or Mg/Zn/Ti, containing no other elements. Does not include.
 添加元素MがNiを含む場合、添加元素Mの総質量に対するNiの質量割合は、5質量%以上~100質量%(すなわちNiのみ)以下であってよく、好ましくは10質量%以上~100質量%以下、20質量%以上~100質量%以下、30質量%以上~100質量%以下、40質量%以上~100質量%以下、50質量%以上~100質量%以下、60質量%以上~100質量%以下、70質量%以上~100質量%以下、80質量%以上~100質量%以下、または90質量%以上~100質量%以下であってよい。 When the additive element M contains Ni, the mass ratio of Ni to the total mass of the additive element M may be 5% by mass or more and 100% by mass or less (that is, Ni only), preferably 10% by mass or more and 100% by mass. % or less, 20% by mass or more - 100% by mass or less, 30% by mass or more - 100% by mass or less, 40% by mass or more - 100% by mass or less, 50% by mass or more - 100% by mass or less, 60% by mass or more - 100% by mass % or less, 70% by mass or more and 100% by mass or less, 80% by mass or more and 100% by mass or less, or 90% by mass or more and 100% by mass or less.
 金属セラミックス複合材料の金属相には、Cu、Si、および、CuまたはSi以外の少なくとも1種の金属である添加元素M以外に、積極的な添加操作なしに不可避的に混入する不純物、いわゆる不可避不純物が包含される。
 不可避不純物は、公知の金属セラミックス複合材料に含まれ得ることが知られているいずれの不純物をも包含し得る。不可避不純物は、特に限定されないが、例えば、Mn、Sr、Sn、P、Crなどが挙げられる。金属相における不可避不純物の含有量は、特に限定されないが、金属相の総質量に対して5質量%以下であり得る。
In addition to Cu, Si, and the additive element M, which is at least one metal other than Cu or Si, the metal phase of the metal-ceramic composite material contains impurities that are unavoidably mixed without active addition operations, so-called unavoidable impurities. Contains impurities.
Unavoidable impurities may include any impurities known to be included in known metal-ceramic composite materials. Unavoidable impurities are not particularly limited, but include, for example, Mn, Sr, Sn, P, and Cr. The content of unavoidable impurities in the metal phase is not particularly limited, but may be 5% by mass or less based on the total mass of the metal phase.
 本発明に係る金属セラミックス複合材料に対して走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得した際、この画像全体の面積に対して、セラミックス相の合計面積の百分率(%)をAとし、金属相の合計面積の百分率(%)をBとするとき、セラミックス相/金属相の面積比A/Bは2以上60以下である。
 それに加えて、本発明に係る金属セラミックス複合材料の金属相において、その総質量に対して、Siの質量百分率(%)をa、添加元素Mの質量百分率(%)をmとするとき、下記の関係式が成り立つ。
 0.01≦m/a≦1.4、および
 0.3≦m≦20
When an image with an area of 256 μm x 192 μm was obtained at a magnification of 500 using a scanning electron microscope (SEM) for the metal-ceramic composite material according to the present invention, the total area of the ceramic phase was When the percentage (%) is A and the percentage (%) of the total area of the metal phase is B, the area ratio A/B of the ceramic phase/metal phase is 2 or more and 60 or less.
In addition, in the metal phase of the metal-ceramic composite material according to the present invention, when the mass percentage (%) of Si is a and the mass percentage (%) of the additive element M is m with respect to its total mass, the following The relational expression holds true.
0.01≦m/a≦1.4, and 0.3≦m≦20
 本発明に係る金属セラミックス複合材料によれば、上記特定範囲内のセラミックス相/金属相の面積比A/Bおよび上記2つの関係式の全てが満たされることによって、炭化ケイ素を含むセラミックス相ならびにCuおよびSiを含む金属相が互いに十分に分散・混在した良好な含浸状態を形成することが容易になる。セラミックス相に対する金属相の含浸状態が良好になることによって、セラミックス相に含まれる炭化ケイ素が本来有する特性である耐摩耗性、耐食性および強度、ならびに金属相に含まれる銅合金の銅が本来有する特性である強度、熱伝導性および抗菌・抗ウィルス性が、より効果的に発揮され得る。従って、本発明において上記特定範囲内のセラミックス相/金属相の面積比A/Bおよびこれら2つの関係式の全てが満たされることによって、好ましくは、セラミックス相に対する金属相の含浸状態が良好になり、それに起因して、機械的物性、特に気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)、ならびに抗菌効果および抗ウィルス効果のバランスが向上した金属セラミックス複合材料を得ることができる。 According to the metal-ceramic composite material according to the present invention, the ceramic phase/metal phase area ratio A/B within the above specific range and the above two relational expressions are all satisfied, so that the ceramic phase containing silicon carbide and the Cu It becomes easy to form a good impregnated state in which the metal phases containing Si and Si are sufficiently dispersed and mixed with each other. By improving the impregnation state of the metal phase into the ceramic phase, the wear resistance, corrosion resistance, and strength, which are the inherent characteristics of silicon carbide contained in the ceramic phase, as well as the characteristics inherent to the copper of the copper alloy contained in the metal phase, are improved. The strength, thermal conductivity, and antibacterial/antiviral properties can be more effectively exhibited. Therefore, in the present invention, by satisfying all of the area ratio A/B of the ceramic phase/metal phase within the above-mentioned specific range and these two relational expressions, preferably, the state of impregnation of the metal phase into the ceramic phase is improved. , resulting in metal ceramics with improved mechanical properties, especially porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), and a better balance of antibacterial and antiviral effects. Composite materials can be obtained.
 本発明の金属セラミックス複合材料は、炭化ケイ素を含むセラミックス相ならびにCuおよびSiからなる合金および/または金属間化合物を含む金属相を互いに分散した状態で含んでなり、すなわち、セラミックス相と金属相とが互いに分散・混在した状態が形成されている。従って、金属セラミックス複合材料に対して走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得する際、セラミックス相と金属相とのこのような分散・混在状態に起因して、この画像におけるセラミックス相の合計面積の百分率A(%)/金属相の合計面積の百分率B(%)の面積比A/Bの算出再現性は一般的に高いため、通常、取得する画像は任意の一視野のみで足りる。A/Bの算出再現性の精度を更に高める観点からは、任意の二視野または三視野以上で画像を取得し、それらの画像における面積比A/Bの平均値を算出して、これを当該材料についての面積比A/Bとみなしてもよい。 The metal-ceramic composite material of the present invention contains a ceramic phase containing silicon carbide and a metal phase containing an alloy and/or an intermetallic compound of Cu and Si in a mutually dispersed state, that is, a ceramic phase and a metal phase. A state is formed in which these are dispersed and intermingled with each other. Therefore, when using a scanning electron microscope (SEM) on a metal-ceramic composite material to obtain an image with an area of 256 μm x 192 μm at a magnification of 500, it is difficult to detect images due to the dispersion and mixing of the ceramic phase and the metal phase. Therefore, since the reproducibility of calculating the area ratio A/B (% A (%) of the total area of the ceramic phase/% B (%) of the total area of the metal phase in this image is generally high, the image to be acquired is usually only one arbitrary field of view is sufficient. From the viewpoint of further increasing the accuracy of the calculation reproducibility of A/B, images are acquired from two or more arbitrary fields of view, the average value of the area ratio A/B in those images is calculated, and this is It may be considered as the area ratio A/B for the material.
 図1に、本発明の一実施形態に係る金属セラミックス複合材料の倍率500の走査電子顕微鏡(SEM)による画像の一例を示す。この画像の実施形態は、複合材料の金属相にて、その総質量に対して添加元素MであるNiが5質量%で添加された例である。この画像において、白色箇所が銅合金および添加元素Niを含む金属相であり、グレーの箇所がSiCを主成分とするセラミック相であり、両相が互いに分散・混在している状態が視認される。 FIG. 1 shows an example of an image taken by a scanning electron microscope (SEM) at a magnification of 500 of a metal-ceramic composite material according to an embodiment of the present invention. The embodiment shown in this image is an example in which Ni, which is an additive element M, is added in an amount of 5% by mass based on the total mass of the metal phase of the composite material. In this image, the white part is the metal phase containing the copper alloy and the additive element Ni, and the gray part is the ceramic phase whose main component is SiC, and it can be seen that both phases are dispersed and mixed with each other. .
 本発明に係る金属セラミックス複合材料に対して走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得した際、この画像全体の面積に対して、セラミックス相/金属相の面積比A/Bは2以上60以下であり、2.5以上50以下であることが好ましく、3以上45以下、3以上40以下、3以上35以下、3以上30以下、3以上25以下、3以上20以下、3以上15以下、3以上10以下、3以上8以下、3.3以上8以下、3.5以上8以下、3.7以上8以下、3以上5以下、3.3以上5以下、3.5以上5以下、3.7以上5以下、3以上4.5以下、3.3以上4.5以下、3.5以上4.5以下、または3.7以上4.5以下であることがより好ましい。
 上述の走査電子顕微鏡(SEM)画像全体の面積に対するセラミックス相/金属相の面積比A/Bが上記範囲内であることによって、好ましくは、セラミックス相に対する金属相の含浸が良好に進み、それによって気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)ならびに抗菌効果および抗ウィルス効果のいずれの低下も効果的に抑制された、良好な特性バランスを備えた金属セラミックス複合材料を得ることができる。
When an image with an area of 256 μm x 192 μm was obtained using a scanning electron microscope (SEM) for the metal-ceramic composite material according to the present invention at a magnification of 500, the ceramic phase/metal phase was The area ratio A/B is 2 or more and 60 or less, preferably 2.5 or more and 50 or less, 3 or more and 45 or less, 3 or more and 40 or less, 3 or more and 35 or less, 3 or more and 30 or less, 3 or more and 25 or less, 3 or more and 20 or less, 3 or more and 15 or less, 3 or more and 10 or less, 3 or more and 8 or less, 3.3 or more and 8 or less, 3.5 or more and 8 or less, 3.7 or more and 8 or less, 3 or more and 5 or less, 3.3 or more 5 or less, 3.5 or more and 5 or less, 3.7 or more and 5 or less, 3 or more and 4.5 or less, 3.3 or more and 4.5 or less, 3.5 or more and 4.5 or less, or 3.7 and 4.5 It is more preferable that it is below.
Preferably, when the area ratio A/B of the ceramic phase/metal phase to the area of the entire scanning electron microscope (SEM) image is within the above range, the impregnation of the metal phase into the ceramic phase progresses favorably. It has a good balance of properties, effectively suppressing the decline in porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), as well as antibacterial and antiviral effects. A metal-ceramic composite material can be obtained.
 本発明に係る金属セラミックス複合材料の金属相において、その総質量に対する添加元素Mの質量百分率(%)をmとするとき、0.3≦m≦20が成り立つ。他の実施形態において、mの範囲は、特に限定されないが、例えば0.5≦m≦20、1≦m≦20、2≦m≦20、3≦m≦20、4≦m≦20、5≦m≦20、0.3≦m≦18、0.5≦m≦18、1≦m≦18、2≦m≦18、3≦m≦18、4≦m≦18、5≦m≦18、0.3≦m≦16、0.5≦m≦16、1≦m≦16、2≦m≦16、3≦m≦16、4≦m≦16、または5≦m≦16の範囲から選択されてよい。
 また、本発明に係る金属セラミックス複合材料の金属相において、その総質量に対して、Siの質量百分率(%)をa、添加元素Mの質量百分率(%)をmとするとき、0.01≦m/a≦1.4の関係式が成り立ち、0.05≦m/a≦1.2であることが好ましく、0.1≦m/a≦1、0.15≦m/a≦1、0.2≦m/a≦1、0.25≦m/a≦1、0.3≦m/a≦1、0.35≦m/a≦1、0.4≦m/a≦1、0.45≦m/a≦1、0.5≦m/a≦1、0.1≦m/a<1、0.15≦m/a<1、0.2≦m/a<1、0.25≦m/a<1、0.3≦m/a<1、0.35≦m/a<1、0.4≦m/a<1、0.45≦m/a<1、0.5≦m/a<1、0.1≦m/a≦0.9、0.15≦m/a≦0.9、0.2≦m/a≦0.9、0.25≦m/a≦0.9、0.3≦m/a≦0.9、0.35≦m/a≦0.9、0.4≦m/a≦0.9、0.45≦m/a≦0.9、0.5≦m/a≦0.9、0.1≦m/a≦0.8、0.15≦m/a≦0.8、0.2≦m/a≦0.8、0.25≦m/a≦0.8、0.3≦m/a≦0.8、0.35≦m/a≦0.8、0.4≦m/a≦0.8、0.45≦m/a≦0.8、または0.5≦m/a≦0.8であることがより好ましい。
 上述のSiの質量百分率a(%)と添加元素Mの質量百分率m(%)との比m/aが上記範囲内であることによって、好ましくは、セラミックス相に対する金属相の含浸が良好に進み、それによって気孔率(焼結体の緻密性)が適度な値に保持され、その結果として良好な曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)の特性バランスを更に向上させることができる。
In the metal phase of the metal-ceramic composite material according to the present invention, when m is the mass percentage (%) of the additive element M relative to the total mass, 0.3≦m≦20 holds true. In other embodiments, the range of m is not particularly limited, but for example, 0.5≦m≦20, 1≦m≦20, 2≦m≦20, 3≦m≦20, 4≦m≦20, 5 ≦m≦20, 0.3≦m≦18, 0.5≦m≦18, 1≦m≦18, 2≦m≦18, 3≦m≦18, 4≦m≦18, 5≦m≦18 , 0.3≦m≦16, 0.5≦m≦16, 1≦m≦16, 2≦m≦16, 3≦m≦16, 4≦m≦16, or 5≦m≦16. May be selected.
Further, in the metal phase of the metal-ceramic composite material according to the present invention, when the mass percentage (%) of Si is a and the mass percentage (%) of the additive element M is m with respect to the total mass, 0.01 The relational expression ≦m/a≦1.4 holds true, preferably 0.05≦m/a≦1.2, 0.1≦m/a≦1, 0.15≦m/a≦1 , 0.2≦m/a≦1, 0.25≦m/a≦1, 0.3≦m/a≦1, 0.35≦m/a≦1, 0.4≦m/a≦1 , 0.45≦m/a≦1, 0.5≦m/a≦1, 0.1≦m/a<1, 0.15≦m/a<1, 0.2≦m/a<1 , 0.25≦m/a<1, 0.3≦m/a<1, 0.35≦m/a<1, 0.4≦m/a<1, 0.45≦m/a<1 , 0.5≦m/a<1, 0.1≦m/a≦0.9, 0.15≦m/a≦0.9, 0.2≦m/a≦0.9, 0.25 ≦m/a≦0.9, 0.3≦m/a≦0.9, 0.35≦m/a≦0.9, 0.4≦m/a≦0.9, 0.45≦m /a≦0.9, 0.5≦m/a≦0.9, 0.1≦m/a≦0.8, 0.15≦m/a≦0.8, 0.2≦m/a ≦0.8, 0.25≦m/a≦0.8, 0.3≦m/a≦0.8, 0.35≦m/a≦0.8, 0.4≦m/a≦0 .8, 0.45≦m/a≦0.8, or 0.5≦m/a≦0.8.
Preferably, when the ratio m/a of the mass percentage a (%) of Si to the mass percentage m (%) of the additive element M is within the above range, the impregnation of the metal phase into the ceramic phase can proceed favorably. As a result, the porosity (density of the sintered body) is maintained at an appropriate value, and as a result, a good balance of properties between bending strength and hardness (for example, Vickers hardness: indentation hardness) can be further improved.
 別の一実施形態では、本発明に係る金属セラミックス複合材料において、上述の走査電子顕微鏡(SEM)画像全体の面積に対するセラミックス相/金属相の面積比A/Bが5超(かつ60以下)である場合に、添加元素Mの質量百分率m(%)とSiの質量百分率a(%)との比率がm/a<1であることが好ましい。また、上記面積比A/Bが5超(かつ60以下)である場合に、0.1≦m/a<1、0.15≦m/a<1、0.2≦m/a<1、0.25≦m/a<1、0.3≦m/a<1、0.35≦m/a<1、0.4≦m/a<1、0.45≦m/a<1、0.5≦m/a<1、0.1≦m/a≦0.9、0.15≦m/a≦0.9、0.2≦m/a≦0.9、0.25≦m/a≦0.9、0.3≦m/a≦0.9、0.35≦m/a≦0.9、0.4≦m/a≦0.9、0.45≦m/a≦0.9、0.5≦m/a≦0.9、0.1≦m/a≦0.8、0.15≦m/a≦0.8、0.2≦m/a≦0.8、0.25≦m/a≦0.8、0.3≦m/a≦0.8、0.35≦m/a≦0.8、0.4≦m/a≦0.8、0.45≦m/a≦0.8、または0.5≦m/a≦0.8であることがより好ましい。
 金属セラミックス複合材料において、セラミックス相/金属相の面積比A/Bが5超(かつ60以下)である場合、すなわち、セラミックス相に含浸させる金属相の割合が相対的に小さいときにおいても、m/a<1であることによって、または上記のより好ましい比率を満たすことによって、両相の含浸がより容易になり、気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)、ならびに抗菌効果および抗ウィルス効果の特性バランスが適度に保持され得る。
In another embodiment, in the metal-ceramic composite material according to the present invention, the area ratio A/B of the ceramic phase/metal phase to the area of the entire scanning electron microscope (SEM) image is more than 5 (and less than 60). In some cases, it is preferable that the ratio between the mass percentage m (%) of the additive element M and the mass percentage a (%) of Si is m/a<1. In addition, when the area ratio A/B is more than 5 (and 60 or less), 0.1≦m/a<1, 0.15≦m/a<1, 0.2≦m/a<1 , 0.25≦m/a<1, 0.3≦m/a<1, 0.35≦m/a<1, 0.4≦m/a<1, 0.45≦m/a<1 , 0.5≦m/a<1, 0.1≦m/a≦0.9, 0.15≦m/a≦0.9, 0.2≦m/a≦0.9, 0.25 ≦m/a≦0.9, 0.3≦m/a≦0.9, 0.35≦m/a≦0.9, 0.4≦m/a≦0.9, 0.45≦m /a≦0.9, 0.5≦m/a≦0.9, 0.1≦m/a≦0.8, 0.15≦m/a≦0.8, 0.2≦m/a ≦0.8, 0.25≦m/a≦0.8, 0.3≦m/a≦0.8, 0.35≦m/a≦0.8, 0.4≦m/a≦0 .8, 0.45≦m/a≦0.8, or 0.5≦m/a≦0.8.
In the metal-ceramic composite material, when the area ratio A/B of the ceramic phase/metal phase is more than 5 (and less than 60), that is, even when the proportion of the metal phase impregnated into the ceramic phase is relatively small, m By satisfying /a<1 or by satisfying the above-mentioned more preferable ratio, impregnation of both phases becomes easier, and the porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: Indentation hardness), and the property balance of antibacterial and antiviral effects can be maintained appropriately.
 本発明に係る金属セラミックス複合材料の金属相において、その総質量に対して、Cuの質量百分率(%)をbとし、上述のとおりSiの質量百分率(%)をaとするとき、b/a≧2.5の関係式が成り立つことは好ましい。金属相においてCuとSiとの質量割合がこの関係式を満たすことによって、気孔率(焼結体の緻密性)、曲げ強度および硬度、ならびに抗菌効果および抗ウィルス効果のバランスが更に向上した金属セラミックス複合材料を得ることができる。
 これらの諸特性のバランス向上の観点から、金属相におけるCuの質量百分率(%)bとSiの質量百分率(%)aとの間には、b/a≧3の関係式が成り立つことがより好ましく、b/a≧3.5であることがより一層好ましく、b/a≧4であることが更により一層好ましい。特に気孔率(焼結体の緻密性)および曲げ強度の向上の観点からは、金属相におけるCuの質量百分率(%)bとSiの質量百分率(%)aとの間には、b/a≧4.5の関係式が成り立つことがより好ましく、b/a≧5であることがより一層好ましい。
 金属相におけるCuの質量百分率(%)bとSiの質量百分率(%)aとの比率b/aの上限値は、特に限定されないが、硬度(例えばビッカース硬度:押し込み硬さ)の向上効果を十分に得る観点からb/a≦20の関係式が成り立つことが好ましく、b/a≦18、b/a≦16、またはb/a≦14であることがより好ましい。
 他の実施形態において、金属相におけるCuの質量百分率(%)bとSiの質量百分率(%)aとの比率b/aは、好ましくは2.5≦b/a≦20、2.5≦b/a≦18、2.5≦b/a≦16、2.5≦b/a≦14、3≦b/a≦20、3≦b/a≦18、3≦b/a≦16、3≦b/a≦14、3.5≦b/a≦20、3.5≦b/a≦18、3.5≦b/a≦16、3.5≦b/a≦14、4≦b/a≦20、4≦b/a≦18、4≦b/a≦16、4≦b/a≦14、4.5≦b/a≦20、4.5≦b/a≦18、4.5≦b/a≦16、または4.5≦b/a≦14であってよい。
In the metal phase of the metal-ceramic composite material according to the present invention, when the mass percentage (%) of Cu is b and the mass percentage (%) of Si is a, based on the total mass, b/a It is preferable that the relational expression ≧2.5 holds true. A metal ceramic whose porosity (density of the sintered body), bending strength and hardness, and the balance between antibacterial and antiviral effects are further improved by having the mass ratio of Cu and Si in the metal phase satisfy this relational expression. Composite materials can be obtained.
From the viewpoint of improving the balance of these various properties, it is recommended that the relational expression b/a≧3 holds between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase. Preferably, b/a≧3.5 is even more preferable, and b/a≧4 is even more preferable. Particularly from the viewpoint of improving porosity (density of the sintered body) and bending strength, the difference between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is b/a. It is more preferable that the relational expression ≧4.5 holds true, and even more preferable that b/a≧5.
The upper limit of the ratio b/a between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is not particularly limited, but may be From the viewpoint of obtaining a sufficient amount, it is preferable that the relational expression b/a≦20 holds true, and it is more preferable that b/a≦18, b/a≦16, or b/a≦14.
In another embodiment, the ratio b/a between the mass percentage (%) b of Cu and the mass percentage (%) a of Si in the metal phase is preferably 2.5≦b/a≦20, 2.5≦ b/a≦18, 2.5≦b/a≦16, 2.5≦b/a≦14, 3≦b/a≦20, 3≦b/a≦18, 3≦b/a≦16, 3≦b/a≦14, 3.5≦b/a≦20, 3.5≦b/a≦18, 3.5≦b/a≦16, 3.5≦b/a≦14, 4≦ b/a≦20, 4≦b/a≦18, 4≦b/a≦16, 4≦b/a≦14, 4.5≦b/a≦20, 4.5≦b/a≦18, 4.5≦b/a≦16, or 4.5≦b/a≦14.
 上述のとおり、金属セラミックス複合材料の金属相には、Cu、Si、および添加元素M以外に、例えばMn、Sr、Sn、P、Crなどの不可避不純物が包含されるため、金属相におけるSiの質量百分率a(%)とCuの質量百分率b(%)と添加元素Mの質量百分率m(%)との和は100質量%にならない。金属セラミックス複合材料の金属相において、炭化ケイ素を含むセラミックス相ならびにCuおよびSiを含む金属相が互いに十分に分散・混在した良好な含浸状態の形成、炭化ケイ素が本来有する特性である耐摩耗性、耐食性および強度、ならびに銅合金の銅が本来有する特性である強度、熱伝導性および抗菌・抗ウィルス性の効果的な発揮の観点から、a+b+m≧95(質量%)であることが好ましく、a+b+m≧96(質量%)であることがより好ましく、a+b+m≧97(質量%)、a+b+m≧98(質量%)またはa+b+m≧99(質量%)であることが更により好ましい。 As mentioned above, in addition to Cu, Si, and the additive element M, the metal phase of the metal-ceramic composite material includes unavoidable impurities such as Mn, Sr, Sn, P, and Cr. The sum of the mass percentage a (%), the mass percentage b (%) of Cu, and the mass percentage m (%) of the additional element M does not equal 100 mass %. In the metal phase of the metal-ceramic composite material, the formation of a good impregnated state in which the ceramic phase containing silicon carbide and the metal phase containing Cu and Si are sufficiently dispersed and mixed with each other, and wear resistance, which is an inherent property of silicon carbide. From the viewpoint of corrosion resistance and strength, as well as effectively exhibiting the strength, thermal conductivity, and antibacterial/antiviral properties that are inherent to the copper of the copper alloy, it is preferable that a+b+m≧95 (mass%), and a+b+m≧ It is more preferable that it is 96 (mass%), and even more preferable that a+b+m≧97 (mass%), a+b+m≧98 (mass%) or a+b+m≧99 (mass%).
 セラミックス相に対する金属相の含浸状態の更なる向上と、それに起因する気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)ならびに抗菌効果および抗ウィルス効果の特性バランスのより一層の改善の観点から、本発明に係る金属セラミックス複合材料において、上述の走査電子顕微鏡(SEM)画像全体の面積に対するセラミックス相/金属相の面積比A/Bが5以下(および2以上)であり、かつ、金属相において、添加元素Mの質量百分率m(%)とSiの質量百分率a(%)との比率がm/a<1(および0.01以上)であり、かつCuの質量百分率b(%)とSiの質量百分率a(%)との比率がb/a≧3であることがより好ましい。
 金属セラミックス複合材料において、セラミックス相/金属相の面積比A/Bが4.5以下であり、かつ添加元素Mの質量百分率m(%)とSiの質量百分率a(%)との比率がm/a≦0.9であり、かつCuの質量百分率b(%)とSiの質量百分率a(%)との比率がb/a≧3.5であることがより一層好ましい。金属セラミックス複合材料において、セラミックス相/金属相の面積比A/Bが4.5以下であり、かつ添加元素Mの質量百分率m(%)とSiの質量百分率a(%)との比率がm/a≦0.8であり、かつCuの質量百分率b(%)とSiの質量百分率a(%)との比率がb/a≧4であることがより一層好ましい。
Further improvement of the state of impregnation of the metal phase into the ceramic phase, and the resulting properties of porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), and antibacterial and antiviral effects. From the viewpoint of further improving the balance, in the metal-ceramic composite material according to the present invention, the area ratio A/B of the ceramic phase/metal phase to the area of the entire scanning electron microscope (SEM) image is 5 or less (and 2 or more), and in the metal phase, the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m/a<1 (and 0.01 or more), and It is more preferable that the ratio between the mass percentage b (%) of Cu and the mass percentage a (%) of Si is b/a≧3.
In the metal-ceramic composite material, the area ratio A/B of the ceramic phase/metal phase is 4.5 or less, and the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m It is even more preferable that /a≦0.9 and the ratio of the mass percentage b (%) of Cu to the mass percentage a (%) of Si is b/a≧3.5. In the metal-ceramic composite material, the area ratio A/B of the ceramic phase/metal phase is 4.5 or less, and the ratio of the mass percentage m (%) of the additive element M to the mass percentage a (%) of Si is m It is even more preferable that /a≦0.8 and the ratio of the mass percentage b (%) of Cu to the mass percentage a (%) of Si is b/a≧4.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、抗菌効果および抗ウィルス効果を発揮する抗病原体材料として、すなわち抗菌・抗ウィルス材料として用いることができる。
 対象となる菌としては、例えば、黄色ブドウ球菌、肺炎かん菌、緑膿菌、大腸菌、モラクセラ菌、メチシリン耐性黄色ブドウ球菌などが挙げられる。
 また、対象となるウィルスは、バクテリオファージQβ、バクテリオファージΦ6、インフルエンザウィルス、コロナウィルス、ヒト免疫不全ウィルスなどが挙げられる。
 抗菌効果および抗ウィルス効果は、具体的には、後述の試験で評価することができる。 
In a preferred embodiment, the metal-ceramic composite material according to the present invention can be used as an anti-pathogen material that exhibits anti-bacterial and anti-viral effects, that is, as an anti-bacterial and anti-viral material.
Target bacteria include, for example, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Moraxella bacteria, and methicillin-resistant Staphylococcus aureus.
Examples of target viruses include bacteriophage Qβ, bacteriophage Φ6, influenza virus, coronavirus, and human immunodeficiency virus.
Specifically, the antibacterial effect and antiviral effect can be evaluated by the test described below.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、JIS Z2801:2012およびこれを引用するJIS R1752:2020に準じ、試験菌として黄色ブドウ球菌を用いて測定された抗菌効果Rが2.0以上であってよい。なお、抗菌効果の測定において試験菌液を接種した試験片の培養条件として、JIS Z2801:2012には作用温度35±1℃、作用時間24±1時間と規定されているが、ここでの培養・測定は作用温度25℃、作用時間6時間で暗所にて行う。また、JIS R1752:2020には、試験菌液を接種した試験片の光照射の作用時間が8時間と規定されているが、ここでの培養・測定は光照射をせず作用時間6時間で暗所にて行う。
 具体的な抗菌効果の測定条件は、典型的には以下のとおりに設定することができる。
 ・無加工品名:SLGガラス
 ・試験品の大きさ:50mm×50mm×5mm
 ・n数:n=2
 ・試験菌:黄色ブドウ球菌(NBRC12732)
 ・試験品の無菌化:乾燥減菌器による加熱(80℃、15分)
 ・作用条件 作用温度:25℃、作用時間:6時間、暗所
 ・寒天培地による菌数計測
In a preferred embodiment, the metal-ceramic composite material according to the present invention has an antibacterial effect R of 2.2 as measured using Staphylococcus aureus as a test bacterium in accordance with JIS Z2801:2012 and JIS R1752:2020 that cites this. It may be 0 or more. In addition, JIS Z2801:2012 stipulates an action temperature of 35 ± 1°C and an action time of 24 ± 1 hour as the culture conditions for a test piece inoculated with a test bacterial solution in measuring the antibacterial effect.・Measurements are carried out in the dark at an action temperature of 25°C and an action time of 6 hours. In addition, JIS R1752:2020 stipulates that the duration of light irradiation on a test piece inoculated with a test bacterial solution is 8 hours, but the culture and measurement here are performed without light irradiation and with a duration of 6 hours. Do it in the dark.
Specific conditions for measuring the antibacterial effect can typically be set as follows.
・Unprocessed product name: SLG glass ・Size of test item: 50mm x 50mm x 5mm
・Number: n=2
・Test bacteria: Staphylococcus aureus (NBRC12732)
・Sterilization of test item: Heating in a dry sterilizer (80℃, 15 minutes)
・Action conditions: Action temperature: 25℃, action time: 6 hours, dark place ・Bacteria count measurement using agar medium
 この抗菌効果Rは、より好ましくは2.5以上、更により好ましくは3.0以上、より一層好ましくは3.5以上、なお更に好ましくは3.9以上、なお更により好ましくは4.2以上、最も好ましくは4.5以上であってよい。この抗菌効果Rの上限は、特に限定されないが、実際には約5.5~6が上限となり得る。
 本発明に係る金属セラミックス複合材料の抗菌効果Rが2.0以上、あるいは好ましくは上記範囲内であることによって、抗菌性を有する材料として当該複合材料を広範な用途により好適に使用することができる。
This antibacterial effect R is more preferably 2.5 or more, even more preferably 3.0 or more, even more preferably 3.5 or more, even more preferably 3.9 or more, even more preferably 4.2 or more. , most preferably 4.5 or more. The upper limit of this antibacterial effect R is not particularly limited, but may actually be about 5.5 to 6.
Since the antibacterial effect R of the metal-ceramic composite material according to the present invention is 2.0 or more, or preferably within the above range, the composite material can be suitably used as a material having antibacterial properties in a wide range of applications. .
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、ISO18071:2016およびJIS R1756:2020に準じ、試験ファージとしてバクテリオファージQβまたはバクテリオファージΦ6を用いて測定された抗ウィルス効果Rが、2.5以上であってよい。なお、抗ウィルス効果の測定において試験液を接種した試験片の培養条件として、ISO18071:2016およびJIS R1756:2020には可視光照射の作用時間が4時間と規定されているが、ここでの培養・測定は光照射せずに作用時間6時間で暗所にて行う。
 具体的な抗ウィルス効果の測定条件は、典型的には以下のとおりに設定することができる。
 ・無加工品名:SLGガラス
 ・試験品の大きさ:50mm×50mm×4mm
 ・n数:n=2
 ・試験ファージ:バクテリオファージQβ(NBRC20012)
         または、バクテリオファージΦ6(NBRC105899)
 ・試験品の無菌化:乾燥減菌器による加熱(80℃、15分)
 ・作用条件 作用温度:25℃、作用時間:6時間、暗所
 ・寒天培地による感染価計測
In a preferred embodiment, the metal-ceramic composite material according to the present invention has an antiviral effect R of 2 as measured using bacteriophage Qβ or bacteriophage Φ6 as a test phage in accordance with ISO18071:2016 and JIS R1756:2020. It may be .5 or more. In addition, ISO18071:2016 and JIS R1756:2020 stipulate that the action time of visible light irradiation is 4 hours as the culture condition for the test piece inoculated with the test solution in measuring the antiviral effect.・Measurements are carried out in the dark without light irradiation and with an action time of 6 hours.
Specific conditions for measuring the antiviral effect can typically be set as follows.
・Unprocessed product name: SLG glass ・Size of test item: 50mm x 50mm x 4mm
・Number: n=2
・Test phage: Bacteriophage Qβ (NBRC20012)
Or bacteriophage Φ6 (NBRC105899)
・Sterilization of test item: Heating in a dry sterilizer (80℃, 15 minutes)
・Action conditions: Action temperature: 25℃, action time: 6 hours, dark place ・Infectious titer measurement using agar medium
 この抗ウィルス効果Rは、より好ましくは3.0以上、更により好ましくは3.5以上、より一層好ましくは4.0以上、なお更に好ましくは4.5以上、なお更により好ましくは4.6以上、最も好ましくは4.7以上であってよい。この抗ウィルス効果Rの上限は、特に限定されないが、実際には約6.5~7が上限となり得る。
 本発明に係る金属セラミックス複合材料の抗ウィルス効果Rが2.5以上、あるいは好ましくは上記範囲内であることによって、抗ウィルス性を有する材料として当該複合材料を広範な用途により好適に使用することができる。
This antiviral effect R is more preferably 3.0 or more, even more preferably 3.5 or more, even more preferably 4.0 or more, even more preferably 4.5 or more, and even more preferably 4.6. More preferably, it may be 4.7 or more. The upper limit of this antiviral effect R is not particularly limited, but may actually be about 6.5 to 7.
Since the antiviral effect R of the metal-ceramic composite material according to the present invention is 2.5 or more, or preferably within the above range, the composite material can be suitably used as a material having antiviral properties in a wide range of applications. I can do it.
 別の実施形態において、抗菌効果及び抗ウィルス効果の測定のための培養条件における上記の作用温度や作用時間は、採用する細菌やウィルスに応じて変えることができる。作用温度は10℃~40℃の範囲で適切に選択することができる。例えば、大腸菌の培養による試験を行う場合は、その増殖が活発な37℃に作用温度を設定して培養を行うことができる。また、採用する細菌やウィルスの増殖速度に応じて、2時間~72時間の範囲の適切な作用時間で、あるいはそれ以上の作用時間で培養を行ってもよい。例えば、増殖速度が遅いウィルスの場合は、作用時間を96時間に設定して培養を行うことができる。 In another embodiment, the above-mentioned working temperature and working time in the culture conditions for measuring the antibacterial effect and antiviral effect can be changed depending on the bacteria or virus employed. The operating temperature can be appropriately selected within the range of 10°C to 40°C. For example, when conducting a test by culturing Escherichia coli, the culture can be carried out by setting the operating temperature to 37° C., where Escherichia coli grows actively. Furthermore, depending on the growth rate of the bacteria or virus employed, the culture may be carried out for an appropriate action time in the range of 2 hours to 72 hours, or for a longer action time. For example, in the case of a virus with a slow growth rate, culture can be performed with the action time set to 96 hours.
 非常に有利なことに、本発明に係る好ましい実施形態の金属セラミックス複合材料は、暗所であっても十分な抗菌・抗ウィルス効果を発揮する抗病原体材料として用いることができる。すなわち、好ましい実施形態の金属セラミックス複合材料によれば、照度を問わずに抗菌・抗ウィルス効果を発揮する抗病原体材料を提供することができる。 Very advantageously, the metal-ceramic composite material of the preferred embodiment of the present invention can be used as an anti-pathogen material that exhibits sufficient anti-bacterial and anti-viral effects even in the dark. That is, according to the metal-ceramic composite material of the preferred embodiment, it is possible to provide an anti-pathogen material that exhibits anti-bacterial and anti-viral effects regardless of illuminance.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、JIS R1634:1998に従って、アルキメデス法にて測定された気孔率が10%以下であってよい。この気孔率は、より好ましくは9%以下、更により好ましくは8%以下、より一層好ましくは7%以下、なお更に好ましくは6%以下、なお更により好ましくは5%以下、最も好ましくは4%以下であってよい。この気孔率の下限は(0%以上である限り)、特に限定されないが、実際には約2~3%が下限となり得る。
 本発明に係る金属セラミックス複合材料の気孔率が10%以下、あるいは好ましくは上記範囲内であることによって、焼結体の緻密性が更に改善され、より高い硬度を有する複合材料を得ることが容易になる。
In a preferred embodiment, the metal-ceramic composite material according to the present invention may have a porosity of 10% or less as measured by the Archimedes method according to JIS R1634:1998. This porosity is more preferably 9% or less, even more preferably 8% or less, even more preferably 7% or less, even more preferably 6% or less, even more preferably 5% or less, and most preferably 4%. It may be the following. The lower limit of this porosity is not particularly limited (as long as it is 0% or more), but in reality, the lower limit may be about 2 to 3%.
Since the porosity of the metal-ceramic composite material according to the present invention is 10% or less, or preferably within the above range, the density of the sintered body is further improved, and it is easy to obtain a composite material with higher hardness. become.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、JIS R1634:1998に従ってアルキメデス法にて測定するとき、金属セラミックス複合材料のかさ密度D1の、金属セラミックス複合材料の金属相の真密度D2に対する相対密度[D1/D2]*100が90%以上であってよい。この相対密度は、より好ましくは91%以上、更により好ましくは92%以上、より一層好ましくは93%以上、なお更に好ましくは94%以上、最も好ましくは95%以上であってよい。
 本発明に係る金属セラミックス複合材料の相対密度が90%以上、あるいは好ましくは上記範囲内であることによって、気孔率が所定上限以下である場合と同様に、焼結体の緻密性が更に改善され、より高い硬度を有する複合材料を得ることが容易になる。
In a preferred embodiment, the metal-ceramic composite material according to the present invention has a bulk density D1 of the metal-ceramic composite material and a true density D2 of the metal phase of the metal-ceramic composite material when measured by the Archimedes method according to JIS R1634:1998. The relative density [D1/D2]*100 may be 90% or more. This relative density may be more preferably 91% or more, even more preferably 92% or more, even more preferably 93% or more, even more preferably 94% or more, and most preferably 95% or more.
When the relative density of the metal-ceramic composite material according to the present invention is 90% or more, or preferably within the above range, the denseness of the sintered body can be further improved as in the case where the porosity is below the predetermined upper limit. , it becomes easier to obtain composite materials with higher hardness.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、JIS R1601:2008に従って、3点曲げ強さ試験にて測定された曲げ強度が230MPa以上であってよい。この曲げ強度は、より好ましくは250MPa以上、更により好ましくは270MPa以上、より一層好ましくは280MPa以上、なお更に好ましくは290MPa以上、最も好ましくは300MPa以上であってよい。
 本発明に係る金属セラミックス複合材料の曲げ強度が230MPa以上、あるいは好ましくは上記範囲内であることによって、屈曲操作に対する機械的強度が更に改善され、高い耐屈曲性が必要とされる広範な用途により好適に使用することができる。
In a preferred embodiment, the metal-ceramic composite material according to the present invention may have a bending strength of 230 MPa or more as measured by a three-point bending strength test according to JIS R1601:2008. This bending strength may be more preferably 250 MPa or more, even more preferably 270 MPa or more, even more preferably 280 MPa or more, even more preferably 290 MPa or more, and most preferably 300 MPa or more.
Since the bending strength of the metal-ceramic composite material according to the present invention is 230 MPa or more, or preferably within the above range, the mechanical strength against bending operations is further improved, making it suitable for a wide range of applications requiring high bending resistance. It can be suitably used.
 好ましい一実施形態において、本発明に係る金属セラミックス複合材料は、JIS R1610:2003に従って、1点荷重試験にて5点平均で測定されたビッカース硬度が25GPa以上であってよい。このビッカース硬度は、より好ましくは26GPa以上、更により好ましくは26.5GPa以上、より一層好ましくは27GPa以上、なお更に好ましくは27.5GPa以上、最も好ましくは28GPa以上であってよい。
 本発明に係る金属セラミックス複合材料のビッカース硬度が25GPa以上、あるいは好ましくは上記範囲内であることによって、押込み操作に対する堅牢性が更に改善され、高い剛性が必要とされる広範な用途により好適に使用することができる。
In a preferred embodiment, the metal-ceramic composite material according to the present invention may have a Vickers hardness of 25 GPa or more measured as a five-point average in a one-point load test according to JIS R1610:2003. The Vickers hardness may be more preferably 26 GPa or higher, even more preferably 26.5 GPa or higher, even more preferably 27 GPa or higher, even more preferably 27.5 GPa or higher, and most preferably 28 GPa or higher.
Since the Vickers hardness of the metal-ceramic composite material according to the present invention is 25 GPa or more, or preferably within the above range, its robustness against indentation operations is further improved, and it can be suitably used for a wide range of applications that require high rigidity. can do.
 本発明に係る金属セラミックス複合材料は、様々な形状に加工されて使用され得る。その形状は、特に限定されないが、フィルム、シート、薄板、厚板、略角柱、略円柱等であってよい。
 また、本発明に係る金属セラミックス複合材料は、抗菌・抗ウィルス性が必要とされる幅広い用途に使用され得る。当該複合材料は、例えば、各種物品の部材や、建物、橋、船、鉄道、道路、港湾などを構成する構造材料、畜舎の床材を含む建造物の床材、壁材、天井などの建築資材等として好適に使用され得る。 
The metal-ceramic composite material according to the present invention can be processed into various shapes and used. Although its shape is not particularly limited, it may be a film, a sheet, a thin plate, a thick plate, a substantially prismatic column, a substantially circular column, or the like.
Further, the metal-ceramic composite material according to the present invention can be used in a wide range of applications requiring antibacterial and antiviral properties. The composite materials are used, for example, as components for various articles, structural materials constituting buildings, bridges, ships, railways, roads, ports, etc., and architectural materials such as flooring materials, wall materials, and ceilings of buildings, including flooring materials for livestock sheds. It can be suitably used as a material or the like.
2.金属セラミックス複合材料の製造方法
 本発明に係る金属セラミックス複合材料を製造する方法は、上述した構成・特性が備えた金属セラミックス複合材料が結果的に得られる限りは特に限定されない。本発明に係る金属セラミックス複合材料は、例えば以下に述べるように製造することができる。
2. Method for manufacturing metal-ceramic composite material The method for manufacturing the metal-ceramic composite material according to the present invention is not particularly limited as long as a metal-ceramic composite material having the above-mentioned configuration and characteristics can be obtained as a result. The metal-ceramic composite material according to the present invention can be manufactured, for example, as described below.
 例えば、第1の工程として、過半量の炭化ケイ素(SiC)を含むセラミックス相形成材料から多孔質セラミックス焼結体のプリフォームを形成し、続く第2の工程として、このプリフォームに、高温で溶融したCuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mを含む金属相形成材料を加圧下で含侵させることによって、本発明に係る金属セラミックス複合材料を製造することができる。炭化ケイ素以外にセラミックス相形成材料に包含され得る他の物質、金属相形成材料に含まれる添加元素M、および不可避不純物の種類については、金属セラミックス複合材料について上述したとおりである。 For example, in the first step, a preform of a porous ceramic sintered body is formed from a ceramic phase-forming material containing a majority of silicon carbide (SiC), and in the second step, this preform is heated at a high temperature. The metal-ceramic composite material according to the present invention can be manufactured by impregnating a metal phase-forming material containing a molten alloy and/or intermetallic compound of Cu and Si and an additive element M under pressure. Other substances other than silicon carbide that can be included in the ceramic phase-forming material, the additive element M included in the metal phase-forming material, and the types of inevitable impurities are as described above for the metal-ceramic composite material.
 上記第1工程にて用いられるセラミックス相形成材料と上記第2工程にて用いられる金属相形成材料の質量比、合金および/または金属間化合物におけるCuおよびSiの質量比、金属相形成材料におけるCuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mの質量割合を適宜調整することによって、所定範囲内のセラミックス相/金属相の面積比A/B、所定範囲内の添加元素Mの質量百分率m(%)、所定範囲内の添加元素Mの質量百分率m(%)/Siの質量百分率a(%)の比を満たし、好ましくは所定範囲内のCuの質量百分率b(%)/Siの質量百分率a(%)の比を満たす本発明に係る金属セラミックス複合材料を得ることができる。 Mass ratio of ceramic phase forming material used in the first step and metal phase forming material used in the second step, mass ratio of Cu and Si in the alloy and/or intermetallic compound, Cu in the metal phase forming material By appropriately adjusting the mass ratio of the alloy and/or intermetallic compound consisting of Si and Si and the additive element M, the area ratio A/B of the ceramic phase/metallic phase within a predetermined range, and the mass of the additive element M within a predetermined range. percentage m (%), mass percentage m (%) of additional element M within a predetermined range/mass percentage a (%) of Si, preferably mass percentage b (%) of Cu/Si within a predetermined range. It is possible to obtain a metal-ceramic composite material according to the present invention that satisfies the ratio of the mass percentage a (%).
 上記第1の工程において、セラミックス相形成材料に主成分として含まれる炭化ケイ素は、市販されている高純度の炭化ケイ素原料粉末を用いることができる。多孔質セラミックス焼結体のプリフォームは、例えば、過半量の炭化ケイ素を含むセラミックス相形成材料を、金型成形などの成型法により成形し、次いで、通常2000℃以上、好ましくは2200℃以上で高温保持するいわゆる再結晶法により作成することができる。 In the first step, commercially available high-purity silicon carbide raw material powder can be used as the silicon carbide contained as a main component in the ceramic phase forming material. A preform of a porous ceramic sintered body is produced by, for example, molding a ceramic phase-forming material containing a majority of silicon carbide by a molding method such as molding, and then molding the material at a temperature of usually 2000°C or higher, preferably 2200°C or higher. It can be produced by a so-called recrystallization method in which high temperature is maintained.
 あるいは、高純度のケイ素(Si)粒子および炭素(C)粒子を含む混合物を1400℃以上で加熱し、反応焼結させることによって炭化ケイ素を含む多孔質セラミックス焼結体のプリフォームを得ることも可能である。反応焼結法の場合、成形性やプリフォームの高密度化の観点から、高純度炭素粉と共にフェノール樹脂やピッチ等のバインダー(焼結により炭化する物質)を用いることも好ましい。炭素源として炭素繊維を用いることもできる。この第1の工程において得られた多孔質セラミックス焼結体のプリフォームの気孔率は、特に限定されないが、例えば10%~70%であってよい。 Alternatively, a preform of a porous ceramic sintered body containing silicon carbide can be obtained by heating a mixture containing high-purity silicon (Si) particles and carbon (C) particles at 1400°C or higher and performing reaction sintering. It is possible. In the case of the reaction sintering method, from the viewpoint of moldability and high density of the preform, it is also preferable to use a binder (substance that carbonizes by sintering) such as phenol resin or pitch together with high-purity carbon powder. Carbon fibers can also be used as a carbon source. The porosity of the preform of the porous ceramic sintered body obtained in this first step is not particularly limited, but may be, for example, 10% to 70%.
 上記第2の工程において、CuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mを含む金属相形成材料は、予め、通常1000℃超、好ましくは1200℃以上の高温で溶融させることができる。このように高温で溶融したCuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mを含む金属相形成材料を、通常1MPa超、好ましくは3MPa以上の加圧下で高圧容器内にて、上記第1の工程で得られた多孔質セラミックス焼結体のプリフォームに含侵させることができる。
 別法としては、過半量の炭化ケイ素(SiC)を含むセラミックス相形成材料からセラミックス焼結体の前駆体としてプリフォームを形成し、このプリフォームの焼成と、高温で溶融したCuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mを含む金属相形成材料のプリフォームへの含浸とを同時に行うこともできる。
 CuおよびSiからなる合金および/または金属間化合物は、特に限定されないが、公知のいずれの合金および/また金属間化合物であってもよい。例えば、合金としてCuSi、CuSi、CuSi、CuSi等が使用され得る。
In the second step, the metal phase-forming material containing the alloy and/or intermetallic compound of Cu and Si and the additive element M may be melted in advance at a high temperature of usually over 1000°C, preferably over 1200°C. can. The metal phase-forming material containing the alloy and/or intermetallic compound of Cu and Si melted at a high temperature and the additive element M is usually heated in a high-pressure container under a pressure of more than 1 MPa, preferably 3 MPa or more, as described above. It can be impregnated into the preform of the porous ceramic sintered body obtained in the first step.
Another method is to form a preform as a precursor of a ceramic sintered body from a ceramic phase-forming material containing a majority of silicon carbide (SiC), and to sinter this preform and form a ceramic phase-forming material containing a majority of silicon carbide (SiC). Impregnation of the preform with a metal phase-forming material containing the alloy and/or intermetallic compound and the additive element M can also be carried out simultaneously.
The alloy and/or intermetallic compound consisting of Cu and Si is not particularly limited, but may be any known alloy and/or intermetallic compound. For example, Cu 3 Si, Cu 5 Si, Cu 6 Si, Cu 7 Si, etc. may be used as the alloy.
 限定されない具体例としては、所定時間(例えば10秒~200秒)の間、高温で溶融したCuおよびSiからなる合金および/または金属間化合物ならびに添加元素Mを含む金属相形成材料に多孔質セラミックス焼結体のプリフォームを浸漬した状態で保持し、次いで浸漬処理されたプリフォームを所定時間(例えば30秒~300秒)の間、加圧下に置くことでプリフォーム全体への含浸を進行させることができる。高温で溶融した金属相形成材料への多孔質セラミックス焼結体のプリフォームの浸漬に先立って、金属相形成材料の加熱溶融とは別途、プリフォームも予め加熱しておいてもよい。 As a specific, non-limiting example, porous ceramics are formed in a metal phase-forming material containing an alloy and/or intermetallic compound of Cu and Si melted at a high temperature and an additive element M for a predetermined period of time (for example, 10 seconds to 200 seconds). The sintered preform is held in an immersed state, and then the immersed preform is placed under pressure for a predetermined period of time (for example, 30 seconds to 300 seconds) to progress impregnation to the entire preform. be able to. Prior to immersing the preform of the porous ceramic sintered body in the metal phase forming material melted at a high temperature, the preform may also be heated in advance, separately from the heating and melting of the metal phase forming material.
 上記第2の工程にて高温で溶融した金属相形成材料を多孔質セラミックス焼結体のプリフォームに含侵させた後には、直ちに冷却を行うのが好ましい。冷却は、溶融含浸を行った高圧容器内に冷却用ガスを導入・循環させることによって速やかに行うことができる。あるいは、溶融含浸後のプリフォームを冷却用金属に接触させることによって冷却を行うこともできる。 After the preform of the porous ceramic sintered body is impregnated with the metal phase forming material melted at high temperature in the second step, it is preferable to cool it immediately. Cooling can be quickly performed by introducing and circulating cooling gas into the high-pressure container in which melt impregnation has been performed. Alternatively, cooling can also be performed by contacting the preform after melt impregnation with a cooling metal.
 金属セラミックス複合材料およびその製造方法について、諸実施形態を参照して本発明を説明してきたが、本発明の範囲内において、これらの実施形態の各々の構成要素は任意に組み合わせることができるものと考えられるべきである。すなわち、これらの実施例形態によって本発明は限定されるものではなく、本発明の範囲は添付の特許請求の範囲によってのみ画定されるべきであることに留意されたい。 The present invention has been described with reference to various embodiments of the metal-ceramic composite material and its manufacturing method, but within the scope of the present invention, the constituent elements of each of these embodiments can be arbitrarily combined. should be considered. That is, it should be noted that the present invention is not limited by these embodiments, and the scope of the present invention should be defined only by the appended claims.
 以下、実施例を参照して本発明を更に例証する。本発明は、これらの実施例によって何ら限定されるものではない。 The present invention will now be further illustrated with reference to Examples. The present invention is not limited in any way by these Examples.
実施例1
 以下のように、実施例1の金属セラミックス複合材料を製造した。
 <第1工程>
 市販のSiC粉末の微粒(Saint-Gobain製、平均粒径3μm)70質量%および粗粒(信濃電気精錬社製、平均粒径20μm)30質量%に、有機バインダーとしてフェノール樹脂を10質量%(炭素換算3質量%)混合し、プレス成型した後、窒素雰囲気中にて1000℃の温度で3時間加熱処理し、フェノール樹脂を炭化した75体積%の充填率を有するプリフォームを形成した。
 <第2工程>
 市販の銅粉末(高純度化学研究所製、平均粒径3μm)と、ケイ素粉末(高純度化学研究所製、平均粒径100μm)と、ニッケル粉末(高純度化学研究所製、平均粒径3μm)とを用い、これらの粉末をルツボ内で混合した。このとき、上記第1工程にて用いられるセラミックス相形成材料と上記第2工程にて用いられる金属相形成材料の質量比を1:1とし、金属相形成材料のうち銅(Cu)とケイ素(Si)の比率を7:3とし、金属相形成材料の総質量に対する添加元素Niの質量比を0.5質量%とした。アルゴン雰囲気で1500℃の温度で3時間保持して溶融したCu-Si―Ni合金を、第1工程で得られたプリフォームに浸透させて金属セラミックス複合材料を作製した。
 得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.5であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.0であった。また、金属相形成材料の総質量に対してSiの質量割合は19.8質量%、Cuの質量割合は79.6質量%、添加元素Niの質量割合は0.5質量%であった(測定法後述)。
Example 1
The metal-ceramic composite material of Example 1 was manufactured as follows.
<First step>
70% by mass of commercially available SiC powder fine particles (manufactured by Saint-Gobain, average particle size 3 μm) and 30% by mass of coarse particles (manufactured by Shinano Electric Refining Co., Ltd., average particle size 20 μm) were mixed with 10% by mass (10% by mass) of phenolic resin as an organic binder. After mixing (3% by mass in terms of carbon) and press molding, heat treatment was performed at a temperature of 1000° C. for 3 hours in a nitrogen atmosphere to form a preform having a filling rate of 75% by volume in which the phenol resin was carbonized.
<Second process>
Commercially available copper powder (manufactured by Kojundo Kagaku Kenkyusho, average particle size 3 μm), silicon powder (manufactured by Kojundo Kagaku Kenkyusho, average particle size 100 μm), and nickel powder (manufactured by Kojundo Kagaku Kenkyusho, average grain size 3 μm) ), these powders were mixed in a crucible. At this time, the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step is set to 1:1, and among the metal phase forming materials, copper (Cu) and silicon ( The ratio of Si) was 7:3, and the mass ratio of the additional element Ni to the total mass of the metal phase forming material was 0.5% by mass. A metal-ceramic composite material was produced by infiltrating the preform obtained in the first step with a Cu--Si--Ni alloy that was melted by holding it at a temperature of 1500° C. for 3 hours in an argon atmosphere.
The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.5, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .0. In addition, the mass proportion of Si was 19.8 mass%, the mass proportion of Cu was 79.6 mass%, and the mass proportion of additional element Ni was 0.5 mass% with respect to the total mass of the metal phase forming material ( (Measurement method described below).
実施例2
 金属相形成材料の総質量に対する添加元素Niの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.6であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.2であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は18.0質量%、Cuの質量割合は76.0質量%、添加元素Niの質量割合は5.0質量%であった(測定法後述)。
Example 2
A metal-ceramic composite material was produced in the same manner as in Example 1, except that the mass ratio of the additional element Ni to the total mass of the metal phase forming material was changed to 5.0 mass%. The ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .2. In addition, the mass proportion of Si is 18.0 mass%, the mass proportion of Cu is 76.0 mass%, and the mass proportion of the additional element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
実施例3
 金属相形成材料の総質量に対する添加元素Niの質量比を16.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は4.7であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は5.7であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は11.8質量%、Cuの質量割合は67.2質量%、添加元素Niの質量割合は16.0質量%であった(測定法後述)。
Example 3
A metal-ceramic composite material was produced in the same manner as in Example 1, except that the mass ratio of the additional element Ni to the total mass of the metal phase forming material was changed to 16.0 mass%. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 4.7, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 5. It was .7. In addition, the mass proportion of Si is 11.8 mass%, the mass proportion of Cu is 67.2 mass%, and the mass proportion of the additive element Ni is 16.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
実施例4
 添加元素としてNi粉末の代わりにMg粉末(高純度化学研究所製、粒径180μm以下)を用い、金属相形成材料の総質量に対する添加元素Mgの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.6であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.3であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は17.8質量%、Cuの質量割合は76.0質量%、添加元素Mgの質量割合は5.0質量%であった(測定法後述)。
Example 4
Except that Mg powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 180 μm or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Mg to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1. The ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .3. In addition, the mass ratio of Si to the total mass of the metal phase of the obtained metal-ceramic composite material was 17.8% by mass, the mass ratio of Cu was 76.0% by mass, and the mass ratio of the additive element Mg was 5.0%. % by mass (measurement method will be described later).
実施例5
 添加元素としてNi粉末の代わりにZn粉末(高純度化学研究所製、粒径75μm以下)を用い、金属相形成材料の総質量に対する添加元素Znの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.9であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.2であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は18.0質量%、Cuの質量割合は76.0質量%、添加元素Znの質量割合は5.0質量%であった(測定法後述)。
Example 5
Except that Zn powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 75 μm or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Zn to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1. The ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.9, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .2. Furthermore, the mass proportion of Si was 18.0 mass%, the mass proportion of Cu was 76.0 mass%, and the mass proportion of the additive element Zn was 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
実施例6
 添加元素としてNi粉末の代わりにTi粉末(高純度化学研究所製、粒径45μm以下)を用い、金属相形成材料の総質量に対する添加元素Tiの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.6であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.1であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は18.7質量%、Cuの質量割合は76.0質量%、添加元素Tiの質量割合は5.0質量%であった(測定法後述)。
Example 6
Except that Ti powder (manufactured by Kojundo Kagaku Kenkyusho, particle size 45 μm or less) was used instead of Ni powder as the additive element, and the mass ratio of the additive element Ti to the total mass of the metal phase forming material was changed to 5.0% by mass. produced a metal-ceramic composite material in the same manner as in Example 1. The ceramic phase/metallic phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.6, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .1. In addition, the mass proportion of Si is 18.7 mass%, the mass proportion of Cu is 76.0 mass%, and the mass proportion of the additive element Ti is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
実施例7
 添加元素としてNi粉末の代わりにNi/Ti粉末の混合物(質量比2:1)を用い、金属相形成材料の総質量に対する添加元素Ni/Ti混合物の質量比を6.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.7であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.8であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は15.8質量%、Cuの質量割合は75.2質量%、添加元素Ni/Tiの質量割合は6.0質量%であった(測定法後述)。
Example 7
A mixture of Ni/Ti powder (mass ratio 2:1) was used instead of Ni powder as the additive element, and the mass ratio of the Ni/Ti mixture to the total mass of the metal phase forming material was changed to 6.0% by mass. A metal-ceramic composite material was produced in the same manner as in Example 1 except for this. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.7, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .8. In addition, the mass ratio of Si was 15.8% by mass, the mass ratio of Cu was 75.2% by mass, and the mass ratio of additional elements Ni/Ti was 6% by mass with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. .0% by mass (measurement method will be described later).
実施例8
 金属相形成材料のうち銅(Cu)とケイ素(Si)の比率を6:4とし、金属相形成材料の総質量に対する添加元素Niの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.5であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は2.7であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は25.1質量%、Cuの質量割合は67.9質量%、添加元素Niの質量割合は5.0質量%であった(測定法後述)。
Example 8
Except that the ratio of copper (Cu) to silicon (Si) in the metal phase forming material was changed to 6:4, and the mass ratio of the added element Ni to the total mass of the metal phase forming material was changed to 5.0% by mass. A metal-ceramic composite material was produced in the same manner as in Example 1. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.5, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 2. It was .7. In addition, the mass proportion of Si is 25.1 mass%, the mass proportion of Cu is 67.9 mass%, and the mass proportion of the additive element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
実施例9
 金属相形成材料のうち銅(Cu)とケイ素(Si)の比率を8:2とし、金属相形成材料の総質量に対する添加元素Niの質量比を5.0質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は3.7であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は13.2であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は6.5質量%、Cuの質量割合は85.5質量%、添加元素Niの質量割合は5.0質量%であった(測定法後述)。
Example 9
Except that the ratio of copper (Cu) and silicon (Si) in the metal phase forming material was changed to 8:2, and the mass ratio of the added element Ni to the total mass of the metal phase forming material was changed to 5.0% by mass. A metal-ceramic composite material was produced in the same manner as in Example 1. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 3.7, and the mass ratio b/a of Cu to Si (measurement method described later) in the metal phase is 13. It was .2. In addition, the mass proportion of Si is 6.5 mass%, the mass proportion of Cu is 85.5 mass%, and the mass proportion of additional element Ni is 5.0 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material. % by mass (measurement method will be described later).
比較例1
 上記第1工程にて用いられるセラミックス相形成材料と上記第2工程にて用いられる金属相形成材料の質量比、および金属相形成材料の総質量に対する添加元素Niの質量比を23質量%に変更した以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は15.0であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は5.7であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は15質量%、Cuの質量割合は85質量%、添加元素Niの質量割合は23質量%であった(測定法後述)。
Comparative example 1
The mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step and the mass ratio of the additional element Ni to the total mass of the metal phase forming material were changed to 23% by mass. A metal-ceramic composite material was produced in the same manner as in Example 1 except for the following. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 15.0, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 5. It was .7. In addition, the mass proportion of Si was 15 mass%, the mass proportion of Cu was 85 mass%, and the mass proportion of the additive element Ni was 23 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material ( (Measurement method described below).
比較例2
 上記第1工程にて用いられるセラミックス相形成材料と上記第2工程にて用いられる金属相形成材料の質量比を変更し、添加元素Mを添加しなかった以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は1.5であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.0であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は20質量%、Cuの質量割合は80質量%であった(測定法後述)。
Comparative example 2
The same process as in Example 1 was carried out except that the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step was changed and the additive element M was not added. A ceramic composite material was manufactured. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material is 1.5, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) is 4. It was .0. Furthermore, the mass proportion of Si was 20 mass% and the mass proportion of Cu was 80 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material (measurement method described later).
比較例3
 上記第1工程にて用いられるセラミックス相形成材料と上記第2工程にて用いられる金属相形成材料の質量比を変更し、添加元素Mを添加しなかった以外は、実施例1と同様に金属セラミックス複合材料を製造した。得られた金属セラミックス複合材料のセラミックス相/金属相の面積比A/B(測定法後述)は63.3であり、金属相においてCuのSiに対する質量比b/a(測定法後述)は4.0であった。また、得られた金属セラミックス複合材料の金属相の総質量に対してSiの質量割合は20質量%、Cuの質量割合は80質量%であった(測定法後述)。
Comparative example 3
The same process as in Example 1 was carried out except that the mass ratio of the ceramic phase forming material used in the first step and the metal phase forming material used in the second step was changed and the additive element M was not added. A ceramic composite material was manufactured. The ceramic phase/metal phase area ratio A/B (measurement method described later) of the obtained metal-ceramic composite material was 63.3, and the mass ratio b/a of Cu to Si in the metal phase (measurement method described later) was 4. It was .0. Furthermore, the mass proportion of Si was 20 mass% and the mass proportion of Cu was 80 mass% with respect to the total mass of the metal phase of the obtained metal-ceramic composite material (measurement method described later).
比較例4
 実施例1と同様の手順により、セラミックス相形成材料から炭化ケイ素(SiC)焼結体を製造した。これに金属相形成材料を含浸させることなく、比較用として特性の測定・評価を行った。
Comparative example 4
A silicon carbide (SiC) sintered body was manufactured from the ceramic phase forming material by the same procedure as in Example 1. The characteristics were measured and evaluated for comparison without impregnating this with the metal phase forming material.
複合材料の諸特性の測定
(1)セラミックス相/金属相の面積比A/Bの測定・算出
 走査電子顕微鏡(SEM)(日本電子(株)製「JSM―IT200」)を用い、実施例1~9および比較例1~3の各々の金属セラミックス複合材料に対して、倍率500にて面積256μm×192μmの画像を取得した。この画像全体の面積に対して、セラミックス相(グレーの箇所)の合計面積の百分率(%)をA、金属相(白色箇所)の合計面積の百分率(%)をBとし、セラミックス相/金属相の面積比A/Bを算出した。原則として一視野の画像から両相の各々の合計面積百分率を測定し、面積比を算出した。任意選択の追加手順としては、任意の二視野または三視野以上で画像を取得し、それらの画像における面積比A/Bの平均値を算出して、これが前記の一視野の画像から得られた面積比と実質的に同一であることを確認してもよい。このように平均値を算出する場合、前者の面積比(一視野)と後者の面積比(複数視野の平均値)との間に0.1以上の相違があることが把握されたときは、後者の値を面積比として採用するものとする。
 実施例1~9および比較例1~3の各々の金属セラミックス複合材料についてのセラミックス相/金属相の面積比A/Bを表1に示す。
Measurement of various properties of composite materials (1) Measurement and calculation of area ratio A/B of ceramic phase/metal phase Example 1 9 and Comparative Examples 1 to 3, images with an area of 256 μm×192 μm were obtained at a magnification of 500. With respect to the area of the entire image, the percentage (%) of the total area of the ceramic phase (gray area) is defined as A, and the percentage (%) of the total area of the metal phase (white area) is defined as B. The area ratio A/B was calculated. In principle, the total area percentage of each of both phases was measured from an image of one field of view, and the area ratio was calculated. An optional additional step is to acquire images in any two or more fields of view and calculate the average value of the area ratio A/B in those images, which is the same as that obtained from the images of said one field of view. It may be confirmed that the area ratio is substantially the same. When calculating the average value in this way, if it is determined that there is a difference of 0.1 or more between the former area ratio (one field of view) and the latter area ratio (average value of multiple fields of view), The latter value shall be adopted as the area ratio.
Table 1 shows the ceramic phase/metal phase area ratio A/B for each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 3.
(2)金属相の成分組成の同定・測定
 実施例1~9および比較例1~3の各々の金属セラミックス複合材料中の炭化ケイ素、遊離炭素(フリーカーボン)、金属相を構成するCu、Si、および添加元素M、ならびに不可避不純物のそれぞれの量(質量%)を、XRF(蛍光X線分析法)およびICP発光分光分析装置と、炭素・硫黄分析装置(燃焼-赤外線吸収法)とを用いて同定した。上記3つの測定を行う際は、金属セラミックス複合材料の試料を解砕し、粉末状にした後、分析を行った。
 XRF(蛍光X線分析法)は、解砕後の試料を粉末分析専用のカップホルダにセットして試料内に含まれるセラミックス、銅、ケイ素、添加金属などの主成分と不純物の元素を同定した。蛍光X線分析装置は、(株)リガク製「Supermini20」を使用した。
 ICP発光分光分析は、解砕後の試料に塩酸を加え,室温で成分を分解し,ICP発光分光分析装置を用いて各元素の発光強度を測定することにより、XRFで測定した元素の定量分析を実施した。ICP発光分光分析装置は、アジレント・テクノロジー(株)製「Agilent 5110」を使用した。
 炭素・硫黄分析装置(燃焼-赤外線吸収法)を用いて遊離炭素(フリーカーボン)及び炭化ケイ素(SiC)を測定した。測定は、JIS R 2011:2007「炭素及び炭化けい素含有耐火物の化学分析方法」に準じて行った。なお、炭化ケイ素(SiC)については、間接法(全炭素及び遊離炭素を測定し、その差の炭素を炭化ケイ素に換算する)により実施した。炭素・硫黄分析装置は、酸素気流中燃焼(管状電気炉方式)-赤外線吸収法を利用する(株)堀場製作所製「EMIA―810W」を使用した。
 また、これらの同定・測定結果から、金属セラミックス複合材料の金属相における添加元素Mの質量百分率m(%)/Siの質量百分率a(%)の比率m/a、およびCuの質量百分率b(%)/Siの質量百分率a(%)の比率b/aを算出した。
 実施例1~9および比較例1~3の各々の金属セラミックス複合材料についての金属相におけるSiの質量百分率a(%)、Cuの質量百分率b(%)、添加元素Mの質量百分率m(%)、添加元素Mの質量百分率m(%)/Siの質量百分率a(%)の比率m/a、およびCuの質量百分率b(%)/Siの質量百分率a(%)の比率b/aを、添加元素Mの種類と共に表1に示す。
(2) Identification and measurement of the component composition of the metal phase Silicon carbide, free carbon, Cu and Si constituting the metal phase in the metal ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 3 , the additive element M, and the respective amounts (mass%) of unavoidable impurities using XRF (X-ray fluorescence spectrometry) and ICP emission spectrometers, and carbon/sulfur analyzer (combustion-infrared absorption method). Identified it. When performing the above three measurements, the sample of the metal-ceramic composite material was crushed and made into powder, and then analyzed.
XRF (X-ray fluorescence spectrometry) is used to identify the main components and impurity elements contained in the sample, such as ceramics, copper, silicon, and additive metals, by placing the sample after crushing in a cup holder dedicated to powder analysis. . As the fluorescent X-ray analyzer, "Supermini 20" manufactured by Rigaku Co., Ltd. was used.
ICP emission spectrometry is a quantitative analysis of elements measured by XRF by adding hydrochloric acid to the crushed sample, decomposing the components at room temperature, and measuring the emission intensity of each element using an ICP emission spectrometer. was carried out. The ICP emission spectrometer used was "Agilent 5110" manufactured by Agilent Technologies.
Free carbon and silicon carbide (SiC) were measured using a carbon/sulfur analyzer (combustion-infrared absorption method). The measurements were conducted in accordance with JIS R 2011:2007 "Chemical analysis method for refractories containing carbon and silicon carbide." Note that silicon carbide (SiC) was measured using an indirect method (total carbon and free carbon are measured, and the difference in carbon is converted to silicon carbide). The carbon/sulfur analyzer used was ``EMIA-810W'' manufactured by Horiba, Ltd., which utilizes combustion in an oxygen stream (tubular electric furnace method) and infrared absorption method.
In addition, from these identification and measurement results, the ratio m/a of the mass percentage m (%) of the additive element M/mass percentage a (%) of Si in the metal phase of the metal-ceramic composite material, and the mass percentage b ( %)/Si mass percentage a (%) ratio b/a was calculated.
Mass percentage a (%) of Si, mass percentage b (%) of Cu, mass percentage m (%) of additive element M in the metal phase for each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 3. ), the ratio m/a of the mass percentage of additive element M m (%)/mass percentage a (%) of Si, and the ratio b/a of mass percentage b (%) of Cu/mass percentage a (%) of Si are shown in Table 1 together with the type of additive element M.
 なお、金属セラミックス複合材料の製造において、セラミックス相形成材料のプリフォームに含侵される金属量よりも含浸前に粉末混合物として準備する金属相形成材料の金属量のほうが多く、かつ、含浸にあたり金属相形成材料を構成する添加元素Mを含む各金属種が完全に均一に混合されていない場合もあり得るため、金属相形成材料における添加元素Mの質量百分率と実際に製造された金属セラミックス複合材料の金属相における添加元素Mの質量百分率とが完全に一致しないことも理論上起こり得ると考えられる。
 上記の実施例1~9及び比較例1の各々においては、金属相形成材料における添加元素Mの質量百分率と、実際に製造された金属セラミックス複合材料の金属相における添加元素Mの質量百分率とが一致していた。
In the production of metal-ceramic composite materials, the amount of metal in the metal phase-forming material prepared as a powder mixture before impregnation is greater than the amount of metal impregnated into the preform of the ceramic phase-forming material, and Since each metal type including the additive element M constituting the forming material may not be mixed completely uniformly, the mass percentage of the additive element M in the metal phase forming material and the actually produced metal-ceramic composite material may be different. It is considered theoretically possible that the mass percentage of the additive element M in the metal phase does not completely match.
In each of Examples 1 to 9 and Comparative Example 1 above, the mass percentage of the additive element M in the metal phase forming material and the mass percentage of the additive element M in the metal phase of the metal-ceramic composite material actually manufactured are It was a match.
(3)含浸状態の評価
 実施例1~9および比較例1~3の各々の金属セラミックス複合材料の含浸状態は含浸処理後の外観によって観察した。含浸状態の評価基準は以下のとおりとした。評価結果を表2に示す。
 〇(良好):全面的に含侵していた。
 △(中程度):部分的に含侵していなかった。
 ×(不良):含侵していなかった。
(3) Evaluation of impregnation state The impregnation state of each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 3 was observed based on the appearance after the impregnation treatment. The evaluation criteria for the impregnation state were as follows. The evaluation results are shown in Table 2.
○ (Good): Completely impregnated.
△ (moderate): Partially not impregnated.
× (Poor): No impregnation.
(4)複合材料における内部クラックの有無
 上記(1)と同様にして得られた実施例1~9および比較例1~3の各々の金属セラミックス複合材料の走査電子顕微鏡(SEM)の倍率250および倍率500倍の画像において、内部クラックの発生の有無を確認した。倍率250の画像にて内部クラックの発生が無いことが確認されたときには、倍率500倍の画像においても確認を行った。評価基準は以下のとおりとした。評価結果を表2に示す。
 〇(良好):倍率250または倍率500倍の画像において、内部クラックが発生していた。
 ×(不良): 倍率500倍の画像においても内部クラックが発生していなかった。
(4) Presence or absence of internal cracks in the composite material Scanning electron microscope (SEM) magnification of 250 and The presence or absence of internal cracks was confirmed in images with a magnification of 500 times. When it was confirmed that no internal cracks were generated in the image with a magnification of 250, confirmation was also made in the image with a magnification of 500. The evaluation criteria were as follows. The evaluation results are shown in Table 2.
○ (Good): Internal cracks were observed in images with a magnification of 250 times or 500 times.
x (Poor): No internal cracks were observed even in images with a magnification of 500 times.
(5)抗菌活性(抗菌効果R)の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、JIS Z2801:2012およびJIS R1752:2020に準じて、試験菌として黄色ブドウ球菌を用い、暗所にて作用温度25℃及び作用時間6時間で抗菌効果Rを測定した。具体的な抗菌効果Rの測定条件は以下のとおりであった。
 ・無加工品名:SLGガラス
 ・試験品の大きさ:50mm×50mm×5mm
 ・n数:n=2
 ・試験菌:黄色ブドウ球菌(NBRC12732)
 ・試験品の無菌化:乾燥減菌器による加熱(80℃、15分)
 ・作用条件 作用温度:25℃、作用時間:6時間、暗所
 ・寒天培地による菌数計測
 抗菌効果Rの測定結果を表2に示す。
(5) Measurement of antibacterial activity (antibacterial effect R) For each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4, yellow grape vine was used as a test bacterium in accordance with JIS Z2801:2012 and JIS R1752:2020. Using cocci, the antibacterial effect R was measured in the dark at an action temperature of 25°C and an action time of 6 hours. The specific conditions for measuring the antibacterial effect R were as follows.
・Unprocessed product name: SLG glass ・Size of test item: 50mm x 50mm x 5mm
・Number: n=2
・Test bacteria: Staphylococcus aureus (NBRC12732)
・Sterilization of test item: Heating in a dry sterilizer (80℃, 15 minutes)
- Action conditions Action temperature: 25°C, action time: 6 hours, dark place - Bacterial count measurement using agar medium Table 2 shows the measurement results of the antibacterial effect R.
(6)抗ウィルス活性(抗ウィルス効果R)の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、ISO18071:2016およびJIS R 1756:2020に準じて、試験ウィルスとしてマクロファージQβを用い、暗所にて作用温度25℃及び作用時間6時間で抗ウィルス効果Rを測定した。具体的な抗ウィルス効果Rの測定条件は以下のとおりであった。
 ・無加工品名:SLGガラス
 ・試験品の大きさ:50mm×50mm×4mm
 ・n数:n=2
 ・試験ファージ:バクテリオファージQβ(NBRC20012)
 ・試験品の無菌化:乾燥減菌器による加熱(80℃、15分)
 ・作用条件 作用温度:25℃、作用時間:6時間、暗所
 ・寒天培地による感染価計測
 抗ウィルス効果Rの測定結果を表2に示す。
(6) Measurement of antiviral activity (antiviral effect R) The metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4 were tested as test viruses in accordance with ISO18071:2016 and JIS R 1756:2020. The antiviral effect R was measured using macrophage Qβ at an action temperature of 25° C. and an action time of 6 hours in the dark. The specific conditions for measuring the antiviral effect R were as follows.
・Unprocessed product name: SLG glass ・Size of test item: 50mm x 50mm x 4mm
・Number: n=2
・Test phage: Bacteriophage Qβ (NBRC20012)
・Sterilization of test item: Heating in a dry sterilizer (80℃, 15 minutes)
- Action conditions Action temperature: 25°C, action time: 6 hours, dark place - Infectious titer measurement using agar medium Table 2 shows the measurement results of the antiviral effect R.
(7)気孔率の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、JIS R1634:1998に従って、アルキメデス法により気孔率を測定した。測定結果を表2に示す。
(7) Measurement of porosity The porosity of each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4 was measured by the Archimedes method according to JIS R1634:1998. The measurement results are shown in Table 2.
(8)真密度および相対密度の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、JIS R1634:1998に従って、アルキメデス法により、複合材料のかさ密度D1の金属相の真密度D2(SiCと金属相の比に基づいて計算された金属相の理論密度)に対する相対密度[D1/D2]*100を測定した。測定結果を表2に示す。
(8) Measurement of true density and relative density For each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4, the metal phase of bulk density D1 of the composite material was measured by the Archimedes method according to JIS R1634:1998. The relative density [D1/D2]*100 with respect to the true density D2 (theoretical density of the metal phase calculated based on the ratio of SiC to the metal phase) was measured. The measurement results are shown in Table 2.
(9)曲げ強度の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、JIS R1601:2008に従って、外部支点間距離30±0.1mmで、試験ジグ3p-30、支持具の形式:回転形、試験片:標準試験片Iを用い、標準試験片I<全長(L):36mm以上45mm未満、幅(w):4.0±0.1mm、厚さ(t):3.0±0.1mm>の条件下、3点曲げ強さ試験にて曲げ強度を測定した。測定結果を表2に示す。
(9) Measurement of bending strength For each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4, a test jig 3p-30 was used, with a distance between external supports of 30 ± 0.1 mm, according to JIS R1601:2008. Support format: rotating type, test piece: using standard test piece I, standard test piece I < total length (L T ): 36 mm or more and less than 45 mm, width (w): 4.0 ± 0.1 mm, thickness ( t): 3.0±0.1 mm>, the bending strength was measured by a three-point bending strength test. The measurement results are shown in Table 2.
(10)ビッカース硬度の測定
 実施例1~9および比較例1~4の各々の金属セラミックス複合材料について、JIS R1610:2003に従って、試験力2.942N(HV0.3)を使用し、1点荷重試験にて5点平均でビッカース硬度を測定した。測定結果を表2に示す。
(10) Measurement of Vickers hardness For each of the metal-ceramic composite materials of Examples 1 to 9 and Comparative Examples 1 to 4, a test force of 2.942 N (HV0.3) was used in accordance with JIS R1610:2003, and a single point load was applied. In the test, Vickers hardness was measured using a 5-point average. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例1~9の結果から、本発明に係る好ましい金属セラミックス複合材料によれば、良好な含浸状態がもたらされ、ひいては優れた強度および硬度などの機械的物性と共に、銅に起因する優れた抗菌性および抗ウィルス性が奏され、また特に好ましい例においては、気孔率(焼結体の緻密性)、曲げ強度および硬度(例えばビッカース硬度:押し込み硬さ)ならびに抗菌効果および抗ウィルス効果の全てがバランス良く高いレベルで優れていた。
 一方、金属相に添加元素Mが過剰に含まれる比較例1、セラミック相が金属相に対して所定の面積比より少ない比較例2、セラミック相が金属相に対して所定の面積比より多い比較例3によれば、良好な含浸状態が得られず、気孔率が高くなり緻密な焼結体が得られなかったか、あるいは所望される程度の抗菌活性・抗ウィルス活性が得られなかった等、実用に不適当な結果が得られた。
From the results of Examples 1 to 9 above, it is clear that the preferred metal-ceramic composite material according to the present invention provides a good impregnated state and has excellent mechanical properties such as strength and hardness, as well as excellent mechanical properties due to copper. In particularly preferred examples, porosity (density of the sintered body), bending strength and hardness (e.g. Vickers hardness: indentation hardness), and antibacterial and antiviral effects are exhibited. Everything was well balanced and at a high level.
On the other hand, Comparative Example 1 in which the additive element M is excessively contained in the metal phase, Comparative Example 2 in which the ceramic phase has a smaller area ratio than the predetermined area ratio with respect to the metal phase, and Comparative Example 2 in which the ceramic phase has a larger area ratio than the predetermined area ratio with respect to the metal phase. According to Example 3, a good impregnated state was not obtained, the porosity was high and a dense sintered body was not obtained, or the desired level of antibacterial and antiviral activity was not obtained. Results unsuitable for practical use were obtained.
 なお、本発明に包含され得る諸態様または諸実施形態は、以下のとおり要約される。
[1].
 炭化ケイ素を含むセラミックス相、ならびに、
 CuおよびSiからなる合金および/または金属間化合物を含む金属相
を互いに分散した状態で含んでなる金属セラミックス複合材料であって、
 前記金属相は、CuまたはSi以外の少なくとも1種の金属である添加元素Mを含み、かつ、
 前記炭化ケイ素は、前記セラミックス相の構成材料の総質量の過半量を占め、
 ここで、
 前記金属セラミックス複合材料に対して、走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得した際、この画像全体の面積に対して、前記セラミックス相の合計面積の百分率(%)をA、前記金属相の合計面積の百分率(%)をBとするとき、セラミックス相/金属相の面積比A/Bが2以上60以下であり、かつ、
 前記金属相において、
 その総質量に対して、Siの質量百分率(%)をa、添加元素Mの質量百分率(%)をmとするとき、下記の関係式:
 0.01≦m/a≦1.4、および
 0.3≦m≦20
を満たす、金属セラミックス複合材料。
[2].
 前記金属相において、その総質量に対して、Cuの質量百分率(%)をbとし、前記のとおり、Siの質量百分率(%)をaとするとき、下記の関係式:
 b/a≧2.5
を満たす、上記項目1に記載の金属セラミックス複合材料。
[3].
 前記セラミックス相/金属相の面積比A/Bが5以下であり、かつ
 m/a<1であり、かつ
 b/a≧3である、
 上記項目2に記載の金属セラミックス複合材料。
[4].
 前記添加元素Mが、Ni、Mg、ZnおよびTiを含む群から選択される少なくとも1種を含む、上記項目1~3のいずれか1項に記載の金属セラミックス複合材料。
[5].
 JIS Z2801:2012に従って、試験菌として黄色ブドウ球菌を用いた条件で測定された抗菌効果Rが2.0以上である、上記項目1~4のいずれか1項に記載の金属セラミックス複合材料。
[6].
 抗病原体材料として用いられることを特徴とする、上記項目1~5のいずれか1項に記載の金属セラミックス複合材料。
[7].
 JIS R1634:1998に従って、アルキメデス法にて測定された気孔率が10%以下である、上記項目1~6のいずれか1項に記載の金属セラミックス複合材料。
[8].
 JIS R1634:1998に従ってアルキメデス法にて測定するとき、前記金属セラミックス複合材料のかさ密度D1の、前記金属セラミックス複合材料の金属相の真密度D2に対する相対密度[D1/D2]*100が90%以上である、上記項目1~7のいずれか1項に記載の金属セラミックス複合材料。
[9].
 JIS R1601:2008に従って、3点曲げ強さ試験にて測定された曲げ強度が230MPa以上である、上記項目1~8のいずれか1項に記載の金属セラミックス複合材料。
[10].
 JIS R1610:2003に従って、1点荷重試験にて5点平均で測定されたビッカース硬度が25GPa以上である、上記項目1~9のいずれか1項に記載の金属セラミックス複合材料。
[11].
 前記セラミックス相がさらに遊離炭素を含む、上記項目1~10のいずれか1項に記載の金属セラミックス複合材料。
 
 
Note that aspects or embodiments that may be included in the present invention are summarized as follows.
[1].
a ceramic phase containing silicon carbide, and
A metal-ceramic composite material comprising an alloy consisting of Cu and Si and/or a metal phase containing an intermetallic compound in a mutually dispersed state,
The metal phase contains an additive element M that is at least one metal other than Cu or Si, and
The silicon carbide accounts for the majority of the total mass of the constituent materials of the ceramic phase,
here,
When an image with an area of 256 μm x 192 μm is obtained for the metal-ceramic composite material using a scanning electron microscope (SEM) at a magnification of 500, the percentage of the total area of the ceramic phase with respect to the area of the entire image (%) is A, and the percentage (%) of the total area of the metal phase is B, the area ratio A/B of the ceramic phase/metal phase is 2 or more and 60 or less, and
In the metal phase,
When the mass percentage (%) of Si is a and the mass percentage (%) of the additional element M is m with respect to the total mass, the following relational expression:
0.01≦m/a≦1.4, and 0.3≦m≦20
A metal-ceramic composite material that meets the following requirements.
[2].
In the metal phase, when the mass percentage (%) of Cu is b and the mass percentage (%) of Si is a, based on the total mass of the metal phase, the following relational expression:
b/a≧2.5
The metal-ceramic composite material according to item 1 above, which satisfies the following.
[3].
The area ratio A/B of the ceramic phase/metal phase is 5 or less, and m/a<1, and b/a≧3.
The metal-ceramic composite material according to item 2 above.
[4].
The metal-ceramic composite material according to any one of items 1 to 3 above, wherein the additive element M includes at least one selected from the group including Ni, Mg, Zn, and Ti.
[5].
The metal-ceramic composite material according to any one of items 1 to 4 above, which has an antibacterial effect R of 2.0 or more as measured under conditions using Staphylococcus aureus as a test bacterium in accordance with JIS Z2801:2012.
[6].
The metal-ceramic composite material according to any one of items 1 to 5 above, which is used as an anti-pathogen material.
[7].
The metal-ceramic composite material according to any one of items 1 to 6 above, which has a porosity of 10% or less as measured by the Archimedes method according to JIS R1634:1998.
[8].
When measured by the Archimedes method according to JIS R1634:1998, the relative density [D1/D2]*100 of the bulk density D1 of the metal-ceramic composite material to the true density D2 of the metal phase of the metal-ceramic composite material is 90% or more. The metal-ceramic composite material according to any one of items 1 to 7 above.
[9].
The metal-ceramic composite material according to any one of items 1 to 8 above, which has a bending strength of 230 MPa or more as measured in a three-point bending strength test according to JIS R1601:2008.
[10].
The metal-ceramic composite material according to any one of items 1 to 9 above, which has a Vickers hardness of 25 GPa or more as measured at a five-point average in a one-point load test according to JIS R1610:2003.
[11].
The metal-ceramic composite material according to any one of items 1 to 10 above, wherein the ceramic phase further contains free carbon.

Claims (11)

  1.  炭化ケイ素を含むセラミックス相、ならびに、
     CuおよびSiからなる合金および/または金属間化合物を含む金属相
    を互いに分散した状態で含んでなる金属セラミックス複合材料であって、
     前記金属相は、CuまたはSi以外の少なくとも1種の金属である添加元素Mを含み、かつ、
     前記炭化ケイ素は、前記セラミックス相の構成材料の総質量の過半量を占め、
     ここで、
     前記金属セラミックス複合材料に対して、走査電子顕微鏡(SEM)を用い、倍率500にて面積256μm×192μmの画像を取得した際、この画像全体の面積に対して、前記セラミックス相の合計面積の百分率(%)をA、前記金属相の合計面積の百分率(%)をBとするとき、セラミックス相/金属相の面積比A/Bが2以上60以下であり、かつ、
     前記金属相において、
     その総質量に対して、Siの質量百分率(%)をa、添加元素Mの質量百分率(%)をmとするとき、下記の関係式:
     0.01≦m/a≦1.4、および
     0.3≦m≦20
    を満たす、金属セラミックス複合材料。
    a ceramic phase containing silicon carbide, and
    A metal-ceramic composite material comprising an alloy consisting of Cu and Si and/or a metal phase containing an intermetallic compound in a mutually dispersed state,
    The metal phase contains an additive element M that is at least one metal other than Cu or Si, and
    The silicon carbide accounts for the majority of the total mass of the constituent materials of the ceramic phase,
    here,
    When an image with an area of 256 μm x 192 μm is obtained for the metal-ceramic composite material using a scanning electron microscope (SEM) at a magnification of 500, the percentage of the total area of the ceramic phase with respect to the area of the entire image (%) is A, and the percentage (%) of the total area of the metal phase is B, the area ratio A/B of the ceramic phase/metal phase is 2 or more and 60 or less, and
    In the metal phase,
    When the mass percentage (%) of Si is a and the mass percentage (%) of the additional element M is m with respect to the total mass, the following relational expression:
    0.01≦m/a≦1.4, and 0.3≦m≦20
    A metal-ceramic composite material that meets the following requirements.
  2.  前記金属相において、その総質量に対して、Cuの質量百分率(%)をbとし、前記のとおり、Siの質量百分率(%)をaとするとき、下記の関係式:
     b/a≧2.5
    を満たす、請求項1に記載の金属セラミックス複合材料。
    In the metal phase, when the mass percentage (%) of Cu is b and the mass percentage (%) of Si is a, based on the total mass of the metal phase, the following relational expression:
    b/a≧2.5
    The metal-ceramic composite material according to claim 1, which satisfies the following.
  3.  前記セラミックス相/金属相の面積比A/Bが5以下であり、かつ
     m/a<1であり、かつ
     b/a≧3である、
     請求項2に記載の金属セラミックス複合材料。
    The area ratio A/B of the ceramic phase/metal phase is 5 or less, and m/a<1, and b/a≧3.
    The metal-ceramic composite material according to claim 2.
  4.  前記添加元素Mが、Ni、Mg、ZnおよびTiを含む群から選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, wherein the additive element M includes at least one selected from the group including Ni, Mg, Zn, and Ti.
  5.  JIS Z2801:2012に従って、試験菌として黄色ブドウ球菌を用いた条件で測定された抗菌効果Rが2.0以上である、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, which has an antibacterial effect R of 2.0 or more as measured under conditions using Staphylococcus aureus as a test bacterium in accordance with JIS Z2801:2012.
  6.  抗病原体材料として用いられることを特徴とする、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, which is used as an anti-pathogen material.
  7.  JIS R1634:1998に従って、アルキメデス法にて測定された気孔率が10%以下である、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, which has a porosity of 10% or less as measured by the Archimedes method according to JIS R1634:1998.
  8.  JIS R1634:1998に従ってアルキメデス法にて測定するとき、前記金属セラミックス複合材料のかさ密度D1の、前記金属セラミックス複合材料の金属相の真密度D2に対する相対密度[D1/D2]*100が90%以上である、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 When measured by the Archimedes method according to JIS R1634:1998, the relative density [D1/D2]*100 of the bulk density D1 of the metal-ceramic composite material to the true density D2 of the metal phase of the metal-ceramic composite material is 90% or more The metal-ceramic composite material according to any one of claims 1 to 3, which is
  9.  JIS R1601:2008に従って、3点曲げ強さ試験にて測定された曲げ強度が230MPa以上である、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, which has a bending strength of 230 MPa or more as measured by a three-point bending strength test in accordance with JIS R1601:2008.
  10.  JIS R1610:2003に従って、1点荷重試験にて5点平均で測定されたビッカース硬度が25GPa以上である、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, which has a Vickers hardness of 25 GPa or more as measured at a five-point average in a one-point load test in accordance with JIS R1610:2003.
  11.  前記セラミックス相がさらに遊離炭素を含む、請求項1~3のいずれか1項に記載の金属セラミックス複合材料。 The metal-ceramic composite material according to any one of claims 1 to 3, wherein the ceramic phase further contains free carbon.
PCT/JP2022/046567 2022-03-25 2022-12-19 Metal-ceramic composite material WO2023181532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024509757A JPWO2023181532A1 (en) 2022-03-25 2022-12-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049916 2022-03-25
JP2022-049916 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181532A1 true WO2023181532A1 (en) 2023-09-28

Family

ID=88100900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046567 WO2023181532A1 (en) 2022-03-25 2022-12-19 Metal-ceramic composite material

Country Status (2)

Country Link
JP (1) JPWO2023181532A1 (en)
WO (1) WO2023181532A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116109A (en) * 1973-03-12 1974-11-06
JPH10219368A (en) * 1996-12-06 1998-08-18 Nippon Cement Co Ltd Production of metal-ceramic composite material
JP2001261469A (en) * 2000-03-23 2001-09-26 Ngk Insulators Ltd Sintered compact, method for producing the same, composite material and method for producing the same
JP2003165787A (en) * 2001-09-19 2003-06-10 Ngk Insulators Ltd Composite material
JP2004035307A (en) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp Metal-ceramic composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116109A (en) * 1973-03-12 1974-11-06
JPH10219368A (en) * 1996-12-06 1998-08-18 Nippon Cement Co Ltd Production of metal-ceramic composite material
JP2001261469A (en) * 2000-03-23 2001-09-26 Ngk Insulators Ltd Sintered compact, method for producing the same, composite material and method for producing the same
JP2003165787A (en) * 2001-09-19 2003-06-10 Ngk Insulators Ltd Composite material
JP2004035307A (en) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp Metal-ceramic composite material

Also Published As

Publication number Publication date
JPWO2023181532A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
Zhang et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0. 9Al0. 1C2 solid solution
CN109338137B (en) Method for producing chromium nitride-containing spray powders
CN1044800A (en) Preparation has the method for self-supporter of the porosity of control and graded properties and the product that makes thereof
Besisa et al. Investigation of microstructure and mechanical strength of SiC/AlN composites processed under different sintering atmospheres
JPH055152A (en) Hard heat resisting sintered alloy
Suzuki et al. Synthesis and mechanical properties of Mo≤ 5Si3C≤ 1 and Mo≤ 5Si3C≤ 1-based composites
JP2016113696A (en) Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
Moustafa et al. Improved mechanical properties of Cu8Ni4Sn alloy as functionally graded composites with preserving its thermal and electrical properties
Córdoba et al. Synthesis of Ti3SiC2 powders: reaction mechanism
WO2023181532A1 (en) Metal-ceramic composite material
JP7089743B2 (en) Hard materials and their manufacturing methods
Liu et al. The effect of T-ZnOw addition on the microstructure, mechanical and antibacterial properties of Si3N4 ceramics for biomedical applications
JP2005281084A (en) Sintered compact and manufacturing method therefor
US20090183598A1 (en) Composite material , method for manufacturing the same, and edged tool by using the same
Pourali et al. Microstructures and Mechanical Behavior of Ti 3 SiC 2/Al 2 O 3-Ni Composites Synthesized by Pulse Discharge Sintering
Faran et al. Coating of BN via solid state reaction with Ti powder
CN110612591B (en) High temperature assembly
JP5079940B2 (en) Tungsten carbide cemented carbide composite material sintered body
JP6807013B2 (en) Manufacturing method of aluminum alloy-ceramic composite material
JPH06212328A (en) Aluminum matrix composite material having high heat resistance, high rigidity, and low thermal expansion
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
Xue et al. Synthesis of Ti 3 SiC 2 Through Pressureless Sintering
Krakhmalev et al. Microstructure, hardness and indentation toughness of C40 Mo (Si, Al) 2/ZrO2 composites prepared by SPS of MA powders
Kozień et al. Effect of Additives on the Reactive Sintering of Ti–B4C Composites Consolidated by Hot Pressing and Pressureless Sintering
JP2004263251A (en) Group 7a element-containing cemented carbide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509757

Country of ref document: JP